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ABSTRACT 

This thesis discusses and applies hierarchical models for survival data in the field of 

veterinary medicine. The focus is on hierarchical proportional hazards models when the 

baseline hazard is left completely unspecified. Parameter estimation for these models is 

explored and the performance of their estimation methods is investigated in terms of 

statistical properties such as unbiasedness, robustness, and probability coverage.  

The thesis is formed by manuscripts of four studies. The first study compares, via 

simulation, the performance of different estimation methods for estimating a random 

slope Cox model with and without covariance between the random effects. The 

simulation is built to mimic real animal health data. The aim of the study is to establish 

some practical guidelines for the choice of appropriate statistical estimation methods for 

modeling random slopes in 2-level hierarchical data. Results show that estimating the full 

covariance matrix for random effects is always preferable in the analysis and Poisson 

maximum likelihood estimation is an adequate approach for this task. 

The second study explores the feasibility of a full hierarchical survival analysis for a 

large dataset with three levels of hierarchy and time-dependent predictors and 

coefficients. To this end, a log-normal nested frailty Cox model is applied to Canadian 

Bovine Mastitis Research Network (CBMRN) data to identify risk factors associated with 

the hazard of clinical mastitis (CM) during cow lactations. This nested frailty model is 

estimated by the Poisson maximum likelihood approach with Gaussian quadrature. The 

performance, in terms of bias and efficiency of estimates, of the Poisson maximum 

likelihood approach (estimated using either Gaussian quadrature or Laplace 
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approximation) is compared with the performance of the penalized partial likelihood 

approach. The Poisson maximum likelihood with Gaussian quadrature produces fairly 

robust and adequate estimates while the penalized partial likelihood and the Poisson 

maximum likelihood with Laplacian approximation are found to have substantial 

drawbacks. Further, the research indicates that some of the herd managerial factors 

combined with cow characteristics influence the hazard of CM during the lactation 

period; some of these effects are different earlier as compared to later in the lactation. 

The third study involves analyzing a dataset on calf loss and mortality in beef cattle in 

Western Canada.  This dataset has a cross-classified and multiple membership structure 

which is a special type of data structure that has only been accounted for in the analyses 

of linear and generalized linear models but not in survival analysis. The study objectives 

are twofold: the first is to explore and demonstrate the use of Poisson generalized linear 

mixed models (GLMMs) in the Bayesian framework for estimating a Cox model with 

cross-classified and multiple membership frailties. The second, is to simultaneously 

examine the individual, herd management, and environmental factors associated with 

beef calf mortality in Western Canada and to estimate the age period where calves are 

most at risk. Finally, a simulation study with settings similar to the real data is carried out 

to evaluate the estimation approach. The simulation results gave evidence that the 

approach used provides valid estimates. 

In the fourth study, the robustness of Poisson maximum likelihood estimation was 

assessed, through simulation, for a Cox model with normal random effects under 

misspecification of the random-effects distribution. The impact of misspecifying the 

distribution of random effects is assessed based on two different non-normal distributions 



vii 
 

for random effects and three different model designs. Some of the factors that might 

affect the estimation are also investigated. The study shows that the Poisson maximum 

likelihood approach yields robust estimates under misspecification of the random-effects 

distribution for within-group fixed effects and in a wide range of situations for between-

group fixed effects. For variance components, the approach produces robust estimation 

under model misspecification as long as the magnitude of heterogeneity is small, though 

misspecification may become a matter of concern when the magnitude of heterogeneity 

and group sizes become large.  
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Chapter 1 

Introduction  

 

1.1. Survival data 

When data include a response variable that corresponds to the time from a well-defined 

origin to the occurrence of a particular event or end point, the data may be called time-to-

event data. Such data have the following features: the response variable is non-negative; 

part of the data is often right censored, i.e., for some individuals the event of interest has 

not occurred due to withdrawal or end of study (there are also other types of censoring 

such as left and interval censoring); and the data may contain predictors and effects that 

change over time. Time-to-event data go under different names depending on the area of 

application, for example as survival data in medical and biological sciences and as failure 

time data in engineering and industry. Examples of time-to-event outcomes are: time 

from onset of a disease to death, time to recurrence of a disease, time to breakdown of a 

machine, or the duration time of a process.  

In veterinary and animal sciences, survival data are often encountered. Knowing when 

the event of interest is going to occur and what factors might affect the instantaneous rate 

of this event may be of crucial importance for both veterinarians and farmers to take the 

necessary action. In the last several years, an increasing number of both experimental and 

observational studies using time-to-event response in veterinary and animal science have 

been observed for different event times including, for instance, time to death in different 
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species (Nur et al., 2004; Duncan et al., 2006; Burnley et al., 2010; Hatcher et al., 2010; 

McCorquodale et al., 2013), time to culling in cattle (Gröhn et al., 2005; Duchateau and 

Janssen, 2008; Dohoo et al., 2009), time from calving to conception in dairy cows 

(Meadows et al., 2006; Meadows et al., 2007), time to occurrence of a disease (Portolano 

et al., 2007; Nielsen and Dohoo, 2012; Relun et al., 2013), and time to recovery from a 

disease (Edmondson et al., 1989; Nielsen and Dohoo, 2013). The response variable also 

could be time to other events such as time to first application of treatment (Christensen, 

1996) or concentration of antibiotic to event (time to event) where inhibition of bacterial 

growth is the event (Stegeman et al., 2006). In veterinary survival data, censoring may 

happen for various reasons. For instance, in studies of occurrence time of mastitis in dairy 

cows censoring could have occurred to the animal due to culling, drying off, leaving the 

study, or surviving until the end of the study without a clinical case occurring.   

Survival analysis refers to statistical techniques and methods for modeling and analyzing 

time-to-event data. These techniques play an important role in many fields such as 

epidemiology, demography, medicine, engineering, and economics. The response 

variable in survival analysis is often modeled indirectly through the instantaneous event 

rate (hazard function) that can be linked to the survival function. The proportional 

hazards model (Cox, 1972) has become the preferred regression analysis for survival 

data. The Cox proportional hazards model is the main focus throughout this thesis. In the 

next section, a detailed description of three survival datasets from veterinary medicine is 

given.    

1.2. Description of datasets used in the thesis  
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1.2.1. Lameness data  

The lameness data are described in Christensen (1996) and in Josiassen and Christensen 

(1999). Briefly, a total of 7632 litters of piglets (5,465 sows) from 35 herds were 

followed from birth to weaning in a Danish project carried out by the Health and 

Production Surveillance System (HEPS) during the period from October 1990 to March 

1991. All clinical signs related to the lameness such as splayleg, joint infection, or ataxia, 

were monitored in the litters and necessary treatment was applied and recorded by the 

producers. The event time for a litter was defined as the time from birth to the first 

application of treatment for lameness in the litter, while the censoring time was the time 

from birth until either the litter was weaned or excluded at 40 days of follow-up. In 

Chapter 2, data from the 22 herds are used as an example. These herds did not participate 

in any elevated health programs (such as specific pathogen free herds that are declared 

free from certain infectious diseases), and only the first litter per sow was included. The 

failure rate in these 22 herds was 11.2%. The predictor of primary interest here was sow 

treatment for milk fever, infection, or MMA (mastitis/metritis/agalactia) in days around 

farrowing (2 days before and up to 4 days after); 26% of the sows were treated. 

1.2.2. CBMRN data  

The Canadian Bovine Mastitis Research Network (CBMRN) data were from the National 

Cohort of Dairy Farms (NCDF) collected from January 2007 to December 2008. The 

herd selection process and data collection of NCDF are described in Reyher et al. (2011). 

In brief, a total of 8,035 cows from 69 herds were followed for 10,831 lactations until the 

cow experienced the first case of clinical mastitis (CM), was culled or dried off, left the 
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cohort, or its follow-up was interrupted by the end of the study. The response variable 

was defined as the number of days from calving until developing a first case of CM. 

Observations from cows that did not develop a mastitis case within the lactation were 

considered right censored. Important information at both the individual and herd levels, 

such as time of CM occurrence, calving date, culling date, dry-off date, lactation number, 

herd somatic cell score (SCS), and herd demographics were captured. Other information 

related to the herd management was provided by an udder health related management 

survey described in Dufour et al. (2010). The incidence of clinical mastitis in this dataset 

was 14.2%. The CBMRN dataset is analyzed in Chapter 3. 

1.2.3. Calf mortality data   

The calf mortality dataset was from the Western Canada beef productivity study 

(Waldner, 2008). The study was on calf loss and mortality in beef cattle in Western 

Canada where 23,409 calves from 174 herds were followed for up to 180 days after 

calving during the period from January-June 2002. The dataset included 897 cases of 

mortality, corresponding to an incidence of 3.8%. The event was defined as a case of calf 

mortality that occurred at least one hour after birth; the event time was defined as the 

time from calving to death (recorded in days). Calves that were sold during the follow-up 

period or survived until the end of the follow-up period were considered right censored 

observations. The calf mortality dataset is studied in Chapter 4. 

1.3. Survival analysis fundamentals 

Survival analysis is the analysis of data that correspond to the time from a well-defined 

time origin until the occurrence of some particular event or end-point. Let ௝ܶ and 
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݆) ௝ܥ = 1, … ,ܰ) be independent variables representing the event and right censoring 

times for the ݆௧௛  subject, respectively. Let ௝ܻ = min ( ௝ܶ,ܥ௝) denote the observed time for 

the subject ݆ and ߜ௝ = )ܫ ௝ܶ ≤  ௝) be the event indicator taking 1 if the event is observedܥ

and 0 otherwise. Suppose that ݂(ݐ) is the probability density function of the event time ܶ; 

then the survival function that describes the survival data is given by 

(ݐ)ܵ                                         = ܲ(ܶ > (ݐ = 1 − න ݏ݀(ݏ)݂ = 1 − (ݐ)ܨ
௧

଴
                          (1.1) 

where (ݐ)ܨ is the cumulative distribution function. The survival function captures the 

probability that the subject will survive beyond a specified time.    

We are interested in calculating the probability that a subject survives in the interval 

,ݐ] ݐ + ݐ∆ where (ݐ∆ > 0, conditional on having survived to the beginning of that interval 

(to time ݐ), so 

ݐ)ܲ                ≤ ܶ < ݐ + Δݐ|ܶ ≥ (ݐ =
ݐ)ܲ ≤ ܶ < ݐ + (ݐ∆

ܲ(ܶ > (ݐ =
−(ݐ)ܵ ݐ)ܵ + (ݐ∆

(ݐ)ܵ            (1.2) 

Dividing (1.2) by ∆ݐ to obtain, 

                             
ݐ)ܲ ≤ ܶ < ݐ + Δݐ|ܶ ≥ (ݐ

ݐ∆ =
−1
(ݐ)ܵ ×

(ݐ)ܵ − ݐ)ܵ + (ݐ∆
ݐ∆                          (1.3) 

Taking the limit of both sides of (1.3) as Δݐ → 0, the hazard function is obtained: 

(ݐ)ߣ                                                       =
−݀[lnܵ(ݐ)]

ݐ݀ =
(ݐ)݂
 (1.4)                                                (ݐ)ܵ
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This hazard function can be interpreted as the instantaneous failure rate for a subject 

surviving to time ݐ. From (1.4), ܵ(ݐ) can be written as 

(ݐ)ܵ                                                                     = exp൫−Λ(t)൯                                                 (1.5) 

where Λ(ݐ) = −∫ λ(ݏ)݀ݏ୲
଴  is the cumulative hazard function. This leads to Λ(ݐ) =

− lnܵ(ݐ), and so Λ෡(ݐ) = − ln መܵ(ݐ). 

Let ݐ௝ , ݆ = 1, … , ଵݐ .denote the ordered, observed and distinct failure times, i.e ݎ < ⋯ <

 (ݐ)ܵ ௥. The Kaplan-Meier estimator (Kaplan and Meier, 1958) for the survival functionݐ

can be calculated as 

                                                             መܵ(ݐ) = ෑ ቆ1 − ௝݀

௝݊
ቇ                                                    (1.6)

௝:௧ೕஸ௧

 

where the ௝݀ denotes the number of failures at time ݐ௝, and ௝݊ is the number of subjects at 

risk at time ݐ௝, i.e. the number of subjects still alive just before ݐ௝. The Kaplan-Meier 

estimator is a step function, in which the estimated survival probabilities are constant 

between event times and decrease at each observed event time. 

1.4. Regression models for survival data  

Several approaches have been used in survival analysis to model the effect of explanatory 

variables on the time to event. Some of these models are presented briefly in the next 

sections. Let ࢞࢐ = ,ଵ௝ݔ) … ௣௝) be a vector of explanatory variables for the ݆௧௛ݔ,  subject 

throughout. 

1.4.1. Proportional hazards (PH) models 
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The most popular procedure to associate the hazard function (ݐ)ߣ and ࢞࢐ is based on the 

concept of a proportional hazards (PH) model (Cox, 1972). In PH models, the hazard 

function is a product of a baseline hazard ߣ଴(ݐ) (where all the variables included in the 

model are zero) and a non-negative function of the explanatory variables ߮(ࢼᇱ࢞࢐). The 

most common and convenient choice for the non-negative function is ߮൫ࢼᇱ࢞࢐൯ =

exp(ࢼᇱ࢞࢐). The PH model can then be written as 

(ݐ)௝ߣ                                                           = (ݐ)଴ߣ exp(ࢼᇱ࢞࢐)                                                 (1.7) 

where ࢼ is a vector of regression coefficients associated with ࢞࢐. 

The proportional hazards terminology means that the hazard ratio (HR) of two subjects, 

say I and II with explanatory variables ݔூ and ݔூூ, does not depend on time, i.e., 

ܴܪ =
(ݐ)ூߣ
(ݐ)ூூߣ

=
(ݐ)଴ߣ exp(ݔߚூ)
(ݐ)଴ߣ exp(ݔߚூூ)

= exp[ݔ)ߚூ −  ,[(ூூݔ

is constant over time. 

The baseline hazard ߣ଴(ݐ) of model (1.7) can be modeled parametrically and the most 

common approach is a Weibull PH model, or nonparametrically by using a PH Cox 

model (Cox, 1972). The latter is probably the more widely used one. In the Cox PH 

model, no assumptions about the form of ߣ଴(ݐ) are made (non-parametric part of the 

model) but a parametric form for the effect of the predictors (parametric part of the 

model) is needed. Therefore, the model is referred to also as a semi-parametric model. 

The attractive feature of the semi-parametric approach is that an adequate estimate for the 
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regression coefficients ࢼ can be obtained even though the baseline hazard is not 

specified.  

In the PH Cox model, inference on ࢼ can be made by partial likelihood (Cox, 1972), 

which is a part of the full likelihood that does not depend on ߣ଴(ݐ). Suppose we observe 

,௝ݕ)  is a ࢐࢞ ௝ is an event indicator, andߜ ,௝ is an observed timeݕ for subject ݆, where (࢐࢞,௝ߜ

vector of explanatory variables. As described in Collett (1994), the probability that the 

݆௧௛  subject fails at some time ݐ௝ conditional on ݐ௝ being one of the observed set of ݎ 

failure times ݐଵ, ,ଶݐ … , ௥ݐ  is  

Pr൫subject ݆ with ࢞࢐ fails at ݐ௝หone failure at ݐ௝൯ =
Pr(subject ݆ with  ࢞࢐ fails at ݐ௝)

Pr(one failure at ݐ௝)
  

The numerator of the above equation is the hazard of event at time ݐ௝ for subject ݆ with 

explanatory variables ࢞࢐, this hazard function can be written as ߣ௝(ݐ௝). The denominator 

is the sum of the hazards of event at time ݐ௝. This is the sum of the ߣ௟(ݐ௝) over subjects 

that indexed by ݈ in the risk set at time ݐ௝, ܴ(ݐ௝). Therefore, the conditional probability 

above can be rewritten as 

                                                    
(௝ݐ)௝ߣ

∑ ௟∈ோ(௧ೕ)(௝ݐ)௟ߣ
=

exp൫ࢼᇱ࢞࢐൯
∑ exp(ࢼᇱ࢞࢒)௟∈ோ൫௧ೕ൯

                                   (1.8) 

where ߣ଴(ݐ௝) in the numerator and denominator cancels out.  

Taking the product of (1.8) over the ݎ event times, we get 



10 
 

(ߚ)௉௅ܮ = ෑ
exp(ࢼᇱ࢞࢐)

∑ exp(ࢼᇱ࢞࢒)௟∈ோ(௧ೕ)

௥

௝ୀଵ

 

When censoring is present in the data, the partial likelihood can then be expressed in the 

form  

(ߚ)௉௅ܮ                                                  = ෑቈ
exp(ࢼᇱ࢞࢐)

∑ exp(ࢼᇱ࢞࢒)௟∈ோ(௧ೕ)
቉
ఋೕ

                                    (1.9)
௡

௝ୀଵ

 

Another derivation for the partial likelihood function is as follows. Assuming 

independent event and censoring times, the full likelihood function for censored data is 

given by 

(ࢼ)ܮ = ෑൣߣ௝൫ݕ௝൯൧
ఋೕ

௝ܵ൫ݕ௝൯
௡

௝ୀଵ

        

         = ෑൣߣ଴൫ݕ௝൯ exp(ࢼᇱ࢞࢐)൧
ఋೕ exp ቎−න (ݏ)଴ߣ exp(ࢼᇱ࢞࢐)݀ݏ

௬ೕ

଴

቏                                   (1.10)
௡

௝ୀଵ

 

By multiplying and dividing (1.10) by the term ቂ∑ ௝൯ݕ଴൫ߣ exp(ࢼᇱ࢞࢒)௟∈ோ(௧ೕ) ቃ
ఋೕ

, and 

݈ ∈ ௟ݐ means (௝ݐ)ܴ ≥  ௝, we getݐ

(ࢼ)ܮ = ෑ൥
exp൫ࢼᇱ࢞࢐൯

∑ exp(ࢼᇱ࢞࢒)௟∈ோ൫௧ೕ൯
൩
ఋೕ௡

௝ୀଵ

  

          × ቎ ෍ ௝൯ݕ଴൫ߣ exp(ࢼᇱ࢞࢒)
௟∈ோ൫௧ೕ൯

቏

ఋೕ

exp ቎−න (ݏ)଴ߣ exp൫ࢼᇱ࢞࢐൯݀ݏ

௬ೕ

଴

቏                            (1.11) 
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Cox (1972) argued that the first term in (1.11) takes into consideration the ordering of the 

events and does not make use of the actual event times. So that last bit of information is 

what is dropped. Thus, the estimates of ࢼ can be obtained from the first part of (1.11) 

which is the partial likelihood function defined in (1.9). 

This partial likelihood can be maximized using the Newton-Raphson procedure. In the 

case of ties, approximations to the partial likelihood such as those proposed by Breslow 

(1974) and Efron (1977) are needed. 

The key difference between the parametric and semi-parametric PH models is that instead 

of leaving the baseline hazard completely arbitrary in the semi-parametric PH approach, 

the baseline hazard is assumed to follow a specific distribution in the parametric PH 

approach. Further, the estimation in the parametric PH model is based on the full 

maximum likelihood instead of the partial likelihood used in the Cox PH model.  

1.4.2. Accelerated failure time (AFT) model 

The accelerated failure time model is an alternative to the PH model for the analysis of 

survival data. Under AFT models, the effect of the explanatory variables is measured 

directly on the survival time instead of on the hazard function as in PH models. This 

allows for easier interpretation of the results because the predictors affect the mean 

survival time through the regression parameters. The AFT model takes the form 

(ݐ)ߣ                                                   = ݐ଴൫ߣ exp(ࢼᇱ࢞࢐)൯ exp(ࢼᇱ࢞࢐)                                    (1.12) 
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where the change from ݐ to ݐ exp(ࢼᇱ࢞࢐) represents acceleration or deceleration depending 

whether exp(ࢼᇱ࢞࢐) is greater or smaller than 1. Only PH models with an exponential or a 

Weibull baseline survival time distribution belong to both the PH and AFT families. 

The log-linear formulation corresponding to the AFT model with respect to time is given 

by 

                                                               ln ௝ܶ = ߤ + ᇱ࢞࢐ࢼ + ௝ߝߪ                                               (1.13) 

where ߤ is an intercept, ߪ is a scale parameter, and ߝ௝ is the random error term for the ݆௧௛  

subject which is assumed to follow a certain distribution. This log-linear form 

representation is adopted by most of the software packages. 

1.4.3. Proportional odds model 

The proportional odds model is structurally similar to the PH model, and may be used in 

similar situations (Bennett, 1983). In the situations where the predictor effect vanishes 

with time, the proportional odds model may be more appropriate than the PH model. 

Similar to the PH model, the odds function is assumed to be a product of baseline odds 

and an exponential function of the predictors. The proportional odds model is given by  

(ݐ)ߤ                                                             = (ݐ)଴ߤ exp(ࢼᇱ࢞࢐)                                              (1.14) 

where (ݐ)ߤ = −1](ݐ)ܨ (ݐ)଴ߤ ,ݐ ଵ is the odds function at timeି[(ݐ)ܨ = −1](ݐ)଴ܨ

࢐࢞ of a subject with ݐ ଵ is the baseline odds function at timeି[(ݐ)଴ܨ = ૙. Likelihood-

based estimation can be used for inference on regression parameters ࢼ. 

1.4.4. Additive risks model 
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Another alternative model to the PH model is the additive risks model (Aalen, 1980; 

1989). Unlike the PH model, the additive risk model assumes that the hazard function for 

the ݆௧௛  subject associated with a set of predictors ࢞࢐ is the sum of a baseline hazard 

function ߣ଴(ݐ) and a regression function of explanatory variables ࢞࢐, that is 

(ݐ)ߣ                                                             = (ݐ)଴ߣ +  (1.15)                                                     ᇱ࢞࢐ࢼ

where ߣ଴(ݐ) is the baseline hazard. The regression parameters ࢼ are allowed to be 

functions of time, so that the effect of predictors may vary over time. Model parameters 

can be estimated using a least-squares technique (Huffler and McKeague, 1991). 

1.5. Time-dependent predictors and coefficients 

In many studies with time-to-event outcome, individuals are monitored for the duration 

of the study. Within this period, the values of certain explanatory variables may be 

recorded at selected periodic time points (i.e. ࢞࢐ is a function of ݐ). For example, 

predictors related to management practices may be recorded at regular intervals. These 

variables are known as time-dependent or time-varying predictors. Another type of time 

dependence is when the effect of certain predictors changes over time (i.e. ࢼ is a function 

of ݐ), this is referred to as time-dependent coefficients or time-varying effects. To deal 

with time-dependent variables and coefficients in PH models the dataset has to be set up 

in a counting-process format (Grambsch and Therneau, 1994). In the counting-process 

setup, data for each subject are identified by the triple: ܰ(ݐ), (ݐ)ߜ and ࢞(ݐ) where ܰ(ݐ) is 

the number of events that occurred in the time interval (0,  (ݐ)ߜ ;݆ for a subject [ݐ

indicates the event status; and ࢞(ݐ) is a vector of predictors for the subject at time ݐ. The 
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path of ܰ(. ) is a step function with jumps at the event times and ܰ(0) = 0. The data for 

each subject are then represented by multiple records, each identifying a time interval 

,௞ݐ)  ௞ାଵ], the predictor values on that interval, and the event status. Finally, the timeݐ

dependence of predictors and effects can be accounted for by fitting, for example, a PH 

model to the counting-process formatted data (Therneau and Crowson, 2013). 

1.6. Hierarchical data structure 

Clustering in the data is natural in most observational and experimental studies in 

veterinary epidemiology. For example, in the lameness dataset described in Section 1.2.1 

we have animals clustered by herds. Animals within the same herd are more alike than 

animals from different herds, in the sense that animals within the same herd share the 

experience of being in the same environment and similar genetics (e.g. food, facilities, 

and management). Another type of clustering in survival data is where we have repeated 

events in the same subject, for example repeated CM episodes in dairy cows (Schukken 

et al., 2010). Such similarity may lead to within cow homogeneity over time (Dohoo et 

al., 2009; chapter 21). We talk about a hierarchical data structure when each unit at the 

lower level is nested in a single unit of the higher levels. In addition, any two 

observations in the same unit must remain together (i.e. in the same unit) at all higher 

levels. Two-level hierarchical survival data, e.g. animals within herds, are common in 

human and veterinary epidemiologic studies (e.g. Stryhn and Christensen, 2013; Hanagal 

and Dabade, 2013). Analysis of survival data with more than two levels of hierarchy have 

been reported in the human epidemiology literature (e.g. Sastry, 1997; Shin and Lu, 

2007); but are rarely reported in veterinary epidemiological research even though such 

structures are commonly encountered in the field. For example, the CBMRN dataset 
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described in Section 1.2.2 includes multiple lactations nested in cows and cows located in 

different herds.   

In some instances, the data structure is not perfectly hierarchical. For instance, the 

structure of the calf mortality dataset is more complex than what was described in Section 

1.2.3. We have calves from different herds, and these herds located in different ecologic 

regions and serviced by multiple veterinary clinics. Therefore, in addition to calves being 

hierarchically nested within herds, herds are cross-classified by ecologic regions and 

veterinary clinics. This special structure corresponds to a 3-level cross-classified and 

multiple membership data structure (Browne et al., 2001). 

It is important to understand the implications of ignoring clustering or otherwise 

inadequately accounting for a hierarchical data structure in the statistical analysis, beyond 

the obvious fact that the independence assumption is being violated. Biases may occur in 

both regression coefficients (in particular if groups have confounding effects) and in their 

standard errors. It is well-known that standard errors for group-level predictors will be 

underestimated if clustering exists and is ignored. Thus, the researcher may be more 

likely to conclude that an effect (e.g. a hazard ratio or a difference between group means) 

is statistically significant regardless of whether an effect is actually present in the 

population.  

Different approaches have been applied to account for hierarchical survival data 

structure. One of these approaches is to combine multiple hierarchical levels of analysis 

in a single comprehensive model by including the information from each level of the 

hierarchy in the data. This allows researchers to specify predictors at different levels and 
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apply other features such as random slopes and contextual effects. In the following 

section, a brief review of different approaches for accounting for data structure in 

survival data is given. 

1.7. Approaches for modeling two-level hierarchical survival data  

In this section, the existing approaches for modeling hierarchical data structure for time-

to-event outcomes are discussed. Based on a Cox PH model, three extensions can be 

considered for modeling a two-level data structure: a model including the top level as 

fixed effects, a model stratified by the top level, and a model incorporating the top level 

as random effects. Other approaches, such as copula models, have been also suggested 

for correlated event times.  

In the following subsections, hierarchical survival data clustered by ܩ different groups 

are considered. The subject ݆ (݆ = 1, … ,݊௜) in group ݅ (݅ = 1, …  is either observed (ܩ,

from time zero to an event time ௜ܶ௝ or to a right censoring time ܥ௜௝ independent of ௜ܶ௝. As 

described in Section 1.2.2, let ௜ܻ௝ = min ( ௜ܶ௝  ௜௝ be theߜ ௜௝) be the observed time andܥ,

event indicator. For each subject, we also observe the vector of explanatory variables ࢞࢐࢏.  

1.7.1. Fixed effect model approach 

One simple approach to dealing with hierarchical survival data is to include the group as 

a categorical fixed effect in the model. By arbitrarily setting one group as reference, a 

model with ܩ − 1 dummy variables representing the group variable can be estimated 

using the Cox PH model methodology. This approach can be worthwhile for a small 

number of groups and no group-level predictors. However, in the case of a large number 
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of groups and a small group size, the parameter estimation might become unstable and 

the efficiency of estimates may be affected (Dohoo et al., 2009). For instance, the log-

likelihood sometimes converges, even when the estimate of a specific group diverges, 

this phenomenon occurs when all event times in a specific group are smaller or larger 

than event times in the other groups (Legrand, 2010; p. 21). A monotone likelihood has 

been proposed to solve this problem (Heinze and Schemper, 2001). In addition to the 

aforementioned issues, there are other drawbacks to the fixed effect model approach. 

First, one cannot estimate any between-group fixed effects as they will be absorbed into 

the group effects. Second, any inferences based on this approach are specific to the actual 

groups, not to the general population of groups, one would often want conclusions to 

refer to.   

1.7.2. Stratified effect model approach 

Another approach to deal with clustering in survival data is to fit a Cox PH model 

stratified by groups. This procedure allows a specific unspecified baseline hazard for 

each group. The stratified Cox PH model can be written as, 

(ݐ)௜௝ߣ                                                              = (ݐ)଴௜ߣ exp൫ࢼᇱ࢞࢐࢏൯                                        (1.16) 

where ߣ଴௜(ݐ) is the baseline hazard function for group ݅ at time ݐ. The proportional 

hazards assumption of this model is not assumed across groups, but only within each 

group. Model (1.16) can be estimated by combining the partial likelihood for each group 

as follows, 
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(ࢼ)௦௧௥ܮ                                          = ෑෑቈ
exp(ࢼᇱ࢞࢐࢏)

∑ exp(ࢼᇱ࢞࢐࢏)௟∈ோ(௧೔ೕ)
቉
ఋ೔ೕ

                             (1.17)
௡೔

௝ୀଵ

ீ

௜ୀଵ

 

The asymptotic theory for the stratified Cox model is valid for frameworks where ݊௜ 

remains bounded as ܩ increases, where the group size increases with ܩ, and where ܩ is 

fixed and ݊௜ increases (Glidden and Vittinghoff, 2004). However, applying this approach 

leads to discarding an abundant amount of information. Specifically, no between-group 

comparisons can be made, and all information related to the predictor effect is based on 

within-group comparisons. For a fixed sample size, the loss of information increases with 

-The groups that contain no events and/or only one .(Glidden and Vittinghoff, 2004) ܩ

predictor level do not contribute to the model estimates leading to inefficient estimates. 

Also, when the aim is to quantify the variation in the (baseline) hazard between groups, 

the stratified Cox model is no longer of interest, as it does not provide such information. 

1.7.3. Shared frailty (random effects) model approach 

Similar to the fixed effect model, the random effects or frailty model assumes that group 

effects act proportionally on the baseline hazard. However, the random effects or frailty 

model treats the group effects as random effects, i.e. as a sample from a certain 

probability distribution. The model is given by 

(௜ݑ|ݐ)௜௝ߣ                                                       =  ࢐൯                                       (1.18)࢏ᇱ࢞ࢼ௜exp൫ݑ(ݐ)଴ߣ

where the frailty term ݑ௜ acts multiplicatively on the baseline hazard, and represents the 

effect of unobserved factors. The frailties ݑ௜ are assumed independently and identically 

distributed with unity mean (in order to make the average hazard identifiable) and 
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unknown variance ߠ. Large values of ߠ indicate a closer relationship between the 

subjects of the same group and greater heterogeneity among the groups. The model 

defined in (1.18) is known as a shared frailty model (Therneau and Grambsch, 2000; 

Duchateau and Janssen, 2008; Wienke, 2010), in the sense that unmeasured 

characteristics, such as genetic information or common environmental exposures are 

correlated by the subjects within the same group or cluster. In this way, these unobserved 

factors could influence time to the event of interest. An alternative formulation for a 

shared frailty model is 

|ݐ)௜௝ߣ                                                    ௜ܾ) = (ݐ)଴ߣ exp൫ ௜ܾ +  ࢐൯                                     (1.19)࢏ᇱ࢞ࢼ

with ௜ܾ = lnݑ௜ is the random effect.  

To distinguish between the frailties and the random effects, we denote throughout the 

thesis by ݑ௜ the frailty and by ௜ܾ the random effect, and by ߠ and ߪଶ the variance of 

frailty and random effects, respectively.  

1.7.4. Copula model approach  

Another approach for modeling hierarchical survival data is through a copula model. This 

approach was originally introduced to be used for datasets with small and equal group 

sizes and it has been recently developed to allow for varying group sizes. In the 

veterinary field, Goethals et al. (2008) studied a copula model for bivariate survival data 

on diagnosis of fracture healing in dogs and compared it with a shared frailty model. 

Massonnet et al. (2009) applied a copula model to the infection times in the four udder 



20 
 

quarters of dairy cows. The survival copula is a function that links marginal survival 

functions to generate a joint survival function, i.e., 

                                                      ௜ܵ(ݐଵ, (ଶݐ = }ఝܥ ௜ܵଵ(ݐଵ), ௜ܵଶ(ݐଶ)}                                      (1.20) 

 for a bivariate distribution copula function ܥఝ defined as ܥఝ: [0,1]ଶ → [0,1]: ,ଵߥ) (ଶߥ →

,ଵߥ)ఝܥ -ଶ) parameterized by ߮. Parametric copula models can be estimated using a oneߥ

stage estimation approach, while a two-stage approach is needed for semiparametric 

copula models. In semiparametric copula models, the marginal survival functions are 

estimated first, and then the copula parameter ߮ is estimated by maximizing a log-

likelihood function after replacing the marginal survival functions by their estimates 

obtained in the first stage. The class of Archimedean copulas is the most considered class 

of survival copulas. Detailed discussion on copulas can be found in Li (2000) and Nelsen 

(2006). 

1.8. Frailty modeling approaches for more complex hierarchical data structures  

1.8.1. Random slope model  

In the shared frailty model, the unobserved heterogeneity is not captured by the predictors 

and is assumed to be the same within each group. Further, the shared frailty model can 

only induce positive relationships within the group, although event times may be 

negatively associated in some situations (Xue and Brookmeyer, 1996). A model with 

random group and random predictor effects has been suggested to overcome the 

limitations of the shared frailty model (Ripatti and Palmgren, 2000). The two-level 

hierarchical Cox model with random baseline hazard and random slope is given by:  



21 
 

|ݐ)௜௝ߣ                                       ௜ܾ଴, ௜ܾଵ) = (ݐ)଴ߣ exp൫ ௜ܾ଴ + ( ௜ܾଵ + ௜௝൯ݔ(ߚ                          (1.21)                      

where ௜ܾ଴ and ௜ܾଵ are jointly distributed and represent, respectively, the random group 

and the random slope, and ݔ௜௝ is the observed predictor for subject ݆ in group ݅. The term 

random slope is most meaningful for a quantitative predictor ݔ where beta corresponds to 

a slope. If ݔ is dichotomous (say treatment), the random "slope" is a random treatment 

effect, and could also be understood as a random interaction between treatment and 

groups. For simplicity, the term random slope will be used throughout the thesis, even in 

cases where ݔ is not quantitative. 

1.8.2. Nested frailty model  

When event times are clustered at several hierarchical levels such as herds and 

geographic regions, nested frailty models can be used to account for the hierarchical data 

structure by including nested frailty terms, where by each frailty term represents a level 

of clustering and acts multiplicatively on the baseline hazard (Sastry, 1997). For 

observations clustered by ܵܩ subgroups nested in ܩ groups, the nested frailty model can 

be written as, 

(ݐ)௜௝௞ߣ                                                      =  ࢐࢑൯                                    (1.22)࢏ᇱ࢞ࢼ௜௝exp൫ݑ௜ݑ(ݐ)଴ߣ

with ݑ௜ and ݑ௜௝ are the nested frailties that correspond to the group and subgroup levels, 

respectively. Model (1.22) can be rewritten as 

(ݐ)௜௝௞ߣ                                                 = (ݐ)଴ߣ exp൫ ௜ܾ + ௜ܾ௝ +  ࢐࢑൯                               (1.23)࢏ᇱ࢞ࢼ
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where the nested random effects ௜ܾ and ௜ܾ௝  represent, respectively, the deviation of the 

݅௧௛ group, and the  ݆௧௛  subgroup of the ݅௧௛ group from the overall log baseline hazard. 

 1.8.3. Multiple membership model  

As in other types of datasets, multiple membership structure may arise in hierarchical 

survival data where the units of a lower hierarchical level are members of multiple higher 

level units simultaneously (Browne et al., 2001). Multiple membership models have been 

proposed to account for such data structure (Browne et al., 2001; Fielding and Goldstein, 

2006) by using weights for the units that occur in a multiple membership relation. For 

example, a hospital patient may be treated by several nurses and each nurse will then 

have an effect on the patient’s progress (Browne et al., 2001). In this example, we have 

patients, each cared for by single or multiple nurses resulting in a 2-level data structure, 

where some of the lower-level units are in a multiple membership with the top level units, 

the multiple membership model can be written in a Cox model formulation as,   

)|ݐ௝ቀߣ            ௟ܾ
(ଶ))௟∈௚௥௢௨௣(௝)ቁ = (ݐ)଴ߣ expቀ∑ ௝௟ݓ

(ଶ)
௟ܾ
(ଶ)

௟∈௚௥௢௨௣(௝) +            ᇱ࢞࢐ቁ                    (1.24)ࢼ

      

where the term ∑ ௝௟ݓ
(ଶ)

௟ܾ
(ଶ)

௟∈௚௥௢௨௣(௝)  involves a set of random effects ௟ܾ
(ଶ) at the second 

level and weights ݓ௝௟
(ଶ) assigned to each second-level unit for their group membership 

with ∑ ௝௟ݓ = 1௟∈௚௥௢௨௣(௝) . To our knowledge, this special type of models has only been 

applied in the context of linear and generalized linear models, but it has not been used 

with survival data. 
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1.9. Frailty and random effects distributions  

Various frailty and random effects distributions have been used for modeling hierarchical 

survival data. Due to software availability, some of these distributions are more 

commonly applied in the area than others. In practice, the gamma and log-normal 

distributions with unity-mean are the most applied frailty distributions. Other choices for 

frailty distributions, such as inverse Gaussian, positive stable (Hougaard, 1995), power 

variance function (Aalen, 1988), and compound Poisson (Aalen, 1992) have also been 

used in the literature. See Hougaard (2000) and Duchateau and Janssen (2008) for in-

depth discussions. 

1.9.1. Gamma frailty and log-gamma random effects distributions 

When the frailties ݑଵ, … , ீݑ  follow a gamma distribution with the same shape and inverse 

scale parameters of 1 ⁄ߠ , their density function is given by 

                                         ௎݂(ݑ) =
ఏషభିߠ

Γ(ିߠଵ)ݑ
ఏషభିଵ exp(−ିߠଵݑ),   ݑ ≥ 0                         (1.25) 

Therefore, the distribution of ܷ has a mean of 1 and variance of ߠ, and the random effects 

ܾଵ = lnݑଵ , … ,ܾீ = lnீݑ  have a log-gamma distribution with density function given by 

                      ஻݂(ܾ) =
ఏషభିߠ

Γ(ିߠଵ) exp(ିߠଵܾ − ଵିߠ exp(ܾ)) ,   −∞ < ܾ < ∞                    (1.26) 

The variable ܤ has a mean of Ψ(1 ⁄ߠ ) + log (ߠ) and a variance of σଶ = Ψᇱ(1 ⁄ߠ ), where 

Ψ(. ) and Ψᇱ(. ) are the digamma and trigamma functions, respectively. The log-gamma 

distribution with mean zero and variance 0.5 for random effects is presented in the left of 
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Figure 1.1 and the one-parameter gamma distribution with variance 0.5 for frailty is 

depicted in the right of Figure 1.1.  

 
Figure 1.1. The log-gamma distribution with mean zero and variance 0.5 for random effects (left) and the 

gamma distribution with mean 1 and variance 0.5 for frailty (right). Note that the two density curves are not 

representations of the same distribution on logarithmic and exponential scales, respectively, because the 

mean value restrictions are incompatible (e.g., a mean of 1 on frailty scale does not lead to a mean of 0 

after log-transformation). 

1.9.2. Normal random effects and log-normal frailty distributions 

For the random effects ܾଵ, … ,ܾீ  that follow a normal distribution with mean zero and 

variance σଶ, the density function is given by 

                                    ஻݂(ܾ) =
1

σ√2ߨ
exp(−ܾଶ ⁄ଶߪ2 ) ,   −∞ < ܾ < ∞                           (1.27) 

Thus, the frailties ݑଵ = exp(ܾଵ) , … , ீݑ = exp(ܾீ) follow a log-normal distribution with 

a density function, 
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                                   ௎݂(ݑ) =
1

uσ√2ߨ
exp(−(lnݑ)ଶ ⁄ଶߪ2 ݑ   ,( ≥ 0                                (1.28) 

The mean and the variance of ܷ are then exp (ߪଶ 2)⁄  and exp(ߪଶ) (exp(ߪଶ) − 1), 

respectively. The zero-mean normal distribution for random effects and unity-mean log-

normal distribution for frailty, both with variance of 0.5 are presented in the left and the 

right sides of Figure 1.2, respectively.  

 

Figure 1.2. The normal distribution with mean zero and variance 0.5 for random effects (left) and the log-

normal distribution with mean 1 and variance 0.5 for frailty (right). As noted above, the two distributions 

are not transformations of each other. 

 1.9.3. Laplace random effects and log-Laplace frailty distributions 

If the random effects ܾଵ, … ,ܾீ  have a Laplace distribution with a location parameter of 0 

and scale parameter ߬, then the density function is given by 

                                         ஻݂(ܾ) =
1

2߬ exp ቆ
|ܾ|
߬ ቇ ,   −∞ < ܾ < ∞                                       (1.29) 
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The variance of the distribution is 2߬ଶ. Figure 1.3 shows the probability density plot of 

Laplace distribution with mean zero and variance 0.5.  

 

                      Figure 1.3. The Laplace distribution with mean zero and variance 0.5 for random effects.  

The frailties ݑଵ = exp(ܾଵ) , … ீݑ, = exp(ܾீ) have a log-Laplace density function,   

                                               ௎݂(ݑ) =
1

ݑ2߬ exp ቆ
|lnݑ|
߬ ቇ ݑ   , ≥ 0                                       (1.30) 

The random effects densities of normal, log-gamma, and Laplace distributions with mean 

zero and variance 0.5 are presented in Figure 1.4.  
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Figure 1.4: The normal (solid), log-gamma (dash), and Laplace (dot) probability densities with mean zero 
and variance 0.5 for random effects. 

1.10. Estimation methods for semiparametric hierarchical survival models  

The focus here and throughout this thesis is on semiparametric estimation approaches 

where the form of the baseline hazard is left completely arbitrary. Parameter estimation in 

hierarchical survival (frailty) models has been a topic for intensive research over the past 

few years, and numerous estimation approaches have been proposed. Some of these 

estimation approaches have been reviewed and discussed by other authors, for example, 

Clayton (1988), Duchateau et al. (2002), Cortiñas et al. (2007), Duchateau and Janssen 

(2008), Hanagal (2011), and Hirsch and Wienke (2012). A summary of some approaches 

are presented in Table 1.1. Further, current implementations of these models are shown in 

Table 1.2.   
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Table 1.1. Summary of estimation approaches for semiparametric hierarchical proportional hazards models 

and their applicability to different designs, each identified by the key/first reference describing the method.    

 Model used 
Estimation approach Shared frailty Random slope Nested frailty 
EM algorithm Klein (1992) for 

gamma frailty. 
Cortiñas and 
Burzykowski (2005) 
for normal random 
effects 

 

Penalized partial likelihood McGilchrist (1993) 
for normal random 
effects. 
Therneau and 
Grambsch (2000) for 
gamma frailty. 

Yamaguchi and 
Ohashi (1999) for 
normal random 
effects. 

Yau (2001) 

Penalized partial likelihood 
with Laplace approximation 

Ripatti and Palmgren 
(2000) for normal 
random effects. 

Ripatti and Palmgren 
(2000) for normal 
random effects. 

Ripatti and Palmgren 
(2000) for normal 
random effects. 

Penalized full likelihood Rondeau et al. (2003) 
for gamma and log-
normal frailty. 

Rondeau et al. (2008) 
for normal random 
effects. 

Rondeau et al. (2006) 
for gamma frailty. 

Hierarchical likelihood Ha et al. (2001) for 
gamma frailty and 
normal random 
effects. 

 Ha et al. (2007) for 
normal random 
effects. 

Poisson maximum likelihood Ma et al. (2003) for 
gamma frailty and 
normal random 
effects. 

Ma et al. (2003) for 
normal random 
effects. 

Ma et al. (2003) for 
gamma frailty and 
normal random 
effects. 

Bayesian  Clayton (1991) for 
normal random 
effects. 

  

Monte Carlo EM Vaida and Xu (2000) 
for normal random 
effects. 

Vida and Xu (2000) 
for normal random 
effects. 

Gamst et al. (2009) 
for normal random 
effects. 

Bayesian with Laplace 
approximation  

Ducrocq and Casella 
(1996) for normal 
random effects. 

Legrand et al. (2005) 
for normal random 
effects. 

 

In addition to the data structure, the choice of the estimation approach may depend on the 

desired frailty or random effects distribution, but in practice the choice is mainly 

determined by the availability of appropriate software. Mathematically, closed forms for 

the survival and hazard functions can be obtained under a gamma frailty distribution, but 

when a normal distribution is assumed for random effects, explicit expressions for these 

functions do not exist. In this case, approximations are needed to overcome the problem.  
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In the following sections, a brief overview is given of some of the semiparametric 

estimation approaches for different hierarchical PH models. The review is limited to the 

penalized partial likelihood approach with both gamma and log-normal frailty 

distributions and to the estimation approaches used in this thesis, namely, the penalized 

full likelihood approach (Rondeau et al., 2003), the Poisson maximum likelihood 

approach (Ma et al., 2003; Feng et al., 2005), the Bayesian approach (Clayton, 1991; 

1994), and the penalized partial likelihood with Laplace approximation (Ripatti and 

Palmgren, 2000). The discussion is based on shared frailty model estimation unless 

otherwise stated.    
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Table 1.2. Summary of existing software for semiparametric models of hierarchical survival data. 

Software implementation Model design Estimation method Description 
coxph Gamma, lognormal, 

and log-t shared 
frailty. 

Penalized partial 
likelihood. 

R functions in 
survival package. 

coxme  Shared, random slope, 
and nested random 
effects with a normal 
distribution. 

Penalized partial 
likelihood with 
Laplace 
approximation. 

R functions in coxme 
package. 

frailtyPenal Gamma shared and 
nested frailty. 

Penalized full 
likelihood with 
splines. 

R functions in 
frailtypack package. 

additivePenal Gaussian random 
slope. 

Penalized full 
likelihood with 
splines. 

R functions in 
frailtypack package. 

phmm Shared and random 
slope with a normal 
distribution. 

Monte Carlo EM R functions in phmm 
package. 

frailtyHL Gamma and 
lognormal shared and 
nested frailty. 

Hierarchical 
likelihood 

R functions in 
frailtyHL package. 

stcox (with option shared) Shared gamma frailty Penalized partial 
likelihood. 

Stata command 

SPGAM Shared gamma frailty EM algorithm SAS macro 
SPLN3 Shared lognormal 

frailty. 
EM algorithm SAS macro 

Gamfrail Shared gamma frailty EM algorithm SAS macro 
The survival kit Shared and random 

slope with a normal 
distribution. 

Bayesian with Laplace 
approximation. 

Package of Fortran 
programs. 

Poisson GLMM Shared, random slope, 
and nested random 
effects with either 
normal or gamma 
distributions. 

Poisson maximum 
likelihood. 

Any GLMM 
software. 

Bayesian Shared, random slope, 
and nested random 
effects. 

MCMC techniques. Any Bayesian 
software for example 
WinBUGS. 

 

1.10.1. The penalized partial likelihood approach 

This approach is an extension of the best linear unbiased predictor (BLUP) to be used for 

multivariate survival data as described in McGilchrist and Aisbett (1991) and 

McGilchrist (1993). The approach is implemented in coxph function of R software and 

stcox command of Stata and became widely used in the area of multilevel survival 



31 
 

analysis. As described in Duchateau and Janssen (2008), the penalized partial log-

likelihood for model (1.19) is given by 

                                            ݈௉௉௅(ߪ,ߚଶ, ܾ) = ݈௉௅(ߚ,ܾ) − ݈௣௘௡(ߪଶ,ܾ)                                 (1.31)  

where ݈௉௅(ߚ,ܾ) is the logarithm of (1.9) with ܾ as another set of parameters and defined 

as 

݈௉௅(ߚ, ܾ) = ෍෍ߜ௜௝ ቎൫ ௜ܾ + ௜௝൯ݔᇱߚ − ln ෍ exp(ܾ௣ + (௣௤ݔᇱߚ
(௣,௤)∈ோ൫௧೔ೕ൯

቏
௡೔

௝ୀଵ

ீ

௜ୀଵ

 

and ݈௣௘௡(ߪଶ,ܾ) = −∑ ln ௕݂( ௜ܾ)ீ
௜ୀଵ  is the penalty function. This penalty function reduces 

the penalized partial likelihood by shrinking the random effects towards the mean value 

zero. 

For random effects ௜ܾ , ݅ = 1, …  with a zero-mean normal distribution, the penalty term ,ܩ,

takes the form, 

݈௣௘௡(ߪଶ, ܾ) =
1
2෍

ቈ ௜ܾ
ଶ

ଶߪ + ln(2ߪߨଶ)቉
ீ

௜ୀଵ

 

The maximization process of the penalized partial log-likelihood consists of an inner and 

an outer loop. For provisional value of ߪଶ, ݈௉௉௅(ߚ, ,ଶߪ ܾ) is maximized for ߚ and ܾ in the 

inner loop using the Newton-Raphson procedure. In the outer loop, the residual 

maximum likelihood (REML) estimator for ߪଶ is obtained using the best linear unbiased 

predictors (BLUPs) for ܾ. This process is iterated until achieving convergence.  
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For frailties ݁௕೔ , ݅ = 1, …  the penalty ,(ଵିߠ,ଵିߠ)following a gamma distribution Γ ,ܩ,

function is 

݈௣௘௡(ߠ, ܾ) = −෍ቆ ௜ܾ − ݁௕೔
ߠ ቇ

ீ

௜ୀଵ

− ܩ ൬
lnߠ
ߠ − ln Γ(ିߠଵ)൰ 

As in the maximization process of the random effects with a normal density, inner and 

outer loops are used to maximize the penalized partial likelihood. The inner loop is the 

same as the one described in the normal density case with exception of the penalty term 

that is determined based on the gamma density. For the outer loop, a REML estimator for 

 cannot be obtained as in the case of a normal random effect distribution; therefore, a ߠ

profiled version of the following Klein’s marginal log-likelihood (Klein, 1992) is 

maximized for ߠ: 

.)଴ߣ)݈ ,ߚ,( (ߠ = ෍(ܦ௜ lnߠ − ln Γ(ିߠଵ) + ln Γ(ିߠଵ + ((௜ܦ
ீ

௜ୀଵ

−෍(ିߠଵ + (௜ܦ
ீ

௜ୀଵ

ln ቎1 + ௜௝൯ݕ଴൫߉෍ߠ exp(ߚᇱݔ௜௝)
௡೔

௝ୀଵ

቏          

                                                        −෍෍ߜ௜௝ൣln(ߣ଴൫ݕ௜௝൯ + ௜௝൧ݔᇱߚ
௡೔

௝ୀଵ

ீ

௜ୀଵ

                                 (1.32) 

where ܦ௜ = ∑ ௜௝ߜ
௡೔
௝ୀଵ  are the observed events in the ݅௧௛ group.  

The algorithm is iterated until convergence. Detailed explanations and an excellent 

review are provided by Duchateau and Janssen (2008).  
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Yamaguchi and Ohashi (1999) extended the penalized partial likelihood approach to 

estimate treatment-by-centre (random slope) in a multicentre trial. Also, the approach 

was extended by Yau (2001) to estimate a three-level hierarchical survival model.      

1.10.2. The penalized full likelihood approach  

The approach was proposed by Rondeau and Gonzalez (2003) to fit a shared gamma 

frailty model by using splines to model the baseline hazard function. Because of the 

splines, the procedure is similar to the parametric approach using a piecewise constant 

baseline hazard. However, this approach is much more flexible than the classical 

parametric approach. When the number of pieces becomes large, the approach is 

considered semiparametric because the model shows similar flexibility as the 

semiparametric model. Rondeau and Gonzalez (2003) used the penalized log-likelihood, 

                               ݈௉ி௅(ߣ଴(. ,ߚ,( (ߠ = .)଴ߣ)݈ ,ߚ,( (ߠ − නݒ                        ݐଶ݀[(ݐ)଴ᇱᇱߣ]
ஶ

଴
(1.33) 

where ݈(ߣ଴(.  is the second (ݐ)଴ᇱᇱߣ ,is the marginal log-likelihood defined in (1.32) (ߠ,ߚ,(

derivative of the baseline hazard, and ݒ is a positive smoothing parameter that controls 

the trade-off between the data fit and the smoothness of the function ߣ଴(. ).  

Rondeau and Gonzalez (2003) used cubic M-splines (Ramsay, 1988) that are easy to 

integrate and differentiate, the second derivative of ߣ଴(. ) being approximated by a linear 

combination of polynomial terms. Such an approximation reduces the number of 

parameters but still allows for flexible shapes of hazard functions. The approximation 

error can be made as small as desired by increasing the number of knots. The smoothing 

parameter can be fixed by the user or automatically estimated by maximizing a likelihood 
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cross-validation criterion for the Cox model (Joly et al., 1998; Rondeau and Gonzalez, 

2003). The log-likelihood in (1.33) is maximized by the robust Marquardt algorithm 

(Marquardt, 1963), which is a combination between a Newton-Raphson and a steepest 

descent algorithm. The approach is implemented in the frailtypack package for R 

software (Rondeau et al., 2012). 

Rondeau et al. (2006) extended the approach to allow for estimating models with two 

nested frailties assuming a gamma distribution at the lower level and a normal 

distribution on the log scale at the higher level, and a further extension was added by 

Rondeau et al. (2008) for estimating two-level hierarchical models with a random slope. 

1.10.3. The Poisson maximum likelihood  

The similarity of a Cox PH model with a Poisson regression model has been known since 

1980 (Whitehead, 1980). This similarity can be carried over to the Cox PH model with 

random effects (Ma et al., 2003; Feng et al., 2005; Rabe-Hesketh and Skrondal, 2012). 

Using available software for generalized linear mixed models (GLMMs), model (1.19) 

can be estimated through a Poisson GLMM framework after expanding the data into the 

counting-process format as follows:  

Ignoring random effects and using the notation of Section 1.3, the contribution of subject 

݆ from group ݅ to the likelihood is 

(ߚ)௜௝ܮ                                           = ൧(ݐ)௜௝ߣൣ
ఋ೔ೕ exp(−නߣ௜௝(ݏ)

௧

଴

 (1.34)                                   (ݏ݀
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In the piecewise exponential model, the baseline hazard function is assumed to be 

piecewise constant, with ߣ଴(ݏ) = ଴௤ߣ ௤ିଵݐ , ≤ ݏ < ௤ݐ ݍ , = 1, … ,ܳ and ݈௤ = ௤ݐ −  ௤ିଵ isݐ

the interval length. Proceeding this way, the baseline hazard function can be estimated 

nonparametrically by letting the ݐ௤ (ݍ = 1, … ,ܳ) correspond to the observed failure 

times and ܳ be the total number of distinct observed failure times in the study (previously 

denoted by ݎ). As described in Clayton (1988), the contribution of the subject ݆ that 

experienced the event or was censored in the interval ௝݇ to the likelihood is 

(ߚ)௝ܮ                          = ൧(࢐࢏ᇱ࢞ࢼ) ଴௤expߣൣ
ఋ೔ೕ exp ቎−෍ߣ଴௤݈௤exp (ࢼᇱ࢞࢐࢏)

௞ೕ

௤ୀଵ

቏                   (1.35) 

This can be rewritten as, 

(ߚ)௝ܮ                             = ෑൣߣ଴௤exp (ࢼᇱ࢞࢐࢏)൧
ఋ೔ೕ೜

௞ೕ

௤ୀଵ

expൣ−ߣ଴௤݈௤exp (ࢼᇱ࢞࢐࢏)൧                 (1.36) 

The full likelihood is then 

,଴ଵߣ)ܮ … , ଴௥ߣ (ߚ, = ෑෑൣߣ଴௤exp (ࢼᇱ࢞࢐࢏)൧
ఋ೔ೕ೜

௞ೕ

௤ୀଵ

expൣ−ߣ଴௤ ௝݈௤ exp൫ࢼᇱ࢞࢐࢏൯൧ 
ே

௝ୀଵ

 

                                  ∝ෑෑൣߣ଴௤ ௝݈௤exp (ࢼᇱ࢞࢐࢏)൧
ఋ೔ೕ೜

௞ೕ

௤ୀଵ

expൣ−ߣ଴௤ ௝݈௤exp (ࢼᇱ࢞࢐࢏)൧         (1.37)
ே

௝ୀଵ
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The right hand side of (1.37) is a likelihood function of a Poisson model with ߜ௜௝௤  as an 

outcome. This proportionality can be carried over to a model with random effects. So, the 

conditional likelihood function of group ݅ is given by 

,଴ଵߣ)௜ܮ … , ଴௥ߣ |ߚ, ௜ܾ) = ෑෑൣߣ଴௤exp ( ௜ܾ + ൧(࢐࢏ᇱ࢞ࢼ
ఋ೔ೕ೜

௞ೕ

௤ୀଵ

expൣ−ߣ଴௤ ௝݈௤ exp൫ ௜ܾ +  ࢐൯൧࢏ᇱ࢞ࢼ
௡೔

௝ୀଵ

 

                    ∝ෑෑൣߣ଴௤ ௝݈௤exp൫ ௜ܾ + ࢐൯൧࢏ᇱ࢞ࢼ
ఋ೔ೕ೜ expൣ−ߣ଴௤ ௝݈௤exp൫ ௜ܾ + ࢐൯൧      (1.38)࢏ᇱ࢞ࢼ

௞ೕ

௤ୀଵ

௡೔

௝ୀଵ

 

while the marginal likelihood function for all the groups can be written as, 

,଴ଵߣ)ܮ … ଴௥ߣ, (ଶߪ,ߚ, ∝ 

ෑ නෑෑൣߣ଴௤݈௜௝௤exp൫ ௜ܾ + ࢐൯൧࢏ᇱ࢞ࢼ
ఋ೔ೕ೜ expൣ−ߣ଴௤݈௜௝௤exp൫ ௜ܾ + ࢐൯൧࢏ᇱ࢞ࢼ

݆݇

௤ୀଵ

݊݅

௝ୀଵ

ஶ

ିஶ

ீ

௜ୀଵ

݂( ௜ܾ)݀ ௜ܾ     (1.39) 

When ௜ܾ~ܰ(0,ߪଶ), the integral in (1.39) will not be available in a closed form, and 

integral approximation such as Gauss-Hermite quadrature or Laplace approximation are 

needed. Instead of estimating a large number of ߣ଴௤ ; ݍ  = 1, … ,  the baseline hazard is ,ݎ

modeled as a smooth function of time, e.g., by a 4th order polynomial function (Rabe-

Hesketh and Skrondal, 2012). Using available software for GLMMs, nested frailty and 

random slope Cox models can be estimated.  

1.10.4. Bayesian approach  
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Clayton (1991; 1994) formulated the shared model using the counting-process notation 

and discussed estimation of the baseline hazard and model parameters using Markov 

Chain Monte Carlo (MCMC) techniques. The approach is nonparametric with respect to 

Λ଴, where the cumulative baseline hazard is specified in terms of increments over 

particular intervals without knowing any information about the hazard function itself. 

These increments are assumed to be independent and to follow a gamma process. By 

dividing the follow-up time into intervals with the boundaries corresponding to observed 

event times as in the Poisson modeling approach, model (1.19) can be estimated by using 

MCMC methods. The likelihood function for the whole dataset takes the form defined in 

(1.39), and the joint posterior distribution is given by  

,଴ଵߣ)ܮ … ଴௄ߣ, ,ߚ,  (ଶߪ,ܾ

                      ∝ ,଴ଵߣ)ܮ  … , ଴௄ߣ (ଶߪ,ߚ, × (ଶߪ|ܾ)ߨ × ,଴ଵߣ)ߨ … , (଴௄ߣ × (ߚ)ߨ ×  (1.40)       (ଶߪ)ߨ

where ߨ(. ) indicates prior distribution. 

Finally, the specification of model extensions to incorporate several hierarchical levels or 

special structures is straightforward (e.g. Manda, 2001; Yamaguchi et al., 2002).   

1.10.5. Penalized partial likelihood approach with Laplace approximation  

The approach was proposed by Ripatti and Palmgren (2000) and is one of the more 

popular approaches for estimating Cox models with normally distributed random effects. 

Assuming a normal distribution for random effects, the marginal log-likelihood is 

approximated by the Laplace method for integral approximation. We discuss here the 
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estimation of the model defined in (1.21) with correlated random effects, the conditional 

log-likelihood can be written as 

݈௜஼(ߣ଴(. |ߚ,( ௜ܾ଴, ௜ܾଵ) = ෍ൣߣ଴൫ݕ௜௝൯ exp( ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝)൧
ఋ೔ೕ

௡೔

௝ୀଵ

 

                                                                    × expൣ−Λ଴(ݕ௜௝) exp( ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝)൧   (1.41) 

With ( ௜ܾ଴ , ௜ܾଵ)~ܰ(0,Σ), we have 

݂( ௜ܾ଴, ௜ܾଵ) =
1

Σ|ଵ|ߨ2 ଶ⁄ exp ൤−
1
2 ( ௜ܾ଴, ௜ܾଵ)Σିଵ( ௜ܾ଴, ௜ܾଵ)ᇱ൨ 

Assuming conditional independence of subjects within a group and independence 

between groups, the marginal log-likelihood for the entire data can be written as 

.)଴ߣ)݈                           ,ߚ,( Σ) = ෍න න exp [−ܭ௜( ௜ܾ଴, ௜ܾଵ)]
ஶ

ିஶ

ஶ

ିஶ

ீ

௜ୀଵ

݀ ௜ܾ଴݀ ௜ܾଵ                     (1.42) 

where 

)௜ܭ ௜ܾ଴, ௜ܾଵ) =  −෍ൣߜ௜௝(ln ௜௝൯ݕ଴൫ߣ + ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൧
௡೔

௝ୀଵ

− Λ଴൫ݕ௜௝൯ exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯

+ ln ߨ2 +
1
2 ln|Σ| + ( ௜ܾ଴, ௜ܾଵ)Σିଵ( ௜ܾ଴, ௜ܾଵ)ᇱ 

Ignoring the constant ln  Ripatti and Palmgren (2000) approximated the marginal ,ߨ2

likelihood in (1.42) using the Laplace approximation as, 
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.)଴ߣ)݈                   ,ߚ,( Σ) ≈෍൤−
1
2 ln|Σ| −

1
2 lnหܭ௜ᇱᇱ( ෨ܾ௜଴, ෨ܾ௜ଵ)ห − )௜ܭ ෨ܾ௜଴, ෨ܾ௜ଵ)൨

ீ

௜ୀଵ

            (1.43) 

with ( ෨ܾ௜଴, ෨ܾ௜ଵ) = ௔௥௚௠௔௫
(௕೔బ,௕೔భ)∈ோమܭ௜( ௜ܾ଴, ௜ܾଵ) and the second derivative of ܭ௜( ෨ܾ௜଴, ෨ܾ௜ଵ) is 

௜ᇱᇱ൫ܭ ෨ܾ௜଴, ෨ܾ௜ଵ൯ = ൭
߲ଶܭ௜( ௜ܾ଴, ௜ܾଵ)
߲ ௜ܾ଴߲ ௜ܾଵ

ቤ
(௕෨೔బ,௕෨ ೔భ)

൱

= ෍ൣݔ௜௝ଶΛ଴(ݐ) exp( ෨ܾ௜଴ + ௜௝ݔߚ + ෨ܾ௜ଵݔ௜௝)൧ − Σିଵ
௡೔

௝ୀଵ

 

So (1.43) can be expressed as  

.)଴ߣ)݈ ,ߚ,( Σ) ≈෍൥−
1
2 ln|Σ(ߪଶ)|−

1
2 ݈݊

อ൭
߲ଶܭ௜( ௜ܾ଴,ܾ௜ଵ)
߲ܾ௜଴߲ܾ௜ଵ

ቤ
(௕෨೔బ,௕෨೔భ)

൱อ+ ݈௜௉ாே൫ߣ଴(. ,Σ,ߚ,( ෨ܾ௜଴, ෨ܾ௜ଵ൯൩
ீ

௜ୀଵ

 

where 

݈௜௉ாே൫ߣ଴(. ,Σ,ߚ,( ෨ܾ௜଴ , ෨ܾ௜ଵ൯ = ,௜൫෨ܾ௜଴ܭ− ෨ܾ௜ଵ൯

= ෍ൣߜ௜௝ൣlnߣ଴൫ݕ௜௝൯ + ෨ܾ௜଴ + ௜௝ݔߚ + ෨ܾ௜ଵݔ௜௝൧
௡೔

௝ୀଵ

− Λ଴൫ݕ௜௝൯ exp൫ ෨ܾ௜଴ + ௜௝ݔߚ + ෨ܾ௜ଵݔ௜௝൯൧ 

                                                       −
1
2
൫ ෨ܾ௜଴, ෨ܾ௜ଵ൯Σିଵ( ෨ܾ௜଴, ෨ܾ௜ଵ)ᇱ                                               (1.44) 

When Σ is known and ( ௜ܾ଴, ௜ܾଵ) are considered fixed effect parameters, the (1.44) is a 

penalized Cox full log-likelihood with ௜ܾ଴ and ௜ܾଵ as another set of parameters. The 

penalized full log-likelihood in (1.44) can be converted into a partial log-likelihood as 
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݈௜௉ாே(ߣ଴(. ,ߚ,( Σ, ௜ܾ଴, ௜ܾଵ) 

= ෍ߜ௜௝ ቎ܾ௜଴ + ௜௝ݔߚ + ܾ௜ଵݔ௜௝ − ln ෍ exp (
(௣,௤)∈ோ൫௧೔ೕ൯

ܾ௣଴ + ௣௤ݔߚ + ܾ௣ଵݔ௣௤)቏
௡೔

௝ୀଵ

−
1
2
൫ ෨ܾ௜଴, ෨ܾ௜ଵ൯ିߑଵ൫ ෨ܾ௜଴, ෨ܾ௜ଵ൯

ᇱ
 

+෍ߜ௜௝ ቎ln൫ߣ଴(ݐ)൯+ ln ෍ exp (
(௣,௤)∈ோ൫௧೔ೕ൯

ܾ௣଴ + ௣௤ݔߚ + ܾ௣ଵݔ௣௤)቏
௡೔

௝ୀଵ

− Λ଴(ݐ)exp (ܾ௜଴ + ௜௝ݔߚ + ܾ௜ଵݔ௜௝) 

= ݈௜௉௉௅(ߚ, Σ, ௜ܾ଴, ௜ܾଵ) + ,ߚ,(ݐ)଴ߣ)݃ ௜ܾ଴, ௜ܾଵ)                                                                        (1.45) 

For fixed Σ and considering ( ௜ܾ଴, ௜ܾଵ) fixed effect parameters, Ripatti and Palmgren 

(2000) pointed out that the values ߚመ(Σ) and ( ෠ܾ௜଴(Σ), ෠ܾ௜ଵ(Σ)) that maximize 

݈௜௉௉௅(ߚ, Σ, ௜ܾ଴, ௜ܾଵ) also maximize ݈௜௉ாே൫ߣመ଴(. ,ߚ,( Σ, ෨ܾ௜଴, ෨ܾ௜ଵ൯ with ߣመ଴(ݐ) is the estimator of 

discretized baseline hazard while keeping Σ fixed.  

Based on ݈௜௉௉௅(ߚ, Σ, ௜ܾ଴, ௜ܾଵ), the estimating equation for ߚ(Σ) and ( ௜ܾ଴(Σ), ௜ܾଵ(Σ)), given 

Σ, can be derived. When ߚመ(Σ) and ( ෠ܾ௜଴(Σ), ෠ܾ௜ଵ(Σ)) are computed, the matrix Σ can be 

updated by maximizing the following approximate profile log-likelihood,  

݈൫ߚመ , ෠ܾ௜଴, ෠ܾ௜ଵ,Σ൯ ≈෍൥−
1
2 ln|Σ| −

1
2 ln อ൭

߲ଶܭ௜( ௜ܾ଴, ௜ܾଵ)
߲ ௜ܾ଴߲ ௜ܾଵ

ቤ
(௕෠೔బ,௕෠೔భ)

൱อ
ீ

௜ୀଵ

−
1
2
൫෠ܾ௜଴ , ෠ܾ௜ଵ൯ିߑଵ( ෠ܾ௜଴, ෠ܾ௜ଵ)ᇱ൩                                                                        (1.46) 

Because of a better empirical performance, Ripatti and Palmgren (2000) suggested 

replacing డ
మ௄೔(௕೔బ,௕೔భ)
డ௕೔బడ௕೔భ

ቚ
(௕෠೔బ,௕෠೔భ)

 by డ
మ௟೔
ುುಽ(ఉ,ஊ,௕೔బ,௕೔భ)
డ௕೔బడ௕೔భ

ฬ
(௕෠೔బ,௕෠೔భ)

 in (1.46). 
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Finally, the approach is implemented in the coxme package of R software (Therneau, 

2013). The coxme library is able to handle different model designs with normally 

distributed random effects including the shared, random slope, and nested random effects 

models.  

1.11. Brief notes on other approaches    

In this section, a brief overview is given for approaches that were not covered in previous 

sections. One approach to estimating frailty models is to use the expectation-

maximization (EM) algorithm (Klein, 1992); the algorithm consists of two steps: the E-

step and M-step and iterates between them until convergence is achieved, see Duchateau 

and Janssen (2008) for detailed description. The EM algorithm approach can fit gamma 

shared frailty models, and the approach was extended by Cortiñas and Burzykowski 

(2005) to allow for random slope models with a normal distribution. To our knowledge, it 

does not support the counting-process format necessary for modeling time-varying 

predictors and effects. 

The hierarchical likelihood approach was proposed by Ha et al. (2001) and can handle 

shared and nested frailty models with gamma and log-normal distributions. It is 

implemented in the frailtyHL package of R software (Ha et al., 2012) and provides 

standard errors for variance components, but it does not allow for time-varying predictors 

and effects.  

The Monte Carlo EM method (MCEM) was proposed by Vaida and Xu (2000) and fits 

Cox models with normally distributed random effects. The approach uses the EM 

algorithm along with MCMC at the E-step to compute the conditional expectation of 
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random effects. The MCEM approach is implemented in the phmm library of R and 

supports random intercept models as well as independent random intercept and random 

slope models. Time-dependent predictors and coefficients are not allowed. 

The Bayesian approach with Laplace approximation was proposed by Ducrocq and 

Casella (1996) to analyze survival models with random effects on large datasets in the 

field of animal genetics, and it was extended by Legrand et al. (2005) to allow for two 

independent random effects terms within the same cluster. The approach approximates 

the marginal posterior density using the Laplace approximation. The approach is 

implemented in the Survival Kit (Ducrocq and Sölkner, 1994), which is a package of 

Fortran programs that can be found at (http://www.boku.ac.at/nuwi/software/sofskit.htm). 

The approach can handle time-dependent predictors and effects as well as time-dependent 

frailty, but not in random slope models. 

1.12. Focus and objectives of the thesis 

This work focuses on modeling hierarchical data in veterinary science when the response 

variable is time-to-event. The estimation of mixed effects models that take into account 

the hierarchical survival data structure is still a topic of intensive research. Many models 

have been suggested and numerous approaches for estimating these models have been 

developed in the literature. Beyond a shared frailty model, it is not known at this time 

which of the existing estimation approaches works best for complex hierarchical survival 

models. In the present work, the performance of several existing estimation procedures 

for different hierarchical survival models will be evaluated and compared. In many 

studies such as those in veterinary epidemiology, datasets can both be extensive in scale 
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and complex in structure. In addition, the number of predictors of interest may be large, 

and both time-varying predictors and coefficients may be encountered in the analysis. All 

of these issues, along with the limitation of software complicate the task of making an 

appropriate inference. In this thesis, two large veterinary datasets with different structures 

and time-dependent predictors and coefficients are analyzed.  

The main objectives of this thesis are twofold: first, to explore existing estimation 

methods for multi-component frailty Cox models, and evaluate their performance in 

terms of bias in point estimates and empirical variability. Second, the study will explore 

the feasibility of a full hierarchical survival analysis for two large datasets with time-

dependent predictors and effects. The specific objective for each chapter along with a 

brief description is as follows. 

In Chapter 2, a review of four estimation methods for a Cox model with random herd and 

treatment effects; comparing their performance, through simulation, based on a real 

veterinary dataset. The performance of the methods is investigated in terms of the bias of 

fixed and random effect estimates and their empirical variability. The aim of the 

comparison was to establish some practical guidelines for the choice of appropriate 

statistical estimation procedures for modeling 2-level survival data when a random slope 

is needed.  

In Chapter 3, the feasibility of a full hierarchical survival analysis for a large dataset with 

time-dependent predictors and coefficients using a log-normal nested frailty Cox model 

approximated by a mixed-effects Poisson model is explored. A nested frailty Cox model 

was applied to a 3-level hierarchical survival dataset on clinical mastitis from the 
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Canadian Bovine Mastitis Research Network, and identified risk factors associated with 

the hazard of clinical mastitis during the cow’s lactation. Further, the performance of the 

approach used is evaluated and compared with the performance of the penalized partial 

likelihood approach. 

In Chapter 4, a cross-classified and multiple membership Cox model was fit to a large 

observational dataset on calf loss and mortality in beef cattle from Western Canada. The 

model is fitted to the data as a mixed-effects Poisson model using MCMC techniques. 

The individual, herd management, and environmental factors associated with the hazard 

of calf mortality in Western Canada are examined as well as the age period where the 

hazard of mortality is highest, is estimated. Moreover, the Poisson GLMM with a 

Bayesian posterior approach is evaluated via a simulation study using data structures 

similar to the structure of calf mortality data.  

In Chapter 5, through simulation, the estimates of the Poisson maximum likelihood 

approach with adaptive Gaussian quadrature of estimating Cox model with normal 

random effects were examined against misspecification of the random-effects 

distribution. The simulations are performed based on three different hierarchical Cox 

models and two different non-normal distributions for random effects in each model. 

Some of the factors that might affect the estimation are also investigated. 

In Chapter 6, the general conclusions from this thesis are outlined and some topics for 

future research are discussed. 
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2.1. Abstract 

In many studies in medicine, including clinical trials and epidemiological investigations, 

data are clustered into groups such as health centres (human medicine) or herds 

(veterinary medicine). Such data are usually analyzed by hierarchical regression models 

to account for possible variation between groups. When such variation is large, it is of 

potential interest to explore whether additionally the effect of a within-group predictor 

varies between groups. In survival analysis, this may be investigated by including two 

random effects at the group level in a Cox proportional hazards model. Several estimation 

methods have been proposed to estimate Cox models with additive random effects. We 

review four of these methods, apply them to real data from veterinary medicine, and 

compare them using a simulation study.  

2.2. Introduction 

Survival data from epidemiological veterinary studies involving animals from multiple 

herds is a typical example of multilevel survival data, also referred to as correlated or 

clustered survival data. Cox proportional hazards models with random effects within 

exponential (frailties) acting multiplicatively on an unspecified baseline hazard, are 

commonly used for multilevel survival data. The Cox model with shared frailties, in 

which subjects within the same cluster share the same random cluster effect (frailty), 

provides an intuitive way to describe and quantify the heterogeneity in outcomes. 

However, this model has some limitations. For example, in shared frailty models the 

unobserved effect that is not captured by the covariates is assumed to be the same for all 

subjects within the cluster. Further, the shared frailty model can only induce positive 
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association within the cluster, despite the possible existence of negative associations (Xue 

and Brookmeyer, 1996; Wienke et al., 2005). Detailed explanations and excellent 

examples of the limitations of the shared frailty model are provided by Xue and 

Brookmeyer (1996).  

To address the limitations of the shared frailty model, a Cox model with two or more 

additive random effects at the cluster level has been studied for the analysis of multilevel 

survival time data (Xue and Brookmeyer, 1996; Ripatti and Palmgren, 2000; Duchateau 

and Janssen, 2008; Wienke, 2010). This additive random effects model for example 

allows for the effect of a treatment at individual level to vary between clusters (i.e. a 

random coefficient). However estimating Cox models with two correlated additive 

random effects can be challenging and requires sophisticated techniques to deal with both 

the unspecified parameter (baseline hazard) and the complex integrals in the likelihood 

function. 

Several estimation procedures have been proposed for estimating model parameters in a 

Cox model with two additive random effects. For example, Yamaguchi and Ohashi 

(1999) extended the REML estimation procedure (McGilchrist, 1993), and Ripatti and 

Palmgren (2000) proposed estimation using a penalized partial likelihood based on 

Laplace approximation of the marginal likelihood. Furthermore, Vaida and Xu (2000) 

suggested a Monte Carlo EM algorithm with MCMC sampling technique applied in the 

E-step, and Ma et al. (2003) reformulated the random effects Cox model as a random 

effects Poisson model. Cortiñas and Burzykowski (2005) applied a Laplace 

approximation to the EM algorithm and Legrand et al. (2005) used it to approximate the 

marginal posterior density in Bayesian approach. Finally, Rondeau et al. (2008) 
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suggested the use of splines to model the baseline hazard and a Laplace approximation to 

approximate the marginal likelihood. Massonnet et al. (2008), on the other hand, 

reformulated the problem of fitting a random coefficient Cox model into a problem of 

fitting a linear mixed model. Using the estimated integrals of the weighted conditional 

cumulative log hazard as a linear response, Massonnet et al. (2008) used available 

software for generalized linear mixed models (GLMM) in estimating model parameters. 

Despite the previous work on Cox models with additive random effects, limited work has 

been done to compare statistical procedures for parameter estimation. A study by 

Cortiñas et al. (2007) compared different estimation methods based on a Cox model with 

independent random effects. However, assuming independence between the random 

effects may lead to invalid assumptions on the variation across clusters (Rondeau et al., 

2008). Further, the dependency between the random effects may affect the performance 

of the estimation methods. In this chapter, we compare four methods of estimating 

additive random effects Cox models commonly used in epidemiology that are accessible 

in standard statistical software. These include: the penalized partial likelihood (Ripatti 

and Palmgren, 2000); the penalized full likelihood (Rondeau et al., 2008); the Poisson 

maximum likelihood (Rabe-Hesketh and Skrondal, 2012); Bayesian approach 

(Yamaguchi et al., 2002). For simplicity, we will denote throughout this chapter by PPL, 

PFL, PML, and BAY the penalized partial likelihood, the penalized full likelihood, the 

Poisson maximum likelihood, and Bayesian procedures, respectively. Two additive 

random effects Cox models, one with two independent random effects, and one with two 

correlated random effects are applied to real data from veterinary science using 

aforementioned estimation procedures. Through a simulation study, the performance of 
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these estimation procedures is compared in terms of the bias of fixed and random effect 

estimates and their empirical variability. This comparison aims at establishing some 

practical guidelines for the choice of appropriate statistical estimation procedure for 

modeling treatment variation in 2-level survival data. 

2.3. Notation 

In the following, we consider clustered survival data from a total of ܰ animals that come 

from ܪ different herds. The animal ݆ in herd ݅ is either observed from time zero to an 

event time ௜ܶ௝ or to a right censoring time ܥ௜௝ independent of ௜ܶ௝. Let ௜ܻ௝ = min ( ௜ܶ௝  (௜௝ܥ,

be the observed time and ߜ௜௝ =  ൛்೔ೕஸ஼೔ೕൟ be the event indicator. For each animal, we alsoܫ

observe the explanatory variable (predictor) ݔ௜௝. The simplest model for such data that 

takes into account the correlation occurring in the data due to clustering is the model with 

random cluster effects. This model is given by  

|ݐ)௜௝ߣ                                               ௜ܾ଴) = (ݐ)଴ߣ exp൫ ௜ܾ଴ + ௜௝൯ݔߚ                                           (2.1)                                               

where ߣ௜௝(ݐ|. ) is the conditional hazard function for the ݆௧௛  animal from the ݅௧௛ herd at 

time ߣ ,ݐ଴(ݐ) is an unspecified baseline hazard at time ߚ ,ݐ is a fixed effect parameter, 

and ௜ܾ଴ is the random effect for the ݅௧௛ herd. The random effects ௜ܾ଴; ݅ = 1, …  are ,ܪ,

assumed to be independent and identically distributed. An alternative formulation of 

model (2.1) is given by 

(௜଴ݑ|ݐ)௜௝ߣ                                                = ௜଴ݑ(ݐ)଴ߣ exp൫ݔߚ௜௝൯                                              (2.2)                                               
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Model (2.2) is known as a shared frailty model, where the frailty ݑ௜଴ = ݁௕೔బ acts 

multiplicatively on the baseline hazard. Common choices for the distribution of ݑ௜଴ are 

one-parameter gamma and log-normal distributions. When ݑ௜଴ are log-normally 

distributed, the random effects ௜ܾ଴ = ln (ݑ௜଴) follow a normal distribution, and the 

variance ߪଶ of ௜ܾ଴ (or ݑ௜଴) indicates the amount of variation between herds.  

When variation between herds exists and is large, a further step is to investigate whether 

there is variation in the predictor effect between different herds. To do so, an extra 

random effect is added to model (2.1); this random effect represents an interaction 

between observable and unobservable (not captured by observed predictors) variables. 

The Cox model with two additive random effects can be expressed as,   

|ݐ)௜௝ߣ                                   ௜ܾ଴, ௜ܾଵ) = (ݐ)଴ߣ exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯                               (2.3)                                    

where ௜ܾଵ represents the random predictor effect, also termed a random coefficient or 

random interaction. The random effects ௜ܾ଴ and ௜ܾଵ are assumed to be jointly distributed 

with density function ݂( ௜ܾ଴ , ௜ܾଵ)~ܰ(0,Σ) with Σ = ቈ ଴ߪ
ଶ ଴ଵߪ

଴ଵߪ ଵଶߪ
቉. 

Given the random effects ( ௜ܾ଴, ௜ܾଵ), observations within herd ݅ are assumed to be 

independent. Therefore, the conditional likelihood function for herd ݅ is: 

.)଴ߣ)௜஼ܮ                    |ߚ,( ௜ܾ଴, ௜ܾଵ) = ෑൣߣ௜௝൫ݕ௜௝| ௜ܾ଴ , ௜ܾଵ൯൧
ఋ೔ೕ

௜ܵ௝൫ݕ௜௝| ௜ܾ଴ , ௜ܾଵ൯
௡೔

௝ୀଵ

                   (2.4) 

where  

௜ܵ௝(ݐ| ௜ܾ଴, ௜ܾଵ) = expൣ−Λ଴൫ݕ௜௝| ௜ܾ଴, ௜ܾଵ൯ exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯൧,  
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with Λ଴(ݐ) = ∫ ௬೔ೕݒ݀ (ݒ)଴ߣ
଴  and (ݕ௜௝ , ,௜௝ߜ  ௜௝) being the observed data for animal ݆ fromݔ

herd ݅. 

Assuming conditional independence of observations within a herd and independence 

between herds, the overall marginal likelihood function can be written as, 

.)଴ߣ)ܮ                       (Σ,ߚ,( = ෑන න exp [−ܭ௜( ௜ܾ଴, ௜ܾଵ)]
ஶ

ିஶ

ஶ

ିஶ

ு

௜ୀଵ

݀ ௜ܾ଴݀ ௜ܾଵ                         (2.5) 

where 

)௜ܭ ௜ܾ଴, ௜ܾଵ) = |ߚ,଴ߣ)௜஼ܮൣ݈݊− ௜ܾ଴ , ௜ܾଵ)൧ − ln[݂( ௜ܾ଴, ௜ܾଵ)]  

                      = −෍ൣߜ௜௝(ln ௜௝൯ݕ଴൫ߣ + ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൧
௡೔

௝ୀଵ

 

                           −Λ଴൫ݕ௜௝൯ exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯ − ln[݂( ௜ܾ଴, ௜ܾଵ)] 

The marginal log-likelihood in (2.5) cannot be used directly to estimate the parameters of 

model (2.3) because it contains an unspecified parameter (ߣ଴) and depends on 

integrations that cannot be solved analytically. Several parameter estimation procedures 

have been proposed to overcome these two problems; four of these parameter estimation 

procedures are reviewed in next section.   

2.4. Parameter estimation procedures  

2.4.1. Penalized Partial Likelihood (PPL) procedure 
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This estimation procedure was proposed by Ripatti and Palmgren (2000) and became in 

the recent years one of the most commonly used estimation procedures for Cox models 

with random effects. Based on the derivation of a penalized likelihood solution of 

Breslow and Clayton (1993) for the GLMM with normal random effects, Ripatti and 

Palmgren (2000) applied Laplace’s method for integral approximation to approximate the 

marginal log-likelihood by 

 

.)଴ߣ)݈ ,ߚ,( Σ) 

                       ≈෍൥−
1
2 ln|Σ| −

1
2 ln อ൭

߲ଶܭ௜( ௜ܾ଴, ௜ܾଵ)
߲ ௜ܾ଴߲ ௜ܾଵ

ቤ
(௕෨೔బ,௕෨೔భ)

൱อ
ு

௜ୀଵ

+ ݈௜௉ாே൫ߣ଴(. ,ߚ,( Σ, ෨ܾ௜଴, ෨ܾ௜ଵ൯൩                                                                           (2.6) 

 

where ( ෨ܾ௜଴, ෨ܾ௜ଵ) = ௔௥௚௠௔௫
(௕೔బ,௕೔భ)∈ோమ )௜ܭ ௜ܾ଴, ௜ܾଵ) and 

݈௜௉ாே൫ߣ଴(. ,ߚ,( Σ, ෨ܾ௜଴, ෨ܾ௜ଵ൯ = ௜൫ܭ− ෨ܾ௜଴, ෨ܾ௜ଵ൯  

               = ෍ൣߜ௜௝ൣln ௜௝൯ݕ଴൫ߣ + ෨ܾ௜଴ + ௜௝ݔߚ + ෨ܾ௜ଵݔ௜௝൧
௡೔

௝ୀଵ

− Λ଴൫ݕ௜௝൯ exp൫෨ܾ௜଴ + ௜௝ݔߚ + ෨ܾ௜ଵݔ௜௝൯൧

−
1
2
൫ ෨ܾ௜଴, ෨ܾ௜ଵ൯Σିଵ( ෨ܾ௜଴, ෨ܾ௜ଵ)ᇱ 

When Σ is known and ( ௜ܾ଴, ௜ܾଵ) are considered fixed effect parameters, the 

݈௜௉ாே(ߣ଴(. ,ߚ,( Σ, ௜ܾ଴, ௜ܾଵ) function is a penalized Cox full log-likelihood with ௜ܾ଴ and 
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௜ܾଵ as another set of parameters. The ݈௜௉ாே(ߣ଴(. ,ߚ,( Σ, ௜ܾ଴, ௜ܾଵ) function can be converted 

into a penalized partial log-likelihood as 

݈௜௉ாே(ߣ଴(. ,ߚ,( Σ, ௜ܾ଴, ௜ܾଵ) 

= ෍ߜ௜௝ ቎ܾ௜଴ + ௜௝ݔߚ + ܾ௜ଵݔ௜௝ − ln ෍ exp (
(௣,௤)∈ோ൫௧೔ೕ൯

ܾ௣଴ + ௣௤ݔߚ + ܾ௣ଵݔ௣௤)቏
௡೔

௝ୀଵ

−
1
2
൫ ෨ܾ௜଴, ෨ܾ௜ଵ൯ିߑଵ൫ ෨ܾ௜଴, ෨ܾ௜ଵ൯

ᇱ
 

+෍ߜ௜௝ ቎ln ቀߣ଴൫ݕ௜௝൯ቁ+ ln ෍ exp (
(௣,௤)∈ோ൫௧೔ೕ൯

ܾ௣଴ + ௣௤ݔߚ + ܾ௣ଵݔ௣௤)቏
௡೔

௝ୀଵ

− Λ଴൫ݕ௜௝൯exp (ܾ௜଴ + ௜௝ݔߚ + ܾ௜ଵݔ௜௝) 

= ݈௜௉௉௅(ߚ, Σ, ௜ܾ଴, ௜ܾଵ) + ݃൫ߣ଴൫ݕ௜௝൯,ߚ, ௜ܾ଴, ௜ܾଵ൯ 

where ܴ൫ݐ௜௝൯ are risk sets. 

For fixed Σ and considering ( ௜ܾ଴, ௜ܾଵ) fixed effect parameters, Ripatti and Palmgren 

(2000) pointed out that the values ߚመ(Σ) and ( ෠ܾ௜଴(Σ), ෠ܾ௜ଵ(Σ)) that maximize 

݈௜௉௉௅(ߚ, Σ, ௜ܾ଴, ௜ܾଵ) also maximize ݈௜௉ாே൫ߣመ଴,ߚ,Σ, ෨ܾ௜଴ , ෨ܾ௜ଵ൯ with ߣመ଴ is the estimator of 

discretized baseline hazard while keeping Σ fixed.  

 

Based on ݈௜௉௉௅(ߚ, Σ, ௜ܾ଴, ௜ܾଵ), the estimating equation for ߚ(Σ) and ( ௜ܾ଴(Σ), ௜ܾଵ(Σ)), given 

Σ, can be derived. When ߚመ(Σ) and ( ෠ܾ௜଴(Σ), ෠ܾ௜ଵ(Σ)) are computed, the matrix Σ can be 

updated by maximizing the following approximate profile log-likelihood,  

݈൫ߚመ , ෠ܾ௜଴ , ෠ܾ௜ଵ ,Σ൯ ≈෍൥−
1
2 ln|Σ| −

1
2 ln อ൭

߲ଶܭ௜( ௜ܾ଴, ௜ܾଵ)
߲ ௜ܾ଴߲ ௜ܾଵ

ቤ
(௕෠೔బ,௕෠೔భ)

൱อ
ு

௜ୀଵ

−
1
2
൫ ෠ܾ௜଴, ෠ܾ௜ଵ൯ିߑଵ( ෠ܾ௜଴, ෠ܾ௜ଵ)ᇱ൩                                                                           (2.7) 
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Ripatti and Palmgren (2000) suggested replacing డమ௄೔(௕೔బ,௕೔భ)
డ௕೔బడ௕೔భ

ቚ
(௕෠೔బ,௕෠೔భ)

 by 

డమ௟೔
ುುಽ(ఉ,ஊ,௕೔బ,௕೔భ)
డ௕೔బడ௕೔భ

ฬ
(௕෠೔బ,௕෠೔భ)

 in (2.7) because it showed better empirical performance in the 

simulations.  

To estimate the covariance matrix of the fixed effect estimates, one can use Cox model 

software with the estimated random effects as an offset. For estimating the standard error 

of the estimates of Σ Ripatti and Palmgren (2000) suggested to differentiate (2.7) twice 

with respect to Σ, and take the expectation with respect to ( ௜ܾ଴, ௜ܾଵ). We leave formulas 

and technical details to the original article.   

Finally, the procedure is implemented in the coxme package for R software developed by 

Therneau (2011) to fit Cox models with normal random effects. The standard error for 

estimated variances of random effects is not provided in the current implementation. 

 2.4.2. Penalized Full Likelihood (PFL) procedure  

This procedure was proposed by Rondeau et al. (2008); they used the likelihood defined 

in (2.5) instead of a partial likelihood and penalized the hazard function instead of 

penalizing the frailties. Rondeau et al. (2008) proposed a smooth baseline hazard 

estimator and added a penalty term for the roughness of the baseline hazard to the 

marginal log-likelihood. This roughness penalty term is a product of a smoothing 

parameter ݒ and the integral of the squared second derivative of the baseline hazard. The 

penalized log-likelihood is thus defined as: 

                           ݈௉ி௅(ߣ଴(. ,ߚ,( Σ) = .)଴ߣ)݈ ,ߚ,( Σ) − නݒ                               ݐଶ݀[(ݐ)଴ᇱᇱߣ]
ஶ

଴
(2.8) 
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where ߣ଴ᇱᇱ(ݐ) is the second derivative of the baseline hazard, and ݒ is a positive smoothing 

parameter that controls the trade-off between the data fit and the smoothness of the 

function ߣ଴(. ).  

For modeling the baseline hazard, Rondeau et al. (2008) suggested to model ߣ଴(. ) 

through splines. As they used cubic M-splines (Ramsay, 1988) that are easy to integrate 

and differentiate, the second derivative of ߣ଴ is approximated by a linear combination of 

1st order polynomial terms. Such an approximation reduces the number of parameters but 

still allows for flexible shapes of hazard functions. The approximation error can be 

reduced by increasing the number of knots. In other words, the more knots are used; the 

closer is the approximation to the true hazard. The smoothing parameter can be fixed by 

the user or estimated by maximizing a likelihood cross-validation criterion for the Cox 

model (Joly et al., 1998; Rondeau and Gonzalez, 2003).  

The penalized log-likelihood in (2.8) is maximized by the robust Marquardt algorithm 

(Marquardt, 1963). This algorithm has the advantage of being stable and fast in 

convergence. After convergence, the estimated covariance matrix for model parameters is 

obtained directly from the inverse of converged Hessian matrix. 

This procedure is implemented in the frailtypack package for R software (Rondeau et al., 

2012). The number of knots for the approximation of the baseline hazard can be 

controlled by the user and must be between 4 and 20. The smoothing parameter can be 

automatically estimated by the cross-validation procedure.  

2.4.3. Poisson Maximum Likelihood (PML) procedure 
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One way to fit model (2.3) is to reformulate the Cox model with random effects in a 

random effects Poisson model framework (Rabe-Hesketh and Skrondal, 2012), as 

follows. The follow-up period is divided into as many intervals (say ܭ intervals) as there 

are unique failure times. Each interval begins at a unique failure time and ends at the next 

unique failure time. This allows estimation of the baseline hazard ߣ଴(ݐ) 

nonparametrically. For each of these intervals: 

(ݐ)଴ߣ  = ଴௞ߣ ݐ , ∈ Ω௞ = ,௞ିଵݐ) ,[௞ݐ ݇ = 1, …                   .ܭ,

Let ݈௜௝௞  be the follow-up time of animal ݆ within herd ݅ in Ω௞, and ߜ௜௝௞  be the event 

indicator for animal ݆ within herd ݅ in Ω௞. As shown in Ma et al. (2003) and Feng et al. 

(2005), under an independent and non-informative censoring assumption for the interval 

Ω௞, the conditional likelihood function from a random effects Cox model is proportional 

to the conditional likelihood function from a random effects Poisson model with log 

interval lengths between unique failure times as an offset. For the ݇௧௛ interval, the 

contribution of animal ݆ from herd ݅ to the conditional likelihood is: 

 

଴௞ߣ)௜௝௞ܮ |ߚ, ௜ܾ଴, ௜ܾଵ)

= ଴௞exp൫ߣൣ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯൧
ఋ೔ೕೖ expൣ−ߣ଴௞݈௜௝௞exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯൧  

∝ ଴௞݈௜௝௞exp൫ߣൣ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯൧
ఋ೔ೕೖ expൣ−ߣ଴௞݈௜௝௞exp൫ ௜ܾ଴ + ௜௝ݔߚ

+ ௜ܾଵݔ௜௝)൧, 

corresponding to the Poisson model described above, and the conditional likelihood 

function of herd ݅ then takes the form, 
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,଴ଵߣ)௜ܮ … , ଴௄ߣ |ߚ, ௜ܾ଴, ௜ܾଵ) = ෑෑܮ௜௝௞(ߣ଴௞ |ߚ, ௜ܾ଴, ௜ܾଵ)
௄

௞ୀଵ

௡೔

௝ୀଵ

    

  ∝ෑෑൣߣ଴௞݈௜௝௞exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯൧
ఋ೔ೕೖ expൣ−ߣ଴௞݈௜௝௞exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯൧

௡೔

௝ୀଵ

௄

௞ୀଵ

 

while the marginal likelihood function for all herds can be written as, 

,଴ଵߣ)ܮ … , ଴௄ߣ (Σ,ߚ, ∝ 

ෑ቎ න නෑෑൣߣ଴௞݈௜௝௞exp൫ ௜ܾ଴ + ௜௝ݔߚ + ௜ܾଵݔ௜௝൯൧
ఋ೔ೕೖ expൣ−ߣ଴௞݈௜௝௞exp൫ ௜ܾ଴ + ௜௝ݔߚ

௡೔

௝ୀଵ

௄

௞ୀଵ

ஶ

ିஶ

ஶ

ିஶ

ு

௜ୀଵ

+ ௜ܾଵݔ௜௝)൧݂( ௜ܾ଴, ௜ܾଵ)݀ ௜ܾ଴݀ ௜ܾଵ቏                                                                     (2.9) 

As in the likelihood function of the previous methods, the integral in (2.9) cannot be 

solved in a closed form and thus must be approximated. Adaptive Gaussian quadrature 

can be used for this task; see Pinheiro and Bates (1995) for the details of implementation. 

Instead of estimating all the parameters ߣ଴ଵ, … , ଴௄ߣ , it is customary to model the baseline 

hazard as a smooth function of time, e.g. by a 4th order polynomial as suggested by Rabe-

Hesketh and Skrondal (2012).  

2.4.4. Bayesian (BAY) procedure  

Bayesian techniques can be used to fit random effects Cox models, where the cumulative 

baseline hazard is specified in terms of increments over particular intervals without 
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knowing any information about the hazard function itself. These increments are assumed 

to be independent and to follow a gamma process. Similar to the idea of fitting a random 

effects Cox model in a random effects Poisson model described in Subsection 2.4.3, the 

follow-up time is divided into ܭ intervals with the boundaries corresponding to the 

observed event times. The likelihood function for the entire data set takes the form 

defined in (2.9). 

The joint density of the posterior distribution for model (2.3) is proportional to  

,λ଴ଵ)ܮ … , λ଴௄ , β,ܾ, Σ)

∝ ,λ଴ଵ)ܮ  … , λ଴௄ (Σ,ߚ, × π(ܾ|Σ) × π(λ଴ଵ , … , λ଴௄) × π(ߚ) × π(Σ)   (2.10) 

where ܾ = ( ௜ܾ଴, ௜ܾଵ) and π(. ) indicates prior distribution. 

Conjugate prior distributions are: a normal distribution ܰ(0, 10଺) for the fixed effect 

parameter ߚ; a gamma distribution (10ିଷ, 10ିଷ) for the inverse variances of the two 

normal random effects if a diagonal covariance matrix is considered for random effects, 

and a Wishart distribution with a diagonal matrix of 1 and 2 degrees of freedom for the 

inverse covariance matrix when a more flexible covariance structure for random effects is 

used. For the baseline hazard, we follow Kalbfleisch (1978) and assume gamma 

distribution priors for the increments of the baseline hazard with scale ܿ = 0.001 and 

shape parameter equal to ܿݐ∆ݎ = 10ିସ∆ݐ, where ݎ = 0.1 is a guess of the failure rate per 

unit time and ∆ݐ is the size of the time interval. 

2.4.5. Software implementation for estimation procedures  
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The PPL and PFL estimation procedures used the previously described implementations 

in R version 2.14.2 software (the coxme package version 2.1-3 for PPL and the 

frailtypack package version 2.2 for PFL). A smoothing parameter of 10,000 and 8 knots 

were used for the PFL estimation procedure. The PML estimation procedure used the 

adaptive quadrature algorithm for ML estimation implemented in the Stata software 

version 11.2 with the default number of integration points (7 per random effect). MCMC 

estimation for the Bayesian model was performed in WinBUGS version 1.4 called from 

within R software using the R2WinBUGS package (Sturtz et al., 2005).  

For Bayesian analyses, we first ran three parallel Markov chains with different initial 

values for 15,000 iterations and a thinning of 10. All model parameters from the three 

chains were monitored for convergence. Markov chain diagnostics were carried out for 

the three chains using the R package coda (Plummer et al., 2006) and found to be 

satisfactory. The first 5,000 samples after thinning were discarded, and based on further 

10,000 samples posterior medians were extracted as model parameter estimates and 

posterior standard deviations played the role of standard errors. 

2.5. Example: Lameness data  

The lameness disease dataset originates from a Danish project that was carried out by the 

Health and Production Surveillance System (HEPS) from October 1990 to March 1991 

(Christensen, 1996). The outcome of interest was defined as the (survival) time from 

birth to the first treatment for lameness (e.g. splayleg, joint infection, or ataxia) in the 

litter. A total number of 7872 litters of piglets were observed during the period from birth 
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to weaning. Only litters with a suckling period no more than 40 days were kept, leaving a 

total of 7632 litters.  

In this study, a subset of the data was used in which only one litter per sow was included, 

and only the 22 herds not participating in any elevated health programs were included. 

The resulting sample size was 3556 litters of which 398 litters had the event of interest, 

corresponding to 88.8% censored observations. The number of events in herds ranged 

from 0 to 69 with a mean of 18 events. The median time of follow-up (till censoring) and 

median time to event were 27 and 11 days, respectively. The predictor of primary interest 

here was sow treatment for milk fever, infection, or MMA (mastitis/metritis/agalactia) in 

days around farrowing (2 days before and up to 4 days after); 26% of the sows were 

treated. The dataset was analyzed taking into account the variation in the baseline hazard 

and in the treatment effects between herds using model (2.3). A discussion of the 

modeling of the full lameness dataset can be found in Stryhn and Christensen (2013). 

2.5.1. Analysis of lameness data 

A Cox model with a fixed treatment and random treatment by herd interaction was 

applied to the lameness data using the four estimation procedures reviewed in Section 

2.4. To see the impact of including a covariance structure between the random effects, the 

model was fit to the data with both independent and correlated random effects. The 

results of the two analyses using the four procedures are shown in Table 2.1. Further, 

results from a sensitivity analysis based on a guessed failure rate of ݎ = 0.004 (estimated 

based on an exponential model) for the BAY procedure showed very minor changes in 

model parameter estimates.  
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The two analyses demonstrated variation in the baseline hazard and in the treatment 

effect between herds (the log-likelihood values based on PML for a standard Cox model, 

Cox model with random herd effect, and Cox model with independent random herd and 

treatment effects were -2531.17, -2331.00 and -2326.97, respectively). This variation was 

slightly larger in the baseline hazard and a bit smaller in the treatment effect between 

herds for the independent random effects model than for the correlated random effects 

model. Furthermore, the variation in the baseline hazard was roughly four times larger 

than the variation in the treatment effect between herds in the two models. The estimated 

correlation between random effects in the second analysis ranged between 0.56 (for 

BAY) and 0.91 (for PML) across the estimation procedures. The estimated values of ߚ 

from the correlated random effects model were much smaller than those obtained from 

the independent random effects model even though the correlated random effects model 

did not show very much improvement in the model fit as the difference in the log-

likelihood (or the DIC in Bayesian analysis) between the two models was only 

approximately one unit (results not shown). As all the estimation procedures agreed on 

the discrepancy in the fixed effect estimates, one might think of such discrepancy as the 

result of inadequate assumptions for the variation across herds.  

The results for the PFL and PML procedures in both analyses were, in general, quite 

comparable in terms of the point estimates and slightly different in the standard errors. 

On the other hand, the results for the PPL and BAY procedures were somewhat different 

compared with other procedures.  

2.6. Simulation studies  
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The analyses of the real dataset presented in the previous section showed differences in 

parameter estimates and their standard errors between the four estimation procedures in 

both independent and correlated random effects models, as well as a strong discrepancy 

between independent and correlated random effects models. In order to investigate in 

more detail the performance of the estimation procedures, simulation studies were 

conducted with settings resembling the settings of the real dataset using the four 

estimation procedures.     

2.6.1. Models and parameter settings 

For both the two mixed effects Cox models (with independent or correlated random 

effects), three different sizes of the heterogeneity parameters were studied and set at: 

଴ଶߪ = ଵଶߪ,2.0 = ଴ଶߪ ;0.5 = ଵଶߪ,0.5 = 0.125; and ߪ଴ଶ = ଵଶߪ,0.1 = 0.025 for large, 

moderate, and small variance settings, respectively. In each variance setting of the 

correlated random effects model, three different values of the correlation between the two 

random effects were considered: ߩ = ߩ ,0.2 = 0.5, and ߩ = 0.8. The fixed effect 

parameter was set at ߚ = −0.4  in the independent random effects model and at ߚ =

−0.8 in the correlated random effects model. A constant baseline hazard was used in the 

three simulation settings, and to keep the censoring rate equal in the three settings the 

baseline hazard was set at 2 × 10ିଷ, 3.5 × 10ିଷ and 4.5 × 10ିସ for the high, moderate, 

and low variance settings, respectively.  

Finally, the PPL, PFL, and PML procedures were set throughout the simulations as in the 

analysis of the real dataset. To keep the same covariance matrix for Wishart distribution 

across the simulation settings of correlated random effects models, the diagonal elements 
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of the matrix were set at 0.05. This value of the diagonal elements was chosen based on a 

sensitivity analysis for the values 0.01, 0.05, 0.1, 0.5, and 1. Also, to reduce the 

computing time of Bayesian analyses in the simulations, MCMC samples with no 

thinning were used for model estimates. 

2.6.2. Simulation of data 

To mimic the real dataset, 3556 animals from 22 herds with same sizes (from 68 to 310) 

as in the real dataset were considered. A total of 300 datasets were generated from model 

(2.3) using R version 2.14.2 software and the technique of Bender et al. (2005) for 

generating failure time data. The observations for each particular dataset were generated 

in the following way: first, the random effects ௜ܾ଴ and ௜ܾଵ; ݅ = 1, … ,22, were generated 

from a zero-mean bivariate normal distribution ܰ(0,0,ߪ଴ଶ, ,ଵଶߪ ) The event time .(ߩ ௜ܶ௝) for 

each animal was randomly generated from an exponential distribution with intensity 

|ݐ)௜௝ߣ ௜ܾ଴, ௜ܾଵ). The same treatment indicator as in the real dataset was used to divide the 

population into two groups: 26% of the animals in the treatment group and 74% in the 

control group. The censoring time (ܥ௜௝) for each animal was randomly generated from the 

uniform distribution 16 + ܷ(0,24). An animal for which the event time ௜ܶ௝  was longer 

than the censoring time ܥ௜௝ was censored with actual time equal to censored time, so that 

௜ܻ௝ = min ( ௜ܶ௝,ܥ௜௝) and ߜ௜௝ =  ൛்೔ೕஸ஼೔ೕൟ. As in the real data, the amount of censoring wasܫ

approximately 89% in all the simulation settings.  

2.6.3. Analysis of simulated datasets 
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Model (2.3) was applied to the simulated datasets using the four considered estimation 

procedures. In order to explore the effect of model misspecification, estimation was 

carried out for each simulated dataset with and without estimating the covariance 

between the random herd and treatment effects. 

The point estimates of model parameters and their standard errors (posterior standard 

deviations in Bayesian analysis) for each simulated dataset were extracted. The summary 

statistics for each model parameter were computed as follows: the mean, computed as the 

average of the estimated values across the simulated datasets; model-based standard 

error, computed as the average of the standard errors of the point estimates across the 

simulated data sets; the empirical standard error, computed as the standard deviation of 

the estimated values among the simulated datasets; the relative bias, computed as the 

absolute value of the difference between the mean estimate and the true value divided by 

the true value; the mean squared error, computed as the mean of the squared differences 

between the estimated values and the true value over the simulated datasets. If an 

estimation procedure produced non-sensible estimates or failed to reach convergence for 

a certain dataset, these results were excluded from the statistics computed across the 

simulated datasets. Convergence rates across each set of 300 estimations were computed 

as well.   

2.7. Simulation results  

2.7.1. Simulated data from independent random effects model 

We present first the settings where the true model assumed two independent additive 

random effects within the same cluster, and the analysis model used either the same 
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covariance structure (ߪ଴ଵ set at 0) as the true model or a more flexible covariance 

structure where ߪ଴ଵwas estimated.  

The simulation results for the large, moderate and small variance settings are shown in 

Table 2.2. The table shows that PFL and PML experienced some convergence 

difficulties. However, the non-convergence rate was, in general, much higher for PFL 

than for PML and increased with increasing magnitude of variability of random effects, 

while the non-convergence rate for PML did not exceed 3% and appeared to be in 

different directions with the magnitude of random effects variability.   

In general, the fixed effect ߚ was estimated well by all the procedures except for PPL in 

the large variance setting and PFL in the moderate variance setting, where appreciable 

biases towards zero can be seen. For the PPL method, the bias increased with increasing 

variance of the random effects as also reported by Ripatti and Palmgren (2000), but this 

did not seem to be the case for other procedures since no bias pattern was observed. The 

mean of the estimated SEs and the empirical SEs agreed closely for all the procedures, 

and PPL had the smallest empirical variability and mean squared error compared with the 

other three procedures. 

For random effects estimates, all procedures produced reasonable estimates for ߪ଴ଶ with 

exception of PFL in the large variance setting, where a large downwards bias was 

observed. This can probably be attributed to the very low convergence rate for PFL in 

this simulation setting. The ߪଵଶ was estimated quite well by PML, PPL and PFL in the 

moderate variance setting and by BAY in the large variance setting. Further, ߪଵଶ was 

overestimated in the small variance setting by all the procedures and underestimated 
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otherwise. The estimated SEs of the ߪ଴ଶ and ߪଵଶ were on average similar to the empirical 

SEs in all settings for PML, and in the small variance setting for PFL. However, PFL 

tended to overestimate the SE of ߪ଴ଶ and underestimate it for ߪଵଶ in the moderate variance 

setting. In contrast, the mean of posterior standard deviations for BAY underestimated 

the empirical SE of ߪ଴ଶ in the moderate variance setting as well as the SEs of both ߪ଴ଶ and 

 .ଵଶ in the large variance settingߪ

When the analysis allowed the covariance of the random effects to be estimated instead 

of being set at 0, the simulation results (Table 2.6 in the Appendix) indicated greater 

convergence difficulties for PFL and PML though the non-convergence rate was still 

much lower for PML than for PFL. Furthermore, the estimation procedures produced 

estimates for ߚ and ߪ଴ଶ similar to their estimates in the previous analyses except for BAY, 

where larger biases for ߚ and ߪ଴ଶ in the moderate variance setting and for ߪ଴ଶ in small 

variance setting were observed. In the large variance setting and compared with analyses 

where the covariance was not estimated, ߪଵଶ was estimated with less bias by PPL and 

PML, and with larger bias by BAY, whereas in the small variance setting the four 

procedure gave estimates with larger biases. For the variability of the estimates, it was 

noted that the estimated and empirical SEs of ߚ were mostly larger in these analyses than 

in the analyses where the covariance was not estimated.  

2.7.2. Simulated data from correlated random effects model 

In this section, the datasets were generated from a model with two correlated additive 

random effects and analyzed with and without estimating the covariance ߪ଴ଵ of the 
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random effects. The simulation results of the large, moderate and small variance settings 

with estimation of ߪ଴ଵ are shown, respectively, in Tables 2.3, 2.4 and 2.5.  

In these simulation settings, only PFL and PML procedures had serious convergence 

problems, and as in the simulation results of the independent random effects model, the 

non-convergence rate was much lower for PML than for PFL, and PFL convergence was 

severely affected by the large variance components.  

The estimates for the fixed effect ߚ obtained by the four procedures agreed closely with 

the true value in the small and moderate variance settings, and their estimated and 

empirical SEs were close. In contrast, only PML and BAY yielded close estimates for ߚ 

with nearly unbiased SEs in the large variance setting, whereas PPL underestimated ߚ 

and its empirical variability. The bias for PPL increased with increasing correlation 

between the random effects. As in the previous settings, the results for PFL in the large 

variance setting should be disregarded due to the low convergence rate.  

The ߪ଴ଶ was reasonably estimated by all the procedures in the small and moderate 

variance settings, and by PML and BAY in the large variance setting. In the large 

variance setting, the PPL procedure produced estimates for ߪ଴ଶ with downwards bias 

increasing with the correlation between random effects. The estimated and empirical SEs 

of ߪ଴ଶ agreed well for PML in the three variance settings, and for PFL in the small 

variance setting. However, the SE of ߪ଴ଶ was overestimated by the BAY approach in all 

variance settings, and by PFL in the moderate variance setting. 

All procedures produced biased estimates for ߪଵଶ with exceptions of the PML procedure 

in the large variance setting and PPL in the moderate variance setting when ߪ଴ଵ = 0.05. 
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This bias in ߪଵଶ estimates was downwards for PPL and BAY in the large variance setting, 

and for BAY in the moderate variance setting when ߪ଴ଵ = 0.05 and ߪ଴ଵ = 0.125. 

Otherwise, the bias was upwards. The estimated SEs were close to the empirical SEs for 

PML and PFL, whereas the mean of the posterior standard deviations for BAY estimator 

overestimated the empirical SEs. 

The four estimation procedures underestimated the covariance between random effects 

଴ଵߪ ଴ଵ in all cases except in the large variance setting whenߪ = 0.5 and ߪ଴ଵ = 0.8 for 

PML and BAY, where the procedures yielded estimates somewhat closer to the true 

values, and when ߪ଴ଵ = 0.2 where the BAY procedure tended to overestimate the ߪ଴ଵ. 

The estimates of SE associated with PML and PFL were closer to the observed SE than 

the estimates associated with the BAY procedure. 

When the analysis ignored the covariance between the random effects, the four 

procedures showed unsatisfactory results (Tables 2.7, 2.8 and 2.9 in the Appendix). In 

particular, the procedures tended to produce estimates for the fixed effect ߚ with large 

biases towards zero when the variance components were large or moderate with strong 

correlation between the random effects. Furthermore, they yielded estimates for the ߪଵଶ 

with more bias in the large variance setting and less bias in the small variance setting, as 

well as more bias in the estimates of ߪ଴ଶ for the BAY and less for the PPL in the large 

variance setting. On the other hand, smaller empirical SEs of ߚ were noted for all the 

estimation procedures in comparison with the situation where the ߪ଴ଵ was estimated as 

well as smaller estimated SEs for the PFL, PML and BAY, and similar estimated SEs for 

the PPL.  
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2.8. Discussion  

In this paper, we reviewed four common estimation procedures to fit Cox models with 

two additive random effects in the same cluster, using data from veterinary epidemiology. 

We compared these estimation procedures through a simulation study based on the two 

Cox models with a fixed (treatment) effect and either two independent or two correlated 

additive random effects. The simulation structure was built to mimic the structure of the 

real data.  

The model used by Cortiñas et al. (2007) is quite similar to the model used in our 

simulation. Their Cox model had two random effects within the same cluster, but the 

covariance of the two random effects was set to zero. We used the same model, however 

we considered a more flexible covariance matrix for the two random effects including 

their situation where a diagonal covariance matrix was used. What distinguishes our 

study, besides the flexible structure of the covariance between random effects, is our use 

of different estimation approaches including the Poisson GLMM approach, with adaptive 

Gaussian quadrature used for the maximum likelihood estimation. In addition, the 

settings of the simulation were designed to mimic real data from veterinary medicine, 

where the magnitude of heterogeneity and censoring rate are often larger than in 

multicentre trial studies. Finally, our simulations assessed the impact of ignoring the 

correlation between random effects.  

2.8.1. Simulations 

2.8.1.1. Convergence and computational requirements for the estimation procedures 



77 
 

Even though neither the PFL nor PML procedures converged in all analyses, the 

convergence rate was much higher for the latter. PFL exhibited very low convergence 

rates when the magnitude of heterogeneity was large and even if the magnitude of 

heterogeneity was relatively small, the optimum convergence rates could not be assured. 

These low convergence rates remained even after the smoothing parameter was 

automatically estimated by the cross validation method and a different number of knots 

was used for the baseline hazard approximation. The non-convergence rate for the PML 

procedure was much smaller and could be dealt with by changing the integration points 

for adaptive Gaussian quadrature method. 

The PML and BAY procedures were computationally intensive and time consuming (the 

computing time per dataset were about 10 and 45 minutes for PML and BAY, 

respectively) because of the need to split the data for PML and the implementation of a 

gamma process for the BAY procedure. In contrast, PPL and PFL were computationally 

less intensive (PPL took a few seconds while PFL ran several minutes for one dataset) 

due to the implementation of Laplace approximation. Furthermore, the PPL procedure 

was fairly fast to converge because the baseline hazard is estimated simultaneously with 

other parameters (Feng et al., 2009).  

2.8.1.2. Independent versus correlated random effects 

When the model was correctly specified, our simulations showed satisfactory results for 

both independent and correlated random effects models. In case of large variance 

components, ignoring an existing correlation between random effects resulted in biased 

estimates for fixed effect coefficients, and this bias increased with increasing ߪ଴ଵ. For 
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instance, when substantial heterogeneity and strong correlation between random effects 

existed in the data, analyses ignoring the covariance structure led to invalid results. In 

contrast, taking the covariance structure into account in the analysis when no correlation 

existed in the data still led to valid estimates. This illustrates the need for a flexible 

structure for the covariance matrix of random effects. The estimated covariance should be 

converted to a correlation and assessed relative to its limited range.    

2.8.1.3. Estimation of fixed effect parameter 

In the presence of limited between-cluster variability for the random effects, all the 

procedures yielded good and comparable estimates for ߚ. When the magnitude of 

heterogeneity was large, the picture was somewhat different. Only the PML and BAY 

procedures gave reasonable estimates for the fixed effect coefficient, whereas it was 

underestimated by PPL and the PFL estimates were not of interest due to the low 

convergence rate. Similar findings for PPL were reported in Cortiñas et al. (2007). The 

estimated and empirical SEs agreed closely for the PML, PFL and BAY procedures. In 

contrast, PPL underestimated the variability of fixed effect estimates when ߪ଴ଵ ≠ 0. This 

underestimation of fixed effect standard error was pointed out in Ripatti and Palmgren 

(2000) and Therneau and Grambsch (2000, p. 249).  

2.8.1.4. Estimation of random effect parameters 

In general, all the procedures performed quite well in estimating ߪ଴ଶ, one exception being 

that the PPL procedure underestimated ߪ଴ଶ when the magnitude of heterogeneity was 

large. On the other hand, with the exception of PML with large variances, all the 

estimation procedures tended to produce estimates for ߪଵଶ that were mostly biased 
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upwards if the variance components were small to moderate, and somewhat 

underestimated for large variances. Cortiñas and Burzykowski (2005) noted the difficulty 

in estimating variance components for PPL when the magnitude of heterogeneity is 

relatively small. Similar findings were reported for PFL by Rondeau et al. (2008). The 

variability of the two variance estimates measured by the empirical standard errors was 

estimated with reasonable accuracy by PML, and by PFL when the magnitude of 

heterogeneity was small to moderate, whereas the mean of posterior standard deviation 

for BAY tended to overestimate it. Finally, the ߪ଴ଵ parameter was almost always 

underestimated by all the estimation procedures. The SE of the BAY estimator for ߪ଴ଵ 

was overestimated, while the SE of the PML and PFL estimators somewhat agreed with 

the empirical SE.  

2.8.1.5. Summary by estimation procedures 

The PML procedure performed quite well and converged in most cases. It showed 

minimal bias for different simulation settings. Nevertheless, it is necessary to keep in 

mind the size of the expanded data and the required computing time for analyzing such 

data. The Stata implementation for Poisson GLMMs provided a standard error for the 

random effects variance, which is an advantage for real applications. PPL was fairly fast 

to converge and worked fine when the magnitude of the variability of random effects was 

small to moderate. When the magnitude of the variability of random effects was large, 

PPL should be used with caution because of the pronounced underestimation of the fixed 

effect parameter and its SE. Furthermore, the current implementation of PPL in R does 

not provide SEs for the estimation of the variance components. PFL experienced a lot of 

convergence failures, even after changing the parameter setting of model specification, 
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especially in the cases of large variance components. The advantage of PFL is the 

calculation of the SEs of the random effects variance even though the procedure 

sometimes produced nonsense values for the SE estimates. In addition to the BAY 

procedure being time consuming, it resulted in a pronounced underestimation of the 

variance of treatment random effect. The procedure worked reasonably well for other 

model parameters, but some posterior standard deviations overestimated the variability 

between estimates.   

2.8.2. Lameness data 

The discrepancy in the fixed effect estimates between the independent and correlated 

random effects models that appeared in the analysis of lameness data was investigated 

through a simulation study with numerous settings. Generally speaking, findings from the 

simulations were similar to our findings for the analysis of the lameness data, and thus 

supported our conclusion that the discrepancy was probably due to model bias from 

misspecifying the correlation structure. The analysis showed that the effect of treatment 

across herds varied around an overall "protective" effect (ܴܪ = 0.41). The results further 

suggest that herds with higher hazards tended to have a stronger treatment effect, in 

reflection of the high correlation between the random intercept and random slope. Further 

exploration of the lameness data could include contextual effects of treatment and time-

dependent coefficients for predictor and herd effects (Stryhn and Christensen, 2013), but 

for simplicity we limited our example to investigating the random treatment effects. 

2.8.3. Conclusion 
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Based on the results of this simulation study, the performance of the considered 

estimation procedures depends on the magnitude of variability of random effects in the 

data. The effect of other factors such as the censoring rate, the number of herds, the herd 

size and the type of explanatory variable on the estimation procedures is beyond the 

scope of this study and can be a topic for a future research. This study offers practical 

guidelines for the choice of appropriate statistical procedure for estimating Cox models 

with two additive random effects. The conclusions can be drawn from the present study 

are that, (1) the PML procedure appears to be preferable for analysis of clustered survival 

data with an underlying random effects Cox model; (2) the PPL procedure is suitable for 

a quick exploration; and (3) estimating the correlation between the two additive random 

effects in the analysis is always preferable.  
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Table 2.1. Parameter estimates (with SE) of independent random effects model (the upper half of the table) 

and correlated random effects model (the lower half of the table) for the analysis of lameness dataset. 

Estimation procedure ߪ ߚ଴ଶ ߪଵଶ ߪ଴ଵ 
Independent random effects model 

PPL -0.353 (0.232) 2.494 (--a) 0.400 (--a) 0 
PFL -0.403 (0.280) 2.360 (1.040) 0.412 (0.367) 0 
PML -0.398 (0.274) 2.399 (0.940) 0.401 (0.353) 0 
BAY -0.400 (0.344) 2.663 (0.358) 0.458 (0.376) 0 

Correlated random effects model 
PPL -0.721 (0.227) 2.257 (--a) 0.492 (--a) 0.839 (--a) 
PFL -0.868 (0.493) 2.170 (0.929) 0.564 (0.548) 0.960 (0.765) 
PML -0.891 (0.470) 2.185 (0.868) 0.590 (0.572) 1.036 (0.787) 
BAY -0.788 (0.494) 2.374 (1.147) 0.789 (1.076) 0.771 (0.907) 

PPL: Penalized partial likelihood; PFL: Penalized full likelihood; PML: Poisson maximum likelihood; 

BAY: Bayesian; a No available standard error.  
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Table 2.2. Results of large, moderate, and small variance settings based on correctly specified independent random effects model. Mean of the estimate, empirical  

standard deviation, mean of the model-based standard error, relative absolute bias, mean squared error and convergence percentage over 300 simulated data sets.  

 .଴ଵ Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) % 

True -.400    2.000    .500    .000  
PPL -.351 (.238; .227) +.123 .148  1.874 (.730; ----a) -.063 .274  .417 (.343; ----a) -.166 .248  0 100 
PFL -.422 (.256; .263) -.055 .163  1.445 (.416; .587) -.278 .240  .456 (.394; .339) -.088 .312  0 57 
PML -.411 (.253; .252) -.028 .160  1.914 (.748; .717) -.043 .283  .442 (.361; .325) -.116 .266  0 100 
BAY -.417 (.256; .281) -.043  .165   2.122 (.839; .297) +.061  .358  .474 (.433; .297) -.052  .376  0 100 

True -.400    .500    .125    .000  
PPL -.376 (.160; .164) +.060 .065  .506 (.213; ----a)  +.012 .090  .123 (.144; ----a) -.016 .168  0 100 
PFL -.360 (.166; .175) +.100 .073  .483 (.186; .250) -.034 .070  .120 (.154; .125) -.040 .192  0 78 
PML -.396 (.171; .175) +.010  .073  .478 (.203; .182) -.044  .084   .125 (.154; .129) +.000  .192   0 98 
BAY -.400 (.169; .182) +.000 .073  .519 (.219; .147) +.038 .096  .106 (.149; .199) -.152 .176  0 100 

True -.400    .100    .025    .000  
PPL -.398 (.133; .138) +.005 .045  .101 (.056; ----a) +.010 .030  .034 (.057; ----a) +.360 .120  0 100 
PFL -.380 (.137; .142) +.050 .048  .105 (.062; .056) +.050 .040  .032 (.055; .052) +.280 .120  0 99 
PML -.408 (.136; .144) -.020 .048  .092 (.052; .036) -.080 .030  .034 (.059; .042) +.360 .160  0 97 
BAY -.416 (.135; .150) -.040 .045  .096 (.060; .089) -.040 .040  .031 (.040; .146) +.240 .080  0 100 
a No available standard error; + upwards bias; - downwards bias.  
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Table 2.3. Results of large variance setting based on correctly specified correlated random effects model. Mean of the estimate, empirical standard deviation, mean of the 

model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.  

 .଴ଵ   Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse % 

True -.800    2.000    .500    .800    
PPL -.671 (.347; .216) +.161 .170  1.758 (.632; ----a) -.121 .228  .419 (.333; ----a) -.162 .234  .618 (.429; ----a) -.228 .205 100 
PFL -.918 (.256; .406) -.148 .234  1.334 (.554; .515) -.333 .373  .530 (.452; .472) +.060 .404  .589 (.466; .387) -.264 .323 19 
PML -.794 (.368; .350) +.008 .169  1.878 (.737; .711) -.061 .279  .502 (.390; .405) +.004 .302  .734 (.489; .459) -.083 .303 90 
BAY -.793 (.355; .352) +.009  .156   1.928 (.764; .888) -.036  .293  .469 (.357; .509) -.062  .256   .768 (.483; .552) -.040 .293  100 

True -.800    2.000    .500    .500    
PPL -.689 (.333; .228) +.139 .154  1.806 (.676; ----a) -.097 .247  .421 (.354; ----a) -.158 .262  .396 (.425; ----a) -.208 .456 100 
PFL -.868 (.386; .389) -.085 .189  1.131 (.257; .514) -.435 .410  .518 (.410; .454) +.036 .332  .312 (.422; .376) -.376 .422 24 
PML -.786 (.356; .355) +.018 .159  1.869 (.708; .708) -.066 .259  .477 (.380; .401) -.046 .288  .460 (.479; .452) -.080 .460 97 
BAY -.785 (.351; .344) +.019  .154   1.919 (.743; .886) -.041  .279   .380 (.318; .464) -.240  .230  .511 (.464; .516) +.022  .430  100 

True -.800    2.000    .500    .200    
PPL -.707 (.333; .237) +.116 .149  1.849 (.684; ----a) -.076 .245  .425 (.354; ----a) -.150 .260  .155 (.431; ----a) -.225 1.46 100 
PFL -.857 (.354; .398) -.071 .159  1.191 (.374; .539) -.405 .397  .530 (.404; .474) +.060 .324  .107 (.404; .395) -.465 .850 29 
PML -.783 (.358; .355) +.021 .160  1.886 (.698; .717) -.057 .250  .474 (.376; .396) -.052 .284  .180 (.490; .451) -.100 1.20 99 
BAY -.774 (.353; .340) +.033 .156  1.928 (.735; .894) -.036 .272  .324 (.283; .422) -.352 .222  .232 (.467; .500) +.160 1.09 100 
a No available standard error; + upwards bias; - downwards bias.  
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Table 2.4. Results of moderate variance setting based on correctly specified correlated random effects model. Mean of the estimate, empirical standard deviation, mean of the 

model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.  

 .଴ଵ   Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse % 

True -.800    .500    .125    .200    
PPL -.759 (.217; .178) +.051 .061  .493 (.198; ----a) -.014 .078  .145 (.149; ----a) +.160 .184  .167 (.151; ----a) -.165 .120 100 
PFL -.812 (.261; .266) -.015 .085  .484 (.195; .268) -.032 .076  .149 (.166; .173) +.192 .224  .151 (.164; .175) -.245 .145 78 
PML -.794 (.238; .227) +.008 .071  .467 (.188; .182) -.066 .072  .146 (.156; .161) +.168+ .200  .167 (.155; .149) -.165 .125 90 
BAY -.794 (.219; .227) +.008 .060  .473 (.194; .219) -.054 .076   .140 (.111; .186) +.120 .096  .163 (.135; .167) -.185 .100 100 

True -.800    .500    .125    .125    
PPL -.766 (.222; .179) +.043 .063  .495 (.200; ----a) -.010 .080  .136 (.145; ----a) +.088 .168  .103 (.158; ----a) -.176 .200 100 
PFL -.786 (.266; .271) +.018 .089  .504 (.219; .291) +.008 .096  .146 (.165; .176) +.168 .216  .082 (.170; .179) -.344 .248 81 
PML -.804 (.244; .228) -.005 .074  .469 (.185; .184) -.062 .070  .142 (.158; .165) +.136 .200  .107 (.163; .151) -.144 .216 95 
BAY -.799 (.225; .222) +.001 .063   .470 (.195; .219) -.060 .078  .116 (.095; .170) -.072 .072  .108 (.139; .162) -.136 .152 100 

True -.800    .500    .125    .050    
PPL -.775 (.223; .180) +.031 .063  .495 (.197; ----a) -.010 .078  .129 (.148; ----a) +.032 .176  .034 (.163; ----a) -.320 .540 100 
PFL -.768 (.269; .260) +.050 .091  .490 (.209; .252) -.020 .088  .150 (.177; .182) +.200 .256  .004 (.184; .170) -.920 .720 78 
PML -.804 (.243; .225) -.005 .074  .467 (.190; .184) -.066 .074  .135 (.164; .166) +.080 .216  .038 (.167; .151) -.240 .560 98 
BAY -.806 (.226; .216) -.008 .064  .467 (.193; .218) -.066 .076  .097 (.080; .154) -.224 .056   .050 (.140; .159) +.000 .380 100 
a No available standard error; + upwards bias; - downwards bias.  
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Table 2.5. Results of small variance setting based on correctly specified correlated random effects model. Mean of the estimate, empirical standard deviation, mean of the 

model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.  

 .଴ଵ   Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse % 

True -.800    .100    .025    .040    
PPL -.797 (.195; .163) +.004 .048  .102 (.020; ----a) +.020 .030  .069 (.080; ----a) +1.76 .320  .023 (.062; ----a) -.425 .100 100 
PFL -.803 (.218; .192) -.004  .059  .105 (.063; .058) +.050 .040  .076 (.090; .112) +2.04  .480  .024 (.065; .065) -.400  .125 88 
PML -.818 (.208; .183) -.023 .054  .094 (.055; .051) -.060 .030  .072 (.085; .108) +1.88 .360  .023 (.063; .064) -.425 .100 94 
BAY -.817 (.194; .179) -.021   .048   .093 (.050; .058) -.070   .030   .061 (.037; .105) +1.44  .120   .017 (.037; .059) -.575 .050 100 

True -.800    .100    .025    .025    
PPL -.799 (.191; .163) +.001 .045  .102 (.019; ----a) +.020 .030  .067 (.078; ----a) +1.68 .320  .011 (.063; ----a) -.560 .160 100 
PFL -.800 (.212; .190)  .000 .056  .105 (.063; .058)  +.050 .040  .073 (.088; .104) +1.92 .400  .014 (.066; .063) -.440  .160 91 
PML -.819 (.209; .182) -.024 .055  .094 (.055; .051) -.060 .030  .074 (.088; .109) +1.96 .400  .011 (.065; .064) -.560 .160 91 
BAY -.821 (.189; .178) -.026  .045   .092 (.050; .058) -.080 .030  .058 (.031; .103)  +1.32 .080  .010 (.036; .058)  -.600 .080 100 

True -.800    .100    .025    .010    
PPL -.806 (.190; .163) -.008 .045  .102 (.019; ----a) +.020 .030  .065 (.078; ----a) +1.60 .320  -.001 (.063; ----a) -1.10 .400 100 
PFL -.808 (.216; .189) -.018 .059  .105 (.063; .059) +.060 .040  .074 (.091; .108) +1.36 .440  -.000 (.070; .063) -1.20 .500 86 
PML -.825 (.205; .181) -.031 .053  .094 (.055; .051) -.060 .030  .069 (.083; .106) +1.76 .360   .000 (.063; .065) -1.00 .400 94 
BAY -.829 (.189; .177) -.036 .045   .091 (.049; .057) -.090 .020  .055 (.026; .100) +1.20 .080    .003 (.035; .058) -.700 .100  100 
a No available standard error; + upwards bias; - downwards bias.  
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Appendix  
 
 
Table 2.6. Results of large, moderate, and small variance settings based on misspecified independent random effects model. Mean of the estimate, empirical standard 

deviation, mean of the model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.  

 .଴ଵ   Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) abs.bias mse % 

True -.400    2.000    .500    .000    
PPL -.357 (.286; .228) +.108 .208  1.879 (.730; ----a) -.061 .273  .449 (.366; ----a) -.102 .272  -.005 (.384; ----a) -.005 .147 100 
PFL -.428 (.298; .352) -.070 .220  1.116 (.276; .511) -.442 .428  .496 (.465; .396) -.008 .426   .039 (.313; .335) +.039 .098 25 
PML -.418 (.320; .320) -.045 .255  1.920 (.749; .728) -.040 .283  .483 (.387; .359) -.034 .298   .010 (.424; .422) +.010 .179 99 
BAY -.399 (.310; .307) +.003  .240   1.964 (.783; .904) -.018  .306   .343 (.331; .397) -.314 .268   .049 (.427; .470) +.049 .184 100 

True -.400    .500    .125    .000    
PPL -.383 (.172; .165) +.043 .075  .505 (.215; ----a) +.010 .092  .140 (.157; ----a) +.120 .200    .000 (.135; ----a) +.000 .018 100 
PFL -.368 (.204; .235) +.080 .105  .485 (.176; .261) -.030 .062  .159 (.185; .160) +.272 .280  -.012 (.153; .157) -.012 .023 67 
PML -.406 (.191; .198) -.015 .090  .476 (.207; .187) -.048 .086  .145 (.168; .149) +.160 .056   .002 (.141; .139) +.002 .020 97 
BAY -.446 (.234; .205) -.115 .143  .598 (.452; .278) +.196 .426  .121 (.153; .164) -.032 .184   .054 (.222; .179) +.054 .052 100 

True -.400    .100    .025    .000    
PPL -.397 (.137; .140) +.008 .048  .104 (.060; ----a) +.040 .040  .049 (.061; ----a) +.960 .160  -.009 (.047; ----a) -.009 .002 100 
PFL -.392 (.146; .153) +.020 .053  .097 (.058; .053) -.030 .030  .051 (.062; .077) +1.04 .200  -.005 (.042; .052) -.005 .002 72 
PML -.401 (.140; .151) -.003 .050  .097 (.058; .053) -.030 .030  .047 (.055; .075) +.880 .160  -.009 (.048; .056) -.009 .002 91 
BAY -.415 (.138; .157) -.038 .048   .146 (.169; .081) +.460 .300   .052 (.029; .083) +1.08 .080    .002 (.051; .065) -.002 .003  100 
a No available standard error; + upward bias; - downward bias.  
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Table 2.7. Results of large variance setting based on misspecified correlated random effects model. Mean of the estimate, empirical standard deviation, mean  

of the model-based standard error, relative absolute bias, mean squared error and convergence percentage over 300 simulated data sets.  

 .଴ଵ Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) % 

True -.800    2.000    .500    .800  
PPL -.369 (.280; .216) +.539 .330  1.963 (.739; ----a) -.019 .273  .300 (.255; ----a) -.400 .210  0 100 
PFL -.659 (.361; .328) +.176 .185  1.184 (.280; .563) -.408 .372  .393 (.408; .383) -.214 .350  0 26 
PML -.427 (.302; .265) +.466 .288  2.045 (.790; .771) +.023 .312  .330 (.282; .286) -.340 .216  0 98 
BAY -.429 (.311; .296) +.464  .293   2.268 (.893; .309) +.134  .434   .340 (.348; .298) -.320 .292   0 100 

True -.800    2.000    .500    .500  
PPL -.495 (.282; .225) +.381 .215  1.912 (.717; ----a) -.044 .260  .335 (.272; ----a) -.330 .202  0 100 
PFL -.701 (.348; .307) +.124 .163  1.191 (.278; .528) -.405 .365  .413 (.335; .380) -.174 .238  0 29 
PML -.551 (.289; .260) +.311 .181  1.846 (.866; .696) -.077 .386  .349 (.303; .299) -.302 .230  0 100 
BAY -.562 (.303; .297) +.298 .185  2.182 (.834; .304) +.091 .363  .386 (.362; .309) -.228 .288  0 100 

True -.800    2.000    .500    .200  
PPL -.625 (.281; .235) +.219 .136  1.891 (.726; ----a) -.055 .268  .374 (.313; ----a) -.252 .228  0 100 
PFL -.787 (.344; .304) +.016 .146  1.191 (.270; .528) -.405 .364  .445 (.373; .397) -.110 .282  0 33 
PML -.692 (.299; .272) +.135 .126  1.914 (.709; .721) -.043 .255  .406 (.337; .341) -.188 .244  0 100 
BAY -.696 (.308; .302) +.130 .131  2.124 (.794; .300) +.062 .322  .413 (.387; .319) -.174 .314  0 100 
a No available standard error; + upward bias; - downward bias.  
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Table 2.8. Results of moderate variance setting based on misspecified correlated random effects model. Mean of the estimate, empirical standard deviation, 

mean of the model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.  

 .଴ଵ Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) % 

True -.800    .500    .125    .200  
PPL -.650 (.201; .177) +.188 .079  .537 (.214; ----a) +.074 .094  .120 (.147; ----a) -.040 .176  0 100 
PFL -.679 (.219; .200) +.151 .078  .505 (.193; .266) +.010 .074  .116 (.162; .146) -.072 .208  0 73 
PML -.677 (.216; .200) +.154 .078  .508 (.204; .195) +.016 .082  .127 (.161; .151) +.016 .208  0 98 
BAY -.676 (.214; .207) +.155 .076  .552 (.225; .153) +.104 .106  .101 (.145; .223) -.192 .168  0 100 

True -.800    .500    .125    .125  
PPL -.695 (.204; .178) +.131 .066  .521 (.208; ----a)  +.042 .088  .118 (.144; ----a) -.056 .168  0 100 
PFL -.718 (.218; .201) +.103 .068  .501 (.196; .264) +.002 .076  .120 (.159; .152) -.040 .200  0 78 
PML -.721 (.213; .198) +.099 .065  .491 (.195; .189) -.018 .076  .119 (.148; .149) -.048 .176  0 98 
BAY -.721 (.212; .205) +.099 .064  .534 (.215; .151) +.068 .094  .093 (.137; .222) -.256 .160  0 100 

True -.800    .500    .125    .050  
PPL -.744 (.203; .179) +.070 .055  .503 (.198; ----a) +.006 .078  .108 (.183; ----a) -.136 .152  0 100 
PFL -.755 (.214; .199) +.056 .060  .489 (.189; .249) -.022 .072  .116 (.159; .149) -.072 .200  0 81 
PML -.769 (.215; .196) +.039 .059  .473 (.189; .182) -.054 .072  .112 (.156; .142) -.104 .192  0 98 
BAY -.773 (.211; .203) +.034 .056  .516 (.207; .149) +.032 .086  .084 (.134; .220) -.328 .160  0 100 
a No available standard error; + upward bias; - downward bias.  
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Table 2.9. Results of small variance setting based on misspecified correlated random effects model. Mean of the estimate, empirical standard deviation, mean  

of the model-based standard error, relative absolute bias, mean squared error, and convergence percentage over 300 simulated data sets.  

 .଴ଵ Convߪ    ଵଶߪ    ଴ଶߪ    ߚ 
Method mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) r.bias mse  mean (std; se) % 

True -.800    .100    .025    .040  
PPL -.778 (.186; .161) +.028 .044  .106 (.059; ----a) +.060 .030  .058 (.087; ----a) +1.32 .360  0 100 
PFL -.756 (.184; .166) +.055 .045  .110 (.065; .058) +.100 .040  .043 (.064; .075) +.720 .160  0 92 
PML -.772 (.179; .167) +.035 .041  .098 (.057; .051) -.020 .040  .043 (.062; .074) +.720 .160  0 87 
BAY -.804 (.191; .178) -.005 .045   .101 (.062; .093) +.010 .040   .045 (.060; .182) +.800 .160   0 100 

True -.800    .100    .025    .025  
PPL -.787 (.181; .161) +.016 .041  .104 (.057; ----a)  +.040 .030  .053 (.080; ----a) +1.12 .280  0 100 
PFL -.763 (.179; .166) +.046 .041  .108 (.063; .057) +.080 .040  .043 (.064; .073) +.720 .160  0 93 
PML -.784 (.180; .167) +.020 .040  .096 (.056; .050) -.040 .030  .042 (.064; .073) +.680 .160  0 86 
BAY -.812 (.185; .177) -.015 .043  .098 (.060; .092) -.020 .040  .042 (.053; .178) +.680 .120  0 100 

True -.800    .100    .025    .010  
PPL -.800 (.181; .160) +.000 .041  .101 (.056; ----a) +.010 .030  .048 (.076; ----a) +.920 .240  0 100 
PFL -.781 (.181; .165) +.024 .041  .104 (.061; .056) +.040 .040  .038 (.060; .071) +.520 .160  0 92 
PML -.801 (.180; .166) -.001 .040  .094 (.055; .049) -.060 .030  .036 (.057; .069) +.440 .120  0 89 
BAY -.825 (.185; .177) -.031  .044  .095 (.059; .092) -.050  .030  .038 (.049; .175) +.520  .120  0 100 
a No available standard error; + upward bias; - downward bias.  
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3.1. Abstract 

Mastitis is a complex disease affecting dairy cows and is considered to be the most costly 

disease of dairy herds. The hazard of mastitis is a function of many factors, both managerial 

and environmental, making its control a difficult issue to milk producers. Observational 

studies of clinical mastitis (CM) often generate datasets with a number of characteristics 

which influence the analysis of those data: the outcome of interest may be the time to 

occurrence of a case of mastitis, predictors may change over time (time-dependent 

predictors), the effects of factors may change over time (time-dependent effects), there are 

usually multiple hierarchical levels, and datasets may be very large. Analysis of such data 

often requires expansion of the data into the counting-process format – leading to larger 

datasets – thus complicating the analysis and requiring excessive computing time.  

In this study, a nested frailty Cox model with time-dependent predictors and effects was 

applied to Canadian Bovine Mastitis Research Network data in which 10,831 lactations of 

8,035 cows from 69 herds were followed through lactation until the first occurrence of CM. 

The model was fit to the data as a Poisson model with nested normally distributed random 

effects at the cow and herd levels. Risk factors associated with the hazard of CM during the 

lactation were identified, such as parity, calving season, herd somatic cell score, pasture 

access, fore-stripping, and proportion of treated cases of CM in a herd. The analysis showed 

that most of the predictors had a strong effect early in lactation and also demonstrated 

substantial variation in the baseline hazard among cows and between herds. A small 

simulation study for a setting similar to the real data was conducted to evaluate the Poisson 

maximum likelihood estimation approach with both Gaussian quadrature method and Laplace 

approximation. Further, the performance of the two methods was compared with the 

performance of a widely used estimation approach for frailty Cox models based on the 

penalized partial likelihood. The simulation study showed good performance for the Poisson 
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maximum likelihood approach with Gaussian quadrature and biased variance component 

estimates for both the Poisson maximum likelihood with Laplace approximation and 

penalized partial likelihood approaches.  

3.2. Introduction 

Worldwide, mastitis is one of the most common and costly diseases that affect dairy cattle 

(Schepers and Dijkhuizen, 1991). Mastitis is a multifactorial disease of the bovine udder and 

can be caused by multiple bacterial pathogens. Mastitis may be either clinical, if the infection 

signs are discernible with the naked eye, or subclinical, when no signs are visible and 

laboratory techniques are needed to detect the infection (Barkema et al., 1998; Olde 

Riekerink et al., 2008). The hazard of mastitis can be elevated by both environmental factors 

and managerial practices. Determining what factors or practices might cause CM and then 

taking necessary action to prevent the disease from occurring is of high priority for dairy 

producers. Therefore, much research has been dedicated to identifying risk factors associated 

with CM incidence under different conditions and countries (e.g. Barkema et al., 1999; 

Barnouin et al., 2005; O’Reilly et al., 2006; Green et al., 2007; Nyman et al., 2007), and 

many statistical methods have been suggested for analysis of clinical mastitis data (Gasqui 

and Barnouin, 2003; Schukken et al., 2010). Actually, many complexities inherent to CM 

data (e.g. censored observations, clustering of observations, recurrence of CM events), 

impede applicability of most analytical methods, especially in large datasets. 

For instance, the Canadian Bovine Mastitis Research Network (CBMRN) launched in 2006 a 

two-year longitudinal data collection of 91 herds from four regions of Canada. This resulted 

in the generation of one of the largest, most comprehensive mastitis databases ever 

assembled, which has supported research into both clinical and subclinical mastitis in areas as 
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diverse as risk factor evaluation to vaccine development. Details of the data collection 

platform have been previously published (Reyher et al., 2011). 

Survival models have been extensively used in mastitis research over the last 15 years, e.g. 

for modeling CM event times (Rupp and Boichard, 2000; Santos et al., 2004; Gröhn et al., 

2005; Goethals et al., 2009; Schukken et al., 2010; Borne et al., 2011). The most widely used 

analytical approach is based on Cox’s semiparametric proportional hazards model (Cox, 

1972; Ducrocq and Casella, 1996). In proportional hazards Cox models, the hazard function 

is described as a product of unspecified baseline hazard and an exponential function of the 

multiplied vectors of predictors and regression parameters. One of the strengths of the Cox 

model is its ability to encompass predictors and coefficients that may vary over time 

(Therneau and Crowson, 2013). For example, management practice data may be collected at 

points in time and practices may change between assessments. Dufour et al. (2010), for 

instance, showed that 27% and 33% of dairy producers reported at least one modification of 

their milking and housing management procedures, respectively, over a 6-month period. In 

addition, the effects of explanatory variables often vary over time (e.g. a factor may exert a 

different effect in early lactation compared to later in lactation). Finally, CM data may be 

collected from different lactations within the same cow, and with multiple cows located in the 

same herds or farms. In this scenario, the data are clustered within cows and herds. When 

clustering is present in the data, the independence assumption of the standard Cox 

proportional hazards model is no longer valid as event times within the same cluster are 

correlated. When analyzing such data, it is important to account for the hierarchical structure 

of the data and take into account the time-dependent predictors and effects. 

Extending the Cox proportional hazards model by the addition of random effects (frailty 

terms) has been proposed for modeling clustered survival data (Therneau and Grambsch, 
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2000; Duchateau and Janssen, 2008; Wienke, 2010; Hanagal, 2011). In these frailty models, 

the heterogeneity caused by unobserved factors (due to clustering) are quantified by frailty 

(or random effects) terms corresponding to the hierarchical levels. In a 3-level hierarchical 

data structure (e.g. lactations within cows and cows within herds), nested frailty models 

account for hierarchical clustering by including two nested frailties that act multiplicatively 

on the baseline hazard (Sastry, 1997; Rondeau et al., 2006). Assuming a log-normal 

distribution for the nested frailty terms (or normally distributed random effects on the log 

scale), the nested frailty model can be estimated in a Poisson mixed-effects model 

framework, after transforming the data to a counting-process format and modeling the 

baseline hazard as a smooth function of time (Ma et al., 2003; Feng et al., 2005; Rabe-

Hesketh and Skrondal, 2012). With the Poisson modeling approach, either adaptive Gaussian 

quadrature or Laplace approximation can be applied to the likelihood function. However, 

expanding the dataset in this manner results in a potentially very large dataset which 

compromises computing time.  

The aims of this study were threefold. Firstly, risk factors associated with the hazard of 

clinical mastitis during the lactation in CBMRN data were evaluated. Secondly, the feasibility 

of a full hierarchical survival analysis for a large dataset with time-dependent predictors and 

coefficients using a log-normal nested frailty Cox model approximated by a mixed-effects 

Poisson model was evaluated. Thirdly, the performance, in terms of bias and efficiency of 

estimates, of the Poisson maximum likelihood approach (estimated using either Gaussian 

quadrature or Laplace approximation) was compared with one of the existing estimation 

approaches, namely, the penalized partial likelihood approach (Ripatti and Palmgren, 2000) 

through a simulation study. This step served to validate the results obtained for the previous 

objectives. 
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3.3. Materials and methods 

3.3.1. Data  

Data were extracted from the National Cohort of Dairy Farms (NCDF) database, collected 

from January 2007 to December 2008. The details of the NCDF, including herd selection 

process and data collection, have been described elsewhere (Reyher et al., 2011). Briefly, a 

total of 91 dairy herds located in four different geographic regions of Canada participated in 

the NCDF data collection. Information related to CM, such as the time of occurrence and 

pathogen species or group of species, were recorded. Dairy Herd Improvement (DHI) data 

from 2006 to 2008 were used to capture supplementary information on individual and herd 

levels, such as calving date, culling date, dry-off date, lactation number, herd somatic cell 

score (SCS), and herd demographics. Moreover, information related to herd management was 

collected on four different occasions during the study via the udder health related 

management survey described in Dufour et al. (2010). These four time periods were defined 

as follows: Jan.-May 2007, Jun.-Dec. 2007, Jan.-May 2008, and Jun.-Dec. 2008. Because CM 

cases were sampled and recorded by farmers, and to avoid bias resulting from incomplete 

reporting of CM cases, only the data from NCDF herds showing sufficient compliance for 

CM sampling were considered in the current study. Compliance was assessed by comparing 

the number of CM samples submitted for bacteriological analyses and the number of CM 

cases recorded in the producer’s computerized health records. Herds in which the number of 

submitted CM cases was less than 80% of the number of recorded CM cases were excluded 

from the analysis. This brought down the number of herds to 74, and an additional 5 herds 

were excluded due to incomplete records, leaving 69 herds and 265 herd-periods as the 

information for some of these herds were not available for all 4 periods. Lactations that 
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started before the onset of the study (i.e. before January 2007) were not included in the 

analysis.  

Within the lactation, event (clinical mastitis) time was defined as the number of days from 

calving until developing a first case of CM. Observations from cows that did not experience 

the event within the lactation and were either culled, dried off, left the cohort, or followed-up 

until the end of the study period were considered right censored. A list of explanatory 

variables in the dataset is presented in Table 3.1. 

3.3.2. Statistical model 

A Cox model with two nested frailties to account for the data structure present in the 

CBMRN data was considered. The nested frailty Cox model (Rondeau et al., 2006) can be 

written as, 

,௜ݑ|ݐ௜௝௞൫ߣ                                        ௜௝൯ݑ = ௜௝ݑ௜ݑ(ݐ)଴ߣ expൣࢼᇱ(ݐ)ࢄ௜௝௞(ݐ)൧                                    (3.1)  

where ߣ௜௝௞൫ݑ|ݐ௜,ݑ௜௝൯ is a conditional hazard function for lactation ݇ of cow ݆ in herd ݅ 

conditional on the two nested frailties ݑ௜ and ݑ௜௝; ߣ଴(ݐ) is an unspecified baseline hazard 

function, ࢄ௜௝௞(ݐ) is a vector of (possibly time-varying) predictors with corresponding 

parameter vector (possibly time-varying) effects (ݐ)ࢼ. An alternative formulation for model 

(3.1) is given by 

௜ܾ|ݐ௜௝௞൫ߣ                                      , ௜ܾ௝൯ = (ݐ)଴ߣ expൣܾ௜ + ܾ௜௝ + ൧(ݐ)௜௝௞ࢄ(ݐ)ᇱࢼ                            (3.2)  

where  ௜ܾ = logݑ௜ and ܾ௜௝ = logݑ௜௝  are nested random effects, and assumed to be normally 

distributed with zero means and variances ߪ௖ଶ and ߪ௛ଶ for cow and herd levels, respectively.  
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As described in Rabe-Hesketh and Skrondal (2012), the Cox regression model can be 

estimated by a Poisson regression model with a specific offset and binary response, and 

estimated using Poisson maximum likelihood (PML). This approximation can be carried over 

to the Cox model with random effects (Ma et al., 2003; Feng et al., 2005; Feng et al., 2009; 

Rabe-Hesketh and Skrondal, 2012). Using available software for generalized linear mixed 

models (GLMMs), for example the xtmepoisson command in Stata, model (3.2) can be fit to 

multilevel survival data as a mixed-effects Poisson model after expanding the data to the 

counting process format and using the length of each time interval on the logarithm scale as 

an offset. The baseline hazard can be modeled as a polynomial function of time, in this case a 

fourth-order polynomial function as suggested in Rabe-Hesketh and Skrondal (2012). Finally, 

for a Poisson maximum likelihood estimation, the Laplace approximation or adaptive 

Gaussian quadrature can be applied.  

3.3.3. Statistical analysis  

3.3.3.1. Descriptive statistics and unconditional associations 

Descriptive analyses were carried out for each variable in the dataset individually to 

determine distributions and detect unlikely observations; in this step, time-varying predictors 

were identified. Correlations or associations among all explanatory variables were computed 

to assess for possible collinearity. Unconditional associations (simple) between explanatory 

variables and the hazard of CM were estimated in standard Cox regression models while 

accounting for time-varying predictors as needed. The proportional hazards assumption was 

evaluated for every predictor by a statistical test based on the scaled Schoenfeld residuals 

(Dohoo et al., 2009). The functional form of continuous variables was evaluated by a lowess 

smoothing graph of the continuous variable against the martingale residuals. A liberal p-value 

of 0.20 was chosen to determine potentially important explanatory variables.  
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3.3.3.2. Model building towards a final model 

A stepwise backward selection strategy including significant predictors from the 

unconditional analyses was used to construct a multivariable model for the hazard of CM 

based on model (2) using the PML approach. In the selection process, a liberal p-value of 

0.10 was used as variable inclusion criterion, and potential confounders (such as region) were 

kept in the model regardless of their significance. After eliminating variables with non-

significant effects on the hazard of CM during the model building process, possible and 

biologically meaningful interactions between explanatory variables in the model were 

evaluated, and significant interactions were kept. Next, the proportional hazards assumptions 

for each predictor, individually as well as globally, were assessed as described above in a 

non-hierarchical multivariable Cox model. For predictors showing non-constant hazards, 

suitable interaction terms with time were included in the model and assessed using the PML 

approach. The assumption of independent censoring was checked by a sensitivity analysis in 

the non-hierarchical Cox model, as described by Dohoo et al. (2009). 

3.3.3.3. Software and global settings 

The descriptive statistics, unconditional and final model analyses were performed in 

Stata/MP 12.1. Due to the excessive computing time required for each analysis, all model 

building analyses were submitted as jobs to the Atlantic Computational Excellence Network 

(ACEnet), a cluster of computers in a Linux environment platform (http://www.ace-net.ca). 

In the model building process, maximum likelihood estimation based on the Laplace 

approximation implemented in the lme4 library of R software (version 2.13.1) was applied. In 

the final model analysis, adaptive Gaussian quadrature with 8 integration points was used for 

more accurate likelihood approximation, and inference was based on a significance level of 
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0.05. The computing time for the final model (dataset consisted of 1,947,560 rows after 

expansion) exceeded 48 hours on a PC with a 2nd generation Intel® Core™ i3 processor. 

3.4. Simulation study 

A simulation study was conducted to evaluate the performance of the PML approach 

discussed above for estimating log-normal nested frailty Cox models. The performance of the  

PML approach with both adaptive Gaussian quadrature (PMLGQ) and Laplace 

approximation (PMLAP) for likelihood estimation was compared with the performance of the 

commonly used approach based on penalized partial likelihood (PPL) proposed by Ripatti 

and Palmgren (2000). The PPL approach uses Laplace approximation for the marginal 

likelihood, and is implemented in the coxme package in R (Therneau, 2013). The simulation 

study was designed with settings resembling the settings of the CBMRN data.  

3.4.1. Setup of the simulation study 

The simulated datasets were generated from the nested random effects proportional hazards 

model defined in (3.2). The model included herd and cow random effects and 3 explanatory 

variables: a trichotomous lactation-level predictor and dichotomous predictors at both cow 

and herd levels. The 3 predictors and their effects were assumed constant over time as the 

implementation of PPL does not support the counting-process data setup that is required to 

handle time varying predictors.  

A total of 250 simulated datasets were generated in R software using the technique of Bender 

et al. (2005). The hierarchical structure and the cluster and subcluster sizes in each simulated 

dataset matched the hierarchical structure and the cluster and subcluster sizes of the CBMRN 

dataset. Each simulated dataset was generated as follows: the herd and cow random effects 

were generated independently from normal distributions with mean zero and variances ߪ௛ଶ 
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and ߪ௖ଶ for herd and cow random effects, respectively. The fixed-effects variables at cow and 

herd levels were fixed across simulations and randomly generated from Bernoulli 

distributions with probability of 0.5, while parity in the real data (1: 1st lactation, 2: 2nd 

lactation, 3: ≥3rd lactation) was used as the lactation-level variable. The event time for each 

lactation ( ௜ܶ௝௞) was randomly generated from the model defined in (3.2) based on a Weibull 

baseline hazard with scale and shape parameters of 0.0035 and 0.62, respectively, as 

preliminary analysis using a Weibull model showed a strongly significant shape parameter. 

The censoring time for each lactation, ܥ௜௝௞ , was randomly generated from a mixture 

distribution with proportions of 55% from a lognormal distribution with mean of 4.2 and 

variance of 0.45, and 45% from a uniform distribution on [1, 220]. The censoring time was 

truncated at 713 days to reflect the length of censored time intervals in the real data. A 

lactation for which the event time ௜ܶ௝௞  was longer than the censored time ܥ௜௝௞  was censored 

with actual time equal to censoring time, so the actual time  ௜ܻ௝௞ = min ( ௜ܶ௝௞  ௜௝௞). Theܥ,

event indicator ߜ௜௝௞  was generated to be equal to 1 if the event time was shorter than the 

censored time and was set to 0 otherwise. The censoring rate in this simulation setting 

matched the censoring rate of the real data.  

The summary statistics for each model parameter in the simulation were computed as 

follows: the estimate was computed as the mean of the estimated values across the simulated 

datasets; model standard errors were computed as the average of the standard errors of the 

estimates across the simulated datasets; the empirical standard deviation was computed as the 

standard deviation of the estimated values among the simulated datasets; the relative bias was 

computed as the absolute value of the difference between the mean estimate and the true 

value divided by the true value. Finally, the statistics computed across the simulated datasets 
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were based only on the analyses when sensible results were produced and convergence was 

achieved.  

3.5. Results 

3.5.1. Analysis of CBMRN data 

3.5.1.1. Descriptive analysis 

A total of 10,831 lactations of 8,035 cows from 69 herds were used in the analysis; 5,264 

cows represented a single lactation, and 2,746 and 25 cows represented 2 and 3 lactations, 

respectively. The herd size ranged from 33 to 345 cows, and median herd CM incidence rate 

observed in the 69 herds was 21.3 per 100 cow–year (1 year = 305 days) days with 25th and 

75th percentiles of 12.3 and 27.9, respectively. The final model included 1,536 CM cases (i.e. 

86% censored observations). The medians of event and censoring times were 75 and 245 

days, respectively. Kaplan-Meier survival curves for CM events for cows of parity 1, 2 and 

3+ are displayed in Figure 3.1. The distributions of each level of the categorical variables and 

descriptive statistics of the continuous variables for lactation- and herd-level predictors are 

shown in Tables 3.2 and 3.3, respectively.  

3.5.1.2. Multivariable model analysis 

The final model included parity (1, 2, and 3+), calving season (1, 2, 3 and 4), mean of herd 

somatic cell score, fore-stripping (0, 1), pasture access (0, 1), proportion of CM cases treated 

with an antimicrobial (≤ 50%, > 50%), and geographic region (1, 2, 3, and 4). The final 

model also included interactions between parity and pasture access, and between parity and 

proportion of CM cases treated.  
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Preliminary analysis showed the highest hazard of CM early in lactation. This induced 

strongly non-proportional hazards for many predictors. Because of this, and to ease the 

interpretation, predictors were allowed to have different effects in two time periods within the 

lactation: before and after 13 days in milk (DIM). The cut-point of 13 DIM was chosen 

because it gave a better model fit compared with other cut-points in the range 10-50 DIM. 

For those predictors that showed a changing hazard over time, an interaction term between 

the predictor in question and time (modeled as a binary variable representing the two time 

periods in the lactation) was added to the model. These interaction terms included a three-

way interaction as the interaction between parity and pasture access showed non-constant 

hazards over time. Results of the final model are presented in Table 3.4. The effect of each 

predictor is discussed below in turn. 

Fore-stripping 

The use of fore-stripping in herds was borderline significant (p = 0.059) as a predictor for 

the hazard of CM. The hazard ratio (HR) for cows in herds that used fore-stripping, relative 

to cows from herds that did not use it, was estimated at 1.41 [95% CI; 0.99; 1.98]. Therefore, 

the hazard of CM at any given time during the lactation was 41% higher for cows in herds 

that used fore-stripping.  

Calving season 

The effect of calving season on the hazard of CM was different early and later in the 

lactation. In the first 13 DIM, at any given day the highest hazard of CM was for cows that 

calved in spring and summer compared with both autumn and winter. For instance, the HRs 

during the first 13 DIM for cows that calved in spring and summer relative to winter were 

computed, respectively, to be exp(−.043 + .687) = 1.90 [p = 0.007; 95% = 1.33 − 2.74] 

and 2.48 [p < 0.001; 95% = 1.74 − 3.53]. No significant difference between autumn and 
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winter was observed during the early lactating period. On the other hand, after 13 DIM the 

hazard was significantly lower in autumn than in winter (HR = exp(−0.327) = 0.72;  p <

0.001;  95% = 0.60 − 0.87) and also than in spring (HR = 0.75;  p = 0.035;  95% =

0.62 − 0.91), but there were no significant differences among spring, summer and winter 

calving after 13 DIM.  

Herd somatic cell score 

There was no significant effect of herd SCS after 13 DIM. In the first 13 DIM, the hazard of 

CM was negatively associated with the herd SCS (p = 0.017). For example, the HRs at 10% 

(SCS of 2.1), 25% (2.4), and 75% (3.0) percentiles of the distribution of herd SCS relative to 

the mean (2.7) were estimated, respectively, to be 1.26 (95% = 1.04 − 1.51), 1.13 (95% =

1.02 − 1.25), and 0.88 (95% = 0.79 − 0.98) indicating that the hazard of CM at any given 

time in the first 13 DIM was greatest for herds that had a low mean of SCS. 

Parity, pasture access, and cases of CM treated with antimicrobials 

The estimated coefficients for all the combinations of cow parity, pasture access, and 

proportion of cases of CM treated in the first and after 13 DIM are presented in Figure 3.2, 

and corresponding HRs and their 95% confidence intervals are tabulated in Table 3.5. The 

effect of pasture access on the hazard of CM was different in the two time intervals of the 

lactation and depended on cow parity. Furthermore, the coefficients of the interaction 

between pasture access and cow parity were also time-dependent.  

In general, hazard of CM tended to increase with increasing parity. For all combinations of 

pasture access, DIM, and proportion of CM treated, ≥ 3rd lactation cows always showed 

higher hazard of CM than 2nd lactation cows. These differences, however, were not 

significant during the > 13 DIM period for cows with no pasture access. Similarly, 1ୱ୲ 
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lactation cows generally showed lower hazard of CM than 2nd or ≥ 3rd lactation cows. This 

was not the case, however, during the first 13 DIM for 1ୱ୲ lactation cows that did not have 

access to pasture. In this later situation, 1ୱ୲ parity cows showed significantly higher hazard of 

CM than 2nd lactation cows. Furthermore, these cows showed hazard of CM fairly similar to 

≥ 3rd lactation cows (Figures 3.1 and 3.2). 

In the first 13 DIM, pasture access reduced the hazard of CM in primiparous cows, but it was 

statistically non-significant in 2nd and ≥ 3rd lactation cows. The HR for primiparous cows 

having access to pasture between 0-13 DIM was estimated at 0.36 [p = .002; 95% = 0.19 −

0.68] when compared with primiparous cows with no pasture access during that period. In 

contrast, the effect of pasture access on the hazard of CM was statistically non-significant 

after 13 DIM irrespective of the cow’s parity. 

The analysis showed that the proportion of cases of CM treated in the herd had different 

effects on the hazard of CM early and later in the lactation. Such effects were relatively weak 

and statistically non-significant early in the lactation. Although the effect of proportion of 

cases treated appeared to be slightly higher after 13 DIM, this later effect was only close to 

significant in biparous and multiparous cows. After 13 DIM, a high proportion of cases of 

CM treated in a herd appeared to be associated with an elevated hazard of CM in biparous 

and multiparous cows. For instance, after 13 DIM, the estimated HR for biparous cows from 

herds with a high proportion of treated cases of CM was 1.44 [݌ = .093; 95% = 0.94 −

2.20]. 

Non-significant associations 

The variable region had no significant effect on the hazard of CM, but it was included in the 

multivariable model because it showed a strong confounding effect for the association 
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between mean herd SCS and CM hazard (based on relative difference between unconditional 

and conditional parameter estimates; difference of 41%). 

3.5.2. Simulation study 

The simulation results along with the true values of the fixed effects and variance component 

parameters are reported in Table 3.6. The PPL estimation procedure converged in all 

simulation iterations, whereas the PMLGQ and PMLAP procedures failed to reach 

convergence for 2% and 28% of the datasets, respectively. The convergence difficulties for 

PMLGQ can be solved by adjusting the number of integration points of the adaptive Gaussian 

quadrature method. There was a substantial difference in the computing time between PPL 

and both PMLGQ and PMLAP. While PPL took a few minutes to run on a PC, PMLGQ and 

PMLAP needed several hours to run for one dataset. 

The lactation-level (ߚଵ and ߚଶ representing parity), cow-level (ߚଷ), and herd-level fixed 

effects (ߚସ) were estimated well by all the estimation procedures with relative biases not 

more than 5.3%, 5%, and 2% for PPL, PMLAP, and PMLGQ, respectively. The confidence 

interval (CI) coverage for the ߚଶ-ߚସ estimates of PPL and PMLGQ, and the ߚଷ estimate of 

PMLAP were close to nominal (≥ 94% coverage), whereas the CI coverage for the ߚଵ 

estimates of PPL and PMLGQ showed a slight CI under-coverage (92 and 93%, 

respectively). Furthermore, PMLAP produced estimates for ߚଵ, ߚଶ, and ߚସ with important CI 

under-coverage (ranging from 84 to 91%). The model-based standard error and the empirical 

variability of fixed effects estimates agreed closely for PPL and PMLGQ estimates while 

PMLAP underestimated the variability of fixed effects coefficients.  

The PMLGQ procedure estimated the between-cow and between-herd variances with relative 

biases of less than 4% and 2%, respectively, while PMLAP strongly overestimated the 

between-cow and underestimated the between-herd variances. The PPL estimates for the 
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between-cow variance were strongly downward biased (−32%); on the other hand, the 

between-herd variance was estimated well, with relative bias less than 5%. The model-based 

standard errors of variance components produced by PMLGQ and the empirical standard 

deviations were fairly close, whereas PMLAP strongly underestimated these standard errors. 

The PPL procedure produced variance component estimates with the smallest empirical 

variability but its current implementation in R software does not provide standard errors for 

these estimates.  

3.6. Discussion 

3.6.1. Analysis of CBMRN data 

3.6.1.1. Incidence rates 

At first sight the median first CM incidence rate observed in the current study (21.3 cases/100 

cow-y) appeared to be fairly similar to what have been reported in a previous Canadian study 

(23.0 cases/100 cow-y; Olde Riekerink et al., 2008). In that study, however, second and third 

cases of clinical mastitis were also included. When considering the recurrent nature of the 

disease, the current study’s first CM incidence rate is, therefore, probably substantially higher 

than the unreported first CM case incidence rate of the Olde Riekerink et al. (2008) study. 

One common problem with clinical mastitis research is the often important underreporting of 

CM events by dairy producers. For instance, second or third CM events in a given lactation, 

less severe cases, or CM events on quarters for which a persistent infection has already been 

identified will often go unreported (Vaarst et al., 2002). Although these CM events are of 

interest from the researcher’s perspective, most dairy producers will not see any practical 

benefit in reporting these, often resulting in incomplete records. In the current study, the 

selection of herds showing a certain level of compliance regarding CM reporting (based on 
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reporting consistency) may have resulted in more complete recording and is probably 

responsible for the relatively higher CM incidence rate. 

The higher CM hazard observed during the early lactating period in the current study is very 

similar to observations made in previous studies conducted in Canada (Olde Riekerink et al., 

2008), the USA (Pinedo et al., 2012), France (Gasqui et al., 2003), the Netherlands 

(Steeneveld et al., 2008) and the UK (Green et al., 2002). In a study by Green et al. (2002), 

> 50% of the infections resulting in CM cases occurring in the first 30 DIM were deemed to 

have been acquired during the dry-off period. In comparison 80% of CM cases occurring 

later during the lactation were the result of new infections acquired during the lactation 

(Green et al., 2002). Given the drastically different management between dry-off and 

lactating periods and the different etiology of infections acquired during these two periods, 

different effects for a given risk factor on the risk of early vs. later lactation CM is to be 

expected. This was the case in the current study, as the measure of effect of all predictors, 

except fore-stripping cows as part of the milking routine, were significantly modified by 

DIM. After investigating different thresholds including 10, 12, 13, 14, 15, 25, and 50 DIM, 

the cut-point of 13 DIM was the best based on the model fit (the best model fit was defined as 

the model with the greatest likelihood). This division of the lactation time acted as an 

approximation for the effects of time on the original scale in order to reduce noises and 

simplify model interpretation since the final model incorporated complex interaction effects.  

3.6.1.2. Fore-stripping 

The positive association between fore-stripping cows as part of the milking procedures and 

hazard of CM has been reported in several studies (Elbers et al., 1998; O’Reilly et al., 2006; 

Richert et al., 2013). This association is very likely a case of reverse causation. Fore-stripping 

is essential to uncover mild cases of CM; these mild cases often go unnoticed in herds where 
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the milkers do not check the foremilk at milking time, hence the observed higher hazard of 

CM in herds using fore-stripping. The hazard difference associated with this practice would 

be more meaningfully interpreted as an increased risk of CM detection. In the current study, 

for instance, it may be hypothesized that fore-stripping increased the risk of detecting CM by 

40% (i.e. HR: 1.4; 95% CI: 0.99, 2.0). Furthermore, this association was only borderline 

significant (P-value: 0.059). 

3.6.1.3. Calving season 

Calving season was significantly associated with CM hazard. Seasonality of CM hazard has 

often been observed in countries having temperate climate. In most studies, higher CM 

hazard has been observed in cows calving during warmer seasons. For instance, higher CM 

incidence was observed for cows calving between June-September in Pennsylvania (Erskine 

et al., 1988) and Wisconsin, USA (Pantoja et al., 2009). Similarly, a higher risk of CM during 

the first month of lactation was observed for cows calving between June-November in the 

Netherlands (Steeneveld et al., 2008). In Norway, higher incidence of CM was observed in 

first parity cows calving between April-August (Waage et al., 1998). The same trend for 

greater hazard of CM during the early lactating period for cows calving during warmer 

months was observed in the current study. We can hypothesize that the combined effect of 

the higher counts of environmental bacteria in the bedding or immediate environment of the 

cow usually seen in warmer months and of the increased stress and immunosuppression 

associated with hot weather during the peri-partum period, are probably important 

determinants of the observed seasonality.  

In the current study, hazards of CM occurrence after 13 DIM were fairly similar for cows 

calving during the winter, spring, and summer seasons. Cows calving between September 21st 

and December 20th, however, showed lower hazard of CM occurrence after 13 DIM when 
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compared to cows calving during winter time (HR: 0.72; 95% CI: 0.60, 0.87). This lower risk 

of CM in the remaining lactation can potentially be explained by the same mechanisms 

previously described, since autumn calving cows will spend an important part of their 

remaining lactation beyond 13 DIM in cooler weather (i.e. winter) and will be in a relatively 

more advanced state of their lactation when the warmer summer temperature begins. In 

contrast, winter calving cows are assured to spend a substantial part of their first few months 

in milk in warm and often humid weather. 

3.6.1.4. Herd somatic cell score 

In the current study, hazard of CM in the first 13 DIM increased with decreasing herd SCS. 

At the quarter-level, evidence suggesting either a “protective” (Schukken et al., 1994; 

Schukken et al., 1999; Suriyasathaporn et al., 2000) or “causal” (Green et al., 2007; Pantoja 

et al., 2008; Steeneveld et al., 2008) effect of higher quarter SCC against IMI has been 

reported. At herd-level, however, lower mean herd SCS and higher proportion of cows with 

low SCC have both been associated with higher risk of CM (Erskine et al., 1988; Beaudeau et 

al., 2002; de Haas et al., 2005). In the data presented here, the contextual effect (i.e. the effect 

of the herd SCS on a specific cow) potentially operates through a different biological process 

than the individual effect (i.e. the effect of the cow’s own previous SCS). Herds having lower 

SCS have usually achieved a certain level of control of contagious pathogens such as 

Staphylococcus aureus and Streptococcus agalactiae, and better control of these contagious 

pathogens would be expected to reduce the absolute number and proportion of clinical cases 

associated with these specific organisms. In low SCS herds, it has been shown that 

environmental pathogens are more frequently cultured from CM cases (Erskine et al., 1988; 

Barkema et al., 1998) and that CM cases are most often observed in these herds during the 

first month of lactation (Erskine et al., 1988). This later finding could be indicative of 
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infections acquired during the dry-period or early lactation infection, typical features of most 

environmental pathogens. Since CM cases caused by contagious pathogens tend to be more 

evenly spread over the lactation, a shift toward CM occurring mainly in the early lactating 

period in herds that have efficiently controlled contagious pathogens is not surprising. The 

increased hazard of CM during the early lactating period observed in the current and in 

previous studies (Erskine et al., 1988; de Haas et al., 2005), however, remains to be 

completely elucidated. It seems rather unlikely that a better control of contagious pathogens 

at the herd level would actually result in a higher absolute number of CM cases. Shuster et al. 

(1996) and Vandeputte-Van Messom et al. (1993), however, both demonstrated an increase in 

mastitis severity in quarters with lower SCC. Mastitis severity, in turn, will directly influence 

mastitis detection. Moreover, mastitis severity has been reported to strongly influence 

treatment decisions (Vaarst et al., 2002; Dufour et al., 2010), and administration of an 

antimicrobial treatment will certainly influence reporting of a CM case. There is, therefore, a 

strong possibility that the observed association between herd SCS and CM hazard is the result 

of an increased severity of CM cases due to a higher proportion of quarters with higher 

susceptibility (i.e. with lower SCC), and that this shift toward more severe cases resulted in 

increased detection and/or reporting of CM cases, rather than an absolute increase in the 

number of cases.  

3.6.1.5. Parity, pasture access, and cases of CM treated with antimicrobials 

In the current study, we observed a higher CM incidence between 0-13 DIM in first parity 

cows confined inside compared to second lactation cows housed similarly. In comparison, in 

herds where cows had access to pasture, we observed a relatively straightforward relationship 

between parity and CM incidence during the 0-13 DIM and >13 DIM periods, with lower 

CM hazard in first parity cows and CM incidence increasing with every additional lactation. 

This latter consistent relationship of increasing CM hazard with increasing parity has also 
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been reported before in studies conducted on confined dairy cows, but for which the outcome 

of interest was CM occurrence over the whole lactation (Gröhn et al., 2004; Hertl et al., 2011) 

or CM occurrence during the first 30 and 60 days of lactation (Green et al., 2007; Pinedo et 

al., 2012). Conversely, studies conducted on confined dairy cows, but focusing precisely on 

CM occurrence during the first 2 weeks in milk, reported higher CM incidence during this 

period for first lactation cows compared to older cows (Barkema et al., 1998; Steeneveld et 

al., 2008; Olde Riekerink et al., 2008). Observations from the current study (i.e. higher CM 

hazard in confined heifers compared to older cows in the 0-13 DIM period followed by 

increasing hazard by parity in the >13 DIM period) suggests a protective effect of pasture for 

1st parity cows, and this is consistent with the literature. The same observation has been made 

by Waage et al. (1998) who reported lower CM risk when heifers had access to pasture 

around calving or during their post-partum period. In both the Waage et al. (1998) and the 

current studies, only heifers that actually had access to pasture during the early lactating 

period did benefit from this practice. As expected, first lactation cows calving during winter 

(i.e. confined around calving time) in herds where cows are sent to pasture during summer 

did not show lower 0-13 DIM CM hazard. 

The generally increasing CM hazard with increasing parity is rather straightforward to 

explain. Older cows have been exposed to multiple pathogens over a long time period which 

could result in a higher proportion of subclinically infected quarters. Clinical flare-up of these 

infections could then yield more CM and often recurrence of CM. Furthermore, because of 

the long exposure to milking machines, older cows are more likely to have more callous and 

rough teat ends which can also result in higher risk of CM (Neijenhuis et al., 2000 and 2001).  

The 0-13 DIM CM hazard difference observed between housed and pastured heifers is 

particularly interesting. The lower 0-13 DIM CM hazard in pastured heifers is likely to be the 

result of the decreased pressure of infection from their environment compared to the 
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environment of housed heifers. Moreover, in most Canadian dairies, heifers are usually 

moved with a new group of cows around calving where they have to adapt to a new facility 

and a new diet, compete with older and heavier cows for feed, water, and stalls, and establish 

a new social network. The stress resulting from these different adaptations can pay its toll on 

the first lactation cow’s immune system and make them more prone to infectious diseases 

such as mastitis. Even when compared with cows housed in well-designed facilities, the 

lower animal density and the environment found at pasture is more likely to reflect the 

natural cow environment and to minimize the stress associated with the post-partum period. 

Finally, in the current study, treating more than 50% of CM cases had very little effect on 

CM occurrence in the first 13 DIM, but was associated with slightly increased CM hazard 

after 13 DIM in older cows. This observation could actually result from an inappropriate 

balance between treating and culling mastitic cows. In the current study, 71.0% of the 

producers classified as treating ≥ 50% of cases, actually reported treating almost all cases (i.e. 

≥ 90%; see Dufour et al., 2010). We can hypothesize that culling rather than treating a certain 

proportion of these cases would have reduced the risk of transmission of chronic and well 

host-adapted pathogens to other herdmates; hence the higher CM hazard observed in herds 

where a large proportion of the cases are treated. Furthermore, we cannot exclude a potential 

association between proportions of CM cases treated and reported. Producers that are 

convinced that all CM cases need treatment may be more aggressive in trying to detect and, 

perhaps, report these cases.     

3.6.1.6. Strengths and limitations of current study 

Risk factors for clinical mastitis have been widely investigated in a number of locations and 

under a variety of management systems. Overall, most of our results are broadly consistent 

with previous results. However, this study had a number of features that make the results 
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important in terms of our understanding of mastitis. First, the size of the data set (over 10,000 

lactations from 69 herds) makes it one of the largest datasets assembled for mastitis research 

which will have contributed to more precise estimates of effects. Second, the analytical 

techniques used allowed us to clearly separate the nature of the effects in the early post-

partum period (0-13 days) and later, while still appropriately accounting for the clustered 

nature of the data. A limitation of the study was that most of the factors examined were herd-

level factors and the study contained only 69 herds. These herds were chosen to be 

representative of the Canadian dairy population (Reyher et al., 2011) but, given the intensive 

nature of the data collection required, random sampling of the population was not possible. 

3.6.2. Analysis of simulation study 

The simulation study compared the performance of PML approach with either adaptive 

Gaussian quadrature or Laplace approximation with the penalized partial likelihood approach 

(PPL) in terms of the bias of the point estimates, their empirical variability, and the bias of 

the estimation of such variability. The results showed that the Poisson likelihood approach 

with adaptive Gaussian quadrature performed well in all regards and produced nearly 

unbiased estimates for model parameters, including cluster variance estimates and their 

standard errors. However, the Poisson approach with Laplace approximation tended to 

strongly overestimate the between-cow variance and underestimate the between-herd 

variance, as well as produced estimates with downward bias for the standard errors. This later 

finding implies a higher than expected type I error rate when using Laplace approximation in 

a similarly structured dataset. The overestimation of between-subcluster variance was also 

reported in Feng et al. (2009). As Feng et al. (2009) used a subcluster size of 2 and in our 

case it was even smaller (mean 1.348, range 1-3), such bias is probably attributable to the 

small subcluster size and the asymptotic nature of the Laplace approximation that requires 
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reasonably large cluster size (Joe, 2008). The performance of PPL was good and comparable 

to the PMLGQ approach in estimating the fixed effect parameters and their standard errors, 

but the approach tended to underestimate the between-cow variance, this is again probably 

due to the use of Laplace approximation for a small subcluster size. This bias in variance 

component estimates of PPL was also pointed out in Pankratz et al. (2005).  

3.6.3. Choice of estimation approach 

Estimation techniques for hierarchical Cox models are not straightforward. The current 

implementation of nested frailty models, such as those implemented in coxme (Therneau, 

2013), frailtyHL (Ha et al., 2012), and frailtypack (Rondeau et al., 2012) libraries of R 

software, are still limited to models with few predictors and moderate size of datasets. Both 

the coxme and the frailtyHL implementations of nested log-normal frailty models do not 

support the counting process data format necessary for time-dependent predictors and effects. 

These approaches are also based only on Laplace approximations which appear to perform 

suboptimally in nested frailty models with small subcluster sizes. On the other hand, the 

frailtyPenal function of the frailtypack package assumes a gamma distribution for nested 

frailties and can deal with counting process formatted data, but it requires the number of 

random effects to be at most moderate.  This effectively precluded its use for our data with 

8,035 cows from 69 herds. This study demonstrates that the above discussed limitations of 

nested frailty model implementations can be overcome by reformulating the nested frailty 

Cox model as a nested random-effects Poisson model and using standard GLMM software 

for estimation. 

3.7. Conclusions 

In summary, analyzing large survival datasets with multiple levels of clustering requires 

accounting for the correlation between event times within each of these levels, as well as 
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handling the time-dependent variables and effects that often present in the data. A Poisson 

modeling approach with adaptive Gaussian quadrature provided fairly robust estimation for 

Cox models with nested log-normal frailty while the penalized partial likelihood and the 

Poisson maximum likelihood with Laplacian approximation were found to have substantial 

drawbacks. The research indicated that some of the herd managerial factors combined with 

cow characteristics influence the hazard of CM during the lactation period; some of these 

effects were different very early than later in the lactation. 
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Table 3.1. Explanatory variables used in the analyses of the January 2007-December 2008 clinical mastitis data 

from the Canadian Bovine Mastitis Research Network (CBMRN).  

Variable Description 
Geographic region With 4 categories: Alberta, Ontario, Quebec, Atlantic; herd level. 
Calving season With 4 categories: winter (21 Dec.-20 Mar.), spring (21 Mar.-20 Jun.), 

summer (21 Jun.-20 Sep.), autumn (21 Sep.-20 Dec.); lactation level. 
Cow parity With 3 categories; 1st lactation, 2nd lactation, and ≥3rd lactation cows; 

lactation level. 
Mean herd somatic cell score  Continuous: mean herd somatic cell score (SCS) during the previous 

sampling period; herd level. 
Number of milking cows in a herd* Continuous: mean of 6-month period prior the current period; herd level. 

Housing type Trichotomous: tie stall, free stall and bedding pack, herd level. 

Milking procedures  

Wear gloves during milking* Dichotomous: yes/no; herd level. 

Fore-stripping* Dichotomous: yes/no; herd level. 

Pre-milking teat disinfection Dichotomous: yes/no; herd level. 

Post milking teat disinfection Dichotomous: yes/no; herd level. 

Environment  

Material used for base of stalls or pens* Trichotomous: concrete, sand, and mattress or rubber mat; herd level. 

Type of bedding used in stalls or pens Trichotomous: wood, sand, and straw; herd level. 

Cows have access to pasture* Dichotomous: yes/no; herd level. 

Dry-off period management  

Use external teat sealant at dry-off (ETS) Dichotomous: yes/no; herd level. 

Use internal teat sealant at dry-off (ITS) Dichotomous: yes/no; herd level. 

Proportion of cows receiving antimicrobial 

treatment at drying off (DCT) 

Dichotomous: 100% vs. <100%; herd level. 

Vaccination against coliforms  Dichotomous: yes/no; herd level. 

Proportion of calving occurring in maternity 

pen* 

Dichotomous: low (≤ 50%) vs. high (> 50%); herd level. 

Others  

Proportion of clinical mastitis (CM) cases 

treated* 

Dichotomous: low (≤ 50%) vs. high (> 50%); herd level.  

Udder hair management Dichotomous: yes (clipped or flamed)/no; herd level. 

Tail management* Dichotomous: yes (clipped or tied)/no; herd level. 
* Time-varying predictor. 
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                    Table 3.2. Descriptive statistics for lactation-level predictors in the CBMRN data from 69  

                     herds between  January 2007 and December 2008. 

Predictor Number of lactations Proportion of lactations with 
  a clinical mastitis event 
   
Parity                    1st lactation                                       3629 0.034 
                             2nd lactation              2970 0.041 
                          ≥3rd lactation  4232 0.067 
Calving season              winter 2706 0.042 
                                      spring 2521 0.038 
                                   summer 2831 0.039 
                                    autumn 2773 0.023 
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        Table 3.3. Descriptive statistics for herd-level predictors in the CBMRN data from 69 herds between  

        January 2007 and December 2008. 

 Number of herd Proportion of lactations with 
Predictor 6-month periods a clinical mastitis event 
   
Region                                                                           Alberta 37 0.019 
                                                                                       Ontario 96 0.055 
                                                                                       Quebec 78 0.033 
                                                                                      Atlantic 54 0.035 
Housing type                                                                Tie-stall 180 0.088 
                                                                                    Free-stall 77 0.050 
                                                                             Bedding-pack 8 0.004 
Milking procedures    
Wear gloves during milking*                                                No 111 0.057 

Yes 150 0.085 
Fore-stripping*                                                                      No 109 0.055 

Yes 156 0.086 
Pre-milking teat disinfection                                                No 84 0.037 

Yes 176 0.104 
Post milking teat disinfection                                               No 4 0.003 

Yes 256 0.139 
Environment   
Material used for base of stalls or pens*                     Concrete 31 0.010 

 Sand 25 0.016 
 Mattress or rubber mat 209 0.116 

Type of bedding used in stalls or pens                            Wood 54 0.030 
Sand  10 0.011 

Straw  201 0.101 
Pasture access*                                                                      No 201 0.106 

Yes 64 0.036 
Dry-off period management   
Use external teat sealant at dry-off  (ETS)                           No 237 0.129 

Yes 23 0.013 
Use internal teat sealant at dry-off  (ITS)                             No 157 0.129 

Yes 106 0.013 
Prop. of cows receiving antimicrob. treat. at dry-off  < 100% 40 0.022 

= 100%  220 0.120 
Vaccination                                                                           No 147 0.072 

Yes 113 0.069 
% of calving occurring in maternity pen*                      ≤ 50% 115 0.061 

> 50%  150 0.081 
Other management   
Proportion of clinical mastitis (CM) cases treated*       ≤ 50%                       77 0.032 

> 50%                        188 0.110 
Udder hair management                                                       No 49 0.024 

       Flamed or clipped 216 0.118 
Tail management*                                                                 No 55 0.030 

Clipped or tied 210 0.112 

 Mean (sd) Mean (sd) 
Predictor (cases) (non-cases) 
Mean of herd somatic cell score (SCS) in previous period 2.66 (0.494) 2.61 (0.507) 
Number of milking cows in a herd (mean of 6-month period)* 89.0 (44.8) 84.4 (45.7) 

       * Time-varying predictor. 
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Table 3.4. Parameter estimates, standard errors and P-values in the final nested frailty Cox model of CBMRN 

data between January 2007 and December 2008.  

  Overallb Timec Overalld 

Predictor/Parametera  Estimate (SE) P-value component (SE) P-value 
Fore-stripping                                     Yes vs. no                   0.336 (0.178) 0.059   
 Calving season                         Spring vs. Winter  -0.043 (0.081) 0.004 0.687 (0.198) 0.000 

Summer vs. Winter -0.123 (0.084)  1.030 (0.194)  
Autumn vs. Winter -0.327 (0.093)  0.434 (0.221)  

Mean of herd SCS 0.058 (0.123) 0.638 -0.465 (0.152) 0.002 
Pasture access                                     Yes vs. no                               -0.188 (0.170) 0.269 -0.828 (0.345) 0.017 
% of cases of CM treated      > 50% vs. ≤ 50%  -0.008 (0.221) 0.969 -0.336 (0.150) 0.025 
Parity                          2nd lactation vs. 1st lactation 0.343 (0.167) 0.015 -1.167 (0.210) 0.000 

≥3rd lactation vs. 1st lactation 0.443 (0.156)  -0.696 (0.172)  
Interactions     

2nd lactation × pasture access (yes) 0.043 (0.197) 0.044 1.078 (0.465) 0.032 
≥3rd lactation × pasture access (yes) 0.375 (0.182)  0.956 (0.394)  

2nd lactation × % of treated cases of CM (> 50%) 0.373 (0.176) 0.052   
  ≥3rd lactation × % of treated cases of CM (> 50%) 0.350 (0.161)    
Region                        Ontario vs. Western Canada 0.358 (0.259) 0.277   

Quebec vs. Western Canada -0.018 (0.293)    
Atlantics vs. Western Canada 0.199 (0.321)    

     
Between-cow variance  0.498 (0.140)    
Between-herd variance  0.394 (0.086)    
a Coefficients for the 4th order polynomial function of time represents the baseline hazard not shown. 
b Overall P-value for main effect or interaction with other predictor (after 13 DIM, if involved in time 

component). 
c Time modelled as two time periods within lactation (1: first 13 DIM vs. 0: after 13 DIM); estimates shown are 

interaction terms between time component and effect. 
d Overall P-value for time components (i.e. interaction term).  
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Table 3.5: Estimated hazard ratios, their standard errors and 95% confidence intervals for calving season and the 

combinations of pasture access, proportion of cases of CM treated, and cow parity; in the first 13 DIM and after 

13 DIM of CBMRN data between Jan. 2007 and Dec. 2008. 

 First 13 DIM  After 13 DIM 
Predictor Hazard ratio (SE) 95% CI  Hazard ratio (SE) 95% CI 

Calving season      

Spring vs. winter 1.906 (0.353) (1.326, 2.740)  0.958 (0.077) (0.817, 1.122) 
Summer vs. winter 2.477 (0.448) (1.738, 3.531)  0.884 (0.074) (0.751, 1.104) 
Autumn vs. winter 1.113 (0.228) (0.744, 1.664)  0.721 (0.067) (0.600, 0.866) 
Summer vs. spring 1.301 (0.193) (0.973, 1.739)  0.923 (0.079) (0.780, 1.092) 
Autumn vs. spring 0.584 (0.104) (0.413, 0.828)  0.753 (0.073) (0.623, 0.910) 

Autumn vs. summer 0.449 (0.073) (0.327, 0.618)  0.815 (0.080) (0.673, 0.988) 
Pasture access      

1st lactation 0.361 (0.117) (0.192, 0.683)  0.829 (0.141) (0.594, 1.156) 
2nd lactation 1.112 (0.339) (0.611, 2.022)  0.865 (0.131) (0.644, 1.165) 

3rd + lactation 1.371 (0.270) (0.933, 2.016)  1.206 (0.153) (0.940, 1.547) 
Proportion of CM treated      

1st lactation 0.708 (0.172) (0.441, 1.139)  1.009 (0.223) (0.643, 1.531) 
2nd lactation 1.029 (0.258) (0.630, 1.683)  1.440 (0.313) (0.941, 2.204) 

3rd + lactation 1.006 (0.233) (0.639, 1.584)  1.408 (0.288) (0.943, 2.102) 
Cow parity      

2nd lactation vs. 1st lactation      
≤ 50% treated CM & no past. acces. 0.439 (0.102) (0.261, 0.739)  1.409 (0.235) (1.016, 1.955) 

≤ 50% treated CM & past. acces. 1.347 (0.536) (0.618, 2.938)  1.471 (0.318) (0.964, 2.246) 
> 50% treated CM & no past. acces. 0.637 (0.124) (0.435, 0.934)  2.047 (0.207) (1.678, 2.495) 

> 50% treated CM & past. acces. 1.957 (0.752) (0.921, 4.155)  2.138 (0.386) (1.500, 3.042) 
3rd + lactation vs. 1st lactation      

≤ 50% treated CM & no past. acces. 0.777 (0.150) (0.532, 1.133)  1.558 (0.243) (1.148, 2.113) 
≤ 50% treated CM & past. acces. 2.941 (0.996) (1.515, 5.713)  2.267 (0.441) (1.547, 3.319) 

> 50% treated CM & no past. acces. 1.102 (0.171) (0.814, 1.494)  2.212 (0.214) (1.831, 2.673) 
> 50% treated CM & past. acces. 4.175 (1.375) (2.189, 7.960)  3.218 (0.538) (2.319, 4.468) 

3rd + lactation vs. 2nd lactation      
≤ 50% treated CM & no past. acces. 1.770 (0.395) (1.142, 2.743)  1.106 (0.169) (0.982, 1.244) 

≤ 50% treated CM & past. acces. 2.183 (0.662) (1.205, 3.956)  1.541 (0.281) (1.273, 1.863) 
> 50% treated CM & no past. acces. 1.730 (0.326) (1.196, 2.502)  1.081 (0.093) (0.913, 1.278) 

> 50% treated CM & past. acces. 2.134 (0.613) (1.215, 3.748)  1.506 (0.223) (1.126, 2.013) 
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Table 3.6. Results of simulation study based on a log-normal nested frailty Cox model of CBMRN data between 

January 2007 and December 2008. Mean of the estimate, empirical standard deviation, mean of the model-based 

standard error, bias and probability coverage over 250 simulated datasets.  

 Lactation-level Cow-level Herd-level   Convergence 

Method ߚଵ ߚଶ ߚଷ ߚସ ߪ௖ଶ ߪ௛ଶ rate 

True value 0.4 0.6 0.5 -0.8 0.5  0.3  

PPL Estimate  0.386 0.578 0.477 -0.758 0.342 0.287 100% 

 Emp. Std 0.078 0.071 0.053 0.138 0.085 0.065  

 Model Se 0.074 0.068 0.057 0.146 --a --a  

 Relative bias -0.035 -0.037 -0.046 0.053 -0.316 -0.043  

 95% CI cover. 92% 94% 94% 96% --a --a  

PMLAP Estimate  0.418 0.630 0.517 -0.835 1.492 0.199 72% 

 Emp. Std 0.094 0.090 0.070 0.173 1.699 0.126  

 Model Se 0.079 0.075 0.064 0.128 0.214 0.047  

 Relative bias 0.045 0.050 0.034 0.044 1.984 -0.367  

 95% CI cover. 91% 90% 94% 84% 75% 100%  

PMLGQ Estimate  0.399 0.598 0.491 -0.791 0.482 0.305 98% 

 Emp. Std 0.080 0.074 0.056 0.144 0.155 0.089  

 Model Se 0.076 0.071 0.059 0.148 0.134 0.065  

 Relative bias -0.003 -0.003 -0.018 0.011 -0.036 0.017  

 95% CI cover. 93% 95% 95% 96% 96% 96%  

PPL: Penalized partial likelihood; PMLAP: Poisson maximum likelihood with Laplace approximation; PMAGQ: Poisson 

maximum likelihood with adaptive Gaussian quadrature. 
 a No available estimate (current implementation of PPL procedure in R software does not provide standard errors for 

variance estimates).   
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Figure 3.1: Kaplan-Meier survivor curves for clinical mastitis events up till 305 DIM for 1st, 2nd, and ≥3rd 

lactation cows of CBMRN data between January 2007 and December 2008. The short-dashed, long-dashed, and 

solid patterns are 1st, 2nd, ≥3rd lactation cows, respectively.  

0.
60

0.
70

0.
80

0.
90

1.
00

S
ur

vi
va

l f
un

ct
io

n

0 50 100 150 200 250 300
Time in days during the lactation

lactation = 1 lactation = 2
lactation = 3

Kaplan-Meier survival estimates



132 
 

 

Figure 3.2: The log of hazard ratios of clinical mastitis and their confidence intervals for the combinations of 

cow parity, pasture access (pst), and proportion of cases of CM treated (prtx), in the first and after 13 DIM of 

CBMRN data between January 2007 and December 2008. The first four triples are for effects within the first 13 

DIM and the second four triples are for effects after 13 DIM. Within a group of four triples, the first two triples 

represent proportion of cases of CM treated ≤ 50% and next two triples represent proportion of cases of CM 

treated > 50%. Within a group of two triples, the first triple is for no pasture access and the second triple is for 

pasture access. Solid lines are for 1st lactation cows, dashed lines are for 2nd lactation cows, and long-dashed 

lines are for ≥3rd lactation cows.  
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4.1. Abstract 

A cross-classified and multiple membership Cox model was applied to calf mortality data 

from Western Canada, where 23,409 calves from 174 herds were followed for up to 180 days 

after calving. The herds were cross-classified by 49 veterinary clinics and 9 ecological 

regions and in a multiple membership relation to the veterinary clinics, resulting in a 3-level 

cross-classified and multiple membership data structure. The model was formulated in a 

mixed-effects Poisson model framework with normally distributed random effects, and was 

fitted to the data by Bayesian Markov Chain Monte Carlo (MCMC) estimation. Important 

fixed effects included whether the calf was a twin, calf gender, assistance at calving, cow age, 

average temperature the first week after calving, the percentage of the herd that had already 

calved, whether calf shelters were provided, whether cow-calf pairs were moved to a nursery 

area, and whether any animals were purchased into the herd at or near the time of calving. 

The analysis demonstrated a greater variation among herds than among both ecological 

regions and veterinary clinics. Further, a simulation study for a setting similar to the real data 

gave evidence that the used approach provides valid estimates. 

4.2. Introduction 

Researchers in veterinary epidemiology are often interested in modeling hierarchical data 

with a time-to-event response variable. Hierarchical time-to-event models, also referred to as 

hierarchical survival or frailty models, can be used with the nested data structures (e.g. 

animals nested within herds and herds located in different ecological regions) commonly 

found in veterinary science. One potential limitation of nested frailty models typically used 

for hierarchical survival data, however, is that they are designed to be used with perfectly 

hierarchical survival data, but in reality not all data structures found in the veterinary sciences 

are perfectly hierarchical. If in the previous example (some) herds are serviced by multiple 
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veterinary clinics, an imperfect hierarchical data structure is present where the lower level 

units (herds) are members of multiple higher level units (clinics) simultaneously. This 

structure is called a multiple membership data structure (Browne et al., 2001). In addition, 

different classifications may not be hierarchically nested in each other; in our example, herds 

serviced by a given clinic could be located in different ecological regions. This would mean 

that clinics are not hierarchically nested within regions, and the two factors should instead be 

viewed as (partially) cross-classified. In summary, the structure described corresponds to a 3-

level cross-classified and multiple membership data structure (Browne et al., 2001). 

Cross-classified and multiple membership (CMM) models have been proposed to account for 

such data structures (Browne et al., 2001; Fielding and Goldstein, 2006). The CMM model 

uses weights for multiple membership and takes into account cross-classified factors that 

might arise in the data. A few studies in veterinary epidemiology have used the CMM model 

with different response variables. Browne et al. (2001) applied a CMM model with a binary 

response to Danish poultry Salmonella outbreak data. Masaoud et al. (2010) fit a CMM 

logistic regression model to a dataset from aquaculture. Goldstein et al. (2002) introduced a 

linear response example of a multiple membership model for the milk yield of cows.  

Many studies have shown that ignoring multiple membership or cross-classified data 

structure in the analysis can lead to invalid inference about the importance of the relevant 

data structure on the outcome of interest. For instance, Meyers and Beretvas (2006) and Luo 

and Kwok (2009) showed that ignoring one of the cross-classified factors in linear models 

results in biased estimation in the variance components and in the standard error of the 

regression coefficients. Results from Goldstein et al. (2007) demonstrated that using 

traditional models that ignore the multiple membership in the analysis when it is present 

underestimates the variance at the multiple membership level. In addition, models that take 
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into account the multiple membership structure give a better fit than models that ignore such 

structures. Recently, a simulation study conducted by Chung and Beretvas (2012) showed 

that ignoring multiple membership structure causes bias in the estimates of the regression 

coefficients and the variance component at the multiple membership level. 

Despite the availability of veterinary data with CMM structure, few researchers have applied 

CMM models in veterinary medicine, and to our knowledge no studies have used a CMM 

model when the response variable is time-to-event. This could be due to complex estimation 

techniques for survival models with random effects (frailty models).  

A review of the literature also suggested the need to re-examine the individual cow, herd 

management, and environmental factors associated with mortality in beef calves using a 

dataset with both detailed individual animal data and a relatively large number of herds. 

Many of the existing reports focus on calf loss at birth or in the perinatal period. While there 

are a number of observational studies published documenting calf loss after the perinatal 

period, most studies are either longitudinal studies from single research facilities focusing on 

individual animal attributes (Azzam et al., 1993; Patterson et al., 1987; Wittum et al., 1993), 

surveys with some data on individual animal attributes but a relatively small number of 

privately owned herds (Wittum et al., 1994; Ganaba et al., 1995), or herd level surveys with 

limited or no individual animal data (Schumann et al., 1990; Mathison, 1993; Dutil et al., 

1999). Because previous studies have not taken the time to calf loss into account in the 

analysis, we found no reports to date that look objectively at when individual risk factors are 

of greatest risk to calf survival. 

The first objective of the study is to explore and demonstrate the use of Poisson generalized 

linear mixed models (GLMMs) in Bayesian framework for estimating a Cox model with 

cross-classified and multiple membership frailties, and apply the approach to a large 
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observational dataset on calf mortality from veterinary medicine science. The second 

objective is to simultaneously examine the individual, herd management, and environmental 

factors associated with beef calf mortality in Western Canada and, where appropriate, to 

estimate the age period where calves are most at risk. 

4.3. Materials and methods 

4.3.1. Data 

The data originated from the Western Canada beef productivity study (Waldner, 2008) which 

collected information on calf loss and mortality in beef cattle in Western Canada. We studied 

mortality in beef calves from January to June 2002 (180 days) which included a total of 

24,647 calves and 971 cases of calf mortality from herds with complete local meteorological 

data. Calves with invalid values or missing information were excluded from the analysis. 

This eliminated less than 5% of observations including 74 cases of mortality. This strategy 

resulted in 23,409 calves, with 897 of these calves experiencing the event of interest. The 

event was defined as a case of calf mortality that happened at least one hour after birth; the 

event time was defined as the time from calving to death (recorded in days), and for those 

calves that died in the same day of birth the event time was set at 0.5. Calves that were sold 

during the follow-up period or survived until the end of the follow-up period were considered 

right censored observations. Because the observation period ended at the same time for all 

calves (June 30th), but all calves were born at different times during the calving season, we 

recognized the need for an analysis technique that accounted for different follow up times 

across the study population. 

The dataset had a special hierarchical structure. In addition to calves being hierarchically 

nested within 174 herds, herds were cross-classified by 49 veterinary clinics and 9 ecological 
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regions (Waldner, 2008), and about 8% of the herds were registered in two veterinary clinics, 

resulting in a 3-level cross-classified and multiple membership data structure (Figure 4.1). 

4.3.2. Statistical modeling   

4.3.2.1. Frailty models for hierarchical survival data 

Consider the example of 3-level hierarchical survival data with ܰ animals from multiple 

herds and these herds located in different ecological regions. Let ௜ܶ and ܥ௜ denote the survival 

and censoring times, respectively, for animal ݅. The response time for animal ݅ is ௜ܻ =

min ( ௜ܶ,ܥ௜) and the event indicator ߜ௜ takes the value 1 if the event of interest occurs and 0 

otherwise. A commonly used model for such data is a Cox proportional hazards model with 

two nested frailties ݑ௥௘௚௜௢௡(௜)
(ଷ)  and ݑ௛௘௥ௗ(௜)

(ଶ)  acting multiplicatively on the baseline hazard 

(Rondeau et al., 2006) to take into account unmeasured herd and ecological region factors 

(the numbers in superscript parentheses represent the hierarchical levels). The conditional 

hazard function of the nested frailty model can be written as, 

௜ߣ                       ቀݐቚݑ௥௘௚௜௢௡(௜)
(ଷ) ௛௘௥ௗ(௜)ݑ,

(ଶ) ቁ = ௥௘௚௜௢௡(௜)ݑ(ݐ)଴ߣ
(ଷ) ௛௘௥ௗ(௜)ݑ

(ଶ) exp(ࢼᇱ࢏ࢄ)                        (4.1) 

where ߣ଴(. ) is the baseline hazard, ݑ௥௘௚௜௢௡(௜)
(ଷ)  and ݑ௛௘௥ௗ(௜)

(ଶ)  are two nested frailties following a 

particular probability distribution, ࢏ࢄ is the covariate vector for the ݅௧௛ animal, and ࢼ is the 

corresponding vector of regression parameters. Model (4.1) can be rewritten in random 

effects context as, 

௜ߣ                    ቀݐቚܾ௥௘௚௜௢௡(௜)
(ଷ) ,ܾ௛௘௥ௗ(௜)

(ଶ) ቁ = (ݐ)଴ߣ exp ቀܾ௥௘௚௜௢௡(௜)
(ଷ) +ܾ௛௘௥ௗ(௜)

(ଶ) +  ቁ                  (4.2)࢏ࢄᇱࢼ

where the frailty and random effect terms are linked by: ݑ = exp (ܾ). 



139 
 

One approach to fit model (4.2) is to utilize the relationship between the Cox model and a 

suitable Poisson model to translate the nested random effects Cox model into a nested 

random effects Poisson model (Rabe-Hesketh and Skrondal, 2012, chapter 15). As shown by 

Ma et al. (2003) and Feng et al. (2005), the likelihood function of Cox models with normal 

random effects (i.e., lognormal frailties) is proportional to the likelihood function of such 

random effects Poisson models. In detail, Cox models with normal random effects can be 

estimated as generalized linear mixed models (GLMMs) with a binary Poisson count 

response and a specific offset. The approach requires each observation in the data to be split 

into a multiple records based on the complete set of failure times in the dataset, and the offset 

equals the logarithm of the length of each time interval. The baseline hazard is modeled as a 

smooth function of time, in our case a 4th order polynomial as suggested by Rabe-Hesketh 

and Skrondal (2012).  

Using available software for GLMMs, random effects Cox models can be fitted to survival 

data with several hierarchical levels and more complex data structures.  

4.3.2.2. Cross-classified and multiple membership frailty models 

The full structure of the calf mortality data described in Section 4.2 can be taken into account 

through a CMM random effects Cox modeling approach. The model accounts for the cross-

classified factors of veterinary clinics and ecological regions, and uses weights for the 

multiple membership relation of herds to the veterinary clinics so that each herd will have 

weights for all the veterinary clinics that the herd is serviced by. The CMM Cox model can 

be written as,   

௜ߣ ቀݐ|ܾ௥௘௚௜௢௡(௜)
(ଷ) , ( ௝ܾ

(ଷ))௝∈௖௟௜௡௜௖(௜),ܾ௛௘௥ௗ(௜)
(ଶ) ቁ                                               

                     = (ݐ)଴ߣ exp ቀܾ௥௘௚௜௢௡(௜)
(ଷ) + ∑ ௜௝ݓ

(ଷ)
௝ܾ
(ଷ)

௝∈௖௟௜௡௜௖(௜) + ܾ௛௘௥ௗ(௜)
(ଶ) + ቁ࢏ࢄᇱࢼ                   (4.3)                                
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where ܾ௛௘௥ௗ(௜)
(ଶ)  is the herd random effect, ܾ௥௘௚௜௢௡(௜)

(ଷ)  is the ecological region random effect, 

and the term ∑ ௜௝ݓ
(ଷ)

௝ܾ
(ଷ)

௝∈௖௟௜௡௜௖(௜)  involves a set of veterinary clinic random effects ௝ܾ
(ଷ) and 

weights ݓ௜௝
(ଷ) assigned to each herd for their veterinary clinic group membership with 

∑ ௜௝ݓ = 1௝∈௖௟௜௡௜௖(௜) .  

Assuming normal random effects, the CMM Cox model can be estimated in a Poisson 

modeling framework for a survival time response as described in Section 4.2.2.1 using 

Markov Chain Monte Carlo (MCMC) techniques and Bayesian inference. 

4.3.2.3. MCMC estimation and Bayesian inference 

MCMC estimation employed three chains for diagnostic purposes, 100,000 estimation 

samples, and a burn-in of 5,000 samples. The three chains used different initial values, were 

specified in Stata/MP 12.1 and run one at a time in MLwiN software version 2.25 called from 

within Stata using the runmlwin utility (Leckie and Charlton, 2013). The vague priors were: a 

uniform prior (ߚ)݌ ∝ 1 (flat prior) for the fixed effect parameters and a gamma (10ିଷ, 10ିଷ) 

for the inverse variances of the normal random effects. The Raftery-Lewis diagnostic 

(Raftery and Lewis, 1992) provided in MLwiN and the ratio rule of Monte Carlo (MC) error 

to the standard deviation (Lunn et al., 2013, p. 78) were used to determine the needed number 

of MCMC samples. The ratios of the MC error to the standard deviations for all model 

parameters were all less than 5%. Also the Raftery-Lewis diagnostic indicated that 100,000 

samples were sufficient for estimation. Other Markov chain diagnostics, including all those 

given by Gelman and Rubin (1992) and implemented in R software version 2.15.3 (coda 

package), were carried out and found to be satisfactory.  

Significance for single parameter effects in Bayesian inference was assessed using 95% 

credible intervals (whether or not zero lies in such intervals) or by computing a tail 
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probability of the posterior distribution; such probability is analogous to P-value in 

frequentist statistics. 

4.3.3. Data analysis  

4.3.3.1. Model building 

Descriptive analyses were carried out for explanatory variables listed in the dataset to check 

distributions and invalid values, as well as to identify collinearity among variables. To 

facilitate the first stages of the analyses, unconditional (simple) associations between each 

explanatory variable and the outcome were obtained from a standard Cox regression model 

with the Breslow method for ties. A liberal p-value of 0.20 was chosen to determine potential 

important explanatory variables. Using lowess smoothing graphs, functional forms of 

continuous variables were evaluated by plotting the variable in question against martingale 

residuals, and if necessary appropriate transformation was performed or a quadratic term was 

added to the model.  

The second step of the model building consisted in a stepwise backward selection for the 

standard Cox model with ܲ < 0.10 as inclusion criterion since a hierarchical Cox model was 

impractical and very time consuming. All two-way interactions between predictors retained 

in the model were evaluated and tested for statistical significance; interactions that turned out 

significant and biologically meaningful were kept in the model. During the selection process, 

the non-significant predictors were rechecked for confounding and a change of 20% or more 

in the parameter estimate was used as a criterion for identifying confounders. The 

proportional hazards assumption was evaluated for model predictors individually and 

globally by a statistical test based on the scaled Schoenfeld residuals (Dohoo et al., 2009). To 

account for non-proportional hazards for some predictors, the dataset was split at events, and 

an interaction term between the predictor in question and the logarithm of time was added to 
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the model. The assumption of independent censoring was checked by sensitivity analysis 

comparing the change of positive and negative correlation scenarios between censoring and 

new mortality events. All descriptive statistics and model building were performed in 

Stata/MP 12.1. 

4.3.3.2. Accounting for data structure 

The CMM structure of the data was accounted for by including random effects for herds, 

veterinary clinics and ecological regions, as described in Section 4.2.2.2. The multiple 

membership weights of veterinary clinics servicing a given herd were computed as 

proportions of visits of that herd by each clinic, out of the total number of visits to the herd. 

4.4. Results of calf mortality data analysis 

4.4.1. Descriptive statistics 

The overall mortality observed in the 174 herds was 3.8% (897 23409⁄ ) with a 90% range 

across herds of (0.5%, 7.5%), and the percentages of calf loss occurred within the first 1 day, 

3 days, 7 days, 14 days and 30 days at risk were, respectively, 19% (171 897⁄ ), 29% 

(258 897⁄ ), 40% (362 897⁄ ), 55% (496 897⁄ ) and 68% (614 897⁄ ). The medians of event 

time (calf death) and censoring time were 12 and 104 days, respectively. The full list of 

predictor variables included in the analysis is shown in Table 1 (animal-level predictors) and 

Table 2 (herd-level predictors) with descriptive statistics.  

Predictors selected for further consideration during the model building process (ܲ < 0.20) 

were: whether the calf was a twin, calf gender, calving assistance, cow age, cow breed type, 

cow body condition at pregnancy test, within-herd calving proportion, mean 7-day 

temperature, shelters provided for calves separate from cows and heifers, cow-calf pairs 

moved to a nursery pasture within 48 hrs of birth, and whether any animals were purchased in 
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the month prior to or during calving. The variables of twin, surgical assistance at calving, and 

the mean 7-day temperature after calving were identified as time-varying effects.  

4.4.2. Multivariable analysis  

4.4.2.1. Model comparisons 

In the Poisson modeling approach, the best model fit (i.e. the model with the smallest 

deviance information criteria (DIC); Spiegelhalter et al., 2002) was obtained using the 

logarithm of time to model both time-varying predictor effects and the baseline hazard.  

To demonstrate the utility of CMM modeling for the calf mortality data, results are shown for 

three survival models including a standard Cox model neglecting the hierarchical structure 

present in the data (model 1), a Cox model with random herd effects ignoring the top 

hierarchical level in the data (model 2), a CMM Cox model taking into account the full 

hierarchical data structure (model 3). The three models were fitted to the dataset where 

continuous predictors were centered at the mean and the predictors twin, calving assistance 

and average of 7-day temperature were modeled with time-varying effects (by adding 

interactions with log of time). Results from the final models are tabulated in Table 4.3. 

In model 2, the random herd variance parameter was estimated at 0.334 (posterior mean), 

with 95% credible interval (95% CI) of [0.215, 0.484]. When accounting for the full 

hierarchical data structure (model 3), the random herd variance estimate decreased by 19% to 

0.272 [95% CI; 0.168, 0.409]. The variance for ecological regions was estimated to be about 

four times greater than the variance for veterinary clinics with corresponding posterior 

standard deviations as large as the point estimates.  

Model 3 explained a greater portion of the survival outcome variation than model 2 due to 

handling the third hierarchical level in the dataset (the veterinary clinics and the ecological 
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regions). The DIC was the smallest for model 3 among the three models indicating a better 

model fit. 

The standard Cox model (model 1) estimated with a Bayesian approach as a Poisson model 

gave similar estimates to those from a Cox model using a frequentist (classical) approach 

(results not shown). Some differences in estimates were seen compared with the random 

effects models (models 2 and 3). Further, the standard errors of regression coefficients from 

the simple Cox model ignoring the data structure were smaller than those from the CMM Cox 

model, especially (and as expected) for the herd-level predictors.  

4.4.2.2. Interpretations of effects from model 3 

In model 3, the effect of twin birth on the hazard of calf mortality depended on time and 

remained statistically significant until day 22 from calving. The hazard ratio (HR) for twin-

birth calves relative to single-birth calves of age 1 day was estimated to be 3.80 with 95% 

credible interval (95% CI) of [2.70, 5.25]. Similarly, the HRs of twin-birth calves compared 

with single-birth calves of age 7, 22 and 60 days were estimated at 2.07 [95% CI; 1.58, 2.68], 

1.45 [95% CI; 1.02, 2.01] and 1.06 [95% CI; 0.66, 1.63], respectively, suggesting that the 

hazard of mortality at any given time before 60 days of age was highest for twin-birth calves, 

and such that hazard ratios declined over time until vanishing after about two months of age. 

The HR for male (versus female) calves was 1.16, 16% higher hazard in males than in 

females at any point in time.  

For calving assistance, the HR of calves that were born with a hard pull or malpresentation 

relative to calves born without calving assistance were 2.50 and 1.71, respectively, and thus 

associated with substantially higher hazard of mortality. The effect of caesarean section 

surgery versus unassisted varied with time: days 1, 2, 3 and day 7 had estimated HRs of 3.70 

[95% CI; 1.44, 7.98], 2.29 [95% CI; 0.93, 4.82], 1.72 [95% CI; 0.65, 3.78], and 0.96 [95% 
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CI; 0.26, 2.52], respectively, indicating that the hazard of mortality for calves with surgical 

assistance at calving was higher immediately after calving and statistically significant on day 

1 and then dropped down quickly. 

After accounting for the other risk factors in the final model, the HRs for calves from cows 

aged 2, 3, 4 and greater than 10 years at calving relative to those from mature cows (5-10 

years old) were estimated, respectively, to be 1.47, 1.42, 1.13 and 1.36. These results suggest 

that the hazard of death at any given time was greatest for calves from young (2-3 years old) 

and old (> 10 years old) cows, but that there was little difference in the hazard for calves of 

cows aged 4 years compared with calves from mature cows. 

In addition, the hazard of calf mortality increased as the calving season progressed with an 

increasing number of calves in the herd. For instance, when the proportion of cows calving in 

a herd reached 0.11 and 0.91 (10% and 90% percentiles, respectively), the HRs for mortality 

were estimated, respectively, to be 0.90 and 1.64 compared with a proportion of 0.51 (50% 

percentile) indicating that the hazard of mortality increased with increasing number of births 

in the herd.  

Modeling temperature as the mean of first 7 days post calving gave a better DIC than the 

temperature on day of calving. Very cold weather was associated with a high hazard of calf 

mortality and such hazard decreased over time. For example, when the averages of 7-day 

temperature post calving was 20, 10 and 5 °C below the mean (-6.42 °C), the HR of mortality 

relative to the mean would be, respectively, 2.53 [95% CI; 1.86, 3.36], 1.57 [95% CI; 1.36, 

1.83] and 1.24 [95% CI; 1.17, 1.35] for calves of age 24 hrs; and 1.70 [95% CI; 1.39, 2.08], 

1.30 [95% CI; 1.18, 1.44] and 1.13 [95% CI; 1.08, 1.20] for calves of 7 days of age; and 1.27 

[95% CI; 1.01, 1.61], 1.12 [95% CI; 1.00, 1.27] and 1.06 [95% CI; 1.00, 1.13] for calves of 

30 days of age, suggesting that the hazard of calf mortality was greatest if calving took place 
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in very cold weather. After about month of age, the time varying effect of temperature was 

statistically non-significant.  

Three herd-level predictors related to biosecurity practices were also important predictors of 

calf mortality. The estimated HR was lower (ܴܪ = 0.79 with a probability analogous to P-

value of 0.048) for calves from herds where the owner provided shelters for calves separate 

from cows and heifers as well as for calves from herds where cow-calf pairs were moved to a 

nursery pasture within 48 hrs of birth (ܴܪ = 0.79 with probability of 0.031). Calves from 

herds where any animals were purchased in the month prior to or during calving were at 

higher risk of death (ܴܪ = 1.33 with probability parallel to P-value of 0.020).  

4.3.2.3. Non-significant effects 

The variables cow breed type and cow body condition at pregnancy test had no effect on the 

hazard of calf mortality (i.e., these predictors did not contribute substantially to the model 

DIC) and were not included in the multivariable model. The HRs for continental and cross 

breeds relative to British types of breed after accounting for other risk factors were estimated, 

respectively, to be 1.03 [95% CI; 0.85, 1.25] and 1.13 [95% CI; 0.81, 1.58], whereas the HRs 

for cow body condition score at pregnancy test and pre-calving (< 5 vs. ≥ 5) were 1.05 [95% 

CI; 0.82, 1.33] and 0.99 [95% CI; 0.72, 1.36], respectively.  

4.5. Simulation studies 

Two simulation studies were conducted to evaluate the performance of the cross-classified 

and multiple membership Cox modeling approach discussed above. In simulation study I, the 

data structure and the magnitudes of variation at different levels were similar to the calf 

mortality dataset. In simulation study II, a more pronounced multiple membership data 
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structure and larger variations at different levels were considered. Both simulation studies 

used 200 simulated datasets. 

In order to reduce the computing time of the simulations, the simulation structures were 

based on a subset of the real data after eliminating randomly 75% of non-cases. This 

reduction increased the prevalence of calf mortality to 14%. The reduced dataset had 6519 

observations and the same hierarchical structure as the full data. Analysis of the reduced data 

showed only minor changes in model estimates compared with the results of the full data 

(results not shown).   

4.5.1. Data structure and model parameters    

Similar to the reduced real dataset, a total of 6519 animals from 174 different herds (from 3 

to 111 animals per herd) were considered. In simulation study I, the data structure and 

multiple membership weights were the same as in the real data. In simulation study II, herds 

were considered to be registered in 1, 2 and 3 veterinary clinics with proportions of 52%, 

25% and 23%, respectively. One dichotomous animal-level predictor was used in the two 

simulation models. The true values of model parameters and other features for each 

simulation study are presented in Table 4.4. 

4.5.2. Simulating data    

Using the technique of Bender et al. (2005), 200 simulated datasets for each simulation study 

were generated from model (4.3) using R software version 2.15.3. In each dataset, the 

random herds, random veterinary clinics, and random ecological regions were generated 

independently from a normal distribution with mean of zero and variances ߪ଴ଶ, ߪଵଶ, and ߪଶଶ, 

respectively. The weights in simulation study II were assigned as follows: if a herd was 

serviced by 3 veterinary clinics, weights for the first two clinics were randomly generated 
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from a uniform distribution ܷ(0,1) 2⁄  and the complement of the sum of these weights was 

assigned as weight for the third clinic; if a herd was serviced by 2 clinics the weight of the 

first clinic was randomly generated from ܷ(0,1) and the complement of that weight was the 

weight for the second clinic and 0 otherwise; and for herds that visited by one clinic a weight 

of 1 was assigned to that clinic and 0 otherwise. The fixed effect predictor was generated in 

each simulation from a Bernoulli distribution with a probability of 0.5. 

The mortality time ௜ܶ for animal ݅ was randomly generated from a Weibull distribution with 

shape parameter ܲ = 0.4 and scale parameter equal to the intensity ߣ௜(ݐ|. ) defined in (4.3). 

The time at risk ܥ௜ was randomly generated from a normal distribution with mean ߤ = 105 

and standard deviation ߪ = 32, censored to the interval (0.5, 180). Censoring occurred when 

the mortality time ௜ܶ  was longer than the time at risk ܥ௜, i.e. ௜ܻ = min ( ௜ܶ,ܥ௜) and ߜ௜ =

)ܫ ௜ܶ,ܥ௜). These simulation settings led to approximately 86% censoring animals which was 

equivalent to the censoring rate in the reduced version of the calf mortality data.  

Finally, to reduce the computing time in the simulations, the MCMC sampler was run for 

55,000 iterations in each simulated model of which the initial 5,000 iterations were discarded 

as burn-in. The same MCMC diagnostics as described in Section 2.2.3 were carried out for 

selected simulated datasets and all were satisfactory. 

4.5.3. Calculating summary statistics    

The posterior mean, median, standard deviation, and 95% CI end points for each simulated 

dataset were extracted, and averages and empirical standard deviations were computed across 

the simulated datasets. Absolute relative bias was computed as the absolute value of the 

difference between the averaged estimate and the true value divided by the true value, and the 

mean squared error (MSE) was computed as the average of the squared differences between 

the estimated values and the true value over the simulated datasets.  
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4.5.4. Simulation results  

The results of the two simulation studies are presented in Table 4.5. In simulation study I, the 

fixed effect ߚ and the variance of random herd effect ߪ଴ଶ were estimated well with relative 

biases not exceeding 2%. Further, the “model-based standard errors” (posterior sd) of ߚ was 

on average very close to its empirical standard deviation, and the probability converges of ߚ 

and ߪ଴ଶ were somewhat over the nominal. For ߪଵଶ, and ߪଶଶ, the average posterior medians were 

very close to the true values, but the average posterior means were larger than the true values, 

with substantial relative biases of 48% and 35%, respectively. The ߪଵଶ estimate showed 

strongly CI over-coverage, whereas the estimate of ߪଶଶ had CI under-coverage. The mean 

squared errors were similar to the posterior-mean and posterior-median estimates of the ߚ and 

 ଶଶ thanߪ ଵଶ andߪ ଴ଶ, and smaller mean squared error for the posterior-median estimates of theߪ

for the posterior-mean estimates. 

In simulation study II, the ߪ ,ߚ଴ଶ and ߪଵଶ were estimated very well based on both the posterior 

means and posterior medians with relative biases of at most 1.1%, 3.4% and 4%. For ߪଶଶ, 

estimation based on the posterior medians performed better than for posterior means. The CI 

converges of all model estimates were good except for ߪଵଶ where CI under-coverage was 

observed. 

4.6. Discussion  

4.6.1. Calf mortality data  

The calf mortality rate reported for these herds is slightly higher than in most previous 

Canadian studies with exception of one from Quebec (McDermott et al., 1991; Dutil et al., 

1999; Waldner, 2001). However, our analysis included all losses from 1 hour after birth, 

rather than from 24 hours of age. When the calf losses after 24 hours were summarized for 
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the present study, the average risk of mortality was 3.1%. In an on-farm study of 7 Alberta 

herds over a 12-year period, Waldner (2001) and Waldner et al. (2001) reported median risks 

of calf mortality between 24 hours of age and weaning of 3.3% and 3.5%, similar to earlier 

reports from Ontario of 3.3% for first-calf heifers and 2.6% for mature cows (McDermott et 

al., 1991). The age distribution of calf deaths was also similar to what was expected based on 

other reports. The 1986 to 1987 survey by Alberta Agriculture found that 52% of deaths of 

calves occurred in the first 14 days compared to 55% in the current study (Mathison, 1993). 

The mortality rates for calves that died between one hour and 3 days of age (1.1%) and in the 

first 30 days (2.6%) were slightly higher than the 0.7% and 1.6% reported from a 2010 mail 

survey of 303 herds from western Canada (Waldner et al., 2013). 

The large observational data set and time-to-event analyses provided us with a unique 

opportunity for an intensive assessment of risk factors for calf mortality reported in previous 

papers, as well as an opportunity to explore new environmental and herd management 

variables. For example, an association between twin birth and average calf mortality from 

12hr to 45 days was reported in a previous study of 10 herds in Colorado (Wittum et al., 

1994). Gregory et al. (1996) also reported higher survival rates for singles as compared to 

twins from one research herd at 72 hours and 150 days when there was no requirement for 

assistance. Our study found that while the death rate is highest for twins in the perinatal 

period, there is a significant increased risk of loss in privately owned commercial calves up to 

22 days of age after accounting for other risk factors.   

The increased risk of mortality for male calves remained constant throughout the observation 

period similar to what was observed using unconditional analysis by Patterson et al. (1987). 

Azzam et al. (1993) also reported an increase in mortality for bull calves after accounting for 

dystocia and the relative calf size. The paper is different in that the authors used data from a 

research centre and included all calves that were alive at the start of calving. 
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The higher mortality rate for calves classified as having a hard pull or malpresentation at 

birth did not decrease during the study period. In contrast, the increased death rate for calves 

born by caesarean section was only significant for day 1 and was only elevated for the first 

week. While other studies have identified dystocia as a risk factor for perinatal calf mortality 

(Wittum et al., 1994; Ganaba et al., 1995), only one study in a single research herd 

specifically explored the longer term effects on calf survival using individual data (Gregory 

et al., 1996). Dutil et al. (1999) reported a weak association between herd dystocia rates and 

preweaning mortality in 148 Quebec herds, but did not account for confounding by individual 

factors such as parity. 

After accounting for all other known risk factors, the only important cow attribute was age. 

Previous studies have identified increased postnatal calf loss from heifers in addition to the 

well-established increased risk of loss in heifers’ calves that died at or very near birth 

(Wittum et al., 1994). Our study is unique in that higher risks of postnatal calf mortality were 

also identified for cows having their second calf and cows ≥ 10 years old. The increased risk 

of postnatal calf mortality for each cow age group was consistent throughout the follow up 

period. Others looking at cow age either had a smaller sample size and did not see a 

difference (Wittum et al., 1994) or looked at all mature cows together and did not 

differentiate older cows (Azzam et al., 1993). 

After accounting for cow age and assistance at calving there was no difference in calf 

survival across the range of observed body condition scores. While others have documented 

an association between poor nutrition in the last trimester and calf mortality due to scours 

(Corah et al., 1975), < 5% of cows in this cohort were thin at calving, thus providing very 

little power to examine this hypothesis.   
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While a number of authors have suggested that as the calving grounds become more 

contaminated the risks of calf morbidity and mortality increase, there have been no previous 

studies that test this hypothesis across a large number of herds. Schumann et al. (1990) 

reported that as the proportion of the nursing area that was poorly drained, wet and muddy 

increased the odds of mortality from diarrhea also increased. In this study, we looked at the 

contextual effect of when the calf was born in relation to the other calves in the herd. The 

idea was simply that calves that are born later in their cohort are potentially exposed to a 

greater build-up of pathogens. In this study, there was a substantial increase in the mortality 

rate for calves born after the half-way point in each herd. Clement et al. (1995) had 

previously documented increased odds of developing diarrhea in calves born after the median 

calving date. They hypothesized that the numbers of diarrhea-causing pathogens increased 

during the calving season. 

While some previous studies have used postmortem findings (Bellows et al., 1987) and 

owner reported cause of loss to document the importance of calf deaths due to cold weather 

(Wittum et al., 1993), only one other study has actually looked at meteorological conditions 

(Azzam et al., 1993). This study like ours found an increased calf mortality rate for calves 

born under cold conditions. Because the other study was limited to a single research herd, 

they also had access to local precipitation data which were not consistently available in the 

present analysis. Azzam et al. (1993) used logistic regression to examine effect of 

temperature on the day of birth on total risk of calf loss from birth to weaning. However, this 

study did not account for repeated measures in the analysis or consider whether the effect of 

meteorological conditions at birth changed with calf age. We used the average temperature 

for the first week after birth and demonstrated that for calves born in very cold weather 

(< −10 °C), the associated hazard extended through the first month of life. 
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Because of the relatively large number of herds compared to previous studies we were also 

able to evaluate a number of common management and biosecurity practices. In our study, 

herd owners that moved calves out of the calving area and to a nursery pasture within 48 

hours had lower calf losses. This practice removes cow-calf pairs from the contaminated 

environment and prevents crowding in the calving area by dispersing newborn calves soon 

after birth (Radostits and Acres, 1980). The use of calf shelters which are not accessible to 

cows and heifers (Radostits and Acres, 1980; Olson, 1986) was also associated with 

decreased calf mortality. Schumann et al. (1990) reported that increasing the nursery shelter 

area helped to protect against calf diarrhea, but did not differentiate between shelters 

accessible to both cows and calves and shelters accessible to just calves.   

Finally, herds where any cattle were purchased in the month before or during calving had 

higher calf mortality rates than those that did not. Schumann et al. (1990) reported a similar 

unconditional association between replacing dead calves with purchased calves less than one 

month of age and higher odds of calf mortality. We did not see an increased rate of loss 

specifically associated with the purchase of foster calves; however, this practice was 

uncommon in the current study. 

The analysis of calf mortality data demonstrated a larger variation between herds than 

between both veterinary clinics and ecological regions, and a clear improvement in model fit 

after accounting for the variation between veterinary clinics and ecological regions.  

4.6.2. Simulations  

In the setting similar to the real data (study I), the results indicated that the proposed model 

performed well in estimating most of the model parameters if posterior medians were used 

for the inference and overestimated the between-clinic and between-ecoregion variances 
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when the inference was based on posterior means. The simulation study therefore supported 

our findings of relatively small variance components for veterinary clinics and regions in the 

real data. In addition, simulation study II showed that the estimation of between-clinic 

variance was improved in a more pronounced multiple membership structure and with larger 

variance components. Both simulation studies demonstrated difficulties with estimation of 

the between-ecoregion variance and its standard error, and this can probably be attributed to 

the small number of ecologic regions. 

We finally note that the performance of the proposed model and estimation can depend on 

many parameters, for instance, the censoring rate, the shape of baseline hazard, the number of 

clusters, the cluster size, and the magnitude of heterogeneity. A detailed exploration of how 

such parameters might affect performance is beyond the scope of the present study, but could 

be a topic for future investigation. 
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Table 4.1. Descriptive statistics for animal-level predictors in the calf mortality dataset (23,409 calves from 174 

herds) including the proportion of calves and the probability of calf mortality for each categorical variable, as 

well as the mean and standard deviation (sd) for continuous variables.  

 
Predictor 

 Proportion Mortality 
probability 

Calf gender                (female) 0.48 0.035 
 (male) 0.52 0.041 
Twin                         (single) 0.96 0.037 
                           (twin) 0.04 0.069 
Cow age at calving                           (≤ 2 years old) 0.18 0.049 
                                          (3 years old) 0.17 0.046 
                                          (4 years old) 0.12 0.036 
                                          (5 to 10 years old) 0.45 0.032 
                                          (>10 years old) 

 
0.08 0.044 

Cow breed type             (British) 0.43 0.038 
                          (continental) 0.49 0.037 
                                    (cross) 0.08 0.046 
Calving assistance  (unassisted) 0.91 0.037 
 (easy pull) 0.05 0.040 
 (hard pull) 0.02 0.102 
 (malpresentation) 0.01 0.071 
 (surgery) 0.01 0.067 
Cow body condition at pregnancy test   (BCS<5) 0.09 0.046 
 (BCS≥5) 0.91 0.038 
Cow pre-calving body condition score  (BCS<5) 0.04 0.047 
 (BCS≥5) 0.96 0.038 
Cow problems following calving a  (yes) 0.01 0.052 
 (no) 0.99 0.038 
 
Predictor 

 Mean (sd) 
(cases) 

Mean (sd) 
(non-cases) 

Average temperature (Celsius) for the first 7 days post calving                                             -7.353 (8.198) -6.362 (8.483) 
Within-herd calving proportion at calving                                 0.516 (0.291) 0.514 (0.286) 

a Cow problems including retained placentas, uterine prolapses, and metritis. 
b Computed as a number of new calves at a particular calving day divided by the total number of calves in a 

herd.  
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Table 4.2. Descriptive statistics for herd-level predictors in the calf mortality dataset (174 herds) including the 

proportion of herds and mortality probability for each categorical variable.  

 
Predictor 

 Proportion Average of 
mortalitya 

Cows due to calve and cows that have calved are together                            (yes) 0.37 0.037 
 (no) 0.63 0.039 
Heifers due to calve before rest of the cow herd                             (yes) 0.29 0.042 
 (no) 0.71 0.037 
Provide shelters for calves separate from cows and heifers                        (yes) 0.79 0.038 
 (no) 0.21 0.041 
Move cow-calf pairs to a nursery pasture within 48 hrs of birth                         (yes) 0.70 0.038 
 (no) 0.30 0.040 
Buy foster calves (Holstein bull calves)                           (yes) 0.10 0.038 
 (no) 0.90 0.038 
Were any animals purchased in the month prior to or during calving                                                             (yes) 0.76 0.039 
 (no) 0.24 0.035 
Cows vaccinated for E. coli prior to calving                                                       (yes) 0.49 0.040 
 (no) 0.51 0.037 
Heifers vaccinated for E. coli prior to calving                                                        (yes) 0.53 0.038 
 (no) 0.47 0.038 
Cows vaccinated for rota/corona virus prior to calving                                                                  (yes) 0.50 0.038 
 (no) 0.50 0.039 
Heifers vaccinated for rota/corona virus prior to calving                                                                     (yes) 0.53 0.037 
 (no) 0.47 0.040 

aAverage of within herd mortality.  
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Table 4.3. Parameter estimates for the analysis of calf mortality dataset: the mean, median, and standard 

deviation (sd) of posterior distribution from a standard Cox model (model 1), a Cox model with random herd 

effect (model 2), and a CMM Cox model (model 3). 

 Model 1  Model 2  Model 3 
Predictor/Parametera Mean  Median  sd  Mean Median   sd  Mean  Median  sd 
Twin                                            

Twin vs. single 0.145  0.149 0.199  0.205  0.208 0.197  0.213 0.218 0.202 
Twin × Tb -0.338  -0.338 0.077  -0.331  -0.331 0.075  -0.331 -0.330 0.077 

Calf gender                                
Male vs. female 0.154  0.154 0.068  0.151  0.152 0.068  0.150 0.150 0.068 

Calving assistance                 
Easy pull vs. unassisted -0.105  -0.103 0.150  -0.050  -0.048 0.151  -0.049 -0.046 0.150 
Hard pull vs. unassisted 0.872  0.877 0.169  0.921  0.924 0.173  0.917 0.920 0.174 

     Malpresentation vs. unassisted 0.532  0.541 0.253  0.535  0.543 0.251  0.537  0.546 0.254 
Surgery vs. unassisted -1.304  -1.202 0.980  -1.243  -1.131 0.976  -1.198  -1.090 0.960 

Surgery × T -0.737  -0.720 0.300  -0.743  -0.725 0.298  -0.739  -0.721 0.294 
Cow age                                       

 2years old vs. 5-10 years old 0.401 0.402 0.095  0.382 0.381 0.096  0.384  0.384 0.096 
3 years old vs. 5-10 years old 0.340 0.341 0.095  0.342 0.342 0.095  0.349 0.350 0.096 
4 years old vs. 5-10 years old 0.099 0.100 0.113  0.121 0.121 0.112  0.124 0.126 0.113 
>10 years vs. 5-10 years old 0.332 0.333 0.126  0.308 0.309 0.127  0.305 0.307 0.127 

Within-herd calving prop.            
Linear 0.631  0.631 0.128  0.759  0.758 0.137  0.767 0.766 0.136 

Quadratic 1.041  1.040 0.467  1.233  1.232 0.473  1.243  1.243 0.474 
Mean 7-day temperature c (°C) -0.030  -0.030 0.006  -0.090 -0.090 0.006  -0.100  -0.100 0.006 

Mean 7-day temperature c × T 0.100  0.100 0.003  0.110  0.110 0.003  0.110  0.110 0.003 
Provide shelters d                                             

Yes vs. no -0.309  -0.310 0.083  -0.325 -0.325 0.144  -0.240 -0.240 0.145 
Move calf pairs e                                            

Yes vs. no -0.306  -0.307 0.074  -0.244 -0.245 0.125  -0.237 -0.237 0.126 
Animals purchased f                                              

Yes vs. no 0.258  0.257 0.085  0.243 0.242 0.145  0.285 0.283 0.141 
            
Herd variance     0.334  0.327 0.070  0.272 0.267 0.062 
Veterinary clinic variance         0.024 0.012 0.030 
Ecological region variance         0.099 0.073 0.100 
DIC  14724.2    14566.1    14558.5  
a Coefficients for the 4th order polynomial of log(time) represents the baseline hazard not shown. 
b T is a standardized log time (log time-mean/sd) or (ܶ = [log(ݏݕܽ݀ ݊݅ ݁݉݅ݐ) − 3.604] 1.062⁄ ). 
c Coefficients ×10. 
d Provide shelters for calves separate from cows and heifers. 
e Move cow-calf pairs to a nursery pasture within 48 hrs of birth. 
f Animal purchased in the month prior to or during calving.  
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                          Table 4.4. Model parameters and proportions of herds in a multiple membership with  

                          veterinary clinics used for the two simulation studies. 

Feature  Simulation study I Simulation study II 
Fixed effect (ߚ) 1.000 0.150 
Herd variance (ߪ଴ଶ) 0.300 0.500 
Veterinary clinic variance (ߪଵଶ) 0.025 0.500 
Ecological region variance (ߪଶଶ) 0.100 0.500 
Baseline hazard parameters* (ߣ,݌଴) (0.4, 0.019) (0.4, 0.008) 
Herds in a multiple membership 8% 52% 

                          *Weibull distribution: ݌ = shape, ߣ଴ = scale.   
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Table 4.5. Simulation study results: average of the estimates (posterior mean and posterior median) with 

empirical standard deviations (Esd), 95% end point confidence intervals (95% CI), and of posterior standard 

deviation (sd) over 200 simulated data sets, as well as probability coverage, absolute relative bias and mean 

squared error (MSE) for posterior mean-based and median-based estimates.  

Model True Estimate 95% CI Prob. Abs. relative bias  MSE (× ૚૙૙) 
param. value mean (Esd) median (Esd) sd end points cover. mean median  mean median 
Simulation study I          

 0.371 0.370  020. 020. 97%  (284. ,022.) 067. (061.) 153. (061.) 153. 0.150 ߚ
 ଴ଶ 0.300 .299 (.064) .294 (.063) .066 (.187, .443)  97% .003 .020  0.407 0.403ߪ
 ଵଶ 0.025 .037 (.032) .027 (.031) .036 (.002, .131)  99% .480 .080  0.115 0.094ߪ
 ଶଶ 0.100 .135 (.099) .100 (.080) .127 (.021, .454)  92% .350 .000  1.088 0.641ߪ

Simulation study II          
 0.561 0.562  011. 010. 95%  (1.137 ,844.) 075. (074.) 989. (074.) 990. 1.000 ߚ
 ଴ଶ 0.500 .517 (.120) .504 (.118) .121 (.317, .489)  95% .034 .008  1.453 1.381ߪ
 ଵଶ 0.500 .509 (.216) .480 (.210) .205 (.194, .989)  91% .018 .040  4.669 4.411ߪ
 ଶଶ 0.500 .645 (.362) .510 (.295) .516 (.169, 1.930)  95% .290 .020  15.17 8.656ߪ
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Figure 4.1. Calf mortality data structure: calves (level 1) nested in herds (level 2), herds in a multiple 

membership to veterinary clinics and cross-classified by ecological regions and veterinary clinics (level 3).  
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5.1. Abstract 

Mixed-effects Cox models can be fit as Poisson generalized linear mixed models (GLMMs) 

after transforming time-to-event data to the Poisson GLMM framework. Estimation in these 

approximating models is based on Poisson maximum likelihood theory, assuming a specific 

distribution for random effects. However, the validity of the random-effects distribution 

assumption is often difficult to verify. In this study we assess, through simulations, the 

robustness of Poisson maximum likelihood estimation for a Cox model with normal random 

effects under misspecification of the random effects distribution. The impact of misspecifying 

the distribution of random effects is studied in shared frailty, random slope, and nested frailty 

Cox models. Factors such as the magnitude of the random effect variances, censoring rate, 

group size, and number of groups were accounted for in the assessment. In the simulations, 

the Poisson modeling approach produced robust estimates under misspecification of the 

random-effects distribution for fixed effects at different hierarchical levels. Non-robust 

estimation of variance components was observed only when the magnitude of heterogeneity, 

event rate, number of groups, and group size was large.  

5.2. Introduction 

Data in medical research are very often clustered in groups, such as health centres in a human 

medicine or farms in veterinary medicine studies. When the outcome of interest is time-to-

event, proportional hazards models with random effects, also referred to as frailty models 

(Therneau and Grambsch, 2000; Duchateau and Janssen, 2008; Wienke, 2010; Hanagal, 

2011), are the most common choice for modeling these type of data because these models 

account for the heterogeneity caused by unmeasured factors due to clustering. In frailty 

models, the standard assumption for the random effects (on the natural log scale) is that they 

follow a certain probability distribution, and the popular distribution choices are zero-mean 
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log-gamma and normal distributions. Other choices for frailty distributions, such as the 

inverse Gaussian, positive stable (Hougaard, 1995), power variance function (Aalen, 1988), 

and compound Poisson (Aalen, 1992) have been used in the literature. 

Because the random effects are unobserved entities, it is important to study the robustness of 

the estimation approach against misspecification of the random effects (frailty) distribution. 

Previous work has been carried out to assess the robustness properties of estimators when the 

random effects distribution is misspecified. For instance, Sastry (1997) used the EM 

algorithm for gamma nested frailty model estimation, and found that the choice of frailty 

distribution only mattered when the frailty variance was large. Ferreira and Garcia (2001) 

showed that a gamma shared frailty model underestimated the between-group variance when 

the true model was a log-normal frailty model; they used a partial marginal likelihood 

(Nielsen et al., 1992) with EM algorithm for estimation. Using a penalized partial likelihood, 

Glidden and Vittinghoff (2004) examined the performance of the gamma shared frailty model 

with misspecified frailty density. For inverse Gaussian and positive stable frailty 

distributions, they found that the misspecified model produced similar estimates to those 

based on the correct model even for a small number of groups but with large group sizes. 

Further, based on a gamma shared frailty model and penalized partial likelihood estimation, 

Duchateau and Janssen (2008) pointed out that the robustness of variance component 

estimators is an issue when the frailty variance is large. Cortiñas et al. (2007), on the other 

hand, tested the estimators of the REML estimation method (McGilchrist and Aisbett, 1991), 

the penalized partial likelihood (Ripatti and Palmgren, 2000), the Bayesian approach 

(Legrand et al., 2005), and the EM algorithm with Laplace approximation (Cortiñas and 

Burzykowski, 2005) under misspecification of the random-effects distribution based on a Cox 

model with independent random clusters and random slope effects. They found that the bias 
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almost doubled under model misspecification relative to a model with correctly specified 

random-effects distribution. 

The primary aim of this study was to examine the Poisson maximum likelihood estimation 

approach (Ma et al., 2003; Feng et al., 2005) for estimating Cox models with normal random 

effects against misspecification of the random effects density. Simulations based on the three 

different models: a Cox model with random group effect, a Cox model with random group 

effect and random coefficient, and a Cox model with two nested random effects were 

performed where the distribution(s) of the random effects were known. Factors such as 

magnitude of the variability of random effects, censoring rate, predictor type, group size and 

number of groups were controlled. A secondary aim of the study was to add information 

about the performance of the Poisson modeling approach for a correctly specified model. 

5.3. Mixed-effects Cox models  

5.3.1. Cox model with group random effect 

In the following, we consider time-to-event data from a total of ܰ individuals clustered by ܩ 

groups, e.g. health centers or farms. For individual ݆ (݆ = 1, … ,݊௜) from group ݅ (݅ =

1, … ௜௝ܥ let ௜ܶ௝ and ,(ܩ,  denote the event and right censoring times, respectively, where ܥ௜௝  is 

independent of ௜ܶ௝ . The observed times ௜ܻ௝  are ௜ܻ௝ = min ( ௜ܶ௝,ܥ௜௝), and ߜ௜௝ =  ൛்೔ೕஸ஼೔ೕൟ is theܫ

event indicator. For each individual, the within-group ݔଵ௜௝  and the between-group ݔଶ௜ 

predictors are observed. The conditional hazard function for a Cox model with group random 

effect is given by  

(௜ܾ|ݐ)௜௝ߣ                                             = (ݐ)଴ߣ exp൫ܾ௜ + ଵ௜௝ݔଵߚ + ଶ௜൯ݔଶߚ                                     (5.1) 
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where ߣ଴(ݐ) is a baseline hazard, ߚଵ and ߚଶ are fixed effects coefficients corresponding to the 

predictors ݔଵ௜௝  and ݔଶ௜, and ௜ܾ is the random effect associated with group ݅. Alternatively, 

model (5.1) can be rewritten as 

(௜ݑ|ݐ)௜௝ߣ                                                 = ଵ௜௝ݔଵߚ௜exp൫ݑ(ݐ)଴ߣ + ଶ௜൯ݔଶߚ                                      (5.2) 

where ݑ௜ = ݁௕೔  is a frailty term. Model (5.2) is known as a shared frailty model.  

5.3.2. Cox model with random group and random slope effects 

In many instances covariate effects may vary between groups or clusters. For example, the 

effect of treatment may change over trials in a meta-analysis of multicenter studies 

(Duchateau and Janssen, 2008; Rondeau et al., 2008) or across farms in epidemiological 

investigations of veterinary medicine (Stryhn and Christensen, 2013). To account for 

heterogeneity in the baseline hazard and predictor effects between groups, a Cox model with 

two random effects at the group level can be applied. Using the notation of Section 5.3.1, the 

hazard function for a Cox model with random intercept ܾ௜଴ and random coefficient ܾ௜ଵ (for 

the predictor ଵܺ) takes the form,  

௜଴ܾ|ݐ)௜௝ߣ                               , ௜ܾଵ) = (ݐ)଴ߣ exp൫ ௜ܾ଴ + ܾ௜ଵݔଵ௜௝+ߚଵݔଵ௜௝ + ଶ௜൯ݔଶߚ                        (5.3) 

where ߣ଴(ݐ) is the baseline hazard function, and ߚଵ and ߚଶ are regression parameters 

associated with the predictors ଵܺ and ܺଶ.  

5.3.3. Cox model with nested random effects 

When survival data are clustered at several hierarchical levels (e.g. in veterinary medicine, 

animals from different farms and these farms located in different geographic regions), a Cox 

model with nested random effects (nested frailties) is used to estimate possible variation at 

the different hierarchical levels (Rondeau et al., 2006; Duchateau and Janssen, 2008). 
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Assume we have ܩ groups and there are ݊௜ subgroups of individuals within the ݅௧௛ group. 

With ݔଵ௜௝௞  ଷ௜ be the observed explanatory variables at the different hierarchicalݔ ଶ௜௝ andݔ ,

levels, the hazard function for a Cox model with nested random effects is 

หݐ௜௝௞൫ߣ                      ௜ܾ , ܾ௜௝൯ = (ݐ)଴ߣ exp൫ ௜ܾ + ܾ௜௝ + ଵ௜௝௞ݔଵߚ + ଶ௜௝ݔଶߚ +  ଷ௜൯                    (5.4)ݔଷߚ

where ߣ଴(ݐ) is the baseline hazard function, ଵܺ ,ܺଶ and ܺଷ are the explanatory variables with 

corresponding regression parameters ߚଵ, ߚଶ, and ߚଷ, respectively. The nested terms ௜ܾ  and ௜ܾ௝  

are the ݅௧௛  group and the ݆݅௧௛  subgroup random effects, respectively.  

In all of the aforementioned models, the random effects ܾ (or the frailties ݑ) are assumed to 

follow a certain probability distribution. 

5.4. Frailty and random effect distributions  

Many probability distributions for random effects (or frailty) have been suggested in the 

literature. Most of the existing arguments related to the choice of frailty distribution are 

mathematically based. In practice, the widely used distributions are a zero-mean normal 

distribution for random effects (log-normal with mean 1 for frailty) and a gamma distribution 

with mean 1 for frailty (zero-mean log-gamma distribution for random effects). We focus on 

the choice of normal distribution for random effects, since it is implemented in popular 

statistical software packages such as Stata, SAS and R. Other distributions such as inverse 

Gaussian, positive stable, power variance function, and compound Poisson have been applied 

(Duchateau and Janssen, 2008). 

To illustrate the relation between heterogeneity parameters in the two common choices of 

random effects and frailty distributions, note that when the random effect ܾ = logݑ follows a 

normal distribution with zero mean and variance of ߪଶ, the frailty ݑ = ݁௕ follows a log-

normal distribution with mean of exp (ߪଶ 2)⁄  and variance of exp(ߪଶ) (exp(ߪଶ) − 1). 
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Similarly, when the frailty ݑ has a gamma distribution with equal shape ߥ and inverse scale ߟ 

of 1 ⁄ߠ  (corresponding to frailty variance of ߠ), the random effect ܾ has a log-gamma 

distribution with mean of Ψ(1 ⁄ߠ ) + log (ߠ) and variance of Ψᇱ(1 ⁄ߠ ), where Ψ(. ) and Ψᇱ(. ) 

are the digamma and trigamma functions, respectively. 

In a Cox model with correlated random group and random slope effects, the random effects 

ܾ௜଴ and ܾ௜ଵ are usually assumed to follow a zero-mean normal distribution since the normal 

distribution is more flexible than the gamma (or log-gamma) distribution for creating 

correlation. When the random effects ௜ܾ଴ and ௜ܾଵ follow the bivariate normal distribution 

ଵଶߪ,଴ଶߪ,0,0)ܰ  ௜ଵ follow a bivariate log-normal distributionݑ ௜଴ andݑ ଴ଵ), the frailtiesߪ,

଴ߤ)ܰܮ , ଵߤ ଴ߠ, , ଵߠ ௣ߤ  ଴ଵ) withߠ, = exp (ߪ௣ଶ 2)⁄ ௣ߠ , = exp൫ߪ௣ଶ൯(exp൫ߪ௣ଶ൯ − 1) ݌, = 0,1 and 

covariance ߠ଴ଵ = exp [(ߪ଴ଶ + (ଵଶߪ 2⁄ ][exp(σ଴ଵ) − 1]. The latter formula follows directly 

from the moment-generating function of a bivariate normal distribution. 

This study focuses on two non-normal distributions for random effects. First, a log-gamma 

distribution for random effects (equivalent to gamma frailties) since the log-gamma is a non-

symmetrical, left-skewed distribution (Figure 5.1). The density function of a variable ܾ 

following a log-gamma distribution with shape parameter ߥ and inverse scale ߟ is given by 

                                     ஻݂(ܾ) =
ఔߟ

Γ(ߥ) exp(ܾߥ − ߟ exp(ܾ)) ;  −∞ < ܾ < ∞                              (5.5) 

Second, a Laplace distribution for random effects was chosen because of its higher peak and 

heavier tails compared with the normal distribution (Figure 5.2), as well as its flexibility for 

generating correlation between random effects in multivariate random effects models. The 

density function of a Laplace distribution with mean zero and scale parameter ߬ is given by 

                                                  ஻݂(ܾ) =
1

2߬ expቆ
|ܾ|
߬ ቇ  ;  −∞ < ܾ < ∞                                        (5.6) 
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5.5. Estimation approach  

One approach to estimate Cox proportional hazards models is to transform the time-to-event 

data to the more flexible GLM framework using the equivalence of a Cox proportional 

hazards model with a Poisson regression model. This equivalence can be carried over to the 

Cox proportional hazards model with random effects (Ma et al., 2003; Feng et al., 2005; Feng 

et al., 2009; Rabe-Hesketh and Skrondal, 2012). The existence of statistical theory and 

software for GLMMs provides many opportunities to apply random-effects Cox models to 

complex survival data and allows for sophisticated variance structures. By using, for 

example, the implementation in Stata for Poisson GLMMs, adaptive Gaussian quadrature can 

be applied for accurate estimation.  

To fit a Cox model with random effects as a Poisson GLMM model, the duration of follow-

up has to be divided into increments, by splitting the data at event times, to allow for a 

nonparametric modeling approach to the baseline hazard. As pointed out in Feng et al. 

(2005), under a non-informative and independent censoring assumption, the conditional 

likelihood of a random-effects Cox model is proportional to the conditional likelihood of a 

random-effects Poisson model with the log of the interval length at risk as an offset term. The 

baseline hazard can be fit as a set of dummy variables representing the individual time points 

or as a smooth function of time by adding polynomial terms of time to the model until an 

additional term does not substantially improve the model fit.  

5.6. Simulation studies  

We study the robustness of the Poisson modeling approach for estimating Cox models with 

normally distributed random effects against misspecification of the random-effects (frailty) 

distribution based on different random-effects distributions. This aims to examine the 

consequences of assuming normality of random effects to distributions that are clearly non-
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normal. For each simulation model, we compare the results obtained from a model with 

misspecified random-effects distribution to those obtained from a model with a correctly 

specified random-effects distribution. The robustness of the estimates is investigated for 

variable numbers and sizes of groups and subgroups. Further, the impact of the amount of 

censoring and the magnitude of the variance components are studied.  

5.6.1. Description of the simulation studies  

Three simulation studies were performed to study the impact of misspecifying the random 

effects distribution on parameter estimates obtained using the Poisson modeling approach. 

The structure of simulated data was built around the calf mortality data described in Waldner 

(2008) where calves clustered by farms (subgroups) and these farms was located in different 

ecological regions (groups). During a study period of 180 days, calves were followed from 

birth until death or censoring. Analysis of calf mortality data was reported in Chapter 4. In 

our simulations, we varied the number of groups and subgroups and used different sample 

sizes per group and subgroup. For simplicity, balanced groups and subgroups were assumed 

in all the simulation studies. Further, a Weibull baseline hazard with shape parameter ߙ and 

scale γ was used in all simulations.  

5.6.1.1. Simulation study I 

Three different simulation scenarios were considered in this initial study. In each scenario, 

data were generated from model (5.1) assuming zero-mean normal, log-gamma, or Laplace 

distributions for the random effects ܾ௜ , ݅ = 1, …  In each scenario, either 20 and 70 groups .ܩ,

with 10, 40, or 100 individuals per group were used. Because the magnitudes of 

heterogeneity and censoring rate are often large in animal-health data from observational 

studies, two degrees of censoring, for simplicity termed heavy (around 85%) and moderate 

(around 50%), and two different levels of between-group variance, ߪଶ = 0.2 and ߪଶ = 0.5, 
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were chosen to mirror commonly encountered situations. The true values of model 

parameters, including the fixed effects and variance components and the Weibull baseline 

hazard parameters for each scenario, are shown in Table 5.1. 

5.6.1.2. Simulation study II 

We considered two scenarios for this simulation study. In the two scenarios, data were 

simulated from model (5.3). The random effects ௜ܾ଴ and ܾ௜ଵ, ݅ = 1, …  were correlated and ,ܩ,

assumed to follow a zero-mean bivariate normal distribution in the first scenario, and a 

bivariate Laplace distribution with zero means in the second scenario. The same number of 

groups and individuals per group as in simulation study I were used. Similar to simulation 

study I, two different sizes of the variance components were studied in high and moderate 

censoring rate settings. The model parameters for each simulation setting were set as 

described in Table 5.1. 

5.6.1.3. Simulation study III 

Data were generated from model (5.4) in two different scenarios. In the first, the nested 

random effects ܾ௜ and ܾ௜௝ , ݅ = 1, … ݆ and ܩ, = 1, … ,݊௜, were assumed to follow independent 

normal distributions with means of zero. In the second scenario, the random effects were 

assumed to have independent log-gamma distributions with zero means. In the two 

simulation scenarios, 15 groups were used with 2 or 5 subgroups. The sample sizes were 10, 

40, or 100 individuals per subgroup. As for simulation studies I and II, two levels of variance 

components at both the subgroup and group levels were considered with the largest variance 

for the subgroup level as often found in the real data. Further, two amounts of censoring were 

used for each scenario, high and moderate censoring. Table 5.1 describes model parameter 

settings for the two scenarios of the simulations.   
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5.6.2. Simulation of data  

A total of 1000 datasets were generated using R software in each setting of simulation study 

I, and 300 datasets in each setting of simulation studies II and III, because these simulations 

are computationally intensive and time consuming. Data for each particular setting were 

generated as follows: first, the random effects were generated from the considered probability 

density distribution. For the log-gamma distribution in simulation study I, the parameters ߥ 

and ߟ were set, respectively, at 5.4834 and 4.9917 when the between-group variance was 

0.2, and at 2.4599 and 1.9804 when ߪଶ = 0.5. These values satisfied that ܧ(ܾ௜) = Ψ(ߥ) −

logߟ = 0, and ݎܽݒ( ௜ܾ) = Ψᇱ(ߥ) = 0.2 and 0.5, respectively. Similarly, the parameters ߥ and 

 of a log-gamma distribution in simulation study III were set, respectively, at 1.4262 and ߟ

0.9657 when ߪଵଶ = 1, and at 4.4793 and 3.9897 when ߪଶଶ was 0.25. Furthermore, the scale 

parameter of Laplace distribution in simulation study I was set at 0.3162 and 0.5 to yield 

variances of 0.2 and 0.5, respectively. Next, the predictors were fixed across simulations and 

all binary with a 50%–50% division for variables at the first and third hierarchical levels, and 

with a 30%–70% division for the second level variable. In two-level hierarchical data, for 

example, the event time ௜ܶ௝  for each individual was randomly generated using the formula 

provided by Bender et al. (2005): 

                                                    ௜ܶ௝ = ൣ−log (ܷ) γ exp (߶௜௝)⁄ ൧
ଵ ఈ⁄

                                               (5.7) 

where ܷ is a uniform variable on [0,1] and  ߶௜௝  is the linear predictor taking the form 

ܾ௜ + ଵ௜௝ݔଵߚ +  ௜௝ wasܥ ଶ௜ in a model with random group effects. The censoring timeݔଶߚ

generated from a uniform distribution on [1,180]. The actual time for each individual was 

௜ܻ௝ = ௜ܶ௝ with ߜ௜௝ = 1 if ௜ܶ௝ ≤ ௜௝, or otherwise ௜ܻ௝ܥ = ௜௝ܥ  with ߜ௜௝ = 0.  

5.6.3. Analysis and summary statistics of simulations  
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All estimation analysis for the simulation data was performed in Stata 12 using maximum 

likelihood estimation with Gaussian quadrature. The Cox model with random group effects 

was fit to simulated datasets using the xtpoisson command and a default number of 

integration points of 12, while the random coefficient and nested random effects Cox models 

were fit using xtmepoisson and a default of 7 integration points. Further, a fourth-order 

polynomial function of time was used for modeling the baseline hazard in all analyses. For 

each of the simulation iterations, model parameter estimates and their standard errors were 

extracted. Because of highly skewed distributions of the estimators from the simulations, 

particularly of variance components, we present simulation results as follows: the median for 

all model parameters, computed as the median of the estimated values across the simulated 

datasets; empirical and estimated standard errors (SE) for fixed effects, computed as the 

standard deviation and the mean of the model-based standard errors across the simulated 

datasets; the confidence interval (CI) probability coverage, computed as the proportion of 

simulations with the true value lies inside 95% CIs for fixed effect estimates in each analysis; 

the interquartile  range (IQR) represented by the lower and upper quartiles for the distribution 

of variance component estimates; significance of a difference between median estimates and 

true values was tested using the Wilcoxon signed-rank and sign tests for fixed effects and 

variance component estimates, respectively; the z-test for proportions was used for the 

inference of CI coverage; significance of a difference between median estimates of correctly  

specified and misspecified models was assessed by a permutation test with 1,000 random 

permutations. When the estimation procedure failed to reach convergence in a particular 

analysis or dataset, the number of integration points of Gaussian quadrature method was 

changed (mostly increased), and the analysis was rerun until convergence was achieved. If 

non-sensible estimates (estimates that were >10 times or <10 times the true values) were 
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produced in a certain analysis, results were excluded from the statistics computed across the 

simulated datasets.  

5.7. Simulation results  

5.7.1. Simulation study I 

The simulation results based on a Cox model with random group effects and two predictors, 

at individual and group levels, are shown in Tables 5.2, 5.3, 5.4 and 5.5.  

5.7.1.1. Correctly specified distribution of random effects 

In general, the fixed effect coefficient at the individual level, ߚଵ, and its SE were estimated 

well when the censoring rate was 85% and the probability coverage was close to nominal. 

However, ߚଵ was estimated with mild downward bias when the censoring rate was 50% 

(absolute relative bias 1.6-3.4%); the estimated and empirical SEs agreed closely and the CI 

coverage was close to nominal with the exception of the largest data setting with ߪଶ = 0.5. 

The fixed effect coefficient at group level, ߚଶ, showed similar downward biases for a large 

number of groups with relatively large group sizes (100 and ≥ 40 for high and moderate 

censoring, respectively). When the number of groups (ܩ) was large, the estimated and 

empirical SEs for ߚଶ estimates agreed closely and the CI coverage were close to nominal, 

whereas slightly underestimated SE and CI under-coverage were observed for ܩ = 20. The 

between-group variance, ߪଶ, was estimated with a pronounced downwards bias in all 

settings. This bias decreased with increasing number of groups and group size.  

When both the number of groups and the group size were small, the simulations reported a 

considerable amount of lower boundary estimates for ߪଶ, resulting in many zero SEs for 

these estimates. This problem was observed mostly in settings with a small magnitude of 

heterogeneity and a high censoring rate. Figure 5.3 displays the variance estimates on 
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logarithmic scale against their SEs for datasets with 85% censoring. For small data settings 

(top row of Figure 5.3), some estimates of logߪଶ were less than −10, and most of these 

estimates had extreme SEs while the remaining estimates (logߪଶ > −5) had SEs decreasing 

almost deterministically with increasing the logߪଶ estimates. For large data dimensions 

(bottom row of Figure 5.3), the logߪଶ estimates were larger compared with the smallest data 

settings and their SEs were clearly improved especially when ߪଶ = 0.5. However, the 

functional relationship between logߪଶ estimates and SEs remained. This was the reason for 

not providing CI probability coverage for variance components because the independence 

assumption of the normal and chi-square distributions in the numerator and denominator of 

the t-statistic needed for calculating CIs may be violated. Practically, when a zero group-level 

variance is encountered, the SE of such an estimate may be of less interest because the data 

analyst would deal with this situation as indicating that this was no detectable difference 

between groups.  

5.7.1.2. Misspecified distribution of random effects 

The results showed that the fixed effect estimates, ߚଵ and ߚଶ, were estimated well regardless 

of the misspecification of random effects distribution, and in some cases the misspecified 

model produced estimates closer to the true value than those from the correct model. The 

agreement in ߚଵ estimates between the correct and misspecified models for a high censoring 

rate and a large magnitude of variance is shown in Figure 5.4. Table 5.6 presents the rejection 

rates (type I error and a test power) for testing different null hypothesis values for the 

parameters ߚଵ and ߚଶ, in the simulation settings with ܩ = 70 groups of ݊௜ = 100. The results 

showed a close correspondence between the rejection rates of ߚଵ from the correct model and 

misspecified models and some slight differences in these rejection rates for ߚଶ. Further, the 

lower censoring rate was associated with a higher power. 
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Generally speaking, the results showed that ߪଶ estimates based on the log-gamma random 

effects model were larger and closer to the true value than those from the correct model in 

many cases (Figure 5.5). This was most obvious for ߪଶ = 0.5 and 50% censoring (Table 5.5). 

In contrast, the opposite picture was observed for ߪଶ estimates based on the Laplace random 

effects model which were mostly smaller and further away from the true value than those of 

the correctly specified model (Figure 5.5). Furthermore, there was almost no impact of 

misspecification on ߪଶ estimates when censoring rate was 85% and ߪଶ = 0.2. Additionally, 

the IQRs for ߪଶ estimates agreed closely across all random effects distributions (Table 5.2). 

The IQRs for ߪଶ estimates in other settings were quite different. For instance, the smallest 

width of IQRs was mostly for the correct model while the largest was for the Laplace random 

effects model with exception of the simulation settings of 50% censoring and ߪଶ = 0.5 where 

the log-gamma random effects model showed the largest IQR widths (Table 5.5). 

5.7.2. Simulation study II 

The results were based on a Cox model with correlated random intercept and random slope. 

In each simulation setting, normal and Laplace distributions were assumed for random 

effects. The results of both the normal and Laplace random effects models are presented in 

Tables 5.7 and 5.8. 

5.7.2.1. Correctly specified distribution of random effects 

The fixed effect at individual level, ߚଵ, was estimated well except for some cases. For 

instance, ߚଵ was estimated with upwards bias in the cases of ݊௜ = 10 and a censoring rate of 

85% (absolute relative bias 6.4-26.4%) and estimated with slightly downward bias for 

moderate censoring and a large magnitude of variances when ܩ = 70 and ݊௜ ≥ 40 (absolute 

relative bias 3-6%). Overall the estimates of ߚଵ improved with increasing group size. The CI 

coverage of ߚଵwas underestimated for ݊௜ = 100 and overestimated for small group sizes. In 
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fact, an overestimation of the CI probability coverage was observed in some cases even when 

the estimated and empirical SEs were fairly close. No explanation of this finding can be 

offered except that the data maybe provided an insufficient amount of information as this 

phenomenon only appeared in the cases of ݊௜ ≤ 40 and ݊௜ = 10 for 85% and 50% censoring, 

respectively. The group-level effect, ߚଶ, was estimated reasonably well with best accuracy 

when ܩ = 70. The SEs of ߚଶ estimates were underestimated for ܩ = 20 and agreed closely 

with the empirical SEs when ܩ = 70. Further, CI under-coverage was observed for ߚଶ 

estimates in the settings involving a small number of groups.  

The random intercept variance, ߪ଴ଶ, was estimated with pronounced downwards bias. This 

bias was smaller for ܩ = 70 than for ܩ = 20. When the censoring rate was 85%, the random 

slope variance, ߪଵଶ, was estimated reasonably well for large magnitudes of heterogeneity and 

also for small magnitudes of heterogeneity but with ܩ = 70. Otherwise, ߪଵଶ was estimated 

with pronounced bias, mostly downwards. In general, the bias in ߪଵଶ estimates increased with 

the magnitude of heterogeneity. For instance, the absolute relative bias of ߪଵଶ estimates 

ranged between 1.2-16% and 3-30.2% for small and large magnitudes of heterogeneity, 

respectively. Finally, the correlation parameter, ߩ, was estimated close to the true value in a 

few cases, in particular when ܩ = 70 and ݊௜ ≥ 40, and it was estimated, otherwise, with 

strong biases, mostly upwards.  

5.7.2.2. Misspecified distribution of random effects 

The simulation results showed that misspecification of the random effects distribution had no 

impact on ߚଵ and ߚଶ estimates except for a few cases of ߚଵ estimation, but with no clear 

pattern. For instance, ߚଵ estimates under the misspecified model were clearly larger 

compared with those under the correct model for ܩ = 20 and ݊௜ ≥ 40 when both the 

magnitude of heterogeneity and the censoring rate were large. In contrast, misspecifying the 
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random effects distribution had an impact on the estimation of variance components in a 

variety of situations. For example, the impact of misspecification on ߪ଴ଶ estimates was 

observed mostly for 50% censoring rate and a large magnitude of heterogeneity, where ߪ଴ଶ 

estimates were smaller (and away from the true value) for the misspecified model than the 

correct model. The impact of misspecification was also observed for ߪଵଶ estimates. For 

instance, the estimates of ߪଵଶ based on the misspecified model were smaller and away from 

the true value compared with ߪଵଶ estimates of the correct model for a large magnitude of 

variance and ݊௜ ≥ 40 (Figure 5.6), or when both the magnitude of variance and the censoring 

rate were small. Finally, the correlation between the random intercept and random slope, ߩ, 

was also influenced by misspecification of the random effects distribution in some cases. For 

example, the estimates of ߩ were smaller under the misspecified model than for the correct 

model in the cases of 50% censoring and a large magnitude of variance, and also for small 

magnitude of variance but with ܩ = 70  (Figure 5.6). The IQRs for ߪ଴ଶ and ߩ estimates under 

the misspecified model were larger compared with those corresponding to the correct model 

while the IQRs for ߪଵଶ estimates from the misspecified and correct model were fairly similar.  

5.7.3. Simulation study III 

The simulation results based on a Cox model with nested random effects and three predictors, 

at different hierarchical levels, are shown in Table 5.9 and Table 5.10.  

5.7.3.1. Correctly specified distribution of random effects 

The lowest-level fixed effect parameter, ߚଵ, was estimated well for the 85% censoring rate 

and also for the 50% censoring rate and a small magnitude of heterogeneity. Otherwise, it 

was estimated with downwards bias. The estimates of SE for ߚଵ were close to the observed 

SEs and their CI coverage was close to nominal except for some cases of ݊௜௝ = 100 where CI 
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under-coverage was observed. The fixed effects at the top levels, ߚଶ and ߚଷ, were estimated 

close to the true values but their SEs were underestimated in almost all cases resulting in CI 

under-coverage (coverage ranged between 0.864-0.948 and 0.880-0.959 for ߚଶ and ߚଷ, 

respectively). 

The between-subgroup variance, ߪଵଶ, was estimated with pronounced biases in many cases. 

For instance, ߪଵଶ was consistently underestimated for large magnitudes of heterogeneity and 

50% censoring and also for small dimensions of data when the magnitude of heterogeneity 

was small. The between-group variance, ߪଶଶ, was estimated also with strong downwards 

biases (absolute relative biases 29.6-85.2% and 30.8-48.8% for heavy and moderate 

censoring, respectively) mostly due to small data dimensions and/or rare events as a high 

event rate provides more power to estimate variance components. These biases may be 

attributable to the small number of groups used in the study (15 groups) as an additional 

simulation study with 50 groups (2 subgroups per group), 85% censoring, and ߪଶଶ = 0.25 

showed a better performance. In that simulation, the median estimates for ߪଶଶ based on 

݊௜௝ = 10 and 100 were, respectively, 0.183 and 0.217. Finally, similar to simulation study I, 

estimates very close to zero for variance components, especially for ߪଶଶ,  were obtained for 

small magnitudes of heterogeneity and 85% censoring, resulting in many zero SEs for these 

estimates (details not shown, but Tables 5.9 and 5.10 show ܳଵ = 0 for many settings).  

5.7.3.2. Misspecified distribution of random effects 

With the exception of some very limited cases for ߚଶ and ߚଷ estimation, misspecification of 

the random effects distribution had no impact on the fixed effect estimates. However, the 

variance component estimates were clearly affected by misspecifying the random effects 

distribution. For instance, in the settings of 50% censoring, as well as in the cases of 85% that 

had relatively large subgroup sizes, larger ߪଵଶ estimates for the misspecified model than for 
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the correctly specified model were observed, and the difference in the estimates between the 

two models increased with the magnitude of heterogeneity, event rate, and the dimension of 

data. Similarly, the estimates of ߪଶଶ were larger under misspecified random effects 

distribution compared with the correct distribution of random effects. The IQRs for ߪଵଶ and 

 ଶଶ estimates under the misspecified model were larger than the corresponding ranges of theߪ

correctly specified model in most of the settings. 

5.8. Discussion  

5.8.1. Estimation of fixed effect coefficients 

The fixed effect coefficient at the individual level, ߚଵ, was estimated well based on the three 

considered mixed-effects Cox models, regardless of the distribution of random effects in a 

wide variety of commonly encountered situations. However, the random slope and nested 

frailty models, particularly with correctly specified distribution of random effects, tended to 

produce estimates for ߚଵ with CI under-coverage when group/subgroup sizes were large. 

Similar findings based on a shared gamma frailty model and a Cox model with independent 

random intercept and random slope were reported in Glidden and Vittinghoff (2004) and 

Cortiñas et al. (2007), respectively. The fixed effect ߚଶ was also estimated quite well, 

especially when the number of groups was large, and it was not affected by misspecification 

of the random effects distribution. Furthermore, the estimation of ߚଷ under the nested frailty 

model was found to be robust, even though the results indicated that a modest bias can occur 

for a large magnitude of variance components and high dimensions of data. The estimated 

and empirical SEs of ߚଵ were similar under the true and misspecified random effects 

distribution and agreed closely in each scenario, whereas the SE of ߚଶ and ߚଷ estimates in 

some cases underestimated the empirical variability. Further, the CI coverage for ߚଶ and ߚଷ 

estimates was mostly under nominal, and the rejection rates of fixed effects based on Cox 
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models with normal random group effects were close to those from the same models with 

truly log-gamma and Laplace distributions for random effects (Neuhaus et al., 2011).  

5.8.2. Estimation of random effect variances 

The overall impression was that the Poisson approach for mixed-effects Cox models tended 

to underestimate the true underlying heterogeneity. Similar results were reported in Crowther 

et al. (2012). In the Cox model with random group effects, misspecifying the distribution of 

random effects resulted in a non-robust estimation of the between-group variance ߪଶ, 

especially for moderate censoring rate or a large magnitude of variance components. When 

the random effects followed a log-gamma distribution, the estimates of ߪଶ were found to be 

larger and in many cases closer to the true values than the estimates of the normal random 

effects model. In contrast, the estimates based on the Laplace random effects model were 

almost always smaller and further apart from the true values compared with those based on 

the normal random effects model. Using a gamma frailty model, Duchateau and Janssen 

(2008) pointed out that increasing the frailty variance led to a large bias in the heterogeneity 

parameter when the frailties were log-normally distributed. Similar findings were previously 

reported by Ferreira and Gracia (2001) and Massonnet et al. (2006). 

For the variance components estimation based on the Cox model with correlated random 

intercept and random slope, the bias in the estimates of variance components was clearly 

elevated under the Laplace random effects model compared with the correctly specified 

model, especially in the random slope variance ߪଵଶ and the correlation parameter ߩ for 

moderate censoring rate, and a heavy censoring with large group sizes. Generally speaking, 

the estimates of variance components based on the Laplace random effects model were 

smaller and further apart from the true values than was the case for the normal random effects 
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model. Cortiñas et al. (2007) reported similar findings based on the same true and analysis 

models but with independent random effects.  

The estimation of the variance components based on the Cox model with nested random 

effects was also found to be non-robust and misspecification of the random effects 

distribution had a larger impact on the between-subgroup variance ߪଵଶ than on the between-

group variance ߪଶଶ estimates. There was a considerable amount of upwards bias in the 

estimates of ߪଵଶ when the true random effects distribution was log-gamma compared with 

normal random effects, and this bias increased with the magnitude of variance, and 

dimension of data. Furthermore, the point estimates of the heterogeneity parameter ߪଶଶ based 

on the log-gamma random effects model were somewhat larger than those based on the 

normal random effects model for large magnitudes of heterogeneity, event rate, and data 

dimensions, although ߪଶଶ was strongly underestimated in the two scenarios. This 

underestimation of ߪଶଶ was possibly due to the small number of units at the top level as an 

extra simulation study with a larger number of top-level units showed a clear improvement. 

For small magnitudes of heterogeneity and heavy censoring, the IQRs for the variance 

component estimates produced by the misspecified and correct models were comparable 

under the shared and nested frailty models. Otherwise, the IQRs of these estimates were 

larger in the misspecified model than in the correct model. Taking into account the above, 

misspecification of the random effects distribution might be an issue when fitting mixed 

effects Cox models because invalid estimates for variance components may occur. 

Finally, it is important to mention that with rare events and a small number of groups with 

relatively small sizes, the estimation approach tended to estimate the variance components 

and their SEs as zero. The degree to which such unrealistic estimates and SEs in the 

aforementioned settings occurred was substantial for the top-level variance in the shared and 
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nested frailty models. In practice, zero group-level variance and SE is often dealt with as 

indicating no difference between groups, although in some cases this may cause problems as 

recently shown in Chung et al. (2013). To avoid zero variance estimates, these authors 

suggest using maximum penalized likelihood with penalty from the log-gamma family for 

hierarchical linear models; this can also be applied to GLMMs. 

5.8.3. Effect of the magnitude of heterogeneity 

The magnitude of bias in the variance component estimates due to misspecification of the 

random effects distribution was larger for a large magnitude of heterogeneity than for a small 

magnitude of heterogeneity. This may be explained by smaller difference in shape between 

the assumed distribution (normal) and the true distribution (log-gamma or Laplace) for a 

small magnitude of variance than for a large variance. Therefore, the findings were in 

agreement with results in Duchateau and Janssen (2008) based on a shared frailty model and 

with findings of Sastry (1997) based on a nested frailty model. 

5.8.4. Effect of censoring 

The difference in the estimates of variance components between the correct and misspecified 

models was almost always larger for moderate censoring than for heavy censoring. In other 

words, the impact of misspecifying the distribution of random effects on variance estimates 

was strongest for high (50%) event rates. This applied to all considered models and one may 

hypothesize that increasing the event rate would provide more power to estimate complex 

random component structures, especially when both the number of groups and the group size 

are large enough.  

5.8.5. Effect of data dimensions 
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In general, the number of groups/subgroups and group/subgroup sizes had an impact on 

model parameter estimation under both the misspecified and correctly specified random-

effects distribution. The estimation of model parameters was mostly improved when the 

number and the size of groups/subgroups increased. When the random effects followed a log-

gamma distribution, the absolute bias in the variance component estimates due to 

misspecifying the random effects distribution increased with the dimensions of data in the 

nested frailty model, and in the shared frailty model for a large magnitude of heterogeneity. 

In some cases of the shared frailty model, the between-group variance was estimated closer to 

the true values when fitting a misspecified model with log-gamma random effects than when 

fitting the correct model. For Laplace random effects, the absolute bias in ߪଶ estimates under 

the shared frailty model increased with decreasing number and size of groups. In the random 

slope model, there was no a clear pattern for the magnitude of bias in variance estimates due 

to misspecification of the random effects density. This would make it hard to predict the 

direction of bias in variance component estimates in this model. 

5.8.6. Model design 

The effect of misspecification of the random effects distribution on the variance component 

estimation was minor among model designs and reflected by the number of parameters. For 

instance, under the same circumstances misspecifying the random effects distribution in the 

random slope model had a slightly larger impact on the random intercept variance estimates 

than the shared frailty model for a large number of groups with small sizes and nearly the 

same impact otherwise. Further, almost the same impact of misspecified the distribution of 

random effects was detected in the between-group and between-subgroup variances for the 

shared and nested frailty models, respectively, under the same frailty distribution, magnitude 

of heterogeneity, and censoring rate.  
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5.9. Concluding remarks  

Via simulations, we have shown that the Poisson GLMM approach for estimating a mixed-

effects Cox model, with normally distributed random effects, provides robust estimation for 

fixed effects under many circumstances even with misspecified distribution of random 

effects. Based on the results of current study, misspecification of random effects distribution 

has negligible impact on regression coefficient estimates. Practically, the estimation of fixed 

effects is often viewed as more important than the estimation of variance components, 

especially in survival analysis where the main purpose of accounting for data structure is 

often improving model estimation. On the other hand, misspecifying the random effects 

distribution may result in biased estimation for the variance components. The magnitude of 

bias in variance components due to misspecification under one-component random effects 

Cox models is somewhat comparable to the corresponding bias based on multi-component 

random effects Cox models when they are compared for the same levels. Finally, 

misspecification of the random effects distribution may have substantial impacts in situation 

having a large magnitude of variability between random effects, event rate, and data 

dimensions; in such cases caution should be exercised. 
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Figure 5.1: The normal (solid) and log-gamma (dot) probability densities with mean zero and variance ߪଶ =

0.5.  
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Figure 5.2: The normal (solid) and Laplace (dot) probability densities with mean zero and variance ߪଶ = 0.5. 
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Figure 5.3. Scatter plots for ML estimates of between-group variance on the log scale vs. their standard errors, 

in a shared frailty model for settings of 85% censoring and different magnitudes of variance, number of groups, 

and group size.  
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Figure 5.4. Boxplots of estimates of within-group fixed effect (ߚଵ) from a shared frailty model with Laplace, 

log-gamma, and normal distributed random effects, fit with assumed normal distribution for random effects to 

datasets with the settings of 85% censoring; 20 and 70 groups, each with sizes of 10, 40, and 100; and ߪଶ = 0.5. 

The reference line is at the true value of ߚଵ = 0.5.  
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Figure 5.5. Boxplots of estimates of between-group variance (ߪଶ) from a shared frailty model with Laplace, log-

gamma, and normal distributed random effects, fit with assumed normal distribution for random effects to 

datasets with the settings of 85% and 50% censoring; 20 and 70 groups with size of 100; small (0.2) and large 

(0.5) variance. The reference lines are at the true values of ߪଶ = 0.2 and 0.5 for a small and large variance, 

respectively.  
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Figure 5.6. Boxplots of the estimates of random-slope variance (left) and correlation between the random 

intercept and random slope (right) from a random coefficient Cox model with Laplace and normal distributed 

random effects, fit with assumed normal distribution for random effects to datasets with the settings of 85% and 

50% censoring rates; 20 and 70 groups with size of 100; and large variance components. The reference lines are 

at the true values of ߪଵଶ = 0.5 and ߩ = 0.8. 
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Table 5.1. True distributions and model parameter settings used for three simulation studies based on Cox model with random group effect (study I), Cox  

model with correlated random intercept and random slope (study II), and Cox model two nested random effects (study III). 

Random 85% censoring  50% censoring Fixed  
effects Small variance  Large variance  Small variance  Large variance effect 
dist’n (ࢻ, ,ࢻ)  c var. parmsb(ࢽ,ࢻ)  c var. parmsb(ࢽ  c var. parmsb parametersa(ࢽ,ࢻ)  c var. parmsb(ࢽ

             Simulation study I           
             Normal (0.5, 0.012) (0.2)  (0.5, 0.010) (0.5)  (0.5, 0.060) (0.2)  (0.5, 0.050) (0.5) (0.5, 0.3) 
Log-gamma (0.5, 0.015) (0.2)  (0.5, 0.016) (0.5)  (0.5, 0.070) (0.2)  (0.5, 0.090) (0.5)  
Laplace (0.5, 0.012) (0.2)  (0.5, 0.010) (0.5)  (0.5, 0.060) (0.2)  (0.5, 0.050) (0.5)  
             Simulation study II           
             Normal (0.5, 0.008) (0.5, 0.25, 0.4)  (0.5, 0.006) (1.0, 0.50, 0.8)  (0.5, 0.050) (0.5, 0.25, 0.4)  (0.5, 0.050) (1.0, 0.50, 0.8) (0.5, 0.3) 
Laplace (0.5, 0.008) (0.5, 0.25, 0.4)  (0.5, 0.006) (1.0, 0.50, 0.8)  (0.5, 0.050) (0.5, 0.25, 0.4)  (0.5, 0.050) (1.0, 0.50, 0.8)  
             
Simulation study III         
             Normal (0.5, 0.008) (0.5, 0.25)  (0.5, 0.006) (1.0, 0.5)  (0.5, 0.044) (0.5, 0.25)  (0.5, 0.042) (1.0, 0.5) (0.5, 0.3, 0.2) 
Log-gamma (0.5, 0.015) (0.5, 0.25)  (0.5, 0.023) (1.0, 0.5)  (0.5, 0.095) (0.5, 0.25)  (0.5, 0.160) (1.0, 0.5)  
a Fixed effect parameters in each simulation study: I and II: (ߚଵ,ߚଶ); III: (ߚଵ,ߚଶ,ߚଷ). 

b Variance parameter(s) in each simulation study: I: (ߪଶ); II: (ߪ଴ଶ,ߪଵଶ,  .(ଶଶߪ,ଵଶߪ) :III ;(ߩ
c Baseline hazard parameters.  
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Table 5.2. Poisson modeling results for data generated from Cox models with 85% censoring rate and random 

group effects with ࣌૛ = ૙.૛ and 3 different assumed random effects distributions: median of point estimates, 

empirical standard error and mean of the estimated standard error for fixed effects as well as probability 

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets.  

True r.e.   ߚଵ   ߚଶ   ߪଶ 
dist’n ࢏࢔ ܩ median  (std; se) Pr. C.  median  (std; se) Pr. C.  median  [Q1; Q3] 

True 20  .500   .300   .200 
Normal  10 .478 (.372; .377) .966+  .306 (.444; .428) .943  .063– [.000; .240] 
Log-gamma   .525+ (.382; .375)* .963  .303 (.461; .426) .944  .056– [.000; .246] 
Laplace   .494 (.409; .380) .937  .283 (.447; .437) .950  .074– [.000; .265] 
          Normal  40 .490 (.194; .187) .941  .269– (.303; .268) .918–  .144– [.072; .228] 
Log-gamma   .489 (.180; .184) .948  .304 (.291; .268)* .911–  .148– [.081; .234] 
Laplace   .487 (.185; .186) .948  .291 (.287; .265) .919–  .135– [.057; .227] 
          Normal  100 .497 (.117; .116) .948  .305 (.245; .227) .920–  .164– [.112; .221] 
Log-gamma   .504 (.113; .115) .946  .315 (.249; .228) .912–  .164– [.115; .226] 
Laplace   .503 (.118; .117) .948  .299 (.245; .221) .912–  .143– [.088; .215]* 

 70         
Normal  10 .502 (.182; .190) .963  .289 (.238; .234) .941  .155– [.065; .256] 
Log-gamma   .499 (.189; .188) .948  .297 (.229; .232) .957  .168– [.071; .257] 
Laplace   .500 (.188; .191) .960  .307 (.240; .238) .955  .177– [.082; .282]* 

          Normal  40 .492– (.095; .096) .956  .293 (.152; .148) .936–  .182– [.145; .219] 
Log-gamma   .507 (.093; .095)* .956  .294 (.145; .148) .954  .182– [.144; .223] 
Laplace   .496 (.094; .097) .960  .295 (.158; .150) .941  .185– [.139; .241] 
          Normal  100 .499 (.060; .060) .953  .285– (.124; .127) .947  .187– [.156; .219] 
Log-gamma   .501 (.059; .059) .962  .298 (.125; .129) .948  .195– [.163; .228]* 

Laplace   .499 (.059; .060) .950  .295 (.133; .127) .940  .182– [.146; .226] 
* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value.  
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Table 5.3. Poisson modeling results for data generated from Cox models with 50% censoring rate and random 

group effects with ࣌૛ = ૙.૛ and 3 different assumed random effects distributions: median of point estimates, 

empirical standard error and mean of the estimated standard error for fixed effects as well as probability 

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets. 

True r.e.   ߚଵ   ߚଶ   ߪଶ 
dist’n ࢏࢔ ܩ median  (std; se) Pr. C.  median  (std; se) Pr. C.  median  [Q1; Q3] 

True 20  .500   .300   .200 
Normal  10 .497 (.201; .203) .950  .290 (.284; .275) .944  .139– [.064; .228] 
Log-gamma   .488 (.205; .206) .949  .318 (.298; .277) .922–  .139– [.065; .224] 
Laplace   .495 (.205; .203) .939  .289 (.285; .273) .930–  .130– [.049; .217] 
          Normal  40 .492– (.100; .101) .957  .284– (.240; .215) .916–  .156– [.114; .207] 
Log-gamma   .493 (.100; .102) .954  .300 (.238; .223) .930–  .168– [.123; .227]* 

Laplace   .493– (.098; .101) .960  .294 (.230; .208) .924–  .140– [.094; .201]* 

          Normal  100 .490– (.064; .063) .946  .299 (.217; .202) .954  .165– [.125; .207] 
Log-gamma   .493– (.063; .064) .950  .305 (.227; .210) .922–  .175– [.130; .231]* 

Laplace   .490– (.061; .063) .957  .290 (.212; .196) .923–  .149– [.101; .207]* 

 70         
Normal  10 .488– (.102; .105) .945  .293 (.153; .153) .946  .168– [.130; .216] 
Log-gamma   .487– (.103; .107) .958  .290 (.154; .156) .949  .179– [.134; .223]* 

Laplace   .482– (.100; .106) .954  .296 (.157; .151) .935  .155– [.118; .206]* 

          Normal  40 .488– (.051; .053) .948  .291– (.122; .120) .936  .179– [.154; .208] 
Log-gamma   .492– (.052; .053) .952  .287– (.124; .124) .946  .192– [.167; .223]* 

Laplace   .493– (.050; .053)* .947  .287 (.127; .118) .935–  .171– [.140; .206]* 

          Normal  100 .489– (.032; .033) .939  .284– (.111; .113) .948  .183– [.161; .208] 
Log-gamma   .491– (.033; .033) .943  .295 (.118; .118) .942  .200 [.173; .228]* 

Laplace   .488– (.032; .033) .950  .290– (.113; .111) .941  .174– [.147; .208]* 

* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value.  
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Table 5.4. Poisson modeling results for data generated from Cox models with 85% censoring rate and random 

group effects with ࣌૛ = ૙.૞ and 3 different assumed random effects distributions: median of point estimates, 

empirical standard error and mean of the estimated standard error for fixed effects as well as probability 

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets. 

True r.e.   ߚଵ   ߚଶ   ߪଶ 
dist’n ࢏࢔ ܩ median  (std; se) Pr. C.  median  (std; se) Pr. C.  median  [Q1; Q3] 

True 20  .500   .300   .500 
Normal  10 .493 (.379; .391) .963  .300 (.548; .503) .931–  .278– [.061; .559] 
Log-gamma   .488 (.398; .394) .960  .304 (.541; .507) .942  .290– [.089; .577] 
Laplace   .483 (.419; .397) .946  .283 (.553; .524) .943  .317– [.071; .652]* 

          Normal  40 .484– (.200; .194) .949  .272– (.419; .370) .909–  .396– [.252; .567] 
Log-gamma   .505 (.198; .192) .942  .285 (.412; .374) .915–  .402– [.263; .575] 
Laplace   .485 (.194; .194) .947  .305 (.394; .362) .924–  .358– [.213; .545]* 

          Normal  100 .502 (.121; .121) .956  .309 (.361; .336) .929–  .417– [.308; .541] 
Log-gamma   .497 (.122; .119) .946  .313 (.380; .355) .919–  .480– [.344; .622]* 

Laplace   .498 (.121; .121) .947  .302 (.357; .323) .912–  .363– [.241; .545]* 

 70         
Normal  10 .501 (.191; .197) .959  .290 (.289; .281) .946  .439– [.299; .595] 
Log-gamma   .492 (.197; .197) .943  .306 (.285; .276) .942  .412– [.296; .532]* 

Laplace   .497 (.197; .198) .957  .320 (.300; .290)* .947  .495 [.335; .674]* 

          Normal  40 .493 (.101; .100) .947  .289 (.210; .207) .942  .461– [.391; .543] 
Log-gamma   .496 (.101; .099) .948  .298 (.211; .210) .950  .491 [.415; .586]* 

Laplace   .495 (.096; .100) .960  .298 (.217; .206) .944  .463– [.363; .571] 
          Normal  100 .498 (.062; .062) .943  .282– (.180; .188) .949  .469– [.405; .538] 
Log-gamma   .492– (.059; .061) .965+  .306 (.199; .199)* .950  .538+ [.464; .622]* 

Laplace   .497 (.063; .062) .948  .296 (.192; .184) .940  .440– [.371; .536]* 

* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value.  
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Table 5.5. Poisson modeling results for data generated from Cox models with 50% censoring rate and random 

group effects with ࣌૛ = ૙.૞ and 3 different assumed random effects distributions: median of point estimates, 

empirical standard error and mean of the estimated standard error for fixed effects as well as probability 

coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 1000 simulated datasets. 

True r.e.   ߚଵ   ߚଶ   ߪଶ 
dist’n ࢏࢔ ܩ median  (std; se) Pr. C.  median  (std; se) Pr. C.  median  [Q1; Q3] 

True 20  .500   .300   .500 
Normal  10 .498 (.211; .214) .957  .296 (.391; .371) .920–  .375– [.239; .550] 
Log-gamma   .483– (.205; .208) .963  .306 (.401; .379) .924–  .406– [.274; .587]* 

Laplace   .493 (.215; .215) .957  .286 (.380; .360) .932–  .347– [.206; .516]* 

          Normal  40 .487– (.099; .101) .950  .276– (.357; .320) .920–  .394– [.309; .516] 
Log-gamma   .490– (.101; .103) .954  .284– (.381; .348) .922–  .481– [.354; .632]* 

Laplace   .486– (.102; .106) .962  .291 (.336; .306) .924–  .351– [.249; .501]* 

          Normal  100 .488– (.067; .060) .946  .314 (.338; .312) .916–  .413– [.323; .515] 
Log-gamma   .486– (.063; .064) .943  .317 (.369; .346) .922–  .506 [.384; .667]* 

Laplace   .487– (.064; .066) .956  .290 (.324; .298) .926–  .370– [.261; .501]* 

 70         
Normal  10 .489– (.108; .111) .955  .289 (.205; .207) .946  .439– [.362; .524] 
Log-gamma   .480– (.105; .108) .948  .293 (.214; .212) .944  .494 [.412; .582]* 

Laplace   .480– (.105; .111) .962  .297 (.209; .200) .940  .399– [.322; .484]* 

          Normal  40 .483– (.054; .055) .947  .282– (.182; .179) .940  .452– [.393; .513] 
Log-gamma   .483– (.052; .053) .944  .286– (.199; .196) .940  .553+ [.476; .637]* 

Laplace   .488– (.053; .055) .946  .281– (.184; .173) .932–  .414– [.349; .492]* 

          Normal  100 .486– (.033; .034) .931–  .278– (.171; .174) .938  .460– [.406; .515] 
Log-gamma   .485– (.033; .033) .932–  .292 (.196; .194) .942  .578+ [.504; .659]* 

Laplace   .485– (.033; .034) .932–  .282– (.172; .169) .939  .428– [.362; .504]* 

* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value.  
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Table 5.6. The rejection rates (type I and a test power) for testing different null  
hypothesis values for the parameters  βଵ and βଶ, in the simulation settings with 
ܩ = 70 groups of ௜݊ = 100 based on Cox models with random group effects  
and 3 different assumed random effects distributions. 
 ଶߚ  ଵߚ 

 ૙ values 0.5 0.45 0.4 0.35  0.3 0.22 0.14 0.06ࡴ
࣌૛ = ૙.૛, 85% censoring        
Normal .047 .129 .396 .695  .053 .087 .207 .424 
Log-gamma .038 .151 .394 .714  .052 .090 .245 .456 
Laplace .050 .129 .376 .715  .060 .105 .237 .459 
          
࣌૛ = ૙.૞, 85% censoring        
Normal .057 .120 .363 .673  .051 .070 .123 .214 
Log-gamma .035 .102 .352 .659  .050 .078 .138 .238 
Laplace .052 .123 .337 .676  .060 .078 .141 .262 
          
࣌૛ = ૙.૛, 50% censoring        
Normal .061 .217 .787 .995  .052 .095 .237 .511 
Log-gamma .057 .216 .794 .989  .058 .098 .280 .508 
Laplace .050 .206 .775 .989  .059 .110 .274 .557 
          
࣌૛ = ૙.૞, 50% censoring        
Normal .069 .180 .732 .988  .062 .071 .133 .233 
Log-gamma .068 .180 .725 .987  .058 .073 .143 .239 
Laplace .068 .153 .690 .977  .061 .075 .139 .280 
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Table 5.7. Poisson modeling results for data generated from random coefficient Cox models with 85% censoring rate and two different  
assumed random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for  
fixed effects as well as probability coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 300 simulated  
datasets.  
True r.e.   ߚଵ  ߚଶ  ߪ଴ଶ  ߪଵଶ  ߩ 
dist’n ࢏࢔ ܩ median (std; se) Pr. C. median (std; se) Pr. C. median  [Q1; Q3]  median  [Q1; Q3]  median  [Q1; Q3] 

True 20  .500  .300  .500  .250  .400 

Normal  10 .581+ (.590; .621) .986+ .338+ (.660; .637) .949 .415– [.155; .907]  .409+ [.064; 1.025]  -.462- [-1.00; 1.00] 
Laplace   .613+ (.580; .614) .987+ .435+ (.732; .666) .933– .377– [.104; .918]*  .334+ [.041; .977]  -.414- [-1.00; 1.00] 
Normal  40 .483 (.291; .288) .967+ .246 (.483; .455) .946 .383– [.214; .647]  .246 [.099; .432]  .921+ [-.124; 1.00] 
Laplace   .539+ (.279; .281)* .946 .308 (.504; .453) .920– .407– [.199; .666]  .198– [.067; .411]*  1.00+ [-.209; 1.00] 
Normal  100 .498 (.207; .196) .936– .277 (.418; .404) .930– .416– [.282; .596]  .213– [.109; .368]  .716+ [.200; 1.00] 
Laplace   .515+ (.185; .190) .970+ .297 (.406; .383) .923– .364– [.230; .563]*  .195– [.085; .321]  .573+ [.005; 1.00] 
 70           
Normal  10 .532+ (.276; .307) .980+ .283 (.345; .338) .943 .462 [.263; .681]  .268 [.102; .524]  1.00+ [-.279; 1.00] 
Laplace   .528 (.294; .313) .960 .284 (.370; .348) .953 .562+ [.329; .843]*  .280 [.068; .547]  .988 [-.366; 1.00] 
Normal  40 .503 (.147; .150) .953 .329 (.260; .254) .930– .467– [.352; .603]  .231– [.137; .348]  .520+ [.192; 1.00] 
Laplace   .525+ (.149; .148) .950 .322 (.250; .252) .963 .492 [.351; .621]  .253 [.141; .366]  .422 [.069; .937] 
Normal  100 .490 (.112; .104) .927– .305 (.228; .221) .933– .472– [.389; .554]  .247 [.177; .302]  .413 [.235; .606] 
Laplace   .511+ (.098; .103) .957 .318 (.227; .218) .947 .453– [.358; .571]  .236 [.164; .316]  .346- [.148; .529]* 

True 20  .500  .300  1.000  .500  .800 
Normal  10 .632+ (.757; .762) .990+ .336 (.877; .842) .940 .869– [.360; 1.522]  .553 [.117; 1.388]  1.00+ [-.541; 1.00] 
Laplace   .534+ (.706; .745) .983+ .508+ (.921; .873) .939 .789– [.315; 1.564]  .522 [.112; 1.187]  1.00+ [-.749; 1.00] 

Normal  40 .499 (.376; .372) .967+ .245 (.673; .632) .943 .836– [.509; 1.301]  .513 [.256; .870]  1.00+ [.764; 1.00] 
Laplace   .591+ (.348; .349)* .957 .344 (.710; .624) .933– .832– [.501; 1.233]  .366– [.148; .729]*  1.00+ [.627; 1.00] 
Normal  100 .491 (.271; .259) .933– .278 (.539; .528) .933– .861– [.638; 1.155]  .483 [.258; .680]  1.00+ [.788; 1.00] 
Laplace   .541+ (.247; .241)* .937 .337 (.576; .516) .920– .709– [.495; 1.084]*  .360– [.194; .584]*  .960+ [.597; 1.00]* 

 70           
Normal  10 .543+ (.342; .365) .977+ .338 (.452; .449) .943 .935 [.646; 1.286]  .487 [.278; .823]  1.00+ [.602; 1.00] 
Laplace   .498 (.381; .378) .977+ .300 (.487; .468) .950 1.225+ [.751; 1.565]*  .471 [.186; .829]  1.00+ [.428; 1.00] 
Normal  40 .509 (.183; .188) .967+ .303 (.355; .342) .943 .927– [.766; 1.168]  .491 [.335; .626]  .885+ [.657; 1.00] 
Laplace   .544+ (.186; .182) .940 .377 (.353; .342) .957 .937– [.694; 1.225]  .438– [.300; .598]*  .719– [.510; 1.00] 

Normal  100 .496 (.148; .136) .927– .303 (.289; .283) .933– .922– [.786; 1.092]  .485 [.387; .588]  .831+ [.719; .924] 
Laplace   .524+ (.128; .128)* .930– .323 (.303; .290) .940 .896– [.695; 1.101]  .400– [.290; .509]*  .738– [.586; .891] 

* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value. 
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Table 5.8. Poisson modeling results for data generated from random coefficient Cox models with 50% censoring rate and two different  
assumed random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for  
fixed effects as well as probability coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 300 simulated  
datasets. 
True r.e.   ߚଵ  ߚଶ  ߪ଴ଶ  ߪଵଶ  ߩ 
dist’n ࢏࢔ ܩ mean (std; se) Pr. C. mean (std; se) Pr. C. median  [Q1; Q3]  median  [Q1; Q3]  median  [Q1; Q3] 

True 20  .500  .300  .500  .250  .400 

Normal  10 .514 (.260; .259) .967+ .316 (.490; .441) .920– .377– [.229; .621]  .190– [.072; .462]  .989+ [-.216; 1.00] 
Laplace   .526 (.248; .253) .967+ .352 (.481; .423) .927– .372– [.178; .618]  .192– [.060; .364]  .578 [-.489; 1.00]* 

Normal  40 .477 (.150; .157) .953 .247 (.415; .370) .920– .416– [.299; .580]  .216– [.128; .317]  .573+ [.216; .883] 
Laplace   .508 (.154; .149)* .937 .338 (.406; .357)* .927– .387– [.247; .570]  .169– [.094; .282]*  .483+ [.110; .905] 
Normal  100 .503 (.133; .127) .923– .301 (.365; .337) .933– .437– [.317; .557]  .210– [.148; .301]  .468+ [.200; .660] 
Laplace   .509 (.119; .121) .957 .260 (.363; .327) .927– .370– [.246; .573]*  .174– [.115; .261]*  .410 [.187; .673] 

 70           
Normal  10 .493 (.137; .136) .946 .294 (.256; .244) .926– .457– [.354; .563]  .206– [.122; .315]  .597+ [.189; 1.00] 
Laplace   .514 (.127; .132)* .957 .264 (.258; .237) .920– .447– [.332; .587]  .167– [.073; .309]*  .496 [.004; 1.00] 
Normal  40 .492 (.082; .084) .950 .306 (.205; .205) .960 .472– [.400; .543]  .230– [.184; .288]  .427 [.278; .564] 
Laplace   .506 (.081; .080)* .940 .320 (.203; .199) .950 .435– [.359; .539]*  .193– [.148; .248]*  .348– [.179; .552]* 

Normal  100 .497 (.070; .070) .943 .292 (.193; .187) .927– .464– [.401; .528]  .233– [.195; .272]  .385 [.284; .488] 
Laplace   .492 (.065; .067) .963 .308 (.195; .185) .937 .444– [.365; .535]  .207– [.172; .250]*  .322– [.209; .456]* 

True 20  .500  .300  1.000  .500  .800 
Normal  10 .524 (.293; .290) .970+ .269 (.644; .591) .933– .830– [.546; 1.207]  .303– [.137; .562]  1.00+ [.578; 1.00] 
Laplace   .538 (.275; .272) .950 .336 (.634; .554) .903– .779– [.472; 1.123]  .258– [.084; .453]  1.00+ [.145; 1.00]* 

Normal  40 .475– (.190; .189) .950 .302 (.502; .461) .933– .880– [.638; 1.175]  .365– [.260; .499]  .885+ [.666; 1.00] 
Laplace   .506 (.179; .176) .950 .363+ (.512; .463) .930– .775– [.541; 1.093]*  .268– [.172; .388]*  .814 [.500; 1.00]* 

Normal  100 .493 (.172; .157) .926– .338 (.439; .396) .920– .884– [.690; 1.137]  .349– [.253; .466]  .819+ [.672; .910] 
Laplace   .485 (.142; .144) .957 .297 (.462; .399) .920– .738– [.514; 1.119]*  .279– [.194; .363]*  .767 [.582; .903]* 

 70           
Normal  10 .494 (.156; .151) .947 .291 (.330; .322) .943 .922– [.780; 1.139]  .318– [.199; .462]  .912+ [.657; 1.00] 
Laplace   .512 (.142; .142) .963 .273 (.334; .309) .930– .883– [.689; 1.100]  .227– [.113; .355]*  .821 [.454; 1.00] 
Normal  40 .485– (.097; .100) .957 .306 (.249; .256) .960 .957– [.832; 1.120]  .368– [.301; .450]  .764– [.669; .837] 
Laplace   .501 (.089; .091) .953 .327 (.266; .256) .947 .859– [.731; 1.039]*  .276– [.221; .351]*  .660– [.503; .802]* 

Normal  100 .470– (.091; .087) .923– .308+ (.220; .218) .953 .939– [.823; 1.066]  .391– [.329; .446]  .752– [.692; .810] 
Laplace   .481– (.076; .079) .963 .328 (.235; .230) .933– .898– [.740; 1.072]*  .306– [.257; .358]*  .652– [.557; .736]* 

* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value. 
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Table 5.9. Poisson modeling results for data generated from nested random effects Cox models with 85% censoring rate and two different assumed  
random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for fixed effects as well  
as probability coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 300 simulated datasets. 
True r.e.    ߚଵ  ߚଶ  ߚଷ  ߪଵଶ  ߪଶଶ 
dist’n ࢐࢏࢔ ܩ࢏࢔ ࢏࢔ median  (std; se) Pr. C. median  (std; se) Pr. C. median  (std; se) Pr. C. median  [Q1; Q3]  median  [Q1; Q3] 

True 2 30  .500  .300  .200  .500  .250 

Normal   10 .553 (.323; .319) .956 .178– (.786; .737) .939 .219 (.768; .660) .926– .358– [.102; .614]  .037– [.000; .302] 
Log-gamma    .527 (.350; .328) .963 .428 (.801; .726)* .953 .150 (.714; .640) .932– .322– [.067; .531]  .044– [.000; .263] 
Normal   40 .497 (.161; .152) .949 .159 (.596; .568) .946 .218 (.518; .520) .959 .456– [.316; .606]  .138– [.000; .273] 
Log-gamma    .504 (.162; .157) .946 .214 (.637; .573) .915– .230 (.592; .526) .912– .461– [.283; .641]  .114– [.000; .295] 
Normal   100 .500 (.107; .095) .916– .235 (.567; .520) .916– .219 (.505; .482) .940 .460– [.338; .613]  .124– [.000; .268] 
Log-gamma    .506 (.097; .098) .959 .260 (.589; .542) .932– .209 (.556; .504) .899– .512 [.378; .688]*  .124– [.000; .287] 
 5 75           
Normal   10 .495 (.202; .197) .952 .269 (.621; .506) .864– .258+ (.528; .457) .881– .450– [.277; .609]  .132– [.033; .273] 
Log-gamma    .491 (.195; .201) .970+ .388 (.564; .519) .912– .194 (.536; .468) .919– .449– [.314; .621]  .155– [.051; .289] 
Normal   40 .493 (.095; .096) .947 .338 (.464; .418) .907– .162 (.443; .394) .900– .484– [.402; .571]  .176– [.088; .279] 
Log-gamma    .490 (.099; .099) .960 .238 (.488; .432)* .883– .264+(.461; .407)* .913– .518+ [.434; .637]*  .182– [.093; .273] 
Normal   100 .493 (.063; .060) .936– .293 (.465; .388) .900– .240 (.432; .370) .896– .495 [.422; .575]  .165– [.086; .259] 
Log-gamma    .507(.057; .062)* .967+ .258 (.429; .405) .930– .218 (.411; .386) .926– .550+ [.473; .638]*  .160– [.088; .265] 

True 2 30  .500  .300  .200  1.000  .500 
Normal   10 .519 (.333; .334) .969+ .173 (.998; .940) .948 .256 (.891; .848) .938 .815– [.379; 1.224]  .157– [.000; .592] 
Log-gamma    .514 (.314; .326) .977+ .293 (1.05; .934) .930– .359+ (.900; .840) .943 .773– [.411; 1.216]  .162– [.000; .560] 
Normal   40 .483 (.172; .161) .963 .176 (.857; .778) .937 .256 (.772; .715) .937 .918– [.624; 1.210]  .243– [.000; .507] 
Log-gamma    .479 (.164; .155) .943 .313 (.877; .824) .940 .250 (.908; .764) .910– 1.014 [.689; 1.438]*  .303– [.000; .654] 
Normal   100 .492 (.104; .097) .933– .251 (.811; .731) .927– .206 (.709; .680) .937 .934 [.682; 1.237]  .271– [.022; .530] 
Log-gamma    .489 (.097; .098) .970+ .318 (.844; .803) .926– .290 (.807; .747) .930– 1.132+ [.875; 1.443]*  .313– [.000; .664] 

 5 75           
Normal   10 .497 (.219; .205) .940 .187 (.816; .665) .880– .225 (.699; .610) .903– .914– [.689; 1.223]  .286– [.100; .518] 
Log-gamma    .488 (.199; .204) .949 .272 (.782; .683) .909– .117 (.704; .632) .906– .957 [.726; 1.217]  .352– [.143; .590]* 

Normal   40 .497 (.100; .098) .953 .342 (.624; .573) .916– .169 (.593; .545) .912– .966 [.806; 1.152]  .341– [.171; .551] 
Log-gamma    .502 (.097; .098) .963 .331 (.717; .621) .906– .180 (.674; .588) .906– 1.156+ [.981; 1.356]*  .401– [.209; .607] 
Normal   100 .495 (.063; .062) .957 .288 (.656; .547) .900– .227 (.608; .525) .900– 1.005 [.850; 1.179]  .337– [.180; .537] 
Log-gamma    .503 (.064; .061) .933– .236 (.707; .617) .900– .152 (.643; .594) .926– 1.261+ [1.035; 1.496]*  .443– [.228; .671]* 

* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value. 
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Table 5.10. Poisson modeling results for data generated from nested random effects Cox models with 50% censoring rate and two different assumed  
random effects distributions: median of point estimates, empirical standard error and mean of the estimated standard error for fixed effects as well  
as probability coverage, and interquartiles ranges [Q1, Q3] for variance component estimates, over 300 simulated datasets. 
True r.e.    ߚଵ  ߚଶ  ߚଷ  ߪଵଶ  ߪଶଶ 
dist’n ࢐࢏࢔ ܩ࢏࢔ ࢏࢔ median  (std; se) Pr. C. median  (std; se) Pr. C. median  (std; se) Pr. C. median  [Q1; Q3]  median  [Q1; Q3] 

True 2 30  .500  .300  .200  .500  .250 

Normal   10 .503 (.182; .178) .943 .224 (.593; .554) .933– .224 (.558; .512) .926– .406– [.249; .582]  .147– [.000; .324] 
Log-gamma    .495 (.190; .175) .920– .324 (.607; .571) .920– .200 (.573; .526) .913– .444– [.315; .639]  .134– [.000; .310] 
Normal   40 .498 (.082; .084) .963 .252 (.554; .500) .930– .248 (.506; .466) .910– .454– [.347; .577]  .136– [.000; .255] 
Log-gamma    .500 (.080; .083) .950 .273 (.557; .534) .933– .227 (.533; .498) .926– .547+ [.386; .734]*  .147– [.000; .285] 
Normal   100 .498 (.055; .053) .938 .303 (.526; .487) .942 .229 (.458; .456) .935– .453– [.332; .605]  .128– [.017; .263] 
Log-gamma    .493– (.052; .052) .936– .294 (.568; .518) .916– .144 (.545; .486) .896– .548+ [.405; .695]*  .134– [.005; .291] 
 5 75           
Normal   10 .491 (.102; .111) .967+ .291 (.491; .410) .887– .236 (.432; .386) .923– .475– [.389; .564]  .149– [.073; .255] 
Log-gamma    .490– (.109; .109) .953 .291 (.486; .433) .919– .225 (.480; .410) .886– .534+ [.442; .633]*  .184– [.098; .296]* 

Normal   40 .495 (.054; .053) .949 .339 (.418; .381) .909– .162 (.409; .367) .889– .491 [.415; .562]  .171– [.099; .265] 
Log-gamma    .491– (.054; .053) .933– .298 (.457; .417) .919– .231 (.435; .400)* .902– .595+ [.502; .699]*  .188– [.106; .277] 
Normal   100 .492– (.032; .033) .950 .303 (.423; .372) .907– .217 (.408; .359) .880– .487 [.424; .562]  .173– [.095; .263] 
Log-gamma    .498 (.031; .033) .960 .269 (.425; .396) .919– .215 (.401; .380) .933– .605+ [.514; .699]*  .170– [.090; .267] 

True 2 30  .500  .300  .200  1.000  .500 
Normal   10 .499 (.180; .180) .956 .186 (.795; .731) .922– .227 (.740; .682) .929– .813– [.545; 1.108]  .277– [.000; .610] 
Log-gamma    .508 (.174; .181) .967+ .202 (.914; .814) .933– .297+ (.803; .753) .930– 1.112+[.752; 1.554]*  .250– [.000; .570] 
Normal   40 .486– (.081; .084) .960 .187 (.773; .692) .923– .311 (.708; .646) .920– .881– [.700; 1.153]  .271– [.020; .506] 
Log-gamma    .479– (.086; .085) .959 .295 (.822; .799) .943 .285 (.842; .749) .912– 1.228+ [.914; 1.560]*  .349– [.000; .704] 
Normal   100 .491– (.056; .053) .926– .289 (.711; .684) .946 .225 (.626; .642) .946 .876– [.675; 1.188]  .262– [.042; .520] 
Log-gamma    .487– (.055; .054) .943 .294 (.851; .801) .926– .195 (.802; .750) .926– 1.302+ [.992; 1.660]*  .308– [.000; .696] 

 5 75           
Normal   10 .480– (.105; .113) .966+ .271 (.668; .551) .895– .234 (.585; .525) .926– .932– [.754; 1.090]  .315– [.183; .484] 
Log-gamma    .497 (.111; .114) .963 .321 (.694; .615) .906– .108– (.645; .588)* .900– 1.213+ [1.030; 1.420]*  .397– [.188; .646]* 

Normal   40 .483– (.053; .054) .950 .326 (.578; .529) .906– .149 (.565; .512) .893– .948– [.808; 1.103]  .341– [.202; .522] 
Log-gamma    .487– (.053; .054) .950 .322 (.683; .608) .906– .158 (.650; .583) .926– 1.341+ [1.154; 1.544]*  .420– [.206; .646]* 

Normal   100 .484– (.034; .034) .913– .295 (.600; .516) .907– .251 (.577; .499) .883– .953– [.841; 1.100]  .328– [.190; .491] 
Log-gamma    .485– (.035; .034) .910– .200 (.719; .619) .896– .157 (.661; .597) .920– 1.458+ [1.243; 1.711]*  .440– [.234; .667]* 

* Significantly different from the correctly specified model.  
– Significantly underestimated and + overestimated from the true value. 
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Chapter 6 

Concluding remarks and future research 
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6.1. Introduction 

The main objectives of this research project were twofold: first, to explore parameter 

estimation for semiparametric hierarchical proportional hazards models beyond the simple 

(shared) frailty models, and to evaluate through simulations the performance of the existing 

estimation methods for these models. The performance of the methods were investigated in 

terms of statistical properties such as unbiasedness, robustness, and confidence interval 

coverage. Second, two animal health datasets with thousands of records and time-dependent 

predictors and effects were analyzed.  

The specific objectives for each study involved in the thesis were as follows. The objective of 

the first study was to establish some practical guidelines for the choice of appropriate 

estimation procedures for estimating Cox models with random intercept and random slope 

(Chapter 2). The second study aimed to analyze a 3-level veterinary dataset with time-

dependent predictors and coefficients, and to evaluate the performance of the approach used 

and compare it with other existing approaches (Chapter 3). The purpose of the third study 

was to demonstrate the use of the Poisson maximum likelihood approach, in concert with 

posterior Bayesian inference, for estimating a cross-classified and multiple membership 

model with time-to-event response. Further, the multiple membership model analysis was 

applied to a large dataset from veterinary medicine (Chapter 4). Finally, the objective of the 

fourth study was to assess the robustness of Poisson maximum likelihood estimation for Cox 

models with normal random effects under misspecification of the random effects distribution 

(Chapter 5).  

In this chapter, the main findings and contributions of this work are summarized. Some future 

perspectives are also briefly discussed. 

6.2. Multi-component frailty Cox models    
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6.2.1. Cox model with random intercept and random coefficient 

In Chapter 2, through simulations, the performance of four procedures for estimating Cox 

models with random intercept and random slope commonly used in epidemiology and 

implemented in broadly accessible statistical software was compared. These procedures were: 

the penalized partial likelihood (Ripatti and Palmgren, 2000; coxme), the penalized full 

likelihood (Rondeau et al., 2008; frailtypack), the Poisson maximum likelihood (Ma et al., 

2003; Feng et al., 2005; xtmepoisson), and the Bayesian approach (WinBUGS). The 

simulation was designed to mirror settings of real animal health data. For each simulated 

dataset, two random intercept and random slope Cox models were fit; one assumed a 

diagonal covariance matrix for random effects and the other used a full covariance matrix. 

In this study, convergence problems were observed for PFL and PML, but the non-

convergence rate for the latter was lower and can be dealt with by changing the integration 

points of the Gauss-Hermite method. The PFL approach exhibited very low convergence 

rates when the magnitude of variance components was large and the optimum convergence 

rates were not assured even for a small magnitude of heterogeneity. When the covariance 

structure for random effects was correctly specified, the study showed satisfactory results for 

both independent and correlated random effects model analyses, whereas ignoring existing 

correlation between random effects led to biased estimates for fixed effect parameters when 

the variance was large, and such bias increased with increasing ߪ଴ଵ. 

Moreover, results from this comparative study showed that in terms of estimation of the fixed 

effect parameter, all the estimation procedures yielded good and comparable estimates when 

the between-cluster variability for the random effects was limited. In contrast, when the 

magnitude of variability for the random effects was large, only the PML and BAY procedures 

produced reasonable estimates for the fixed effect parameter, while it was underestimated by 
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PPL and the estimates of PFL were not of interest due to the high rate of non-convergence. 

The estimated and empirical SEs agreed closely for the PML, PFL, and BAY procedures. 

However, PPL underestimated the SEs of fixed effect estimates when ߪ଴ଵ ≠ 0. This 

underestimation of fixed effect SE was also pointed out in Ripatti and Palmgren (2000) and 

Therneau and Grambsch (2000, p. 249). For random effect parameter estimation, the 

performance of all the procedures for estimating ߪ଴ଶ was generally good, one exception being 

that PPL underestimated variance when the variance components were large. With the 

exception of PML with large variances, all the procedures produced estimates for ߪଵଶ that 

were mostly biased upwards when the variance components were small to moderate, and 

somewhat biased downwards for a large magnitude of variance components. All the 

estimation procedures tended to estimate ߪ଴ଵ with downwards bias in most cases. The SEs for 

 ଴ଵ were estimated with reasonable accuracy by PML, and by PFL whenߪ ଵଶ, andߪ ,଴ଶߪ

variance components were small to moderate, whereas the mean of posterior standard 

deviation for BAY overestimated such SEs. 

In conclusion, estimating the covariance between the random intercept and the random slope 

in the analysis is recommended and the PML approach seems to be a preferable choice for 

this task.   

6.2.2. Cox model with two nested frailties 

The current implementation of nested frailty Cox models, such as those implemented in 

coxme, frailtyHL, and frailtypack packages of R software, are limited to models with few 

predictors and moderate size of datasets. The coxme and the frailtyHL implementations of 

nested frailty models do not support the counting process format necessary for modeling 

time-dependent predictors. On the other hand, the implementation of nested frailty models in 

the frailtypack package assumes a gamma distribution for frailties and allows for time-
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dependent predictors and coefficients, but it requires the number of cluster to be at most 

moderate (a dataset of 6973 subjects from 18 areas nested in 6 cities was used in the original 

paper of Rondeau et al. (2006)). In Chapter 3, we applied a nested log-normal frailty model to 

a large dataset from a veterinary epidemiologic field with quite a large number of 

independent variables (many parameters); these independent variables include time-varying 

predictors and effects. The model was fit to the data as a Poisson GLMM after transforming 

the data to the counting-process format and use of the Gaussian quadrature method for a more 

accurate ML estimation. The estimation approach was then evaluated via a simulation study 

with a data structure similar to the real data. Through the simulation study, the performance 

of PMLGQ, PMLAP and PPL was compared in terms of bias in point estimates and their 

SEs. The study showed that the approach used with Gaussian quadrature produced fairly 

robust and adequate estimation for both fixed and random effect parameters as well as their 

SEs. On the other hand, the approach with Laplace approximation produced estimates for the 

between-subcluster variance with strongly upwards bias and underestimated the between-

cluster variance and the SEs of variance components. In comparison, the performance of PPL 

was good and comparable to PMLGQ in estimating the fixed effect parameters and their SEs. 

However, the procedure underestimated the between-subcluster variance. The take-home 

message from this comparison was that PMLGQ performed best. 

6.2.3. Cox model with a multiple membership and cross-classified frailties 

In this thesis, a cross-classified and multiple membership model was applied to time-to-event 

data. To the best of our knowledge, such a model has not previously been reported in the 

survival analysis literature. The model was estimated, through the identity between the Cox 

PH model and the Poisson model, as a mixed-effects Poisson model using Bayesian 

techniques. A simulation study was conducted to evaluate the approach using settings 
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resembling real data and another setting with a larger magnitude of heterogeneity and a more 

pronounced data structure. Results indicated that the proposed estimation approach 

performed well in estimating most of the model parameters when the data structure and the 

variance components were similar to the real data (8% of herds in a multiple membership and 

small variance components). Further, the estimation was clearly improved in the settings of a 

large magnitude of variance components and a more pronounced CMM data structure.  

6.2.4. Misspecification of the frailty distribution 

A simulation study was conducted to assess the robustness of Poisson maximum likelihood 

estimation for Cox models with normally distributed random effects against misspecification 

of the random effects distribution. The consequences of assuming normality of random 

effects to distributions that are clearly non-normal were examined. The impact of 

misspecification was assessed in three different frailty model designs, namely, shared frailty, 

random coefficient, and nested frailty Cox models. The results showed that the approach used 

provides robust estimation for fixed effects even with misspecified random effects 

distribution. On the other hand, misspecification of the random-effects distribution may have 

substantial impact on the estimation of variance components, especially when the magnitude 

of variability between random effects, number of groups, group size, and event rate are large. 

In these situations, caution needs to be exercised in the interpretation of the analysis.  

6.3. Analyses of real datasets 

In Chapter 2, a subset of the lameness data (Christensen, 1996) was used as an example to 

study the performance of four estimation methods based on a random coefficient Cox model. 

A Cox model with random herd and treatment effects was applied to the dataset and 

heterogeneity in the baseline hazard and in treatment effects between herds was quantified 

using the four estimation methods. Two analyses were carried out; one assumed a diagonal 
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covariance matrix for normally distributed random effects and the other used a full 

covariance matrix. Both analyses demonstrated substantial variation in the baseline hazard 

and in the treatment effect between herds, as well as a clear discrepancy in the estimation of 

fixed treatment effect between the two analyses. The simulation findings concur with such 

discrepancy and it may be attributable to the misspecifying of the correlation structure 

between random effects. Analysis and further exploration of the full lameness data can be 

found in (Stryhn and Christensen, 2013). 

In Chapter 3, a dataset from the Canadian Bovine Mastitis Research Network was analyzed to 

identify and evaluate risk factors associated with the hazard of clinical mastitis. The CBMRN 

data had 8,035 cows clustered by 69 herds; some of these cows with multiple lactations 

resulted in a dataset with two hierarchical levels of clustering at cow and herd levels. Due to 

the presence of time-varying predictors and effects, large number of predictors, large number 

of random effects at the cow level as well as the size of the CBMRN dataset, none of the 

existing frailty model software was able to handle such a dataset. Carrying over the identity 

between the Cox PH model and a Poisson model to the nested frailty models and using the 

theory and software for GLMMs, allowed us to fit a log-normal nested frailty Cox model to 

the CBMRN dataset. However, using this estimation approach can be challenging for such a 

large dataset as the data expansion into the counting-process format led to a massive dataset, 

that complicated the analysis and required excessive computing time.  Moreover, the large 

number of predictors in such large data produced complex interactions between predictor 

effects and increased the chance of violating model assumptions such as the proportionality 

of hazards, as well as complicating the model building process and the interpretation of 

results. In conclusion, the analysis of the CBMRN dataset demonstrated substantial variation 

in the baseline hazard among cows and between herds, and also indicated that some of the 

herd managerial factors combined with cow characteristics influenced the hazard of CM 



213 
 

during the lactation period; most of these effects had a strong effect early rather than later in 

the lactation. There was great value in accounting for the full structure of the CBMRN dataset 

by estimating variance components at the cow and herd levels and at the same time modeling 

time-varying predictors and effects. The PML approach offers the opportunity to analyze 

such large and complex datasets and models. However, the low incidence of failures and the 

large number of coefficients made model convergence challenging to achieve. Changing the 

integration points of the Gaussian quadrature method may help in these cases. Finally, the 

analysis of large datasets with quite many and complex predictors, such as in the CBMRN 

dataset, presents challenges beyond the estimation in itself. Such analyses may result in 

models with a complex network of interacted effects, e.g. including interaction with time. 

These effects are often hard to present and interpret. In this regard, the graphical presentation 

of predictor effects as well as purposely selected hazard ratios may aid the interpretations.   

In Chapter 4, a survival analysis was carried out for a dataset from the Western Canada beef 

productivity study (Waldner, 2008) to examine individual, herd management, and 

environmental factors associated with calf loss and mortality in beef cattle. The dataset was 

large in size and had a special structure. In addition to calves being hierarchically nested 

within herds, herds were cross-classified by veterinary clinics and ecological regions, and 

some of the herds were serviced by two veterinary clinics, creating a 3-level CMM data 

structure. A CMM frailty model was fit to the calf mortality dataset to account for both the 

special data structure and the time-varying effects for some predictors. The model was fit as a 

CMM Poisson model and estimated using Bayesian techniques which were computationally 

demanding. The analysis of calf mortality data showed a larger variation between herds than 

between both veterinary clinics and ecological regions, and a clear improvement in model fit 

after accounting for the variation between veterinary clinics and ecological regions. 

Furthermore, the analysis demonstrated that some of the individual and environmental factors 
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as well as some predictors related to biosecurity practices influenced the hazard of mortality 

in calves. Finally, we conclude from this and previous work that there was a benefit in adding 

complexity to a simple frailty model by taking into account both the time-varying effects and 

the hierarchical data structure. In addition to the improvement in the model fit, variances for 

herd, veterinary clinic, and ecologic region were quantified. MLwiN software provides the 

facilities to estimate the model as a CMM Poisson model using MCMC techniques. However, 

the analysis required excessive computing time.     

6.4. Estimation approaches 

6.4.1. Poisson modeling approach for frailty models 

The equivalence of a Cox proportional hazards model with a Poisson regression model 

(PML) has been known since the 1980s (Whitehead, 1980). Such equivalence can be carried 

over to the case of hierarchical survival data (Ma et al., 2003; Feng et al., 2005). Therefore, 

frailty models with an unspecified (or a piecewise constant) hazard function can be estimated 

as mixed-effects Poisson models. Using GLMM software, we can fit frailty models with 

random coefficients or several hierarchical levels of clustering as well as fitting frailty 

models to data with imperfect hierarchical structure such as cross-classified levels or/and 

multiple membership structure. Furthermore, with the Poisson modeling approach we can 

apply the adaptive Gaussian quadrature method for accurate maximum likelihood estimation 

or use Bayesian techniques for estimation. As the data need to be expanded to apply the 

approach, the latest version of Stata, where the memory is resized automatically, provides 

opportunity to analyze very large datasets (millions of records) with many predictors 

including time-varying predictors but of course with compromises in computing time. Also, 

Stata facilities for Poisson GLMMs are readily available for inference. 
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The Poisson modeling approach showed, in general, good performance in estimating different 

designs of frailty models including shared frailty, random coefficient, and nested frailty 

models using maximum likelihood estimation, and a cross-classified and multiple 

membership frailty model based on MCMC estimation. However, the approach tended to 

produce unrealistic SEs and CIs for maximum likelihood estimates of variance components 

when the number and the size of clusters as well as the event rate were small. The simulation 

study in Chapter 5 showed that the PML approach produced robust estimates under 

misspecification of the random effects distribution for both the within-group and between-

group fixed effects. Further, the approach also gave robust estimates for variance components 

in a wide variety of commonly encountered situations in veterinary medicine when both the 

magnitude of heterogeneity and event rate were small. Misspecification of the random effects 

distribution may become a problem for variance component estimates when the magnitude of 

heterogeneity, number of groups, group sizes, and event rate are large.   

6.4.2. Penalized partial likelihood approach 

The performance of the PPL approach (Ripatti and Palmgren, 2000) was assessed in this 

thesis based on a random coefficient Cox model including one individual-level predictor and 

simulation settings with varying magnitude of heterogeneity and heavy censoring. The 

approach was also evaluated based on a Cox model with two normally distributed nested 

random effects including three predictors at different hierarchical levels and simulated 

datasets of correlated event times with a high rate of censoring. The approach performed well 

in estimating the fixed effect parameters and SEs under the nested frailty model and the 

random coefficient model as long as the magnitude of heterogeneity was small. For a large 

magnitude of heterogeneity, PPL underestimated the within-cluster fixed effect as well as its 

SE when a full covariance matrix for random effects was assumed in the analysis. Based on 
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the random coefficient model, the PPL approach performed reasonably well in estimating the 

variance components for a relatively small magnitude of heterogeneity and tended to 

underestimate them for a large magnitude of heterogeneity. Similarly, PPL gave a good 

estimate for the variance at the cluster level in nested frailty model and underestimated it at 

the subcluster level. Finally, the current implementation of PPL in R software (coxme) did 

not provide SEs for variance component estimates nor support the counting-process data 

format needed for modeling time-varying predictors and effects. However, its algorithm was 

fast to converge and did not suffer from convergence problems. 

6.4.3. Other estimation approaches 

Two other estimation approaches were used in this thesis; the penalized full likelihood 

(Rondeau et al., 2008) and Bayesian approaches. The performance of both approaches was 

assessed based on a random coefficient Cox model, so our discussion will be limited to this 

model design. The PFL approach experienced a lot of convergence difficulties, especially in 

the cases of a large magnitude of variance components, such a convergence problem was also 

pointed out in Hirsch and Wienke (2012) but based on a shared frailty model. PFL performed 

reasonably well in estimating all model parameters and their SEs as long as the magnitude of 

heterogeneity was small to moderate. The Bayesian approach, on the other hand, showed a 

good performance in estimating the fixed effect and its SE as well as the variance of random 

intercept, whereas it gave estimates for the random slope variance biased upwards for a 

relatively small magnitude of heterogeneity and biased downwards for a large magnitude of 

heterogeneity. Further, the posterior standard deviations tended to overestimate the variability 

between variance component estimates. Finally, the Bayesian procedure was a computer-

intensive technique and required special software.  

6.4.4. Recommendations 
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The multi-component frailty models including the random coefficient model, nested, and 

non-nested frailty models have several advantages over one-component (shared) frailty 

models. In addition to quantifying heterogeneity in the baseline hazard at different 

hierarchical levels, they improve the model fit and the estimation of fixed effects and handle 

predictors at different hierarchical levels as well as allowing for predictor effects to vary 

between clusters. Stumbling blocks in the use of multi-component frailty models relate to the 

estimation of parameters and the lack of software. One recommendation to overcome these 

problems is to convert frailty models into mixed-effects Poisson models and generate 

estimations using available software for GLMMs. Other specific recommendations that can 

be drawn from this work are: 

(1) The use of the Poisson modeling approach in concert with posterior Bayesian 

inference is recommended for modeling imperfectly hierarchical survival data, 

although further research is needed to confirm the validity of this approach under 

different circumstances. 

(2) The Poisson maximum likelihood approach with Gaussian quadrature is always 

recommended. However, for a small magnitude of heterogeneity unrealistic SEs and 

CIs may be obtained by the approach based on shared and nested frailty models when 

the number of clusters, cluster size, and event rate are small; in such cases these 

statistics should not be used for inference.  

(3) For substantial heterogeneity, the dataset has to be carefully inspected and if possible 

different frailty distributions have to be used in the analysis to check the robustness of 

the model parameter estimates.  

(4) In random coefficient models, estimating the correlation between the random 

intercept and the random slope is recommended. 
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(5) The penalized partial likelihood approach is recommended for quick data exploration 

and its fixed effects estimates may be used for inference as long as the magnitude of 

heterogeneity in the data is small. 

6.5. Future perspectives 

Although, the thesis presents different model designs and their estimation approaches for 

analyzing hierarchical survival data beyond the shared frailty model analysis, there are many 

other aspects related to the analysis of hierarchical survival data that are not covered and may 

be considered as topics for future research. In Chapters 2 and 3, the simulation studies were 

built to mirror settings of specific datasets and the performance of the estimation procedures 

used was evaluated based on those settings. Further research may be needed to assess the 

effect of other factors such as the censoring rate, number of clusters, cluster size, type of 

predictor and type of baseline hazard on the performance of estimation procedures. 

Furthermore, evaluating the feasibility of 3-level Cox models with random coefficients using 

either the Poisson modeling approach or extending one of the other existing estimation 

approaches may be of great interest in the future. Another thought is to explore and apply 

time-dependent frailty models that can deal with the situation where we believe that the time-

varying frailty exists; this phenomenon might be found in large veterinary data. Moreover, 

development of likelihood-based estimation techniques for special frailty models such as 

multiple membership and cross-classified frailties could also be a topic for future research. A 

possible solution might be to use GLLAMM and implement the model as a mixed-effects 

Poisson model. There are other open issues such as, extending frailty model software to 

support counting-process formatted data, providing tools for testing proportional hazards and 

goodness-of-fit in frailty models and quantifying correlation at different hierarchical levels, 

developing an algorithm for simulating survival data from a frailty model with time-varying 
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effects, and extending other survival models to allow for different data structures in the cases 

where PH models do not provide adequate analysis. 
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