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ABSTRACT

This thesis discusses and applies hierarchical models for survival data in the field of
veterinary medicine. The focus is on hierarchical proportional hazards models when the
baseline hazard is left completely unspecified. Parameter estimation for these models is
explored and the performance of their estimation methods is investigated in terms of

statistical properties such as unbiasedness, robustness, and probability coverage.

The thesis is formed by manuscripts of four studies. The first study compares, via
simulation, the performance of different estimation methods for estimating a random
slope Cox model with and without covariance between the random effects. The
simulation is built to mimic real animal health data. The aim of the study is to establish
some practical guidelines for the choice of appropriate statistical estimation methods for
modeling random slopes in 2-level hierarchical data. Results show that estimating the full
covariance matrix for random effects is always preferable in the analysis and Poisson

maximum likelihood estimation is an adequate approach for this task.

The second study explores the feasibility of a full hierarchical survival analysis for a
large dataset with three levels of hierarchy and time-dependent predictors and
coefficients. To this end, a log-normal nested frailty Cox model is applied to Canadian
Bovine Mastitis Research Network (CBMRN) data to identify risk factors associated with
the hazard of clinical mastitis (CM) during cow lactations. This nested frailty model is
estimated by the Poisson maximum likelihood approach with Gaussian quadrature. The
performance, in terms of bias and efficiency of estimates, of the Poisson maximum

likelihood approach (estimated using either Gaussian quadrature or Laplace



approximation) is compared with the performance of the penalized partial likelihood
approach. The Poisson maximum likelihood with Gaussian quadrature produces fairly
robust and adequate estimates while the penalized partial likelihood and the Poisson
maximum likelihood with Laplacian approximation are found to have substantial
drawbacks. Further, the research indicates that some of the herd managerial factors
combined with cow characteristics influence the hazard of CM during the lactation

period; some of these effects are different earlier as compared to later in the lactation.

The third study involves analyzing a dataset on calf loss and mortality in beef cattle in
Western Canada. This dataset has a cross-classified and multiple membership structure
which is a special type of data structure that has only been accounted for in the analyses
of linear and generalized linear models but not in survival analysis. The study objectives
are twofold: the first is to explore and demonstrate the use of Poisson generalized linear
mixed models (GLMMs) in the Bayesian framework for estimating a Cox model with
cross-classified and multiple membership frailties. The second, is to simultaneously
examine the individual, herd management, and environmental factors associated with
beef calf mortality in Western Canada and to estimate the age period where calves are
most at risk. Finally, a simulation study with settings similar to the real data is carried out
to evaluate the estimation approach. The simulation results gave evidence that the

approach used provides valid estimates.

In the fourth study, the robustness of Poisson maximum likelihood estimation was
assessed, through simulation, for a Cox model with normal random effects under
misspecification of the random-effects distribution. The impact of misspecifying the

distribution of random effects is assessed based on two different non-normal distributions

Vi



for random effects and three different model designs. Some of the factors that might
affect the estimation are also investigated. The study shows that the Poisson maximum
likelihood approach yields robust estimates under misspecification of the random-effects
distribution for within-group fixed effects and in a wide range of situations for between-
group fixed effects. For variance components, the approach produces robust estimation
under model misspecification as long as the magnitude of heterogeneity is small, though
misspecification may become a matter of concern when the magnitude of heterogeneity

and group sizes become large.
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Chapter 1

Introduction

1.1. Survival data

When data include a response variable that corresponds to the time from a well-defined
origin to the occurrence of a particular event or end point, the data may be called time-to-
event data. Such data have the following features: the response variable is non-negative;
part of the data is often right censored, i.e., for some individuals the event of interest has
not occurred due to withdrawal or end of study (there are also other types of censoring
such as left and interval censoring); and the data may contain predictors and effects that
change over time. Time-to-event data go under different names depending on the area of
application, for example as survival data in medical and biological sciences and as failure
time data in engineering and industry. Examples of time-to-event outcomes are: time
from onset of a disease to death, time to recurrence of a disease, time to breakdown of a

machine, or the duration time of a process.

In veterinary and animal sciences, survival data are often encountered. Knowing when
the event of interest is going to occur and what factors might affect the instantaneous rate
of this event may be of crucial importance for both veterinarians and farmers to take the
necessary action. In the last several years, an increasing number of both experimental and
observational studies using time-to-event response in veterinary and animal science have

been observed for different event times including, for instance, time to death in different



species (Nur et al., 2004; Duncan et al., 2006; Burnley et al., 2010; Hatcher et al., 2010;
McCorquodale et al., 2013), time to culling in cattle (Grohn et al., 2005; Duchateau and
Janssen, 2008; Dohoo et al., 2009), time from calving to conception in dairy cows
(Meadows et al., 2006; Meadows et al., 2007), time to occurrence of a disease (Portolano
et al., 2007; Nielsen and Dohoo, 2012; Relun et al., 2013), and time to recovery from a
disease (Edmondson et al., 1989; Nielsen and Dohoo, 2013). The response variable also
could be time to other events such as time to first application of treatment (Christensen,
1996) or concentration of antibiotic to event (time to event) where inhibition of bacterial
growth is the event (Stegeman et al., 2006). In veterinary survival data, censoring may
happen for various reasons. For instance, in studies of occurrence time of mastitis in dairy
cows censoring could have occurred to the animal due to culling, drying off, leaving the

study, or surviving until the end of the study without a clinical case occurring.

Survival analysis refers to statistical techniques and methods for modeling and analyzing
time-to-event data. These techniques play an important role in many fields such as
epidemiology, demography, medicine, engineering, and economics. The response
variable in survival analysis is often modeled indirectly through the instantaneous event
rate (hazard function) that can be linked to the survival function. The proportional
hazards model (Cox, 1972) has become the preferred regression analysis for survival
data. The Cox proportional hazards model is the main focus throughout this thesis. In the
next section, a detailed description of three survival datasets from veterinary medicine is

given.

1.2. Description of datasets used in the thesis



1.2.1. Lameness data

The lameness data are described in Christensen (1996) and in Josiassen and Christensen
(1999). Briefly, a total of 7632 litters of piglets (5,465 sows) from 35 herds were
followed from birth to weaning in a Danish project carried out by the Health and
Production Surveillance System (HEPS) during the period from October 1990 to March
1991. All clinical signs related to the lameness such as splayleg, joint infection, or ataxia,
were monitored in the litters and necessary treatment was applied and recorded by the
producers. The event time for a litter was defined as the time from birth to the first
application of treatment for lameness in the litter, while the censoring time was the time
from birth until either the litter was weaned or excluded at 40 days of follow-up. In
Chapter 2, data from the 22 herds are used as an example. These herds did not participate
in any elevated health programs (such as specific pathogen free herds that are declared
free from certain infectious diseases), and only the first litter per sow was included. The
failure rate in these 22 herds was 11.2%. The predictor of primary interest here was sow
treatment for milk fever, infection, or MMA (mastitis/metritis/agalactia) in days around

farrowing (2 days before and up to 4 days after); 26% of the sows were treated.

1.2.2. CBMRN data

The Canadian Bovine Mastitis Research Network (CBMRN) data were from the National
Cohort of Dairy Farms (NCDF) collected from January 2007 to December 2008. The
herd selection process and data collection of NCDF are described in Reyher et al. (2011).
In brief, a total of 8,035 cows from 69 herds were followed for 10,831 lactations until the

cow experienced the first case of clinical mastitis (CM), was culled or dried off, left the



cohort, or its follow-up was interrupted by the end of the study. The response variable
was defined as the number of days from calving until developing a first case of CM.
Observations from cows that did not develop a mastitis case within the lactation were
considered right censored. Important information at both the individual and herd levels,
such as time of CM occurrence, calving date, culling date, dry-off date, lactation number,
herd somatic cell score (SCS), and herd demographics were captured. Other information
related to the herd management was provided by an udder health related management
survey described in Dufour et al. (2010). The incidence of clinical mastitis in this dataset

was 14.2%. The CBMRN dataset is analyzed in Chapter 3.

1.2.3. Calf mortality data

The calf mortality dataset was from the Western Canada beef productivity study
(Waldner, 2008). The study was on calf loss and mortality in beef cattle in Western
Canada where 23,409 calves from 174 herds were followed for up to 180 days after
calving during the period from January-June 2002. The dataset included 897 cases of
mortality, corresponding to an incidence of 3.8%. The event was defined as a case of calf
mortality that occurred at least one hour after birth; the event time was defined as the
time from calving to death (recorded in days). Calves that were sold during the follow-up
period or survived until the end of the follow-up period were considered right censored

observations. The calf mortality dataset is studied in Chapter 4.
1.3. Survival analysis fundamentals

Survival analysis is the analysis of data that correspond to the time from a well-defined

time origin until the occurrence of some particular event or end-point. Let T; and



C;G=1,..,N) be independent variables representing the event and right censoring
times for the j** subject, respectively. Let Y; = min (T}, C;) denote the observed time for
the subject j and §; = I(T; < C;) be the event indicator taking 1 if the event is observed

and 0 otherwise. Suppose that f(t) is the probability density function of the event time T;

then the survival function that describes the survival data is given by
t
S =P(T>t)=1— f £(s)ds = 1 — F(t) 1)
0

where F(t) is the cumulative distribution function. The survival function captures the

probability that the subject will survive beyond a specified time.

We are interested in calculating the probability that a subject survives in the interval
[t, t + At) where At > 0, conditional on having survived to the beginning of that interval

(to time t), so

P(t<T<t+At) S(t)—S(t+At)

PE<T<t+AtIT>t)= D) S0 (1.2)
Dividing (1.2) by At to obtain,
PE<T<t+At]T>1t) _ -1 N S(t) —S(t + At) (13)
At S(t) At
Taking the limit of both sides of (1.3) as At — 0, the hazard function is obtained:
20 = —d[InS@®)] _ f(®) (14)

dt S



This hazard function can be interpreted as the instantaneous failure rate for a subject

surviving to time t. From (1.4), S(t) can be written as
S(t) = exp(—AQ)) (15)

where A(t) = — fot A(s)ds is the cumulative hazard function. This leads to A(t) =

—InS(¢t), and so A(t) = —InS(¢).

Let t;, j =1,..,r denote the ordered, observed and distinct failure times, i.e. t; <. <

t,. The Kaplan-Meier estimator (Kaplan and Meier, 1958) for the survival function S(t)

can be calculated as

$() = 1_[ (1 _ %) (1.6)

Pl ]
jitjst

where the d; denotes the number of failures at time t;, and n; is the number of subjects at
risk at time ¢;, i.e. the number of subjects still alive just before t;. The Kaplan-Meier

estimator is a step function, in which the estimated survival probabilities are constant

between event times and decrease at each observed event time.
1.4. Regression models for survival data

Several approaches have been used in survival analysis to model the effect of explanatory
variables on the time to event. Some of these models are presented briefly in the next
sections. Let x; = (xj,...,xp;) be a vector of explanatory variables for the jt" subject

throughout.

1.4.1. Proportional hazards (PH) models



The most popular procedure to associate the hazard function A(t) and x; is based on the
concept of a proportional hazards (PH) model (Cox, 1972). In PH models, the hazard
function is a product of a baseline hazard A,(t) (where all the variables included in the
model are zero) and a non-negative function of the explanatory variables ¢(B'x;). The
most common and convenient choice for the non-negative function is ¢(B'x;) =

exp(B’x;). The PH model can then be written as
4 (t) = 2o(t) exp(B'x;) (1.7)
where B is a vector of regression coefficients associated with x;.

The proportional hazards terminology means that the hazard ratio (HR) of two subjects,
say | and Il with explanatory variables x; and x;;, does not depend on time, i.e.,

_ @) _ @ exp(Bx;) _

HR = () () exp(Bxy)

exp[ B (x; — x1)],

is constant over time.

The baseline hazard 1,(t) of model (1.7) can be modeled parametrically and the most
common approach is a Weibull PH model, or nonparametrically by using a PH Cox
model (Cox, 1972). The latter is probably the more widely used one. In the Cox PH
model, no assumptions about the form of A,(t) are made (non-parametric part of the
model) but a parametric form for the effect of the predictors (parametric part of the
model) is needed. Therefore, the model is referred to also as a semi-parametric model.

The attractive feature of the semi-parametric approach is that an adequate estimate for the



regression coefficients B can be obtained even though the baseline hazard is not

specified.

In the PH Cox model, inference on B can be made by partial likelihood (Cox, 1972),
which is a part of the full likelihood that does not depend on 2,(t). Suppose we observe
(5, 6;, x;) for subject j, where y; is an observed time, &; is an event indicator, and x; is a
vector of explanatory variables. As described in Collett (1994), the probability that the
j™ subject fails at some time ¢t; conditional on ¢; being one of the observed set of r

failure times t,, t,, ..., t,. IS

. ( biect i with x. fail tt| il tt) Pr(subject j with x; fails at ¢;)
r(subject j with x; fails at ¢;|one failure at t;) = -
J J J Pr(one failure at t;)

The numerator of the above equation is the hazard of event at time ¢; for subject j with
explanatory variables x;, this hazard function can be written as 4;(¢;). The denominator
is the sum of the hazards of event at time ¢;. This is the sum of the A,(t;) over subjects
that indexed by [ in the risk set at time t;, R(t;). Therefore, the conditional probability
above can be rewritten as

ZlER(tj)Al(tj) ZleR(tj)eXp(ﬁ'xl)

(1.8)

where 4, (t;) in the numerator and denominator cancels out.

Taking the product of (1.8) over the r event times, we get



oo T eXP(B'x))
L) = E[ZlER(tj) exp(B'x;)

When censoring is present in the data, the partial likelihood can then be expressed in the

form

n S

exp(B'x; J

LPL(ﬁ):l_” P(B f), (1.9)
L Yier(t;) EXP(B'x1)

Another derivation for the partial likelihood function is as follows. Assuming

independent event and censoring times, the full likelihood function for censored data is

given by

n

L(B) = H[AJ(YJ)]éjSJ(Yj)

j=1

n

ﬂ[lo(y,)exp(ﬁ )] expl f Ao(s) exp(B'x )ds‘ (1.10)

Jj=1

S5
By multiplying and dividing (1.10) by the term [ZlER(tj)/lo(yj) exp(ﬁ’x,)] ' and

[ € R(t;) means t; = t;, we get

5 .
exp(B'x; /
L(B) = 1_[ [ZlER(t )exp(ﬁ’x,)]

8j J
xl Z o(y)) exp(ﬁ’x,)} exp I—f Ao (s) exp(ﬁ’xj)ds‘ (1.11)
leR(t;) 0

10



Cox (1972) argued that the first term in (1.11) takes into consideration the ordering of the
events and does not make use of the actual event times. So that last bit of information is
what is dropped. Thus, the estimates of  can be obtained from the first part of (1.11)

which is the partial likelihood function defined in (1.9).

This partial likelihood can be maximized using the Newton-Raphson procedure. In the
case of ties, approximations to the partial likelihood such as those proposed by Breslow

(1974) and Efron (1977) are needed.

The key difference between the parametric and semi-parametric PH models is that instead
of leaving the baseline hazard completely arbitrary in the semi-parametric PH approach,
the baseline hazard is assumed to follow a specific distribution in the parametric PH
approach. Further, the estimation in the parametric PH model is based on the full

maximum likelihood instead of the partial likelihood used in the Cox PH model.
1.4.2. Accelerated failure time (AFT) model

The accelerated failure time model is an alternative to the PH model for the analysis of
survival data. Under AFT models, the effect of the explanatory variables is measured
directly on the survival time instead of on the hazard function as in PH models. This
allows for easier interpretation of the results because the predictors affect the mean

survival time through the regression parameters. The AFT model takes the form

A(t) = 2o (t exp(B'x;)) exp(B'x;) (1.12)

11



where the change from ¢ to t exp(B'x;) represents acceleration or deceleration depending
whether exp(B'x;) is greater or smaller than 1. Only PH models with an exponential or a

Weibull baseline survival time distribution belong to both the PH and AFT families.

The log-linear formulation corresponding to the AFT model with respect to time is given

by
INT; = u+ B'x; + o¢; (1.13)

where p is an intercept, o is a scale parameter, and ¢; is the random error term for the jth

subject which is assumed to follow a certain distribution. This log-linear form

representation is adopted by most of the software packages.
1.4.3. Proportional odds model

The proportional odds model is structurally similar to the PH model, and may be used in
similar situations (Bennett, 1983). In the situations where the predictor effect vanishes
with time, the proportional odds model may be more appropriate than the PH model.
Similar to the PH model, the odds function is assumed to be a product of baseline odds

and an exponential function of the predictors. The proportional odds model is given by
u(t) = po(t) exp(B'x;) (1.14)

where u(t) = F(t)[1 - F(t)]™! is the odds function at time t, uy(t) = Fo(t)[1—
Fo(t)]™" is the baseline odds function at time t of a subject with x; = 0. Likelihood-

based estimation can be used for inference on regression parameters f3.

1.4.4. Additive risks model

12



Another alternative model to the PH model is the additive risks model (Aalen, 1980;
1989). Unlike the PH model, the additive risk model assumes that the hazard function for

the j* subject associated with a set of predictors x; is the sum of a baseline hazard

function A, (t) and a regression function of explanatory variables x;, that is

A(t) = Ao (t) + B'x; (1.15)

where 1,(t) is the baseline hazard. The regression parameters B are allowed to be
functions of time, so that the effect of predictors may vary over time. Model parameters

can be estimated using a least-squares technique (Huffler and McKeague, 1991).
1.5. Time-dependent predictors and coefficients

In many studies with time-to-event outcome, individuals are monitored for the duration
of the study. Within this period, the values of certain explanatory variables may be
recorded at selected periodic time points (i.e. x; is a function of t). For example,
predictors related to management practices may be recorded at regular intervals. These
variables are known as time-dependent or time-varying predictors. Another type of time
dependence is when the effect of certain predictors changes over time (i.e. B is a function
of t), this is referred to as time-dependent coefficients or time-varying effects. To deal
with time-dependent variables and coefficients in PH models the dataset has to be set up
in a counting-process format (Grambsch and Therneau, 1994). In the counting-process
setup, data for each subject are identified by the triple: N(t), §(t) and x(t) where N(t) is

the number of events that occurred in the time interval (0,t] for a subject j; &(t)

indicates the event status; and x(t) is a vector of predictors for the subject at time ¢. The

13



path of N(.) is a step function with jumps at the event times and N(0) = 0. The data for
each subject are then represented by multiple records, each identifying a time interval
(tx, tr+1], the predictor values on that interval, and the event status. Finally, the time
dependence of predictors and effects can be accounted for by fitting, for example, a PH

model to the counting-process formatted data (Therneau and Crowson, 2013).

1.6. Hierarchical data structure

Clustering in the data is natural in most observational and experimental studies in
veterinary epidemiology. For example, in the lameness dataset described in Section 1.2.1
we have animals clustered by herds. Animals within the same herd are more alike than
animals from different herds, in the sense that animals within the same herd share the
experience of being in the same environment and similar genetics (e.g. food, facilities,
and management). Another type of clustering in survival data is where we have repeated
events in the same subject, for example repeated CM episodes in dairy cows (Schukken
et al., 2010). Such similarity may lead to within cow homogeneity over time (Dohoo et
al., 2009; chapter 21). We talk about a hierarchical data structure when each unit at the
lower level is nested in a single unit of the higher levels. In addition, any two
observations in the same unit must remain together (i.e. in the same unit) at all higher
levels. Two-level hierarchical survival data, e.g. animals within herds, are common in
human and veterinary epidemiologic studies (e.g. Stryhn and Christensen, 2013; Hanagal
and Dabade, 2013). Analysis of survival data with more than two levels of hierarchy have
been reported in the human epidemiology literature (e.g. Sastry, 1997; Shin and Lu,
2007); but are rarely reported in veterinary epidemiological research even though such

structures are commonly encountered in the field. For example, the CBMRN dataset

14



described in Section 1.2.2 includes multiple lactations nested in cows and cows located in

different herds.

In some instances, the data structure is not perfectly hierarchical. For instance, the
structure of the calf mortality dataset is more complex than what was described in Section
1.2.3. We have calves from different herds, and these herds located in different ecologic
regions and serviced by multiple veterinary clinics. Therefore, in addition to calves being
hierarchically nested within herds, herds are cross-classified by ecologic regions and
veterinary clinics. This special structure corresponds to a 3-level cross-classified and

multiple membership data structure (Browne et al., 2001).

It is important to understand the implications of ignoring clustering or otherwise
inadequately accounting for a hierarchical data structure in the statistical analysis, beyond
the obvious fact that the independence assumption is being violated. Biases may occur in
both regression coefficients (in particular if groups have confounding effects) and in their
standard errors. It is well-known that standard errors for group-level predictors will be
underestimated if clustering exists and is ignored. Thus, the researcher may be more
likely to conclude that an effect (e.g. a hazard ratio or a difference between group means)
is statistically significant regardless of whether an effect is actually present in the

population.

Different approaches have been applied to account for hierarchical survival data
structure. One of these approaches is to combine multiple hierarchical levels of analysis
in a single comprehensive model by including the information from each level of the

hierarchy in the data. This allows researchers to specify predictors at different levels and
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apply other features such as random slopes and contextual effects. In the following
section, a brief review of different approaches for accounting for data structure in

survival data is given.

1.7. Approaches for modeling two-level hierarchical survival data

In this section, the existing approaches for modeling hierarchical data structure for time-
to-event outcomes are discussed. Based on a Cox PH model, three extensions can be
considered for modeling a two-level data structure: a model including the top level as
fixed effects, a model stratified by the top level, and a model incorporating the top level
as random effects. Other approaches, such as copula models, have been also suggested

for correlated event times.

In the following subsections, hierarchical survival data clustered by G different groups
are considered. The subject j (j =1,...,n;) ingroup i (i =1,...,G) is either observed
from time zero to an event time T;; or to a right censoring time C;; independent of T;;. As
described in Section 1.2.2, let Y;; = min (T;;, C;;) be the observed time and §;; be the

event indicator. For each subject, we also observe the vector of explanatory variables x;;.

1.7.1. Fixed effect model approach

One simple approach to dealing with hierarchical survival data is to include the group as
a categorical fixed effect in the model. By arbitrarily setting one group as reference, a
model with G —1 dummy variables representing the group variable can be estimated
using the Cox PH model methodology. This approach can be worthwhile for a small

number of groups and no group-level predictors. However, in the case of a large number

16



of groups and a small group size, the parameter estimation might become unstable and
the efficiency of estimates may be affected (Dohoo et al., 2009). For instance, the log-
likelihood sometimes converges, even when the estimate of a specific group diverges,
this phenomenon occurs when all event times in a specific group are smaller or larger
than event times in the other groups (Legrand, 2010; p. 21). A monotone likelihood has
been proposed to solve this problem (Heinze and Schemper, 2001). In addition to the
aforementioned issues, there are other drawbacks to the fixed effect model approach.
First, one cannot estimate any between-group fixed effects as they will be absorbed into
the group effects. Second, any inferences based on this approach are specific to the actual
groups, not to the general population of groups, one would often want conclusions to

refer to.
1.7.2. Stratified effect model approach

Another approach to deal with clustering in survival data is to fit a Cox PH model
stratified by groups. This procedure allows a specific unspecified baseline hazard for

each group. The stratified Cox PH model can be written as,
A5 (t) = A0 (t) eXp(ﬁ'xij) (1.16)

where A,;(t) is the baseline hazard function for group i at time t. The proportional
hazards assumption of this model is not assumed across groups, but only within each
group. Model (1.16) can be estimated by combining the partial likelihood for each group

as follows,
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Lo ( )—ﬁﬁ e | (1.17)
sor (B) = ZlER(tU) exp(B'xy;) .

i=1 j=1

The asymptotic theory for the stratified Cox model is valid for frameworks where n;
remains bounded as G increases, where the group size increases with G, and where G is
fixed and n; increases (Glidden and Vittinghoff, 2004). However, applying this approach
leads to discarding an abundant amount of information. Specifically, no between-group
comparisons can be made, and all information related to the predictor effect is based on
within-group comparisons. For a fixed sample size, the loss of information increases with
G (Glidden and Vittinghoff, 2004). The groups that contain no events and/or only one-
predictor level do not contribute to the model estimates leading to inefficient estimates.
Also, when the aim is to quantify the variation in the (baseline) hazard between groups,

the stratified Cox model is no longer of interest, as it does not provide such information.
1.7.3. Shared frailty (random effects) model approach

Similar to the fixed effect model, the random effects or frailty model assumes that group
effects act proportionally on the baseline hazard. However, the random effects or frailty
model treats the group effects as random effects, i.e. as a sample from a certain

probability distribution. The model is given by
Aij(tluy) = 29 (t) wiexp(B'x;5) (1.18)

where the frailty term w; acts multiplicatively on the baseline hazard, and represents the
effect of unobserved factors. The frailties u; are assumed independently and identically

distributed with unity mean (in order to make the average hazard identifiable) and
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unknown variance 6. Large values of 6 indicate a closer relationship between the
subjects of the same group and greater heterogeneity among the groups. The model
defined in (1.18) is known as a shared frailty model (Therneau and Grambsch, 2000;
Duchateau and Janssen, 2008; Wienke, 2010), in the sense that unmeasured
characteristics, such as genetic information or common environmental exposures are
correlated by the subjects within the same group or cluster. In this way, these unobserved
factors could influence time to the event of interest. An alternative formulation for a

shared frailty model is
with b; = Inw; is the random effect.

To distinguish between the frailties and the random effects, we denote throughout the
thesis by u; the frailty and by b; the random effect, and by 6 and o2 the variance of

frailty and random effects, respectively.
1.7.4. Copula model approach

Another approach for modeling hierarchical survival data is through a copula model. This
approach was originally introduced to be used for datasets with small and equal group
sizes and it has been recently developed to allow for varying group sizes. In the
veterinary field, Goethals et al. (2008) studied a copula model for bivariate survival data
on diagnosis of fracture healing in dogs and compared it with a shared frailty model.

Massonnet et al. (2009) applied a copula model to the infection times in the four udder
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quarters of dairy cows. The survival copula is a function that links marginal survival

functions to generate a joint survival function, i.e.,

Si(t1,t2) = Cp{Sin (t1), Siz (t2)} (1.20)

for a bivariate distribution copula function C,, defined as C,:[0,1]* = [0,1]: (v;,v,) -
C,(v1,v,) parameterized by ¢. Parametric copula models can be estimated using a one-
stage estimation approach, while a two-stage approach is needed for semiparametric
copula models. In semiparametric copula models, the marginal survival functions are
estimated first, and then the copula parameter ¢ is estimated by maximizing a log-
likelihood function after replacing the marginal survival functions by their estimates
obtained in the first stage. The class of Archimedean copulas is the most considered class
of survival copulas. Detailed discussion on copulas can be found in Li (2000) and Nelsen

(2006).
1.8. Frailty modeling approaches for more complex hierarchical data structures
1.8.1. Random slope model

In the shared frailty model, the unobserved heterogeneity is not captured by the predictors
and is assumed to be the same within each group. Further, the shared frailty model can
only induce positive relationships within the group, although event times may be
negatively associated in some situations (Xue and Brookmeyer, 1996). A model with
random group and random predictor effects has been suggested to overcome the
limitations of the shared frailty model (Ripatti and Palmgren, 2000). The two-level

hierarchical Cox model with random baseline hazard and random slope is given by:
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Aij(tlbig, bir) = Ao(t) exp(bip + (b + ﬁ)xij) (1.21)

where b;, and b;; are jointly distributed and represent, respectively, the random group
and the random slope, and x;; is the observed predictor for subject j in group i. The term
random slope is most meaningful for a quantitative predictor x where beta corresponds to
a slope. If x is dichotomous (say treatment), the random "slope™ is a random treatment
effect, and could also be understood as a random interaction between treatment and
groups. For simplicity, the term random slope will be used throughout the thesis, even in

cases where x is not quantitative.
1.8.2. Nested frailty model

When event times are clustered at several hierarchical levels such as herds and
geographic regions, nested frailty models can be used to account for the hierarchical data
structure by including nested frailty terms, where by each frailty term represents a level
of clustering and acts multiplicatively on the baseline hazard (Sastry, 1997). For
observations clustered by SG subgroups nested in G groups, the nested frailty model can

be written as,
Aijk (t) = 20(t) uiuijeXp(ﬁ'xijk) (1.22)

with u; and u;; are the nested frailties that correspond to the group and subgroup levels,

respectively. Model (1.22) can be rewritten as

Aijie(t) = 2o(t) exp(b; + b;; + ﬁ'xijk) (1.23)
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where the nested random effects b; and b;; represent, respectively, the deviation of the

i*" group, and the j* subgroup of the i*" group from the overall log baseline hazard.
1.8.3. Multiple membership model

As in other types of datasets, multiple membership structure may arise in hierarchical
survival data where the units of a lower hierarchical level are members of multiple higher
level units simultaneously (Browne et al., 2001). Multiple membership models have been
proposed to account for such data structure (Browne et al., 2001; Fielding and Goldstein,
2006) by using weights for the units that occur in a multiple membership relation. For
example, a hospital patient may be treated by several nurses and each nurse will then
have an effect on the patient’s progress (Browne et al., 2001). In this example, we have
patients, each cared for by single or multiple nurses resulting in a 2-level data structure,
where some of the lower-level units are in a multiple membership with the top level units,

the multiple membership model can be written in a Cox model formulation as,

Aj(tl(bl(Z))lEgroup(j)) = /10 (t) exp(Zlegroup(j) Wj(12)bl(2) + ﬁ,xj) (124)

where the term ¥c groun(j) wy Z)bz(z)

il involves a set of random effects bl(z) at the second

level and weights wj(lz) assigned to each second-level unit for their group membership

With X group(jy Wit = 1. To our knowledge, this special type of models has only been

applied in the context of linear and generalized linear models, but it has not been used

with survival data.
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1.9. Frailty and random effects distributions

Various frailty and random effects distributions have been used for modeling hierarchical
survival data. Due to software availability, some of these distributions are more
commonly applied in the area than others. In practice, the gamma and log-normal
distributions with unity-mean are the most applied frailty distributions. Other choices for
frailty distributions, such as inverse Gaussian, positive stable (Hougaard, 1995), power
variance function (Aalen, 1988), and compound Poisson (Aalen, 1992) have also been
used in the literature. See Hougaard (2000) and Duchateau and Janssen (2008) for in-

depth discussions.
1.9.1. Gamma frailty and log-gamma random effects distributions

When the frailties u, ..., u; follow a gamma distribution with the same shape and inverse

scale parameters of 1/6, their density function is given by

60"
ree-n*

fu(u) = O Texp(—0u), u=0 (1.25)

Therefore, the distribution of U has a mean of 1 and variance of 9, and the random effects

b; =Inuy,...,b; = Inu; have a log-gamma distribution with density function given by

—-9~1

o -1 -1 — 00 0
fe(b) = mexp(t9 b — 0~ 1exp(b)), <h< (1.26)

The variable B has a mean of ¥(1/0) + log () and a variance of 2 = ¥’ (1/80), where
Y(.) and W’'(.) are the digamma and trigamma functions, respectively. The log-gamma

distribution with mean zero and variance 0.5 for random effects is presented in the left of

23



Figure 1.1 and the one-parameter gamma distribution with variance 0.5 for frailty is

depicted in the right of Figure 1.1.
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Figure 1.1. The log-gamma distribution with mean zero and variance 0.5 for random effects (left) and the
gamma distribution with mean 1 and variance 0.5 for frailty (right). Note that the two density curves are not
representations of the same distribution on logarithmic and exponential scales, respectively, because the
mean value restrictions are incompatible (e.g., a mean of 1 on frailty scale does not lead to a mean of 0

after log-transformation).

1.9.2. Normal random effects and log-normal frailty distributions

For the random effects by, ..., b; that follow a normal distribution with mean zero and

variance o2, the density function is given by

1

oV2nr

fe(b) = exp(—=b?/20?%), —o<bh <o (1.27)

Thus, the frailties u; = exp(b;), ..., us = exp(b;) follow a log-normal distribution with

a density function,
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fuu) = exp(—=(Inu)?/20%), u=0 (1.28)

1
uov2am

The mean and the variance of U are then exp (62/2) and exp(c?) (exp(a?) — 1),
respectively. The zero-mean normal distribution for random effects and unity-mean log-
normal distribution for frailty, both with variance of 0.5 are presented in the left and the

right sides of Figure 1.2, respectively.
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0.2 02
0 T T T 0 T T T
-2 0 2 0 1 2 3
Remdom gffects Fraiity

Figure 1.2. The normal distribution with mean zero and variance 0.5 for random effects (left) and the log-
normal distribution with mean 1 and variance 0.5 for frailty (right). As noted above, the two distributions
are not transformations of each other.

1.9.3. Laplace random effects and log-Laplace frailty distributions

If the random effects b4, ..., b; have a Laplace distribution with a location parameter of 0
and scale parameter t, then the density function is given by

|b]

1
fe(b) = 5o EXP (T) —w<bh<om (1.29)
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The variance of the distribution is 272. Figure 1.3 shows the probability density plot of

Laplace distribution with mean zero and variance 0.5.

0.8+

0.6

-2 0
Reamdom effects

|

Figure 1.3. The Laplace distribution with mean zero and variance 0.5 for random effects.

The frailties u; = exp(b;), ..., u; = exp(b;) have a log-Laplace density function,

1 [Inul -0 130
fu(u)—ZTuexp< . ) u = (1.30)

The random effects densities of normal, log-gamma, and Laplace distributions with mean

zero and variance 0.5 are presented in Figure 1.4.
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Figure 1.4: The normal (solid), log-gamma (dash), and Laplace (dot) probability densities with mean zero
and variance 0.5 for random effects.

1.10. Estimation methods for semiparametric hierarchical survival models

The focus here and throughout this thesis is on semiparametric estimation approaches
where the form of the baseline hazard is left completely arbitrary. Parameter estimation in
hierarchical survival (frailty) models has been a topic for intensive research over the past
few years, and numerous estimation approaches have been proposed. Some of these
estimation approaches have been reviewed and discussed by other authors, for example,
Clayton (1988), Duchateau et al. (2002), Cortifias et al. (2007), Duchateau and Janssen
(2008), Hanagal (2011), and Hirsch and Wienke (2012). A summary of some approaches
are presented in Table 1.1. Further, current implementations of these models are shown in

Table 1.2.
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Table 1.1. Summary of estimation approaches for semiparametric hierarchical proportional hazards models

and their applicability to different designs, each identified by the key/first reference describing the method.

Estimation approach

Model used

Shared frailty

Random slope

Nested frailty

EM algorithm

Klein (1992) for
gamma frailty.

Cortifias and
Burzykowski (2005)
for normal random
effects

Penalized partial likelihood

McGilchrist (1993)
for normal random
effects.

Therneau and
Grambsch (2000) for
gamma frailty.

Yamaguchi and
Ohashi (1999) for
normal random
effects.

Yau (2001)

Penalized partial likelihood
with Laplace approximation

Ripatti and Palmgren
(2000) for normal
random effects.

Ripatti and Palmgren
(2000) for normal
random effects.

Ripatti and Palmgren
(2000) for normal
random effects.

Penalized full likelihood

Rondeau et al. (2003)
for gamma and log-
normal frailty.

Rondeau et al. (2008)
for normal random
effects.

Rondeau et al. (2006)
for gamma frailty.

Hierarchical likelihood

Ha et al. (2001) for
gamma frailty and
normal random
effects.

Ha et al. (2007) for
normal random
effects.

Poisson maximum likelihood

Ma et al. (2003) for
gamma frailty and
normal random
effects.

Ma et al. (2003) for
normal random
effects.

Ma et al. (2003) for
gamma frailty and
normal random
effects.

Bayesian

Clayton (1991) for
normal random
effects.

Monte Carlo EM

Vaida and Xu (2000)
for normal random
effects.

Vida and Xu (2000)
for normal random
effects.

Gamst et al. (2009)
for normal random
effects.

Bayesian with Laplace
approximation

Ducrocq and Casella
(1996) for normal
random effects.

Legrand et al. (2005)
for normal random
effects.

In addition to the data structure, the choice of the estimation approach may depend on the

desired frailty or random effects distribution, but in practice the choice is mainly

determined by the availability of appropriate software. Mathematically, closed forms for

the survival and hazard functions can be obtained under a gamma frailty distribution, but

when a normal distribution is assumed for random effects, explicit expressions for these

functions do not exist. In this case, approximations are needed to overcome the problem.
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In the following sections, a brief overview is given of some of the semiparametric
estimation approaches for different hierarchical PH models. The review is limited to the
penalized partial likelihood approach with both gamma and log-normal frailty
distributions and to the estimation approaches used in this thesis, namely, the penalized
full likelihood approach (Rondeau et al., 2003), the Poisson maximum likelihood
approach (Ma et al., 2003; Feng et al., 2005), the Bayesian approach (Clayton, 1991;
1994), and the penalized partial likelihood with Laplace approximation (Ripatti and
Palmgren, 2000). The discussion is based on shared frailty model estimation unless

otherwise stated.
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Table 1.2. Summary of existing software for semiparametric models of hierarchical survival data.

Software implementation

Model design

Estimation method

Description

coxph

Gamma, lognormal,
and log-t shared
frailty.

Penalized partial
likelihood.

R functions in
survival package.

coxme Shared, random slope, | Penalized partial R functions in coxme
and nested random likelihood with package.
effects with a normal Laplace
distribution. approximation.
frailtyPenal Gamma shared and Penalized full R functions in
nested frailty. likelihood with frailtypack package.
splines.
additivePenal Gaussian random Penalized full R functions in
slope. likelihood with frailtypack package.
splines.
phmm Shared and random Monte Carlo EM R functions in phmm
slope with a normal package.
distribution.
frailtyHL Gamma and Hierarchical R functions in
lognormal shared and | likelihood frailtyHL package.

nested frailty.

stcox (with option shared)

Shared gamma frailty

Penalized partial

Stata command

likelihood.
SPGAM Shared gamma frailty | EM algorithm SAS macro
SPLN3 Shared lognormal EM algorithm SAS macro
frailty.
Gamfrail Shared gamma frailty | EM algorithm SAS macro

The survival Kit

Shared and random
slope with a normal
distribution.

Bayesian with Laplace
approximation.

Package of Fortran
programs.

Poisson GLMM

Shared, random slope,
and nested random
effects with either
normal or gamma
distributions.

Poisson maximum
likelihood.

Any GLMM
software.

Bayesian

Shared, random slope,
and nested random
effects.

MCMC techniques.

Any Bayesian
software for example
WinBUGS.

1.10.1. The penalized partial likelihood approach

This approach is an extension of the best linear unbiased predictor (BLUP) to be used for

multivariate survival data as described in McGilchrist and Aisbett (1991) and

McGilchrist (1993). The approach is implemented in coxph function of R software and

stcox command of Stata and became widely used in the area of multilevel survival
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analysis. As described in Duchateau and Janssen (2008), the penalized partial log-

likelihood for model (1.19) is given by
lPPL(ﬁ,O'Z, b) — lPL(ﬁ,b) _ lpen(O'Z,b) (131)

where [PX(B, b) is the logarithm of (1.9) with b as another set of parameters and defined

as

G N
B Y= ) D By |(bi+Bxy) =In > exp(by + B'xpq)
i=1j=1 (p.9)ER(t;5)
and [P¢"(a2,b) = — X5, Inf,,(b;) is the penalty function. This penalty function reduces
the penalized partial likelihood by shrinking the random effects towards the mean value

Zero.

For random effects b;,i = 1, ..., G, with a zero-mean normal distribution, the penalty term

takes the form,

1< [b?
[pen(g2,b) = —Z [—12 + |n(2n02)l
2 Lo

The maximization process of the penalized partial log-likelihood consists of an inner and
an outer loop. For provisional value of a2, IPPL(B, 62, b) is maximized for § and b in the
inner loop using the Newton-Raphson procedure. In the outer loop, the residual
maximum likelihood (REML) estimator for o2 is obtained using the best linear unbiased

predictors (BLUPS) for b. This process is iterated until achieving convergence.

31



For frailties e?i,i = 1,..., G, following a gamma distribution T'(6~1, 1), the penalty

function is

G

[Pen (g, b) = —Z (bi ;ebl) —G ('%9 . r(e—l))

i=1

As in the maximization process of the random effects with a normal density, inner and
outer loops are used to maximize the penalized partial likelihood. The inner loop is the
same as the one described in the normal density case with exception of the penalty term
that is determined based on the gamma density. For the outer loop, a REML estimator for
6 cannot be obtained as in the case of a normal random effect distribution; therefore, a
profiled version of the following Klein’s marginal log-likelihood (Klein, 1992) is

maximized for 9:
G
1(Ao(.), B, 6) = Z(Di NG — INT(6-1) + INT(8~1 + D,))

G ni
- 2(9_1 +D)In[1+6 ZAO(yij) exp(B'x;;)
i=1 j=1

ng

G
—ZZ(SU[In(AO(yU) + 3] (1.32)

i=1j=1
where D; = Z;il d;; are the observed events in the it" group.

The algorithm is iterated until convergence. Detailed explanations and an excellent

review are provided by Duchateau and Janssen (2008).
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Yamaguchi and Ohashi (1999) extended the penalized partial likelihood approach to
estimate treatment-by-centre (random slope) in a multicentre trial. Also, the approach

was extended by Yau (2001) to estimate a three-level hierarchical survival model.
1.10.2. The penalized full likelihood approach

The approach was proposed by Rondeau and Gonzalez (2003) to fit a shared gamma
frailty model by using splines to model the baseline hazard function. Because of the
splines, the procedure is similar to the parametric approach using a piecewise constant
baseline hazard. However, this approach is much more flexible than the classical
parametric approach. When the number of pieces becomes large, the approach is
considered semiparametric because the model shows similar flexibility as the

semiparametric model. Rondeau and Gonzalez (2003) used the penalized log-likelihood,
Lors (o). 5.6) = L0o().5,6) — v | (0t (133)
0

where 1(1,(.), B8, 0) is the marginal log-likelihood defined in (1.32), Ay (¢) is the second
derivative of the baseline hazard, and v is a positive smoothing parameter that controls

the trade-off between the data fit and the smoothness of the function 4,(.).

Rondeau and Gonzalez (2003) used cubic M-splines (Ramsay, 1988) that are easy to
integrate and differentiate, the second derivative of A,(.) being approximated by a linear
combination of polynomial terms. Such an approximation reduces the number of
parameters but still allows for flexible shapes of hazard functions. The approximation
error can be made as small as desired by increasing the number of knots. The smoothing

parameter can be fixed by the user or automatically estimated by maximizing a likelihood
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cross-validation criterion for the Cox model (Joly et al., 1998; Rondeau and Gonzalez,
2003). The log-likelihood in (1.33) is maximized by the robust Marquardt algorithm
(Marquardt, 1963), which is a combination between a Newton-Raphson and a steepest
descent algorithm. The approach is implemented in the frailtypack package for R

software (Rondeau et al., 2012).

Rondeau et al. (2006) extended the approach to allow for estimating models with two
nested frailties assuming a gamma distribution at the lower level and a normal
distribution on the log scale at the higher level, and a further extension was added by

Rondeau et al. (2008) for estimating two-level hierarchical models with a random slope.
1.10.3. The Poisson maximum likelihood

The similarity of a Cox PH model with a Poisson regression model has been known since
1980 (Whitehead, 1980). This similarity can be carried over to the Cox PH model with
random effects (Ma et al., 2003; Feng et al., 2005; Rabe-Hesketh and Skrondal, 2012).
Using available software for generalized linear mixed models (GLMMSs), model (1.19)
can be estimated through a Poisson GLMM framework after expanding the data into the

counting-process format as follows:

Ignoring random effects and using the notation of Section 1.3, the contribution of subject
j from group i to the likelihood is
t

Li;(B) = [Aij(t)](sij eXp(—fﬂij(S) ds) (1.34)

0
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In the piecewise exponential model, the baseline hazard function is assumed to be
piecewise constant, with 1o(s) = Agq, tg-1 <s<tg, q=1,..,Q and [, =t; —t,_; IS
the interval length. Proceeding this way, the baseline hazard function can be estimated
nonparametrically by letting the t, (¢ = 1,...,Q) correspond to the observed failure
times and Q be the total number of distinct observed failure times in the study (previously
denoted by r). As described in Clayton (1988), the contribution of the subject j that

experienced the event or was censored in the interval k; to the likelihood is

kj
5;i ,
Li(8) = [ogexp (8] exp |~ D Aagloexp (8'xy) (1.35)
q=1
This can be rewritten as,
kj
5;i ,
1(8) = | [[oqexp (821" expl~20qLyexp (8'x,)] (136)
q=1

The full likelihood is then

ki

N J
L1 o B) = | | [ [oaexp (B2 exp[~0qLiq exp(8'xy)]
j=1 g=1

k

<

x 1_[ [AoqLig®XP (ﬁ’xij)]5ijq exp|—ogLigexp (B'x;))] (1.37)

N
j=1q=1
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The right hand side of (1.37) is a likelihood function of a Poisson model with §;;, as an

jq
outcome. This proportionality can be carried over to a model with random effects. So, the

conditional likelihood function of group i is given by

n; kj
Li(A1, ... Aor Blb;) = 1_[ H[AOlep (b; + ﬁ,xij)]5ijq exp[_AOquq eXp(bi + ﬁ'xij)]
j=1 q=1
n; kj
x [Aoqligexp(b; + ﬁ’xij)]5ijq exp[—2oqligexp(b; + B'x;;)]  (1.38)
j=1 g=1

while the marginal likelihood function for all the groups can be written as,

L(Ao1, e, Aor B, %) x

o n; kj

1_[ f 1_[ H[AOqlijlep(bi + B,xij)]Sijq exp[_AOqlijlep(bi + ﬁ’xii)] f(b)db; (1.39)

i=1 0 j=1 q=1

When b;,~N(0,0?2), the integral in (1.39) will not be available in a closed form, and
integral approximation such as Gauss-Hermite quadrature or Laplace approximation are
needed. Instead of estimating a large number of Ao4; ¢ = 1,..., 7, the baseline hazard is
modeled as a smooth function of time, e.g., by a 4™ order polynomial function (Rabe-
Hesketh and Skrondal, 2012). Using available software for GLMMs, nested frailty and

random slope Cox models can be estimated.

1.10.4. Bayesian approach
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Clayton (1991; 1994) formulated the shared model using the counting-process notation
and discussed estimation of the baseline hazard and model parameters using Markov
Chain Monte Carlo (MCMC) techniques. The approach is nonparametric with respect to
Ay, where the cumulative baseline hazard is specified in terms of increments over
particular intervals without knowing any information about the hazard function itself.
These increments are assumed to be independent and to follow a gamma process. By
dividing the follow-up time into intervals with the boundaries corresponding to observed
event times as in the Poisson modeling approach, model (1.19) can be estimated by using
MCMC methods. The likelihood function for the whole dataset takes the form defined in

(1.39), and the joint posterior distribution is given by

L(/1011 s Aok By b, 02)

o L(Ao1, s Aok B,07) X m(b|o?) X m(Agy, ..., dog) X m(B) X m(c?)  (1.40)

where mr(.) indicates prior distribution.

Finally, the specification of model extensions to incorporate several hierarchical levels or

special structures is straightforward (e.g. Manda, 2001; Yamaguchi et al., 2002).

1.10.5. Penalized partial likelihood approach with Laplace approximation

The approach was proposed by Ripatti and Palmgren (2000) and is one of the more
popular approaches for estimating Cox models with normally distributed random effects.
Assuming a normal distribution for random effects, the marginal log-likelihood is

approximated by the Laplace method for integral approximation. We discuss here the
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estimation of the model defined in (1.21) with correlated random effects, the conditional

log-likelihood can be written as

ng

1§ (A6(.), Blbio, biy) = Z[ﬂo(}’ij) exp(b;o + Bx;; + bilxij)]5ij

=1
X eXp[—Ao (ij) exp(bp + px;; + bilxij)] (141)

With (b, b;1)~N (0O, Z), we have

1
Fbiosbi) = exp | =5 (bios b)) (b b |

1
2r|z|1/2

Assuming conditional independence of subjects within a group and independence

between groups, the marginal log-likelihood for the entire data can be written as

G oo oo
106082 =Y || exp (Kb bud] dbiodn (142)

where

ni

Ki(bio, bi1) = —2[5”('” /10(}’1'1') + by + Bx;j + bilxij]

j=1
- Ao(}’ij) exP(bio + Bx;; + bilxij)

1
+In2m + > In[Z] + (b, bi1 )21 (byg, bir)'

Ignoring the constant In2m, Ripatti and Palmgren (2000) approximated the marginal

likelihood in (1.42) using the Laplace approximation as,
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G
1 - - - -
G, = Y [~5 100l = 0K G Bl - Ko Bi)| (143)

i=1

with (b;o, byy) = ,,“"9™  K;(byo, b;;) and the second derivative of K;(b;o, b;1) is
B 02K, (b, biy)
Ki (biO! bil) = (W

(bio.bi1)ER?
(5i0v5i1)>
n;

= Z[xiszO(t) exp(bjo + Bxij + Eilxij)] -zt

j=1

So (1.43) can be expressed as

+ IPEN(2,(.), B, 2, big, by )

02K (bip, bi1)
0b;,0b;,

G
()85 = ) [—%lnm(azn ~3in

(51'0151'1))

where

leN(/lo(- ).B.Z, Eio, Eil) =—-K; (Eio, Eil)
ny

= Z[5ij[|n/10(Yij) + by + Bxi; + Eilxij]

=1

- Ao(}’ij) exP(Eio + B+ Eilxij)]

1, v
_Z(biOabil)Z (bio, bi1) (1.44)

When X is known and (b;,, b;;) are considered fixed effect parameters, the (1.44) is a
penalized Cox full log-likelihood with b;, and b;; as another set of parameters. The

penalized full log-likelihood in (1.44) can be converted into a partial log-likelihood as
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IPEN(26(.), B, Z, big, bi1)

ng

= Z 8ij Ibio + Bxi; + biyx;;—1In

j=1

1, o\ o
exp (pr +ﬁqu + bplqu) - E(biovbil)z (biOvbil)
(p.g)eR(t;)

— Ao(t)exp (b + Bx;j + biyx;5)

ng
) 8 [IN(@)+1n > exp (byo+ g + bypaty)
j=1 (p.9)eR(t;)

= IPPL(B, 2, big, biy) + g(Ao(t), B, bio, by1) (1.45)

For fixed X and considering (b;, b;;) fixed effect parameters, Ripatti and Palmgren
(2000) pointed out that the values B(Z) and (b;o() b1 (Z)) that maximize
IPPL(B, 2, by, byy) also maximize IPEN(1,(.), B, %, byo, byy ) with A,(t) is the estimator of

discretized baseline hazard while keeping X fixed.

Based on [PPX(B, 2, byo, b;1), the estimating equation for B(Z) and (b; (), b1 (Z)), given
%, can be derived. When B(Z) and (b, (Z), b;; (Z)) are computed, the matrix X can be

updated by maximizing the following approximate profile log-likelihood,

(Bi0v5i1)>

1, v
_Z(biOabil)Z (bio, bi1) (1.46)

G
A o~ A~ 1 1
l(ﬁ’biOabiluZ) ~ Z [—Zln|2| —§|n
i=1

02K;(byo, b;i1)
db;,0b;;

Because of a better empirical performance, Ripatti and Palmgren (2000) suggested

6zlfPL(B,Z,bi0,bi1)
0bijn0bj1

9%Ki(bio.bi1)
abioabil

replacing in (1.46).

(bio.bi1)

by

(bio.bi1)
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Finally, the approach is implemented in the coxme package of R software (Therneau,
2013). The coxme library is able to handle different model designs with normally
distributed random effects including the shared, random slope, and nested random effects

models.

1.11. Brief notes on other approaches

In this section, a brief overview is given for approaches that were not covered in previous
sections. One approach to estimating frailty models is to use the expectation-
maximization (EM) algorithm (Klein, 1992); the algorithm consists of two steps: the E-
step and M-step and iterates between them until convergence is achieved, see Duchateau
and Janssen (2008) for detailed description. The EM algorithm approach can fit gamma
shared frailty models, and the approach was extended by Cortifias and Burzykowski
(2005) to allow for random slope models with a normal distribution. To our knowledge, it
does not support the counting-process format necessary for modeling time-varying

predictors and effects.

The hierarchical likelihood approach was proposed by Ha et al. (2001) and can handle
shared and nested frailty models with gamma and log-normal distributions. It is
implemented in the frailtyHL package of R software (Ha et al., 2012) and provides
standard errors for variance components, but it does not allow for time-varying predictors

and effects.

The Monte Carlo EM method (MCEM) was proposed by Vaida and Xu (2000) and fits
Cox models with normally distributed random effects. The approach uses the EM
algorithm along with MCMC at the E-step to compute the conditional expectation of
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random effects. The MCEM approach is implemented in the phmm library of R and
supports random intercept models as well as independent random intercept and random

slope models. Time-dependent predictors and coefficients are not allowed.

The Bayesian approach with Laplace approximation was proposed by Ducrocq and
Casella (1996) to analyze survival models with random effects on large datasets in the
field of animal genetics, and it was extended by Legrand et al. (2005) to allow for two
independent random effects terms within the same cluster. The approach approximates
the marginal posterior density using the Laplace approximation. The approach is
implemented in the Survival Kit (Ducrocq and Solkner, 1994), which is a package of
Fortran programs that can be found at (http://www.boku.ac.at/nuwi/software/sofskit.htm).
The approach can handle time-dependent predictors and effects as well as time-dependent

frailty, but not in random slope models.

1.12. Focus and objectives of the thesis

This work focuses on modeling hierarchical data in veterinary science when the response
variable is time-to-event. The estimation of mixed effects models that take into account
the hierarchical survival data structure is still a topic of intensive research. Many models
have been suggested and numerous approaches for estimating these models have been
developed in the literature. Beyond a shared frailty model, it is not known at this time
which of the existing estimation approaches works best for complex hierarchical survival
models. In the present work, the performance of several existing estimation procedures
for different hierarchical survival models will be evaluated and compared. In many

studies such as those in veterinary epidemiology, datasets can both be extensive in scale
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and complex in structure. In addition, the number of predictors of interest may be large,
and both time-varying predictors and coefficients may be encountered in the analysis. All
of these issues, along with the limitation of software complicate the task of making an
appropriate inference. In this thesis, two large veterinary datasets with different structures

and time-dependent predictors and coefficients are analyzed.

The main objectives of this thesis are twofold: first, to explore existing estimation
methods for multi-component frailty Cox models, and evaluate their performance in
terms of bias in point estimates and empirical variability. Second, the study will explore
the feasibility of a full hierarchical survival analysis for two large datasets with time-
dependent predictors and effects. The specific objective for each chapter along with a

brief description is as follows.

In Chapter 2, a review of four estimation methods for a Cox model with random herd and
treatment effects; comparing their performance, through simulation, based on a real
veterinary dataset. The performance of the methods is investigated in terms of the bias of
fixed and random effect estimates and their empirical variability. The aim of the
comparison was to establish some practical guidelines for the choice of appropriate
statistical estimation procedures for modeling 2-level survival data when a random slope

is needed.

In Chapter 3, the feasibility of a full hierarchical survival analysis for a large dataset with
time-dependent predictors and coefficients using a log-normal nested frailty Cox model
approximated by a mixed-effects Poisson model is explored. A nested frailty Cox model

was applied to a 3-level hierarchical survival dataset on clinical mastitis from the
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Canadian Bovine Mastitis Research Network, and identified risk factors associated with
the hazard of clinical mastitis during the cow’s lactation. Further, the performance of the
approach used is evaluated and compared with the performance of the penalized partial

likelihood approach.

In Chapter 4, a cross-classified and multiple membership Cox model was fit to a large
observational dataset on calf loss and mortality in beef cattle from Western Canada. The
model is fitted to the data as a mixed-effects Poisson model using MCMC techniques.
The individual, herd management, and environmental factors associated with the hazard
of calf mortality in Western Canada are examined as well as the age period where the
hazard of mortality is highest, is estimated. Moreover, the Poisson GLMM with a
Bayesian posterior approach is evaluated via a simulation study using data structures

similar to the structure of calf mortality data.

In Chapter 5, through simulation, the estimates of the Poisson maximum likelihood
approach with adaptive Gaussian quadrature of estimating Cox model with normal
random effects were examined against misspecification of the random-effects
distribution. The simulations are performed based on three different hierarchical Cox
models and two different non-normal distributions for random effects in each model.

Some of the factors that might affect the estimation are also investigated.

In Chapter 6, the general conclusions from this thesis are outlined and some topics for

future research are discussed.
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Chapter 2

Comparison of methods for estimating

random coefficient Cox models

The work of this chapter is submitted for publishing as: Elghafghuf A, Stryhn H. (2013).
Comparison of methods for estimating random coefficient Cox models. Mathematical
Bioscience. Submitted.
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2.1. Abstract

In many studies in medicine, including clinical trials and epidemiological investigations,
data are clustered into groups such as health centres (human medicine) or herds
(veterinary medicine). Such data are usually analyzed by hierarchical regression models
to account for possible variation between groups. When such variation is large, it is of
potential interest to explore whether additionally the effect of a within-group predictor
varies between groups. In survival analysis, this may be investigated by including two
random effects at the group level in a Cox proportional hazards model. Several estimation
methods have been proposed to estimate Cox models with additive random effects. We
review four of these methods, apply them to real data from veterinary medicine, and

compare them using a simulation study.

2.2. Introduction

Survival data from epidemiological veterinary studies involving animals from multiple
herds is a typical example of multilevel survival data, also referred to as correlated or
clustered survival data. Cox proportional hazards models with random effects within
exponential (frailties) acting multiplicatively on an unspecified baseline hazard, are
commonly used for multilevel survival data. The Cox model with shared frailties, in
which subjects within the same cluster share the same random cluster effect (frailty),
provides an intuitive way to describe and quantify the heterogeneity in outcomes.
However, this model has some limitations. For example, in shared frailty models the
unobserved effect that is not captured by the covariates is assumed to be the same for all

subjects within the cluster. Further, the shared frailty model can only induce positive
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association within the cluster, despite the possible existence of negative associations (Xue
and Brookmeyer, 1996; Wienke et al., 2005). Detailed explanations and excellent
examples of the limitations of the shared frailty model are provided by Xue and

Brookmeyer (1996).

To address the limitations of the shared frailty model, a Cox model with two or more
additive random effects at the cluster level has been studied for the analysis of multilevel
survival time data (Xue and Brookmeyer, 1996; Ripatti and Palmgren, 2000; Duchateau
and Janssen, 2008; Wienke, 2010). This additive random effects model for example
allows for the effect of a treatment at individual level to vary between clusters (i.e. a
random coefficient). However estimating Cox models with two correlated additive
random effects can be challenging and requires sophisticated techniques to deal with both
the unspecified parameter (baseline hazard) and the complex integrals in the likelihood

function.

Several estimation procedures have been proposed for estimating model parameters in a
Cox model with two additive random effects. For example, Yamaguchi and Ohashi
(1999) extended the REML estimation procedure (McGilchrist, 1993), and Ripatti and
Palmgren (2000) proposed estimation using a penalized partial likelihood based on
Laplace approximation of the marginal likelihood. Furthermore, Vaida and Xu (2000)
suggested a Monte Carlo EM algorithm with MCMC sampling technique applied in the
E-step, and Ma et al. (2003) reformulated the random effects Cox model as a random
effects Poisson model. Cortifias and Burzykowski (2005) applied a Laplace
approximation to the EM algorithm and Legrand et al. (2005) used it to approximate the

marginal posterior density in Bayesian approach. Finally, Rondeau et al. (2008)
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suggested the use of splines to model the baseline hazard and a Laplace approximation to
approximate the marginal likelihood. Massonnet et al. (2008), on the other hand,
reformulated the problem of fitting a random coefficient Cox model into a problem of
fitting a linear mixed model. Using the estimated integrals of the weighted conditional
cumulative log hazard as a linear response, Massonnet et al. (2008) used available

software for generalized linear mixed models (GLMM) in estimating model parameters.

Despite the previous work on Cox models with additive random effects, limited work has
been done to compare statistical procedures for parameter estimation. A study by
Cortifias et al. (2007) compared different estimation methods based on a Cox model with
independent random effects. However, assuming independence between the random
effects may lead to invalid assumptions on the variation across clusters (Rondeau et al.,
2008). Further, the dependency between the random effects may affect the performance
of the estimation methods. In this chapter, we compare four methods of estimating
additive random effects Cox models commonly used in epidemiology that are accessible
in standard statistical software. These include: the penalized partial likelihood (Ripatti
and Palmgren, 2000); the penalized full likelihood (Rondeau et al., 2008); the Poisson
maximum likelihood (Rabe-Hesketh and Skrondal, 2012); Bayesian approach
(‘Yamaguchi et al., 2002). For simplicity, we will denote throughout this chapter by PPL,
PFL, PML, and BAY the penalized partial likelihood, the penalized full likelihood, the
Poisson maximum likelihood, and Bayesian procedures, respectively. Two additive
random effects Cox models, one with two independent random effects, and one with two
correlated random effects are applied to real data from veterinary science using

aforementioned estimation procedures. Through a simulation study, the performance of
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these estimation procedures is compared in terms of the bias of fixed and random effect
estimates and their empirical variability. This comparison aims at establishing some
practical guidelines for the choice of appropriate statistical estimation procedure for

modeling treatment variation in 2-level survival data.
2.3. Notation

In the following, we consider clustered survival data from a total of N animals that come
from H different herds. The animal j in herd i is either observed from time zero to an
event time T;; or to a right censoring time C;; independent of T;;. Let ¥;; = min (T}, C;;)
be the observed time and §;; = Iiry<cy) be the event indicator. For each animal, we also
observe the explanatory variable (predictor) x;;. The simplest model for such data that

takes into account the correlation occurring in the data due to clustering is the model with

random cluster effects. This model is given by
A5 (tlbio) = Ao (t) eXp(bio + ﬁxij) (21)

where 1;;(t|.) is the conditional hazard function for the jt" animal from the i** herd at
time t, 1,(¢) is an unspecified baseline hazard at time ¢, B is a fixed effect parameter,
and by, is the random effect for the i*"* herd. The random effects b;;i =1,...,H, are
assumed to be independent and identically distributed. An alternative formulation of

model (2.1) is given by

Aij (tluge) = 2 (O)u;o exP(ﬁxij) (2.2)
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Model (2.2) is known as a shared frailty model, where the frailty u;, = e’ acts
multiplicatively on the baseline hazard. Common choices for the distribution of u;, are
one-parameter gamma and log-normal distributions. When wu;, are log-normally
distributed, the random effects b;; = In (u;y) follow a normal distribution, and the

variance a2 of by, (or u;,) indicates the amount of variation between herds.

When variation between herds exists and is large, a further step is to investigate whether
there is variation in the predictor effect between different herds. To do so, an extra
random effect is added to model (2.1); this random effect represents an interaction
between observable and unobservable (not captured by observed predictors) variables.

The Cox model with two additive random effects can be expressed as,
A (tlbig, biz) = Ao(t) eXp(bio + B + bilxij) (23)

where b;; represents the random predictor effect, also termed a random coefficient or
random interaction. The random effects b;, and b;; are assumed to be jointly distributed

2
with density function £ (byo, by )~N(0, %) with £ = [Go 0011.

Oo1  Of
Given the random effects (b;o,b;;), observations within herd i are assumed to be
independent. Therefore, the conditional likelihood function for herd i is:

ng

L?(lo(-),mbio,bu) = n[’lij(yijlbmabil)]5ij5ij(yij|bi0abi1) (24)

j=1

where

Sij (tlbio, biy) = exp[—AO (yijlbiOa bil) exP(bio + Bx;; + bilxij)],
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with Ay (t) = foy” Ao(v) dv and (y;;, 8, x;;) being the observed data for animal j from

ij

herd i.

Assuming conditional independence of observations within a herd and independence

between herds, the overall marginal likelihood function can be written as,

L(2(.),8.2) = ﬁf_o:o f_c:eXp [—K;(bio, bi1)1 dbydby (2.5)

where

Ki(bio, bin) = —In[LE (Ao, Blbig, bix )] — InLf (byg, biy)]

ng

= —2[5”('” /10(}’1'1') + by + B + bilxij]

Jj=1

—Ao(}’ij) exP(bio + Bx;; + bilxij) — In[f (byo, bi1)]

The marginal log-likelihood in (2.5) cannot be used directly to estimate the parameters of
model (2.3) because it contains an unspecified parameter (1,) and depends on
integrations that cannot be solved analytically. Several parameter estimation procedures
have been proposed to overcome these two problems; four of these parameter estimation

procedures are reviewed in next section.

2.4. Parameter estimation procedures

2.4.1. Penalized Partial Likelihood (PPL) procedure
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This estimation procedure was proposed by Ripatti and Palmgren (2000) and became in
the recent years one of the most commonly used estimation procedures for Cox models
with random effects. Based on the derivation of a penalized likelihood solution of
Breslow and Clayton (1993) for the GLMM with normal random effects, Ripatti and
Palmgren (2000) applied Laplace’s method for integral approximation to approximate the

marginal log-likelihood by

1(26(.), B, %)
-f 1 92K, (bso, biy)
ZInlz| - (; )
;[ 2 0bio0biy (bio,bi1)
+ leN(AO(-)’ B.Z, by, Eil)] (2.6)

where (b;o, bi;) = (b?(:“z:f;lé;z Ki(byo, bi1) and

leN(/lo(-),ﬁ,Z, Eio,En) = _Ki(EiOa Eil)
n;
= Z[5ij[|n /10(}’1'1') + by, + Bx;; + Eilxij] - Ao(}’ij) exP(Eio + Bx;j + Eilxij)]

=1

1. . S
5 (bio, bi1)2_1(bio, b;1)'

When X is known and (b;,b;;) are considered fixed effect parameters, the

IPEN(25(.), B, 2, bio, b;1) function is a penalized Cox full log-likelihood with b;, and
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b;, as another set of parameters. The I[PEN(1,(.), B, 2, b;o, b;1) function can be converted

into a penalized partial log-likelihood as

7P (A0(.), B, Z, big, biz)

= Z oy Ibio + Bx;; + byx;;—In

j=1

1, o\ o
exp (pr +ﬁqu + bplqu) - E(biovbil)z (biOvbil)
(p.9)eR(t;)

- Ao(Yij)eXp (bio + Bx;j + by x;5)

+Z 61] l /IO(yL]) + In Z exp (pr + ﬁqu + bplqu)

(p.@)eR(t;j)
= IPPL(B, 2, byo, bi) + (A0 (¥i)). B. bio, bir)
where R(t;;) are risk sets.

For fixed X and considering (b;, b;;) fixed effect parameters, Ripatti and Palmgren
(2000) pointed out that the values B(Z) and (b;o() b1 (Z)) that maximize
IPPL(B, 2, byg, byy) also maximize IPEN(A, B,Z, by, byy) with Ay is the estimator of

discretized baseline hazard while keeping X fixed.

Based on [PPX(B, 2, byo, b;1), the estimating equation for B(Z) and (b; (), b1 (Z)), given
%, can be derived. When B(Z) and (b, (Z), b;; (Z)) are computed, the matrix X can be

updated by maximizing the following approximate profile log-likelihood,

(bi0v5i1)>

1, v o
_Z(biOabil)Z (bio, bi1) 2.7)

1(B.bio, bir, Z) ~ Z [——|n|2| ~In

aZK (blO’ bll)
abloabl1
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9%K;(bio.bi1)

Ripatti and Palmgren (2000) suggested replacing FYRTS
io9Pi1

by

(bio.bi1)

6zlfPL(B,Z,bi0,bi1)
0b;,0biq

in (2.7) because it showed better empirical performance in the
(bio.bi1)

simulations.

To estimate the covariance matrix of the fixed effect estimates, one can use Cox model
software with the estimated random effects as an offset. For estimating the standard error
of the estimates of £ Ripatti and Palmgren (2000) suggested to differentiate (2.7) twice
with respect to X, and take the expectation with respect to (b;o, b;;). We leave formulas

and technical details to the original article.

Finally, the procedure is implemented in the coxme package for R software developed by
Therneau (2011) to fit Cox models with normal random effects. The standard error for

estimated variances of random effects is not provided in the current implementation.
2.4.2. Penalized Full Likelihood (PFL) procedure

This procedure was proposed by Rondeau et al. (2008); they used the likelihood defined
in (2.5) instead of a partial likelihood and penalized the hazard function instead of
penalizing the frailties. Rondeau et al. (2008) proposed a smooth baseline hazard
estimator and added a penalty term for the roughness of the baseline hazard to the
marginal log-likelihood. This roughness penalty term is a product of a smoothing
parameter v and the integral of the squared second derivative of the baseline hazard. The

penalized log-likelihood is thus defined as:

lors(o( ), B, E) = 1o (), B E) — v f [ (O] de (28)
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where Ag (t) is the second derivative of the baseline hazard, and v is a positive smoothing
parameter that controls the trade-off between the data fit and the smoothness of the
function 4,(.).

For modeling the baseline hazard, Rondeau et al. (2008) suggested to model A,(.)
through splines. As they used cubic M-splines (Ramsay, 1988) that are easy to integrate
and differentiate, the second derivative of 1, is approximated by a linear combination of
1% order polynomial terms. Such an approximation reduces the number of parameters but
still allows for flexible shapes of hazard functions. The approximation error can be
reduced by increasing the number of knots. In other words, the more knots are used; the
closer is the approximation to the true hazard. The smoothing parameter can be fixed by
the user or estimated by maximizing a likelihood cross-validation criterion for the Cox

model (Joly et al., 1998; Rondeau and Gonzalez, 2003).

The penalized log-likelihood in (2.8) is maximized by the robust Marquardt algorithm
(Marquardt, 1963). This algorithm has the advantage of being stable and fast in
convergence. After convergence, the estimated covariance matrix for model parameters is

obtained directly from the inverse of converged Hessian matrix.

This procedure is implemented in the frailtypack package for R software (Rondeau et al.,
2012). The number of knots for the approximation of the baseline hazard can be
controlled by the user and must be between 4 and 20. The smoothing parameter can be

automatically estimated by the cross-validation procedure.

2.4.3. Poisson Maximum Likelihood (PML) procedure
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One way to fit model (2.3) is to reformulate the Cox model with random effects in a
random effects Poisson model framework (Rabe-Hesketh and Skrondal, 2012), as
follows. The follow-up period is divided into as many intervals (say K intervals) as there
are unique failure times. Each interval begins at a unique failure time and ends at the next
unique failure time. This allows estimation of the baseline hazard A,(t)

nonparametrically. For each of these intervals:
Ao(t) = Aok, t € Qi = (i1, t), k=1,... K.

Let l;j, be the follow-up time of animal j within herd i in Q, and &;;, be the event
indicator for animal j within herd i in Q. As shown in Ma et al. (2003) and Feng et al.
(2005), under an independent and non-informative censoring assumption for the interval
Q,, the conditional likelihood function from a random effects Cox model is proportional
to the conditional likelihood function from a random effects Poisson model with log
interval lengths between unique failure times as an offset. For the k" interval, the

contribution of animal j from herd i to the conditional likelihood is:

Lijic(Aox: Blbio, biz)

ijk

= [AOkeXp(bio + fx;; + bilxij)]s exp[_AOklijkeXp(biO + fx;; + bilxij)]

ijk

x [Aoklijkexp(bio + fx;; + bilxij)]s exp[_AOklijkeXp(biO + Bx;;

+ bilxij)]1

corresponding to the Poisson model described above, and the conditional likelihood

function of herd i then takes the form,
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K
Li(A01, ... Aok, Blbio, biy) = Lijk(AOR’ﬁlbiO’ bi1)
j=1 k=1
n;

x 1_[ [AOklijkeXp(biO + Bx;; + bilxij)]5ijk exp[_AOklijkexp(biO + Bx;; + bilxij)]

K
k=1 j=1
while the marginal likelihood function for all herds can be written as,

L(AOl, ’AOK’ ﬁ,Z) X

H © © K n;
8
1_[ f f 1_[ [AOklijkeXp(biO + Bx;; + bilxij)] & exp[_AOklijkexp(biO + Bx;;
i=1 —00 —00 k=1 j=1
+ by xij)]f (big, biy )dbyydbyy (29)

As in the likelihood function of the previous methods, the integral in (2.9) cannot be
solved in a closed form and thus must be approximated. Adaptive Gaussian quadrature
can be used for this task; see Pinheiro and Bates (1995) for the details of implementation.
Instead of estimating all the parameters 4, ..., 49k, It IS customary to model the baseline
hazard as a smooth function of time, e.g. by a 4™ order polynomial as suggested by Rabe-

Hesketh and Skrondal (2012).
2.4.4. Bayesian (BAY) procedure

Bayesian techniques can be used to fit random effects Cox models, where the cumulative

baseline hazard is specified in terms of increments over particular intervals without
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knowing any information about the hazard function itself. These increments are assumed
to be independent and to follow a gamma process. Similar to the idea of fitting a random
effects Cox model in a random effects Poisson model described in Subsection 2.4.3, the
follow-up time is divided into K intervals with the boundaries corresponding to the
observed event times. The likelihood function for the entire data set takes the form

defined in (2.9).

The joint density of the posterior distribution for model (2.3) is proportional to

L1, ., Aok: B b, E)

< L(Ag1, .. Aok, B, Z) X (D|Z) X t(Apq, ..., Agg) X (B) x (Z) (2.10)

where b = (b;, b;;) and m(.) indicates prior distribution.

Conjugate prior distributions are: a normal distribution N(0,10°) for the fixed effect
parameter B; a gamma distribution (1073,1073) for the inverse variances of the two
normal random effects if a diagonal covariance matrix is considered for random effects,
and a Wishart distribution with a diagonal matrix of 1 and 2 degrees of freedom for the
inverse covariance matrix when a more flexible covariance structure for random effects is
used. For the baseline hazard, we follow Kalbfleisch (1978) and assume gamma
distribution priors for the increments of the baseline hazard with scale ¢ = 0.001 and
shape parameter equal to crAt = 107*At, where r = 0.1 is a guess of the failure rate per

unit time and At is the size of the time interval.

2.4.5. Software implementation for estimation procedures
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The PPL and PFL estimation procedures used the previously described implementations
in R version 2.14.2 software (the coxme package version 2.1-3 for PPL and the
frailtypack package version 2.2 for PFL). A smoothing parameter of 10,000 and 8 knots
were used for the PFL estimation procedure. The PML estimation procedure used the
adaptive quadrature algorithm for ML estimation implemented in the Stata software
version 11.2 with the default number of integration points (7 per random effect). MCMC
estimation for the Bayesian model was performed in WinBUGS version 1.4 called from

within R software using the R2ZWinBUGS package (Sturtz et al., 2005).

For Bayesian analyses, we first ran three parallel Markov chains with different initial
values for 15,000 iterations and a thinning of 10. All model parameters from the three
chains were monitored for convergence. Markov chain diagnostics were carried out for
the three chains using the R package coda (Plummer et al., 2006) and found to be
satisfactory. The first 5,000 samples after thinning were discarded, and based on further
10,000 samples posterior medians were extracted as model parameter estimates and

posterior standard deviations played the role of standard errors.

2.5. Example: Lameness data

The lameness disease dataset originates from a Danish project that was carried out by the
Health and Production Surveillance System (HEPS) from October 1990 to March 1991
(Christensen, 1996). The outcome of interest was defined as the (survival) time from
birth to the first treatment for lameness (e.g. splayleg, joint infection, or ataxia) in the

litter. A total number of 7872 litters of piglets were observed during the period from birth
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to weaning. Only litters with a suckling period no more than 40 days were kept, leaving a

total of 7632 litters.

In this study, a subset of the data was used in which only one litter per sow was included,
and only the 22 herds not participating in any elevated health programs were included.
The resulting sample size was 3556 litters of which 398 litters had the event of interest,
corresponding to 88.8% censored observations. The number of events in herds ranged
from O to 69 with a mean of 18 events. The median time of follow-up (till censoring) and
median time to event were 27 and 11 days, respectively. The predictor of primary interest
here was sow treatment for milk fever, infection, or MMA (mastitis/metritis/agalactia) in
days around farrowing (2 days before and up to 4 days after); 26% of the sows were
treated. The dataset was analyzed taking into account the variation in the baseline hazard
and in the treatment effects between herds using model (2.3). A discussion of the

modeling of the full lameness dataset can be found in Stryhn and Christensen (2013).

2.5.1. Analysis of lameness data

A Cox model with a fixed treatment and random treatment by herd interaction was
applied to the lameness data using the four estimation procedures reviewed in Section
2.4. To see the impact of including a covariance structure between the random effects, the
model was fit to the data with both independent and correlated random effects. The
results of the two analyses using the four procedures are shown in Table 2.1. Further,
results from a sensitivity analysis based on a guessed failure rate of r = 0.004 (estimated
based on an exponential model) for the BAY procedure showed very minor changes in

model parameter estimates.
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The two analyses demonstrated variation in the baseline hazard and in the treatment
effect between herds (the log-likelihood values based on PML for a standard Cox model,
Cox model with random herd effect, and Cox model with independent random herd and
treatment effects were -2531.17, -2331.00 and -2326.97, respectively). This variation was
slightly larger in the baseline hazard and a bit smaller in the treatment effect between
herds for the independent random effects model than for the correlated random effects
model. Furthermore, the variation in the baseline hazard was roughly four times larger
than the variation in the treatment effect between herds in the two models. The estimated
correlation between random effects in the second analysis ranged between 0.56 (for
BAY) and 0.91 (for PML) across the estimation procedures. The estimated values of g
from the correlated random effects model were much smaller than those obtained from
the independent random effects model even though the correlated random effects model
did not show very much improvement in the model fit as the difference in the log-
likelihood (or the DIC in Bayesian analysis) between the two models was only
approximately one unit (results not shown). As all the estimation procedures agreed on
the discrepancy in the fixed effect estimates, one might think of such discrepancy as the

result of inadequate assumptions for the variation across herds.

The results for the PFL and PML procedures in both analyses were, in general, quite
comparable in terms of the point estimates and slightly different in the standard errors.
On the other hand, the results for the PPL and BAY procedures were somewhat different

compared with other procedures.

2.6. Simulation studies
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The analyses of the real dataset presented in the previous section showed differences in
parameter estimates and their standard errors between the four estimation procedures in
both independent and correlated random effects models, as well as a strong discrepancy
between independent and correlated random effects models. In order to investigate in
more detail the performance of the estimation procedures, simulation studies were
conducted with settings resembling the settings of the real dataset using the four

estimation procedures.

2.6.1. Models and parameter settings

For both the two mixed effects Cox models (with independent or correlated random
effects), three different sizes of the heterogeneity parameters were studied and set at:
02 =20,62 =05, ¢2=050=0125 and o2 =01,62=0.025 for large,
moderate, and small variance settings, respectively. In each variance setting of the
correlated random effects model, three different values of the correlation between the two
random effects were considered: p =02, p =05, and p =0.8. The fixed effect
parameter was set at § = —0.4 in the independent random effects model and at g =
—0.8 in the correlated random effects model. A constant baseline hazard was used in the
three simulation settings, and to keep the censoring rate equal in the three settings the
baseline hazard was set at 2 x 1073, 3.5 x 1073 and 4.5 x 10~* for the high, moderate,

and low variance settings, respectively.

Finally, the PPL, PFL, and PML procedures were set throughout the simulations as in the
analysis of the real dataset. To keep the same covariance matrix for Wishart distribution

across the simulation settings of correlated random effects models, the diagonal elements
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of the matrix were set at 0.05. This value of the diagonal elements was chosen based on a
sensitivity analysis for the values 0.01, 0.05, 0.1, 0.5, and 1. Also, to reduce the
computing time of Bayesian analyses in the simulations, MCMC samples with no

thinning were used for model estimates.
2.6.2. Simulation of data

To mimic the real dataset, 3556 animals from 22 herds with same sizes (from 68 to 310)
as in the real dataset were considered. A total of 300 datasets were generated from model
(2.3) using R version 2.14.2 software and the technique of Bender et al. (2005) for
generating failure time data. The observations for each particular dataset were generated
in the following way: first, the random effects b;, and b;,;i = 1, ...,22, were generated
from a zero-mean bivariate normal distribution N (0,0, 62, 6, p). The event time (T;;) for
each animal was randomly generated from an exponential distribution with intensity
A;;(t|bso, bi1). The same treatment indicator as in the real dataset was used to divide the
population into two groups: 26% of the animals in the treatment group and 74% in the
control group. The censoring time (C;;) for each animal was randomly generated from the
uniform distribution 16 + U(0,24). An animal for which the event time T;; was longer
than the censoring time C;; was censored with actual time equal to censored time, so that

Y;; = min (T;;, C;;) and §;; = I{TUSCU}' As in the real data, the amount of censoring was

approximately 89% in all the simulation settings.

2.6.3. Analysis of simulated datasets

70



Model (2.3) was applied to the simulated datasets using the four considered estimation
procedures. In order to explore the effect of model misspecification, estimation was
carried out for each simulated dataset with and without estimating the covariance

between the random herd and treatment effects.

The point estimates of model parameters and their standard errors (posterior standard
deviations in Bayesian analysis) for each simulated dataset were extracted. The summary
statistics for each model parameter were computed as follows: the mean, computed as the
average of the estimated values across the simulated datasets; model-based standard
error, computed as the average of the standard errors of the point estimates across the
simulated data sets; the empirical standard error, computed as the standard deviation of
the estimated values among the simulated datasets; the relative bias, computed as the
absolute value of the difference between the mean estimate and the true value divided by
the true value; the mean squared error, computed as the mean of the squared differences
between the estimated values and the true value over the simulated datasets. If an
estimation procedure produced non-sensible estimates or failed to reach convergence for
a certain dataset, these results were excluded from the statistics computed across the
simulated datasets. Convergence rates across each set of 300 estimations were computed

as well.

2.7. Simulation results

2.7.1. Simulated data from independent random effects model

We present first the settings where the true model assumed two independent additive

random effects within the same cluster, and the analysis model used either the same

71



covariance structure (oy; set at 0) as the true model or a more flexible covariance

structure where o, was estimated.

The simulation results for the large, moderate and small variance settings are shown in
Table 2.2. The table shows that PFL and PML experienced some convergence
difficulties. However, the non-convergence rate was, in general, much higher for PFL
than for PML and increased with increasing magnitude of variability of random effects,
while the non-convergence rate for PML did not exceed 3% and appeared to be in

different directions with the magnitude of random effects variability.

In general, the fixed effect g was estimated well by all the procedures except for PPL in
the large variance setting and PFL in the moderate variance setting, where appreciable
biases towards zero can be seen. For the PPL method, the bias increased with increasing
variance of the random effects as also reported by Ripatti and Palmgren (2000), but this
did not seem to be the case for other procedures since no bias pattern was observed. The
mean of the estimated SEs and the empirical SEs agreed closely for all the procedures,
and PPL had the smallest empirical variability and mean squared error compared with the

other three procedures.

For random effects estimates, all procedures produced reasonable estimates for o with
exception of PFL in the large variance setting, where a large downwards bias was
observed. This can probably be attributed to the very low convergence rate for PFL in
this simulation setting. The o2 was estimated quite well by PML, PPL and PFL in the
moderate variance setting and by BAY in the large variance setting. Further, 2 was

overestimated in the small variance setting by all the procedures and underestimated
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otherwise. The estimated SEs of the o and o were on average similar to the empirical
SEs in all settings for PML, and in the small variance setting for PFL. However, PFL
tended to overestimate the SE of oZ and underestimate it for a7 in the moderate variance
setting. In contrast, the mean of posterior standard deviations for BAY underestimated
the empirical SE of ¢¢ in the moderate variance setting as well as the SEs of both 2 and

a2 in the large variance setting.

When the analysis allowed the covariance of the random effects to be estimated instead
of being set at 0, the simulation results (Table 2.6 in the Appendix) indicated greater
convergence difficulties for PFL and PML though the non-convergence rate was still
much lower for PML than for PFL. Furthermore, the estimation procedures produced
estimates for 8 and a2 similar to their estimates in the previous analyses except for BAY,
where larger biases for § and ¢ in the moderate variance setting and for ¢Z in small
variance setting were observed. In the large variance setting and compared with analyses
where the covariance was not estimated, o2 was estimated with less bias by PPL and
PML, and with larger bias by BAY, whereas in the small variance setting the four
procedure gave estimates with larger biases. For the variability of the estimates, it was
noted that the estimated and empirical SEs of § were mostly larger in these analyses than

in the analyses where the covariance was not estimated.

2.7.2. Simulated data from correlated random effects model

In this section, the datasets were generated from a model with two correlated additive

random effects and analyzed with and without estimating the covariance o,; of the
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random effects. The simulation results of the large, moderate and small variance settings

with estimation of g, are shown, respectively, in Tables 2.3, 2.4 and 2.5.

In these simulation settings, only PFL and PML procedures had serious convergence
problems, and as in the simulation results of the independent random effects model, the
non-convergence rate was much lower for PML than for PFL, and PFL convergence was

severely affected by the large variance components.

The estimates for the fixed effect g obtained by the four procedures agreed closely with
the true value in the small and moderate variance settings, and their estimated and
empirical SEs were close. In contrast, only PML and BAY yielded close estimates for g
with nearly unbiased SEs in the large variance setting, whereas PPL underestimated S
and its empirical variability. The bias for PPL increased with increasing correlation
between the random effects. As in the previous settings, the results for PFL in the large

variance setting should be disregarded due to the low convergence rate.

The o2 was reasonably estimated by all the procedures in the small and moderate
variance settings, and by PML and BAY in the large variance setting. In the large
variance setting, the PPL procedure produced estimates for ¢f with downwards bias
increasing with the correlation between random effects. The estimated and empirical SEs
of 62 agreed well for PML in the three variance settings, and for PFL in the small
variance setting. However, the SE of 62 was overestimated by the BAY approach in all

variance settings, and by PFL in the moderate variance setting.

All procedures produced biased estimates for o7 with exceptions of the PML procedure

in the large variance setting and PPL in the moderate variance setting when ¢,; = 0.05.
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This bias in a2 estimates was downwards for PPL and BAY in the large variance setting,
and for BAY in the moderate variance setting when o,; = 0.05 and o,, = 0.125.
Otherwise, the bias was upwards. The estimated SEs were close to the empirical SEs for
PML and PFL, whereas the mean of the posterior standard deviations for BAY estimator

overestimated the empirical SEs.

The four estimation procedures underestimated the covariance between random effects
oy1 In all cases except in the large variance setting when gy, = 0.5 and a,; = 0.8 for
PML and BAY, where the procedures yielded estimates somewhat closer to the true
values, and when g,; = 0.2 where the BAY procedure tended to overestimate the ay;.
The estimates of SE associated with PML and PFL were closer to the observed SE than

the estimates associated with the BAY procedure.

When the analysis ignored the covariance between the random effects, the four
procedures showed unsatisfactory results (Tables 2.7, 2.8 and 2.9 in the Appendix). In
particular, the procedures tended to produce estimates for the fixed effect g with large
biases towards zero when the variance components were large or moderate with strong
correlation between the random effects. Furthermore, they yielded estimates for the o2
with more bias in the large variance setting and less bias in the small variance setting, as
well as more bias in the estimates of a2 for the BAY and less for the PPL in the large
variance setting. On the other hand, smaller empirical SEs of § were noted for all the
estimation procedures in comparison with the situation where the o,; was estimated as
well as smaller estimated SEs for the PFL, PML and BAY, and similar estimated SEs for

the PPL.
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2.8. Discussion

In this paper, we reviewed four common estimation procedures to fit Cox models with
two additive random effects in the same cluster, using data from veterinary epidemiology.
We compared these estimation procedures through a simulation study based on the two
Cox models with a fixed (treatment) effect and either two independent or two correlated
additive random effects. The simulation structure was built to mimic the structure of the

real data.

The model used by Cortifias et al. (2007) is quite similar to the model used in our
simulation. Their Cox model had two random effects within the same cluster, but the
covariance of the two random effects was set to zero. We used the same model, however
we considered a more flexible covariance matrix for the two random effects including
their situation where a diagonal covariance matrix was used. What distinguishes our
study, besides the flexible structure of the covariance between random effects, is our use
of different estimation approaches including the Poisson GLMM approach, with adaptive
Gaussian quadrature used for the maximum likelihood estimation. In addition, the
settings of the simulation were designed to mimic real data from veterinary medicine,
where the magnitude of heterogeneity and censoring rate are often larger than in
multicentre trial studies. Finally, our simulations assessed the impact of ignoring the

correlation between random effects.

2.8.1. Simulations

2.8.1.1. Convergence and computational requirements for the estimation procedures
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Even though neither the PFL nor PML procedures converged in all analyses, the
convergence rate was much higher for the latter. PFL exhibited very low convergence
rates when the magnitude of heterogeneity was large and even if the magnitude of
heterogeneity was relatively small, the optimum convergence rates could not be assured.
These low convergence rates remained even after the smoothing parameter was
automatically estimated by the cross validation method and a different number of knots
was used for the baseline hazard approximation. The non-convergence rate for the PML
procedure was much smaller and could be dealt with by changing the integration points

for adaptive Gaussian quadrature method.

The PML and BAY procedures were computationally intensive and time consuming (the
computing time per dataset were about 10 and 45 minutes for PML and BAY,
respectively) because of the need to split the data for PML and the implementation of a
gamma process for the BAY procedure. In contrast, PPL and PFL were computationally
less intensive (PPL took a few seconds while PFL ran several minutes for one dataset)
due to the implementation of Laplace approximation. Furthermore, the PPL procedure
was fairly fast to converge because the baseline hazard is estimated simultaneously with

other parameters (Feng et al., 2009).

2.8.1.2. Independent versus correlated random effects

When the model was correctly specified, our simulations showed satisfactory results for
both independent and correlated random effects models. In case of large variance
components, ignoring an existing correlation between random effects resulted in biased

estimates for fixed effect coefficients, and this bias increased with increasing o,;. For
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instance, when substantial heterogeneity and strong correlation between random effects
existed in the data, analyses ignoring the covariance structure led to invalid results. In
contrast, taking the covariance structure into account in the analysis when no correlation
existed in the data still led to valid estimates. This illustrates the need for a flexible
structure for the covariance matrix of random effects. The estimated covariance should be

converted to a correlation and assessed relative to its limited range.

2.8.1.3. Estimation of fixed effect parameter

In the presence of limited between-cluster variability for the random effects, all the
procedures yielded good and comparable estimates for . When the magnitude of
heterogeneity was large, the picture was somewhat different. Only the PML and BAY
procedures gave reasonable estimates for the fixed effect coefficient, whereas it was
underestimated by PPL and the PFL estimates were not of interest due to the low
convergence rate. Similar findings for PPL were reported in Cortifias et al. (2007). The
estimated and empirical SEs agreed closely for the PML, PFL and BAY procedures. In
contrast, PPL underestimated the variability of fixed effect estimates when ¢,; # 0. This
underestimation of fixed effect standard error was pointed out in Ripatti and Palmgren

(2000) and Therneau and Grambsch (2000, p. 249).

2.8.1.4. Estimation of random effect parameters

In general, all the procedures performed quite well in estimating 62, one exception being
that the PPL procedure underestimated 2 when the magnitude of heterogeneity was
large. On the other hand, with the exception of PML with large variances, all the

estimation procedures tended to produce estimates for o? that were mostly biased
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upwards if the variance components were small to moderate, and somewhat
underestimated for large variances. Cortifias and Burzykowski (2005) noted the difficulty
in estimating variance components for PPL when the magnitude of heterogeneity is
relatively small. Similar findings were reported for PFL by Rondeau et al. (2008). The
variability of the two variance estimates measured by the empirical standard errors was
estimated with reasonable accuracy by PML, and by PFL when the magnitude of
heterogeneity was small to moderate, whereas the mean of posterior standard deviation
for BAY tended to overestimate it. Finally, the o,; parameter was almost always
underestimated by all the estimation procedures. The SE of the BAY estimator for oy,
was overestimated, while the SE of the PML and PFL estimators somewhat agreed with

the empirical SE.

2.8.1.5. Summary by estimation procedures

The PML procedure performed quite well and converged in most cases. It showed
minimal bias for different simulation settings. Nevertheless, it is necessary to keep in
mind the size of the expanded data and the required computing time for analyzing such
data. The Stata implementation for Poisson GLMMSs provided a standard error for the
random effects variance, which is an advantage for real applications. PPL was fairly fast
to converge and worked fine when the magnitude of the variability of random effects was
small to moderate. When the magnitude of the variability of random effects was large,
PPL should be used with caution because of the pronounced underestimation of the fixed
effect parameter and its SE. Furthermore, the current implementation of PPL in R does
not provide SEs for the estimation of the variance components. PFL experienced a lot of

convergence failures, even after changing the parameter setting of model specification,
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especially in the cases of large variance components. The advantage of PFL is the
calculation of the SEs of the random effects variance even though the procedure
sometimes produced nonsense values for the SE estimates. In addition to the BAY
procedure being time consuming, it resulted in a pronounced underestimation of the
variance of treatment random effect. The procedure worked reasonably well for other
model parameters, but some posterior standard deviations overestimated the variability

between estimates.

2.8.2. Lameness data

The discrepancy in the fixed effect estimates between the independent and correlated
random effects models that appeared in the analysis of lameness data was investigated
through a simulation study with numerous settings. Generally speaking, findings from the
simulations were similar to our findings for the analysis of the lameness data, and thus
supported our conclusion that the discrepancy was probably due to model bias from
misspecifying the correlation structure. The analysis showed that the effect of treatment
across herds varied around an overall "protective” effect (HR = 0.41). The results further
suggest that herds with higher hazards tended to have a stronger treatment effect, in
reflection of the high correlation between the random intercept and random slope. Further
exploration of the lameness data could include contextual effects of treatment and time-
dependent coefficients for predictor and herd effects (Stryhn and Christensen, 2013), but
for simplicity we limited our example to investigating the random treatment effects.

2.8.3. Conclusion
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Based on the results of this simulation study, the performance of the considered
estimation procedures depends on the magnitude of variability of random effects in the
data. The effect of other factors such as the censoring rate, the number of herds, the herd
size and the type of explanatory variable on the estimation procedures is beyond the
scope of this study and can be a topic for a future research. This study offers practical
guidelines for the choice of appropriate statistical procedure for estimating Cox models
with two additive random effects. The conclusions can be drawn from the present study
are that, (1) the PML procedure appears to be preferable for analysis of clustered survival
data with an underlying random effects Cox model; (2) the PPL procedure is suitable for
a quick exploration; and (3) estimating the correlation between the two additive random

effects in the analysis is always preferable.
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Table 2.1. Parameter estimates (with SE) of independent random effects model (the upper half of the table)

and correlated random effects model (the lower half of the table) for the analysis of lameness dataset.

Estimation procedure B ol o? Oo1
Independent random effects model
PPL -0.353 (0.232) 2.494 (--%) 0.400 (-9 0
PFL -0.403 (0.280) 2.360 (1.040) 0.412 (0.367) 0
PML -0.398 (0.274) 2.399 (0.940) 0.401 (0.353) 0
BAY -0.400 (0.344) 2.663 (0.358) 0.458 (0.376) 0
Correlated random effects model
PPL -0.721 (0.227) 2.257 (% 0.492 (-9 0.839 (-9
PFL -0.868 (0.493) 2.170 (0.929) 0.564 (0.548) 0.960 (0.765)
PML -0.891 (0.470) 2.185 (0.868) 0.590 (0.572) 1.036 (0.787)
BAY -0.788 (0.494) 2.374 (1.147) 0.789 (1.076) 0.771 (0.907)

PPL: Penalized partial likelihood; PFL: Penalized full likelihood; PML: Poisson

BAY: Bayesian; % No available standard error.
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Table 2.2. Results of large, moderate, and small variance settings based on correctly specified independent random effects model. Mean of the estimate, empirical

standard deviation, mean of the model-based standard error, relative absolute bias, mean squared error and convergence percentage over 300 simulated data sets.

B ag of Oo1 Conv.
Method  mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) %
True -.400 2.000 .500 .000
PPL -.351 (.238; .227) 123 148 1.874 (.730; ----%) 063 .274 417 (.343; -9 166 .248 0 100
PFL -.422 (.256; .263) 055  .163 1.445 (.416; .587) 278 .240 .456 (.394; .339) 088 312 0 57
PML -.411 (.253; .252) 028  .160 1.914 (.748; .717) 043 .283 442 (.361; .325) “116  .266 0 100
BAY -.417 (.256; .281) 043 165 2.122(.839;.297) *.061 .358 474 (.433; .297) 052  .376 0 100
True -.400 .500 125 .000
PPL -.376 (.160; .164) *.060 .065 .506 (.213; ----%) 012 .090 123 (.144; -9 016  .168 0 100
PFL -.360 (.166; .175) *100 .073 .483 (.186; .250) 034  .070 .120 (.154; .125) 040 192 0 78
PML -.396 (.171; .175) *010 .073 478 (.203; .182) 044  .084 .125 (.154; .129) 000 .192 0 98
BAY -.400 (.169; .182) *,000 .073 519 (.219; .147) *.038 .096 .106 (.149; .199) “152 176 0 100
True -.400 .100 .025 .000
PPL -.398 (.133; .138) *.005 .045 .101 (.056; ----%) *010  .030 .034 (.057; ----%) *360 .120 0 100
PFL -.380 (.137; .142) *.050 .048 .105 (.062; .056) *.050 .040 .032 (.055; .052) 280 .120 0 99
PML -.408 (.136; .144) 020 .048 .092 (.052; .036) 080 .030 .034 (.059; .042) *360 .160 0 97
BAY -.416 (.135; .150) 040  .045 .096 (.060; .089) 040  .040 .031 (.040; .146) *.240  .080 0 100

a - . R .
No available standard error; * upwards bias; - downwards bias.
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Table 2.3. Results of large variance setting based on correctly specified correlated random effects model. Mean of the estimate, empirical standard deviation, mean of the

model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.

B ag of Oo1 Conv.
Method  mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse %
True -.800 2.000 .500 .800
PPL -.671 (.347; .216) 161 170 1.758 (.632; ----%) n121 228 419 (.333; ----%) n162 234 .618 (.429; ----9) 228  .205 100
PFL -.918 (.256; .406) 1148 234 1.334 (.554; .515) 333 .373 530 (.452; .472) *.060 404 .589 (.466; .387) 264  .323 19
PML -.794 (.368; .350) *.008  .169 1.878 (.737;.711)  ".061  .279 .502 (.390; .405) *.004 302 .734 (.489; .459) 083  .303 90
BAY -.793 (.355; .352) *.009 .156 1.928 (.764; .888) 036  .293 .469 (.357; .509) 062  .256 .768 (.483; .552) 040 .293 100
True -.800 2.000 .500 .500
PPL -.689 (.333; .228) 139 154 1.806 (.676; ----%) 097 247 421 (.354; ----%) 158 262 .396 (.425; ----) 208  .456 100
PFL -.868 (.386; .389) 085 .189 1.131 (.257; .514) 435 410 .518 (.410; .454) *.036 .332 .312 (.422; .376) 376 422 24
PML -.786 (.356; .355) *018  .159 1.869 (.708;.708)  ".066  .259 477 (.380; .401) 046  .288 .460 (.479; .452) 080  .460 97
BAY -.785 (.351; .344) 019 154 1.919(.743;.886)  .041  .279 .380 (.318; .464) 7240 230 .511 (.464; .516) 022  .430 100
True -.800 2.000 .500 .200
PPL -.707 (.333; .237) *116 149 1.849 (.684; ----%) 076 .245 425 (.354; ----%) ~150  .260 .155 (.431; ----%) 7225 1.46 100
PFL -.857 (.354; .398) 071 159 1.191 (.374; .539) 405  .397 .530 (.404; .474) *.060 .324 .107 (.404; .395) 465  .850 29
PML -.783 (.358; .355) 021 .160 1.886 (.698; .717) 057  .250 474 (.376; .396) 052 284 .180 (.490; .451) 100 1.20 99
BAY - 774 (.353; .340) *033 .156 1.928 (.735; .894) 036 272 .324 (.283; .422) 352 222 .232 (.467; .500) *160  1.09 100

a - . R .
No available standard error; * upwards bias; - downwards bias.
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Table 2.4. Results of moderate variance setting based on correctly specified correlated random effects model. Mean of the estimate, empirical standard deviation, mean of the

model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.

B ol o? Oo1 Conv.
Method  mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse %
True -.800 .500 125 .200
PPL -.759 (.217; .178) *051  .061 .493 (.198; ----%) 014  .078 .145 (.149; ----%) 160 .184 .167 (.151; -9 165 120 100
PFL -.812 (.261; .266) 015  .085 484 (.195; .268) 032 .076 .149 (.166; .173) 192 224 151 (.164; .175) ~.245 .145 78
PML -.794 (.238; .227) *.008 .071 467 (.188; .182) 066  .072 .146 (.156; .161) *168° .200 167 (.155; .149) 165 125 90
BAY - 794 (.219; .227) *,008 .060 473 (.194; .219) 054  .076 .140 (.111; .186) *120  .096 .163 (.135; .167) 185 .100 100
True -.800 .500 125 125
PPL -.766 (.222; .179) *.043  .063 .495 (.200; ----%) 010 .080 .136 (.145; ----%) *.088 .168 .103 (.158; ----%) 176 .200 100
PFL -.786 (.266; .271) *.018  .089 .504 (.219; .291) *.008  .096 .146 (.165; .176) *168  .216 .082 (.170; .179) 344 .248 81
PML -.804 (.244; .228) 005 .074 469 (.185; .184) 062 .070 .142 (.158; .165) *136  .200 .107 (.163; .151) 144 .216 95
BAY -.799 (.225; .222) *.001  .063 470 (.195; .219) 060 .078 .116 (.095; .170) 072 .072 .108 (.139; .162) 136 152 100
True -.800 .500 125 .050
PPL - 775 (.223; .180) *031 .063 495 (.197; ----%) 010 .078 .129 (.148; ----%) *032 176 .034 (.163; ----%) 320 .540 100
PFL -.768 (.269; .260) *.050 .091 .490 (.209; .252) 020 .088 150 (.177; .182) *200 .256 .004 (.184; .170) ~920 .720 78
PML -.804 (.243; .225) 005 .074 467 (.190; .184) 066 .074 .135 (.164; .166) *.080 .216 .038 (.167; .151) 240 .560 98
BAY -.806 (.226; .216) 008 .064 467 (.193; .218) 066 .076 .097 (.080; .154) 224 .056 .050 (.140; .159) *.000 .380 100

a - . R .
No available standard error; * upwards bias; - downwards bias.
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Table 2.5. Results of small variance setting based on correctly specified correlated random effects model. Mean of the estimate, empirical standard deviation, mean of the

model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.

B ol o? Oo1 Conv.
Method  mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse %
True -.800 .100 .025 .040
PPL -.797 (.195; .163) *.004 .048 .102 (.020; ----%) *020 .030 .069 (.080; ----%) *1.76 .320 .023 (.062; ----) 425 100 100
PFL -.803 (.218; .192) 004  .059 .105 (.063; .058) *.050 .040 .076 (.090; .112) “2.04 480 .024 (.065; .065) 400 125 88
PML -.818 (.208; .183) 023 .054 .094 (.055; .051) 060 .030 .072 (.085; .108) *1.88 .360 .023 (.063; .064) 425 100 94
BAY -.817 (.194; .179) 021 .048 .093 (.050; .058) 070  .030 .061 (.037; .105) “1.44 120 .017 (.037; .059) ~575  .050 100
True -.800 .100 .025 .025
PPL -.799 (.191; .163) 001 .045 .102 (.019; ----%) *020 .030 .067 (.078; ----%) *1.68 .320 .011 (.063; ----) 560 .160 100
PFL -.800 (.212; .190) .000 .056 .105 (.063; .058) *050 .040 .073(.088; .104) 1.92 400 .014 (.066; .063) 440 160 91
PML -.819 (.209; .182) 024 055 .094 (.055; .051) 060 .030 .074 (.088; .109) *1.96 400 .011 (.065; .064) 560 .160 91
BAY -.821 (.189; .178) 026  .045 .092 (.050; .058) 080 .030 .058 (.031; .103) 1.32 .080 .010 (.036; .058) 600 .080 100
True -.800 .100 .025 .010
PPL -.806 (.190; .163) 008  .045 .102 (.019; ----%) *020 .030 .065 (.078; ----%) *1.60 .320 -.001 (.063; ----%) 1,10  .400 100
PFL -.808 (.216; .189) 018  .059 .105 (.063; .059) *.060 .040 .074 (.091; .108) *1.36 440 -.000 (.070; .063) 1.20  .500 86
PML -.825 (.205; .181) 031  .053 .094 (.055; .051) 060 .030 .069 (.083; .106) *1.76 .360 .000 (.063; .065) "1.00  .400 94
BAY -.829 (.189; .177) 036  .045 .091 (.049; .057) 090 .020 .055 (.026; .100) *1.20 .080 .003 (.035; .058) 700  .100 100

a - . R .
No available standard error; * upwards bias; - downwards bias.
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Appendix

Table 2.6. Results of large, moderate, and small variance settings based on misspecified independent random effects model. Mean of the estimate, empirical standard

deviation, mean of the model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.

B ol o? Oo1 Conv.
Method  mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) abs.bias mse %
True -.400 2.000 .500 .000
PPL -.357 (.286; .228) *108 .208 1.879 (.730; ----%) 061 .273 .449 (.366; ----%) “102 272 -.005 (.384; ----%) ~.005 147 100
PFL -.428 (.298; .352) 070 220 1.116 (.276; .511) 442 428 .496 (.465; .396) 008  .426 .039 (.313; .335) *.039 .098 25
PML -.418 (.320; .320) 045 255 1.920 (.749;.728)  ~.040 .283 .483 (.387; .359) 034 .298 .010 (.424; .422) *.010 179 99
BAY -.399 (.310; .307) *.003  .240 1.964 (.783; .904) 018  .306 .343 (.331; .397) "314  .268 .049 (.427; .470) *.049 184 100
True -.400 .500 125 .000
PPL -.383 (.172; .165) *.043  .075 .505 (.215; ----%) *.010 .092 .140 (.157; -9 120 200 .000 (.135; ----%) *.000 .018 100
PFL -.368 (.204; .235) *.080 .105 485 (.176; .261) 030 .062 .159 (.185; .160) *272 280 -.012 (.153; .157) 012 .023 67
PML -.406 (.191; .198) 015  .090 476 (.207; .187) 048  .086 .145 (.168; .149) *160  .056 .002 (.141; .139) *.002 .020 97
BAY -.446 (.234; .205) n115 143 .598 (.452; .278) *196  .426 121 (.153; .164) 032 .184 .054 (.222; .179) *.054 .052 100
True -.400 .100 .025 .000
PPL -.397 (.137; .140) *.008 .048 .104 (.060; ----%) *.040 .040 .049 (.061; ----%) *960 .160 -.009 (.047; ----%) ~.009 .002 100
PFL -.392 (.146; .153) *.020 .053 .097 (.058; .053) 030 .030 .051 (.062; .077) “1.04 200 -.005 (.042; .052) ~.005 .002 72
PML -.401 (.140; .151) 003  .050 .097 (.058; .053) 030 .030 .047 (.055; .075) *880 .160 -.009 (.048; .056) ~.009 .002 91
BAY -.415 (.138; .157) 038  .048 .146 (.169; .081) *.460  .300 .052 (.029; .083) “1.08 .080 .002 (.051; .065) ~.002 .003 100

2 No available standard error; * upward bias; - downward bias.
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Table 2.7. Results of large variance setting based on misspecified correlated random effects model. Mean of the estimate, empirical standard deviation, mean

of the model-based standard error, relative absolute bias, mean squared error and convergence percentage over 300 simulated data sets.

B ag of %01 Conv.
Method mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) %
True -.800 2.000 .500 .800
PPL -.369 (.280; .216) *.539 .330 1.963 (.739; ----%) 019 273 .300 (.255; ----%) 400 210 100
PFL -.659 (.361; .328) *.176 .185 1.184 (.280; .563)  ".408  .372 .393 (.408; .383) “214  .350 26
PML -.427 (.302; .265) *.466 .288 2.045(.790;.771)  *.023 312 .330(.282; .286) 340 216 98
BAY -.429 (.311; .296) 464 .293 2.268(.893;.309) *.134 434 .340 (.348; .298) 320 .292 100
True -.800 2.000 .500 .500
PPL -.495 (.282; .225) *.381 215 1.912 (.717; ----%) ~044 260 .335(.272; ----%) 330 .202 100
PFL -.701 (.348; .307) *.124 163 1.191(.278;.528)  ".405  .365 413 (.335;.380) “174 238 0 29
PML -.551 (.289; .260) 311 181 1.846 (.866; .696)  ".077  .386 .349 (.303; .299) ~302  .230 0 100
BAY -.562 (.303; .297) *.298 .185 2.182(.834;.304) *.091 .363 .386 (.362; .309) 228  .288 0 100
True -.800 2.000 .500 .200
PPL -.625 (.281; .235) *.219 136 1.891 (.726; ----%) ~055  .268 374 (.313; ----%) “252 228 0 100
PFL -.787 (.344; .304) *.016 .146 1.191 (.270; .528)  ".405  .364 445 (.373; .397) ~110 .282 0 33
PML -.692 (.299; .272) 135 126 1.914 (.709;.721)  ".043  .255 406 (.337; .341) 188  .244 0 100
BAY -.696 (.308; .302) *.130 131 2.124 (.794;.300) *.062 .322 413 (.387;.319) 174 314 0 100

2 No available standard error; * upward bias; - downward bias.
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Table 2.8. Results of moderate variance setting based on misspecified correlated random effects model. Mean of the estimate, empirical standard deviation,

mean of the model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.

B ol o? Oo1 Conv.
Method mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) %
True -.800 .500 125 .200
PPL -.650 (.201; .177) *188  .079 .537 (.214; - *.074  .094 .120 (.147; -9 040 176 0 100
PFL -.679 (.219; .200) *151  .078 .505 (.193; .266) *.010 .074 .116 (.162; .146) 072 .208 0 73
PML -.677 (.216; .200) *154  .078 .508 (.204; .195) *.016  .082 127 (.161; .151) *.016  .208 0 98
BAY -.676 (.214; .207) *155  .076 .552 (.225; .153) *104 106 .101 (.145; .223) n192 168 0 100
True -.800 .500 125 125
PPL -.695 (.204; .178) *131  .066 .521 (.208; ----) *.042  .088 .118 (.144; ---- 056  .168 0 100
PFL -.718(.218; .201) *103  .068 .501 (.196; .264) *.002 .076 .120 (.159; .152) 040 200 0 78
PML -.721(.213; .198) *.099  .065 .491 (.195; .189) 018  .076 .119 (.148; .149) 048 176 0 98
BAY -.721(.212; .205) *.099  .064 .534 (.215; .151) *.068 .094 .093 (.137; .222) 7256  .160 0 100
True -.800 .500 125 .050
PPL -.744 (.203; .179) *.070  .055 .503 (.198; ----9) *.006 .078 .108 (.183; ----%) n136 152 0 100
PFL -.755(.214; .199) *.056  .060 .489 (.189; .249) 022 072 .116 (.159; .149) 072 200 0 81
PML -.769 (.215; .196) *.039  .059 473 (.189; .182) 054 072 112 (.156; .142) ~104 192 0 98
BAY -.773(.211; .203) *.034  .056 .516 (.207; .149) *.032  .086 .084 (.134; .220) 7328 160 0 100

2 No available standard error; * upward bias; - downward bias.
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Table 2.9. Results of small variance setting based on misspecified correlated random effects model. Mean of the estimate, empirical standard deviation, mean

of the model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.

B ol o? Oo1 Conv.
Method mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) r.bias mse mean (std; se) %
True -.800 .100 .025 .040
PPL -.778(.186; .161) *.028 .044 .106 (.059; ----9) *.060 .030 .058 (.087; ----) 132 .360 100
PFL -.756 (.184; .166) *.055 .045 .110 (.065; .058) *.100  .040 .043 (.064; .075) *720 160 92
PML - 772 (.179; .167) *.035  .041 .098 (.057; .051) 020  .040 .043 (.062; .074) *720 160 87
BAY -.804 (.191; .178) 005 .045 .101 (.062; .093) *.010  .040 .045 (.060; .182) *.800 .160 100
True -.800 .100 .025 .025
PPL -.787(.181; .161) *.016  .041 .104 (.057; ----) *.040  .030 .053 (.080; ----) 112 .280 0 100
PFL -.763 (.179; .166) *.046  .041 .108 (.063; .057) *.080 .040 .043 (.064; .073) *720 160 0 93
PML -.784(.180; .167) *.020  .040 .096 (.056; .050) 040  .030 .042 (.064; .073) *.680 .160 0 86
BAY -.812(.185; .177) 015  .043 .098 (.060; .092) 020  .040 .042 (.053; .178) *.680 .120 0 100
True -.800 .100 .025 .010
PPL -.800 (.181; .160) *.000 .041 .101 (.056; ----) *.010  .030 .048 (.076; ----) 920 .240 0 100
PFL -.781(.181; .165) 024  .041 .104 (.061; .056) *.040  .040 .038 (.060; .071) *520 .160 0 92
PML -.801 (.180; .166) 001  .040 .094 (.055; .049) 060 .030 .036 (.057; .069) *.440 120 0 89
BAY -.825(.185; .177) 031 .044 .095 (.059; .092) 050 .030 .038 (.049; .175) *520 120 0 100

2 No available standard error; * upward bias; - downward bias.
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Chapter 3

Survival analysis of clinical mastitis data using
a nested frailty Cox model fit as a mixed-effects

Poisson model

The work of this chapter is submitted for publishing as: Elghafghuf A, Dufour S, Reyher K,
Dohoo 1, Stryhn H. (2014). Survival analysis of clinical mastitis data using a nested frailty

Cox model fit as a mixed-effects Poisson model. Preventive Veterinary Medicine, in revision.
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3.1. Abstract

Mastitis is a complex disease affecting dairy cows and is considered to be the most costly
disease of dairy herds. The hazard of mastitis is a function of many factors, both managerial
and environmental, making its control a difficult issue to milk producers. Observational
studies of clinical mastitis (CM) often generate datasets with a number of characteristics
which influence the analysis of those data: the outcome of interest may be the time to
occurrence of a case of mastitis, predictors may change over time (time-dependent
predictors), the effects of factors may change over time (time-dependent effects), there are
usually multiple hierarchical levels, and datasets may be very large. Analysis of such data
often requires expansion of the data into the counting-process format — leading to larger

datasets — thus complicating the analysis and requiring excessive computing time.

In this study, a nested frailty Cox model with time-dependent predictors and effects was
applied to Canadian Bovine Mastitis Research Network data in which 10,831 lactations of
8,035 cows from 69 herds were followed through lactation until the first occurrence of CM.
The model was fit to the data as a Poisson model with nested normally distributed random
effects at the cow and herd levels. Risk factors associated with the hazard of CM during the
lactation were identified, such as parity, calving season, herd somatic cell score, pasture
access, fore-stripping, and proportion of treated cases of CM in a herd. The analysis showed
that most of the predictors had a strong effect early in lactation and also demonstrated
substantial variation in the baseline hazard among cows and between herds. A small
simulation study for a setting similar to the real data was conducted to evaluate the Poisson
maximum likelihood estimation approach with both Gaussian quadrature method and Laplace
approximation. Further, the performance of the two methods was compared with the
performance of a widely used estimation approach for frailty Cox models based on the
penalized partial likelihood. The simulation study showed good performance for the Poisson
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maximum likelihood approach with Gaussian quadrature and biased variance component
estimates for both the Poisson maximum likelihood with Laplace approximation and

penalized partial likelihood approaches.

3.2. Introduction

Worldwide, mastitis is one of the most common and costly diseases that affect dairy cattle
(Schepers and Dijkhuizen, 1991). Mastitis is a multifactorial disease of the bovine udder and
can be caused by multiple bacterial pathogens. Mastitis may be either clinical, if the infection
signs are discernible with the naked eye, or subclinical, when no signs are visible and
laboratory techniques are needed to detect the infection (Barkema et al., 1998; Olde
Riekerink et al., 2008). The hazard of mastitis can be elevated by both environmental factors
and managerial practices. Determining what factors or practices might cause CM and then
taking necessary action to prevent the disease from occurring is of high priority for dairy
producers. Therefore, much research has been dedicated to identifying risk factors associated
with CM incidence under different conditions and countries (e.g. Barkema et al., 1999;
Barnouin et al., 2005; O’Reilly et al., 2006; Green et al., 2007; Nyman et al., 2007), and
many statistical methods have been suggested for analysis of clinical mastitis data (Gasqui
and Barnouin, 2003; Schukken et al., 2010). Actually, many complexities inherent to CM
data (e.g. censored observations, clustering of observations, recurrence of CM events),

impede applicability of most analytical methods, especially in large datasets.

For instance, the Canadian Bovine Mastitis Research Network (CBMRN) launched in 2006 a
two-year longitudinal data collection of 91 herds from four regions of Canada. This resulted
in the generation of one of the largest, most comprehensive mastitis databases ever

assembled, which has supported research into both clinical and subclinical mastitis in areas as
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diverse as risk factor evaluation to vaccine development. Details of the data collection

platform have been previously published (Reyher et al., 2011).

Survival models have been extensively used in mastitis research over the last 15 years, e.g.
for modeling CM event times (Rupp and Boichard, 2000; Santos et al., 2004; Grohn et al.,
2005; Goethals et al., 2009; Schukken et al., 2010; Borne et al., 2011). The most widely used
analytical approach is based on Cox’s semiparametric proportional hazards model (Cox,
1972; Ducrocq and Casella, 1996). In proportional hazards Cox models, the hazard function
is described as a product of unspecified baseline hazard and an exponential function of the
multiplied vectors of predictors and regression parameters. One of the strengths of the Cox
model is its ability to encompass predictors and coefficients that may vary over time
(Therneau and Crowson, 2013). For example, management practice data may be collected at
points in time and practices may change between assessments. Dufour et al. (2010), for
instance, showed that 27% and 33% of dairy producers reported at least one modification of
their milking and housing management procedures, respectively, over a 6-month period. In
addition, the effects of explanatory variables often vary over time (e.g. a factor may exert a
different effect in early lactation compared to later in lactation). Finally, CM data may be
collected from different lactations within the same cow, and with multiple cows located in the
same herds or farms. In this scenario, the data are clustered within cows and herds. When
clustering is present in the data, the independence assumption of the standard Cox
proportional hazards model is no longer valid as event times within the same cluster are
correlated. When analyzing such data, it is important to account for the hierarchical structure

of the data and take into account the time-dependent predictors and effects.

Extending the Cox proportional hazards model by the addition of random effects (frailty

terms) has been proposed for modeling clustered survival data (Therneau and Grambsch,
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2000; Duchateau and Janssen, 2008; Wienke, 2010; Hanagal, 2011). In these frailty models,
the heterogeneity caused by unobserved factors (due to clustering) are quantified by frailty
(or random effects) terms corresponding to the hierarchical levels. In a 3-level hierarchical
data structure (e.g. lactations within cows and cows within herds), nested frailty models
account for hierarchical clustering by including two nested frailties that act multiplicatively
on the baseline hazard (Sastry, 1997; Rondeau et al., 2006). Assuming a log-normal
distribution for the nested frailty terms (or normally distributed random effects on the log
scale), the nested frailty model can be estimated in a Poisson mixed-effects model
framework, after transforming the data to a counting-process format and modeling the
baseline hazard as a smooth function of time (Ma et al., 2003; Feng et al., 2005; Rabe-
Hesketh and Skrondal, 2012). With the Poisson modeling approach, either adaptive Gaussian
quadrature or Laplace approximation can be applied to the likelihood function. However,
expanding the dataset in this manner results in a potentially very large dataset which

compromises computing time.

The aims of this study were threefold. Firstly, risk factors associated with the hazard of
clinical mastitis during the lactation in CBMRN data were evaluated. Secondly, the feasibility
of a full hierarchical survival analysis for a large dataset with time-dependent predictors and
coefficients using a log-normal nested frailty Cox model approximated by a mixed-effects
Poisson model was evaluated. Thirdly, the performance, in terms of bias and efficiency of
estimates, of the Poisson maximum likelihood approach (estimated using either Gaussian
quadrature or Laplace approximation) was compared with one of the existing estimation
approaches, namely, the penalized partial likelihood approach (Ripatti and Palmgren, 2000)
through a simulation study. This step served to validate the results obtained for the previous

objectives.
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3.3. Materials and methods

3.3.1. Data

Data were extracted from the National Cohort of Dairy Farms (NCDF) database, collected
from January 2007 to December 2008. The details of the NCDF, including herd selection
process and data collection, have been described elsewhere (Reyher et al., 2011). Briefly, a
total of 91 dairy herds located in four different geographic regions of Canada participated in
the NCDF data collection. Information related to CM, such as the time of occurrence and
pathogen species or group of species, were recorded. Dairy Herd Improvement (DHI) data
from 2006 to 2008 were used to capture supplementary information on individual and herd
levels, such as calving date, culling date, dry-off date, lactation number, herd somatic cell
score (SCS), and herd demographics. Moreover, information related to herd management was
collected on four different occasions during the study via the udder health related
management survey described in Dufour et al. (2010). These four time periods were defined
as follows: Jan.-May 2007, Jun.-Dec. 2007, Jan.-May 2008, and Jun.-Dec. 2008. Because CM
cases were sampled and recorded by farmers, and to avoid bias resulting from incomplete
reporting of CM cases, only the data from NCDF herds showing sufficient compliance for
CM sampling were considered in the current study. Compliance was assessed by comparing
the number of CM samples submitted for bacteriological analyses and the number of CM
cases recorded in the producer’s computerized health records. Herds in which the number of
submitted CM cases was less than 80% of the number of recorded CM cases were excluded
from the analysis. This brought down the number of herds to 74, and an additional 5 herds
were excluded due to incomplete records, leaving 69 herds and 265 herd-periods as the

information for some of these herds were not available for all 4 periods. Lactations that
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started before the onset of the study (i.e. before January 2007) were not included in the

analysis.

Within the lactation, event (clinical mastitis) time was defined as the number of days from
calving until developing a first case of CM. Observations from cows that did not experience
the event within the lactation and were either culled, dried off, left the cohort, or followed-up
until the end of the study period were considered right censored. A list of explanatory

variables in the dataset is presented in Table 3.1.
3.3.2. Statistical model

A Cox model with two nested frailties to account for the data structure present in the
CBMRN data was considered. The nested frailty Cox model (Rondeau et al., 2006) can be

written as,
Aijk(tluiy uij) = do(O)ujuy; eXp[ﬁ'(t)Xijk(t)] 31)

where 2, (tlu; u;;) is a conditional hazard function for lactation k of cow j in herd i
conditional on the two nested frailties u; and wu;;; A,(t) is an unspecified baseline hazard
function, X;;.(t) is a vector of (possibly time-varying) predictors with corresponding

parameter vector (possibly time-varying) effects B(t). An alternative formulation for model

(3.1) is given by
Aijie (€1, bij) = A9(t) exp[b; + byj + B'(©)X;j3. (1)] (32)

where b; = logu; and b;; = logu;; are nested random effects, and assumed to be normally

distributed with zero means and variances ¢ and o for cow and herd levels, respectively.
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As described in Rabe-Hesketh and Skrondal (2012), the Cox regression model can be
estimated by a Poisson regression model with a specific offset and binary response, and
estimated using Poisson maximum likelihood (PML). This approximation can be carried over
to the Cox model with random effects (Ma et al., 2003; Feng et al., 2005; Feng et al., 2009;
Rabe-Hesketh and Skrondal, 2012). Using available software for generalized linear mixed
models (GLMMs), for example the xtmepoisson command in Stata, model (3.2) can be fit to
multilevel survival data as a mixed-effects Poisson model after expanding the data to the
counting process format and using the length of each time interval on the logarithm scale as
an offset. The baseline hazard can be modeled as a polynomial function of time, in this case a
fourth-order polynomial function as suggested in Rabe-Hesketh and Skrondal (2012). Finally,
for a Poisson maximum likelihood estimation, the Laplace approximation or adaptive

Gaussian quadrature can be applied.

3.3.3. Statistical analysis

3.3.3.1. Descriptive statistics and unconditional associations

Descriptive analyses were carried out for each variable in the dataset individually to
determine distributions and detect unlikely observations; in this step, time-varying predictors
were identified. Correlations or associations among all explanatory variables were computed
to assess for possible collinearity. Unconditional associations (simple) between explanatory
variables and the hazard of CM were estimated in standard Cox regression models while
accounting for time-varying predictors as needed. The proportional hazards assumption was
evaluated for every predictor by a statistical test based on the scaled Schoenfeld residuals
(Dohoo et al., 2009). The functional form of continuous variables was evaluated by a lowess
smoothing graph of the continuous variable against the martingale residuals. A liberal p-value

of 0.20 was chosen to determine potentially important explanatory variables.
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3.3.3.2. Model building towards a final model

A stepwise backward selection strategy including significant predictors from the
unconditional analyses was used to construct a multivariable model for the hazard of CM
based on model (2) using the PML approach. In the selection process, a liberal p-value of
0.10 was used as variable inclusion criterion, and potential confounders (such as region) were
kept in the model regardless of their significance. After eliminating variables with non-
significant effects on the hazard of CM during the model building process, possible and
biologically meaningful interactions between explanatory variables in the model were
evaluated, and significant interactions were kept. Next, the proportional hazards assumptions
for each predictor, individually as well as globally, were assessed as described above in a
non-hierarchical multivariable Cox model. For predictors showing non-constant hazards,
suitable interaction terms with time were included in the model and assessed using the PML
approach. The assumption of independent censoring was checked by a sensitivity analysis in

the non-hierarchical Cox model, as described by Dohoo et al. (2009).

3.3.3.3. Software and global settings

The descriptive statistics, unconditional and final model analyses were performed in
Stata/MP 12.1. Due to the excessive computing time required for each analysis, all model
building analyses were submitted as jobs to the Atlantic Computational Excellence Network
(ACEnet), a cluster of computers in a Linux environment platform (http://www.ace-net.ca).
In the model building process, maximum likelihood estimation based on the Laplace
approximation implemented in the Ime4 library of R software (version 2.13.1) was applied. In
the final model analysis, adaptive Gaussian quadrature with 8 integration points was used for

more accurate likelihood approximation, and inference was based on a significance level of
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0.05. The computing time for the final model (dataset consisted of 1,947,560 rows after

expansion) exceeded 48 hours on a PC with a 2™ generation Intel® Core™ i3 processor.
3.4. Simulation study

A simulation study was conducted to evaluate the performance of the PML approach
discussed above for estimating log-normal nested frailty Cox models. The performance of the
PML approach with both adaptive Gaussian quadrature (PMLGQ) and Laplace
approximation (PMLAP) for likelihood estimation was compared with the performance of the
commonly used approach based on penalized partial likelihood (PPL) proposed by Ripatti
and Palmgren (2000). The PPL approach uses Laplace approximation for the marginal
likelihood, and is implemented in the coxme package in R (Therneau, 2013). The simulation

study was designed with settings resembling the settings of the CBMRN data.
3.4.1. Setup of the simulation study

The simulated datasets were generated from the nested random effects proportional hazards
model defined in (3.2). The model included herd and cow random effects and 3 explanatory
variables: a trichotomous lactation-level predictor and dichotomous predictors at both cow
and herd levels. The 3 predictors and their effects were assumed constant over time as the
implementation of PPL does not support the counting-process data setup that is required to

handle time varying predictors.

A total of 250 simulated datasets were generated in R software using the technique of Bender
et al. (2005). The hierarchical structure and the cluster and subcluster sizes in each simulated
dataset matched the hierarchical structure and the cluster and subcluster sizes of the CBMRN
dataset. Each simulated dataset was generated as follows: the herd and cow random effects

were generated independently from normal distributions with mean zero and variances o/
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and a2 for herd and cow random effects, respectively. The fixed-effects variables at cow and
herd levels were fixed across simulations and randomly generated from Bernoulli
distributions with probability of 0.5, while parity in the real data (1: 1% lactation, 2: 2"
lactation, 3: >3 lactation) was used as the lactation-level variable. The event time for each
lactation (T;;,) was randomly generated from the model defined in (3.2) based on a Weibull
baseline hazard with scale and shape parameters of 0.0035 and 0.62, respectively, as
preliminary analysis using a Weibull model showed a strongly significant shape parameter.
The censoring time for each lactation, C;;, was randomly generated from a mixture
distribution with proportions of 55% from a lognormal distribution with mean of 4.2 and
variance of 0.45, and 45% from a uniform distribution on [1, 220]. The censoring time was
truncated at 713 days to reflect the length of censored time intervals in the real data. A
lactation for which the event time T, was longer than the censored time C;;; was censored
with actual time equal to censoring time, so the actual time Y;; = min (T, C;j). The
event indicator &;;, was generated to be equal to 1 if the event time was shorter than the
censored time and was set to O otherwise. The censoring rate in this simulation setting

matched the censoring rate of the real data.

The summary statistics for each model parameter in the simulation were computed as
follows: the estimate was computed as the mean of the estimated values across the simulated
datasets; model standard errors were computed as the average of the standard errors of the
estimates across the simulated datasets; the empirical standard deviation was computed as the
standard deviation of the estimated values among the simulated datasets; the relative bias was
computed as the absolute value of the difference between the mean estimate and the true

value divided by the true value. Finally, the statistics computed across the simulated datasets
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were based only on the analyses when sensible results were produced and convergence was

achieved.

3.5. Results

3.5.1. Analysis of CBMRN data
3.5.1.1. Descriptive analysis

A total of 10,831 lactations of 8,035 cows from 69 herds were used in the analysis; 5,264
cows represented a single lactation, and 2,746 and 25 cows represented 2 and 3 lactations,
respectively. The herd size ranged from 33 to 345 cows, and median herd CM incidence rate
observed in the 69 herds was 21.3 per 100 cow-year (1 year = 305 days) days with 25" and
75™ percentiles of 12.3 and 27.9, respectively. The final model included 1,536 CM cases (i.e.
86% censored observations). The medians of event and censoring times were 75 and 245
days, respectively. Kaplan-Meier survival curves for CM events for cows of parity 1, 2 and
3+ are displayed in Figure 3.1. The distributions of each level of the categorical variables and
descriptive statistics of the continuous variables for lactation- and herd-level predictors are

shown in Tables 3.2 and 3.3, respectively.

3.5.1.2. Multivariable model analysis

The final model included parity (1, 2, and 3+), calving season (1, 2, 3 and 4), mean of herd
somatic cell score, fore-stripping (0, 1), pasture access (0, 1), proportion of CM cases treated
with an antimicrobial (< 50%, > 50%), and geographic region (1, 2, 3, and 4). The final
model also included interactions between parity and pasture access, and between parity and

proportion of CM cases treated.
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Preliminary analysis showed the highest hazard of CM early in lactation. This induced
strongly non-proportional hazards for many predictors. Because of this, and to ease the
interpretation, predictors were allowed to have different effects in two time periods within the
lactation: before and after 13 days in milk (DIM). The cut-point of 13 DIM was chosen
because it gave a better model fit compared with other cut-points in the range 10-50 DIM.
For those predictors that showed a changing hazard over time, an interaction term between
the predictor in question and time (modeled as a binary variable representing the two time
periods in the lactation) was added to the model. These interaction terms included a three-
way interaction as the interaction between parity and pasture access showed non-constant
hazards over time. Results of the final model are presented in Table 3.4. The effect of each

predictor is discussed below in turn.

Fore-stripping

The use of fore-stripping in herds was borderline significant (p = 0.059) as a predictor for
the hazard of CM. The hazard ratio (HR) for cows in herds that used fore-stripping, relative
to cows from herds that did not use it, was estimated at 1.41 [95% CI; 0.99; 1.98]. Therefore,
the hazard of CM at any given time during the lactation was 41% higher for cows in herds

that used fore-stripping.

Calving season

The effect of calving season on the hazard of CM was different early and later in the
lactation. In the first 13 DIM, at any given day the highest hazard of CM was for cows that
calved in spring and summer compared with both autumn and winter. For instance, the HRs
during the first 13 DIM for cows that calved in spring and summer relative to winter were
computed, respectively, to be exp(—.043 +.687) = 1.90 [p = 0.007;95% = 1.33 — 2.74]

and 2.48 [p < 0.001;95% = 1.74 — 3.53]. No significant difference between autumn and
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winter was observed during the early lactating period. On the other hand, after 13 DIM the
hazard was significantly lower in autumn than in winter (HR = exp(—0.327) = 0.72; p <
0.001; 95% = 0.60 —0.87) and also than in spring (HR =0.75; p = 0.035; 95% =
0.62 — 0.91), but there were no significant differences among spring, summer and winter

calving after 13 DIM.
Herd somatic cell score

There was no significant effect of herd SCS after 13 DIM. In the first 13 DIM, the hazard of
CM was negatively associated with the herd SCS (p = 0.017). For example, the HRs at 10%
(SCS of 2.1), 25% (2.4), and 75% (3.0) percentiles of the distribution of herd SCS relative to
the mean (2.7) were estimated, respectively, to be 1.26 (95% = 1.04 — 1.51), 1.13 (95% =
1.02 — 1.25), and 0.88 (95% = 0.79 — 0.98) indicating that the hazard of CM at any given

time in the first 13 DIM was greatest for herds that had a low mean of SCS.
Parity, pasture access, and cases of CM treated with antimicrobials

The estimated coefficients for all the combinations of cow parity, pasture access, and
proportion of cases of CM treated in the first and after 13 DIM are presented in Figure 3.2,
and corresponding HRs and their 95% confidence intervals are tabulated in Table 3.5. The
effect of pasture access on the hazard of CM was different in the two time intervals of the
lactation and depended on cow parity. Furthermore, the coefficients of the interaction

between pasture access and cow parity were also time-dependent.

In general, hazard of CM tended to increase with increasing parity. For all combinations of
pasture access, DIM, and proportion of CM treated, > 3" lactation cows always showed
higher hazard of CM than 2" Jactation cows. These differences, however, were not

significant during the > 13 DIM period for cows with no pasture access. Similarly, 15t
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lactation cows generally showed lower hazard of CM than 2™ or > 3 lactation cows. This
was not the case, however, during the first 13 DIM for 15 lactation cows that did not have
access to pasture. In this later situation, 15 parity cows showed significantly higher hazard of
CM than 2™ lactation cows. Furthermore, these cows showed hazard of CM fairly similar to

> 3" [actation cows (Figures 3.1 and 3.2).

In the first 13 DIM, pasture access reduced the hazard of CM in primiparous cows, but it was
statistically non-significant in 2" and > 3" lactation cows. The HR for primiparous cows
having access to pasture between 0-13 DIM was estimated at 0.36 [p = .002;95% = 0.19 —
0.68] when compared with primiparous cows with no pasture access during that period. In
contrast, the effect of pasture access on the hazard of CM was statistically non-significant

after 13 DIM irrespective of the cow’s parity.

The analysis showed that the proportion of cases of CM treated in the herd had different
effects on the hazard of CM early and later in the lactation. Such effects were relatively weak
and statistically non-significant early in the lactation. Although the effect of proportion of
cases treated appeared to be slightly higher after 13 DIM, this later effect was only close to
significant in biparous and multiparous cows. After 13 DIM, a high proportion of cases of
CM treated in a herd appeared to be associated with an elevated hazard of CM in biparous
and multiparous cows. For instance, after 13 DIM, the estimated HR for biparous cows from
herds with a high proportion of treated cases of CM was 1.44 [p =.093;95% = 0.94 —

2.20].
Non-significant associations

The variable region had no significant effect on the hazard of CM, but it was included in the

multivariable model because it showed a strong confounding effect for the association
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between mean herd SCS and CM hazard (based on relative difference between unconditional

and conditional parameter estimates; difference of 41%).

3.5.2. Simulation study

The simulation results along with the true values of the fixed effects and variance component
parameters are reported in Table 3.6. The PPL estimation procedure converged in all
simulation iterations, whereas the PMLGQ and PMLAP procedures failed to reach
convergence for 2% and 28% of the datasets, respectively. The convergence difficulties for
PMLGQ can be solved by adjusting the number of integration points of the adaptive Gaussian
quadrature method. There was a substantial difference in the computing time between PPL
and both PMLGQ and PMLAP. While PPL took a few minutes to run on a PC, PMLGQ and

PMLAP needed several hours to run for one dataset.

The lactation-level (8, and B, representing parity), cow-level (f3), and herd-level fixed
effects (B,) were estimated well by all the estimation procedures with relative biases not
more than 5.3%, 5%, and 2% for PPL, PMLAP, and PMLGQ, respectively. The confidence
interval (CI) coverage for the f,-B, estimates of PPL and PMLGQ, and the S; estimate of
PMLAP were close to nominal (> 94% coverage), whereas the Cl coverage for the S,
estimates of PPL and PMLGQ showed a slight CI under-coverage (92 and 93%,
respectively). Furthermore, PMLAP produced estimates for 5;, S,, and B, with important CI
under-coverage (ranging from 84 to 91%). The model-based standard error and the empirical
variability of fixed effects estimates agreed closely for PPL and PMLGQ estimates while

PMLAP underestimated the variability of fixed effects coefficients.

The PMLGQ procedure estimated the between-cow and between-herd variances with relative
biases of less than 4% and 2%, respectively, while PMLAP strongly overestimated the

between-cow and underestimated the between-herd variances. The PPL estimates for the
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between-cow variance were strongly downward biased (—32%); on the other hand, the
between-herd variance was estimated well, with relative bias less than 5%. The model-based
standard errors of variance components produced by PMLGQ and the empirical standard
deviations were fairly close, whereas PMLAP strongly underestimated these standard errors.
The PPL procedure produced variance component estimates with the smallest empirical
variability but its current implementation in R software does not provide standard errors for

these estimates.

3.6. Discussion

3.6.1. Analysis of CBMRN data

3.6.1.1. Incidence rates

At first sight the median first CM incidence rate observed in the current study (21.3 cases/100
cow-y) appeared to be fairly similar to what have been reported in a previous Canadian study
(23.0 cases/100 cow-y; Olde Riekerink et al., 2008). In that study, however, second and third
cases of clinical mastitis were also included. When considering the recurrent nature of the
disease, the current study’s first CM incidence rate is, therefore, probably substantially higher
than the unreported first CM case incidence rate of the Olde Riekerink et al. (2008) study.
One common problem with clinical mastitis research is the often important underreporting of
CM events by dairy producers. For instance, second or third CM events in a given lactation,
less severe cases, or CM events on quarters for which a persistent infection has already been
identified will often go unreported (Vaarst et al., 2002). Although these CM events are of
interest from the researcher’s perspective, most dairy producers will not see any practical
benefit in reporting these, often resulting in incomplete records. In the current study, the

selection of herds showing a certain level of compliance regarding CM reporting (based on
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reporting consistency) may have resulted in more complete recording and is probably

responsible for the relatively higher CM incidence rate.

The higher CM hazard observed during the early lactating period in the current study is very
similar to observations made in previous studies conducted in Canada (Olde Riekerink et al.,
2008), the USA (Pinedo et al, 2012), France (Gasqui et al., 2003), the Netherlands
(Steeneveld et al., 2008) and the UK (Green et al., 2002). In a study by Green et al. (2002),
> 50% of the infections resulting in CM cases occurring in the first 30 DIM were deemed to
have been acquired during the dry-off period. In comparison 80% of CM cases occurring
later during the lactation were the result of new infections acquired during the lactation
(Green et al., 2002). Given the drastically different management between dry-off and
lactating periods and the different etiology of infections acquired during these two periods,
different effects for a given risk factor on the risk of early vs. later lactation CM is to be
expected. This was the case in the current study, as the measure of effect of all predictors,
except fore-stripping cows as part of the milking routine, were significantly modified by
DIM. After investigating different thresholds including 10, 12, 13, 14, 15, 25, and 50 DIM,
the cut-point of 13 DIM was the best based on the model fit (the best model fit was defined as
the model with the greatest likelihood). This division of the lactation time acted as an
approximation for the effects of time on the original scale in order to reduce noises and

simplify model interpretation since the final model incorporated complex interaction effects.

3.6.1.2. Fore-stripping

The positive association between fore-stripping cows as part of the milking procedures and
hazard of CM has been reported in several studies (Elbers et al., 1998; O’Reilly et al., 2006;
Richert et al., 2013). This association is very likely a case of reverse causation. Fore-stripping

is essential to uncover mild cases of CM; these mild cases often go unnoticed in herds where

111



the milkers do not check the foremilk at milking time, hence the observed higher hazard of
CM in herds using fore-stripping. The hazard difference associated with this practice would
be more meaningfully interpreted as an increased risk of CM detection. In the current study,
for instance, it may be hypothesized that fore-stripping increased the risk of detecting CM by
40% (i.e. HR: 1.4; 95% CI: 0.99, 2.0). Furthermore, this association was only borderline

significant (P-value: 0.059).
3.6.1.3. Calving season

Calving season was significantly associated with CM hazard. Seasonality of CM hazard has
often been observed in countries having temperate climate. In most studies, higher CM
hazard has been observed in cows calving during warmer seasons. For instance, higher CM
incidence was observed for cows calving between June-September in Pennsylvania (Erskine
et al., 1988) and Wisconsin, USA (Pantoja et al., 2009). Similarly, a higher risk of CM during
the first month of lactation was observed for cows calving between June-November in the
Netherlands (Steeneveld et al., 2008). In Norway, higher incidence of CM was observed in
first parity cows calving between April-August (Waage et al., 1998). The same trend for
greater hazard of CM during the early lactating period for cows calving during warmer
months was observed in the current study. We can hypothesize that the combined effect of
the higher counts of environmental bacteria in the bedding or immediate environment of the
cow usually seen in warmer months and of the increased stress and immunosuppression
associated with hot weather during the peri-partum period, are probably important

determinants of the observed seasonality.

In the current study, hazards of CM occurrence after 13 DIM were fairly similar for cows
calving during the winter, spring, and summer seasons. Cows calving between September 21°

and December 20", however, showed lower hazard of CM occurrence after 13 DIM when
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compared to cows calving during winter time (HR: 0.72; 95% CI: 0.60, 0.87). This lower risk
of CM in the remaining lactation can potentially be explained by the same mechanisms
previously described, since autumn calving cows will spend an important part of their
remaining lactation beyond 13 DIM in cooler weather (i.e. winter) and will be in a relatively
more advanced state of their lactation when the warmer summer temperature begins. In
contrast, winter calving cows are assured to spend a substantial part of their first few months

in milk in warm and often humid weather.

3.6.1.4. Herd somatic cell score

In the current study, hazard of CM in the first 13 DIM increased with decreasing herd SCS.
At the quarter-level, evidence suggesting either a “protective” (Schukken et al., 1994,
Schukken et al., 1999; Suriyasathaporn et al., 2000) or “causal” (Green et al., 2007; Pantoja
et al., 2008; Steeneveld et al., 2008) effect of higher quarter SCC against IMI has been
reported. At herd-level, however, lower mean herd SCS and higher proportion of cows with
low SCC have both been associated with higher risk of CM (Erskine et al., 1988; Beaudeau et
al., 2002; de Haas et al., 2005). In the data presented here, the contextual effect (i.e. the effect
of the herd SCS on a specific cow) potentially operates through a different biological process
than the individual effect (i.e. the effect of the cow’s own previous SCS). Herds having lower
SCS have usually achieved a certain level of control of contagious pathogens such as
Staphylococcus aureus and Streptococcus agalactiae, and better control of these contagious
pathogens would be expected to reduce the absolute number and proportion of clinical cases
associated with these specific organisms. In low SCS herds, it has been shown that
environmental pathogens are more frequently cultured from CM cases (Erskine et al., 1988;
Barkema et al., 1998) and that CM cases are most often observed in these herds during the

first month of lactation (Erskine et al., 1988). This later finding could be indicative of
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infections acquired during the dry-period or early lactation infection, typical features of most
environmental pathogens. Since CM cases caused by contagious pathogens tend to be more
evenly spread over the lactation, a shift toward CM occurring mainly in the early lactating
period in herds that have efficiently controlled contagious pathogens is not surprising. The
increased hazard of CM during the early lactating period observed in the current and in
previous studies (Erskine et al., 1988; de Haas et al., 2005), however, remains to be
completely elucidated. It seems rather unlikely that a better control of contagious pathogens
at the herd level would actually result in a higher absolute number of CM cases. Shuster et al.
(1996) and Vandeputte-Van Messom et al. (1993), however, both demonstrated an increase in
mastitis severity in quarters with lower SCC. Mastitis severity, in turn, will directly influence
mastitis detection. Moreover, mastitis severity has been reported to strongly influence
treatment decisions (Vaarst et al., 2002; Dufour et al., 2010), and administration of an
antimicrobial treatment will certainly influence reporting of a CM case. There is, therefore, a
strong possibility that the observed association between herd SCS and CM hazard is the result
of an increased severity of CM cases due to a higher proportion of quarters with higher
susceptibility (i.e. with lower SCC), and that this shift toward more severe cases resulted in
increased detection and/or reporting of CM cases, rather than an absolute increase in the

number of cases.

3.6.1.5. Parity, pasture access, and cases of CM treated with antimicrobials

In the current study, we observed a higher CM incidence between 0-13 DIM in first parity
cows confined inside compared to second lactation cows housed similarly. In comparison, in
herds where cows had access to pasture, we observed a relatively straightforward relationship
between parity and CM incidence during the 0-13 DIM and >13 DIM periods, with lower
CM hazard in first parity cows and CM incidence increasing with every additional lactation.

This latter consistent relationship of increasing CM hazard with increasing parity has also
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been reported before in studies conducted on confined dairy cows, but for which the outcome
of interest was CM occurrence over the whole lactation (Grohn et al., 2004; Hertl et al., 2011)
or CM occurrence during the first 30 and 60 days of lactation (Green et al., 2007; Pinedo et
al., 2012). Conversely, studies conducted on confined dairy cows, but focusing precisely on
CM occurrence during the first 2 weeks in milk, reported higher CM incidence during this
period for first lactation cows compared to older cows (Barkema et al., 1998; Steeneveld et
al., 2008; Olde Riekerink et al., 2008). Observations from the current study (i.e. higher CM
hazard in confined heifers compared to older cows in the 0-13 DIM period followed by
increasing hazard by parity in the >13 DIM period) suggests a protective effect of pasture for
1% parity cows, and this is consistent with the literature. The same observation has been made
by Waage et al. (1998) who reported lower CM risk when heifers had access to pasture
around calving or during their post-partum period. In both the Waage et al. (1998) and the
current studies, only heifers that actually had access to pasture during the early lactating
period did benefit from this practice. As expected, first lactation cows calving during winter
(i.e. confined around calving time) in herds where cows are sent to pasture during summer

did not show lower 0-13 DIM CM hazard.

The generally increasing CM hazard with increasing parity is rather straightforward to
explain. Older cows have been exposed to multiple pathogens over a long time period which
could result in a higher proportion of subclinically infected quarters. Clinical flare-up of these
infections could then yield more CM and often recurrence of CM. Furthermore, because of
the long exposure to milking machines, older cows are more likely to have more callous and

rough teat ends which can also result in higher risk of CM (Neijenhuis et al., 2000 and 2001).

The 0-13 DIM CM hazard difference observed between housed and pastured heifers is
particularly interesting. The lower 0-13 DIM CM hazard in pastured heifers is likely to be the

result of the decreased pressure of infection from their environment compared to the
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environment of housed heifers. Moreover, in most Canadian dairies, heifers are usually
moved with a new group of cows around calving where they have to adapt to a new facility
and a new diet, compete with older and heavier cows for feed, water, and stalls, and establish
a new social network. The stress resulting from these different adaptations can pay its toll on
the first lactation cow’s immune system and make them more prone to infectious diseases
such as mastitis. Even when compared with cows housed in well-designed facilities, the
lower animal density and the environment found at pasture is more likely to reflect the

natural cow environment and to minimize the stress associated with the post-partum period.

Finally, in the current study, treating more than 50% of CM cases had very little effect on
CM occurrence in the first 13 DIM, but was associated with slightly increased CM hazard
after 13 DIM in older cows. This observation could actually result from an inappropriate
balance between treating and culling mastitic cows. In the current study, 71.0% of the
producers classified as treating > 50% of cases, actually reported treating almost all cases (i.e.
> 90%; see Dufour et al., 2010). We can hypothesize that culling rather than treating a certain
proportion of these cases would have reduced the risk of transmission of chronic and well
host-adapted pathogens to other herdmates; hence the higher CM hazard observed in herds
where a large proportion of the cases are treated. Furthermore, we cannot exclude a potential
association between proportions of CM cases treated and reported. Producers that are
convinced that all CM cases need treatment may be more aggressive in trying to detect and,

perhaps, report these cases.

3.6.1.6. Strengths and limitations of current study

Risk factors for clinical mastitis have been widely investigated in a number of locations and
under a variety of management systems. Overall, most of our results are broadly consistent

with previous results. However, this study had a number of features that make the results
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important in terms of our understanding of mastitis. First, the size of the data set (over 10,000
lactations from 69 herds) makes it one of the largest datasets assembled for mastitis research
which will have contributed to more precise estimates of effects. Second, the analytical
techniques used allowed us to clearly separate the nature of the effects in the early post-
partum period (0-13 days) and later, while still appropriately accounting for the clustered
nature of the data. A limitation of the study was that most of the factors examined were herd-
level factors and the study contained only 69 herds. These herds were chosen to be
representative of the Canadian dairy population (Reyher et al., 2011) but, given the intensive

nature of the data collection required, random sampling of the population was not possible.

3.6.2. Analysis of simulation study

The simulation study compared the performance of PML approach with either adaptive
Gaussian quadrature or Laplace approximation with the penalized partial likelihood approach
(PPL) in terms of the bias of the point estimates, their empirical variability, and the bias of
the estimation of such variability. The results showed that the Poisson likelihood approach
with adaptive Gaussian quadrature performed well in all regards and produced nearly
unbiased estimates for model parameters, including cluster variance estimates and their
standard errors. However, the Poisson approach with Laplace approximation tended to
strongly overestimate the between-cow variance and underestimate the between-herd
variance, as well as produced estimates with downward bias for the standard errors. This later
finding implies a higher than expected type | error rate when using Laplace approximation in
a similarly structured dataset. The overestimation of between-subcluster variance was also
reported in Feng et al. (2009). As Feng et al. (2009) used a subcluster size of 2 and in our
case it was even smaller (mean 1.348, range 1-3), such bias is probably attributable to the

small subcluster size and the asymptotic nature of the Laplace approximation that requires
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reasonably large cluster size (Joe, 2008). The performance of PPL was good and comparable
to the PMLGQ approach in estimating the fixed effect parameters and their standard errors,
but the approach tended to underestimate the between-cow variance, this is again probably
due to the use of Laplace approximation for a small subcluster size. This bias in variance

component estimates of PPL was also pointed out in Pankratz et al. (2005).

3.6.3. Choice of estimation approach

Estimation techniques for hierarchical Cox models are not straightforward. The current
implementation of nested frailty models, such as those implemented in coxme (Therneau,
2013), frailtyHL (Ha et al., 2012), and frailtypack (Rondeau et al., 2012) libraries of R
software, are still limited to models with few predictors and moderate size of datasets. Both
the coxme and the frailtyHL implementations of nested log-normal frailty models do not
support the counting process data format necessary for time-dependent predictors and effects.
These approaches are also based only on Laplace approximations which appear to perform
suboptimally in nested frailty models with small subcluster sizes. On the other hand, the
frailtyPenal function of the frailtypack package assumes a gamma distribution for nested
frailties and can deal with counting process formatted data, but it requires the number of
random effects to be at most moderate. This effectively precluded its use for our data with
8,035 cows from 69 herds. This study demonstrates that the above discussed limitations of
nested frailty model implementations can be overcome by reformulating the nested frailty
Cox model as a nested random-effects Poisson model and using standard GLMM software

for estimation.

3.7. Conclusions

In summary, analyzing large survival datasets with multiple levels of clustering requires

accounting for the correlation between event times within each of these levels, as well as
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handling the time-dependent variables and effects that often present in the data. A Poisson
modeling approach with adaptive Gaussian quadrature provided fairly robust estimation for
Cox models with nested log-normal frailty while the penalized partial likelihood and the
Poisson maximum likelihood with Laplacian approximation were found to have substantial
drawbacks. The research indicated that some of the herd managerial factors combined with
cow characteristics influence the hazard of CM during the lactation period; some of these

effects were different very early than later in the lactation.
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Table 3.1. Explanatory variables used in the analyses of the January 2007-December 2008 clinical mastitis data
from the Canadian Bovine Mastitis Research Network (CBMRN).

Variable Description

Geographic region With 4 categories: Alberta, Ontario, Quebec, Atlantic; herd level.

Calving season With 4 categories: winter (21 Dec.-20 Mar.), spring (21 Mar.-20 Jun.),
summer (21 Jun.-20 Sep.), autumn (21 Sep.-20 Dec.); lactation level.

Cow parity With 3 categories; 1% lactation, 2" lactation, and >3" lactation cows;
lactation level.

Mean herd somatic cell score Continuous: mean herd somatic cell score (SCS) during the previous
sampling period; herd level.

Number of milking cows in a herd” Continuous: mean of 6-month period prior the current period; herd level.

Housing type Trichotomous: tie stall, free stall and bedding pack, herd level.

Milking procedures

Wear gloves during milking” Dichotomous: yes/no; herd level.
Fore-stripping” Dichotomous: yes/no; herd level.
Pre-milking teat disinfection Dichotomous: yes/no; herd level.
Post milking teat disinfection Dichotomous: yes/no; herd level.

Environment

Material used for base of stalls or pens” Trichotomous: concrete, sand, and mattress or rubber mat; herd level.
Type of bedding used in stalls or pens Trichotomous: wood, sand, and straw; herd level.
Cows have access to pasture” Dichotomous: yes/no; herd level.

Dry-off period management

Use external teat sealant at dry-off (ETS) Dichotomous: yes/no; herd level.

Use internal teat sealant at dry-off (ITS) Dichotomous: yes/no; herd level.
Proportion of cows receiving antimicrobial Dichotomous: 100% vs. <100%; herd level.
treatment at drying off (DCT)

Vaccination against coliforms Dichotomous: yes/no; herd level.

Proportion of calving occurring in maternity Dichotomous: low (< 50%) vs. high (> 50%); herd level.
pen’

Others

Proportion of clinical mastitis (CM) cases Dichotomous: low (< 50%) vs. high (> 50%); herd level.
treated”

Udder hair management Dichotomous: yes (clipped or flamed)/no; herd level.

Tail management” Dichotomous: yes (clipped or tied)/no; herd level.

" Time-varying predictor.
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Table 3.2. Descriptive statistics for lactation-level predictors in the CBMRN data from 69
herds between January 2007 and December 2008.

Predictor Number of lactations Proportion of lactations with
a clinical mastitis event

Parity 1% lactation 3629 0.034
2" lactation 2970 0.041

>3" lactation 4232 0.067

Calving season winter 2706 0.042
spring 2521 0.038

summer 2831 0.039

autumn 2773 0.023
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Table 3.3. Descriptive statistics for herd-level predictors in the CBMRN data from 69 herds between
January 2007 and December 2008.

Number of herd  Proportion of lactations with

Predictor 6-month periods a clinical mastitis event
Region Alberta 37 0.019
Ontario 96 0.055
Quebec 78 0.033
Atlantic 54 0.035
Housing type Tie-stall 180 0.088
Free-stall 77 0.050
Bedding-pack 8 0.004
Milking procedures
Wear gloves during milking” No 111 0.057
Yes 150 0.085
Fore-stripping” No 109 0.055
Yes 156 0.086
Pre-milking teat disinfection No 84 0.037
Yes 176 0.104
Post milking teat disinfection No 4 0.003
Yes 256 0.139
Environment
Material used for base of stalls or pens” Concrete 31 0.010
Sand 25 0.016
Mattress or rubber mat 209 0.116
Type of bedding used in stalls or pens Wood 54 0.030
Sand 10 0.011
Straw 201 0.101
Pasture access” No 201 0.106
Yes 64 0.036
Dry-off period management
Use external teat sealant at dry-off (ETS) No 237 0.129
Yes 23 0.013
Use internal teat sealant at dry-off (ITS) No 157 0.129
Yes 106 0.013
Prop. of cows receiving antimicrob. treat. at dry-off < 100% 40 0.022
= 100% 220 0.120
Vaccination No 147 0.072
Yes 113 0.069
% of calving occurring in maternity pen” < 50% 115 0.061
> 50% 150 0.081
Other management
Proportion of clinical mastitis (CM) cases treated” < 50% 7 0.032
> 50% 188 0.110
Udder hair management No 49 0.024
Flamed or clipped 216 0.118
Tail management” No 55 0.030
Clipped or tied 210 0.112
Mean (sd) Mean (sd)
Predictor (cases) (non-cases)
Mean of herd somatic cell score (SCS) in previous period 2.66 (0.494) 2.61 (0.507)
Number of milking cows in a herd (mean of 6-month period)” 89.0 (44.8) 84.4 (45.7)

“Time-varying predictor.
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Table 3.4. Parameter estimates, standard errors and P-values in the final nested frailty Cox model of CBMRN

data between January 2007 and December 2008.

Overall Time* Overall
Predictor/Parameter? Estimate (SE) P-value  component (SE)  P-value
Fore-stripping Yesvs.no | 0.336(0.178) 0.059
Calving season Spring vs. Winter | -0.043 (0.081) 0.004 0.687 (0.198) 0.000
Summer vs. Winter | -0.123 (0.084) 1.030 (0.194)
Autumn vs. Winter | -0.327 (0.093) 0.434 (0.221)
Mean of herd SCS 0.058 (0.123) 0.638 -0.465 (0.152) 0.002
Pasture access Yesvs.no | -0.188 (0.170) 0.269 -0.828 (0.345) 0.017
% of cases of CM treated > 50% vs. < 50% | -0.008 (0.221) 0.969 -0.336 (0.150) 0.025
Parity 2" lactation vs. 1% lactation | 0.343 (0.167) 0.015 -1.167 (0.210) 0.000
>3 lactation vs. 1% lactation | 0.443 (0.156) -0.696 (0.172)
Interactions
2" lactation x pasture access (yes) | 0.043 (0.197) 0.044 1.078 (0.465) 0.032
>3" lactation x pasture access (yes) | 0.375 (0.182) 0.956 (0.394)
2" lactation x % of treated cases of CM (> 50%) | 0.373 (0.176) 0.052
>3 lactation x % of treated cases of CM (> 50%) | 0.350 (0.161)
Region Ontario vs. Western Canada | 0.358 (0.259) 0.277
Quebec vs. Western Canada | -0.018 (0.293)

Atlantics vs. Western Canada

Between-cow variance
Between-herd variance

0.199 (0.321)

0.498 (0.140)
0.394 (0.086)

2 Coefficients for the 4™ order polynomial function of time represents the baseline hazard not shown.

® Overall P-value for main effect or interaction with other predictor (after 13 DIM, if involved in time

component).

¢ Time modelled as two time periods within lactation (1: first 13 DIM vs. 0: after 13 DIM); estimates shown are

interaction terms between time component and effect.

4 Overall P-value for time components (i.e. interaction term).
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Table 3.5: Estimated hazard ratios, their standard errors and 95% confidence intervals for calving season and the
combinations of pasture access, proportion of cases of CM treated, and cow parity; in the first 13 DIM and after
13 DIM of CBMRN data between Jan. 2007 and Dec. 2008.

First 13 DIM After 13 DIM
Predictor Hazard ratio (SE) 95% CI Hazard ratio (SE) 95% CI
Calving season
Spring vs. winter 1.906 (0.353) (1.326, 2.740) 0.958 (0.077) (0.817, 1.122)
Summer vs. winter 2.477 (0.448) (1.738, 3.531) 0.884 (0.074) (0.751, 1.104)
Autumn vs. winter 1.113 (0.228) (0.744, 1.664) 0.721 (0.067) (0.600, 0.866)
Summer vs. spring 1.301 (0.193) (0.973, 1.739) 0.923 (0.079) (0.780, 1.092)
Autumn vs. spring 0.584 (0.104) (0.413, 0.828) 0.753 (0.073) (0.623, 0.910)
Autumn vs. summer 0.449 (0.073) (0.327, 0.618) 0.815 (0.080) (0.673, 0.988)
Pasture access
1% lactation 0.361 (0.117) (0.192, 0.683) 0.829 (0.141) (0.594, 1.156)
2" |actation 1.112 (0.339) (0.611, 2.022) 0.865 (0.131) (0.644, 1.165)
3" + |actation 1.371 (0.270) (0.933, 2.016) 1.206 (0.153) (0.940, 1.547)
Proportion of CM treated
1% lactation 0.708 (0.172) (0.441, 1.139) 1.009 (0.223) (0.643, 1.531)
2" |actation 1.029 (0.258) (0.630, 1.683) 1.440 (0.313) (0.941, 2.204)
3" + |actation 1.006 (0.233) (0.639, 1.584) 1.408 (0.288) (0.943, 2.102)
Cow parity
2" lactation vs. 1% lactation
< 50% treated CM & no past. acces. 0.439 (0.102) (0.261, 0.739) 1.409 (0.235) (1.016, 1.955)
< 50% treated CM & past. acces. 1.347 (0.536) (0.618, 2.938) 1.471 (0.318) (0.964, 2.246)
> 50% treated CM & no past. acces. 0.637 (0.124) (0.435, 0.934) 2.047 (0.207) (1.678, 2.495)
> 50% treated CM & past. acces. 1.957 (0.752) (0.921, 4.155) 2.138 (0.386) (1.500, 3.042)
3" + lactation vs. 1" lactation
< 50% treated CM & no past. acces. 0.777 (0.150) (0.532,1.133) 1.558 (0.243) (1.148, 2.113)
< 50% treated CM & past. acces. 2.941 (0.996) (1.515,5.713) 2.267 (0.441) (1.547, 3.319)
> 50% treated CM & no past. acces. 1.102 (0.171) (0.814, 1.494) 2.212 (0.214) (1.831, 2.673)
> 50% treated CM & past. acces. 4.175 (1.375) (2.189, 7.960) 3.218 (0.538) (2.319, 4.468)
3" + lactation vs. 2" lactation
< 50% treated CM & no past. acces. 1.770 (0.395) (1.142, 2.743) 1.106 (0.169) (0.982, 1.244)
< 50% treated CM & past. acces. 2.183 (0.662) (1.205, 3.956) 1.541 (0.281) (1.273, 1.863)
> 50% treated CM & no past. acces. 1.730 (0.326) (1.196, 2.502) 1.081 (0.093) (0.913,1.278)
> 50% treated CM & past. acces. 2.134 (0.613) (1.215, 3.748) 1.506 (0.223) (1.126, 2.013)

129



Table 3.6. Results of simulation study based on a log-normal nested frailty Cox model of CBMRN data between
January 2007 and December 2008. Mean of the estimate, empirical standard deviation, mean of the model-based

standard error, bias and probability coverage over 250 simulated datasets.

Lactation-level Cow-level  Herd-level Convergence
Method By B B3 Ba of oy rate
True value 0.4 0.6 0.5 -0.8 0.5 0.3
PPL Estimate 0.386 0.578 0.477 -0.758 0.342  0.287 100%
Emp. Std 0.078 0.071 0.053 0.138 0.085  0.065
Model Se 0.074 0.068 0.057 0.146 -2 -2
Relative bias -0.035 -0.037 -0.046 0.053 -0.316  -0.043
95% CI cover. 92% 94% 94% 96% -2 -2
PMLAP  Estimate 0.418 0.630 0.517 -0.835 1492  0.199 2%
Emp. Std 0.094 0.090 0.070 0.173 1.699 0.126
Model Se 0.079 0.075 0.064 0.128 0.214  0.047
Relative bias 0.045 0.050 0.034 0.044 1.984 -0.367
95% CI cover. 91% 90% 94% 84% 75% 100%
PMLGQ  Estimate 0.399 0.598 0.491 -0.791 0.482  0.305 98%
Emp. Std 0.080 0.074 0.056 0.144 0.155  0.089
Model Se 0.076 0.071 0.059 0.148 0.134  0.065
Relative bias -0.003 -0.003 -0.018 0.011 -0.036  0.017
95% CI cover. 93% 95% 95% 96% 96% 96%

PPL: Penalized partial likelihood; PMLAP: Poisson maximum likelihood with Laplace approximation; PMAGQ: Poisson
maximum likelihood with adaptive Gaussian quadrature.
®No available estimate (current implementation of PPL procedure in R software does not provide standard errors for

variance estimates).
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Figure 3.1: Kaplan-Meier survivor curves for clinical mastitis events up till 305 DIM for 1%, 2" and >3"
lactation cows of CBMRN data between January 2007 and December 2008. The short-dashed, long-dashed, and

solid patterns are 1%, 2" >3 |actation cows, respectively.
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Figure 3.2: The log of hazard ratios of clinical mastitis and their confidence intervals for the combinations of
cow parity, pasture access (pst), and proportion of cases of CM treated (prtx), in the first and after 13 DIM of
CBMRN data between January 2007 and December 2008. The first four triples are for effects within the first 13
DIM and the second four triples are for effects after 13 DIM. Within a group of four triples, the first two triples
represent proportion of cases of CM treated < 50% and next two triples represent proportion of cases of CM
treated > 50%. Within a group of two triples, the first triple is for no pasture access and the second triple is for

pasture access. Solid lines are for 1% lactation cows, dashed lines are for 2" |actation cows, and long-dashed
lines are for >3" lactation cows.
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Chapter 4

A cross-classified and multiple membership

Cox model applied to calf mortality data

The work of this chapter is published as: Elghafghuf A, Stryhn H, Waldner C. (2014). A
cross-classified and multiple membership Cox model applied to calf mortality data.

Preventive Veterinary Medicine, 115: 29-38.
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4.1. Abstract

A cross-classified and multiple membership Cox model was applied to calf mortality data
from Western Canada, where 23,409 calves from 174 herds were followed for up to 180 days
after calving. The herds were cross-classified by 49 veterinary clinics and 9 ecological
regions and in a multiple membership relation to the veterinary clinics, resulting in a 3-level
cross-classified and multiple membership data structure. The model was formulated in a
mixed-effects Poisson model framework with normally distributed random effects, and was
fitted to the data by Bayesian Markov Chain Monte Carlo (MCMC) estimation. Important
fixed effects included whether the calf was a twin, calf gender, assistance at calving, cow age,
average temperature the first week after calving, the percentage of the herd that had already
calved, whether calf shelters were provided, whether cow-calf pairs were moved to a nursery
area, and whether any animals were purchased into the herd at or near the time of calving.
The analysis demonstrated a greater variation among herds than among both ecological
regions and veterinary clinics. Further, a simulation study for a setting similar to the real data

gave evidence that the used approach provides valid estimates.

4.2. Introduction

Researchers in veterinary epidemiology are often interested in modeling hierarchical data
with a time-to-event response variable. Hierarchical time-to-event models, also referred to as
hierarchical survival or frailty models, can be used with the nested data structures (e.g.
animals nested within herds and herds located in different ecological regions) commonly
found in veterinary science. One potential limitation of nested frailty models typically used
for hierarchical survival data, however, is that they are designed to be used with perfectly
hierarchical survival data, but in reality not all data structures found in the veterinary sciences

are perfectly hierarchical. If in the previous example (some) herds are serviced by multiple
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veterinary clinics, an imperfect hierarchical data structure is present where the lower level
units (herds) are members of multiple higher level units (clinics) simultaneously. This
structure is called a multiple membership data structure (Browne et al., 2001). In addition,
different classifications may not be hierarchically nested in each other; in our example, herds
serviced by a given clinic could be located in different ecological regions. This would mean
that clinics are not hierarchically nested within regions, and the two factors should instead be
viewed as (partially) cross-classified. In summary, the structure described corresponds to a 3-

level cross-classified and multiple membership data structure (Browne et al., 2001).

Cross-classified and multiple membership (CMM) models have been proposed to account for
such data structures (Browne et al., 2001; Fielding and Goldstein, 2006). The CMM model
uses weights for multiple membership and takes into account cross-classified factors that
might arise in the data. A few studies in veterinary epidemiology have used the CMM model
with different response variables. Browne et al. (2001) applied a CMM model with a binary
response to Danish poultry Salmonella outbreak data. Masaoud et al. (2010) fit a CMM
logistic regression model to a dataset from aquaculture. Goldstein et al. (2002) introduced a

linear response example of a multiple membership model for the milk yield of cows.

Many studies have shown that ignoring multiple membership or cross-classified data
structure in the analysis can lead to invalid inference about the importance of the relevant
data structure on the outcome of interest. For instance, Meyers and Beretvas (2006) and Luo
and Kwok (2009) showed that ignoring one of the cross-classified factors in linear models
results in biased estimation in the variance components and in the standard error of the
regression coefficients. Results from Goldstein et al. (2007) demonstrated that using
traditional models that ignore the multiple membership in the analysis when it is present

underestimates the variance at the multiple membership level. In addition, models that take

135



into account the multiple membership structure give a better fit than models that ignore such
structures. Recently, a simulation study conducted by Chung and Beretvas (2012) showed
that ignoring multiple membership structure causes bias in the estimates of the regression

coefficients and the variance component at the multiple membership level.

Despite the availability of veterinary data with CMM structure, few researchers have applied
CMM models in veterinary medicine, and to our knowledge no studies have used a CMM
model when the response variable is time-to-event. This could be due to complex estimation

techniques for survival models with random effects (frailty models).

A review of the literature also suggested the need to re-examine the individual cow, herd
management, and environmental factors associated with mortality in beef calves using a
dataset with both detailed individual animal data and a relatively large number of herds.
Many of the existing reports focus on calf loss at birth or in the perinatal period. While there
are a number of observational studies published documenting calf loss after the perinatal
period, most studies are either longitudinal studies from single research facilities focusing on
individual animal attributes (Azzam et al., 1993; Patterson et al., 1987; Wittum et al., 1993),
surveys with some data on individual animal attributes but a relatively small number of
privately owned herds (Wittum et al., 1994; Ganaba et al., 1995), or herd level surveys with
limited or no individual animal data (Schumann et al., 1990; Mathison, 1993; Dutil et al.,
1999). Because previous studies have not taken the time to calf loss into account in the
analysis, we found no reports to date that look objectively at when individual risk factors are

of greatest risk to calf survival.

The first objective of the study is to explore and demonstrate the use of Poisson generalized
linear mixed models (GLMMSs) in Bayesian framework for estimating a Cox model with

cross-classified and multiple membership frailties, and apply the approach to a large
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observational dataset on calf mortality from veterinary medicine science. The second
objective is to simultaneously examine the individual, herd management, and environmental
factors associated with beef calf mortality in Western Canada and, where appropriate, to

estimate the age period where calves are most at risk.
4.3. Materials and methods
4.3.1. Data

The data originated from the Western Canada beef productivity study (Waldner, 2008) which
collected information on calf loss and mortality in beef cattle in Western Canada. We studied
mortality in beef calves from January to June 2002 (180 days) which included a total of
24,647 calves and 971 cases of calf mortality from herds with complete local meteorological
data. Calves with invalid values or missing information were excluded from the analysis.
This eliminated less than 5% of observations including 74 cases of mortality. This strategy
resulted in 23,409 calves, with 897 of these calves experiencing the event of interest. The
event was defined as a case of calf mortality that happened at least one hour after birth; the
event time was defined as the time from calving to death (recorded in days), and for those
calves that died in the same day of birth the event time was set at 0.5. Calves that were sold
during the follow-up period or survived until the end of the follow-up period were considered
right censored observations. Because the observation period ended at the same time for all
calves (June 30"™), but all calves were born at different times during the calving season, we
recognized the need for an analysis technique that accounted for different follow up times

across the study population.

The dataset had a special hierarchical structure. In addition to calves being hierarchically

nested within 174 herds, herds were cross-classified by 49 veterinary clinics and 9 ecological
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regions (Waldner, 2008), and about 8% of the herds were registered in two veterinary clinics,

resulting in a 3-level cross-classified and multiple membership data structure (Figure 4.1).

4.3.2. Statistical modeling

4.3.2.1. Frailty models for hierarchical survival data

Consider the example of 3-level hierarchical survival data with N animals from multiple
herds and these herds located in different ecological regions. Let T; and C; denote the survival
and censoring times, respectively, for animal i. The response time for animal i is Y; =
min (T;, C;) and the event indicator §; takes the value 1 if the event of interest occurs and 0

otherwise. A commonly used model for such data is a Cox proportional hazards model with

(3) and u®

two nested frailties Uy egion(i) herd(i)

acting multiplicatively on the baseline hazard

(Rondeau et al., 2006) to take into account unmeasured herd and ecological region factors
(the numbers in superscript parentheses represent the hierarchical levels). The conditional

hazard function of the nested frailty model can be written as,

3) (2) — 3) (2 /
Al’ (t uregion(i)’ uherd(i)) - AO (t)uregion(i)uherd(i) exp(ﬁ Xi) (41)
where 4,(.) is the baseline hazard, uiz?gion(i) and u,(i)rd(i) are two nested frailties following a

particular probability distribution, X; is the covariate vector for the it"* animal, and g is the
corresponding vector of regression parameters. Model (4.1) can be rewritten in random

effects context as,

3) (2) — 3) () ,
A (t bregion(iy bherd(i)) = A(t) exp (bregion(i)+bherd(i) +B Xi) (4.2)

where the frailty and random effect terms are linked by: u = exp (b).
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One approach to fit model (4.2) is to utilize the relationship between the Cox model and a
suitable Poisson model to translate the nested random effects Cox model into a nested
random effects Poisson model (Rabe-Hesketh and Skrondal, 2012, chapter 15). As shown by
Ma et al. (2003) and Feng et al. (2005), the likelihood function of Cox models with normal
random effects (i.e., lognormal frailties) is proportional to the likelihood function of such
random effects Poisson models. In detail, Cox models with normal random effects can be
estimated as generalized linear mixed models (GLMMs) with a binary Poisson count
response and a specific offset. The approach requires each observation in the data to be split
into a multiple records based on the complete set of failure times in the dataset, and the offset
equals the logarithm of the length of each time interval. The baseline hazard is modeled as a
smooth function of time, in our case a 4" order polynomial as suggested by Rabe-Hesketh

and Skrondal (2012).

Using available software for GLMMs, random effects Cox models can be fitted to survival

data with several hierarchical levels and more complex data structures.
4.3.2.2. Cross-classified and multiple membership frailty models

The full structure of the calf mortality data described in Section 4.2 can be taken into account
through a CMM random effects Cox modeling approach. The model accounts for the cross-
classified factors of veterinary clinics and ecological regions, and uses weights for the
multiple membership relation of herds to the veterinary clinics so that each herd will have
weights for all the veterinary clinics that the herd is serviced by. The CMM Cox model can

be written as,
(3) 3) (2)
Ai (tlbregion(i)’ (b] )jeclinic(i)’ bherd(i))

3 3), (3 2 ,
= 20(8) XD (b 1oty + iectinicy Wy b + biovaqey + B'X1) (4.3)
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(3)

region(i)

where b,(l?rd(i) is the herd random effect, b is the ecological region random effect,

and the term ¥ ;cciinic(i) wl.(].3)b].(3) involves a set of veterinary clinic random effects b].(3) and

(3)

weights w;;” assigned to each herd for their veterinary clinic group membership with

Yjectinic) Wij = 1.

Assuming normal random effects, the CMM Cox model can be estimated in a Poisson
modeling framework for a survival time response as described in Section 4.2.2.1 using

Markov Chain Monte Carlo (MCMC) techniques and Bayesian inference.
4.3.2.3. MCMC estimation and Bayesian inference

MCMC estimation employed three chains for diagnostic purposes, 100,000 estimation
samples, and a burn-in of 5,000 samples. The three chains used different initial values, were
specified in Stata/MP 12.1 and run one at a time in MLwiN software version 2.25 called from
within Stata using the runmlwin utility (Leckie and Charlton, 2013). The vague priors were: a
uniform prior p(B) o 1 (flat prior) for the fixed effect parameters and a gamma (1073,1073)
for the inverse variances of the normal random effects. The Raftery-Lewis diagnostic
(Raftery and Lewis, 1992) provided in MLwiN and the ratio rule of Monte Carlo (MC) error
to the standard deviation (Lunn et al., 2013, p. 78) were used to determine the needed number
of MCMC samples. The ratios of the MC error to the standard deviations for all model
parameters were all less than 5%. Also the Raftery-Lewis diagnostic indicated that 100,000
samples were sufficient for estimation. Other Markov chain diagnostics, including all those
given by Gelman and Rubin (1992) and implemented in R software version 2.15.3 (coda

package), were carried out and found to be satisfactory.

Significance for single parameter effects in Bayesian inference was assessed using 95%

credible intervals (whether or not zero lies in such intervals) or by computing a tail
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probability of the posterior distribution; such probability is analogous to P-value in

frequentist statistics.

4.3.3. Data analysis

4.3.3.1. Model building

Descriptive analyses were carried out for explanatory variables listed in the dataset to check
distributions and invalid values, as well as to identify collinearity among variables. To
facilitate the first stages of the analyses, unconditional (simple) associations between each
explanatory variable and the outcome were obtained from a standard Cox regression model
with the Breslow method for ties. A liberal p-value of 0.20 was chosen to determine potential
important explanatory variables. Using lowess smoothing graphs, functional forms of
continuous variables were evaluated by plotting the variable in question against martingale
residuals, and if necessary appropriate transformation was performed or a quadratic term was

added to the model.

The second step of the model building consisted in a stepwise backward selection for the
standard Cox model with P < 0.10 as inclusion criterion since a hierarchical Cox model was
impractical and very time consuming. All two-way interactions between predictors retained
in the model were evaluated and tested for statistical significance; interactions that turned out
significant and biologically meaningful were kept in the model. During the selection process,
the non-significant predictors were rechecked for confounding and a change of 20% or more
in the parameter estimate was used as a criterion for identifying confounders. The
proportional hazards assumption was evaluated for model predictors individually and
globally by a statistical test based on the scaled Schoenfeld residuals (Dohoo et al., 2009). To
account for non-proportional hazards for some predictors, the dataset was split at events, and

an interaction term between the predictor in question and the logarithm of time was added to
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the model. The assumption of independent censoring was checked by sensitivity analysis
comparing the change of positive and negative correlation scenarios between censoring and
new mortality events. All descriptive statistics and model building were performed in

Stata/MP 12.1.

4.3.3.2. Accounting for data structure

The CMM structure of the data was accounted for by including random effects for herds,
veterinary clinics and ecological regions, as described in Section 4.2.2.2. The multiple
membership weights of veterinary clinics servicing a given herd were computed as

proportions of visits of that herd by each clinic, out of the total number of visits to the herd.

4.4. Results of calf mortality data analysis

4.4.1. Descriptive statistics

The overall mortality observed in the 174 herds was 3.8% (897/23409) with a 90% range
across herds of (0.5%, 7.5%), and the percentages of calf loss occurred within the first 1 day,
3 days, 7 days, 14 days and 30 days at risk were, respectively, 19% (171/897), 29%
(258/897), 40% (362/897), 55% (496/897) and 68% (614/897). The medians of event
time (calf death) and censoring time were 12 and 104 days, respectively. The full list of
predictor variables included in the analysis is shown in Table 1 (animal-level predictors) and

Table 2 (herd-level predictors) with descriptive statistics.

Predictors selected for further consideration during the model building process (P < 0.20)
were: whether the calf was a twin, calf gender, calving assistance, cow age, cow breed type,
cow body condition at pregnancy test, within-herd calving proportion, mean 7-day
temperature, shelters provided for calves separate from cows and heifers, cow-calf pairs

moved to a nursery pasture within 48 hrs of birth, and whether any animals were purchased in
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the month prior to or during calving. The variables of twin, surgical assistance at calving, and

the mean 7-day temperature after calving were identified as time-varying effects.

4.4.2. Multivariable analysis

4.4.2.1. Model comparisons

In the Poisson modeling approach, the best model fit (i.e. the model with the smallest
deviance information criteria (DIC); Spiegelhalter et al., 2002) was obtained using the

logarithm of time to model both time-varying predictor effects and the baseline hazard.

To demonstrate the utility of CMM modeling for the calf mortality data, results are shown for
three survival models including a standard Cox model neglecting the hierarchical structure
present in the data (model 1), a Cox model with random herd effects ignoring the top
hierarchical level in the data (model 2), a CMM Cox model taking into account the full
hierarchical data structure (model 3). The three models were fitted to the dataset where
continuous predictors were centered at the mean and the predictors twin, calving assistance
and average of 7-day temperature were modeled with time-varying effects (by adding

interactions with log of time). Results from the final models are tabulated in Table 4.3.

In model 2, the random herd variance parameter was estimated at 0.334 (posterior mean),
with 95% credible interval (95% CI) of [0.215, 0.484]. When accounting for the full
hierarchical data structure (model 3), the random herd variance estimate decreased by 19% to
0.272 [95% CI; 0.168, 0.409]. The variance for ecological regions was estimated to be about
four times greater than the variance for veterinary clinics with corresponding posterior

standard deviations as large as the point estimates.

Model 3 explained a greater portion of the survival outcome variation than model 2 due to
handling the third hierarchical level in the dataset (the veterinary clinics and the ecological
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regions). The DIC was the smallest for model 3 among the three models indicating a better

model fit.

The standard Cox model (model 1) estimated with a Bayesian approach as a Poisson model
gave similar estimates to those from a Cox model using a frequentist (classical) approach
(results not shown). Some differences in estimates were seen compared with the random
effects models (models 2 and 3). Further, the standard errors of regression coefficients from
the simple Cox model ignoring the data structure were smaller than those from the CMM Cox

model, especially (and as expected) for the herd-level predictors.

4.4.2.2. Interpretations of effects from model 3

In model 3, the effect of twin birth on the hazard of calf mortality depended on time and
remained statistically significant until day 22 from calving. The hazard ratio (HR) for twin-
birth calves relative to single-birth calves of age 1 day was estimated to be 3.80 with 95%
credible interval (95% CI) of [2.70, 5.25]. Similarly, the HRs of twin-birth calves compared
with single-birth calves of age 7, 22 and 60 days were estimated at 2.07 [95% ClI; 1.58, 2.68],
1.45 [95% CI; 1.02, 2.01] and 1.06 [95% CI; 0.66, 1.63], respectively, suggesting that the
hazard of mortality at any given time before 60 days of age was highest for twin-birth calves,
and such that hazard ratios declined over time until vanishing after about two months of age.
The HR for male (versus female) calves was 1.16, 16% higher hazard in males than in

females at any point in time.

For calving assistance, the HR of calves that were born with a hard pull or malpresentation
relative to calves born without calving assistance were 2.50 and 1.71, respectively, and thus
associated with substantially higher hazard of mortality. The effect of caesarean section
surgery versus unassisted varied with time: days 1, 2, 3 and day 7 had estimated HRs of 3.70

[95% CI; 1.4, 7.98], 2.29 [95% CI; 0.93, 4.82], 1.72 [95% CI; 0.65, 3.78], and 0.96 [95%
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Cl; 0.26, 2.52], respectively, indicating that the hazard of mortality for calves with surgical
assistance at calving was higher immediately after calving and statistically significant on day

1 and then dropped down quickly.

After accounting for the other risk factors in the final model, the HRs for calves from cows
aged 2, 3, 4 and greater than 10 years at calving relative to those from mature cows (5-10
years old) were estimated, respectively, to be 1.47, 1.42, 1.13 and 1.36. These results suggest
that the hazard of death at any given time was greatest for calves from young (2-3 years old)
and old (> 10 years old) cows, but that there was little difference in the hazard for calves of

cows aged 4 years compared with calves from mature cows.

In addition, the hazard of calf mortality increased as the calving season progressed with an
increasing number of calves in the herd. For instance, when the proportion of cows calving in
a herd reached 0.11 and 0.91 (10% and 90% percentiles, respectively), the HRs for mortality
were estimated, respectively, to be 0.90 and 1.64 compared with a proportion of 0.51 (50%
percentile) indicating that the hazard of mortality increased with increasing number of births

in the herd.

Modeling temperature as the mean of first 7 days post calving gave a better DIC than the
temperature on day of calving. Very cold weather was associated with a high hazard of calf
mortality and such hazard decreased over time. For example, when the averages of 7-day
temperature post calving was 20, 10 and 5 °C below the mean (-6.42 °C), the HR of mortality
relative to the mean would be, respectively, 2.53 [95% CI; 1.86, 3.36], 1.57 [95% CI; 1.36,
1.83] and 1.24 [95% CI; 1.17, 1.35] for calves of age 24 hrs; and 1.70 [95% CI; 1.39, 2.08],
1.30 [95% CI; 1.18, 1.44] and 1.13 [95% ClI; 1.08, 1.20] for calves of 7 days of age; and 1.27
[95% CI; 1.01, 1.61], 1.12 [95% CI; 1.00, 1.27] and 1.06 [95% CI; 1.00, 1.13] for calves of

30 days of age, suggesting that the hazard of calf mortality was greatest if calving took place
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in very cold weather. After about month of age, the time varying effect of temperature was

statistically non-significant.

Three herd-level predictors related to biosecurity practices were also important predictors of
calf mortality. The estimated HR was lower (HR = 0.79 with a probability analogous to P-
value of 0.048) for calves from herds where the owner provided shelters for calves separate
from cows and heifers as well as for calves from herds where cow-calf pairs were moved to a
nursery pasture within 48 hrs of birth (HR = 0.79 with probability of 0.031). Calves from
herds where any animals were purchased in the month prior to or during calving were at

higher risk of death (HR = 1.33 with probability parallel to P-value of 0.020).

4.3.2.3. Non-significant effects

The variables cow breed type and cow body condition at pregnancy test had no effect on the
hazard of calf mortality (i.e., these predictors did not contribute substantially to the model
DIC) and were not included in the multivariable model. The HRs for continental and cross
breeds relative to British types of breed after accounting for other risk factors were estimated,
respectively, to be 1.03 [95% CI; 0.85, 1.25] and 1.13 [95% CI; 0.81, 1.58], whereas the HRs
for cow body condition score at pregnancy test and pre-calving (< 5 vs. > 5) were 1.05 [95%

Cl; 0.82, 1.33] and 0.99 [95% ClI; 0.72, 1.36], respectively.

4.5. Simulation studies

Two simulation studies were conducted to evaluate the performance of the cross-classified
and multiple membership Cox modeling approach discussed above. In simulation study I, the
data structure and the magnitudes of variation at different levels were similar to the calf

mortality dataset. In simulation study Il, a more pronounced multiple membership data
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structure and larger variations at different levels were considered. Both simulation studies

used 200 simulated datasets.

In order to reduce the computing time of the simulations, the simulation structures were
based on a subset of the real data after eliminating randomly 75% of non-cases. This
reduction increased the prevalence of calf mortality to 14%. The reduced dataset had 6519
observations and the same hierarchical structure as the full data. Analysis of the reduced data
showed only minor changes in model estimates compared with the results of the full data

(results not shown).
4.5.1. Data structure and model parameters

Similar to the reduced real dataset, a total of 6519 animals from 174 different herds (from 3
to 111 animals per herd) were considered. In simulation study I, the data structure and
multiple membership weights were the same as in the real data. In simulation study I, herds
were considered to be registered in 1, 2 and 3 veterinary clinics with proportions of 52%,
25% and 23%, respectively. One dichotomous animal-level predictor was used in the two
simulation models. The true values of model parameters and other features for each

simulation study are presented in Table 4.4.

4.5.2. Simulating data

Using the technique of Bender et al. (2005), 200 simulated datasets for each simulation study
were generated from model (4.3) using R software version 2.15.3. In each dataset, the
random herds, random veterinary clinics, and random ecological regions were generated
independently from a normal distribution with mean of zero and variances o¢, o, and o2,
respectively. The weights in simulation study Il were assigned as follows: if a herd was

serviced by 3 veterinary clinics, weights for the first two clinics were randomly generated
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from a uniform distribution U(0,1)/2 and the complement of the sum of these weights was
assigned as weight for the third clinic; if a herd was serviced by 2 clinics the weight of the
first clinic was randomly generated from U(0,1) and the complement of that weight was the
weight for the second clinic and 0 otherwise; and for herds that visited by one clinic a weight
of 1 was assigned to that clinic and 0 otherwise. The fixed effect predictor was generated in

each simulation from a Bernoulli distribution with a probability of 0.5.

The mortality time T; for animal i was randomly generated from a Weibull distribution with
shape parameter P = 0.4 and scale parameter equal to the intensity A;(t|.) defined in (4.3).
The time at risk C; was randomly generated from a normal distribution with mean p = 105
and standard deviation ¢ = 32, censored to the interval (0.5, 180). Censoring occurred when
the mortality time T; was longer than the time at risk C;, i.e. Y; = min (T;,C;) and 6; =
I(T;, C;). These simulation settings led to approximately 86% censoring animals which was

equivalent to the censoring rate in the reduced version of the calf mortality data.

Finally, to reduce the computing time in the simulations, the MCMC sampler was run for
55,000 iterations in each simulated model of which the initial 5,000 iterations were discarded
as burn-in. The same MCMC diagnostics as described in Section 2.2.3 were carried out for

selected simulated datasets and all were satisfactory.

4.5.3. Calculating summary statistics

The posterior mean, median, standard deviation, and 95% CI end points for each simulated
dataset were extracted, and averages and empirical standard deviations were computed across
the simulated datasets. Absolute relative bias was computed as the absolute value of the
difference between the averaged estimate and the true value divided by the true value, and the
mean squared error (MSE) was computed as the average of the squared differences between
the estimated values and the true value over the simulated datasets.
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4.5.4. Simulation results

The results of the two simulation studies are presented in Table 4.5. In simulation study I, the
fixed effect § and the variance of random herd effect o were estimated well with relative
biases not exceeding 2%. Further, the “model-based standard errors” (posterior sd) of f was
on average very close to its empirical standard deviation, and the probability converges of g
and oZ were somewhat over the nominal. For 2, and 62, the average posterior medians were
very close to the true values, but the average posterior means were larger than the true values,
with substantial relative biases of 48% and 35%, respectively. The of estimate showed
strongly CI over-coverage, whereas the estimate of o2 had ClI under-coverage. The mean
squared errors were similar to the posterior-mean and posterior-median estimates of the g and
o¢, and smaller mean squared error for the posterior-median estimates of the a2 and o7 than

for the posterior-mean estimates.

In simulation study I1, the B, ¢ and o were estimated very well based on both the posterior
means and posterior medians with relative biases of at most 1.1%, 3.4% and 4%. For oz,
estimation based on the posterior medians performed better than for posterior means. The CI
converges of all model estimates were good except for o7 where Cl under-coverage was

observed.

4.6. Discussion

4.6.1. Calf mortality data

The calf mortality rate reported for these herds is slightly higher than in most previous
Canadian studies with exception of one from Quebec (McDermott et al., 1991; Dutil et al.,
1999; Waldner, 2001). However, our analysis included all losses from 1 hour after birth,

rather than from 24 hours of age. When the calf losses after 24 hours were summarized for
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the present study, the average risk of mortality was 3.1%. In an on-farm study of 7 Alberta
herds over a 12-year period, Waldner (2001) and Waldner et al. (2001) reported median risks
of calf mortality between 24 hours of age and weaning of 3.3% and 3.5%, similar to earlier
reports from Ontario of 3.3% for first-calf heifers and 2.6% for mature cows (McDermott et
al., 1991). The age distribution of calf deaths was also similar to what was expected based on
other reports. The 1986 to 1987 survey by Alberta Agriculture found that 52% of deaths of
calves occurred in the first 14 days compared to 55% in the current study (Mathison, 1993).
The mortality rates for calves that died between one hour and 3 days of age (1.1%) and in the
first 30 days (2.6%) were slightly higher than the 0.7% and 1.6% reported from a 2010 mail

survey of 303 herds from western Canada (Waldner et al., 2013).

The large observational data set and time-to-event analyses provided us with a unique
opportunity for an intensive assessment of risk factors for calf mortality reported in previous
papers, as well as an opportunity to explore new environmental and herd management
variables. For example, an association between twin birth and average calf mortality from
12hr to 45 days was reported in a previous study of 10 herds in Colorado (Wittum et al.,
1994). Gregory et al. (1996) also reported higher survival rates for singles as compared to
twins from one research herd at 72 hours and 150 days when there was no requirement for
assistance. Our study found that while the death rate is highest for twins in the perinatal
period, there is a significant increased risk of loss in privately owned commercial calves up to

22 days of age after accounting for other risk factors.

The increased risk of mortality for male calves remained constant throughout the observation
period similar to what was observed using unconditional analysis by Patterson et al. (1987).
Azzam et al. (1993) also reported an increase in mortality for bull calves after accounting for
dystocia and the relative calf size. The paper is different in that the authors used data from a

research centre and included all calves that were alive at the start of calving.
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The higher mortality rate for calves classified as having a hard pull or malpresentation at
birth did not decrease during the study period. In contrast, the increased death rate for calves
born by caesarean section was only significant for day 1 and was only elevated for the first
week. While other studies have identified dystocia as a risk factor for perinatal calf mortality
(Wittum et al., 1994; Ganaba et al., 1995), only one study in a single research herd
specifically explored the longer term effects on calf survival using individual data (Gregory
et al., 1996). Dutil et al. (1999) reported a weak association between herd dystocia rates and
preweaning mortality in 148 Quebec herds, but did not account for confounding by individual

factors such as parity.

After accounting for all other known risk factors, the only important cow attribute was age.
Previous studies have identified increased postnatal calf loss from heifers in addition to the
well-established increased risk of loss in heifers’ calves that died at or very near birth
(Wittum et al., 1994). Our study is unique in that higher risks of postnatal calf mortality were
also identified for cows having their second calf and cows > 10 years old. The increased risk
of postnatal calf mortality for each cow age group was consistent throughout the follow up
period. Others looking at cow age either had a smaller sample size and did not see a
difference (Wittum et al., 1994) or looked at all mature cows together and did not

differentiate older cows (Azzam et al., 1993).

After accounting for cow age and assistance at calving there was no difference in calf
survival across the range of observed body condition scores. While others have documented
an association between poor nutrition in the last trimester and calf mortality due to scours
(Corah et al., 1975), < 5% of cows in this cohort were thin at calving, thus providing very

little power to examine this hypothesis.
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While a number of authors have suggested that as the calving grounds become more
contaminated the risks of calf morbidity and mortality increase, there have been no previous
studies that test this hypothesis across a large number of herds. Schumann et al. (1990)
reported that as the proportion of the nursing area that was poorly drained, wet and muddy
increased the odds of mortality from diarrhea also increased. In this study, we looked at the
contextual effect of when the calf was born in relation to the other calves in the herd. The
idea was simply that calves that are born later in their cohort are potentially exposed to a
greater build-up of pathogens. In this study, there was a substantial increase in the mortality
rate for calves born after the half-way point in each herd. Clement et al. (1995) had
previously documented increased odds of developing diarrhea in calves born after the median
calving date. They hypothesized that the numbers of diarrhea-causing pathogens increased

during the calving season.

While some previous studies have used postmortem findings (Bellows et al., 1987) and
owner reported cause of loss to document the importance of calf deaths due to cold weather
(Wittum et al., 1993), only one other study has actually looked at meteorological conditions
(Azzam et al., 1993). This study like ours found an increased calf mortality rate for calves
born under cold conditions. Because the other study was limited to a single research herd,
they also had access to local precipitation data which were not consistently available in the
present analysis. Azzam et al. (1993) used logistic regression to examine effect of
temperature on the day of birth on total risk of calf loss from birth to weaning. However, this
study did not account for repeated measures in the analysis or consider whether the effect of
meteorological conditions at birth changed with calf age. We used the average temperature
for the first week after birth and demonstrated that for calves born in very cold weather

(< =10 °C), the associated hazard extended through the first month of life.
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Because of the relatively large number of herds compared to previous studies we were also
able to evaluate a number of common management and biosecurity practices. In our study,
herd owners that moved calves out of the calving area and to a nursery pasture within 48
hours had lower calf losses. This practice removes cow-calf pairs from the contaminated
environment and prevents crowding in the calving area by dispersing newborn calves soon
after birth (Radostits and Acres, 1980). The use of calf shelters which are not accessible to
cows and heifers (Radostits and Acres, 1980; Olson, 1986) was also associated with
decreased calf mortality. Schumann et al. (1990) reported that increasing the nursery shelter
area helped to protect against calf diarrhea, but did not differentiate between shelters

accessible to both cows and calves and shelters accessible to just calves.

Finally, herds where any cattle were purchased in the month before or during calving had
higher calf mortality rates than those that did not. Schumann et al. (1990) reported a similar
unconditional association between replacing dead calves with purchased calves less than one
month of age and higher odds of calf mortality. We did not see an increased rate of loss
specifically associated with the purchase of foster calves; however, this practice was

uncommon in the current study.

The analysis of calf mortality data demonstrated a larger variation between herds than
between both veterinary clinics and ecological regions, and a clear improvement in model fit

after accounting for the variation between veterinary clinics and ecological regions.

4.6.2. Simulations

In the setting similar to the real data (study I), the results indicated that the proposed model
performed well in estimating most of the model parameters if posterior medians were used

for the inference and overestimated the between-clinic and between-ecoregion variances
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when the inference was based on posterior means. The simulation study therefore supported
our findings of relatively small variance components for veterinary clinics and regions in the
real data. In addition, simulation study Il showed that the estimation of between-clinic
variance was improved in a more pronounced multiple membership structure and with larger
variance components. Both simulation studies demonstrated difficulties with estimation of
the between-ecoregion variance and its standard error, and this can probably be attributed to

the small number of ecologic regions.

We finally note that the performance of the proposed model and estimation can depend on
many parameters, for instance, the censoring rate, the shape of baseline hazard, the number of
clusters, the cluster size, and the magnitude of heterogeneity. A detailed exploration of how
such parameters might affect performance is beyond the scope of the present study, but could

be a topic for future investigation.
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Table 4.1. Descriptive statistics for animal-level predictors in the calf mortality dataset (23,409 calves from 174
herds) including the proportion of calves and the probability of calf mortality for each categorical variable, as

well as the mean and standard deviation (sd) for continuous variables.

Proportion Mortality

Predictor probability
Calf gender (female) 0.48 0.035
(male) 0.52 0.041
Twin (single) 0.96 0.037
(twin) 0.04 0.069
Cow age at calving (< 2 years old) 0.18 0.049
(3 years old) 0.17 0.046
(4 years old) 0.12 0.036
(5 to 10 years old) 0.45 0.032
(>10 years old) 0.08 0.044
Cow breed type (British) 0.43 0.038
(continental) 0.49 0.037
(cross) 0.08 0.046
Calving assistance (unassisted) 0.91 0.037
(easy pull) 0.05 0.040
(hard pull) 0.02 0.102
(malpresentation) 0.01 0.071
(surgery) 0.01 0.067
Cow body condition at pregnancy test (BCS<5) 0.09 0.046
(BCS=5) 091 0.038
Cow pre-calving body condition score (BCS<5) 0.04 0.047
(BCS=5) 0.96 0.038
Cow problems following calving * (yes) 0.01 0.052
(no) 0.99 0.038
Mean (sd) Mean (sd)
Predictor (cases) (non-cases)
Average temperature (Celsius) for the first 7 days post calving -7.353(8.198) -6.362 (8.483)
Within-herd calving proportion at calving 0.516 (0.291)  0.514 (0.286)

 Cow problems including retained placentas, uterine prolapses, and metritis.
® Computed as a number of new calves at a particular calving day divided by the total number of calves in a
herd.
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Table 4.2. Descriptive statistics for herd-level predictors in the calf mortality dataset (174 herds) including the

proportion of herds and mortality probability for each categorical variable.

Proportion Average of
Predictor mortality?
Cows due to calve and cows that have calved are together (yes) 0.37 0.037
(no) 0.63 0.039
Heifers due to calve before rest of the cow herd (yes) 0.29 0.042
(no) 0.71 0.037
Provide shelters for calves separate from cows and heifers (yes) 0.79 0.038
(no) 0.21 0.041
Move cow-calf pairs to a nursery pasture within 48 hrs of birth (yes) 0.70 0.038
(no) 0.30 0.040
Buy foster calves (Holstein bull calves) (yes) 0.10 0.038
(no) 0.90 0.038
Were any animals purchased in the month prior to or during calving (yes) 0.76 0.039
(no) 0.24 0.035
Cows vaccinated for E. coli prior to calving (yes) 0.49 0.040
(no) 0.51 0.037
Heifers vaccinated for E. coli prior to calving (yes) 0.53 0.038
(no) 0.47 0.038
Cows vaccinated for rota/corona virus prior to calving (yes) 0.50 0.038
(no) 0.50 0.039
Heifers vaccinated for rota/corona virus prior to calving (yes) 0.53 0.037
(no) 0.47 0.040

Average of within herd mortality.
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Table 4.3. Parameter estimates for the analysis of calf mortality dataset: the mean, median, and standard

deviation (sd) of posterior distribution from a standard Cox model (model 1), a Cox model with random herd
effect (model 2), and a CMM Cox model (model 3).

Model 1 Model 2 Model 3
Predictor/Parameter® Mean Median sd Mean Median sd Mean Median sd
Twin
Twin vs. single  0.145 0.149 0.199 0.205 0.208 0.197 0.213 0.218 0.202
Twin x T°  -0.338 -0.338 0.077 -0.331 -0.331 0.075 -0.331 -0.330 0.077
Calf gender
Male vs. female  0.154 0.154 0.068 0.151 0.152 0.068 0.150 0.150 0.068
Calving assistance
Easy pull vs. unassisted  -0.105 -0.103 0.150 -0.050 -0.048 0.151 -0.049 -0.046 0.150
Hard pull vs. unassisted ~ 0.872 0.877 0.169 0.921 0.924 0.173 0.917 0.920 0.174
Malpresentation vs. unassisted ~ 0.532 0.541 0.253 0.535 0.543 0.251 0.537 0.546 0.254
Surgery vs. unassisted  -1.304 -1.202 0.980 -1.243 -1.131 0.976 -1.198 -1.090 0.960
Surgery x T -0.737 -0.720 0.300 -0.743 -0.725 0.298 -0.739 -0.721 0.294
Cow age
<2yearsold vs.5-10 yearsold ~ 0.401 0.402 0.095 0.382 0.381 0.096 0.384 0.384 0.096
3yearsold vs. 5-10 yearsold ~ 0.340 0.341 0.095 0.342 0.342 0.095 0.349 0.350 0.096
4 yearsold vs. 5-10 yearsold ~ 0.099 0.100 0.113 0.121 0.121 0.112 0.124 0.126 0.113
>10 yearsvs. 5-10 yearsold ~ 0.332 0.333 0.126 0.308 0.309 0.127 0.305 0.307 0.127
Within-herd calving prop.
Linear  0.631 0.631 0.128 0.759 0.758 0.137 0.767 0.766 0.136
Quadratic  1.041 1.040 0.467 1.233 1.232 0.473 1.243 1.243 0.474
Mean 7-day temperature (°C) -0.030 -0.030 0.006 -0.090 -0.090 0.006 -0.100 -0.100 0.006
Mean 7-day temperature® < T 0.100 0.100 0.003 0.110 0.110 0.003 0.110 0.110 0.003
Provide shelters ¢
Yesvs.no  -0.309 -0.310 0.083 -0.325 -0.325 0.144 -0.240 -0.240 0.145
Move calf pairs ©
Yesvs.no  -0.306 -0.307 0.074 -0.244 -0.245 0.125 -0.237 -0.237 0.126
Animals purchased
Yesvs.no  0.258 0.257 0.085 0.243 0.242 0.145 0.285 0.283 0.141
Herd variance 0.334 0.327 0.070 0.272 0.267 0.062
Veterinary clinic variance 0.024 0.012 0.030
Ecological region variance 0.099 0.073 0.100
DIC 14724.2 14566.1 14558.5

2 Coefficients for the 4™ order polynomial of log(time) represents the baseline hazard not shown.

®T is a standardized log time (log time-mean/sd) or (T = [log(time in days) — 3.604]/1.062).

¢ Coefficients x10.

?Provide shelters for calves separate from cows and heifers.

*Move cow-calf pairs to a nursery pasture within 48 hrs of birth.

f Animal purchased in the month prior to or during calving.
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Table 4.4. Model parameters and proportions of herds in a multiple membership with

veterinary clinics used for the two simulation studies.

Feature Simulation study I~ Simulation study 11
Fixed effect (8) 0.150 1.000

Herd variance (a2) 0.300 0.500
Veterinary clinic variance (o2) 0.025 0.500
Ecological region variance (o7) 0.100 0.500
Baseline hazard parameters™ (p, 4,) (0.4, 0.019) (0.4, 0.008)
Herds in a multiple membership 8% 52%

“Weibull distribution: p = shape, 1, = scale.
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Table 4.5. Simulation study results: average of the estimates (posterior mean and posterior median) with
empirical standard deviations (Esd), 95% end point confidence intervals (95% CI), and of posterior standard
deviation (sd) over 200 simulated data sets, as well as probability coverage, absolute relative bias and mean

squared error (MSE) for posterior mean-based and median-based estimates.

Model True Estimate 95% CI Prob. Abs. relative bias MSE (x 100)
param. value  mean (Esd) median (Esd) sd end points cover. mean  median mean median
Simulation study |
B 0.150 153 (.061) .153 (.061) .067 (.022, .284) 97% .020 .020 0.370 0.371
aé 0.300 299 (.064) .294 (.063) .066 (.187, .443) 97% .003 .020 0.407 0.403
a? 0.025 .037 (.032) .027 (.031) .036 (.002, .131) 99% 480 .080 0.115 0.094
o? 0.100 .135 (.099) .100 (.080) 127 (.021, .454) 92% .350 .000 1.088 0.641
Simulation study Il
B 1.000 1990 (.074) 989 (.074)  .075 (.844,1.137)  95% 010 011 0.562 0.561
o2 0.500 517 (.120) 504 (.118)  .121  (.317,.489) 95% 034 .008 1.453 1.381
a? 0.500 509 (.216) .480 (.210) .205 (.194, .989) 91% .018 .040 4.669 4411
o? 0.500 645 (.362) .510 (.295) 516 (.169, 1.930) 95% .290 .020 15.17 8.656
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Figure 4.1. Calf mortality data structure: calves (level 1) nested in herds (level 2), herds in a multiple

membership to veterinary clinics and cross-classified by ecological regions and veterinary clinics (level 3).
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Chapter 5

A simulation-based assessment of misspecifying
the random effects distribution in mixed-effects

Cox models

The work of this chapter is intended to be submitted for publication as: Elghafghuf A, Stryhn
H. (2014). A simulation-based assessment of misspecifying the random effects distribution in
mixed-effects Cox models. Computational Statistics & Data Analysis. In preparation.
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5.1. Abstract

Mixed-effects Cox models can be fit as Poisson generalized linear mixed models (GLMMs)
after transforming time-to-event data to the Poisson GLMM framework. Estimation in these
approximating models is based on Poisson maximum likelihood theory, assuming a specific
distribution for random effects. However, the validity of the random-effects distribution
assumption is often difficult to verify. In this study we assess, through simulations, the
robustness of Poisson maximum likelihood estimation for a Cox model with normal random
effects under misspecification of the random effects distribution. The impact of misspecifying
the distribution of random effects is studied in shared frailty, random slope, and nested frailty
Cox models. Factors such as the magnitude of the random effect variances, censoring rate,
group size, and number of groups were accounted for in the assessment. In the simulations,
the Poisson modeling approach produced robust estimates under misspecification of the
random-effects distribution for fixed effects at different hierarchical levels. Non-robust
estimation of variance components was observed only when the magnitude of heterogeneity,

event rate, number of groups, and group size was large.

5.2. Introduction

Data in medical research are very often clustered in groups, such as health centres in a human
medicine or farms in veterinary medicine studies. When the outcome of interest is time-to-
event, proportional hazards models with random effects, also referred to as frailty models
(Therneau and Grambsch, 2000; Duchateau and Janssen, 2008; Wienke, 2010; Hanagal,
2011), are the most common choice for modeling these type of data because these models
account for the heterogeneity caused by unmeasured factors due to clustering. In frailty
models, the standard assumption for the random effects (on the natural log scale) is that they

follow a certain probability distribution, and the popular distribution choices are zero-mean
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log-gamma and normal distributions. Other choices for frailty distributions, such as the
inverse Gaussian, positive stable (Hougaard, 1995), power variance function (Aalen, 1988),

and compound Poisson (Aalen, 1992) have been used in the literature.

Because the random effects are unobserved entities, it is important to study the robustness of
the estimation approach against misspecification of the random effects (frailty) distribution.
Previous work has been carried out to assess the robustness properties of estimators when the
random effects distribution is misspecified. For instance, Sastry (1997) used the EM
algorithm for gamma nested frailty model estimation, and found that the choice of frailty
distribution only mattered when the frailty variance was large. Ferreira and Garcia (2001)
showed that a gamma shared frailty model underestimated the between-group variance when
the true model was a log-normal frailty model; they used a partial marginal likelihood
(Nielsen et al., 1992) with EM algorithm for estimation. Using a penalized partial likelihood,
Glidden and Vittinghoff (2004) examined the performance of the gamma shared frailty model
with misspecified frailty density. For inverse Gaussian and positive stable frailty
distributions, they found that the misspecified model produced similar estimates to those
based on the correct model even for a small number of groups but with large group sizes.
Further, based on a gamma shared frailty model and penalized partial likelihood estimation,
Duchateau and Janssen (2008) pointed out that the robustness of variance component
estimators is an issue when the frailty variance is large. Cortifias et al. (2007), on the other
hand, tested the estimators of the REML estimation method (McGilchrist and Aisbett, 1991),
the penalized partial likelihood (Ripatti and Palmgren, 2000), the Bayesian approach
(Legrand et al., 2005), and the EM algorithm with Laplace approximation (Cortifias and
Burzykowski, 2005) under misspecification of the random-effects distribution based on a Cox

model with independent random clusters and random slope effects. They found that the bias
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almost doubled under model misspecification relative to a model with correctly specified

random-effects distribution.

The primary aim of this study was to examine the Poisson maximum likelihood estimation
approach (Ma et al., 2003; Feng et al., 2005) for estimating Cox models with normal random
effects against misspecification of the random effects density. Simulations based on the three
different models: a Cox model with random group effect, a Cox model with random group
effect and random coefficient, and a Cox model with two nested random effects were
performed where the distribution(s) of the random effects were known. Factors such as
magnitude of the variability of random effects, censoring rate, predictor type, group size and
number of groups were controlled. A secondary aim of the study was to add information

about the performance of the Poisson modeling approach for a correctly specified model.
5.3. Mixed-effects Cox models

5.3.1. Cox model with group random effect

In the following, we consider time-to-event data from a total of N individuals clustered by G
groups, e.g. health centers or farms. For individual j (j =1,..,n;) from group i (i =
1,..,G), let T;; and C;; denote the event and right censoring times, respectively, where C;; is
independent of T;. The observed times Y;; are Y;; = min (Ty;, Cj;), and &y = 7, <, ) Is the
event indicator. For each individual, the within-group x;;; and the between-group x,;

predictors are observed. The conditional hazard function for a Cox model with group random

effect is given by

Aij(Elb;) = 20(t) exp(b; + Byx1j + Pox) (5.1)
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where A,(t) is a baseline hazard, 8; and B, are fixed effects coefficients corresponding to the
predictors x,;; and x,;, and b; is the random effect associated with group i. Alternatively,

model (5.1) can be rewritten as
Ay (tlu;) = A4(t) uieXp(,31x1ij + ,Bzx2i) (5.2)
where u; = e?i is a frailty term. Model (5.2) is known as a shared frailty model.

5.3.2. Cox model with random group and random slope effects

In many instances covariate effects may vary between groups or clusters. For example, the
effect of treatment may change over trials in a meta-analysis of multicenter studies
(Duchateau and Janssen, 2008; Rondeau et al., 2008) or across farms in epidemiological
investigations of veterinary medicine (Stryhn and Christensen, 2013). To account for
heterogeneity in the baseline hazard and predictor effects between groups, a Cox model with
two random effects at the group level can be applied. Using the notation of Section 5.3.1, the
hazard function for a Cox model with random intercept b;, and random coefficient b;; (for

the predictor X,) takes the form,
Aij (tlbig, bir) = Ao(t) exp(bip + by x1i;+Prx1i; + Baxa;) (5.3)

where A,(t) is the baseline hazard function, and B; and [, are regression parameters

associated with the predictors X; and X,.

5.3.3. Cox model with nested random effects

When survival data are clustered at several hierarchical levels (e.g. in veterinary medicine,
animals from different farms and these farms located in different geographic regions), a Cox
model with nested random effects (nested frailties) is used to estimate possible variation at

the different hierarchical levels (Rondeau et al., 2006; Duchateau and Janssen, 2008).
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Assume we have G groups and there are n; subgroups of individuals within the i** group.
With x4;j, x5;; and x5; be the observed explanatory variables at the different hierarchical

levels, the hazard function for a Cox model with nested random effects is
Aijic(t|bi, bij) = 20 (t) exp(b; + bij + Byxiji + Baxaij + Paxs;) (5.4)

where 4, (t) is the baseline hazard function, X;, X, and X5 are the explanatory variables with

corresponding regression parameters f;, f,, and B3, respectively. The nested terms b; and b;;

are the i*" group and the ij*" subgroup random effects, respectively.

In all of the aforementioned models, the random effects b (or the frailties u) are assumed to

follow a certain probability distribution.

5.4. Frailty and random effect distributions

Many probability distributions for random effects (or frailty) have been suggested in the
literature. Most of the existing arguments related to the choice of frailty distribution are
mathematically based. In practice, the widely used distributions are a zero-mean normal
distribution for random effects (log-normal with mean 1 for frailty) and a gamma distribution
with mean 1 for frailty (zero-mean log-gamma distribution for random effects). We focus on
the choice of normal distribution for random effects, since it is implemented in popular
statistical software packages such as Stata, SAS and R. Other distributions such as inverse
Gaussian, positive stable, power variance function, and compound Poisson have been applied

(Duchateau and Janssen, 2008).

To illustrate the relation between heterogeneity parameters in the two common choices of
random effects and frailty distributions, note that when the random effect b = log u follows a
normal distribution with zero mean and variance of o2, the frailty u = e® follows a log-

normal distribution with mean of exp (¢2/2) and variance of exp(o?) (exp(a?) — 1).
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Similarly, when the frailty u has a gamma distribution with equal shape v and inverse scale n
of 1/6 (corresponding to frailty variance of @), the random effect b has a log-gamma
distribution with mean of ¥(1/6) + log (8) and variance of W'(1/6), where W(.) and ¥'(.)

are the digamma and trigamma functions, respectively.

In a Cox model with correlated random group and random slope effects, the random effects
b;o and b;; are usually assumed to follow a zero-mean normal distribution since the normal
distribution is more flexible than the gamma (or log-gamma) distribution for creating
correlation. When the random effects b;, and b;; follow the bivariate normal distribution
N(0,0,0¢,02,04,), the frailties u;, and u;; follow a bivariate log-normal distribution
LN (uo, 1,09, 01,601) With w, =exp (62/2), 6, = exp(c2)(exp(c2) —1),p = 0,1 and
covariance 8y; = exp [(oZ + 0f)/2][exp(cy,) — 1]. The latter formula follows directly

from the moment-generating function of a bivariate normal distribution.

This study focuses on two non-normal distributions for random effects. First, a log-gamma
distribution for random effects (equivalent to gamma frailties) since the log-gamma is a non-
symmetrical, left-skewed distribution (Figure 5.1). The density function of a variable b

following a log-gamma distribution with shape parameter v and inverse scale 7 is given by

v

N

fz(b) = r(v)

exp(vb —nexp(b)) ; —co < b < (5.5)

Second, a Laplace distribution for random effects was chosen because of its higher peak and
heavier tails compared with the normal distribution (Figure 5.2), as well as its flexibility for
generating correlation between random effects in multivariate random effects models. The
density function of a Laplace distribution with mean zero and scale parameter t is given by

|bl

1
f5(b) = 5-exp <T> ;, —0<b<o (5.6)
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5.5. Estimation approach

One approach to estimate Cox proportional hazards models is to transform the time-to-event
data to the more flexible GLM framework using the equivalence of a Cox proportional
hazards model with a Poisson regression model. This equivalence can be carried over to the
Cox proportional hazards model with random effects (Ma et al., 2003; Feng et al., 2005; Feng
et al., 2009; Rabe-Hesketh and Skrondal, 2012). The existence of statistical theory and
software for GLMMs provides many opportunities to apply random-effects Cox models to
complex survival data and allows for sophisticated variance structures. By using, for
example, the implementation in Stata for Poisson GLMMs, adaptive Gaussian quadrature can

be applied for accurate estimation.

To fit a Cox model with random effects as a Poisson GLMM model, the duration of follow-
up has to be divided into increments, by splitting the data at event times, to allow for a
nonparametric modeling approach to the baseline hazard. As pointed out in Feng et al.
(2005), under a non-informative and independent censoring assumption, the conditional
likelihood of a random-effects Cox model is proportional to the conditional likelihood of a
random-effects Poisson model with the log of the interval length at risk as an offset term. The
baseline hazard can be fit as a set of dummy variables representing the individual time points
or as a smooth function of time by adding polynomial terms of time to the model until an

additional term does not substantially improve the model fit.

5.6. Simulation studies

We study the robustness of the Poisson modeling approach for estimating Cox models with
normally distributed random effects against misspecification of the random-effects (frailty)
distribution based on different random-effects distributions. This aims to examine the
consequences of assuming normality of random effects to distributions that are clearly non-
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normal. For each simulation model, we compare the results obtained from a model with
misspecified random-effects distribution to those obtained from a model with a correctly
specified random-effects distribution. The robustness of the estimates is investigated for
variable numbers and sizes of groups and subgroups. Further, the impact of the amount of

censoring and the magnitude of the variance components are studied.

5.6.1. Description of the simulation studies

Three simulation studies were performed to study the impact of misspecifying the random
effects distribution on parameter estimates obtained using the Poisson modeling approach.
The structure of simulated data was built around the calf mortality data described in Waldner
(2008) where calves clustered by farms (subgroups) and these farms was located in different
ecological regions (groups). During a study period of 180 days, calves were followed from
birth until death or censoring. Analysis of calf mortality data was reported in Chapter 4. In
our simulations, we varied the number of groups and subgroups and used different sample
sizes per group and subgroup. For simplicity, balanced groups and subgroups were assumed
in all the simulation studies. Further, a Weibull baseline hazard with shape parameter « and

scale y was used in all simulations.
5.6.1.1. Simulation study |

Three different simulation scenarios were considered in this initial study. In each scenario,
data were generated from model (5.1) assuming zero-mean normal, log-gamma, or Laplace
distributions for the random effects b;,i = 1,..., G. In each scenario, either 20 and 70 groups
with 10, 40, or 100 individuals per group were used. Because the magnitudes of
heterogeneity and censoring rate are often large in animal-health data from observational
studies, two degrees of censoring, for simplicity termed heavy (around 85%) and moderate
(around 50%), and two different levels of between-group variance, 62 = 0.2 and o2 = 0.5,
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were chosen to mirror commonly encountered situations. The true values of model
parameters, including the fixed effects and variance components and the Weibull baseline

hazard parameters for each scenario, are shown in Table 5.1.
5.6.1.2. Simulation study Il

We considered two scenarios for this simulation study. In the two scenarios, data were
simulated from model (5.3). The random effects b;, and b;;,i = 1, ..., G, were correlated and
assumed to follow a zero-mean bivariate normal distribution in the first scenario, and a
bivariate Laplace distribution with zero means in the second scenario. The same number of
groups and individuals per group as in simulation study | were used. Similar to simulation
study I, two different sizes of the variance components were studied in high and moderate
censoring rate settings. The model parameters for each simulation setting were set as

described in Table 5.1.
5.6.1.3. Simulation study 111

Data were generated from model (5.4) in two different scenarios. In the first, the nested
random effects b; and b;;,i =1,..,G and j = 1,...,n;, were assumed to follow independent
normal distributions with means of zero. In the second scenario, the random effects were
assumed to have independent log-gamma distributions with zero means. In the two
simulation scenarios, 15 groups were used with 2 or 5 subgroups. The sample sizes were 10,
40, or 100 individuals per subgroup. As for simulation studies | and 1, two levels of variance
components at both the subgroup and group levels were considered with the largest variance
for the subgroup level as often found in the real data. Further, two amounts of censoring were
used for each scenario, high and moderate censoring. Table 5.1 describes model parameter

settings for the two scenarios of the simulations.
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5.6.2. Simulation of data

A total of 1000 datasets were generated using R software in each setting of simulation study
I, and 300 datasets in each setting of simulation studies Il and 111, because these simulations
are computationally intensive and time consuming. Data for each particular setting were
generated as follows: first, the random effects were generated from the considered probability
density distribution. For the log-gamma distribution in simulation study I, the parameters v
and n were set, respectively, at 5.4834 and 4.9917 when the between-group variance was
0.2, and at 2.4599 and 1.9804 when o2 = 0.5. These values satisfied that E(b;) = W(v) —
logn =0, and var(b;) = ¥'(v) = 0.2 and 0.5, respectively. Similarly, the parameters v and
n of a log-gamma distribution in simulation study Il1 were set, respectively, at 1.4262 and
0.9657 when ¢ = 1, and at 4.4793 and 3.9897 when o7 was 0.25. Furthermore, the scale
parameter of Laplace distribution in simulation study | was set at 0.3162 and 0.5 to yield
variances of 0.2 and 0.5, respectively. Next, the predictors were fixed across simulations and
all binary with a 50%-50% division for variables at the first and third hierarchical levels, and
with a 30%-70% division for the second level variable. In two-level hierarchical data, for

example, the event time T;; for each individual was randomly generated using the formula

provided by Bender et al. (2005):

T, = [~log (U)/y exp ()] (5.7)

where U is a uniform variable on [0,1] and ¢;; is the linear predictor taking the form
b; + B1x1ij + B2x5; in a model with random group effects. The censoring time C;; was
generated from a uniform distribution on [1,180]. The actual time for each individual was

;i < Cj, or otherwise Y;; = C;; with §;; = 0.

5.6.3. Analysis and summary statistics of simulations
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All estimation analysis for the simulation data was performed in Stata 12 using maximum
likelihood estimation with Gaussian quadrature. The Cox model with random group effects
was fit to simulated datasets using the xtpoisson command and a default number of
integration points of 12, while the random coefficient and nested random effects Cox models
were fit using xtmepoisson and a default of 7 integration points. Further, a fourth-order
polynomial function of time was used for modeling the baseline hazard in all analyses. For
each of the simulation iterations, model parameter estimates and their standard errors were
extracted. Because of highly skewed distributions of the estimators from the simulations,
particularly of variance components, we present simulation results as follows: the median for
all model parameters, computed as the median of the estimated values across the simulated
datasets; empirical and estimated standard errors (SE) for fixed effects, computed as the
standard deviation and the mean of the model-based standard errors across the simulated
datasets; the confidence interval (Cl) probability coverage, computed as the proportion of
simulations with the true value lies inside 95% Cls for fixed effect estimates in each analysis;
the interquartile range (IQR) represented by the lower and upper quartiles for the distribution
of variance component estimates; significance of a difference between median estimates and
true values was tested using the Wilcoxon signed-rank and sign tests for fixed effects and
variance component estimates, respectively; the z-test for proportions was used for the
inference of CI coverage; significance of a difference between median estimates of correctly
specified and misspecified models was assessed by a permutation test with 1,000 random
permutations. When the estimation procedure failed to reach convergence in a particular
analysis or dataset, the number of integration points of Gaussian quadrature method was
changed (mostly increased), and the analysis was rerun until convergence was achieved. If

non-sensible estimates (estimates that were >10 times or <10 times the true values) were
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produced in a certain analysis, results were excluded from the statistics computed across the

simulated datasets.

5.7. Simulation results
5.7.1. Simulation study |

The simulation results based on a Cox model with random group effects and two predictors,

at individual and group levels, are shown in Tables 5.2, 5.3, 5.4 and 5.5.
5.7.1.1. Correctly specified distribution of random effects

In general, the fixed effect coefficient at the individual level, B, and its SE were estimated
well when the censoring rate was 85% and the probability coverage was close to nominal.
However, ; was estimated with mild downward bias when the censoring rate was 50%
(absolute relative bias 1.6-3.4%); the estimated and empirical SEs agreed closely and the CI
coverage was close to nominal with the exception of the largest data setting with a2 = 0.5.
The fixed effect coefficient at group level, S, showed similar downward biases for a large
number of groups with relatively large group sizes (100 and > 40 for high and moderate
censoring, respectively). When the number of groups (G) was large, the estimated and
empirical SEs for §, estimates agreed closely and the CI coverage were close to nominal,
whereas slightly underestimated SE and CI under-coverage were observed for G = 20. The
between-group variance, o2, was estimated with a pronounced downwards bias in all

settings. This bias decreased with increasing number of groups and group size.

When both the number of groups and the group size were small, the simulations reported a
considerable amount of lower boundary estimates for o2, resulting in many zero SEs for
these estimates. This problem was observed mostly in settings with a small magnitude of

heterogeneity and a high censoring rate. Figure 5.3 displays the variance estimates on
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logarithmic scale against their SEs for datasets with 85% censoring. For small data settings
(top row of Figure 5.3), some estimates of loga? were less than —10, and most of these
estimates had extreme SEs while the remaining estimates (loga? > —5) had SEs decreasing
almost deterministically with increasing the logo? estimates. For large data dimensions
(bottom row of Figure 5.3), the log o2 estimates were larger compared with the smallest data
settings and their SEs were clearly improved especially when o2 = 0.5. However, the
functional relationship between loga? estimates and SEs remained. This was the reason for
not providing CI probability coverage for variance components because the independence
assumption of the normal and chi-square distributions in the numerator and denominator of
the t-statistic needed for calculating Cls may be violated. Practically, when a zero group-level
variance is encountered, the SE of such an estimate may be of less interest because the data
analyst would deal with this situation as indicating that this was no detectable difference

between groups.
5.7.1.2. Misspecified distribution of random effects

The results showed that the fixed effect estimates, 8, and £3,, were estimated well regardless
of the misspecification of random effects distribution, and in some cases the misspecified
model produced estimates closer to the true value than those from the correct model. The
agreement in S; estimates between the correct and misspecified models for a high censoring
rate and a large magnitude of variance is shown in Figure 5.4. Table 5.6 presents the rejection
rates (type | error and a test power) for testing different null hypothesis values for the
parameters ; and 3,, in the simulation settings with G = 70 groups of n; = 100. The results
showed a close correspondence between the rejection rates of §; from the correct model and
misspecified models and some slight differences in these rejection rates for f,. Further, the

lower censoring rate was associated with a higher power.
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Generally speaking, the results showed that a2 estimates based on the log-gamma random
effects model were larger and closer to the true value than those from the correct model in
many cases (Figure 5.5). This was most obvious for 62 = 0.5 and 50% censoring (Table 5.5).
In contrast, the opposite picture was observed for o2 estimates based on the Laplace random
effects model which were mostly smaller and further away from the true value than those of
the correctly specified model (Figure 5.5). Furthermore, there was almost no impact of
misspecification on o2 estimates when censoring rate was 85% and a2 = 0.2. Additionally,
the IQRs for o2 estimates agreed closely across all random effects distributions (Table 5.2).
The IQRs for o2 estimates in other settings were quite different. For instance, the smallest
width of IQRs was mostly for the correct model while the largest was for the Laplace random
effects model with exception of the simulation settings of 50% censoring and o2 = 0.5 where

the log-gamma random effects model showed the largest IQR widths (Table 5.5).

5.7.2. Simulation study 11

The results were based on a Cox model with correlated random intercept and random slope.
In each simulation setting, normal and Laplace distributions were assumed for random
effects. The results of both the normal and Laplace random effects models are presented in

Tables 5.7 and 5.8.
5.7.2.1. Correctly specified distribution of random effects

The fixed effect at individual level, f;, was estimated well except for some cases. For
instance, B; was estimated with upwards bias in the cases of n; = 10 and a censoring rate of
85% (absolute relative bias 6.4-26.4%) and estimated with slightly downward bias for
moderate censoring and a large magnitude of variances when G = 70 and n; > 40 (absolute
relative bias 3-6%). Overall the estimates of §; improved with increasing group size. The CI

coverage of §;was underestimated for n; = 100 and overestimated for small group sizes. In
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fact, an overestimation of the CI probability coverage was observed in some cases even when
the estimated and empirical SEs were fairly close. No explanation of this finding can be
offered except that the data maybe provided an insufficient amount of information as this
phenomenon only appeared in the cases of n; < 40 and n; = 10 for 85% and 50% censoring,
respectively. The group-level effect, 5,, was estimated reasonably well with best accuracy
when G = 70. The SEs of 3, estimates were underestimated for G = 20 and agreed closely
with the empirical SEs when G = 70. Further, Cl under-coverage was observed for f,

estimates in the settings involving a small number of groups.

The random intercept variance, o, was estimated with pronounced downwards bias. This
bias was smaller for G = 70 than for G = 20. When the censoring rate was 85%, the random
slope variance, o, was estimated reasonably well for large magnitudes of heterogeneity and
also for small magnitudes of heterogeneity but with G = 70. Otherwise, a2 was estimated
with pronounced bias, mostly downwards. In general, the bias in ¢ estimates increased with
the magnitude of heterogeneity. For instance, the absolute relative bias of o2 estimates
ranged between 1.2-16% and 3-30.2% for small and large magnitudes of heterogeneity,
respectively. Finally, the correlation parameter, p, was estimated close to the true value in a
few cases, in particular when G = 70 and n; > 40, and it was estimated, otherwise, with

strong biases, mostly upwards.
5.7.2.2. Misspecified distribution of random effects

The simulation results showed that misspecification of the random effects distribution had no
impact on B; and (8, estimates except for a few cases of B, estimation, but with no clear
pattern. For instance, B; estimates under the misspecified model were clearly larger
compared with those under the correct model for ¢ =20 and n; = 40 when both the

magnitude of heterogeneity and the censoring rate were large. In contrast, misspecifying the
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random effects distribution had an impact on the estimation of variance components in a
variety of situations. For example, the impact of misspecification on o2 estimates was
observed mostly for 50% censoring rate and a large magnitude of heterogeneity, where o
estimates were smaller (and away from the true value) for the misspecified model than the
correct model. The impact of misspecification was also observed for o2 estimates. For
instance, the estimates of o based on the misspecified model were smaller and away from
the true value compared with o7 estimates of the correct model for a large magnitude of
variance and n; > 40 (Figure 5.6), or when both the magnitude of variance and the censoring
rate were small. Finally, the correlation between the random intercept and random slope, p,
was also influenced by misspecification of the random effects distribution in some cases. For
example, the estimates of p were smaller under the misspecified model than for the correct
model in the cases of 50% censoring and a large magnitude of variance, and also for small
magnitude of variance but with G = 70 (Figure 5.6). The IQRs for o2 and p estimates under
the misspecified model were larger compared with those corresponding to the correct model

while the IQRs for o7 estimates from the misspecified and correct model were fairly similar.

5.7.3. Simulation study 111

The simulation results based on a Cox model with nested random effects and three predictors,

at different hierarchical levels, are shown in Table 5.9 and Table 5.10.
5.7.3.1. Correctly specified distribution of random effects

The lowest-level fixed effect parameter, (;, was estimated well for the 85% censoring rate
and also for the 50% censoring rate and a small magnitude of heterogeneity. Otherwise, it
was estimated with downwards bias. The estimates of SE for 3, were close to the observed

SEs and their CI coverage was close to nominal except for some cases of n;; = 100 where ClI
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under-coverage was observed. The fixed effects at the top levels, 5, and 35, were estimated
close to the true values but their SEs were underestimated in almost all cases resulting in Cl
under-coverage (coverage ranged between 0.864-0.948 and 0.880-0.959 for B, and fs,

respectively).

The between-subgroup variance, o2, was estimated with pronounced biases in many cases.
For instance, g2 was consistently underestimated for large magnitudes of heterogeneity and
50% censoring and also for small dimensions of data when the magnitude of heterogeneity
was small. The between-group variance, o7, was estimated also with strong downwards
biases (absolute relative biases 29.6-85.2% and 30.8-48.8% for heavy and moderate
censoring, respectively) mostly due to small data dimensions and/or rare events as a high
event rate provides more power to estimate variance components. These biases may be
attributable to the small number of groups used in the study (15 groups) as an additional
simulation study with 50 groups (2 subgroups per group), 85% censoring, and 2 = 0.25
showed a better performance. In that simulation, the median estimates for o7 based on
n;; = 10 and 100 were, respectively, 0.183 and 0.217. Finally, similar to simulation study |,
estimates very close to zero for variance components, especially for o2, were obtained for
small magnitudes of heterogeneity and 85% censoring, resulting in many zero SEs for these

estimates (details not shown, but Tables 5.9 and 5.10 show Q; = O for many settings).

5.7.3.2. Misspecified distribution of random effects

With the exception of some very limited cases for 8, and S3 estimation, misspecification of
the random effects distribution had no impact on the fixed effect estimates. However, the
variance component estimates were clearly affected by misspecifying the random effects
distribution. For instance, in the settings of 50% censoring, as well as in the cases of 85% that

had relatively large subgroup sizes, larger o7 estimates for the misspecified model than for
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the correctly specified model were observed, and the difference in the estimates between the
two models increased with the magnitude of heterogeneity, event rate, and the dimension of
data. Similarly, the estimates of o were larger under misspecified random effects
distribution compared with the correct distribution of random effects. The IQRs for ¢ and
o2 estimates under the misspecified model were larger than the corresponding ranges of the

correctly specified model in most of the settings.

5.8. Discussion
5.8.1. Estimation of fixed effect coefficients

The fixed effect coefficient at the individual level, §;, was estimated well based on the three
considered mixed-effects Cox models, regardless of the distribution of random effects in a
wide variety of commonly encountered situations. However, the random slope and nested
frailty models, particularly with correctly specified distribution of random effects, tended to
produce estimates for B; with CI under-coverage when group/subgroup sizes were large.
Similar findings based on a shared gamma frailty model and a Cox model with independent
random intercept and random slope were reported in Glidden and Vittinghoff (2004) and
Cortifias et al. (2007), respectively. The fixed effect B, was also estimated quite well,
especially when the number of groups was large, and it was not affected by misspecification
of the random effects distribution. Furthermore, the estimation of 3 under the nested frailty
model was found to be robust, even though the results indicated that a modest bias can occur
for a large magnitude of variance components and high dimensions of data. The estimated
and empirical SEs of f; were similar under the true and misspecified random effects
distribution and agreed closely in each scenario, whereas the SE of 8, and S5 estimates in
some cases underestimated the empirical variability. Further, the CI coverage for 5, and £

estimates was mostly under nominal, and the rejection rates of fixed effects based on Cox
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models with normal random group effects were close to those from the same models with

truly log-gamma and Laplace distributions for random effects (Neuhaus et al., 2011).
5.8.2. Estimation of random effect variances

The overall impression was that the Poisson approach for mixed-effects Cox models tended
to underestimate the true underlying heterogeneity. Similar results were reported in Crowther
et al. (2012). In the Cox model with random group effects, misspecifying the distribution of
random effects resulted in a non-robust estimation of the between-group variance o2,
especially for moderate censoring rate or a large magnitude of variance components. When
the random effects followed a log-gamma distribution, the estimates of o2 were found to be
larger and in many cases closer to the true values than the estimates of the normal random
effects model. In contrast, the estimates based on the Laplace random effects model were
almost always smaller and further apart from the true values compared with those based on
the normal random effects model. Using a gamma frailty model, Duchateau and Janssen
(2008) pointed out that increasing the frailty variance led to a large bias in the heterogeneity
parameter when the frailties were log-normally distributed. Similar findings were previously

reported by Ferreira and Gracia (2001) and Massonnet et al. (2006).

For the variance components estimation based on the Cox model with correlated random
intercept and random slope, the bias in the estimates of variance components was clearly
elevated under the Laplace random effects model compared with the correctly specified
model, especially in the random slope variance o7 and the correlation parameter p for
moderate censoring rate, and a heavy censoring with large group sizes. Generally speaking,
the estimates of variance components based on the Laplace random effects model were

smaller and further apart from the true values than was the case for the normal random effects
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model. Cortifias et al. (2007) reported similar findings based on the same true and analysis

models but with independent random effects.

The estimation of the variance components based on the Cox model with nested random
effects was also found to be non-robust and misspecification of the random effects
distribution had a larger impact on the between-subgroup variance ¢ than on the between-
group variance o; estimates. There was a considerable amount of upwards bias in the
estimates of g2 when the true random effects distribution was log-gamma compared with
normal random effects, and this bias increased with the magnitude of variance, and
dimension of data. Furthermore, the point estimates of the heterogeneity parameter ¢ based
on the log-gamma random effects model were somewhat larger than those based on the
normal random effects model for large magnitudes of heterogeneity, event rate, and data
dimensions, although &2 was strongly underestimated in the two scenarios. This
underestimation of o2 was possibly due to the small number of units at the top level as an

extra simulation study with a larger number of top-level units showed a clear improvement.

For small magnitudes of heterogeneity and heavy censoring, the IQRs for the variance
component estimates produced by the misspecified and correct models were comparable
under the shared and nested frailty models. Otherwise, the IQRs of these estimates were
larger in the misspecified model than in the correct model. Taking into account the above,
misspecification of the random effects distribution might be an issue when fitting mixed

effects Cox models because invalid estimates for variance components may occur.

Finally, it is important to mention that with rare events and a small number of groups with
relatively small sizes, the estimation approach tended to estimate the variance components
and their SEs as zero. The degree to which such unrealistic estimates and SEs in the

aforementioned settings occurred was substantial for the top-level variance in the shared and
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nested frailty models. In practice, zero group-level variance and SE is often dealt with as
indicating no difference between groups, although in some cases this may cause problems as
recently shown in Chung et al. (2013). To avoid zero variance estimates, these authors
suggest using maximum penalized likelihood with penalty from the log-gamma family for

hierarchical linear models; this can also be applied to GLMMs.

5.8.3. Effect of the magnitude of heterogeneity

The magnitude of bias in the variance component estimates due to misspecification of the
random effects distribution was larger for a large magnitude of heterogeneity than for a small
magnitude of heterogeneity. This may be explained by smaller difference in shape between
the assumed distribution (normal) and the true distribution (log-gamma or Laplace) for a
small magnitude of variance than for a large variance. Therefore, the findings were in
agreement with results in Duchateau and Janssen (2008) based on a shared frailty model and

with findings of Sastry (1997) based on a nested frailty model.

5.8.4. Effect of censoring

The difference in the estimates of variance components between the correct and misspecified
models was almost always larger for moderate censoring than for heavy censoring. In other
words, the impact of misspecifying the distribution of random effects on variance estimates
was strongest for high (50%) event rates. This applied to all considered models and one may
hypothesize that increasing the event rate would provide more power to estimate complex
random component structures, especially when both the number of groups and the group size

are large enough.

5.8.5. Effect of data dimensions
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In general, the number of groups/subgroups and group/subgroup sizes had an impact on
model parameter estimation under both the misspecified and correctly specified random-
effects distribution. The estimation of model parameters was mostly improved when the
number and the size of groups/subgroups increased. When the random effects followed a log-
gamma distribution, the absolute bias in the variance component estimates due to
misspecifying the random effects distribution increased with the dimensions of data in the
nested frailty model, and in the shared frailty model for a large magnitude of heterogeneity.
In some cases of the shared frailty model, the between-group variance was estimated closer to
the true values when fitting a misspecified model with log-gamma random effects than when
fitting the correct model. For Laplace random effects, the absolute bias in o2 estimates under
the shared frailty model increased with decreasing number and size of groups. In the random
slope model, there was no a clear pattern for the magnitude of bias in variance estimates due
to misspecification of the random effects density. This would make it hard to predict the

direction of bias in variance component estimates in this model.

5.8.6. Model design

The effect of misspecification of the random effects distribution on the variance component
estimation was minor among model designs and reflected by the number of parameters. For
instance, under the same circumstances misspecifying the random effects distribution in the
random slope model had a slightly larger impact on the random intercept variance estimates
than the shared frailty model for a large number of groups with small sizes and nearly the
same impact otherwise. Further, almost the same impact of misspecified the distribution of
random effects was detected in the between-group and between-subgroup variances for the
shared and nested frailty models, respectively, under the same frailty distribution, magnitude

of heterogeneity, and censoring rate.
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5.9. Concluding remarks

Via simulations, we have shown that the Poisson GLMM approach for estimating a mixed-
effects Cox model, with normally distributed random effects, provides robust estimation for
fixed effects under many circumstances even with misspecified distribution of random
effects. Based on the results of current study, misspecification of random effects distribution
has negligible impact on regression coefficient estimates. Practically, the estimation of fixed
effects is often viewed as more important than the estimation of variance components,
especially in survival analysis where the main purpose of accounting for data structure is
often improving model estimation. On the other hand, misspecifying the random effects
distribution may result in biased estimation for the variance components. The magnitude of
bias in variance components due to misspecification under one-component random effects
Cox models is somewhat comparable to the corresponding bias based on multi-component
random effects Cox models when they are compared for the same levels. Finally,
misspecification of the random effects distribution may have substantial impacts in situation
having a large magnitude of variability between random effects, event rate, and data

dimensions; in such cases caution should be exercised.
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Figure 5.1: The normal (solid) and log-gamma (dot) probability densities with mean zero and variance o2 =
0.5.
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Figure 5.2: The normal (solid) and Laplace (dot) probability densities with mean zero and variance a2 = 0.5.
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Figure 5.3. Scatter plots for ML estimates of between-group variance on the log scale vs. their standard errors,
in a shared frailty model for settings of 85% censoring and different magnitudes of variance, number of groups,

and group size.
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Figure 5.4. Boxplots of estimates of within-group fixed effect (f;) from a shared frailty model with Laplace,
log-gamma, and normal distributed random effects, fit with assumed normal distribution for random effects to
datasets with the settings of 85% censoring; 20 and 70 groups, each with sizes of 10, 40, and 100; and 62 = 0.5.

The reference line is at the true value of g; = 0.5.
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Figure 5.5. Boxplots of estimates of between-group variance (%) from a shared frailty model with Laplace, log-
gamma, and normal distributed random effects, fit with assumed normal distribution for random effects to
datasets with the settings of 85% and 50% censoring; 20 and 70 groups with size of 100; small (0.2) and large
(0.5) variance. The reference lines are at the true values of 2 = 0.2 and 0.5 for a small and large variance,

respectively.
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Figure 5.6. Boxplots of the estimates of random-slope variance (left) and correlation between the random
intercept and random slope (right) from a random coefficient Cox model with Laplace and normal distributed
random effects, fit with assumed normal distribution for random effects to datasets with the settings of 85% and
50% censoring rates; 20 and 70 groups with size of 100; and large variance components. The reference lines are

at the true values of 62 = 0.5and p = 0.8.
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Table 5.1. True distributions and model parameter settings used for three simulation studies based on Cox model with random group effect (study I), Cox

model with correlated random intercept and random slope (study 1), and Cox model two nested random effects (study II1).

Random 85% censoring 50% censoring Fixed
effects Small variance Large variance Small variance Large variance effect
dist’n (a0, y)° var. parms® (a0, y)° var. parms® (a0, y)° var. parms® (a,y)° var. parms®  parameters®
Simulation study |

Normal (0.5, 0.012) (0.2) (0.5, 0.010) (0.5) (0.5, 0.060) 0.2 (0.5, 0.050) (0.5) (0.5,0.3)
Log-gamma (0.5, 0.015) (0.2) (0.5, 0.016) (0.5) (0.5, 0.070) 0.2 (0.5, 0.090) (0.5)

Laplace (0.5, 0.012) (0.2) (0.5, 0.010) (0.5) (0.5, 0.060) 0.2 (0.5, 0.050) (0.5)

Simulation study 11

Normal (0.5,0.008) (0.5,0.25,0.4) (0.5,0.006) (1.0, 0.50, 0.8) (0.5,0.050) (0.5,0.25,0.4) (0.5,0.050) (1.0, 0.50, 0.8) (0.5,0.3)
Laplace (0.5,0.008) (0.5,0.25,0.4) (0.5,0.006) (1.0, 0.50, 0.8) (0.5,0.050) (0.5,0.25,0.4) (0.5,0.050) (1.0, 0.50, 0.8)

Simulation study 111

Normal (0.5, 0.008) (0.5, 0.25) (0.5, 0.006) (1.0, 0.5) (0.5, 0.044) (0.5, 0.25) (0.5, 0.042) (1.0,0.5) (0.5,0.3,0.2)
Log-gamma (0.5, 0.015) (0.5, 0.25) (0.5, 0.023) (1.0, 0.5) (0.5, 0.095) (0.5, 0.25) (0.5, 0.160) (1.0,0.5)

Fixed effect parameters in each simulation study: I and 11: (8;, 5,); HI: (B, B2, B3).

®Variance parameter(s) in each simulation study: I: (¢2); II: (62, 02, p); III: (62, 02).

“Baseline hazard parameters.
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Table 5.2. Poisson modeling results for data generated from Cox models with 85% censoring rate and random
group effects with 2 = 0.2 and 3 different assumed random effects distributions: median of point estimates,
empirical standard error and mean of the estimated standard error for fixed effects as well as probability

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets.

Truere. B1 B o?
dist’n G n; median (std; se) Pr.C. median (std; se) Pr.C. median [Qq; Qs]
True 20 .500 .300 .200
Normal 10 .478(.372;.377) .966" .306 (.444; .428) .943 .0637[.000; .240]
Log-gamma 525" (.382; .375)" .963 .303 (.461; .426) .944 .056™ [.000; .246]
Laplace .494 (.409; .380) .937 .283 (.447; .437) .950 .0747[.000; .265]
Normal 40  .490(.194; .187) .941 .269 (.303; .268) 918" 1447 [.072; .228]
Log-gamma .489 (.180; .184) .948 .304 (.291; .268)" 9117 .1487[.081; .234]
Laplace .487 (.185; .186) .948 .291 (.287; .265) .919” 1357 [.057; .227]
Normal 100 .497 (.117;.116) .948 .305 (.245; .227) .920° 1647 [.112; .221]
Log-gamma .504 (.113; .115) .946 .315(.249; .228) 9127 1647 [.115; .226]
Laplace .503 (.118; .117) .948 .299 (.245; .221) 9127 .1437[.088; .215]"
70

Normal 10 .502 (.182;.190) .963 .289(.238; .234) .941 .1557[.065; .256]
Log-gamma .499 (.189; .188) .948 .297 (.229; .232) .957 1687 [.071; .257]
Laplace .500 (.188; .191) .960 .307 (.240; .238) .955 1777 [.082; .282]"
Normal 40  .492(.095; .096) .956 .293(.152; .148) 936~ 1827 [.145; .219]
Log-gamma .507 (.093; .095)" .956 .294 (.145; .148) .954 1827 [.144; .223]
Laplace .496 (.094; .097) .960 .295 (.158; .150) .941 1857 [.139; .241]
Normal 100 .499 (.060; .060) .953 .2857(.124; .127) .947 .1877[.156; .219]
Log-gamma .501 (.059; .059) .962 .298 (.125; .129) .948 1957 [.163;.228]"
Laplace .499 (.059; .060) .950 .295(.133; .127) .940 1827 [.146; .226]

" Significantly different from the correctly specified model.
~ Significantly underestimated and * overestimated from the true value.
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Table 5.3. Poisson modeling results for data generated from Cox models with 50% censoring rate and random
group effects with 2 = 0.2 and 3 different assumed random effects distributions: median of point estimates,
empirical standard error and mean of the estimated standard error for fixed effects as well as probability

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets.

Truere. B1 B o?
dist’n G n; median (std; se) Pr.C. median (std; se) Pr.C. median [Qq; Qs]
True 20 .500 .300 .200
Normal 10  .497 (.201;.203) .950 .290 (.284; .275) .944 .1397 [.064; .228]
Log-gamma .488 (.205; .206) .949 .318(.298; .277) 9227 .1397 [.065; .224]
Laplace .495 (.205; .203) .939 .289 (.285; .273) .930” 1307 [.049; .217]
Normal 40  .4927(.100; .101) .957 2847 (.240; .215) 916~ 1567 [.114; .207]
Log-gamma .493 (.100; .102) .954 .300 (.238; .223) .930° 1687 [.123; .227]"
Laplace .493 (.098; .101) .960 .294 (.230; .208) .9247 .1407 [.094; .201]"
Normal 100 .490 (.064; .063) .946 .299 (.217; .202) .954 .1657 [.125; .207]
Log-gamma .493 (.063; .064) .950 .305 (.227; .210) 9227 1757 [.130; .231]"
Laplace 490 (.061; .063) .957 .290 (.212; .196) 9237 .1497[.101; .207]"
70

Normal 10 .488 (.102;.105) .945 .293(.153; .153) .946 .1687 [.130; .216]
Log-gamma 487 (.103; .107) .958 .290 (.154; .156) .949 1797 [.134; .223]"
Laplace .482° (.100; .106) .954 .296 (.157; .151) .935 .1557[.118; .206]"
Normal 40  .488 (.051;.053) .948 2917 (.122;.120) .936 1797 [.154; .208]
Log-gamma 4927 (.052; .053) .952 287 (.124; .124) .946 1927 [.167; .223]"
Laplace .493 (.050; .053)" .947 .287(.127; .118) .935~ .1717 [.140; .206]"
Normal 100 .489 (.032;.033) .939 2847 (111, .113) .948 .1837[.161; .208]
Log-gamma .491" (.033; .033) .943 .295(.118; .118) .942 .200 [.173; .228]"
Laplace .488™ (.032; .033) .950 2907 (.113;.1112) 941 1747 [.147; .208]"

" Significantly different from the correctly specified model.
~ Significantly underestimated and * overestimated from the true value.
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Table 5.4. Poisson modeling results for data generated from Cox models with 85% censoring rate and random
group effects with 2 = 0.5 and 3 different assumed random effects distributions: median of point estimates,
empirical standard error and mean of the estimated standard error for fixed effects as well as probability

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets.

Truere. B1 B, o?
dist’n G n; median (std; se) Pr.C. median (std; se) Pr.C. median [Qq; Qs]
True 20 .500 .300 .500
Normal 10 .493(.379;.391) .963 .300 (.548; .503) 9317 2787 [.061; .559]
Log-gamma .488 (.398; .394) .960 .304 (.541; .507) .942 290" [.089; .577]
Laplace .483 (.419; .397) .946 .283 (.553; .524) .943 317" [.071; .652]"
Normal 40  .4847 (.200; .194) .949 2727 (.419; .370) .909” 396" [.252; .567]
Log-gamma .505 (.198; .192) .942 .285 (.412; .374) 915~ 4027 [.263; .575]
Laplace .485 (.194; .194) 947 .305 (.394; .362) 924~ .3587[.213; .545]"
Normal 100 .502 (.121;.121) .956 .309 (.361; .336) .929° 417 [.308; .541]
Log-gamma 497 (.122; .119) .946 .313(.380; .355) .919” 4807 [.344; .622]"
Laplace .498 (.121; .121) .947 .302 (.357; .323) 9127 .3637[.241; .545]"
70
Normal 10 .501(.191;.197) .959 .290 (.289; .281) .946 4397 [.299; .595]
Log-gamma 492 (.197; .197) .943 .306 (.285; .276) .942 4127 [.296; .532]"
Laplace .497 (.197; .198) .957 .320 (.300; .290)" .947 495 [.335; .674]
Normal 40  .493(.101;.100) .947 .289 (.210; .207) .942 4617 [.391; .543]
Log-gamma .496 (.101; .099) .948 .298 (.211; .210) .950 491 [.415; .586]
Laplace .495 (.096; .100) .960 .298 (.217; .206) .944 4637 [.363; .571]
Normal 100 .498 (.062;.062) .943 .2827 (.180; .188) .949 469 [.405; .538]
Log-gamma 4927 (.059; .061) .965" .306 (.199; .199)" .950 538" [.464; .622]
Laplace .497 (.063; .062) .948 .296 (.192; .184) .940 4407 [.371; .536]"

" Significantly different from the correctly specified model.
~ Significantly underestimated and * overestimated from the true value.
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Table 5.5. Poisson modeling results for data generated from Cox models with 50% censoring rate and random
group effects with 2 = 0.5 and 3 different assumed random effects distributions: median of point estimates,
empirical standard error and mean of the estimated standard error for fixed effects as well as probability

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets.

Truere. B1 B, o?
dist’n G n; median (std; se) Pr.C. median (std; se) Pr.C. median [Qq; Qs]
True 20 .500 .300 .500
Normal 10 .498 (.211;.214) .957 .296 (.391; .371) .920° 3757 [.239; .550]
Log-gamma .483 (.205; .208) .963 .306 (.401; .379) 924~ 4067 [.274; .587]"
Laplace .493 (.215; .215) .957 .286 (.380; .360) .932° 347 [.206; .516]"
Normal 40  .4877(.099; .101) .950 2767 (.357; .320) .920° .3947[.309; .516]
Log-gamma 490" (.101; .103) .954 .284 (.381; .348) 9227 4817 [.354; .632]"
Laplace .486" (.102; .106) .962 .291 (.336; .306) 924~ .3517[.249; .501]"
Normal 100 .488 (.067;.060) .946 .314(.338; .312) 916~ 4137 [.323; .515]
Log-gamma .486" (.063; .064) .943 .317 (.369; .346) 9227 506 [.384; .667]
Laplace 487 (.064; .066) .956 .290 (.324; .298) .926” .3707[.261; .501]"
70
Normal 10 .489(.108;.111) .955 .289 (.205; .207) .946 4397 [.362; .524]
Log-gamma .480 (.105; .108) .948 293 (.214; .212) .944 494 [.412; .582]
Laplace .480" (.105; .111) .962 .297 (.209; .200) .940 3997 [.322; .484]"
Normal 40  .483 (.054; .055) .947 2827 (.182; .179) .940 4527 [.393; .513]
Log-gamma .483 (.052; .053) .944 .286 (.199; .196) .940 553" [.476; .637]"
Laplace .488™ (.053; .055) .946 2817 (.184; .173) .932° 4147 [.349; .492]"
Normal 100 .486 (.033;.034) 9317 278 (\171; .174) .938 460 [.406; .515]
Log-gamma .485™ (.033; .033) .932° .292 (.196; .194) .942 578" [.504; .659]"
Laplace .485™ (.033; .034) .932° 2827 (.172; .169) .939 4287 [.362; .504]"

" Significantly different from the correctly specified model.
~ Significantly underestimated and * overestimated from the true value.
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Table 5.6. The rejection rates (type | and a test power) for testing different null
hypothesis values for the parameters B, and 3,, in the simulation settings with
G = 70 groups of n; = 100 based on Cox models with random group effects
and 3 different assumed random effects distributions.

By B

Hg values 0.5 0.45 0.4 0.35 0.3 0.22 0.14 0.06
a? = 0.2, 85% censoring
Normal 047 129 396 .695 .053 .087 .207 424
Log-gamma 038 151 .394 714 052 .090 .245 456
Laplace .050 .129 376 .715 060 .105 .237 .459
% = 0.5, 85% censoring
Normal 057 120 363 .673 051 070 .123 214
Log-gamma 035 102 .352 .659 050 078 .138 .238
Laplace 052 123 337 .676 060 078 141 262
% = 0.2, 50% censoring
Normal 061 217 787 .995 052 095 237 511
Log-gamma .057 216 .794 .989 .058 .098 .280 .508
Laplace .050 .206 .775 .989 .059 110 .274 557
a? = 0.5, 50% censoring
Normal .069 180 .732 .988 062 071 133 .233
Log-gamma .068 .180 .725 .987 058 .073 .143 .239
Laplace .068 .153 .690 .977 .061 .075 .139 .280
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Table 5.7. Poisson modeling results for data generated from random coefficient Cox models with 85% censoring rate and two different
assumed random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for
fixed effects as well as probability coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 300 simulated

datasets.
Truere. By B2 a3 ot p
dist’n G n; median (std; se) Pr.C.  median (std; se) Pr.C. median [Qi; Qs] median [Qq; Q] median [Qy; Qs]
True 20 .500 .300 .500 .250 .400
Normal 10 .581" (.590; .621) .986" .338" (.660; .637) .949 .4157 [.155; .907] 409" [.064; 1.025] -.462" [-1.00; 1.00]
Laplace 613" (.580; .614) 987" 435" (.732; .666) 933 .3777[.104;.918] 3347 [.041; .977] -.414" [-1.00; 1.00]
Normal 40 .483 (.291; .288) 967" .246 (.483; .455) .946 .3837 [.214; .647] .246 [.099; .432] .921% [-.124; 1.00]
Laplace 539" (.279; .281)" 946 .308 (.504; .453) 9200 .4077[.199; .666] 1987 [.067; .411]" 1.00" [-.209; 1.00]
Normal 100 .498 (.207; .196) 936~ 277 (.418; .404) .930° 4167 [.282; .596] .2137 [.109; .368] .716" [.200; 1.00]
Laplace 515" (.185; .190) 970" .297 (.406; .383) 923~ .3647[.230;.563] .1957 [.085; .321] 573" [.005; 1.00]
Normal 0 10 532" (.276; .307) .980" .283 (.345; .338) .943 .462 [.263; .681] .268 [.102; .524] 1.00" [-.279; 1.00]
Laplace .528 (.294; .313) .960 .284 (.370; .348) .953 562" [.329; .843] .280 [.068; .547] .988 [-.366; 1.00]
Normal 40 .503 (.147; .150) .953 .329 (.260; .254) .930° 467" [.352; .603] .2317 [.137; .348] 5207 [.192; 1.00]
Laplace 525" (.149; .148) .950 .322 (.250; .252) .963 492 [.351; .621] .253 [.141; .366] .422 [.069; .937]
Normal 100 .490 (.112; .104) 927 .305 (.228; .221) 933" .4727[.389;.554] 247 [.177; .302] .413 [.235; .606]
Laplace 511* (.098; .103) 957 318 (.227; .218) 947 4537 [.358;.571] 236 [.164; .316] .346" [.148; .529]
True 20 .500 .300 1.000 .500 .800
Normal 10 .632% (.757; .762) .990" .336 (.877; .842) .940 .8697 [.360; 1.522] 553 [.117; 1.388] 1.00" [-.541; 1.00]
Laplace .534* (.706; .745) 983" 508" (.921; .873) 939 .7897 [.315; 1.564] 522 [.112; 1.187] 1.00" [-.749; 1.00]
Normal 40 .499 (.376; .372) 967" .245 (.673; .632) .943 .8367 [.509; 1.301] .513 [.256; .870] 1.00" [.764; 1.00]
Laplace 591" (.348; .349)" 957  .344 (.710; .624) 933" .8327[.501; 1.233] 3667 [.148; .729]" 1.00" [.627; 1.00]
Normal 100 .491 (.271; .259) 933 .278 (.539; .528) .933” .8617[.638; 1.155] .483 [.258; .680] 1.00" [.788; 1.00]
Laplace 541" (.247; 241)" .937  .337 (.576; .516) 9200 7097 [.495; 1.084]" 3607 [.194; .584]" .960" [.597; 1.00]"
70
Normal 10 .543" (.342; .365) 977" .338 (.452; .449) .943 .935 [.646; 1.286] 487 [.278; .823] 1.00" [.602; 1.00]
Laplace 1498 (.381; .378) 977" .300 (.487; .468) 950  1.225%[.751; 1.565]" 471 [.186; .829] 1.00" [.428; 1.00]
Normal 40 .509 (.183; .188) 967" .303 (.355; .342) .943 .9277[.766; 1.168] .491 [.335; .626] .885" [.657; 1.00]
Laplace 544" (.186; .182) 940 377 (.353;.342) 957  .937 [.694; 1.225] 14387 [.300; .598]" 7197 [.510; 1.00]
Normal 100 .496 (.148; .136) 927 .303 (.289; .283) .933” .9227[.786; 1.092] .485 [.387; .588] .8317[.719; .924]
Laplace 524%(.128;.128)"  .930  .323 (.303;.290) 940 .896 [.695; 1.101] 400" [.290; .509]" 7387 [.586; .891]

" Significantly different from the correctly specified model.
~ Significantly underestimated and * overestimated from the true value.
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Table 5.8. Poisson modeling results for data generated from random coefficient Cox models with 50% censoring rate and two different
assumed random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for
fixed effects as well as probability coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 300 simulated

datasets.
Truere. B B2 g of P
dist’n G n; mean (std; se) Pr.C.  mean (std; se) Pr.C. median [Q; Q] median [Qq; Q] median [Q1; Qs3]
True 20 .500 .300 500 250 400
Normal 10 .514 (.260; .259) 967" .316 (.490; .441) 920" 3777 [.229; .621] 190" [.072; .462] .989" [-.216; 1.00]
Laplace .526 (.248; .253) 967" .352 (.481; .423) 9277 .3727[.178; .618] 192" [.060; .364] 578 [-.489; 1.00]"
Normal 40  .477(.150; .157) 953 .247 (.415; .370) 920" .4167[.299; .580] 2167 [.128; .317] 573" [.216; .883]
Laplace .508 (.154; .149)" 937 .338(.406; .357)" 927" 3877 [.247; .570] .1697[.094; .282]" 483" [.110; .905]
Normal 100  .503 (.133;.127) 923" .301 (.365; .337) 933" .4377[.317; .557] 2107 [.148; .301] 468" [.200; .660]
Laplace 509 (.119; .121) 957  .260 (.363; .327) 927" 3707 [.246; .573] 1747 [115; .261] 410 [.187; .673]
Normal 0 10 .493(.137; .136) 946 .294 (.256; .244) 926" 4577 [.354; .563] 206" [.122; .315] 597" [.189; 1.00]
Laplace 514 (.127; .132)" 957  .264 (.258;.237) 920" .4477[.332; .587] 167" [.073; .309]" 496 [.004; 1.00]
Normal 40  .492 (.082; .084) 950  .306 (.205; .205) 960 4727 [.400; .543] 230" [.184; .288] 427 [.278; .564]
Laplace .506 (.081; .080)" 940  .320 (.203; .199) 950  .4357[.359;.539] 1937 [.148; .248]" 3487 [.179; .552]"
Normal 100 .497 (.070; .070) 943 292 (.193;.187) 9277 4647 [401; .528] 2337 [.195; .272] 385 [.284; .488]
Laplace .492 (.065; .067) 963 .308 (.195; .185) 937 4447 [.365; .535] 207" [.172; .250]" 3227 [.209; .456]"
True 20 .500 .300 1.000 500 800
Normal 10 .524(.293; .290) 970" .269 (.644; .591) 933" .8307[.546; 1.207] 303" [.137; .562] 1.00* [.578; 1.00]
Laplace .538 (.275; .272) 950  .336 (.634; .554) 903" 7797 [472; 1.123] 258" [.084; .453] 1.00* [.145; 1.00]"
Normal 40  .4757(.190;.189) 950  .302 (.502; .461) 933" .8807[.638; 1.175] 365" [.260; .499] .885" [.666; 1.00]
Laplace .506 (.179; .176) 950  .363"(.512;.463) 9300 775 [541;1.093] 2687 [.172; .388]" .814 [.500; 1.00]"
Normal 100 .493 (.172; .157) 926~ .338 (.439; .396) 920" .8847[.690; 1.137] 3497 [.253; .466] 819" [.672; .910]
Laplace 485 (.142; .144) 957  .297 (.462; .399) 9200 .7387[514; 1.119]" 2797 [.194; .363]" 767 [.582; .903]"
70
Normal 10 .494 (.156; .151) 947 291 (.330; .322) 943 .9227[.780; 1.139] 3187 [.199; .462] 912" [.657; 1.00]
Laplace 512 (.142; .142) 963 .273(.334;.309) 930" .8837[.689; 1.100] 2277 [.113; .355]" 821 [.454; 1.00]
Normal 40  .4857(.097;.100) 957  .306 (.249; .256) 960 9577 [.832; 1.120] 368" [.301; .450] 764" [.669; .837]
Laplace .501 (.089; .091) 953 .327 (.266; .256) 947 8597 [.731; 1.039]" 2767 [.221; .351] .6607 [.503; .802]"
Normal 100  .4707(.091;.087) 923" .308" (.220; .218) 953 .9397[.823; 1.066] 3917 [.329; .446] 752" [.692; .810]
Laplace .481" (.076; .079) 963 .328 (.235; .230) 933" 8987 [.740; 1.072]" .306™ [.257; .358]" 6527 [.557; .736]"

" Significantly different from the correctly specified model.
~ Significantly underestimated and * overestimated from the true value.
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Table 5.9. Poisson modeling results for data generated from nested random effects Cox models with 85% censoring rate and two different assumed
random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for fixed effects as well
as probability coverage, and interquartiles ranges [Q1, Qs] for variance component estimates, over 300 simulated datasets.

True re. I B2 B3 of a3
dist’'n n; m,G ny;  median (std; se) Pr.C. median (std; se) Pr.C. median (std; se) Pr.C. median [Q; Qs] median [Qi; Q]
True 2 30 .500 .300 .200 .500 .250
Normal 10  .553(.323; .319) .956 .1787(.786; .737) .939 .219 (.768; .660) .926°  .3587[.102; .614] .0377 [.000; .302]
Log-gamma .527 (.350; .328) .963 .428 (.801; .726)" .953 .150 (.714; .640) 9327 .3227[.067; .531] .044" [.000; .263]
Normal 40  .497 (.161; .152) .949 .159 (.596; .568) .946 .218 (.518; .520) .959 .456" [.316; .606] .1387 [.000; .273]
Log-gamma .504 (.162; .157) .946 .214 (.637; .573) 915~ .230 (.592; .526) 912 4617 [.283; .641] .114" [.000; .295]
Normal 100 .500 (.107; .095) 916~ .235(.567; .520) 916~ .219 (.505; .482) .940 .460" [.338; .613] .1247 [.000; .268]
Log-gamma .506 (.097; .098) .959 .260 (.589; .542) 9327 .209 (.556; .504) 899" .512[.378; .688]" .1247[.000; .287]
5 75
Normal 10 .495 (.202; .197) .952 .269 (.621; .506) 864~ 258" (.528; .457) .881" 4507 [.277; .609] 1327 [.033; .273]
Log-gamma .491 (.195; .201) 970" .388 (.564; .519) 9127 .194 (.536; .468) 919 4497 [.314; .621] .1557 [.051; .289]
Normal 40  .493 (.095; .096) .947 .338 (.464; .418) 907" .162 (.443; .394) 900 .4847[.402; .571] 1767 [.088; .279]
Log-gamma .490 (.099; .099) .960 .238 (.488; .432)" 883" .264%(.461;.407)" 913~ 518" [.434;.637] .1827[.093; .273]
Normal 100  .493 (.063; .060) 936" .293 (.465; .388) 900" .240 (.432; .370) .896"  .495 [.422; .575] .1657 [.086; .259]
Log-gamma .507(.057; .062)" 967" .258 (.429; .405) 930" .218(.411; .386) 926~ 550" [.473;.638]" .1607 [.088; .265]
True 2 30 .500 .300 .200 1.000 .500
Normal 10  .519(.333; .334) 969" .173(.998; .940) .948 .256 (.891; .848) .938 .8157 [.379; 1.224] .1577 [.000; .592]
Log-gamma .514 (.314; .326) 977" .293(1.05; .934) 930" .359" (.900; .840) .943 7737 [.411;1.216] .162" [.000; .560]
Normal 40  .483(.172; .161) .963 .176 (.857; .778) .937 .256 (.772; .715) .937 .918 [.624; 1.210] .243" [.000; .507]
Log-gamma 479 (.164; .155) .943 .313 (.877; .824) .940 .250 (.908; .764) 9100 1.014[.689; 1.438] .303" [.000; .654]
Normal 100  .492 (.104; .097) 9337 .251 (.811; .731) 927" .206 (.709; .680) .937 .934 [.682; 1.237] 2717 [.022; .530]
Log-gamma .489 (.097; .098) 970" .318(.844; .803) 9260 .290 (.807; .747) 930" 1.132"[.875; 1.443]" .3137 [.000; .664]
5 75

Normal 10 .497 (.219; .205) .940 .187 (.816; .665) 880"  .225(.699; .610) 903" .9147 [.689;1.223] .2867 [.100; .518]
Log-gamma .488 (.199; .204) .949 .272 (.782; .683) 909" .117 (.704; .632) 906 .957 [.726; 1.217] .3527[.143; .590]"
Normal 40  .497 (.100; .098) .953 .342 (.624; .573) 916~ .169 (.593; .545) 912~ .966 [.806; 1.152] 3417 [.171; .551]
Log-gamma .502 (.097; .098) .963 .331 (.717; .621) 906~  .180 (.674; .588) 906~  1.156" [.981;1.356]" 401" [.209; .607]
Normal 100  .495 (.063; .062) .957 .288 (.656; .547) 900" .227 (.608; .525) .900"  1.005 [.850; 1.179] .3377[.180; .537]
Log-gamma .503 (.064; .061) 933" .236 (.707; .617) 900"  .152 (.643; .594) 926~ 1.261" [1.035; 1.496] 4437 [.228; .671]

" Significantly different from the correctly specified model.
~ Significantly underestimated and * overestimated from the true value.
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Table 5.10. Poisson modeling results for data generated from nested random effects Cox models with 50% censoring rate and two different assumed

random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for fixed effects as well
as probability coverage, and interquartiles ranges [Q1, Qs] for variance component estimates, over 300 simulated datasets.

True re. I B2 B3 of 3
dist’'n n; m,G my  median (std; se) Pr.C. median (std; se) Pr.C. median (std; se) Pr.C. median [Qy; Qs3] median [Qy; Qs]
True 2 30 .500 .300 .200 .500 .250

Normal 10 .503 (.182; .178) .943 .224 (.593; .554) .933” .224 (.558; .512) .926” 406" [.249; .582] .1477[.000; .324]

Log-gamma 1495 (.190; .175) 920" .324 (.607; .571) 920" .200 (.573; .526) 913" 4447 [.315; .639] .1347[.000; .310]

Normal 40 .498 (.082; .084) .963 .252 (.554; .500) .930° .248 (.506; .466) .910° 454" [.347; .577] .1367 [.000; .255]

Log-gamma .500 (.080; .083) 950  .273(.557; .534) 933 .227 (.533;.498) 926 547" [.386;.734] .1477[.000; .285]

Normal 100  .498 (.055; .053) .938 .303 (.526; .487) .942 .229 (.458; .456) .935” 453" [.332; .605] .1287[.017; .263]

Log-gamma 4937 (.052;.052)  .936"  .294 (.568;.518) 916 .144 (.545; .486) 896~ .548" [.405; .695]" .1347[.005; .291]

5 75

Normal 10 .491 (.102; .111) 967 .291 (.491; .410) 887" .236 (.432; .386) 923 4757 [.389; .564] .1497[.073; .255]

Log-gamma 14907 (.109; .109) 953 .201 (.486; .433) 919" .225 (.480; .410) 886~ 534 [.442; .633] .1847[.098; .296]"
Normal 40 .495 (.054; .053) .949 .339 (.418; .381) .909” .162 (.409; .367) .889” 491 [.415; .562] .1717[.099; .265]

Log-gamma 4917 (.054;.053)  .933"  .298 (.457;.417) 919 .231(435;.400)°  .902°  .595" [.502; .699]" .1887[.106; .277]

Normal 100  .4927(.032;.033) .950 .303 (.423; .372) .907" .217 (.408; .359) .880~ 487 [.424; .562] .1737[.095; .263]

Log-gamma .498 (.031; .033) .960 .269 (.425; .396) .919° .215 (.401; .380) .933” 605" [.514; .699]" .1707 [.090; .267]

True 2 30 .500 .300 .200 1.000 .500

Normal 10 .499 (.180; .180) .956 .186 (.795; .731) 9227 .227 (.740; .682) .929° .8137 [.545; 1.108] .2777[.000; .610]

Log-gamma .508 (.174; .181) 967" .202 (.914; .814) 933" .297%(803;.753)  .930"  1.112°[.752; 1.554] .2507 [.000; .570]

Normal 40 .4867 (.081; .084) .960 .187 (.773; .692) .923” .311 (.708; .646) .920° .8817 [.700; 1.153] .2717 [.020; .506]

Log-gamma 479" (.086; .085) 959 .205 (.822;.799) 943 285 (.842; .749) 912~ 1.228"[.914; 1.560]" .3497[.000; .704]

Normal 100  .491 (.056; .053) .926” .289 (.711; .684) .946 .225 (.626; .642) .946 .8767 [.675; 1.188] .2627 [.042; .520]

Log-gamma .4877 (.055; .054) .943 .294 (.851; .801) .926” .195 (.802; .750) .926” 1.302" [.992; 1.660] .3087 [.000; .696]

5 75

Normal 10 .4807(.105;.113)  .966%  .271 (.668;.551) 895~ .234 (.585; .525) 926 9327 [.754; 1.090] .3157[.183; .484]

Log-gamma 497 (.111; .114) 963  .321(.694; .615) 906~  .1087(.645;.588)"  .900"  1.213"[1.030; 1.420]" .3977[.188; .646]"
Normal 40 .4837 (.053; .054) .950 .326 (.578; .529) .906~ .149 (.565; .512) .893” .948" [.808; 1.103] .3417[.202; .522]

Log-gamma 487" (.053; .054) 950  .322(.683; .608) 906~ .158 (.650; .583) 926 1.341"[1.154; 1.544]" 4207 [.206; .646]"
Normal 100  .4847(.034;.034) .913° .295 (.600; .516) .907" .251 (.577; .499) .883” .9537 [.841; 1.100] .3287[.190; .491]

Log-gamma 4857(.035;.034)  .910"  .200 (.719; .619) 896 .157 (.661;.597) 9200 1.458"[1.243; 1.711]" 4407 [.234; .667]"

" Significantly different from the correctly specified model.

~ Significantly underestimated and * overestimated from the true value.
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Chapter 6

Concluding remarks and future research

206



6.1. Introduction

The main objectives of this research project were twofold: first, to explore parameter
estimation for semiparametric hierarchical proportional hazards models beyond the simple
(shared) frailty models, and to evaluate through simulations the performance of the existing
estimation methods for these models. The performance of the methods were investigated in
terms of statistical properties such as unbiasedness, robustness, and confidence interval
coverage. Second, two animal health datasets with thousands of records and time-dependent

predictors and effects were analyzed.

The specific objectives for each study involved in the thesis were as follows. The objective of
the first study was to establish some practical guidelines for the choice of appropriate
estimation procedures for estimating Cox models with random intercept and random slope
(Chapter 2). The second study aimed to analyze a 3-level veterinary dataset with time-
dependent predictors and coefficients, and to evaluate the performance of the approach used
and compare it with other existing approaches (Chapter 3). The purpose of the third study
was to demonstrate the use of the Poisson maximum likelihood approach, in concert with
posterior Bayesian inference, for estimating a cross-classified and multiple membership
model with time-to-event response. Further, the multiple membership model analysis was
applied to a large dataset from veterinary medicine (Chapter 4). Finally, the objective of the
fourth study was to assess the robustness of Poisson maximum likelihood estimation for Cox
models with normal random effects under misspecification of the random effects distribution

(Chapter 5).

In this chapter, the main findings and contributions of this work are summarized. Some future

perspectives are also briefly discussed.

6.2. Multi-component frailty Cox models
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6.2.1. Cox model with random intercept and random coefficient

In Chapter 2, through simulations, the performance of four procedures for estimating Cox
models with random intercept and random slope commonly used in epidemiology and
implemented in broadly accessible statistical software was compared. These procedures were:
the penalized partial likelihood (Ripatti and Palmgren, 2000; coxme), the penalized full
likelihood (Rondeau et al., 2008; frailtypack), the Poisson maximum likelihood (Ma et al.,
2003; Feng et al., 2005; xtmepoisson), and the Bayesian approach (WinBUGS). The
simulation was designed to mirror settings of real animal health data. For each simulated
dataset, two random intercept and random slope Cox models were fit; one assumed a

diagonal covariance matrix for random effects and the other used a full covariance matrix.

In this study, convergence problems were observed for PFL and PML, but the non-
convergence rate for the latter was lower and can be dealt with by changing the integration
points of the Gauss-Hermite method. The PFL approach exhibited very low convergence
rates when the magnitude of variance components was large and the optimum convergence
rates were not assured even for a small magnitude of heterogeneity. When the covariance
structure for random effects was correctly specified, the study showed satisfactory results for
both independent and correlated random effects model analyses, whereas ignoring existing
correlation between random effects led to biased estimates for fixed effect parameters when

the variance was large, and such bias increased with increasing oy .

Moreover, results from this comparative study showed that in terms of estimation of the fixed
effect parameter, all the estimation procedures yielded good and comparable estimates when
the between-cluster variability for the random effects was limited. In contrast, when the
magnitude of variability for the random effects was large, only the PML and BAY procedures

produced reasonable estimates for the fixed effect parameter, while it was underestimated by

208



PPL and the estimates of PFL were not of interest due to the high rate of non-convergence.
The estimated and empirical SEs agreed closely for the PML, PFL, and BAY procedures.
However, PPL underestimated the SEs of fixed effect estimates when o,; # 0. This
underestimation of fixed effect SE was also pointed out in Ripatti and Palmgren (2000) and
Therneau and Grambsch (2000, p. 249). For random effect parameter estimation, the
performance of all the procedures for estimating o2 was generally good, one exception being
that PPL underestimated variance when the variance components were large. With the
exception of PML with large variances, all the procedures produced estimates for 7 that
were mostly biased upwards when the variance components were small to moderate, and
somewhat biased downwards for a large magnitude of variance components. All the
estimation procedures tended to estimate o,, with downwards bias in most cases. The SEs for
o2, o, and g,, were estimated with reasonable accuracy by PML, and by PFL when
variance components were small to moderate, whereas the mean of posterior standard

deviation for BAY overestimated such SEs.

In conclusion, estimating the covariance between the random intercept and the random slope
in the analysis is recommended and the PML approach seems to be a preferable choice for

this task.

6.2.2. Cox model with two nested frailties

The current implementation of nested frailty Cox models, such as those implemented in
coxme, frailtyHL, and frailtypack packages of R software, are limited to models with few
predictors and moderate size of datasets. The coxme and the frailtyHL implementations of
nested frailty models do not support the counting process format necessary for modeling
time-dependent predictors. On the other hand, the implementation of nested frailty models in

the frailtypack package assumes a gamma distribution for frailties and allows for time-
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dependent predictors and coefficients, but it requires the number of cluster to be at most
moderate (a dataset of 6973 subjects from 18 areas nested in 6 cities was used in the original
paper of Rondeau et al. (2006)). In Chapter 3, we applied a nested log-normal frailty model to
a large dataset from a veterinary epidemiologic field with quite a large number of
independent variables (many parameters); these independent variables include time-varying
predictors and effects. The model was fit to the data as a Poisson GLMM after transforming
the data to the counting-process format and use of the Gaussian quadrature method for a more
accurate ML estimation. The estimation approach was then evaluated via a simulation study
with a data structure similar to the real data. Through the simulation study, the performance
of PMLGQ, PMLAP and PPL was compared in terms of bias in point estimates and their
SEs. The study showed that the approach used with Gaussian quadrature produced fairly
robust and adequate estimation for both fixed and random effect parameters as well as their
SEs. On the other hand, the approach with Laplace approximation produced estimates for the
between-subcluster variance with strongly upwards bias and underestimated the between-
cluster variance and the SEs of variance components. In comparison, the performance of PPL
was good and comparable to PMLGQ in estimating the fixed effect parameters and their SEs.
However, the procedure underestimated the between-subcluster variance. The take-home

message from this comparison was that PMLGQ performed best.

6.2.3. Cox model with a multiple membership and cross-classified frailties

In this thesis, a cross-classified and multiple membership model was applied to time-to-event
data. To the best of our knowledge, such a model has not previously been reported in the
survival analysis literature. The model was estimated, through the identity between the Cox
PH model and the Poisson model, as a mixed-effects Poisson model using Bayesian

techniques. A simulation study was conducted to evaluate the approach using settings
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resembling real data and another setting with a larger magnitude of heterogeneity and a more
pronounced data structure. Results indicated that the proposed estimation approach
performed well in estimating most of the model parameters when the data structure and the
variance components were similar to the real data (8% of herds in a multiple membership and
small variance components). Further, the estimation was clearly improved in the settings of a

large magnitude of variance components and a more pronounced CMM data structure.

6.2.4. Misspecification of the frailty distribution

A simulation study was conducted to assess the robustness of Poisson maximum likelihood
estimation for Cox models with normally distributed random effects against misspecification
of the random effects distribution. The consequences of assuming normality of random
effects to distributions that are clearly non-normal were examined. The impact of
misspecification was assessed in three different frailty model designs, namely, shared frailty,
random coefficient, and nested frailty Cox models. The results showed that the approach used
provides robust estimation for fixed effects even with misspecified random effects
distribution. On the other hand, misspecification of the random-effects distribution may have
substantial impact on the estimation of variance components, especially when the magnitude
of variability between random effects, number of groups, group size, and event rate are large.

In these situations, caution needs to be exercised in the interpretation of the analysis.

6.3. Analyses of real datasets

In Chapter 2, a subset of the lameness data (Christensen, 1996) was used as an example to
study the performance of four estimation methods based on a random coefficient Cox model.
A Cox model with random herd and treatment effects was applied to the dataset and
heterogeneity in the baseline hazard and in treatment effects between herds was quantified

using the four estimation methods. Two analyses were carried out; one assumed a diagonal
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covariance matrix for normally distributed random effects and the other used a full
covariance matrix. Both analyses demonstrated substantial variation in the baseline hazard
and in the treatment effect between herds, as well as a clear discrepancy in the estimation of
fixed treatment effect between the two analyses. The simulation findings concur with such
discrepancy and it may be attributable to the misspecifying of the correlation structure
between random effects. Analysis and further exploration of the full lameness data can be

found in (Stryhn and Christensen, 2013).

In Chapter 3, a dataset from the Canadian Bovine Mastitis Research Network was analyzed to
identify and evaluate risk factors associated with the hazard of clinical mastitis. The CBMRN
data had 8,035 cows clustered by 69 herds; some of these cows with multiple lactations
resulted in a dataset with two hierarchical levels of clustering at cow and herd levels. Due to
the presence of time-varying predictors and effects, large number of predictors, large number
of random effects at the cow level as well as the size of the CBMRN dataset, none of the
existing frailty model software was able to handle such a dataset. Carrying over the identity
between the Cox PH model and a Poisson model to the nested frailty models and using the
theory and software for GLMMs, allowed us to fit a log-normal nested frailty Cox model to
the CBMRN dataset. However, using this estimation approach can be challenging for such a
large dataset as the data expansion into the counting-process format led to a massive dataset,
that complicated the analysis and required excessive computing time. Moreover, the large
number of predictors in such large data produced complex interactions between predictor
effects and increased the chance of violating model assumptions such as the proportionality
of hazards, as well as complicating the model building process and the interpretation of
results. In conclusion, the analysis of the CBMRN dataset demonstrated substantial variation
in the baseline hazard among cows and between herds, and also indicated that some of the

herd managerial factors combined with cow characteristics influenced the hazard of CM
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during the lactation period; most of these effects had a strong effect early rather than later in
the lactation. There was great value in accounting for the full structure of the CBMRN dataset
by estimating variance components at the cow and herd levels and at the same time modeling
time-varying predictors and effects. The PML approach offers the opportunity to analyze
such large and complex datasets and models. However, the low incidence of failures and the
large number of coefficients made model convergence challenging to achieve. Changing the
integration points of the Gaussian quadrature method may help in these cases. Finally, the
analysis of large datasets with quite many and complex predictors, such as in the CBMRN
dataset, presents challenges beyond the estimation in itself. Such analyses may result in
models with a complex network of interacted effects, e.g. including interaction with time.
These effects are often hard to present and interpret. In this regard, the graphical presentation

of predictor effects as well as purposely selected hazard ratios may aid the interpretations.

In Chapter 4, a survival analysis was carried out for a dataset from the Western Canada beef
productivity study (Waldner, 2008) to examine individual, herd management, and
environmental factors associated with calf loss and mortality in beef cattle. The dataset was
large in size and had a special structure. In addition to calves being hierarchically nested
within herds, herds were cross-classified by veterinary clinics and ecological regions, and
some of the herds were serviced by two veterinary clinics, creating a 3-level CMM data
structure. A CMM frailty model was fit to the calf mortality dataset to account for both the
special data structure and the time-varying effects for some predictors. The model was fit as a
CMM Poisson model and estimated using Bayesian techniques which were computationally
demanding. The analysis of calf mortality data showed a larger variation between herds than
between both veterinary clinics and ecological regions, and a clear improvement in model fit
after accounting for the variation between veterinary clinics and ecological regions.

Furthermore, the analysis demonstrated that some of the individual and environmental factors
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as well as some predictors related to biosecurity practices influenced the hazard of mortality
in calves. Finally, we conclude from this and previous work that there was a benefit in adding
complexity to a simple frailty model by taking into account both the time-varying effects and
the hierarchical data structure. In addition to the improvement in the model fit, variances for
herd, veterinary clinic, and ecologic region were quantified. MLwiN software provides the
facilities to estimate the model as a CMM Poisson model using MCMC techniques. However,

the analysis required excessive computing time.

6.4. Estimation approaches

6.4.1. Poisson modeling approach for frailty models

The equivalence of a Cox proportional hazards model with a Poisson regression model
(PML) has been known since the 1980s (Whitehead, 1980). Such equivalence can be carried
over to the case of hierarchical survival data (Ma et al., 2003; Feng et al., 2005). Therefore,
frailty models with an unspecified (or a piecewise constant) hazard function can be estimated
as mixed-effects Poisson models. Using GLMM software, we can fit frailty models with
random coefficients or several hierarchical levels of clustering as well as fitting frailty
models to data with imperfect hierarchical structure such as cross-classified levels or/and
multiple membership structure. Furthermore, with the Poisson modeling approach we can
apply the adaptive Gaussian quadrature method for accurate maximum likelihood estimation
or use Bayesian techniques for estimation. As the data need to be expanded to apply the
approach, the latest version of Stata, where the memory is resized automatically, provides
opportunity to analyze very large datasets (millions of records) with many predictors
including time-varying predictors but of course with compromises in computing time. Also,

Stata facilities for Poisson GLMMs are readily available for inference.
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The Poisson modeling approach showed, in general, good performance in estimating different
designs of frailty models including shared frailty, random coefficient, and nested frailty
models using maximum likelihood estimation, and a cross-classified and multiple
membership frailty model based on MCMC estimation. However, the approach tended to
produce unrealistic SEs and Cls for maximum likelihood estimates of variance components
when the number and the size of clusters as well as the event rate were small. The simulation
study in Chapter 5 showed that the PML approach produced robust estimates under
misspecification of the random effects distribution for both the within-group and between-
group fixed effects. Further, the approach also gave robust estimates for variance components
in a wide variety of commonly encountered situations in veterinary medicine when both the
magnitude of heterogeneity and event rate were small. Misspecification of the random effects
distribution may become a problem for variance component estimates when the magnitude of

heterogeneity, number of groups, group sizes, and event rate are large.

6.4.2. Penalized partial likelihood approach

The performance of the PPL approach (Ripatti and Palmgren, 2000) was assessed in this
thesis based on a random coefficient Cox model including one individual-level predictor and
simulation settings with varying magnitude of heterogeneity and heavy censoring. The
approach was also evaluated based on a Cox model with two normally distributed nested
random effects including three predictors at different hierarchical levels and simulated
datasets of correlated event times with a high rate of censoring. The approach performed well
in estimating the fixed effect parameters and SEs under the nested frailty model and the
random coefficient model as long as the magnitude of heterogeneity was small. For a large
magnitude of heterogeneity, PPL underestimated the within-cluster fixed effect as well as its

SE when a full covariance matrix for random effects was assumed in the analysis. Based on
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the random coefficient model, the PPL approach performed reasonably well in estimating the
variance components for a relatively small magnitude of heterogeneity and tended to
underestimate them for a large magnitude of heterogeneity. Similarly, PPL gave a good
estimate for the variance at the cluster level in nested frailty model and underestimated it at
the subcluster level. Finally, the current implementation of PPL in R software (coxme) did
not provide SEs for variance component estimates nor support the counting-process data
format needed for modeling time-varying predictors and effects. However, its algorithm was

fast to converge and did not suffer from convergence problems.

6.4.3. Other estimation approaches

Two other estimation approaches were used in this thesis; the penalized full likelihood
(Rondeau et al., 2008) and Bayesian approaches. The performance of both approaches was
assessed based on a random coefficient Cox model, so our discussion will be limited to this
model design. The PFL approach experienced a lot of convergence difficulties, especially in
the cases of a large magnitude of variance components, such a convergence problem was also
pointed out in Hirsch and Wienke (2012) but based on a shared frailty model. PFL performed
reasonably well in estimating all model parameters and their SEs as long as the magnitude of
heterogeneity was small to moderate. The Bayesian approach, on the other hand, showed a
good performance in estimating the fixed effect and its SE as well as the variance of random
intercept, whereas it gave estimates for the random slope variance biased upwards for a
relatively small magnitude of heterogeneity and biased downwards for a large magnitude of
heterogeneity. Further, the posterior standard deviations tended to overestimate the variability
between variance component estimates. Finally, the Bayesian procedure was a computer-

intensive technique and required special software.

6.4.4. Recommendations
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The multi-component frailty models including the random coefficient model, nested, and
non-nested frailty models have several advantages over one-component (shared) frailty
models. In addition to quantifying heterogeneity in the baseline hazard at different
hierarchical levels, they improve the model fit and the estimation of fixed effects and handle
predictors at different hierarchical levels as well as allowing for predictor effects to vary
between clusters. Stumbling blocks in the use of multi-component frailty models relate to the
estimation of parameters and the lack of software. One recommendation to overcome these
problems is to convert frailty models into mixed-effects Poisson models and generate
estimations using available software for GLMMs. Other specific recommendations that can

be drawn from this work are:

(1) The use of the Poisson modeling approach in concert with posterior Bayesian
inference is recommended for modeling imperfectly hierarchical survival data,
although further research is needed to confirm the validity of this approach under
different circumstances.

(2) The Poisson maximum likelihood approach with Gaussian quadrature is always
recommended. However, for a small magnitude of heterogeneity unrealistic SEs and
Cls may be obtained by the approach based on shared and nested frailty models when
the number of clusters, cluster size, and event rate are small; in such cases these
statistics should not be used for inference.

(3) For substantial heterogeneity, the dataset has to be carefully inspected and if possible
different frailty distributions have to be used in the analysis to check the robustness of
the model parameter estimates.

(4) In random coefficient models, estimating the correlation between the random

intercept and the random slope is recommended.
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(5) The penalized partial likelihood approach is recommended for quick data exploration
and its fixed effects estimates may be used for inference as long as the magnitude of

heterogeneity in the data is small.

6.5. Future perspectives

Although, the thesis presents different model designs and their estimation approaches for
analyzing hierarchical survival data beyond the shared frailty model analysis, there are many
other aspects related to the analysis of hierarchical survival data that are not covered and may
be considered as topics for future research. In Chapters 2 and 3, the simulation studies were
built to mirror settings of specific datasets and the performance of the estimation procedures
used was evaluated based on those settings. Further research may be needed to assess the
effect of other factors such as the censoring rate, number of clusters, cluster size, type of
predictor and type of baseline hazard on the performance of estimation procedures.
Furthermore, evaluating the feasibility of 3-level Cox models with random coefficients using
either the Poisson modeling approach or extending one of the other existing estimation
approaches may be of great interest in the future. Another thought is to explore and apply
time-dependent frailty models that can deal with the situation where we believe that the time-
varying frailty exists; this phenomenon might be found in large veterinary data. Moreover,
development of likelihood-based estimation techniques for special frailty models such as
multiple membership and cross-classified frailties could also be a topic for future research. A
possible solution might be to use GLLAMM and implement the model as a mixed-effects
Poisson model. There are other open issues such as, extending frailty model software to
support counting-process formatted data, providing tools for testing proportional hazards and
goodness-of-fit in frailty models and quantifying correlation at different hierarchical levels,

developing an algorithm for simulating survival data from a frailty model with time-varying
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effects, and extending other survival models to allow for different data structures in the cases

where PH models do not provide adequate analysis.
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