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ABSTRACT 

 

Modelling is a useful tool that has been applied in both human and animal 

epidemiological research. A model is a simplified system that represents a much more 

complex phenomenon. Various types of models are available. They are generally used for 

the purposes of explaining phenomena, making predictions, or exploring different 

scenarios. Several challenges have been encountered during the construction of models in 

aquatic animal health and are discussed in the dissertation. The research documented in 

this dissertation aimed to demonstrate the application of modelling to address specific 

health and production issues associated with two aquatic animal species (blue mussels 

and wild Pacific salmon). 

The first problem dealt with sea lice infestations in wild Pacific salmon 

populations on the west coast of British Columbia, Canada. The levels of sea lice 

infestations on wild chum and pink salmon were described and factors associated with 

inter-annual variation of the infestations were identified using a multivariable logistic 

regression model. This model included site information as a random effect, to account for 

spatial aggregation, which provided further details on the degree of clustering at the site 

level and suggested that the infestation levels depended on the location of fish. This 

raised the question as to where the risks were and, as a result, a spatial cluster analysis 

technique (i.e. spatial scan statistics) was used to identify when and where the clusters (of 

elevated sea lice infestation levels) occurred. The results from clustering analysis can 

facilitate the hypothesis-generating process for future studies. 
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The second issue was the problem of mussel loss due to biofouling by tunicates 

(Ciona intestinalis) on Prince Edward Island mussel farms, which was assessed through 

the use of a mathematical model to describe the dynamics of C. intestinalis populations 

over the growing season. The model incorporated temperature dependencies, which 

allowed for the assessment of population dynamics under different temperatures, and was 

then used to evaluate the effectiveness of different mitigation strategies, using fewer 

resources than would be required if field trials were undertaken.  

The research documented in this dissertation demonstrates the use of modelling to 

address production and health issues in the context of aquatic animals. In addition to the 

use of field-based trials the research also suggests that modelling can be used as an 

alternative method to investigate various scenarios and facilitate management planning 

with advantages in time and cost savings.
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1.1. Introduction 

1.1.1. World aquaculture and wild fisheries 

Global fish production has grown steadily, with an average annual growth 

rate of 3% over the past five decades (Food and Agriculture Organization of the United 

Nations, 2014). In 2012, close to 160 million tonnes of fish were produced around the 

world, about half of which came from aquaculture. World per capita apparent fish 

consumption increased from an average of 9.9 kg in the 1960s to 19.2 kg in 2012 (Food 

and Agriculture Organization of the United Nations, 2014). To keep up with the 

increasing global demand of fish protein, the aquaculture industry has expanded 

production by introducing new species that give high yields and developing new culture 

systems and practices, which can influence the spread of pathogens, resulting in disease 

outbreaks (Murray and Peeler, 2005). 

The shift from small to large scale aquaculture production has resulted in 

the need to improve management and culture systems (Muench et al., 1986). In the past, 

research and development within the aquaculture sector focused mainly on production 

enhancement to achieve economic viability (McSweeny, 1986). However, as is the case 

in any business, the ideal aquaculture farm is one that can not only maximize production 

but can minimize losses, which are commonly a result of disease or poor husbandry 

practices. 

1.1.2. Production and health issues in aquatic animals 

Health issues in aquatic animals may relate to environmental stress 

factors, such as sea water temperature, salinity, or pollution in water from organic or 
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chemical compounds (Bly et al., 1997). The problem may also be associated with 

infection by disease organisms, which may cause morbidity and/or mortality in the 

aquatic animals. 

This dissertation focuses mainly on the use of different modelling 

approaches in addressing the health and production problems in two aquatic animals. 

These are, wild Pacific salmon on the coast of British Columbia, Canada and the Prince 

Edward Island (PEI) blue mussel (Mytilus edulis Linnaeus, 1758), which are used as case 

studies to explore a range of research questions, such as risk factor analysis and 

simulation of disease transmission to assess the effect of interventions. The following 

section provides an overview of the disease context, as well as the current research 

methods and challenges associated with each case study. 

I) Wild Pacific salmon and sea lice infestation 

The presence of wild Pacific salmon in Canadian water systems can be 

traced back four to six million years, as a result of their ability to move between fresh and 

salt water (anadromous), which has allowed them to survive through at least five major 

ice ages (Agricultural and Agri-Food Canada, 2002). Chum (Oncorhynchus keta 

Walbaum, 1792) and pink salmon (O. gorbuscha Walbaum, 1792) are the two most 

abundant wild Pacific salmon species found in the North Pacific Ocean (Noakes and 

Beamish, 2011). Juveniles belonging to these species are similar in that they enter 

estuarine habitats soon after they hatch, at mean weights of <1 g. These juvenile salmon 

disperse into deeper coastal waters following an initial period of acclimation to saltwater 

that occurs in nearshore habitats (Heard, 1991; Salo, 1991) where there tends to be an 
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increased risk of exposure to sea lice (Morton and Williams, 2003; Jones and Hargreaves, 

2007; Gottesfeld et al., 2009). 

Sea lice are parasitic copepods of the family Caligidae, which infest both 

wild and farmed salmonids (Boxaspen, 2006). The most commonly reported sea lice 

species on wild salmonids on the west coast of Canada are Lepeophtheirus salmonis, 

Krøyer, 1837, and Caligus clemensi, Parker & Margolis, 1964 (Morton and Williams, 

2003; Jones and Nemec, 2004; Krkošek et al., 2005b). These salmon parasites feed on the 

hosts’ skin, mucus, and blood, which can cause skin erosion, facilitating secondary 

infections with opportunistic bacteria (Mustafa, 1997), and increase susceptibility to and 

risk of viral infection (Petterson et al., 2009; Jakob et al., 2011). Because the parasite’s 

attachment to the host causes a generalized stress response mediated through cortisol 

release, resulting in immune function suppression (Wagner et al., 2008), large numbers of 

mobile L. salmonis can result in host morbidity and mortality (Pike and Wadsworth, 

1999). 

In the past, the salmon supply in Canada relied on wild capture; however, 

due to the increasing demands, salmon farming in British Columbia was first started in 

the early 1970s (Coastal Alliance for Aquaculture Reform (CAAR)). Concerns about the 

impact of fish farming on the ocean and on communities have been raised by fishermen 

and environmentalists; and disease agent exchange between wild and farmed salmon, 

including sea lice, has been one of these concerns (Krkošek et al., 2005a, Marty et al., 

2010).  
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Indeed, the issue of sea lice infestation in wild Pacific salmon populations 

has been a public focus of attention over the past decade (Morton and Williams, 2003), 

and several surveys and monitoring programs were developed to evaluate sea lice 

infestations in wild salmon at various locations on the west coast of Canada (Jones and 

Nemec, 2004; Beamish et al., 2005; Krkošek et al., 2005b; Jones and Hargreaves, 2007). 

The impact of sea lice on wild Pacific salmon has been the focus of a number of studies 

(Jones and Hargreaves, 2007; Krkošek and Hilborn, 2011). Some have addressed the 

problem of high sea lice infestation levels in wild Pacific salmon populations associated 

with the open sea-cage aquaculture (Morton et al., 2005; Krkošek et al., 2007a; Price et 

al., 2010). Different modelling approaches have been applied in these sea lice studies. 

Several models have been developed to assess the transmission of sea lice between wild 

and farmed salmon (Krkošek et al., 2005a; Krkošek et al., 2006). The ecological and 

economic impact of sea lice from salmon farms on wild salmon populations has been 

evaluated using an age-structured disease model coupled with an economic model (Liu et 

al., 2011). Additionally, circulation models have been developed to study the impact of 

hydrodynamics, for example in the Broughton Archipelago (Foreman et al., 2006; 

Foreman et al., 2009), which aid in understanding the dispersal of sea lice (Stucchi et al., 

2011).  

Jones & Nemec (2004) suggested that spatial aggregation may be an 

important dimension in understanding the impact of sea lice infestations on wild salmon. 

However, a significant degree of inter-annual variability has been reported in several 

studies (Jones et al., 2006; Jones and Hargreaves, 2007; Krkošek et al., 2007b; Saksida et 

al., 2011) that needs to be taken into consideration. 
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These spatial and temporal infestation patterns and the impact of sea lice 

on wild salmon at the population level are still not well understood. The debate around 

the effect of salmon farming on the populations of wild Pacific salmon remains (see, for 

example, Marty et al, 2010, and Krkošek et al, 2011). In order to better understand the 

impact on sea lice infestations in wild salmon, the effect of factors related to study 

designs and the disease itself need to be separated and studied. For instance, the time at 

which sampling takes place, and the differences in sampling protocols (e.g., seining 

techniques and sea lice evaluation using lethal and non-lethal sampling methods) need to 

be understood. In addition, how much of the difference is associated with the natural 

inter-annual variability of sea lice infestation levels on salmon, and the spatial 

aggregation of sea lice infestations in wild salmon. These questions led to the 

establishment of a research collaboration between several interested organizations. 

In 2010, a collaborative research program, the Broughton Archipelago 

Monitoring Program (BAMP), was developed with involvement of the salmon farming 

companies operating in the Broughton Archipelago, Fisheries and Oceans Canada (DFO), 

university researchers, and the Coastal Alliance for Aquaculture Reform (CAAR). A key 

objective of BAMP was to gain a better understanding of sea lice levels and their 

dynamics on juvenile wild pink and chum salmon in the Broughton Archipelago. As part 

of the BAMP initiative (www.bamp.ca), historical data (from 2003 to 2009) were pooled 

to create a unified database, while a standard sampling protocol was also developed and 

implemented, starting in 2010. 

With the aim of summarizing this large dataset in order to gain a better 

understanding of the various factors that may be associated with variations of sea lice 
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infestation levels in wild salmon populations, the use of statistical modelling, which 

allows for the evaluation of the associations between an outcome and multiple variables 

to explain the occurrences of sea lice infestations, is explored in Chapter 2. In addition, a 

spatial cluster modelling technique was used to evaluate the spatial aggregation of sea 

lice infestations, and is described in Chapter 3. 

II) PEI blue mussel and biofouling by invasive tunicate species 

In 2012, mussels accounted for 68% of total Canadian shellfish production 

(41,301 tonnes), with an estimated market value of CAD$44.5 million (Statistics Canada, 

2013). The PEI blue mussel industry produced approximately 78% of all mussels 

cultured in Canada (Statistics Canada, 2013). In PEI, mussels are cultivated using the 

suspended method with a longline system at the sea surface (Figure 1.1). After retrieving 

the mussel seeds from the wild, mussels are packed in sleeves (or socks), which are tied 

to a backline (i.e. a long rope attached to several buoys to prevent the rope from sinking). 

The socks are then suspended vertically under the sea water for 18-24 months until the 

mussels reach market size (approximately 5.5-6 cm) (Fisheries and Oceans Canada, 

2006). 

Over the past 15 years, the industry has encountered increasing challenges 

related to aquatic invasive species, especially tunicates. These biofouling species compete 

for food and space, reduce water flow rates from species overgrowth, and jeopardize 

mussel health and yield. This can cause significant economic losses to both mussel 

farmers and processors, as a consequence of the costs associated with controlling tunicate 

growth and the additional labour required during the mussel cleaning process at 
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processing plants (Carver et al., 2006; Fisheries and Oceans Canada, 2006; Daigle and 

Herbinger, 2009). 

Four species of invasive tunicates are found in PEI (MacNair, 2005; 

Fisheries and Oceans Canada, 2006): clubbed tunicate (Styela clava Herdman, 1881), 

vase tunicate (Ciona intestinalis Linnaeus, 1767), golden star tunicate (Botryllus 

schlosseri Pallas, 1766), and violet tunicate (Botrylloides violaceus Oka, 1927). Of these, 

the vase tunicate is considered to be the greatest threat for PEI aquaculture. Two years 

after the first identification of C. intestinalis in the Montague River, PEI, in the autumn of 

2004, it became the dominant fouling species, causing severe problems for the PEI 

mussel industry (Carver et al., 2006; Ramsay et al., 2008). 

C. intestinalis is a fast growing, solitary tunicate, with a short-lived 

planktonic stage, which becomes a sessile filter feeder after settling and metamorphosis 

(Carver et al., 2006). Because of the rapid growth of the C. intestinalis population, a 

mussel sock can be infested with a heavy tunicate biomass in a short time, compromising 

the mussel attachment to the socking material, and resulting in mussel loss due to fall-off 

when socks are lifted (Figure 1.1) (Gill et al., 2007). 

A number of mitigation techniques are used to remove tunicates from 

mussel socks and aquaculture gear; including mechanical, chemical, and natural methods 

(e.g., calcium hydroxide (hydrated lime) for S. clava, 4% acetic acid treatment for C. 

intestinalis, and mechanical methods (high-pressure washing with water) for C. 

intestinalis (Carver et al., 2003; Carver et al., 2006; Ramsay, 2008)). The use of rock crab 

and green crab predation to control tunicate populations on infested mussel socks has also 
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been explored (Carver et al., 2003; Gill et al., 2007), but high-pressure washing is the 

mitigation method used most often by farmers in PEI to control C. intestinalis 

populations (Paetzold et al., 2012). This method can knock up to 100% of C. intestinalis 

(Carver et al., 2003); however, the effect does not last long, as new tunicate larvae 

quickly settle on the mussel socks, especially during the warm months when larval 

abundance and recruitment levels are at their peaks (Ramsay, 2008; Ramsay et al., 2009). 

Time of treatment is an important factor that should be taken into account, 

in order to achieve a treatment that can effectively control the biomass of tunicates 

fouling the mussel socks (Gill et al., 2007; Davidson et al., 2009; Arens et al., 2011). A 

conventional approach, involving field trials, has been conducted for colonial tunicates 

(Arens et al., 2011; Paetzold et al., 2012) and C. intestinalis (Davidson et al., 2009) to 

carry out a comparison of effectiveness between different mitigation strategies in terms of 

treatment timing and frequency. Biologically, it appears that the more frequently 

treatments are applied, the lower the C. intestinalis biomass. Investigating a variety of 

possible scenarios to determine cost-benefit trade-offs in the field is difficult, since these 

trials require considerable time to execute and are both cost- and labour- intensive. As a 

result, the use of computer-based modelling, which allows for an evaluation of the likely 

impact of changes in treatments prior to implementation, is explored in Chapters 4 and 5 

of this dissertation. 

1.1.3. Modelling 

Modelling is a tool that has been applied in both human and animal 

epidemiological research. A model is a simplified system, representing a much more 

complex phenomenon (Leung, 1986; Schichl, 2004; Vynnycky and White, 2010), and the 
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construction of a model involves putting together dominant elements that best explain the 

behaviour of the system in question. Because it is impossible to build a perfect model that 

can completely describe a real world event, the process of model building usually 

incorporates only that set of variables which contribute to the explanation of a particular 

question and, hence, the usefulness of each model is restricted to its scope of application 

(Schichl, 2004). There are three important properties that have to be balanced when 

constructing a model: accuracy, transparency, and flexibility (Keeling and Rohani, 2008). 

The appropriate trade-offs between these elements depend on the goal of the model. 

Models have different functions. They are generally used for the purposes 

of explaining phenomena, making predictions, or exploring different scenarios. 

a) Models that aim to explain phenomena in the real world have been applied in many 

areas of study, for example: predator-prey models in ecology – e.g., a model that explores 

the response of ascidian as a predator on the change in prey density levels (Whitlatch and 

Osman, 2009); epidemiological models that use statistical methods to find relationships 

between various factors and disease outcomes – e.g., a logistic regression model to find 

risk factors associated with Toxoplasmosis in sea otters (Miller et al., 2002); or the use of 

spatial cluster modelling to detect spatiotemporal clustering patterns of Rift Valley Fever 

outbreaks in Tanzania (Sindato et al., 2014). 

b) After models have been built to explain phenomena, they can often be used further to 

make predictions about real world events. Models that are built for this purpose require a 

higher degree of accuracy, especially when the results are used to help policy makers in 

the decision-making process (Schichl, 2004; Keeling and Rohani, 2008). The UK foot-

and-mouth epidemic in 2001 is an example where modelling has been widely used to 
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predict disease events, and to develop strategies for disease outbreak control (Morris et 

al., 2001; Keeling et al., 2003). 

c) Models also allow for an exploration around an event of interest, such as a disease 

outbreak, and the effectiveness of different control strategies under a range of scenarios 

by simulating large numbers of virtual ‘what-if’ experiments associated with the event. 

This becomes very useful when such experiments are not practical in the real world due 

to ethical, economic, or logistic limitations (Keeling and Rohani, 2008; Vynnycky and 

White, 2010). 

In epidemiology, models are constructed in an attempt to understand 

factors related to disease occurrence, to predict the patterns of an outbreak, and to explore 

the outcomes of the model when various alternative control strategies are adopted. The 

use of models can benefit policy makers in that they provide guidance for choosing the 

most effective disease mitigation strategies and can increase understanding of the life-

cycles of infectious agents. 

1.1.4. Applications of modelling in aquatic epidemiological research 

Disease transmission in aquatic environments typically differs from that 

seen in the context of terrestrial animals, and as such existing models are often not readily 

adaptable. Some methods can simply be adopted from those used in terrestrial systems 

(e.g., risk factor analysis and statistical models), while others require more effort to 

modify in order to take into account the differences in transmission mechanisms and 

environmental settings. Two modelling approaches are discussed in this section: 
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statistical and mathematical models. Examples of these types of models and their 

applications to animal health in aquatic environments are presented in Tables 1.1 and 1.2. 

I) Statistical models 

Statistical models predict future trends from observed or historic data, 

using statistical techniques to describe a relationship that is believed to exist between the 

outcome and a predictor (for a simple regression model) or multiple predictors 

(multivariable regression model) (Dohoo et al., 2009, pp. 323-364). In epidemiological 

research, disease status and health event are the outcomes that epidemiologists are often 

interested in, while predictors are linked to a range of exposures, such as demographic 

characteristics, environmental factors, location of an individual (i.e. spatial factors), as 

well as time. 

Statistical models are relatively common in the research of aquatic animal 

diseases. They have been used to describe parasite loads in fish populations, for example, 

a generalized linear model was used to identify risk factors associated with sea lice levels 

on farmed Atlantic salmon (Revie et al., 2003), or a multivariable, two-part random 

effects model was used to determine the source of sea lice on salmon farms in Chile 

(Kristoffersen et al., 2013). Additionally, multilevel models were used to determine the 

degree of spatial aggregation of renal myxosporidiosis in wild brown trout populations 

(Peeler et al., 2008), and space-time aggregations of infectious pancreatic necrosis virus 

in Scottish Atlantic salmon farms (Murray, 2003). Some studies have applied regression 

models to obtain parameter estimates used in their mathematical models (Revie et al., 

2005; Taylor et al., 2011; Groner et al., 2013), while others have used regression models 
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to analyze the output simulated from the model or to make comparisons between 

observed and modelled data (Krkošek et al., 2005a; Murray and Raynard, 2006). 

Additionally, statistical models have been applied to evaluate spatial 

elements of disease or events of interest in epidemiological studies. Various methods 

have been developed to assess the spatial aggregation of disease or events of interest, 

which help to elucidate spatial patterns of disease and can be useful in disease 

surveillance and the hypothesis-generating process. The methods for analyzing clusters 

can be classified as ‘global’ and ‘local’, based on their properties (Pfeiffer et al., 2008).  

Global methods only assess whether clustering exists in the study region, while local 

methods are used to identify where in that study region disease clusters are located. One 

of the most common methods used for cluster detection is the spatial scan statistic 

(Kulldorff, 1997). Examples that use of this technique include a determination of the 

clustering of salmonids with antibodies against viral haemorrhagic septicaemia virus in 

Switzerland (Knuesel et al., 2003), or the identification of areas with low or high risk of 

Toxoplasma gondii infections in southern sea otters (Miller et al., 2002), and the 

detection of space-time clusters of infectious salmon anemia virus cases in Chilean 

Atlantic salmon farms (Godoy et al., 2013). 

II) Mathematical models 

Mathematical models use equations to explain the change(s) in a system 

from one state to another and can be analyzed in a precise way by means of mathematical 

theory and algorithms (Schichl, 2004). Such models can be used in the design and 

analysis of large, complex, and dynamic systems, since the cost of deriving knowledge 
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from the model is generally much lower than acquiring such information in the real world 

system (Leung, 1986). Moreover, mathematical models are adaptable and can be 

manipulated by digital computers, and thus the approach is adopted to use in many fields 

of study, including human and animal epidemiological research. Examples of 

mathematical models include the compartmental model (e.g., SIR: susceptible-infectious-

recovered model), population dynamic models, and agent-based models. 

Compartmental and population dynamic models divide the population into 

different compartments, and models how the population in each compartment changes 

over time. The compartments are categorized, based on the individual’s disease status for 

the compartmental model, and characteristics of the individual (e.g., age, size, 

developmental life stage, etc.) in the population dynamic model. These models function 

under the assumption that each compartment is homogeneous, while an agent-based 

model offers more flexibility to incorporate individual level heterogeneities such as 

demographic characteristics and level of susceptibility to an infection.  

Population dynamic models concentrate on population growth and use the 

rate-based approach to model the dynamics within a population. This type of model has 

long been used in aquaculture engineering to understand the ecology and improve the 

culture systems of aquatic food animals (Polovina and Brown, 1978; Chamberlain et al., 

2006; Sadykova et al., 2009; Rosland et al., 2011). In terms of diseases, population 

dynamic models have been coupled with the natural history of the disease to the study of 

macro-parasite populations with the intention of mitigating the impacts on the host 

species. Revie et al. (2005) modelled the growth of sea lice populations on farmed 

Atlantic salmon in Scotland and used the model to evaluate treatment strategies to control 
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these parasite population levels (Robbins et al., 2010). Population dynamic models may 

also be used together with compartmental models (e.g., SIR model) to describe 

transmission of a disease in an age-structured population (Schenzle, 1984). One example 

of this type of age-structured model was applied to whirling disease in a population of 

salmonids in order to describe disease status (e.g., susceptible and infected stages) in 

three developmental stages of salmonids (Turner et al., 2014). 

1.1.5. Challenges for modelling diseases in aquatic environments 

Various challenges will likely be encountered in any effort to model 

diseases in aquatic environments. Some of these issues may also be found in modelling 

diseases in terrestrial and wild animals. Examples include missing data, parameter 

estimation, ecological or environmental-dependent factors, clustering, and distance 

measurement. Some of these issues are introduced below. 

Missing data can be a challenge in many types of study, including those 

involving modelling. In the case where the missing data do not occur at random, this will 

likely cause bias, for example, in the association between two factors. Data imputation, a 

process of replacing missing values with values predicted from the available data, may be 

used to mitigate the missing data problem to an extent, assuming that enough data are 

available (Dohoo et al., 2009, pp.365-394). 

Parameter estimation is a key step in the model-building process. This 

whole process of model construction can be challenging when there is limited 

information to carry out such estimation. Additional laboratory work can sometimes be 

carried out to obtain more information regarding parameters; however, this will not be 

possible in many studies due to limited time and/or budget. An alternative approach to 
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dealing with this challenge is to perform sensitivity analysis to explore the extent to 

which the modelled output is sensitive to changes in values of a particular parameter 

(Smith et al., 2008). This may help in justifying additional laboratory or other research 

that may be required to better estimate the parameter. 

Models of diseases in aquatic animals are often found to involve 

environmental-dependent parameters, such as temperature- and salinity- dependent 

parameters, which can add more complexity to the model. This has also been seen in 

studies of vector-borne diseases (Karim et al., 2012; Ogden et al., 2014). One study  

normalized the environmental-forcing parameters before including them in the model 

(Jian et al., 2014), while other studies use the approach of ‘degree-day’, which measures 

numbers of days required to reach a certain cumulative temperature, to drive the 

temperature-dependent parameters in a model (Dobson et al., 2011; Mweya et al., 2014). 

Clustering occurs when the observations in a dataset share some common 

features (Dohoo et al., 2009, pp. 529-552). For example, salmon from the same cage (i.e. 

sharing the same environment) may be exposed to a similar level of sea lice infestation, 

as compared to those located in other cages (Revie et al., 2007). Clustering can cause the 

violation to the assumption of independence in many statistical models, and can lead to 

bias of the estimate and an incorrect estimate of standard error if the analysis is carried 

out without appropriate adjustment. Several methods can be used to deal with clustering, 

depending on the type of data; including mixed, or random effects models, generalized 

estimation equations (GEE), and robust variance (Dohoo et al., 2009, pp. 529-552). 

The dispersal of organisms in an aquatic system can be affected by a range 

of factors associated with the hydrodynamics of the water body. The distance that an 
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organism can travel may depend on intrinsic factors (e.g., animal size, accumulated 

energy, etc.), as well as extrinsic factors, such as light, tide and water current speeds. 

Euclidean distance is the common method by which to measure the distance from one 

place to another (Knuesel et al., 2003; Godoy et al., 2013). However, this measuring 

system is often unsuitable for use in the study of disease transmission in aquatic 

environments, which may involve coastal geography. In such cases, a measurement 

involving some non-Euclidean metric (such as sea-way distance) should be considered to 

better represent the realistic distances that an organism may travel. 

1.2. Objective 

1.2.1. Overall objective 

This dissertation focuses on the application of modelling to better 

understand and address health and production issues of aquatic animals. The main 

objective of the research documented in this dissertation is to illustrate the use of 

statistical and mathematical models in aquatic epidemiological research to solve 

problems that occur in the aquatic environmental setting, focusing on two aquatic host-

parasite systems: sea lice infestations on wild Pacific salmon in British Columbia, and 

invasive tunicate species on PEI blue mussels. 

1.2.2. Specific hypotheses 

The research in the various chapters of this dissertation attempted to 

address the following hypotheses: 

i. That the use of multivariable logistic regression is appropriate for the purpose of 

examining the temporal patterns (inter-annual trends) of sea lice infestations on wild 
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Pacific salmon populations and the factors, such as fish species, fish length, month, and 

gear type used for sampling, that are associated with such infestations (Chapter 2). 

ii. That space-time cluster modelling is a sufficient approach to describe the spatio-

temporal patterns of elevated sea lice infestations on wild Pacific salmon populations by 

identifying geographic areas and times that fish infested with sea lice appear to be 

clustered, and allows for a comparison of the spatial-temporal distribution of different sea 

lice (C. clemensi and L. salmonis) and fish (chum and pink salmon) species (Chapter 3). 

iii. That the space-time cluster modelling approach facilitates the hypothesis-generation 

process, by providing additional information concerning factors whose association with 

sea lice infestation should be investigated at the spatial level (Chapter 3). 

iv. That spatial aggregation of sea lice infestation can be assessed by different modelling 

methods, depending on the goal of the analysis (Chapters 2 and 3).  

v. That a mathematical model using a rate-based system dynamics approach is an 

adequate framework to mimic the population dynamics of C. intestinalis for the purpose 

of investigating its likely infestation characteristics on a mussel farm (Chapter 4). 

vi. That a mathematical model using rate-based system dynamics can effectively serve as 

a tool to explore different mitigation strategies, in terms of combining treatment timing 

and frequency, to control C. intestinalis populations in areas with mussel production 

(Chapter 5). 

vii. That the dynamics of C. intestinalis populations are significantly influenced by sea 

water temperatures and that this impact can be assessed by means of a mathematical 

model that adopts a rate-based system dynamics approach (Chapters 4 and 5). 
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Figure 1.1 Diagram of mussel cultivation in Prince Edward Island using the suspended method 

with a longline system, for the non-infested socks (left) and Ciona intestinalis infested socks 

(right).



 
 

Table 1.1 Examples of statistical modelling approaches used to study production and health issues associated with animals in an aquatic 

environmental setting. 

Approach Subject of 

assessment/ purpose 

Animal 

species 

Pathogen Brief description References 

Statistical model 
Regression analysis Risk factors Atlantic 

salmon 

Sea lice Use of GLM to identify factors affecting sea 

lice abundance on salmon  

(Revie et al., 2003) 

 Risk factors Atlantic 

salmon 

Sea lice Using multivariable, two-part random effects 

model was used to determine the source of 

pathogens 

(Kristoffersen et al., 2013). 

 Disease surveillance Wild brown 

trout 

Myxosporidia Estimation of prevalence variances to 

determine degree of spatial aggregation of 

disease 

(Peeler et al., 2008) 

 Disease surveillance Atlantic 

salmon 

IPNV1 Determining the space-time aggregation of 

disease 

(Murray, 2003) 

 Parameter estimation Atlantic 

salmon 

Sea lice Data fitting to estimate parameters for a 

mathematical model 

(Revie et al., 2005) 

 Parameter estimation Carp KHV2 Estimating transmission probability (Taylor et al., 2011) 

Spatial analysis Disease surveillance Sea otter Toxoplasma 

gondii 

Identifying areas with low or high risk of the 

infections 

(Miller et al., 2002) 

 Disease surveillance Salmonids VHS3 Determining the clustering of infected 

salmonids in Switzerland 

(Knuesel et al., 2003) 

 Disease surveillance Atlantic 

salmon 

ISAV4 Detecting space-time clusters of cases in 

Chilean farmed salmon 

(Godoy et al., 2013) 

1 Infectious pancreatic necrotic virus 
2 Koi herpesvirus 

3 Viral hemorrhagic septicaemia virus 
4 Infectious salmon anemia virus 

  

3
3

 



 
 

Table 1.2 Examples of mathematical modelling approaches used to study production and health issues associated with animals in an aquatic 

environmental setting. 

Approach Subject of 

assessment/ purpose 

Animal 

species 

Pathogen Brief description References 

Deterministic 

compartmental 

model 

Disease spread Salmonids Sea lice Exploring the emergence of treatment-

resistance sea lice under difference scenarios 

(Murray, 2011) 

 Disease spread Salmonids Hypothetical 

pathogen 

Determining viral transmission in aquaculture 

settings 

(Murray, 2013) 

 Disease control Salmonids BKD1 Evaluating management strategies to control 

disease 

(Murray et al., 2011) 

 Disease transmission Salmonids Sea lice Assessing parasite transmission between 

populations 

(Krkošek et al., 2005a) 

Stochastic 

compartmental 

model 

Disease spread Catfish Hypothetical 

pathogen 

Modelling the dispersal of emerging infectious 

disease within and between farmed 

populations 

(Zagmutt et al., 2013) 

Population dynamic 

models 

Population control, 

Treatment evaluation 

Atlantic 

salmon 

Sea lice Modelling the growth of sea lice populations 

on farmed salmon and evaluating treatment 

strategies to control the sea lice populations 

(Revie et al., 2005) 

Age-structure, 

population model 

Disease control, 

Treatment evaluation 

Salmonids Myxobolus 

cerebralis 

Determining disease status in three 

developmental stages of salmonids and 

evaluating intervention strategies 

(Turner et al., 2014) 

Agent-based model Population control, 

Treatment evaluation 

Atlantic 

salmon 

Sea lice Simulation of sea lice infestation pattern under 

different control strategies using wrasse 

(Groner et al., 2013) 

 Disease spread Manila 

clams 

Vibrio tapetis Simulation of brown ring disease spread (Paillard et al., 2014) 

Hydrodynamic 

model 

Disease spread - Sea lice Modelling the dispersal of copepodid stage of 

sea lice 

(Amundrud and Murray, 

2009) 

Population matrix 

model 

Pathogen dispersal - Ciona 

intestinalis 

Modelling the larval dispersal pattern of vase 

tunicates to evaluate the invasion feasibility in 

PEI water 

(Kanary et al., 2011) 

 Impact of temperature 

on population 

- Sea lice Modelling the impact of temperature change 

on sea lice populations 

(Groner et al., 2014) 

 

1 Bacterial kidney disease 

3
4
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2.   

Chapter 2 

 

Sea lice infestations on juvenile chum and pink salmon in the Broughton 

Archipelago, Canada from 2003 to 2012* 

 

*Patanasatienkul, T., Sanchez, J., Rees, E.E., Krkošek, M., Jones, S.R., Revie, C.W., 2013. Sea lice 

infestations on juvenile chum and pink salmon in the Broughton Archipelago, Canada, from 2003 to 2012. 

Dis. Aquat. Org. 105, 149-161. 
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2.1. Abstract 

Juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (O. keta) 

were sampled by beach or purse seine to assess levels of sea lice infestation in the Knight 

Inlet and Broughton Archipelago regions of coastal British Columbia, Canada during the 

months of March to July from 2003 to 2012. Beach seine data were analyzed for sea lice 

infestation that was described in terms of prevalence, abundance, intensity, and intensity 

per unit length. The median annual prevalence for chum was 30%, ranging from 14% (in 

2008 and 2009) to 73% (in 2004), while for pink the median was 27% and ranged from 

10% (in 2011) to 68% (in 2004). Annual abundance varied from 0.2 to 5 sea lice with a 

median of 0.47 for chum and from 0.1 to 3 lice (median 0.42) for pink salmon. Annual 

infestation followed broadly similar trends for both chum and pink salmon. However, the 

abundance and intensity of Lepeophtheirus salmonis and Caligus clemensi, the two main 

sea lice species of interest, were significantly greater on chum than on pink salmon in 

around half of the years studied. Logistic regression with random effect was used to 

model prevalence of sea lice infestation for the combined beach and purse seine data. The 

model suggested that there was inter-annual variation as well as a spatial clustering effect 

on the prevalence of sea lice infestation in both chum and pink salmon. Fish length had 

an effect on prevalence, though the nature of this effect differed according to host 

species. 

Keywords: Sea lice, Lepeophtheirus salmonis, Caligus clemensi, Chum salmon, Pink 

salmon, Broughton Archipelago, Epidemiology  
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2.2. Introduction 

Pink and chum salmon are the most abundant species of anadromous salmon in 

the North Pacific Ocean (Noakes and Beamish, 2011). Juveniles belonging to these 

species are similar in that they enter estuarine habitats soon after emergence at mean 

weights of less than one gram. Juvenile pink and chum salmon disperse into deeper 

coastal waters following the initial period of adaptation to saltwater that occurs in 

nearshore or estuarine habitats; see reviews by Heard (1991) and Salo (1991). Subsequent 

rapid growth in the presence of suitable forage in the marine environment is typical for 

juvenile pink and chum salmon (Heard, 1991; Moss et al., 2009). The tendency of these 

early juvenile salmon to occupy relatively shallow nearshore habitat has been associated 

with an increased risk of exposure to sea lice (Morton and Williams, 2003; Jones and 

Hargreaves, 2007; Gottesfeld et al., 2009). 

Sea lice are parasitic copepods of the family Caligidae which infest both wild and 

farmed salmonids (Boxaspen, 2006; Wagner et al., 2008). Lepeophtheirus salmonis and 

Caligus spp. are the most commonly reported sea lice species (Morton and Williams, 

2003; Wertheimer et al., 2003; Jones and Nemec, 2004; Beamish et al., 2005; Krkošek et 

al., 2005b; Boxaspen, 2006; Rolston and Proctor, 2009; Price et al., 2010, 2011) on 

salmonids. Sea lice feed on the host skin, mucus, and blood which can cause skin erosion 

and induce secondary infection (Mustafa, 1997). Large numbers of mobile L. salmonis 

can cause host morbidity and mortality (Pike and Wadsworth, 1999; Tully and Nolan, 

2002; Johnson and Fast, 2004). L. salmonis has been associated with decreases in 

swimming performance and post-swim body ion concentrations that are particularly 

evident in the smallest juvenile pink salmon (Nendick et al., 2011). Lice attachment also 
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causes a generalized stress response mediated through cortisol release resulting in 

immune function suppression (Wagner et al., 2008). Sea lice infestation has been a 

problem for aquaculture producers in many countries including Norway, Chile, Scotland, 

Ireland and Canada (Heuch et al., 2003; Jones and Nemec, 2004; Christopher et al., 2012; 

Jackson et al., 2012). The issue of sea lice infestation in Pacific wild salmon populations 

has been a focus of attention over the past decade; several surveys and monitoring 

programs have been developed to evaluate sea lice infestation on wild salmon at various 

locations on the west coast of Canada (Jones and Nemec, 2004; Beamish et al., 2005; 

Krkošek et al., 2005b; Jones et al., 2006; Krkošek et al., 2006; Jones and Hargreaves, 

2007). Some studies have addressed the issue of louse infestation in wild salmon 

associated with the open sea-cage aquaculture (Jacobsen and Gaard, 1997; Krkošek et al., 

2005a, 2007a, 2011b; Morton et al., 2005, 2008; Marty et al., 2010; Price et al., 2010, 

2011; Saksida et al., 2011). Jones and Nemec (2004) suggested that spatial aggregation 

may be an important dimension in understanding the impact on sea lice infestations of 

wild salmon. Some inter-annual variability has been reported in previous studies (Jones et 

al., 2006; Jones and Hargreaves, 2007, 2009; Krkošek et al., 2007b; Saksida et al., 2011); 

however, none have reported these trends over a full decade. 

Two different sampling protocols were used in the major studies carried out in the 

Broughton Archipelago; live (Krkošek et al., 2005a, 2005b, 2006, 2007a, 2011b) and 

lethal (Jones and Nemec, 2004; Morton et al., 2005; Jones et al., 2006; Jones and 

Hargreaves, 2009; Saksida et al., 2011) methods. The live sampling protocol was unable 

to identify the species or developmental stage for sea lice in early life stages, while with 

the lethal method the fish were collected and sent to a laboratory, allowing for a detailed 
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evaluation of any lice present. All of the samples examined under the live protocol were 

caught by beach seine, whereas those assessed using the lethal protocol were caught 

either by beach or purse seine. Patterns of lice infestation reported from these studies in 

the past appeared to be somewhat different from one another and it was assumed that 

variation in sampling protocols and geographic regions targeted were at least partially 

responsible for this variability. In 2010 a collaborative research program, the Broughton 

Archipelago Monitoring Program (BAMP), was developed with involvement of the 

salmon farming companies operating in the Broughton Archipelago, Fisheries and 

Oceans Canada (DFO), university researchers, and the Coastal Alliance for Aquaculture 

Reform (CAAR), with the objective of better understanding sea lice levels and their 

dynamics on juvenile wild pink and chum salmon in the Broughton Archipelago. As part 

of the BAMP initiative (http://www.bamp.ca) historical data were pooled to create a 

unified database; while a standard sampling protocol was also developed and used 

starting in 2010 through to the present. 

The objectives of this study were to describe the prevalence, abundance, and 

intensity of sea lice infestation on out-migrating juvenile pink and chum salmon in the 

Broughton Archipelago during sampling months (March to July) from 2003 to 2012 

using beach seine data and to model factors, such as fish species, fish length, month, and 

gear type used for sampling, that may be associated with the inter-annual trends in 

prevalence of sea lice infestation using the combined beach and purse seine data.  



40 

 

2.3. Materials and methods 

2.3.1. Study area 

The study area is located in the Knight Inlet and Broughton Archipelago 

regions of coastal British Columbia, Canada. There are 160 sampling sites which were 

repeatedly sampled by the Krkošek or DFO teams during 2003 to 2009 (Figure 2.1). The 

sample design for the Krkošek team was designed to intensively study infestations on 

juvenile salmon as they migrate through Knight Inlet and Tribune Channel. The sample 

design for DFO provided a broader representation of locations and habitats across the 

study area. In 2010 and 2011, the BAMP initiative reduced the number of sites to 98, and 

further to 79 sites in 2012, by progressively eliminating sites at which few, or no, fish had 

been caught in previous years.  

2.3.2. Sampling 

Sampling was carried out using one of three different protocols: the non-

lethal sampling method described in (Krkošek et al., 2005b), the lethal sampling method 

used by DFO (Jones and Nemec, 2004; Jones et al., 2006), and the BAMP protocol 

(http://www.bamp.ca), which merges the spatial distribution of sampling effort between 

the two previous programs and which uses lethal lab-based analysis of lice on fish. Data 

collection took place weekly, biweekly, or monthly during the sampling period March to 

July over the years 2003 to 2012. Table 2.1 describes the sampling intervals for each type 

of collection by year. Two fishing gear types, beach and purse seines, were used to 

collect samples. Purse seine was used only by DFO from 2003 to 2009. The geographic 

coordinates for every sampling site were collected. Typically, at each site, a maximum of 

100 specimens of each species (Krkošek team) or 30 of each species (DFO and BAMP) 

http://www.bamp.ca/
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were randomly selected from the sample. Each fish was measured for fork length (mm) 

and wet weight (g). Weight was not recorded by the Krkošek team due to difficulty 

weighing live fish. Lice count, developmental stage (copepodite, chalimus, pre-adult, or 

adult), species (Caligus clemensi, Lepeophtheirus salmonis, or not identified to species), 

and gender (motile stages) data were also collected when the lethal sampling protocol 

was used. In the case of the non-lethal sampling method, lice were categorised to broad 

developmental stage but only motile lice were identified to species. 

2.3.3. Statistical analyses 

A total of 166,316 fish were available for sea lice infestation analysis over 

the study period. Data quality checking for missing or biologically implausible fish 

lengths was carried out. All lice were categorised as “non-motile” (copepodite or 

chalimus stages) or “motile” (preadult or adult stages1). A more detailed assessment of 

specific developmental stages was not possible given that some lice were not classified to 

this level. Lice that were not identified by species were classified as “not identified to 

species”. 

Means and 95% confidence intervals for fork length and weight of chum 

and pink salmon were calculated. The total numbers of salmon used to calculate mean 

weights differed from those used in the estimation of mean length as weight values were 

missing for 43,750 chum and 40,428 pink salmon respectively. Fish with at least one sea 

louse of any species and any developmental stage were classified as infested. Louse 

infestation of each fish species was expressed in terms of prevalence (proportion of fish 

                                                           
1 From a biological perspective this may not be entirely correct, in that the copedodites are mobile until 

they fully attach, while the adult female stages tend to be mostly stationary on the fish. However, these 

broad categories, i.e. non-motile and motile are widely adopted in the scientific literature around sea lice. 
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infested), mean louse abundance (lice per fish), and mean louse intensity (lice per 

infested fish) after Bush et al. (1997), and mean lice intensity per fish length (lice per mm 

of infested fish). We used a robust standard error to adjust for clustering of sampling sites 

when estimating the 95% confidence intervals associated with lice infestation (for details 

on robust standard error see Dohoo et al., 2009, pp. 547-548). 

To determine whether to combine beach and purse seine data for 

descriptive statistics, a comparison of fish length between samples caught using beach 

and purse nets was made using a paired t-test for all locations at which both gear types 

were used on the same day. As fish size between the two gear types was different (see 

Results), and there were more data across the years from beach seine sampling, we 

restricted our analyses concerning lice infestation to these data. 

The difference in proportion of L. salmonis and C. clemensi was computed 

with the total number of lice which were identified to species in a given year as a 

denominator. A zero difference represents an equal proportion of lice from each species. 

A positive value represents a higher proportion of L. salmonis, while a negative value 

represents to higher proportion of C. clemensi. The proportion of all lice that were 

identified to species in a given year was also calculated. The results are presented using a 

modified forest plot with weightings derived from the proportions of lice identified to 

species. 

Multivariable logistic regression analysis was used to assess factors 

affecting levels of lice infestation. Both beach and purse seine data were included in the 

model. The presence or absence of sea lice (all species) on fish was used as the outcome 

variable. Year, month, fish length, fish species, and gear type were included as fixed 
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effect predictors, and sampling site as a random effect. The assumptions for logistic 

regression model were assessed (Dohoo et al., 2009, pp. 399-400). As the assumption for 

linearity between fish length and the outcome variable is not met, the quadratic term of 

this variable was added and checked for statistical significance of the term. An interaction 

between fish species and fish length was also included in the model to account for 

potential differences in growth characteristics between species (Moss et al., 2009). 

Akaike's Information Criterion (AIC) was used to assess the fit of alternate models 

(Burnham, 2002). 

2.4. Results 

2.4.1. Sampling instances and sampled fish 

A total of 7,396 sampling instances were carried out in the Broughton 

Archipelago area from 2003 to 2012 during mostly monthly surveys (Table 2.1), 

providing a total of 166,194 sampled fish (122 fish were excluded from the analyses due 

to missing data) from the combined beach and purse seine data. Typically four to five 

monthly samples were collected between March and July with some variation among 

years (Table 2.2). The number of sampling instances per year varied from 236 to 1,514 

(Table 2.2). Over the course of the whole study the average number of fish assessed per 

sampling instance was 11 chum (SD 19.1) and 12 pink (SD 19.4) salmon. In some years 

(e.g. 2004) chum salmon dominated the samples, while in other years, especially from 

2008 onwards, pink salmon were the dominant species sampled.  

A summary of the physical characteristics of the salmon sampled can be 

found in Table S2.1. A paired comparison indicated that fish caught using a purse net 

were significantly longer than those caught by a beach seine at the same time/location, 
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with mean differences in length of 15.4 mm, 95% CI [13.8, 17.0]) and 7.8 mm, 95% CI 

[6.6, 9.1]) for chum (n=356) and pink (n=265) salmon, respectively. In the case of beach 

seined fish, there were far more data reported for length than weight (Table S2.1). As a 

consequence we assessed only length as a size metric in our analyses. The breakdown of 

length estimates by year shown in Figure 2.2 indicates a similar finding with additional 

information on annual variation. As a result of the significant association of gear type and 

fish size, all the analyses for lice infestation include only the beach seined fish with the 

exception for multivariable model that includes both beach and purse seine data.  

A similar pattern of apparent growth in fish size over the season is shown 

for chum and pink salmon in Figures 2.3a and 2.3b respectively. For pink salmon (Figure 

2.3b) there appear to be few clear differences among the years. In the case of chum 

salmon (Figure 2.3a) it is interesting to note that in one year (2009) apparent growth was 

consistently slower while in another (2005) fish exhibited much faster growth. 

2.4.2. Sea lice infestation 

Table 2.3 provides a summary of the overall sea lice infestation in terms of 

mean annual prevalence, abundance and intensity for chum and pink salmon caught by 

beach seine. Annual sea lice abundance varied from as low as 0.17 (2009) to as high as 

5.05 (2004) for chum, and from 0.12 (2011) to 3.05 (2004) for pink salmon. It should 

however be noted that 2004 appears to be very much the outlier in this set of 

observations, with only one other annual average (chum in 2005) being over one louse 

per fish. Approximately half of the years assessed have a mean abundance less than 0.5 

lice per chum or pink. There are no data from 2010 to 2012 in the purse seine samples 

(Table S2.2) due to the modification in sampling protocol. Sea lice abundance for the fish 
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sampled by purse net ranged from 0.07 (2008) to 5.78 (2004) for chum, and from 0.17 

(2009) to 0.69 (2004) for pink salmon.  

The annual prevalence estimates and their 95% CIs are illustrated in 

Figure 2.4. The median prevalence was around 30% though in many of the latter years 

this value has fallen to below 20%, with 2004 once again proving the exception with a 

prevalence of around 70%.The graphical summary indicates that the prevalence of sea 

lice on both salmon species tend to show similar trends over time. Indeed the confidence 

intervals for the prevalence estimates of sea lice on chum and pink salmon overlap in 

every year apart from 2012 suggesting that significant differences are not common. In 

contrast it can be seen from Table 2.3 that when considering either the abundance or 

intensity estimates for sea lice on chum, these are significantly higher than those on pink 

salmon in around half the years (i.e. 95% confidence intervals show no overlap). 

2.4.3. Sea lice species 

A total of 150,060 sea lice on beach and purse seined fish were assessed 

over the course of the study. Around 38% were identified as L. salmonis, 9% as C. 

clemensi, while the remainder were not identified to species. Variation in the proportion 

of lice species observed and the percent classified for beach seine data are detailed per 

year in Table S2.3. From this point the analyses focused on beach seine data. Figure 2.5 

summarizes the difference in proportions of lice identified as either L. salmonis or C. 

clemensi from all lice which were identified to species in a given year. In the early years, 

pre 2009, L. salmonis was the dominant species with between 48% and 84% more lice 

than those recorded as C. clemensi. The exception was 2003 where the proportions were 

closer with difference values of just over 15%. However, these were based on a small 
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sample set (only 13% of the 11,133 reported in that year) so the result should be treated 

with some caution. The sizes of the solid squares in Figure 2.5 are proportional to the 

numbers of infested fish on which all lice present were identified to species in each of the 

years. It is interesting to note that in only one year (2011) was there clear evidence of C. 

clemensi being the dominant species observed on the salmon sampled. As can be seen, in 

all years, the results indicate that similar differences in the proportion of L. salmonis 

compared to C. clemensi were found to be present on both chum and pink salmon.  

Within the annual summaries, as well as the multivariable model which 

follows, we have chosen to adopt prevalence as the key measure of infestation. Figures 

2.6a and 2.6b illustrate the strong linear relationship between prevalence and abundance 

when prevalence was less than 60%. As expected, this relationship ceases to hold when 

sea lice prevalence levels reach 65% or more, as was the case in 2004. There also appears 

to be an outlier in the pink monthly data (in March of 2005) which has an abundance 

value over twice the level that might be expected given a prevalence of 26%. 

As can be seen from Table 2.3, louse intensity ranged from 1.26 (2009) to 

6.90 (2004) for chum and from 1.18 (2009) to 4.48 (2004) for pink salmon. Intensities 

broken down by month are illustrated in Figure 2.7. As was noted above, 2004 exhibited 

a high level of prevalence (Figure 2.4) which leads to qualitatively distinct patterns of 

infestation (Figures 2.6a/2.6b). The inclusion of these heavily infested fish would thus 

have a disproportionate impact on mean intensity and for this reason data from 2004 were 

excluded from the estimate of intensity per unit length. Figure 2.7 shows that for all 

infested fish, although both chum and pink start the season exhibiting no difference in 

lice intensity the chum exhibit a modest increase in intensity as the season develops, 
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while the intensity of lice on pink salmon remains largely constant, at around 1.5 lice per 

fish. Normalizing intensity by fish length shows the decreasing trend for both fish 

species.  

2.4.4. Non-motile and motile lice 

The development of sea lice coincides with growth of the juvenile salmon 

during their residence in the study area. Sea louse development was assessed in terms of 

proportion of motile lice in samples taken over time. Figure 2.8 demonstrates the monthly 

average proportion of motile lice in comparison to all lice sampled. In general, this 

proportion increased as the season progressed for both fish species. However, the 

proportion of motile lice on pink salmon was significantly higher than for chum salmon 

from May onwards. 

The analyses above have purposely not taken into account the species of 

lice which were identified as being present on the fish. As has been noted, many of the 

lice observed, particularly those in the non-motile stages, were not labelled according to 

species. The proportion of lice that were identified to species ranged from 13% in 2003 to 

100% of the samples (under the BAMP protocol from 2010). However, prevalence trend 

analyses incorporating sea lice species, where available, resulted in similar patterns and 

trends (Figure S2.1).  

2.4.5. Multivariable logistic regression model 

A summary of results from the logistic model of factors associated with 

the presence of sea lice is given in Table 2.4. Year, month, gear type, fish species, and 

fish length were all significant factors, as was the interaction between fish species and 
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fish length. The model shows a better fit when interaction terms were included. 

Diagnostic analysis provided no indication of heteroscedasticity and modelled residuals 

were normally distributed. In 2004, the odds of finding a fish with a louse were around 4 

times greater than in 2003. The likelihood of lice infestation was lowest in 2009, with an 

odds ratio of 0.16 in comparison to 2003, or roughly 25 times lower than that seen in 

2004. The likelihood of finding fish with a louse increased from March to May, which 

had the highest odds ratio of 2.77, after which the likelihood decreased in the final two 

months sampled and by July was no different from the odds of having an infestation in 

March. Fish sampled by purse net had reduced odds of 0.6 of having lice present on them 

when compared to those sampled by beach seine. A significant interaction between fish 

species and fish length was found to be present. In general a quadratic relationship was 

found to hold between length and sea lice prevalence in that both smaller and larger fish 

had a reduced likelihood of infestation, while mid-sized fish were most likely to be 

infested. The interaction was due to the fact that this ‘convex’ relationship was more 

pronounced in chum than was the case for pink salmon.  

Site variance was significantly different from zero, suggesting that there 

was a spatial clustering effect. The model estimated that the proportion of the variance 

was 38% at the site level (Table 2.4). The site median odds ratio (MORsite) for two fish 

with identical risk factors from two randomly selected sites is 3.9, suggesting that if a fish 

moves from one site to another site with a higher risk, its likelihood of being an infested 

fish will increase 3.9 times and thus that inter-site variation has a strong impact on the 

likelihood of infestations for individual fish. 
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2.5. Discussion 

This research summarises findings from the longest continuous surveillance effort 

for sea lice in populations of juvenile wild salmon. The temporal trends in sea lice 

infestations were generally mirrored in the two fish species, though at a higher magnitude 

in chum. The lice were identified to species and stage-classified only when the lethal 

protocol was used, as a result of which most of the analysis was carried out at the coarse 

level by combining the two lice species (L. salmonis and C. clemensi) and aggregating 

lice stages to motile or non-motile lice.  

Incorporating beach and purse seines provided an opportunity to sample juvenile 

salmon over a broader range of sizes than was possible with beach seines alone. This 

reflects the tendency of smaller fish to remain in near-shore waters and are thus more 

likely to be caught by beach seine which is suitable for shallow water (Hahn et al., 2007). 

The association between gear type and fish size reflects this behaviour and agrees with 

the findings of several other studies (Johnsen and Sims, 1973; Sims and Johnsen, 1974; 

Dawley et al., 1986). Although the study indicated that chum caught by purse net were 

larger than the purse seined pink salmon, no such species effect was present in the case 

where a beach seine was used (Figure 2.2). 

The patterns of fish body growth we observed were similar to those found in 

earlier studies (Jones and Nemec, 2004; Jones et al., 2006; Jones and Hargreaves, 2009). 

However, the detailed trends reported here provide a better understanding of factors 

influencing apparent fish size. For example, the apparently greater length of pink salmon 

in 2004 (shown in Figure 2.2), appears to be an artefact of sampling effort as there were 

no fish samples from March (i.e. the smallest pink salmon) in 2004. Both fish species 
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have similar patterns of apparent growth throughout the season, however chum appear to 

grow faster later in the year, consistent with the observations of the pink and chum 

population in Kamchatka (Karpenko and Koval, 2012) and in the Northern Bering and 

Chukchi Seas (Moss et al., 2009). There was little inter-annual variation in these growth 

patterns for either species over the study period. One exception was for 2005, with which 

there was higher apparent growth for chum; though not an outlier year in pink, growth 

was also higher in 2005 than most of the other observed years. Inter-annual variation in 

fish growth may be attributed to inter-annual variation in ocean hydrological factors 

affecting available food resources and fish metabolism (i.e. ectotherms grow faster in 

warmer temperatures) (Gillooly et al., 2001; Atwood et al., 2012). 

The inter-annual variation of sea lice infestation on juvenile chum and pink 

salmon was seen to be similar to those which have been observed in previous studies 

(Jones et al., 2006; Jones and Hargreaves, 2007, 2009; Saksida et al., 2011). With the 

exception of one year (2004) the prevalence of infestation appears to vary around the 

range 15% to 35% for both species. Both the descriptive summaries and the logistic 

model indicate a slightly higher level of infestation on chum than on pink salmon. 

However, fish size should also be taken into consideration as pink salmon of 0.5 to 1.0 g 

are at greater risk of physiological compromise or mortality resulting from infestations 

with L. salmonis (Jones and Hargreaves, 2009). Jones and Hargreaves accounted for fish 

size using weight and found a decreasing monthly trend of L. salmonis density (lice·g-1) 

in pink salmon which is similar to the result from this study using fish body length rather 

than weight.  
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The results also suggest that relative variation in prevalence and abundance are 

similar. At low to moderate prevalence levels it can be shown theoretically that a linear 

relationship is likely to hold between prevalence and abundance due to the fact that a 

negative binomial distribution best describes the pattern of infestation (Shaw et al., 1998; 

Baillie et al., 2009). In our study this linear relationship was clearly exhibited in all 

months other than those for which the prevalence was higher than 60%. This has 

previously shown to be the case in empirical data from Scottish farms (Baillie et al., 

2009) as well as for a much smaller sub-set of the data currently being analysed, which 

looked only at infestation levels on wild pink salmon over a four year period (Heuch et 

al., 2011). 

Although our analytical approach could not account for sea lice species for most 

analyses given the lack of these data across the study, the relative proportions of the two 

major lice species on sampled fish was explored by computing the difference in 

proportion of L. salmonis and C. clemensi to the total number of lice that were identified 

to species. We found no evidence of a difference in the distribution of lice species across 

the two host species. In the early years of the study, where L. salmonis was the dominant 

species, its higher relative proportion was seen on both host species. Likewise in later 

years as the trend shifted towards a more equal occurrence of both sea lice species or a 

predominance of C. clemensi (in 2011). Laboratory studies (Jones et al., 2007) suggest 

juvenile chum salmon maintain higher burdens of L. salmonis compared to size-matched 

pink salmon. The data presented here on natural infestations do not contradict this 

finding; however, in a number of years and particularly early in the migration season lice 

infestation levels appear to be similar across fish species.  
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A multivariable logistic regression helps increase our understanding of sea lice 

infestation on wild salmon over the past ten years in the Broughton Archipelago by 

accounting for the possible confounding factors. The model supports the observation that 

temporal variation and spatial clustering exist in sea lice infestation of wild chum and 

pink juvenile salmon made in several studies (Jones and Nemec, 2004; Jones et al., 2006; 

Saksida et al., 2011). Moreover, the model indicated that the probability of lice 

infestation depends on fish length and that this risk factor differs between the two fish 

species studied. The probability followed a ‘quadratic’ pattern with likelihood of 

infestation increasing as fish grow until they reach a certain size, after which the 

likelihood of infestation decreases. The ‘convex’ pattern observed is one of a number of 

age-intensity relationships that have been proposed to exist (Hudson and Dobson, 1995; 

Raffel et al., 2011) and would be consistent with a mechanism such as acquired immunity 

following prolonged exposure (Yang and Yang, 1998). Given that infestation is acquired 

after fish enter seawater the initial increase in probability is not surprising. A number of 

mechanisms may explain the subsequent declining trend: (i) larger fish tend to be infested 

with older motile stage lice and experimental data indicate few lice survive to reach 

motile stage (Jones et al., 2007; Krkošek et al., 2009); (ii) larger fish may swim faster and 

have better developed scales, making it more difficult for copepodids to successfully 

make contact, attach, and survive (Tucker et al., 2002); or (iii) infested fish may have 

been killed by direct and indirect effects of lice (Krkošek et al., 2011a). Additionally 

larger fish tend to stay in deeper water which has lower concentrations of copepodids 

than the shallow water near the shore (Costelloe et al., 1995; McKibben and Hay, 2004; 

Costello, 2006). The finding that fish caught by purse seine have a lower likelihood of 
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lice infestation may be confounded by the depth of the water since purse seine is often 

used to catch fish in deep water, whereas beach seine is suitable for shallow water (Hahn 

et al., 2007). There was clear evidence as the season progressed and fish became larger 

that the sea lice became more mature. It is not known, however, why lice infestations on 

pink salmon later in the season were more likely in the form of motile lice, than those 

found on chum salmon.  

This study provides a descriptive and comprehensive 10 year overview that 

merges for the first time data from two large monitoring programs of sea lice infestation 

on wild juvenile Pacific salmon in the Broughton Archipelago. These trends are 

consistent with trends observed over a shorter time frame from data limited to a more 

localized area (Tribune Channel) of the Broughton Archipelago (Peacock et al., 2013). 

There was inter-annual as well as inter-month variation around the prevalence of lice 

infestation on wild chum and pink juveniles. While there were some difference between 

infestation levels on the two host species the overall prevalence followed similar trends 

and this was true for both sea lice species, to the extent that this could be assessed. 

Further modelling will be conducted to find biotic and abiotic factors which can better 

explain some of this variation; in particular the reasons that 2004 appears to show such 

marked difference from the rest of the decade. The model also indicated that around one 

third of the variation in lice infestation was associated with unmeasured factors at the site 

level. This suggested that strong spatial clustering of sea lice infestation occurred in this 

area, consistent with localized sources of infestation and/or spatial aggregation of infested 

fish. Future studies will focus more directly on this spatial dimension as well as the 
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environmental and aquaculture management factors which likely play an important role 

in sea lice infestation. 
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Table 2.1 Sampling intervals by collector and year. (W=Weekly, BW=Biweekly, and 

M=Monthly). 

Collector 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Krkošek team M M  M M M M - - - 

DFO W BW M M M M M - - - 

BAMP - - - - - - - M M M 

 

Table 2.2 Number of sampling instances, and number of wild chum (Oncorhynchus keta) and 

pink (O. gorbuscha) salmon sampled by beach or purse seine assessed per year by sampling 

month in the Broughton Archipelago from 2003 to 2012. 

  

Chum assessed 

 

Pink assessed 

 

Year 

Sampling 

instances Mar Apr May Jun Jul Mar Apr May Jun Jul 

2003 1,514 2,146 5,140 4,287 1,618 - 1,351 3,547 3,823 1,131 - 

2004 832 - 4,048 9,409 1,569 987 - 41 1,201 1,080 385 

2005 679 149 655 741 459 312 200 970 1,292 858 562 

2006 813 143 3,184 5,333 703 559 185 3,792 5,510 440 120 

2007 812 290 4,756 7,965 1,456 - 134 4,785 5,686 876 - 

2008 870 212 2,073 4,993 3,847 - 332 4,659 7,173 5,739 - 

2009 823 236 1,789 5,113 3,124 154 243 2,477 6,823 4,235 107 

2010 409 37 469 688 191 - 324 1,313 1,784 1,172 - 

2011 408 237 579 481 252 - 833 977 1,559 1,005 - 

2012 236 - 1,113 1,341 997 - - 1,131 1,362 1,264 - 

 



 
 

 
 

Table 2.3 Mean and 95% confidence intervals adjusted for site clustering for prevalence of lice infestation (Lepeophtheirus salmonis and Caligus 

clemensi), lice abundance and lice intensity in wild chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon sampled by beach seine in the 

Broughton Archipelago from 2003 to 2012. 

 
Chum 

 

Pink 

 
Year n Prevalence Abundance Intensity n Prevalence Abundance Intensity 

2003 10,127 0.32 [0.26, 0.39] 0.70 [0.52, 0.89] 2.18 [1.96, 2.40] 7,518 0.32 [0.27, 0.38] 0.53 [0.43, 0.64] 1.65 [1.54, 1.76] 

2004 13,086 0.73 [0.66, 0.80] 5.05 [4.14, 5.96] 6.90 [6.02, 7.78] 1,308 0.68 [0.64, 0.72] 3.05 [2.40, 3.69] 4.48 [3.69, 5.26] 

2005 1,299 0.38 [0.29, 0.47] 1.15 [0.76, 1.54] 3.03 [2.57, 3.50] 2,723 0.32 [0.27, 0.37] 0.64 [0.51, 0.78] 2.01 [1.81, 2.22] 

2006 8,701 0.27 [0.23, 0.32] 0.41 [0.33, 0.49] 1.50 [1.42, 1.59] 8,994 0.31 [0.26, 0.37] 0.53 [0.41, 0.65] 1.68 [1.56, 1.81] 

2007 13,229 0.41 [0.37, 0.45] 0.81 [0.69, 0.93] 1.99 [1.87, 2.10] 10,711 0.34 [0.30, 0.37] 0.58 [0.50, 0.65] 1.72 [1.66, 1.78] 

2008 9,530 0.14 [0.11, 0.17] 0.20 [0.14, 0.27] 1.44 [1.22, 1.65] 16,390 0.13 [0.10, 0.16] 0.17 [0.12, 0.23] 1.35 [1.22, 1.47] 

2009 9,262 0.14 [0.12, 0.16] 0.17 [0.14, 0.21] 1.26 [1.19, 1.34] 12,170 0.12 [0.10, 0.14] 0.14 [0.12, 0.17] 1.18 [1.13, 1.23] 

2010 1,384 0.30 [0.25, 0.35] 0.46 [0.37, 0.56] 1.53 [1.40, 1.66] 4,591 0.23 [0.21, 0.26] 0.32 [0.28, 0.36] 1.38 [1.33, 1.42] 

2011 1,548 0.16 [0.12, 0.20] 0.23 [0.16, 0.31] 1.46 [1.34, 1.58] 4,374 0.10 [0.08, 0.12] 0.12 [0.10, 0.15] 1.22 [1.18, 1.27] 

2012 3,450 0.30 [0.26, 0.34] 0.48 [0.40, 0.55] 1.58 [1.46, 1.70] 3,755 0.18 [0.16, 0.20] 0.24 [0.20, 0.28] 1.33 [1.27, 1.39] 

6
3
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Table 2.4 Random effects logistic model for factors associated with the presence of sea lice 

(Lepeophtheirus salmonis and Caligus clemensi) on wild chum (Oncorhynchus keta) and pink (O. 

gorbuscha) salmon sampled by beach or purse seine in the Broughton Archipelago. 

Parameters Coefficients 

(β) 

95% CI of β Odds ratios 

Year*    

 2003 Reference   

 2004 1.46 [ 1.40,  1.51] 4.30 

 2005 0.06 [-0.02,  0.13] 1.06 

 2006 -0.48 [-0.54, -0.43] 0.62 

 2007 -0.11 [-0.16, -0.07] 0.89 

 2008 -1.64 [-1.69, -1.58] 0.19 

 2009 -1.80 [-1.86, -1.75] 0.16 

 2010 -0.78 [-0.86, -0.71] 0.46 

 2011 -1.64 [-1.73, -1.54] 0.19 

 2012 -1.01 [-1.08, -0.94] 0.36 

Month*    

 March Reference   

 April 0.72 [0.63, 0.82] 2.06 

 May 1.02 [0.92, 1.12] 2.77 

 June 0.40 [0.29, 0.51] 1.49 

 July 0.13 [-0.03, 0.29] 1.14 

Gear type*    

 Beach seine Reference   

 Purse seine -0.48 [-0.54, -0.43] 0.62 

Fish species*    

 Chum Reference   

 Pink -0.37 [-0.401, -0.338]  

Length* 0.037 [0.035, 0.038]  

Length2* -0.00058 [-0.00062, -0.00055]  

Interaction terms**    

 Fish species x Length* -0.016 [-0.018, -0.014]  

 Fish species x Length2* 0.00024 [0.00019, 0.00030]  

Intercept* -1.46 [-1.71, -1.21]  

Random effect    

Site*: variance (with SE) 2.04 (0.27)   

Site-median odds-ratio, MORsite 3.90 [4.50, 12.27]  

Intraclass Correlation Coefficient, ICC 0.38   

* indicates the statistical significance at <0.01 
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Figure 2.1 Map of the Broughton Archipelago showing the study area and median coordinates of 

sampling sites collected during 2003 and 2012. 

  

Figure 2.2 Average length with 95% confidence intervals for wild chum (Oncorhynchus keta) 

and pink (O. gorbuscha) salmon in the Broughton Archipelago assessed during the sampling 

months (March to July) from 2003 to 2012 by gear type. 
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Figure 2.3a Monthly average length of wild chum salmon (Oncorhynchus keta) in the Broughton 

Archipelago sampled by beach seine from 2003 to 2012. 

 

 

Figure 2.3b Monthly average length of wild pink salmon (Oncorhynchus gorbuscha) in the 

Broughton Archipelago sampled by beach seine from 2003 to 2012. 
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Figure 2.4 Yearly prevalence and 95% confidence intervals adjusted for site clustering of lice 

infestation in wild chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon sampled by beach 

seine in the Broughton Archipelago from 2003 to 2012. 
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Figure 2.5 Average difference in proportion of Lepeophtheirus salmonis compared to Caligus 

clemensi for all lice that were identified to species, on wild chum (Oncorhynchus keta) and pink 

(O. gorbuscha) salmon sampled by beach seine in the Broughton Archipelago, assessed from 

2003 to 2012. The area of the box is proportional to the number of infested fish where all lice 

were identified to species. Negative values refer to a higher proportion of C. clemensi while 

positive values indicate a higher proportion of L. salmonis. 
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Figure 2.6a Scatter plot of lice infestation prevalence and lice abundance for chum salmon 

(Oncorhynchus keta) sampled by beach seine in the Broughton Archipelago assessed from 2003 

to 2012 with the numbers representing sampling month from March (3) to July (7).  

 

Figure 2.6b Scatter plot of lice infestation prevalence and lice abundance for pink salmon 

(Oncorhynchus gorbuscha) sampled by beach seine in the Broughton Archipelago assessed from 

2003 to 2012 with the numbers representing sampling month from March (3) to July (7).  
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Figure 2.7 Monthly lice intensity and lice intensity per fish length (means and 95% confidence 

intervals) adjusted for site clustering for wild chum (Oncorhynchus keta) and pink (O. gorbuscha) 

salmon sampled by beach seine in the Broughton Archipelago assessed in 2003 and from 2005 to 

2012. 
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Figure 2.8 Average proportion of motile lice to all lice per fish and 95% confidence intervals 

adjusted for site clustering on wild chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon 

sampled by beach seine in the Broughton Archipelago assessed from 2003 to 2012.  
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2.7. Supplementary materials for Chapter 2 

Table S2.1 Number of fish assessed, with mean and 95% confidence intervals for length and 

weight of chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon by gear type. 

 

 Beach 

 

Purse 

 
Parameters Species      n Mean [95% CI]      n Mean [95% CI] 

Length (mm) Chum 71,616 49.9 [49.8, 50.0] 12,174 81.9 [81.4, 82.3] 

 Pink 72,534 48.6 [48.5, 48.7] 9,870 68.1 [67.6, 68.5] 

Weight (g) Chum 27,866 1.81 [1.78, 1.84] 12,174 8.68 [8.52, 8.85] 

 Pink 32,106 1.65 [1.63, 1.67] 9,870 4.56 [4.47, 4.64] 

 

  



 

 
 

Table S2.2 Mean and 95% confidence intervals adjusted for site clustering for prevalence of lice infestation (Lepeophtheirus salmonis and Caligus 

clemensi), lice abundance and lice intensity in wild chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon sampled by purse seine in the 

Broughton Archipelago from 2003 to 2009. 

 

 

Chum 

 

Pink 

 

Year n Prevalence Abundance Intensity n Prevalence Abundance Intensity 

2003 3,039 0.23 [0.16, 0.31] 0.48 [0.27, 0.68] 2.03 [1.73, 2.32]  2,279  0.16 [0.11, 0.22] 0.23 [0.14, 0.32] 1.44 [1.31, 1.58] 

2004 2,921 0.61 [0.53, 0.68] 5.78 [4.44, 7.13] 9.55 [8.09, 11.01]  1,399  0.65 [0.60, 0.70] 2.69 [2.07, 3.31] 4.12 [3.32, 4.92] 

2005 1,017 0.27 [0.18, 0.36] 0.72 [0.43, 1.02] 2.69 [2.32, 3.06]  1,159  0.29 [0.24, 0.35] 0.49 [0.37, 0.61] 1.67 [1.46, 1.87] 

2006 1,216 0.22 [0.16, 0.28] 0.47 [0.29, 0.64] 2.12 [1.81, 2.43]  1,048  0.18 [0.15, 0.22] 0.26 [0.19, 0.32] 1.42 [1.27, 1.56] 

2007 1,237 0.18 [0.13, 0.24] 0.38 [0.23, 0.54] 2.07 [1.51, 2.62]  769  0.16 [0.12, 0.21] 0.24 [0.15, 0.32] 1.48 [1.26, 1.70] 

2008 1,593 0.06 [0.03, 0.09] 0.07 [0.04, 0.11] 1.28 [1.14, 1.42]  1,509  0.12 [0.07, 0.18] 0.20 [0.09, 0.31] 1.64 [1.34, 1.94] 

2009 1,151 0.18 [0.13, 0.22] 0.43 [0.25, 0.62] 2.47 [1.74, 3.20]  1,707  0.11 [0.09, 0.14] 0.17 [0.12, 0.21] 1.46 [1.29, 1.62] 
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Table S2.3 Total lice on chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon sampled by beach seine in the Broughton Archipelago 

assessed from 2003 to 2012. 

 

 

Chum 

 

Pink 

 

Year L. salmonis C. clemensi 

Not identified 

to species L. salmonis C. clemensi 

Not identified 

to species 

2003            461           311          6,348           378          266        3,369  

2004       16,655           997        48,443        3,228          260           496  

2005         1,141           358               -          1,432          321             -    

2006         1,105           314          2,150        1,423          292        3,038  

2007         2,690        1,066          6,960        1,713          580        3,892  

2008            788           167             998        1,317          291        1,252  

2009            238           291          1,081           319          428        1,005  

2010            300           340               -             712          761             -    

2011              99          263               -             133          398             -    

2012            728           917               -             420          485             -    
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Figure S2.1 Annual prevalence of lice infestation by lice species on chum (Oncorhynchus keta) 

and pink (O. gorbuscha) salmon sampled by beach seine with lethal protocol in the Broughton 

Archipelago assessed from 2004 to 2012.  
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3.   

Chapter 3 

 

Space-time cluster analysis of sea lice infestation (Caligus clemensi and 

Lepeophtheirus salmonis) on wild juvenile Pacific salmon in the 

Broughton Archipelago of Canada* 

 

 

 

 

 

*Patanasatienkul, T., Sanchez, J., Rees, E.E., Pfeiffer, D., Revie, C.W., 2015. Space-time cluster analysis of 

sea lice infestation (Caligus clemensi and Lepeophtheirus salmonis) on wild juvenile Pacific salmon in the 

Broughton Archipelago of Canada. Prev. Vet. Med. Advance online publication. 

doi:10.1016/j.prevetmed.2015.03.006  
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3.1. Abstract 

Sea lice infestation levels on wild chum and pink salmon in the Broughton 

Archipelago region are known to vary spatially and temporally; however, the locations of 

areas associated with a high infestation levels have yet to be investigated. In the present 

study, the multivariate spatial scan statistic based on a Poisson model was used to assess 

spatial clustering of elevated sea lice (C. clemensi and L. salmonis) infestation levels on 

wild chum and pink salmon sampled between March and July of 2004 to 2012 in the 

Broughton Archipelago and Knight Inlet regions of British Columbia, Canada. Three 

covariates, seine type (beach and purse seining), fish size, and year effect, were used to 

provide adjustment within the analyses. The analyses were carried out across the five 

months and between two fish species to assess the consistency of the identified clusters. 

Sea lice stages were explored separately for the early life stages (non-motile) and the late 

life stages of sea lice (motile). Spatial patterns in fish migration were also explored using 

monthly plots showing the average number of each fish species captured per sampling 

site. The results revealed three clusters for non-motile C. clemensi, two clusters for non-

motile L. salmonis, and one cluster for the motile stage in each of the sea lice species. In 

general, the location and timing of clusters detected for both fish species were similar. 

Early in the season, the clusters of elevated sea lice infestation levels on wild fish are 

detected in areas closer to the rivers, with decreasing relative risks as the season 

progresses. Clusters were detected further from the estuaries later in the season, 

accompanied by increasing relative risks. In addition, the plots for fish migration exhibit 

similar patterns for both fish species in that, as expected, the juveniles move from the 

rivers towards the open ocean as the season progresses. The identification of space-time 
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clustering of infestation on wild fish from this study can help in targeting investigations 

of factors associated with these infestations and thereby support the development of more 

effective sea lice control measures. 

Keywords: Sea lice, wild salmon, Caligus clemensi, Lepeophtheirus salmonis, Cluster 

analysis, Multivariate spatial scan statistic 

3.2. Introduction 

Chum (Oncorhynchus keta) and pink salmon (O. gorbuscha), the most abundant 

wild salmonid species in the North Pacific Ocean (Noakes and Beamish, 2011), hatch 

from their natal streams and out-migrate into coastal marine waters during the spring and 

early summer for a saltwater acclimation period in near-shore or estuarine habitats, 

before heading out to the open ocean later on in the autumn (Heard, 1991; Salo, 1991). 

During this staging event, these fish can become exposed to sea lice (Morton and 

Williams, 2003; Jones and Hargreaves, 2007; Gottesfeld et al., 2009). 

Sea lice are copepods of the family Caligidae, infesting both farmed and wild 

salmonids (Boxaspen, 2006; Wagner et al., 2008). The main sea lice species on wild 

salmon reported on the west coast of Canada are Caligus spp. and Lepeophtheirus 

salmonis (Morton and Williams, 2003; Rolston and Proctor, 2003; Wertheimer et al., 

2003; Jones and Nemec, 2004; Beamish et al., 2005; Krkošek et al., 2005b; Boxaspen, 

2006; Price et al., 2010). Transmission of sea lice occurs when the infective copepodids 

settle on a host, which is the beginning of the non-motile stage. The sea lice then undergo 

a moulting process, developing into pre-adult and adult stages (motile stage) that can 

move freely on the host (Fast, 2014). Through their feeding behaviour, these salmon 

parasites can cause skin erosion, facilitating secondary infections with opportunistic 
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bacteria of the host (Mustafa, 1997), and increase the susceptibility to and/or risk of viral 

infection (Petterson et al., 2009; Jakob et al., 2011). Sea lice infestation on chum and pink 

salmon in the Broughton Archipelago have been shown to be associated with fish length, 

and to have spatial and temporal variation (Jones and Nemec, 2004; Saksida et al., 2011). 

In addition, fish captured using different sampling protocols, e.g. seining technique, and 

live versus lethal sampling have different infestation levels (Chapter 2; Patanasatienkul et 

al., 2013; Rees et al., 2015). 

Survival of sea lice depends on many factors, including the sea water temperature 

and salinity. The infective ability and survival of L. salmonis copepodids are 

compromised at salinity levels below 29-30 Practical Salinity Unit (PSU) (Bricknell et 

al., 2006; Brooks and Stucchi, 2006; Connors et al., 2008). These copepodids may 

survive at a salinity of 25 PSU; however, the percentage of sea lice that developed into 

copepodids is very low (Johnson and Albright, 1991). Sea-water is progressively diluted 

when the river freshet occurs during the spring resulting in the reduced salinity along the 

surface in areas proximate to the river outflows (Foreman et al., 2009). This creates 

spatial variation in near-coast salinity levels, possibly causing spatial variation of sea lice, 

which can be assessed by means of the spatial cluster analysis. 

Spatial clustering is a term used to describe the spatial aggregation of some 

disease, or other event of interest, in a manner that differs from what would be expected 

simply due to chance. Disease clustering can occur for many reasons such as the 

infectious spread of disease, the occurrence of disease vectors in a specific location, the 

clustering of risk factors and the existence of potential health hazards (Pfeiffer et al., 

2008). The interplay of the hosts, pathogens together with the compatible environmental 
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condition that could either increase host susceptibility or enhance pathogen infectivity 

drives the occurrence of a disease (Engering et al., 2013) and their spatial clustering have 

the impact on disease transmission and the disease control measurement (Tildesley et al., 

2009). 

Clustering of a disease in space and time can be evaluated using cluster analysis 

techniques. These analyses can be classified into global and local clustering methods 

(Pfeiffer et al., 2008). Global clustering methods assess whether clustering exists 

throughout the study and they measure the degree of spatial clustering without providing 

the spatial and/or temporal location of the cluster. In contrast, local clustering methods 

detect the locations of clusters and their extent. Due to the focus of the study in 

identifying the location of clusters of fish with sea lice infestation, a local method of 

cluster detection using the scan statistic technique developed by Kulldorff (1997) was 

applied to this study. The space-time scan statistic is a commonly used method for 

detection of clusters of disease or some other event of interest in space and time. The 

analysis can be performed through freely available software: SaTScanTM (Kulldorff, 

2011). 

The scan statistic technique has been applied in various areas of study, including 

human and animal epidemiological research (Carpenter, 2001). The scan statistic has 

been widely used in the human health, for examples, to detect cluster areas with high 

breast cancer mortality in the United States (Kulldorff et al., 1997), to study 

spatiotemporal clusters of tuberculosis in Portugal (Nunes, 2007), and to identify hot-

spots of malaria transmission and predict future infection (Mosha et al., 2014). In animal 

health, this method has been applied mostly in disease surveillance of terrestrial animal 
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populations. Norström et al. (2000) detected clusters of acute respiratory disease in cattle 

using the space-time scan statistic. The space-time permutation model was applied to 

assess spatial and temporal pattern of Rift Valley fever outbreaks in humans and 

domestic ruminants (Sindato et al., 2014). Although this method has become familiar to 

animal health researchers, there are still very few applications of the scan statistic 

technique in an aquatic context. It has been used to assess clustering of salmonids that 

had antibodies against viral haemorrhagic septicaemia virus in Switzerland (Knuesel et 

al., 2003), to detect low/ high risk areas of Toxoplasma gondii infections in southern sea 

otters (Miller et al., 2002), and to detect space-time clusters of infectious salmon anemia 

virus cases in Chilean Atlantic salmon farms (Godoy et al., 2013; Vanderstichel et al., 

2015). All of these studies assumed Euclidean distances between locations and, therefore, 

may have misrepresented true distances. The mechanisms of disease transmission in 

aquatic environments typically differ from those in terrestrial animals. In an aquatic 

environment, transmission between any two locations usually occurs through the water 

body and the seaway distance is an appropriate measure for quantifying the distance. In 

river networks or complex coastal inlet geographic situations, non- Euclidean distances 

will have to be used, which can be accommodated in SaTScanTM when defining the size 

of the scanning window. 

Analysing surveillance data can be a challenging task for a number of reasons, 

including missing data and the need to use multiple datasets. The univariate scan statistic 

tests whether there is an increased or decreased risk of an event of interest within, 

compared to outside, a typically circular area in a single dataset (Kulldorff, 1997). To be 

able to allow combined analysis of multiple datasets with each representing different host 
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populations or time periods, Kulldorff et al. (2007) developed the multivariate version of 

the scan statistic. This technique provides the ability to evaluate the consistency of the 

identified cluster across all input datasets, by testing for clustering within and across 

datasets, without compromising the power of detecting the statistically significant 

clusters. Missing data may result in the false positive detection of clusters using the 

spatial scan statistic, e.g. detection of significant low rate clusters where there is missing 

data, or detection of significant high rate clusters in other locations that do not have 

missing data (Kulldorff, 2014). This potential bias can be adjusted for by a calculation 

technique adjusting for known relative risk, suggested by Kulldorff et al. (1998). The 

adjustment defines the location and time combinations for which the data are missing, 

and assigns a relative risk of zero to those location/time combinations, which will then be 

multiplied with the expected counts to ensure these location/ time combinations do not 

contribute to the expected count. 

Although in a previous study which utilised the same datasets (Chapter 2; 

Patanasatienkul et al., 2013) there was no evidence of a difference in the temporal 

distribution of the two main sea lice species between chum and pink salmon (e.g., in the 

years when L. salmonis were dominant species in the chum population, a similar trend 

was also observed in the pink population), a number of questions around their spatial 

distribution in the two salmonid species remain. For example, it is not known whether 

that lack of temporal separation was a real effect or was a result of the different out-

migrating locations of the two fish species. Describing fish migration patterns over the 

season, in addition to an investigation as to whether any clusters identified for the two 

lice species were similar, would help address these questions. Furthermore, identification 



 

83 

 

of space-time clustering of sea lice infestation on wild fish could inform targeted 

investigation of the factors associated with these infestations and support the 

development of more effective sea lice control measures. The objectives of this study 

were to illustrate the use of the multivariate scan statistic to: 1) identify geographic areas 

and times of elevated sea lice (C. clemensi and L. salmonis) infestation on out-migrating 

wild juvenile Pacific (chum and pink) salmon in the Broughton Archipelago region to 

facilitate the formulation of hypotheses for further investigation of factors associated with 

such infestation at an appropriate spatial resolution, 2) compare the identified clusters 

between the two sea lice species in terms of location and time, 3) compare the identified 

clusters between the two wild host species. In addition, the migration patterns of out-

migrating juvenile chum and pink salmon were assessed. 

3.3. Materials and methods 

3.3.1. Study area 

The study area covered the Knight Inlet and the Broughton Archipelago 

regions, which are located on the west coast of British Columbia, Canada (50°42′N 

126°27′W) . The area included 164 sites at which wild juvenile salmon were sampled and 

20 active Atlantic salmon farms during the time of this study (2003 to 2012) 

(www.bamp.ca) (Figure 3.1). 

Sampling at each of the 164 sites did not always occur at the exact same 

location. A median centre algorithm, which is less influenced by data outliers, was 

therefore used to determine a central point that minimizes the accumulated Euclidean 

distance to all other sampling points at the same site (Kulin and Kuenne, 1962; Burt and 

http://www.bamp.ca/
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Barber, 1996; ESRI, 2010b). The study area was then sub-divided into Thiessen polygons 

(ESRI, 2010a), using these 164 median centre points. 

3.3.2. Sampling 

Sampling was carried out using 3 protocols: The non-lethal sampling 

approach (Krkošek et al., 2005b), the mainly lethal sampling approach (Jones and 

Nemec, 2004; Jones et al., 2006), and, from 2010 to 2012, a standardised approach that 

resulted from a multi-stakeholder research initiative: the Broughton Archipelago 

Monitoring Plan (BAMP; www.bamp.ca). As samples collected using the non-lethal 

protocol (i.e. all samples from 2003 and the Krkošek datasets) could not provide detailed 

information on sea lice species and stages, these data were excluded from the current 

study. For lethal sampling, data collection took place biweekly or monthly during the 

sampling period, March to July, over the years 2004 to 2012. The pre-2010 samples were 

obtained using beach or purse seining techniques, while samples from 2010-2012 (the 

BAMP protocol) used only the beach seining method. The geographic coordinates of 

each sampling site were recorded, and for each sampling event, a maximum of 30 

specimens per fish species (chum and pink salmon) were randomly selected and 

euthanized. All fish were subsequently examined for sea lice in a laboratory setting as 

described by Jones and Nemec (2004). Collected data included the number of fish caught 

and the number of fish assessed per sampling event for each fish species. In addition, the 

fish length and the lice counts on each sampled individual were recorded, in terms of sea 

lice species (C. clemensi and L. salmonis) and stage (non-motile and motile). 

  

http://www.bamp.ca/
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3.3.3. Cluster detection method 

For the analysis, data were aggregated at the Thiessen polygon site level 

by month and year. Based on the finding that the relationship between sea lice infestation 

levels on chum and pink salmon and fish length appear to follow a quadratic pattern 

(Chapter 2; Patanasatienkul et al., 2013; Rees et al., 2015), fish samples were grouped 

into three size categories (small, medium, and large) based on fish length, as a proxy of 

exposure to sea lice in the marine environment, given that larger fish are assumed to be 

older and more likely to have emerged from their natal streams earlier than smaller fish. 

Values used to define size categories were determined based on the relationship between 

sea lice intensity and fish length reported by Rees et al. (2015). The lower cut-points 

were associated with the point where lice intensity reached its peak and the higher values 

were set at the point from which the intensity appeared to become stable. Break-point 

values for length categories for chum were 45 and 90 mm, while for pink the values used 

were 35 and 70 mm. The size categorization was defined differently for each fish species 

because growth rates differ for chum and pink salmon (Moss et al., 2009). Data from 

each of the five months (March to July) and for each of the two fish species were treated 

as separate datasets, giving a total of ten datasets. 

The SaTScanTM software version 9.1.1 (Kulldorff, 2011) was used to 

perform the space-time cluster analyses. The retrospective spatial scan statistic with the 

multivariate analysis option (Kulldorff et al., 2007) was used to assess the presence of 

statistically significant clustering of elevated numbers of fish with sea lice infestation 

(high cluster) and to identify the potential locations of these clusters across ten datasets. 

Any fish sampled with at least one sea louse was defined as a case. The analysis was 
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based on models assuming a Poisson distribution of the number of cases at each site, 

under the null hypothesis that the expected number of cases in each area would be 

proportional to the number of fish examined in that area (Kulldorff, 1997). Cluster 

analyses were run separately for each sea lice species. Due to the associations between 

the infestation levels and sampling years, seine type (beach, purse), and fish size (small, 

medium, large), these covariates were used to provide adjustment within the analyses 

using the indirect standardisation method described by Kulldorff et al. (1997). Because 

the analysis algorithm conditions on the total number of cases observed, any input dataset 

with zero cases could not be analysed and was removed from the analysis, including the 

datasets with information on motile C. clemensi of both chum and pink salmon that were 

sampled in March. 

To define the scan window size, non-Euclidian seaway distances among 

all sites were calculated using ‘gdistance’ package in R (Etten, 2012). The maximum 

scanning window size was set to 20-kilometre-seaway distance to cover the infective 

copepodids dispersal range (Gillibrand and Willis, 2007) or a maximum of 50% of the 

population at risk to ensure higher power as recommended in SaTScanTM (Kulldorff, 

2011). Missing data due to non-sampling were accounted for by defining sites/ times 

combinations for which the data were missing. The expected counts for those sites/ times 

combinations were then multiplied by an adjusting-relative risk (RRa) of zero, while the 

other sites/ times were multiplied by RRa of one (Kulldorff, 2014). Clusters were tested 

for statistical significance using Monte Carlo hypothesis testing (Dwass, 1957). A cluster 

was considered statistically significant at a p-value of less than 0.05, calculated from 999 

simulated Monte Carlo replications. 
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3.3.4. Spatial distribution of chum and pink salmon 

Fish capture data were aggregated across locations within each Thiessen 

polygon. Monthly average numbers of fish captured and their coefficients of variation 

were calculated by fish species. The mean number of fish captured were shown as 

choropleth maps, for each fish species, according to six categories: no fish captured, 1-10 

fish, 11-30 fish, 31-100 fish, greater than 100 fish captured and missing data (i.e. no 

sampling event occurred). Coefficients of variation by month for each fish species were 

also plotted to show the dispersion of the data. The maps included five categories: 

missing values due to no variation (i.e. only one sampling event occurred), missing data 

due to non-sampling, and the other three categories with break point values at 25th (1.41 

%), 50th (1 .83 %), and 75th percentiles (2.28 %) 

3.4. Results 

The mean numbers of fish captured per month and within each polygon associated 

with sampling sites were estimated, and the outcomes are presented separately for chum 

and pink salmon from March to July in Figure 3.2. The grey areas, indicating no 

sampling, are seen at several sampling sites in the early (March) and late (July) sampling 

months. The dispersion of the data measured in terms of coefficients of variation can be 

seen in Figure S3.1. The plots of mean number of fish captured indicate that the fish were 

out-migrating from the rivers towards the open ocean as the season progressed, and that 

similar patterns were observed for both chum and pink salmon. Early in the season, both 

chum and pink can be seen to dominate in the more northerly areas of the Broughton. As 

the season progresses, a clear shift can be seen, with the dominant densities of both chum 

and pink being in the mid zones in May, while by June and, particularly, July the areas 
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with the highest mean number of fish tend to be in the outer (sea-ward) areas of the 

Broughton Archipelago. 

A total of 28,775 chum and 34,547 pink salmon were examined. The number of 

fish by month, seine type, fish size, and fish species are presented in Table 3.1. Almost 

no large fish were captured in March or April, while in July very few small fish (three 

chum and no pink) were collected. It can be seen in Figure S3.2 that when considering 

fish size the proportions shift markedly from small to large for both fish species as the 

season progresses. The shift towards larger fish can be seen most clearly in the purse 

seine samples (Figure S3.2(B)), a method by which fewer fish were sampled, but in 

which those that were tended to be larger. Details on the number of cases (i.e. fish 

infested with C. clemensi : L. salmonis) can be found in Tables S3.2 (non-motile sea lice) 

and S3.3 (motile sea lice). Figures 3.3 and 3.4 summarize the proportion of sea lice 

infested fish ('case' fish) amongst total fish examined per dataset, where samplings were 

carried out using the beach seine method, for non-motile and motile sea lice, respectively. 

Similar details for samples collected using the purse seine method are shown in Figures 

S3.3 and S3.4. Overall, the temporal patterns of infestation over the season appear similar 

for both lice species (Figures 3 and 4). When looking at infestation by lice stage, small 

fish tend to pick up non-motile lice early in the season, while the mid-class and the larger 

fish obtained their infestations later in May and July (Figure 3.3). The proportion of fish 

infested with motile sea lice tended to be lower than non-motile infestations, and the 

proportion of motile infestations progressively increased with time, for all size classes 

and fish species (Figure 3.4). Fairly similar trends were also observed amongst the fish 

caught using the purse seine method (Figures S3.3 and S3.4). 
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Three significant clusters for chum and pink salmon infested with non-motile C. 

clemensi (Table 3.2a) and two significant clusters for salmon infested with non-motile L. 

salmonis (Table 3.2b) were identified. Only one cluster was detected for each of the lice 

species when considering the motile stage (Tables 3a and 3b). The geographic extent of 

each of the clusters identified from each run/model can be seen in Figure 3.5 for 

infestations relating to non-motile sea lice and in Figure 3.6 for motile sea lice. Clusters 

of elevated prevalence levels of sea lice infestation for each fish species are shown as 

arrows. Right arrows represent locations where clusters linked to chum salmon were 

found, while left arrows are associated with pink salmon clusters. It is suggested that 

Figure 3.5 and Table 3.2 be considered together, and Figure 3.6 and Table 3.3 be read 

together. For example, the most likely cluster is coded in red for both chum and pink 

salmon. When a cluster associated with both fish species is detected at the same location, 

that location appears with a right arrow, attached to a left arrow, which form a rectangle 

shape. Comparisons are only carried out amongst the results from the same model/run, 

which means that the most likely clusters for L. salmonis may not be located in the same 

area as those observed for C. clemensi. A comparison can be performed across the five 

months for both fish species within the same lice species. A cluster may be seen in one 

month but not in another if the analysis does not find a significant cluster in that month 

(as noted in Tables 3.2 and 3.3). For example, Figure 3.5(B) indicates two clusters of fish 

infested with non-motile C. clemensi in April. The results indicate that the most likely 

cluster involves both chum and pink salmon (right and left red arrows), but that the 3rd 

likely cluster is only associated with pink salmon (left blue arrows only). The 2nd most 
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likely cluster, which would have been shown by yellow arrows, was not detected for this 

month for either fish species. 

The area along the northwest edge of Gilford Island, south into the Fife Sound, 

was detected as the most likely cluster (i.e. the area most likely to have an increased 

number of infested fish) for non-motile stages of both sea lice species and for both fish 

species, and was consistent through the season from March to June; the cluster was also 

detected in July for chum salmon (Figure 3.5(J)). A cluster in this area was also detected 

for motile sea lice from April to July (Figure 3.6). The 2nd most likely clusters for non-

motile lice of both species were detected along Wells Passage located on the northwest 

side of North Broughton Island, starting from April for L. salmonis and May for C. 

clemensi (though the data were quite sparse, particularly for pink salmon). A 3rd likely 

cluster for non-motile C. clemensi appeared in the area around Crease Island and the 

channel along the north of Harbledown Island and remained in that location throughout 

the season for pink salmon (Figure 3.5(A) - 5(E)). This 3rd cluster was not detected in 

March or April for chum, nor did it appear in the analysis of non-motile L. salmonis for 

either fish species. 

The relative risks (RR), comparing between the risks within and outside the 

identified clusters for each dataset (i.e. five months for each of the two fish species) and 

combined log likelihood ratios associated with the identified clusters, are presented in 

Tables 3.2 and 3.3. RR over the sampled months exhibited a similar trend for chum and 

pink salmon. The RR of the most likely cluster for non-motile sea lice on both host 

species (Table 3.2) and motile L. salmonis (Table 3.3b) decreased as the season 

progressed. In contrast, in the case of the motile stage of C. clemensi, the RR increased 
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over time (Table 3.3a). The RR for the next likely cluster tended to decrease as the season 

progressed for all lice species with the exception of this cluster for non-motile C. 

clemensi on pink salmon; however there were only two months with data, so the trend 

should not be over-interpreted. 

3.5. Discussion 

The use of the multivariate scan statistic for the detection of space-time clustering 

of parasites in an aquatic environment is illustrated in the present study. Although spatial 

and temporal variations have been noted for sea lice infestation levels on wild juvenile 

Pacific salmon in the Broughton Archipelago region (Jones and Nemec, 2004; Chapter 2; 

Patanasatienkul et al., 2013), the infestation patterns have yet to be described. This study 

identified space-time clusters of sea lice infestation on wild chum and pink salmon in the 

Broughton area. The results indicated that infestation patterns appeared to be similar for 

the two host species (chum and pink salmon) and for the sea lice species (C. clemensi and 

L. salmonis), after accounting for the spatial distribution of the hosts. 

The migration patterns of chum and pink salmon appeared to be similar, both 

spatially and temporally. Both fish species can be seen in greater densities close to the 

rivers in the north of the Broughton Archipelago from which the juveniles emerge early 

in the season. This is more clearly seen in April than March, but it is primarily due to 

limited sampling in the earlier month. They then migrate seaward as the season 

progresses, and by the end of the season most fish tend to be in the outer areas of the 

Broughton Archipelago. This finding is in agreement with previous studies that chum and 

pink salmon migrate downstream around early spring to mid-summer (Heard, 1991; Salo, 

1991). 
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The results from this study show that there was spatiotemporal clustering of 

elevated sea lice infestation on chum and pink salmon in the Broughton Archipelago 

region, which is consistent with previous analyses of the same dataset (Chapter 2; 

Patanasatienkul et al., 2013; Rees et al, 2015). The study did not find any evidence that 

the infestation patterns were different between chum and pink salmon, after taking spatial 

distribution of these hosts into account. In general, the locations of the space-time 

clusters of elevated sea lice infestation detected for both fish species were similar. Early 

in the season, the clusters of fish infested with non-motile sea lice are detected closer to 

the river estuaries, and then as the season progresses, clusters are detected closer to the 

open ocean. This pattern is arguably clearer for C. clemensi than is the case for L. 

salmonis. It is not surprising that the cluster of motile sea lice infested fish did not appear 

early in the season, as the fish had only just entered the area, exposing them to infectious 

stage lice (i.e. copepodid) which require time to develop to the adult stage (Pike and 

Wadsworth, 1999). A similar pattern of infection (i.e. high proportion of motile sea lice 

on the high-seas captured fish) has also been reported in sea trout (Tingley et al., 1997). 

There are a number of mechanisms which may explain these clusters: 

(1) Distribution of population at risk: This might be the case for the cluster areas that are 

closer to the ocean (i.e. 2nd and 3rd most likely clusters). Early in the season (March-

April) most fish are beginning their out-migration and are still residing in areas near the 

river estuaries; fewer fish are seen in areas further from the estuaries. The clusters located 

in the open water areas do not appear until later in the season, which is consistent with 

the fish migration pattern shown in Figure 3.2. 
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(2) Occurrence of disease vectors in specific locations: Given that sea lice can infest a 

range of host species (Pike and Wadsworth, 1999; Jones et al., 2006; Beamish et al., 

2009; Fast, 2014), it is possible that other fish species such as Pacific herring (Clupea 

pallasii Valenciennes in Cuvier and Valenciennes, 1847), coho salmon (Oncorhynchus 

kisutch Walbaum, 1792), Atlantic salmon (Salmo salar Linnaeus, 1758) or three-spine 

sticklebacks (Gasteroteus aculeatus Linnaeus, 1758) residing within the identified cluster 

areas may have acted as a vector for sea lice (Price et al., 2011) 

(3) Clustering of particular risk factors or combination of risk factors: Although the 

analyses have accounted for several confounding factors such as seine type, fish size, and 

year effect, several factors that may have influenced the emergence of clusters have not 

been adjusted for. For example, salinity and ‘salmon farm in vicinity’ are two factors that 

may have contributed to the elevated number of fish infested with sea lice within the 

cluster areas. Salinity plays an important role in the development of sea lice and their 

survival (Brooks and Stucchi, 2006; Connor et al., 2008); low salinity levels (<28 PSU) 

compromises sea lice survival (Johnson and Albright 1991; Bricknell et al., 2006). 

Salinity levels greater than 28 PSU, found to be suitable for sea lice development (Uu-a-

thluk, 2009), were observed in the areas at times when the clusters were identified 

(illustrative values for salinity in two of the sampling months can be seen in Figure S3.5), 

which might cause the spatial clustering. Furthermore, these cluster areas are located in 

the vicinity of salmon farms, which several studies have reported as a factor positively 

associated with sea lice infestation of wild salmon (Krkošek et al., 2005a; Morton et al., 

2008; Marty et al., 2010; Price et al., 2010; Price et al., 2011; Rees et al., 2015). 
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Several interesting patterns emerge when the identified clusters were investigated 

in more detail. The clusters around Wells Passage, located to the northwest side of North 

Broughton Island (2nd likely cluster), and Crease Island and the channel along the north 

shore of Harbledown Island (3rd likely cluster) showed an increased relative risk (RR) 

throughout the season for both fish species. This is likely associated with the distribution 

of the fish as discussed above. Conversely, the RRs of the most likely clusters of both lice 

species, located along the North West edge of Gilford Island, south into the Fife Sound, 

showed a decreasing trend over time (the opposite trend was observed for motile L. 

salmonis). A possible explanation for the decreasing trend of RR is that fish may have 

developed physiological and/ or biological defense mechanisms, e.g. changes in 

swimming behaviour, development of immunity against infestation (Tucker et al., 2002; 

Boxaspen, 2006; Fast, 2014) and, therefore, be able to clear off the attached sea lice. 

Alternatively, the infested fish could have died due to the direct or indirect effect of sea 

lice (Krkošek et al., 2011; Peacock et al., 2014), resulting in a reduced number of cases 

and, consequently, reduced RR. 

One of the objectives of this study was to assess similarity of clustering patterns 

of sea lice infestation between the two host species across the five month study period. 

The host- specific datasets could have been analyzed either separately or simultaneously, 

using the univariate or multivariate scan statistic, respectively. The latter had the 

advantage that it was possible to statistically and robustly investigate clustering within 

and between fish species. It also allows for a comparison of the risk estimates across 

input datasets. The study took inter-annual variation into account, and treated monthly 
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data as separate datasets to be able to assess whether the cluster appears consistently 

throughout the season. 

SaTScanTM has the advantage of being able to identify the locations of clusters; 

however, dealing with missing data is still a challenge. The software provides an option 

to adjust for missing data in the discrete Poisson model, using the “known relative risk” 

feature to prevent the location/time combinations associated with missing data from 

contributing to the analysis (Kulldorff, 2014); however, a limitation exists for a dataset 

with a long time series. The datasets used in this study contain data from five months 

(March to July) and nine consecutive years (2004 to 2012). In the attempt to simplify the 

analysis by using generic settings, and aggregating the nine-year data into five months, 

adjusting for missing data was constrained by the input file format required by the 

software, and analysis of the data using the generic setting approach could not be 

performed. 

The aquatic setting of the sea lice infestation and transmission was accounted for 

by using the Non-Euclidean distance to perform the scan. The spatial scanning window 

was set to the maximum of 20 km-seaway distance, which could cover the sea lice larval 

dispersal range (Krkošek et al., 2005a; Gillibrand and Willis, 2007). Different distances 

(5-30 km) were also assessed to test the robustness of the size of scanning window 

chosen in this study. The clusters were detected in similar areas for all the tested 

distances. The 20 km-seaway distance provides the most reasonable spatial aggregation, 

and thereby was used for the analyses. The study did not use salmon dispersal range 

estimates to decide on the maximum scanning window size, as these fish can travel 

significant distances in a short period of time. If the scan window size had been based on 
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the swimming range of fish, the scan window would have covered a large area (perhaps 

even the whole region) and the ecological zones controlled by landscape factors (e.g. 

water salinity) would have been crossed by the area within that distance. 

In summary, this study has found that juvenile chum and pink salmon tended to 

have similar out-migration patterns. The study has also identified space-time clusters of 

sea lice infestation on wild salmon in the Broughton Archipelago region during the out-

migrating period of March to July, which can provide insight for hypothesis generation 

for further, targeted investigation of factors that may be associated with these clusters. 

This study also suggests that C. clemensi and L. salmonis have similar habitat, as the 

spatiotemporal clusters of elevated numbers of fish infested with sea lice are not different 

between the two sea lice species. Furthermore, the study suggests that the clusters of fish 

infested with sea lice are similar for chum and pink salmon, both spatially and 

temporally. 
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Table 3.1 Number of fish assessed per dataset (chum and pink salmon from March to July, 2004 

to 2012) by seine type (beach or purse) and fish size as classified small, medium, or large using 

length with break-point values of 45 and 90 mm for chum, and 35 and 70 mm for pink salmon. 

 

Dataset Species Month 

Number of fish assessed

 
Beach

 

Purse

 
Small Medium Large Small Medium Large 

1 Chum March 1,198 42 0 62 2 0 

2 Chum April 4,689 1,192 0 320 227 0 

3 Chum May 2,510 5,644 82 119 2,354 226 

4 Chum June 231 3,344 396 7 1,922 2,196 

5 Chum July 1 89 220 2 114 1,586 

6 Pink March 1,992 228 0 28 3 0 

7 Pink April 4,122 3,130 1 447 460 1 

8 Pink May 718 9,161 805 158 1,902 744 

9 Pink June 14 3,707 2,595 1 443 2,713 

10 Pink July 0 18 464 0 1 691 
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Table 3.2 Cluster analyses of chum and pink salmon infested with non-motile (a) C. clemensi and 

(b) L. salmonis. Relative risks (RR) for each month and fish species are shown. A hyphen (-) 

indicates that the identified cluster was not statistically significant for that dataset. 

 

(a) Non-motile C. clemensi 

 
Most likely cluster (1st)

 

Second likely cluster 

(2nd)

 

Third likely cluster 

(3rd)

 
Month Chum Pink Chum Pink Chum Pink 

March 2.65 2.72 - - - 1.53 

April 2.71 2.00 - - - 1.31 

May 1.78 1.78 1.53 - 1.73 1.19 

June 1.06 1.08 2.13 4.79 1.23 1.71 

July - - 2.33 2.37 2.20 2.82 

Log Likelihood 

Ratio 
196.6 61.5 60.7 

(b) Non-motile L. salmonis 

 
Most likely cluster (1st)

 

Second likely cluster 

(2nd)

 

 

Month Chum Pink Chum Pink   

March 2.42 2.54 - -   

April 2.35 1.64 1.28 -   

May 1.43 1.42 1.17 1.14   

June 1.45 1.42 1.43 1.61   

July 1.26 - 1.47 2.32   

Log Likelihood 

Ratio 
192.1 35.4  
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Table 3.3 Cluster analyses of chum and pink salmon infested with motile (a) C. clemensi and (b) 

L. salmonis. Relative risks (RR) for each month and fish species are shown. A hyphen (-) 

indicates that the identified cluster was not statistically significant for that dataset. Data for fish 

sampled in March (showing as N/A) were not included in the analysis. 

 

 (a) Motile C. clemensi (b) Motile L. salmonis 

 Most likely cluster (1st)

 

Most likely cluster (1st)

 
Month Chum Pink Chum Pink 

March N/A - - 

April 1.90 5.89 2.75 2.04 

May 2.00 1.62 1.82 1.47 

June 2.50 1.68 1.49 1.43 

July 3.78 2.67 1.31 - 

Log Likelihood Ratio 146.3 144.1 
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Figure 3.1 The study area, Broughton Archipelago, showing median coordinates of sampling 

sites (blue circles) and 20 locations of Atlantic salmon farms (red rectangles) 
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 Chum  Pink 

(A) 

 

(F) 

 
(B) 

 

(G) 

 
(C) 

 

(H) 

 
(D) 

 

(I) 

 
(E) 

 

(J) 

 
Figure 3.2 Spatial distribution of chum (blue) and pink (red) salmon, described as monthly 

average numbers of fish caught. Plots for chum are shown in the left column from (A) March to 

(E) July, while plots for pink are presented in the right column from (F) to (J).  
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(A) 

 
(B) 

 
 
Figure 3.3 Proportion of fish infested with non-motile (A) C. clemensi and (B) L. salmonis, 

sampled by beach seine during each sampling month (March to July) from 2004 to 2012 by fish 

species and size categories (classified as small, medium, and large using fish length with break-

point values of 45 and 90 mm for chum, and 35 and 70 mm for pink salmon). Data points with 

number of fish sampled less than 20 fish were not included in the calculation.  
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(A) 

 
(B) 

 
 
Figure 3.4 Proportion of fish infested with motile (A) C. clemensi and (B) L. salmonis, sampled 

by beach seine during each sampling month (March to July) from 2004 to 2012 by fish species 

and size categories (classified as small, medium, and large using fish length with break-point 

values of 45 and 90 mm for chum, and 35 and 70 mm for pink salmon). Data points with number 

of fish sampled less than 20 fish were not included in the calculation.  
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 C. clemensi  L. salmonis 
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Figure 3.5 Cluster analyses of chum and pink salmon infested with non-motile sea lice. Clusters 

for C. clemensi are illustrated in the left-hand panels from (A) March to (E) July, while the right-

hand panels show clusters for L. salmonis (F) to (J). Right arrows represent clusters of chum and 

left arrows indicate clusters of pink salmon. The color codes of red, yellow and blue indicate 

locations associated with the most, the second, and the third most likely clusters, respectively.  
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 C. clemensi  L. salmonis 
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Figure 3.6 Cluster analyses of chum and pink salmon infested with motile sea lice. Clusters for 

C. clemensi are illustrated in the left-hand panels from (A) March to (E) July, while the right-

hand panels show clusters for L. salmonis (F) to (J). Right arrows represent clusters of chum and 

left arrows indicate clusters of pink salmon. The color code of red indicates locations associated 

with the most likely cluster. Data for fish sampled in (A) March were not included in the analysis.  
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3.7. Supplementary materials for Chapter 3 

Table S3.1 Number of cases (fish infested with non-motile C. clemensi : L. salmonis) per dataset 

(chum and pink salmon from March to July) by seine type and fish size (fish were classified as 

small, medium, or large using length with break-point values of 45 and 90 mm for chum, and 35 

and 70 mm for pink salmon). A hyphen (-) denotes that there is no fish assessed in that data 

category. 

Dataset Species Month 

Number of fish infested with non-motile sea lice 

(C. clemensi: L. salmonis) 

 
Beach 

 

Purse 

 
Small Medium Large Small Medium Large 

1 Chum March 17: 80 0: 7 - 0: 0 0: 0 - 

2 Chum April 305: 357 168: 277 - 8: 27 23: 49 - 

3 Chum May 185: 396 912: 1,403 8: 13 6: 8 278: 731 45: 75 

4 Chum June 13: 18 229: 526 57: 75 0: 1 114: 301 342: 368 

5 Chum July 0: 0 15: 31 65: 77 0: 0 2: 4 177: 229 

6 Pink March 14: 46 10: 51 - 0: 0 0: 0 - 

7 Pink April 125: 119 335: 421 0: 0 8: 19 19: 54 - 

8 Pink May 24: 29 944: 938 36: 53 6: 3 126: 310 24: 76 

9 Pink June 0: 3 108: 138 69: 97 0: 0 9: 16 60: 107 

10 Pink July - 0: 0 9: 31 - 0: 0 21: 32 
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Table S3.2 Number of cases (fish infested with motile C. clemensi : L. salmonis) per dataset 

(chum and pink salmon from March to July) by seine type and fish size (fish were classified as 

small, medium, or large using length with break-point values of 45 and 90 mm for chum, and 35 

and 70 mm for pink salmon). A hyphen (-) denotes that there is no fish assessed in that data 

category. 

Dataset Species Month 

Number of fish infested with motile sea lice 

(C. clemensi: L. salmonis) 

 
Beach 

 

Purse 

 
Small Medium Large Small Medium Large 

1 Chum March 0: 2 0: 0 - 0: 1 0: 0 - 

2 Chum April 6: 20 7: 53 - 0: 1 1: 16 - 

3 Chum May 12: 84 186: 635 7: 10 3: 2 90: 398 22: 26 

4 Chum June 4: 3 118: 489 33: 95 0: 0 69: 224 230: 339 

5 Chum July 0: 0 11: 32 29: 72 0: 0 5: 3 139: 186 

6 Pink March 0: 0 0: 2 - 0: 0 0: 0 - 

7 Pink April 3: 8 7: 91 0: 0 1: 1 4: 24 0: 0 

8 Pink May 0: 1 253: 789 65: 139 0: 0 56: 263 41: 133 

9 Pink June 0: 0 98: 328 162: 497 0: 0 22: 40 218: 636 

10 Pink July - 0: 0 34: 129 - 0: 0 78: 205 
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Figure S3.1 Coefficients of variations for the average numbers of fish captured by month for 

chum (blue) and pink (red) salmon. Plots for chum are shown in the left column from (A) March 

to (E) July, while plots for pink are presented in the right column from (F) to (J).  
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(A) 

 
(B) 

 
Figure S3.2 Total number of fish examined, sampled using either (A) beach seine or (B) purse 

seine during each sampling month (March to July) from 2004 to 2012 by fish species and size 

categories (classified as small, medium, and large using fish length with break-point values of 45 

and 90 mm for chum, and 35 and 70 mm for pink salmon)  
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(A) 

 
(B) 

 
Figure S3.3 Proportion of fish infested with non-motile (A) C. clemensi and (B) L. salmonis, 

sampled by purse seine during each sampling month (March to July) from 2004 to 2012 by fish 

species and size categories (classified as small, medium, and large using fish length with break-

point values of 45 and 90 mm for chum, and 35 and 70 mm for pink salmon). Data points with 

number of fish sampled less than 20 fish were not included in the calculation.   
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(A) 

 
(B) 

 
Figure S3.4 Proportion of fish infested with motile (A) C. clemensi and (B) L. salmonis, sampled 

by purse seine during each sampling month (March to July) from 2004 to 2012 by fish species 

and size categories (classified as small, medium, and large using fish length with break-point 

values of 45 and 90 mm for chum, and 35 and 70 mm for pink salmon). Data points with number 

of fish sampled less than 20 fish were not included in the calculation.  
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(A) April 

 

(B) May 

 

Figure S3.5 Average salinity in the Broughton Archipelago from (A) April and (B) May during 

the year 2004-2012. 

 

The study by Rees et al. (2015) 

To provide further discussion on additional factors that were not included in this 

study and may be associated with the spatial clustering of sea lice infestations on wild 

chum and pink salmon, details on the key findings from work reported in Rees et al. 

(2015) to which the current author was a contributor, are discussed in this section. 

The objectives of the Rees et al. study were to: (1) identify locations in term of 

distance relative to Atlantic salmon farm where wild chum and pink juvenile salmon 
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were associated with high abundances of non-motile sea lice, (2) determine the spatial 

scale over which there was an association between sea lice levels on farmed and wild 

juvenile salmon, and (3) compare how sea lice abundance on the wild juvenile salmon 

varied given different levels of farm infestation given conditions favourable to sea lice 

infestation on the wild salmon. 

In common with Chapters 2 and 3 of this thesis, the study used sea lice count data 

from wild chum and pink salmon populations, sampled in the Broughton Archipelago 

regions during sampling month of March to July from 2003 to 2012. Factors 

hypothesized to influence sea lice infestation levels (non-motile life stage), including: 

sampling method, salmon species, fish length, sea water salinity, and infestation pressure 

from Atlantic salmon farm, were assessed using a multivariable two-part random effects 

model, while controlling for year and month of sampling. 

Results suggested that the abundance of non-motile sea lice on wild juvenile 

chum and pink salmon was associated with sampling method, salmon species, fish length, 

sea water salinity, and the infestation levels on farms located within a sea-way distance of 

30 km. The predicted abundance of non-motile sea lice on wild juvenile salmon increased 

with an increase in water salinity. These findings complement the results report in 

Chapter 3 regarding the locations of identified clusters of sea lice infestation on wild 

chum and pink salmon. 
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4.   

Chapter 4 

 

Mathematical model describing the population dynamics of Ciona 

intestinalis, a biofouling tunicate on mussel farms in Prince Edward 

Island, Canada* 

 

*Patanasatienkul, T., Revie, C.W., Davidson, J., Sanchez, J., 2014. Mathematical model describing the 

population dynamics of Ciona intestinalis, a biofouling tunicate on mussel farms in Prince Edward Island, 

Canada. Manag. Biol. Invasions 5, 39-54. 
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4.1. Abstract 

A mathematical model was used to describe the population of the aquatic invasive 

species, Ciona intestinalis in the presence of cultured mussel production. A differential 

equation model was developed to represent the key life stages: egg, larva, recruit, 

juvenile and adult. Stage transition rates were calculated from time spent in a stage and 

transition probabilities. Because surface availability for the settlement phase is a key 

determinant of population growth, dead juvenile and dead adult stages were also 

modelled, together with their drop-off rates. This model incorporated temperature 

dependencies and an environmental carrying capacity. Model validation was carried out 

against field data collected from Georgetown Harbour, in 2008. Relative sensitivity 

indices were calculated to determine the most influential factors in the model. The results 

indicated that the modelled outputs were broadly in agreement with the observed data. 

Under baseline conditions the number of C. intestinalis increased from early September 

to late October, after which they reached a plateau at an abundance of approximately five 

individuals per cm2. Sensitivity analyses revealed that a reduction in spawning interval or 

the development time of larva accelerated C. intestinalis population growth. In contrast, 

decreasing either carrying capacity or the percentage drop-off of live juvenile and adult 

stages resulted in a decline in the population. This research provides the first detailed 

model describing population dynamics of C. intestinalis in mussel farms and will be 

valuable in exploring effective treatment strategies for this invasive species. 

Keywords: Mathematical model, Population dynamics, Ciona intestinalis, Aquatic 

invasive species, Tunicates, Blue mussel  
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4.2. Introduction 

Mussels accounted for 66% of total Canadian shellfish production (38,646 

tonnes), with an estimated market value of CAD$39 million, in 2011 (Statistics Canada, 

2012). The Prince Edward Island (PEI) blue mussel (Mytilus edulis Linnaeus, 1758) 

industry produces approximately 80% of all mussels cultured in Canada (Statistics 

Canada, 2012). Over the past 15 years the industry has encountered increasing challenges 

related to aquatic invasive species, especially tunicates. These biofouling species compete 

for food and space, reducing water flow rates from the species overgrowth, jeopardizing 

mussel health and yield, which can cause significant economic losses to mussel farmers 

and processors as a result of the costs associated with controlling their population growth 

as well as the additional labour costs during the mussel cleaning process at processing 

plants (Carver et al., 2006; Locke et al., 2009). Four species of invasive tunicates are 

found in PEI (MacNair, 2005; Fisheries and Oceans Canada, 2006): clubbed tunicate 

(Styela clava Herdman, 1881), vase tunicate (Ciona intestinalis Linnaeus, 1767), golden 

star tunicate (Botryllus schlosseri Pallas, 1766), and violet tunicate (Botrylloides 

violaceus Oka, 1927). Of these, the vase tunicate is considered to be the greatest threat 

for PEI aquaculture. Two years after the first identification of C. intestinalis in Montague 

River, PEI in the autumn of 2004, it became a dominant fouling species, causing severe 

problems for the PEI mussel industry (Carver et al., 2006; Ramsay et al., 2008).  

C. intestinalis is a solitary tunicate, with a short-lived planktonic stage before 

settling on a suitable substrate during metamorphosis and becoming a sessile filter feeder 

(Carver et al., 2006). The growth and reproductive rates are strongly temperature 

dependent (Dybern, 1965; Carver et al., 2006); exhibiting rapid growth in the summer, 
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before decreasing with declining temperature (Carver et al., 2006). A study of C. 

intestinalis populations on the Atlantic coast of Nova Scotia, Canada estimated 12,000 

eggs were produced per a 100-mm long individual over a season (Carver et al., 2003). 

Another study in Japan gave an estimate of 100,000 eggs per individual (Yamaguchi, 

1975). With its high fecundity and ability to reproduce rapidly (Carver et al., 2006), a 

mussel sock can be covered with C. intestinalis individuals in a short time; increasing the 

biomass on the mussel socks and resulting in mussel mortality through fall-off. To 

mitigate this, farmers remove tunicates from mussel socks by chemical and mechanical 

methods including 4% acetic acid treatment and high-pressure washing with water for C. 

intestinalis (Carver et al., 2003; Carver et al., 2006; Ramsay, 2008).  

There is a need to compare the efficacy of treatments to find the best mitigation 

strategies in terms of time and frequency of treatment. A conventional approach 

involving field trials has been conducted for C. intestinalis (Davidson et al., 2009) and B. 

violaceus (Arens et al., 2011) to carry out such comparisons. However, these trials 

require considerable time to execute and are both cost and labour intensive. As an 

alternative, computer-based modelling can be used to mimic the population dynamics of 

a particular species (e.g. C. intestinalis) and subsequently to explore the likely effect of 

different control measures. While field-based experiments continue to provide a vital 

role, both in establishing the value of key parameters as specified within any model as 

well as in validating modelled outputs, a key advantage of such models is that they 

provide a mechanism to explore a range of possible intervention strategies in an 

inexpensive and timely manner.  
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Mathematical models are based on a set of equations with fixed parameters to 

describe a system. They have been applied to a wide range of problems associated with 

parasites and their control (Ebert et al., 2000; Jerwood and Saporu, 1988; Luis et al., 

2010; White et al., 2011). They can be used to represent complex phenomena and 

interactions, including those found in aquatic contexts (Fenton et al., 2006; Ford et al., 

1999; Kanary et al., 2011; Murray, 2011; Revie et al., 2005; Robbins et al., 2010; 

Thebault et al., 2007). These models typically predict the number of parasites/species of 

interest or the rates of change in the numbers of a species at a given time. Applying such 

approaches to model the population dynamics of C. intestinalis should provide the basis 

for a better understanding of population growth over time, as well as an ability to 

compare modelled results among various scenarios. The objective of this study was to 

develop a mathematical model that could describe the population dynamics of C. 

intestinalis in areas with mussel production, to better understand the growth of these 

populations under different temperature conditions. 

4.3. Materials and methods 

4.3.1. C. intestinalis population dynamics 

The life cycle of C. intestinalis consists of egg, larva, recruit, juvenile, and 

adult stages. To capture the seasonal variation, six compartments representing the life 

stages of C. intestinalis were identified: egg (E), larva (L), recruit (R), juvenile (J), spring 

adult (Asp), and autumn adult (Aau). Because surface area on which C. intestinalis can 

settle is a key determinant of population growth, two additional compartments to model 

dead stages were set up: dead juvenile (DJ) and dead adult (DA) (Figure 4.1). Egg refers 

to the C. intestinalis egg which has already been fertilized. Larva is the stage after the 
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eggs hatch and become free-swimming larvae. Recruit refers to the tadpole that settles on 

a surface and develops through a process of metamorphosis. Those recruits that fail to 

metamorphose are assumed to detach from the surface. Juvenile is the stage at which the 

animal is completely metamorphosed but before it reaches sexual maturity. Spring adult 

refers to an animal that reaches its sexually mature size between May and September, and 

has the ability to reproduce. Autumn adults are animals that reach their adult stage 

between October and April. Two aggregate stages were also estimated: a surface-

occupying stage (NSO) and a visible surface-occupying stage (NVO). NSO comprises any 

individual that is attaching to the available surface, including R, J, Asp, Aau, and the two 

dead stages, DJ and DA, which continue to occupy space regardless of their mortality 

status until they drop-off of the surface, releasing more space for recruits; while NVO, 

which was only used for model validation purposes, represents the total number of 

individuals in a visible stage; which are those included in NSO but excluding recruits. The 

dead others stage (DO) in Figure 4.1 was not captured in the model since individuals 

transferred to this stage do not result in any reduction in settling surface. 

A sexually mature adult C. intestinalis spawns eggs repeatedly throughout 

its lifespan (LAsp days for spring adult and LAau days for autumn adult). On average, α 

eggs are released per individual every GSI days. The eggs are then fertilized with sperm 

externally at the rate of Ff(T˚). These fertilized eggs hatch at the rate of Fh(T˚) and 

develop to larvae in GE(T˚) days. The egg is viable for up to LE days before it is removed. 

After becoming a free-swimming larva, the tadpole turns into a recruit by finding a 

substrate to settle on at a percentage of Fs(T˚) which is capacity dependent and is thus 

adjusted by a capacity adjusting factor (γ(a,t); details in a subsequent section). The larval 
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phase can last for up to GL(T˚) days before settling and larva that do not settle in LL days 

will die. The recruit stage takes GR days to metamorphose to become a juvenile. The 

percentage of recruits that undergo the metamorphosis process is Fm(T˚), whereas 1- 

Fm(T˚) of recruits die in GR days. Each individual in the juvenile stage takes GJ(T˚) days 

to become a sexually mature adult and has a daily mortality rate of mJ. Space occupancy 

is released through a drop-off process, which occurs at the daily rates of µDJ and µDA for 

dead juveniles and dead adults, while juveniles and adults drop-off of mussel sock at the 

daily rates of µJ and µA. A dichotomous variable, x, was used to control whether an adult 

can produce eggs with the cut-off temperature at 4˚C (Eq. 1). A similar approach was 

applied for spring and autumn adult compartments (Eq. 5 and 6). A dichotomous 

variable, y, was created to define whether the model was in spring (y=1) or autumn 

season (y=0). This allows the model to assign animals from juvenile stage to spring or 

autumn adult compartments depending on time of the model. The C. intestinalis life cycle 

can be described by the following set of differential equations: 

𝑑𝐸(𝑡)

𝑑𝑡
=

(𝑥×𝛼)×𝐹𝑓(𝑇°)

𝐺𝑆𝐼
× (𝐴𝑠𝑝(𝑡) + 𝐴𝑎𝑢(𝑡)) −

𝐹ℎ(𝑇°)

𝐺𝐸(𝑇°)
× 𝐸(𝑡) −

𝐸(𝑡)

𝐿𝐸
 ; 𝑥 = {

0, 𝑇° < 4˚C
1, 𝑇° ≥ 4˚C

 
Eq. 1 

𝑑𝐿(𝑡)

𝑑𝑡
=

𝐹ℎ(𝑇°)

𝐺𝐸(𝑇°)
× 𝐸(𝑡) −

𝐹𝑠(𝑇°)

𝐺𝐿(𝑇°)
× 𝛾(𝑎, 𝑡) × 𝐿(𝑡) −

𝐿(𝑡)

𝐿𝐿
  Eq. 2 

𝑑𝑅(𝑡)

𝑑𝑡
=

𝐹𝑠(𝑇°)

𝐺𝐿(𝑇°)
× 𝛾(𝑎, 𝑡) × 𝐿(𝑡) −

𝐹𝑚(𝑇°)

𝐺𝑅
× 𝑅(𝑡) −

1−𝐹𝑚(𝑇°)

𝐺𝑆
× 𝑅(𝑡)  Eq. 3 

𝑑𝐽(𝑡)

𝑑𝑡
=

𝐹𝑚(𝑇°)

𝐺𝑅
× 𝑅(𝑡) −

𝐽(𝑡)

𝐺𝐽(𝑇°)
− 𝑚𝐽 × 𝐽(𝑡) − 𝜇𝐽 × 𝐽(𝑡)  Eq. 4 

𝑑𝐴𝑠𝑝(𝑡)

𝑑𝑡
=

𝐽(𝑡)

𝐺𝐽(𝑇°)
× 𝑦 −

𝐴𝑠𝑝(𝑡)

𝐿𝐴𝑠𝑝

− 𝜇𝐴 × 𝐴𝑠𝑝(𝑡) ; 𝑦 = {
0, 𝑡 > 120
1, 𝑡 ≤ 120

 
Eq. 5 

𝑑𝐴𝑎𝑢(𝑡)

𝑑𝑡
=

𝐽(𝑡)

𝐺𝐽(𝑇°)
× (1 − 𝑦) −

𝐴𝑎𝑢(𝑡)

𝐿𝐴𝑎𝑢

− 𝜇𝐴 × 𝐴𝑎𝑢(𝑡) ; 𝑦 = {
0, 𝑡 > 120
1, 𝑡 ≤ 120

 
Eq. 6 

𝑑𝐷𝐽(𝑡)

𝑑𝑡
= 𝑚𝐽 × 𝐽(𝑡) − 𝜇𝐷𝐽 × 𝐷𝐽(𝑡)  Eq. 7 

𝑑𝐷𝐴(𝑡)

𝑑𝑡
=

𝐴𝑠𝑝(𝑡)

𝐿𝐴𝑠𝑝

+
𝐴𝑎𝑢(𝑡)

𝐿𝐴𝑎𝑢

− 𝜇𝐷𝐴 × 𝐷𝐴(𝑡)  Eq. 8 
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The model was set to run for one calendar year, with Day 1 being the 1st of 

May until the termination of the model at Day 365 and was initialized with an initial 

autumn-adult presence of 0.002 individual∙cm-2 (or approximately 12 adults per mussel 

sock) based on field observations made by the Atlantic Veterinary College (AVC) 

shellfish research group; all other life stages were initially set to zero. Spring was set to 

begin on the 1st of May and last for 120 days before switching to the autumn season. The 

model time step was set to 0.001 of a day. 

4.3.2. Parameter estimation 

A total of 20 parameters were identified, with seven of these being 

temperature dependent (see Table 4.1 and Figure 4.1 for details). Parameters were 

estimated based on values reported in the scientific literature. In cases where a range was 

reported (e.g. number of eggs laid per spawning (α) and larval lifespan (LL)) values were 

randomly selected from a uniform (for α) or triangular (for LL) distribution, while for 

parameters derived from more than one source, the average value based on these sources 

was estimated. Similarly, the average values of estimates at different temperatures were 

determined for the temperature-dependent parameters, i.e. development times and 

percentage of individuals successfully making the transition to a new phase for each stage 

(full details of the sources for these parameters are provided in Tables S4.1 and S4.2). All 

temperature-dependent parameters were linearly interpolated between reported values. 

Where no estimates could be found (e.g. temperatures less than 6 ˚C or greater than 24 ˚C 

in Figure 4.3) parameter values were assigned to the nearest reported value for 

%fertilization (Ff(T˚)), %hatchability (Fh(T˚)), %settlement (Fs(T˚)) and %metamorphosis 
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(Fm(T˚)) (Figure 4.3), while values for development time of each stage were linearly 

extrapolated (Figure 4.2). 

Average daily sea water temperatures were assumed to broadly follow 

trends that could be modelled by a sine wave and were estimated using trigonometric 

regression (Beer, 2001; Cox, 1987). The dependent variable was daily average 

temperature, whereas the independent variable was day of the year expressed in terms of 

sine and cosine functions, sin(2j𝜋t/p) and cos(2j𝜋t/p), where j is an integer, representing 

the number of sine and cosine terms, t represents day of the year ranging from 1 to 365, 

and p is the period, which is assumed to be 365 days in this model (Eq. 9). The best fit 

temperature model was one comprising three sine/cosine terms (R-squared = 0.97). 

However for the sake of parsimony, a model with one sine and one cosine term was used 

(R-squared = 0.95). After acquiring the regression coefficients, the model was simplified 

to the simple sine function in Eq. 10 to allow for a supple parameter. Amplitude (A) is 

computed as √𝛽𝑆𝑗

2 + 𝛽𝐶𝑗

2  while the shift parameter (α) is tan−1(
𝛽𝐶

𝛽𝑆
), and the constant (C) 

is equal to β0. 

 𝑇° = 𝛽0 + ∑ 𝛽𝑠𝑗
sin (

2𝑗𝜋𝑡

𝑝
) + ∑ 𝛽𝑐𝑗

𝐽
𝑗=1

𝐽
𝑗=1 cos (

2𝑗𝜋𝑡

𝑝
)  Eq. 9 

𝑇° = 𝐴 × sin (
2𝜋𝑡

𝑝
+ 𝛼) + 𝐶  Eq. 10 

 

4.3.3. Environmental carrying capacity 

The model assumes that the settling rate of larvae is density dependent, varying 

with the proportion of NSO(t) to environmental carrying capacity (K) of a surface area a, 

which is the maximum number of C. intestinalis that the system can accommodate per 

cm2 multiplied by the total surface area (a cm2) of mussel socks in a bay. The model used 
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an estimate of 40 individuals per cm2 (Ramsay et al., 2009) for K2. Mussel sock density 

in PEI was estimated to be 630 mussel socks per acre in the 500-acre bay of Georgetown 

Harbour (AVC shellfish research group pers. comm.). Each mussel sock was assumed to 

have a cylindrical shape with a length of 180 cm and a diameter of 10 cm. The capacity 

adjusting factor γ(a,t) is the proportion of available surface area to the total surface area at 

time t. It is used to adjust the settling rate and is defined in Eq. 11. 

𝛾(𝑎, 𝑡) = 1 −
𝑁𝑆𝑂(𝑡)

𝐾×𝑎
  Eq. 11 

 

4.3.4. Model validation 

 

Model fit was assessed by comparing the modelled number of each C. 

intestinalis life stage to observed field data collected by the AVC shellfish research group 

during May to November in 2008 at Georgetown Harbour, PEI. Two datasets relating to 

larval concentration, and population development were used in the assessment. A third 

dataset, population recruitment, is provided in the supplementary materials. 

For larval concentration, data collection was carried out using the larval 

sampling method described in Ramsay (2008). In brief, a 150-litre water sample in the 

water column between water surface and the first 2 metre depth was collected using bilge 

pump every two weeks from the study area and concentrated to 10 millilitres. This was 

then evaluated under a stereo microscope to identify and estimate the number of larvae. 

                                                           
2 It is possible that more than one fouling species live together, forming a “fouling community” (Sutherland 

and Karlson, 1997). However, C. intestinalis is the only species considered in the calculation of 

environmental carrying capacity in this model, since the reproduction cycle of this species occurs at a lower 

temperature (8ºC) than that which is observed in other species (e.g., S. clava at 12ºC). This provides a 

recruitment advantage for C. intestinalis, by inhibiting the settlement of other fouling species as a result of 

the early recruitment and growth of C. intestinalis populations (Ramsay et al., 2008).  

 

Ramsay, A., Davidson, J., Landry, T., Arsenault, G., 2008. loc.cit. 

Sutherland, J.P., Karlson, R.H., 1997. Development and stability of the fouling community at Beaufort, 

North Carolina. Ecol. Monographs. 47, 425–446. 
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The data thus provided a representation of larval concentrations across the season. Due to 

these differences in measurement scale, direct comparison between the modelled output 

and observed data was not carried out and validation was based on a comparison of 

temporal patterns. 

For population development, the number of C. intestinalis accumulating 

during the reproductive season was investigated by deploying fifteen 100 cm2 PVC plates 

at 2-3 metre depth below the water surface on May 1st, 2008. One plate was then 

randomly retrieved every two weeks to evaluate the numbers of C. intestinalis present at 

that time point. The samples were visually evaluated, so individuals smaller than 5 mm 

were not included in the count (for details see Ramsay et al., 2009). The data thus 

represented the total number of settled C. intestinalis per cm2 over the season which was 

compared to the modelled NVO. It was assumed that Based on the extensive field 

experience of one of the co-authors (Davidson) it was estimated that only around half of 

the juvenile population would be visually detectable in a field setting and that the dead 

recruit stages do not take up space since they detach from the surface after they die.  

Population recruitment data were collected according to the method used 

by Ramsay et al. (2009). PVC plates measuring 100 cm2 were left at 2-3 metre depth 

below the water and retrieved after a two-week period. The numbers of recruiting C. 

intestinalis were identified under a dissecting microscope. This procedure was repeated 

every two weeks over the study period (May to November, 2008). These data provide 

estimates of the numbers of early recruiting C. intestinalis over time, but can only 

sensibly be compared to the modelled numbers in the recruit stage for the initial two 

weeks when the recruitment occurred. 
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4.3.5. Sensitivity analysis 

Sensitivity analysis was carried out to analyse the influence of each 

parameter on the Nso using a relative sensitivity function (𝑆𝑝
𝐹) which is the percentage of 

change in modelled output relative to a certain percent change in input. Each parameter 

(p) was increased or decreased by 20% of its default value one at a time, except for LAsp 

and LAau that were changed simultaneously. 𝑆𝑝
𝐹 was calculated and averaged over time to 

obtain an average relative sensitivity index (𝑆𝑝̅
𝐹) for each parameter (Eq.12). F(t) denotes 

modelled NSO at any time t when a parameter value is varied, while Fb(t) refers to the 

modelled NSO when all parameters were set to their default values.  

𝑆𝑝̅
𝐹 =

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐹(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑝
=

∑ [
𝐹(𝑡)−𝐹𝑏(𝑡)

𝐹𝑏(𝑡)
]𝑇

𝑡=0 𝑇⁄

|
Δ𝑝

𝑝
|

  Eq. 12 

 

4.3.6. What-if scenarios 

Four temperature conditions were modelled for what-if scenarios: baseline 

(replicating the temperature from Georgetown Harbour in 2008), cold year, long summer, 

and warm summer. Three parameters with high 𝑆𝑝̅
𝐹 values, together with environmental 

carrying capacity and the drop-off rates of live juvenile and adult stages were further 

evaluated for their influences on NSO. These parameters were varied by a 20% increase or 

decrease on their default values and the outcomes assessed under the four temperature 

conditions. 
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4.4. Results 

The observed and modelled average daily temperatures of Georgetown Harbour 

from May 2008 to May 2009 are illustrated in Figure 4.4. The modelled temperature was 

3.3 ˚C at the start of the model with a mean of 7.1 ˚C, had a minimum of -2.7 ˚C and 

reached a maximum of 16.9 ˚C in late August. 

The modelled total number of egg (eggs×109), larva (larvae×109), as well as the 

abundances per cm2 of recruit, juvenile, adult, and visible occupying stages (NVO) are 

illustrated in Figures 4.5-4.9. Each stage started to become active in early June when the 

temperature reached 8 ˚C, but the numbers were so low that they can hardly be detected 

in the summary plots. The modelled numbers of eggs rose from mid-August and reached 

a peak of 47×109 eggs in mid-October (Figure 4.5). The number of larvae began to 

increase just after the rise in egg abundance, as would be expected, reaching a peak of 

4.8× 109 larvae around mid-September at around the same time as the observed larval 

counts reached their maximum (Figure 4.6). The shapes of the observed and modelled 

larvae abundance over time are broadly similar though there is a limitation in comparing 

their magnitudes, as the two quantities are represented on quite different scales. Recruits 

followed a similar pattern to larvae, once again reaching a peak (4.5 recruit∙cm-2) in mid-

September (Figure 4.7). The abundance of juveniles began to rise in late August and 

reached its peak (4.3 juvenile∙cm-2) in early October, while the abundance of adults 

increased from early September and reached the highest levels (1.9 adult∙cm-2) in mid-

December (Figure 4.8). A comparison between NVO for the observed and modelled data is 

shown in Figure 4.9. The observed NVO gradually increased from late July until mid-

October with a rapid increase in late October. The modelled NVO broadly followed the 
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shape of the observed curve, reaching a plateau at an abundance of around 5 

individuals∙cm-2. However, the modelled NVO started to increase a month later than the 

observed data and showed a much more rapid rise after this initial increase than was the 

case for the observed data. 

The modelled outputs using parameters fitted to the observed temperatures are 

presented in Figures S4.1-S4.5. The outputs of each stage appear to show an initial peak 

or early rise around late July (recruit and juvenile stages) to early August (egg, larval, 

adult, and NVO stages). Additionally, the modelled outputs (bases observed temperature) 

result in values around 5-6 times higher than those seen in the outputs using a simple sine 

curve-based temperature model and as high as two orders of magnitude for egg and larval 

stages. 

Figure 4.10 demonstrates the average relative sensitivity indices (𝑆𝑝̅
𝐹) calculated 

from Eq. 12 for the 20% increase/decrease models at the baseline temperature. It shows 

the impact of changes in parameter values on the modelled output. The further the value 

of 𝑆𝑝̅
𝐹 is from zero, the more influential a parameter is. The sign of 𝑆𝑝̅

𝐹 explains the 

direction of the modelled output with respect to changes in an input parameter. For 

instance, the 𝑆𝑝̅
𝐹 of 2.88 associated with a 20% decrease in spawning interval, the most 

influential parameter to the model (Figure 4.10), will generate on average a modelled 

output (NSO) that is 57.6% higher than when the default parameters are used. In contrast, 

the effect of increasing the spawning interval by 20%, will generate a 28.8% decrease in 

the output. It can also be seen that the sensitivity in modelled output to changes of up to 

20% in the mortality rate of juveniles and natural drop-off of dead juveniles and adults 
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was very low, with 𝑆𝑝̅
𝐹 values close to zero (Figure 4.10). The effects of any two 

parameters can be compared by dividing 𝑆𝑝̅
𝐹of one parameter by the other. For example, 

the effect of a 20% reduction in GL(T˚) is 1.15 times greater than the effect of a 20% 

reduction in GE(T˚). To show the temporal variation of relative sensitivity index (𝑆𝑝
𝐹), 

which cannot be seen in Figure 4.10, the plot of 𝑆𝑝
𝐹 for each parameter over time when 

parameters were decreased by 20% is also shown (Figure 4.11). It is not until Day 40 that 

the 𝑆𝑝
𝐹 values start to show an increase or decrease, and this change continued up to 

around Day 160, after which point they remained constant. Parameters with positive 𝑆𝑝
𝐹 

such as those related to the development time appeared to have higher magnitudes when 

compared to those with negative values (Figure 4.11). Mapping 𝑆𝑝
𝐹 values over time for a 

20% decrease in parameter values, indicates a similar and opposite trend to those found 

for the 20% increase model (data not shown).  

The four temperature scenarios explored are shown in Figure 4.12. Figure 4.13 

illustrates the NSO stages for a baseline temperature scenario based on 20% variation in 

three parameters with high 𝑆𝑝̅
𝐹 values: spawning interval (GSI), development time of larva 

(GL(T˚)), and number of laid eggs per spawning (α), as well as an increase to 1% and 2% 

of the drop-off of live juvenile and adult (µJ, µA). As expected, increases in GSI or GL(T˚) 

caused a reduction in NSO, while an increase in α increased the NSO compared to default 

value (see Figure 4.13). However, when these variations were explored in a warm 

summer year (data not shown) the overall change in NSO was marginal by comparison. 

Similarly changes in environmental carrying capacity (K) resulted in little or no change in 

NSO stages for baseline and cold year scenarios. On the other hand there were more 
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pronounced changes in the output for both long and particularly warm summer scenarios 

(Figure 4.14) when K was altered. The results also indicate that the model is highly 

sensitive to changes in temperature condition. Looking at the default values (dash lines in 

Figure 4.14), the modelled NSO varied from only 0.004 individuals∙cm-2 in a cold year 

(Figure 4.14B) to the maximum capacity of 40 individuals∙cm-2 in a warm summer 

(Figure 4.14D). Figure 4.15 applied variation to the %drop-off of live juvenile and adult 

(μJ and μA) to demonstrate its effect under different temperature conditions on the NSO 

stages. When comparing %drop-off between the two temperature conditions, warm 

summer showed higher NSO than long summer for every level of %drop-off. Additionally, 

the decrease in NSO for a warm summer occurred later and with a larger relative change 

than was observed for the long summer scenario.  

4.5. Discussion 

The C. intestinalis populations’ model has demonstrated a capacity to address a 

number of the objectives of this study. It is flexible and can be adapted to a range of 

different temperature conditions. The model, in general, provided similar outputs to the 

observed data based on a comparison of temporal patterns. Although differences in scale 

between the observed and modelled larval counts prevented any direct comparison, the 

model provided an accurate prediction as to the timing of both the growth and the decline 

of the larval stage.  

For the recruit stage focussing on the first two weeks of recruitment period, the 

model using a simple sine curve to represent sea water temperature was unable to capture 

an initial moderate rise in mid-July. The likely explanation for this is that the temperature 

model did not capture the high temperatures seen during late June and July which would 
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have affected the settling rate. When fitted to the observed temperature profile from 

Georgetown Harbour in 2008, as opposed to the simulated baseline (sine-wave model), 

the model was able to capture this initial rise in the recruit population (Figure S4.3).  

A separate study of recruitment patterns of C. intestinalis took place in the 

Montague River, PEI in 2006 (Ramsay et al., 2009). The observed water temperature 

from the end of May to December in 2006 ranged from 6 ˚C to 18 ˚C which was quite 

similar to the modelled baseline temperature used in our study, though the model 

estimates were consistently around 1 ˚C lower. This field study reported that the first 

recruitment occurred in the second week of June when the temperature was nearly 9 ˚C 

and found one recruitment peak when the temperature was at its maximum (17.7 ˚C) in 

late August. Our model indicated a similar single recruitment peak pattern, though the 

peak was reached around one month later as the temperatures were not so high in the 

current study as compared to temperatures in the Montague River in 2006. This supports 

the argument that the model can adequately predict the recruitment timing of C. 

intestinalis given suitable temperature profiles. 

As noted in Materials and Methods, comparing the observed and modelled 

recruitment data cannot strictly be justified, except during the first two weeks when 

recruitment occurs. This is due to the fact that in the observed data the surface on which 

recruits were counted was always based on a fresh plate, which would result in higher 

estimations of settling rates when compared to the modelled data. Furthermore the study 

design used to collect the observed recruitment data performed sampling every two 

weeks, which may not be frequent enough as the larval stage will last for only around 10 

days at the temperatures involved (Jackson, 2008). In addition our model assumes that 
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there was no external pressure affecting the modelled population, i.e. that all recruits 

derive from eggs and larvae produced by modelled adults in the population. However, 

within the observed data such external pressures are unknown and may therefore result in 

significant differences between the observed and modelled data. 

The population development data (detailed in Materials and Methods) represented 

C. intestinalis stages that were attached on a surface and were of detectable size (larger 

than 5 mm) over the season. Due to the limitation of information on the life stages in the 

observed data (i.e. proportions of each stage were not identified) it was not easy to 

compare the modelled visible surface occupying stages to this dataset by simply adding 

up the numbers of juvenile, adult, dead juvenile and adult stages, since the modelled 

juveniles might have included individuals that were less than 5 mm in size. In validating 

the model against this population development data, it was assumed that only half of the 

juvenile stage individuals would be of detectable size. The model did not reflect the 

modest rise in NVO seen early in the season in the observed data for the same reason that it 

could not simulate the initial rise of recruits, which are the source of juveniles, as 

discussed previously. The model also illustrated that the population remained relatively 

static after its peak in the middle of October. The abundance stopped increasing because 

the individual growth rate of C. intestinalis in cold temperatures is very low (Dybern 

1965; Yamaguchi 1975), yet it did not significantly decrease because the drop-off of dead 

individuals is also low (AVC shellfish research group pers. comm.).  

Temperature was modelled using a single sine term, though an equation utilising 

three sine terms provided a better fit. This was because the study aimed to create a model 

that explains how C. intestinalis populations behave under a range of temperature 
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conditions, which requires a model that can be easily modified to different contexts and is 

not over-fitted to one specific set of temperatures. On the other hand, if the objective is to 

make specific predictions, real water temperature data from a given year or season may 

provide better results. The single sine term model provides the flexibility of changing 

parameter values in a sensible way, but in this case study failed to capture the higher 

temperatures that occurred during July and early August which will influence the 

modelled temperature-dependent flow rates. However, fitting the parameters to the 

observed temperatures resulted in an earlier increase in the population of each stage 

(when compared to those seen using the simple temperature model); indicating that the 

model can produce adequate outputs for different temperature scenarios. 

The estimation of temperature-dependent parameters assumed linear 

interpolations when no values were reported between 6 ˚C and 26 ˚C. Where temperature 

was beyond this range, imputation, using either the nearest value or linear extrapolation, 

was carried out. As can be seen from Figure 4.2, a reasonable number of estimates exist 

at a range of temperatures for development times of egg, larval and juvenile stages which 

allowed for a sensible degree of interpolation, except at lower temperatures. However, 

there appeared to be more discontinuity when considering estimates of the percentage of 

individuals successfully making the transition to a new phase for various life stages 

(Figure 4.3) and therefore the interpolations adopted are inevitably more open to debate 

and refinement. In practice this was only a concern at lower temperature as sea water 

temperatures in the PEI coastal area rarely rise above 23 ˚C. Nonetheless, a reasonable 

amount of evidence that C. intestinalis do not develop at temperatures below 6 ˚C 
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mitigates this as a serious concern (Dybern, 1965; Carver et al., 2003; Carver et al., 2006; 

Ramsay et al., 2009). 

The plateau patterns observed in the modelled output (Figure 4.9 and 13-15) were 

a consequence of two factors: temperature and space availability. At high temperatures, 

the life stages grow quickly and rapidly reach maximum capacity. Although the 

population can still grow, there is no space available to accommodate the new recruit 

stages. In low to moderate temperatures (e.g. the modelled baseline and cold year 

scenarios), the population tends to grow more slowly. In these scenarios the maximum 

capacity is not reached prior to a time at which the temperature begins to decrease and 

thus limits the growth in the population. This strong relationship between growth rate and 

temperature is a characteristic of ectothermic organisms (Guarini et al., 2011), such as C. 

intestinalis. Under warm weather conditions such as the warm summer scenario 

presented in this study, the populations will grow faster and reach the maximum capacity 

very quickly (Gillooly et al., 2001). In contrast, when modelling the population under a 

cold weather scenario very few individuals successfully develop, indicating that the 

temperatures observed in this study represent values close to the lower thermal range 

limit for C. intestinalis. This is in agreement with Dybern (1965) who found no Ciona 

species in the sub-Arctic and Arctic regions, where temperature records are seldom 

higher than 3-4 ˚C 

This study used a relative sensitivity function to evaluate the influence of changes 

in parameter values on the overall outcomes of the model. Although this method is 

known to have limitation, it is a relatively simple way to compare the effects of different 

parameters (Smith et al., 2008). Under the baseline temperature scenario, the model is 
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particularly sensitive to development time and percentage of individuals successfully 

making the transition to the next life stages (i.e. egg and larva), as well as to spawning 

interval and number of eggs laid per spawning. As expected increasing spawning interval 

or development time slows down the growth of the C. intestinalis population, while 

increasing the number of eggs laid per spawning positively affects population growth. 

The sensitivity of the model to changes in the percentage drop-off of dead juvenile and 

dead adult stages was low; however, these drop-off rates only relate to the dead stages. A 

range of mitigation strategies to control C. intestinalis focusing on the removal of the 

occupying stages have been suggested elsewhere (Carver et al., 2003; Carver et al., 2006; 

Edwards and Leung, 2009; Gill et al., 2007). The predictions from this model suggest that 

changes in environmental carrying capacity have a larger impact on population growth 

under warm summer or long summer-like conditions as compared to what would be the 

case in cold years. Although drop-off of live C. intestinalis rarely occurs naturally (AVC 

shellfish research group pers. comm.), the model indicates that changes in this parameter 

can have major impacts on modelled outputs. The results suggest that increased drop-off 

of live C. intestinalis, as would be the case under certain mechanical treatments, can act 

to limit population growth and is worthy of further investigation in combination with 

space and time control. 

The use of this model is currently limited to a one-year scenario. To use this 

model for multi-year scenarios, factors related to mortality during the winter would be 

required to adequately model the correct number of initial adults at the start of a new 

yearly cycle. The population may increase exponentially in a subsequent year if there is 

very low mortality during winter. On the other hand if high mortality of adults occurs 
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there would be few initial adults to initiate the reproduction cycle, resulting in an 

outcome not dissimilar to the single year scenario modelling in this paper. Therefore, the 

effects of temperature on physiological rates and development stages of this species, 

particularly in the colder winter months, require further study. 

Overall, this mathematical model provides reasonable predictions around the 

dynamics of C. intestinalis populations on mussel farms in PEI. This approach should 

prove useful for farm management and can be adapted to model populations in different 

regions or of other invasive species. Future studies will explore its application to an 

evaluation of the effectiveness of combining treatment and space management at 

different temperature profiles to develop mitigation strategies for the control of C. 

intestinalis populations and to improve bay management plans that might be 

implemented by mussel producers. 
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Table 4.1 Parameter definitions, estimates, and parameter sources for C. intestinalis population 

dynamics model (Sources for temperature dependent parameters, which are marked with an 

asterisk, are shown in Tables S4.1 and S4.2.). 
 

Parameter Description Value Unit Sources 

GE(T˚) Development time of egg* 0.51 – 2.63 day * 

GL(T˚) Development time of larva* 0.31 - 10 day * 

GR Development time of recruit 12 day Chiba et al., 2004 

GJ(T˚) Development time of 

juvenile* 

30 - 90 day * 

GSI Spawning interval 3 day Yamaguchi, 1975; Carver et 

al., 2003 

α Number of eggs laid per 

spawning 

1,000 – 

1,500 

egg Carver et al., 2003 

Ff(T˚) %Fertilization* 0 – 85 % * 

Fh(T˚) %Hatchability* 0 - 85 % * 

Fs(T˚) %Settlement* 0 - 65 % * 

Fm(T˚) %Metamorphosis* 0 – 80 % * 

LE Lifespan of egg 1.25 day Svane and Havenhand, 1993 

LL Lifespan of larva 0.25-1.5 day Havenhand and Svane, 1991 

LAsp Lifespan of Spring-Adult 150 day Carver et al., 2006 

LAau Lifespan of Autumn-Adult 180 day Yamaguchi, 1975 

mJ % Mortality of juvenile 0.11 % Svane, 1984 

µJ % daily drop-off of live 

juvenile 

0 % AVC shellfish research 

group pers. comm. 

µA % daily drop-off of live adult 0 % AVC shellfish research 

group pers. comm. 

µDJ % daily drop-off of dead 

juvenile 

0.05 % AVC shellfish research 

group pers. comm. 

µDA % daily drop-off of dead 

adult 

0.05 % AVC shellfish research 

group pers. comm. 

K Environmental carrying 

capacity 

40 individual∙cm-2 Ramsay et al., 2009 
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Figure 4.1 Diagram of C. intestinalis life cycle and parameters associating with flow rates. Asp, 

Aau, E, L, R, J, DA, DJ, and DO represent adult (spring and autumn), egg, larva, recruit, juvenile, 

dead adult, dead juvenile, and dead other stages. Asterisks (*) denote temperature-dependent 

parameters. 

 
Figure 4.2 Reported values and linear interpolants of development time (day) at different 
temperatures for egg (GE(T˚)), larval (GL(T˚)), and juvenile (GJ(T˚)) phases. 
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Figure 4.3 Reported values and linear interpolants for percentage of individuals successfully 

making a transition to a new phase: %fertilization (Ff(T˚)), %hatchability (Fh(T˚)), %settlement 

(Fs(T˚)), and %metamorphosis (Fm(T˚)) at different temperatures. 
 

 

Figure 4.4 The observed and modelled average daily temperatures of Georgetown Harbour from 

May 2008 to May 2009. 
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Figure 4.5 The modelled abundance of C. intestinalis at egg stage in Georgetown Harbour from 

May 2008 to May 2009. 
 

 
Figure 4.6 The modelled abundance of C. intestinalis at larval stage compared to observed larval 

counts (per 150 Litre) from Georgetown Harbour during May to November 2008. 

 
Figure 4.7 The modelled abundance of C. intestinalis at recruit stage from Georgetown Harbour 

during May 2008 to May 2009. 
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Figure 4.8 The modelled abundance of C. intestinalis at juvenile and adult stages in Georgetown 

Harbour from May 2008 to May 2009. 

 
Figure 4.9 The modelled abundance of C. intestinalis at the aggregate visible occupying stage 

(NVO) (half of juveniles, adults, and dead juveniles and adults) compared to the observed 

population developmental data collected from Georgetown Harbour during May to December 

2008 
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Figure 4.10 Average relative sensitivity index (𝑆𝑝̅

𝐹) for 20% increase/decrease models (Acronyms 

are detailed in Table 4.1.). 

 

Figure 4.11 Relative sensitivity index [𝑆𝑝
𝐹] over time for variation (20% decrease) of different 

parameters of the C. intestinalis population dynamics model for Georgetown Harbour during May 

2008 to May 2009 (Acronyms are detailed in Table 4.1.).  
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Figure 4.12 The modelled temperatures for 4 different conditions: baseline (replicating 

temperature from Georgetown Harbour in 2008), cold year, long summer, and warm summer. 
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Figure 4.13 Impact on main outcome (NSO) of parameter variation in (A) spawning interval (GSI), (B) development time of larva (GL(T˚)), (C) 

number of eggs laid per spawning (α), and (D) %drop-off of live juvenile and adult (μJ and μA) at baseline temperature. 
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Figure 4.14 Impact on main outcome (NSO) of variation in environmental carrying capacity (K) at different temperature scenarios: (A) baseline, 

(B) cold year, (C) long summer, and (D) warm summer.
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Figure 4.15 Impact on main outcome (NSO) of variation in percentage drop-off of live juvenile 

and adult (μJ and μA) (0%, 1% and 2%) in long summer and warm summer scenarios. 
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4.7. Supplementary materials for Chapter 4 

 

Table S4.1 Development time for egg (GE(T˚)), larva (GL(T˚)), and juvenile (GJ(T˚)) phases of C. 

intestinalis at different temperatures. 
 

Temperature  

(˚C) 

Egg phase  

(day) 

Larval phase  

(day) 

Juvenile phase  

(day) 

Reference 

 

8 - 10 - Jackson, 2008 

9 2.63 - - Svane and Havenhand, 1993 

10 1.25 - - Liu, 2006 

10 2 - - Wieczorek and Todd, 1997 

10-12 2 4-5 - Dybern, 1965 

14 1.5 - - Szewzyk, 1991 

14-19 - - 60 Yamaguchi, 1975 

15-18 0.92 - 60 Liu, 2006 

15 1.25 - - Carver et al., 2003 

15 - - 90 Hendrickson et al., 2004 

15 - 3 - Havenhand and Svane, 1991 

16 0.92 - - Hotta et al., 2007 

16 1.08 - - Svane and Havenhand, 1993 

16-20 1 - - Berrill, 1947 

17-20 - - 45 Carver et al., 2003 

18 - 2 - Zapata et al., 2007 

18 0.73 - - Hotta et al., 2007 

18 0.75 - - Baghdiguian et al., 2007; Swalla, 2004 

18-20 0.75 - - Cirino et al., 2002 

18-20 0.88 1-1.5 - Dybern, 1965 

18-24 0.88 - - Marshall and Bolton, 2007 

20 0.58 1.5 - Chiba et al., 2004 

20 0.65 - - Hotta et al., 2007 

20 0.67 - - Liu, 2006 

20 0.83 - - Bellas et al., 2003 

20-25 - - 30 Yamaguchi, 1975 

22 0.56 - - Hotta et al., 2007 

22 0.63 - - Cirino et al., 2002 

25 0.50 - - Cirino et al., 2002 

25 0.53 - - Liu et al., 2006 

25 - 0.21-0.42 - Szewzyk, 1991 
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Table S4.2 Percentage of fertilization (Ff(T˚))and hatchability (Fh(T˚)), settlement (Fs(T˚)), and 

metamorphosis (Fm(T˚)) of C. intestinalis at different temperatures. 

 

Temperature 

(˚C) 

Fertilization & 

Hatchability 

(%) 

Settlement 

(%) 

Metamorphosis 

(%) 

Reference 

 

Below 8 0 0 0 

Dybern, 1965; Carver et al., 2003; 

Ramsay et al., 2009 

8 1 - 1 Dybern, 1965; Bellas et al., 2003 

8 - 0 - 

Carver et al., 2003; Ramsay et al., 

2009 

10 - 30 - Wieczorek and Todd, 1997 

15 5 - - Bellas et al., 2003 

15 - - 50 Dybern, 1965 

16 10 - - Bellas et al., 2003 

18 - - 60 Dybern, 1965 

18 80 - - Zega et al., 2009 

18 - 65 - Zapata et al., 2007 

18-23 75 - - Bellas et al., 2003 

20 - - 80 Dybern, 1965 

20 85 - - Bellas et al., 2001 

22 10 - - Dybern, 1965 

24 0 - - Dybern, 1965; Bellas et al., 2003 

25 0 - 40 Dybern, 1965 

25 - 32 - Holmstrom et al., 1992 

25 - 70-90 - Szewzyk, 1991 

26 0 0 0 Dybern, 1965 
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Figure S4.1 The modelled abundance of C. intestinalis at egg stage fitted with the observed 

temperatures in Georgetown Harbour from May to December 2008. 

  
 

 
Figure S4.2 The modelled abundance of C. intestinalis at larval stage fitted with the observed 

temperatures in Georgetown Harbour from May to November 2008.  
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Figure S4.3 The modelled abundance of C. intestinalis at recruit stage fitted with the observed 

temperatures compared to observed recruitment data from Georgetown Harbour during May to 

December 2008. 

  

 
Figure S4.4 The modelled abundance of C. intestinalis at juvenile and adult stage fitted with the 

observed temperatures in Georgetown Harbour from May 2008 to May 2009. 

 
Figure S4.5 The modelled abundance of C. intestinalis at the aggregate visible occupying stage 

(NVO) (half of juveniles, adults, and dead juveniles and adults) fitted with the observed 

temperatures from Georgetown Harbour during May 2008 to May 2009.  
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5.   

Chapter 5 

 

The application of a mathematical model to evaluate the effectiveness of 

Ciona intestinalis population control strategies* 

 

*Patanasatienkul, T., Revie, C.W., Davidson, J., Sanchez, J. The application of a mathematical model to 

evaluate the effectiveness of Ciona intestinalis population control strategies. (In preparation) 
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5.1. Abstract 

The Prince Edward Island (PEI) mussel industry has been challenged with the 

problem of invasive tunicate species over the past 15 years. Field experiments to find 

suitable mitigation strategies require considerable time and are resource intensive. This 

study demonstrates the application of a mathematical model to assess several control 

strategies against Ciona intestinalis populations under different temperature conditions in 

PEI. The model consists of eight compartments representing the key life stages; five live 

stages (egg, larva, recruit, juvenile, spring-, and autumn-adult), as well as two dead stages 

(juvenile and adult) to capture all individuals that typically occupy the surface of mussel 

socks. Stage transition rates were calculated based on the time spent in each stage, 

together with stage transition probabilities. Additionally, this model incorporated 

temperature dependencies and an environmental carrying capacity. The modelled output 

was measured in terms of the total abundance of surface-occupying stages. Treatment 

timing and frequency were explored to obtain the combination that maximized an 

objective value, which was the difference in modelled output between the control and the 

assessed treatment option. Treatment frequency was allowed to vary between one to four 

times over a given season. The model was assessed under baseline conditions, which 

mimicked water temperatures from Georgetown Harbour, PEI, in 2008, as well as under 

scenarios that reflected a prolonged summer or warm spring temperatures. Furthermore, 

the sensitivity of the model to variations in presumed treatment efficacy was evaluated. 

The results suggest that effective strategies should include one late timing treatment; and 

that treating more frequently will generally lead to better outcomes. The model also 

suggests that when multiple treatments are used, the first treatment should begin early in 
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the season. Quadruple treatment, starting around the first week of July, was the most 

effective strategy, assuming the baseline temperature scenario. However, the 

effectiveness of treatments depended on temperature conditions. This research provides 

insights into the application of a mathematical model to explore the effectiveness of 

different mitigation strategies to control the abundance of C. intestinalis in an area with 

mussel production under different environmental conditions. 

Keywords: Mathematical model, Ciona intestinalis, Tunicates, Treatment effectiveness, 

Population control, Optimization 

5.2. Introduction 

The blue mussel (Mytilus edulis Linnaeus, 1758) is a significant species in the 

Canadian aquaculture industry, accounting for over half of the total Canadian shellfish 

production value of $83 million (Statistics Canada, 2013). In 2012, PEI was the main 

producer, produced 78% of all mussel production in Canada, corresponding to 21,834 

tonnes (Statistics Canada, 2013). Over the past 15 years, PEI mussel industry has been 

challenged with the infestation of aquatic invasive species, particularly the tunicates, 

which foul mussel socks and culture gear, causing significant economic losses to the 

industry due to the increased production costs of biofouling population control and labour 

costs during the initial processing at processing plants (Thompson and MacNair, 2004; 

Carver et al., 2006; Locke et al., 2009). 

Several invasive tunicate species have been identified in PEI waters, including the 

vase tunicate (Ciona intestinalis Linnaeus, 1767), the species most impacting the PEI 

mussel production (Carver et al., 2006; Ramsay et al., 2008). C. intestinalis is a fast 
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growing, solitary tunicate, with a short-lived planktonic stage, which becomes a sessile 

filter feeder after settling and metamorphosis (Carver et al., 2006). This biofouling 

species can grow very quickly when the sea water temperature is warm and the growth 

rate declines with the decreasing temperature (Dybern, 1965; Carver et al., 2006). 

Because of the rapid growth of C. intestinalis populations, a mussel sock can be infested 

with a heavy tunicate biomass in a short time, compromising the mussel attachment to the 

socking material, resulting in mussel loss due to the fall-off when socks are lifted (Gill et 

al., 2007). 

A number of mitigation techniques are used to remove tunicates from mussel 

socks and aquaculture gear, including mechanical, chemical, and natural methods, e.g., 

calcium hydroxide (hydrated lime) for Styela clava, 4% acetic acid treatment for C. 

intestinalis, and mechanical methods (high-pressure washing with water) for C. 

intestinalis (Carver et al., 2003; Carver et al., 2006; Ramsay, 2008). The use of rock crab 

and green crab predation to provide biological control of tunicate populations on infested 

mussel socks has also been explored (Carver et al., 2003; Gill et al., 2007). High-pressure 

washing is the mitigation method used most often by farmers in PEI to control C. 

intestinalis populations (Paetzold et al., 2012). These methods can knock off up to 100% 

of C. intestinalis (Carver et al., 2003); however, the effect is not long lasting, as new 

tunicate larvae quickly settle on the mussel socks, especially, during the warm months 

when larval abundance and recruitment levels are at their peak (Ramsay, 2008; Ramsay 

et al., 2009). 

A conventional approach involving field trials has been conducted for colonial 

tunicates (Arens et al., 2011; Paetzold et al., 2012) and C. intestinalis (Davidson et al., 
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2009) to compare of effectiveness of different mitigation strategies in terms of treatment 

timing and frequency. However, investigating a variety of possible scenarios in the field 

is difficult, since these trials require considerable time to execute and are both cost- and 

labour- intensive. As a result, computer-based simulation modelling, which allows for an 

evaluation of the likely impact of changes in treatment prior to implementation, is 

considered a useful alternative approach. 

In the context of computer-based simulation, optimization software (e.g., 

OptQuest® Engine (OptTek Systems, Inc. 2011a)) can provide effective algorithms to 

search for optimal solutions to complex problems (OptTek Systems, Inc. 2011b). This 

provides a method to search an extensive solution space to quickly determine the best 

combination of variables that will result in achieving a desired objective (in the case 

under consideration, maximizing the reduction of C. intestinalis abundance). The 

optimization approach adopted in this paper uses a ‘metaheuristics’ based tool that 

combines scatter search, genetic algorithms, simulated annealing and tabu search to guide 

the process (OptTek Systems, Inc. 2011b). This optimizer has no knowledge of the 

structure of the simulation model to find the optimal solution. Instead, it uses 

combinations of the decision variables that satisfy the objective function.  The results are 

then stored and recombined by the optimizer into updated combinations that produce 

better solution using the above mentioned algorithms (Sorensen and Glover, 2013). 

Applying these techniques to a population dynamics model allows for an efficient 

exploration of the treatment intervention options. 

 A mathematical model, incorporating temperature-dependent growth and 

environmental carrying capacity, has been developed to describe the population dynamics 
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of C. intestinalis in areas with mussel production (Chapter 4; Patanasatienkul et al., 

2014). The basic structure of this model was explained in Chapter 4, together with its 

sensitivity to various parameter and temperature changes; however, the application of this 

model to evaluate mitigation strategies has not been explored. The objectives of this 

study were therefore: (1) to evaluate the use of a mathematical model in finding the best 

mitigation strategies in terms of a combination of treatment timing and frequency to 

control C. intestinalis populations in areas with mussel production; (2) to evaluate the 

effectiveness of the best strategies suggested by the model under different temperature 

conditions; and (3) to assess the sensitivity of the model to variations in presumed levels 

of treatment efficacy. 

5.3. Materials and methods 

5.3.1. C. intestinalis population dynamics model 

A previously described population dynamics model of C. intestinalis 

(Chapter 4; Patanasatienkul et al., 2014) was used to model the abundance of C. 

intestinalis in cases where treatment occurs, so that these could be compared to the 

situation in which no treatment (control) was administered. Briefly, this model consists of 

six compartments to represent the live stages of C. intestinalis: egg (E), larva (L), recruit 

(R; the tadpole that settles on a surface and develops through a process of 

metamorphosis), juvenile (J; completely metamorphosed animal), spring adult (Asp; the 

animal that reaches its sexually mature size between May and September), and autumn 

adult (Aau; the animal that reaches its sexually mature size between October and April). 

Two compartments are also set up to model the dead stages (dead juvenile (DJ) and dead 
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adult (DA)), so that all the surface-occupying stages (NSO) can be captured; which consist 

of these dead stages in addition to the R, J, Asp, and Aau stages. 

The adult C. intestinalis spawns eggs when the water temperature is 

suitable (>4˚C). These eggs are then fertilized and hatch into free-swimming larvae at 

water temperatures in the range from 8 to 26˚C. The larvae find a substrate to settle on, 

undergo a process of metamorphosis, and become juveniles. The reproductive system 

develops as the juvenile grows, until it reaches sexual maturity, transforming the C. 

intestinalis into an adult which can produce sperm and eggs throughout its lifespan. A set 

of differential equations, describing the rates of change for each C. intestinalis life stage, 

is shown in Table 5.1, while a description of the associated parameters is given in Table 

5.2. 

A dichotomous variable, x, was used to control whether (x=1) or not (x=0) 

an adult can produce eggs with the cut-off temperature at 4°C (Eq. 1; Table 5.1). A 

similar approach was applied for spring and autumn adult compartments (Eq. 5 and 6; 

Table 5.1). A dichotomous variable, y, was created to define whether the model was for 

the spring (y=1) or autumn season (y=0). This allowed the model to assign animals from 

the juvenile stage to spring or autumn adult compartments, depending on the time of year 

in the model. The model was set to run for 220 days, with Day 1 being the 1st of May, 

and was initialized with an initial juvenile presence of 0.1 juvenile C. intestinalis per 

mussel sock (or approximately 1 juvenile per 10 mussel socks); all other life stages were 

initially set to zero. 
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5.3.2. Space occupancy 

Space was released through a drop-off process whereby dead juveniles and 

adults were removed from the model at rates of µDJ and µDA, respectively. Space was also 

released when treatments were applied. Each treatment was assumed to result in an 

instantaneously knock-down of ω for all the live and dead stages of juvenile and adult C. 

intestinalis from the treated mussel socks. 

5.3.3. Parameter estimation 

A total of 19 parameters relating to the life cycle of C. intestinalis were 

identified. The estimates were adopted from the previous study (Chapter 4; 

Patanasatienkul et al., 2014), which obtained many of these values from the scientific 

literature (Table 5.2). In cases where a range of values had been reported, estimates were 

selected from uniform (for α) or triangular (for LL) distributions; while, for parameters 

derived from more than one source, the average value based on these sources was 

estimated. Similarly, the average values of estimates at different temperatures were 

determined for the temperature-dependent parameters. 

The model assumes that the settlement of larvae is density dependent, 

varying with the proportion of NSO(t) to environmental carrying capacity (K). K for a 

given bay is estimated by multiplying the maximum number of C. intestinalis that the 

system can accommodate per cm2 by the total surface area (a in cm2) of all mussel socks 

in that bay. The model used a value of 40 individuals per cm2 (Ramsay et al., 2009), 

while mussel sock density in PEI was estimated to be 630 mussel socks per acre in the 

500-acre bay of Georgetown Harbour (AVC shellfish research group pers. comm.). Each 
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mussel sock was assumed to have a cylindrical shape with a length of 180 cm and a 

diameter of 10 cm. A capacity adjusting factor γ(a,t), representing the proportion of 

available surface area to the total surface area at time t, was used to adjust the settlement; 

as defined in Eq. 9 (Table 5.1). 

In addition, parameters related to treatment effect were defined (Figure 

5.1). Treatment efficacy varies widely, depending on the method used; here, the model 

assumed an instantaneous knock-down of 80%, based on the efficacy of the high-pressure 

washing method reported by Arens et al. (2011). The treatment is less effective against 

the juvenile stages as the number of adults increases, as these protect the juvenile C. 

intestinalis from direct exposure to the treatment. Given that treatment efficacy for 

juveniles and dead juveniles depends on the proportion of live and dead adults to total 

abundance of juveniles and adults, this parameter was varied using an adjusting factor 

δ(t) (Eq. 10 in Table 5.1). 

5.3.4. Treatment strategies and optimization 

The treatment optimization, which had the goal of maximizing the 

reduction in C. intestinalis populations, was carried out within the AnyLogic® software 

package (XJ Technologies 2014a), using the built-in OptQuest® Engine (OptTek 

Systems, Inc. 2011a). To find the optimal mitigation strategies, a range of treatment 

timings and frequencies were evaluated using the metaheuristic optimization approach. 

Based on current practicalities affecting PEI mussel farmers, the treatment time window 

was allowed to vary from Day 61 (1st of July) to Day 183 (31st of October). The 

optimization process (with varied treatment intervals) was carried out separately for each 
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treatment frequency (one to four times) during the course of the season, with a minimum 

treatment interval of 14 days between any pair of treatments. The search began at a lower 

bound with increments specified as a minimum step-size, and could range up to an upper 

bound in no specific search order (XJ Technologies 2014b). We used a step size of 7 days 

(i.e. assumed that treatments that occur in the same calendar week are equally effective) 

for the optimization process to reduce the number of treatment combinations tested and 

the number of model runs, and to allow for the exploration of all possible treatment 

scenarios. The search stopped when all possible solution sets (i.e. treatment scenarios)  

were assessed for each treatment frequency. The number of model runs varied based on 

the treatment frequency; for example, the optimization for the single treatment group 

required a lower number of model runs than was the case for multiple treatment groups. 

For each solution set, an objective value, used to measure the effectiveness of the 

intervention, was calculated as the sum of the differences in NSO between the control (no 

treatment) and treatment scenarios across all modelled time points. Data were ranked in 

ascending order, based on this objective value (i.e. larger differences were given a higher 

rank), then percentiles of the objective value were computed. A treatment, in term of 

treatment timing, was considered to be among the “best mitigation strategies” when their 

objective value exceeded the 95th percentile for each of the four treatment groups, 

according to overall frequency of treatment (i.e. single, double, triple, and quadruple 

treatment groups). 
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5.3.5. What-if scenarios 

Treatment optimization was explored under various scenarios to evaluate 

the impact of different treatment interval, temperature, and treatment efficacy on the 

treatment times that yield best results in controlling the populations of C. intestinalis. 

I) Fixed treatment intervals 

The advantage of treatment optimization with varied treatment intervals is 

that any combination of treatment times can be assessed; however, the optimal solutions 

suggested by the model may be unsuitable to put in practice, as the farm activities are 

usually scheduled in a periodic manner. Therefore, fixed-treatment intervals were 

explored in the ‘what-if’ scenarios. 

The time of first treatment was varied between Day 61 (1st of July) and 

183 (31st of October), and treatment frequency could range from one to four times, with 

fixed treatment intervals between each pair of treatments. Three treatment intervals (14, 

28, and 56 days) were tested to assess their impact on the first treatment timing of 

treatment scenarios that were among the best mitigation strategies. Medians of treatment 

times within the best strategies were computed and used as a treatment combination for 

the evaluation of treatment effectiveness in the subsequent ‘what-if’ analyses. 

II) Temperature conditions 

Different sea water temperature conditions were used for two what-if 

scenarios: long summer, and warm spring. The best mitigation strategy from the 

treatment optimization process with a fixed treatment interval, using the median of first 
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treatment time with fixed treatment interval as a treatment setting, was evaluated by 

comparing the modelled NSO under these temperature conditions. Furthermore, treatment 

optimization with varied treatment intervals were carried out to find the optimal treatment 

strategy for each temperature condition. 

III) Treatment efficacy 

The influence of treatment efficacy assumptions on the modelled output 

(NSO) was assessed using a parameter variation method. The median of the first treatment 

timing and interval for the best mitigation strategies from the treatment optimization 

process with a fixed treatment interval was used as a treatment setting. The efficacy was 

then varied from 10% to 100% under the baseline temperature conditions, and then the 

objective values were compared to the base case (80% treatment efficacy) scenario. 

5.4. Results 

5.4.1. Treatment optimization with varied treatment intervals 

The objective value, the sum of the differences between NSO in the control 

and each treatment scenario, ranged from 842 to 2,552 for treatment optimization with a 

14 day minimum treatment interval setting. These objective values, broken down by 

treatment frequency grouping, are shown in Figure 5.2 together with the numbers of 

model runs associated with each grouping. An increasing trend in objective value can be 

seen as more treatments are included. The median values for each treatment group were 

1302 (single treatment), 2037 (double treatment), 2332 (triple treatment) and 2465 

(quadruple treatment). 
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A treatment was considered to be among the ‘best’ mitigation strategies 

when the objective value associated with that treatment was above the 95th percentile of 

the objective value for the particular treatment frequency group under consideration 

(single: 1772, double: 2254, triple: 2452 and quadruple: 2524). Figure 5.3 illustrates the 

variation of treatment times for the best mitigation strategies by treatment frequency 

group. The treatment time for single treatments varied from mid-July to late October; 

however, the objective value associated with these single treatments were low (median 

value of 1772) as compared to other treatments. The median of ‘best’ treatment times for 

the double treatment group were in mid-July (Day 75) and mid-September (Day 138). 

The triple treatment group had median treatment times of early July (Day 68), early 

August (Day 96), and late-September (Day 152); while treatments given twice in July 

(Days 68 and 89), once in early September (Day 124), and once in mid-October (Day 

166) were the medians for the quadruple treatment group. 

5.4.2. Treatment optimization with fixed treatment interval 

A total of 687 treatment scenarios/ model runs were explored to find the 

optimal treatment strategies when time of first treatment could be varied and the 

treatment intervals between each pair of treatments were fixed at 14, 28, or 56 days. The 

objective values and number of model runs associated with the assessed treatment 

frequency and interval are presented in Figure 5.4. The median objective value of the 

single treatment (1300) was lower than the multiple treatment groups (around 2000 for 

double treatment; 2300 for triple treatment; and 2400 for quadruple treatment groups). 

When comparing the outputs of different treatment intervals within the same treatment 

frequency group, the objective values of the best treatment (the right tail) for each 
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treatment group tended to increase as the treatment intervals decreased (Figure 5.4). The 

triple treatment with a 14-day interval and quadruple treatments with 14- and 28-day 

intervals were the only three treatment groups that generated objective values exceeding 

the 95th percentile (2500) when the objective values from all treatment groups were 

considered together. Among these three ‘best’ treatment groups, quadruple treatment with 

a 14-day interval tended to have the highest median objective values and, therefore, its 

median treatment times were used as the treatment setting for the best mitigation strategy 

in the subsequent what-if scenarios section. The median times of first treatment for each 

‘best’ treatment group were Day 114 (23rd of August; triple treatment/14-day interval), 92 

(1st of August; quadruple treatment/14-day interval), and 81 (21st of July; quadruple 

treatment/28-day interval). 

5.4.3. Treatment effectiveness under different temperature conditions 

The three temperature conditions explored are shown in Figure 5.5. The 

modelled temperature under the baseline condition was set to 3.3 ˚C at the start of the 

model with a mean of 7.1 ˚C. It peaked at a maximum of 16.9 ˚C in late August, reached 

8 ˚C (the critical temperature for reproduction of C. intestinalis) at the end of May, and 

dropped below 8 ˚C again in mid-November. In the case of the warm spring scenario, the 

maximum temperature started at 4.5 ˚C and rose to around 5 ˚C higher than the baseline 

for much of the summer before converging to the baseline profile by mid-October; while 

for the long summer scenario the maximum temperature was around 2 ˚C higher from 

July, and remained so for around two months after the summer peak. Figure S5.1 

illustrates the modelled NSO of the control model under the three different temperature 

profiles. It can be seen that for these modest temperature changes, the growth of C. 
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intestinalis is a few orders of magnitude greater in the absence of any treatment. Figure 

5.6 illustrates the NSO when the ‘best’ (quadruple treatment/14 day interval, on Days 92 

(1st of August), 106 (15th of August), 120 (29th of August), and 134 (12th of September) 

with treatment efficacy of 80%) mitigation strategy was carried out under the baseline, 

long summer, and warm spring temperature conditions. This ‘optimal’ treatment strategy 

was obviously much less effective, leaving a large number of NSO by the end of the year, 

when implemented under the long summer or warm spring conditions. 

Median treatment times for the best mitigation strategies (i.e. treatments 

with objective values that exceeded 95th percentiles), optimized under different 

temperature conditions, are presented in Table 5.3. The first treatment time of the 

multiple treatment groups (i.e. double, triple, and quadruple treatment) ranged from Day 

68 to 75 (8th – 15th of July) for baseline temperature conditions, while the ranges were 

Day 75-121 (15th of July – 30th of August), and Day 82-124 (22nd of July – 2nd of 

September) for long summer, and warm spring conditions, respectively. The quadruple 

treatment group for the ‘best’ treatment strategies tended to show higher objective values 

than other treatment frequency groups, optimized under the same temperature conditions. 

5.4.4. Sensitivity to treatment efficacy variation 

Figure 5.7 illustrates the modelled NSO when treatments were carried out at 

Day 92, 106, 120, and 134 (Quadruple treatment with 14-day interval, starting on 1st of 

August) and with treatment efficacy varying from 0% (control) to 80% (base case 

scenario) under the baseline temperature condition, while Figure 5.8 presents the changes 

in the objective values of different treatment efficacies relative to the base case scenario. 
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The actual objective values can be seen in Figure S5.2. The modelled NSO for the control 

gradually increased from late July until late August with a rapid increase in early 

September, reaching a plateau at an abundance of over 30 individuals per 30 cm sock 

(Figure 5.7). When treatments were activated, the modelled NSO broadly followed the 

output from the control scenario, with lower levels for the abundance of C. intestinalis 

and objective value. As the treatment efficacy increased, the modelled NSO decreased, 

with the abundance that varied from 0.3 (for 100% efficacy) to 26 individuals per 30 cm 

sock (for 10% efficacy) (Figure 5.7). In contrast, the objective value increased 

considerably from 608 (for 10% efficacy) to 2,573 (for 100% efficacy), as the treatment 

efficacy increased (Figure S5.2). The variation of treatment efficacy between 10% and 

60% caused a moderate change in objective value as compared to the outcome from the 

base case scenario, but the objective values did not vary much in the rest of the treatment 

efficacy range of 70% to 100% (Figures 5.8 and S5.2). 

5.5. Discussion 

5.5.1. Treatment optimization 

The treatment optimization from the model suggests that the multiple 

treatment should start early in July, assuming baseline temperature conditions (Figure 

5.3). This result agrees with a field trial study in PEI in 2008 (Davidson et al., 2009; PEI 

Aquaculture Alliance, 2009), which found that the best strategy to reduce tunicate 

fouling, regardless of mussel productivity, was to use 3 or 4 treatments starting in July. 

The model also suggested including one late treatment (> Day 135 or mid-September) in 

all strategies to achieve effective control of C. intestinalis populations (Figure 5.3 and 

Table 5.3), which is reasonable as this late treatment will clean up the mussel socks 
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around the end of the season when C. intestinalis enters its slow reproduction period 

(Dybern, 1965), and provide limited time for the recruiting stage to re-settle on the socks. 

The treatment optimization also suggests that the mitigation strategies 

with higher treatment frequency appear to be more effective than the less frequent 

strategies, especially, under the warm spring condition, which shows the highest 

objective value for the quadruple treatment group. This is in agreement with the results 

from a study (Paetzold et al., 2012) that evaluated the effectiveness of different treatment 

frequencies to control colonial tunicates. The result is also consistent with the result from 

a treatment trial (Gill et al., 2007), using vinegar and lime, which reported that double 

treatments resulted in larger reductions of C. intestinalis biomass than single treatments. 

Furthermore, when considering results from the optimization with fixed treatment 

intervals in Figure 5.4, the objective values among the best strategies (the right tails) of 

each treatment group showed an increasing trend as the time intervals between treatments 

decreased. This suggests that after taking into account the timing of first treatment, the 

mitigation strategy using multiple treatments may be more effective when the additional 

treatments are implemented shortly after the previous treatment. 

5.5.2. Treatment effectiveness under different temperature conditions 

When treatment timings based on the best mitigation strategies from the 

baseline temperature scenario were applied to the long summer and warm spring 

scenarios, their ability to control the population was poor, since the effectiveness of a 

treatment to control C. intestinalis populations depends greatly on when the treatment is 

implemented. If it is carried out during the warm months, when the temperature is 
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suitable for the reproduction of C. intestinalis (Dybern, 1965; Ramsay et al., 2009), the 

treatment may not be so effective. This is because most treatments remove biofouling 

species from mussel sock surfaces (Carver et al., 2006), which indirectly facilitates the 

regrowth of the tunicate populations by increasing the surface availability for the larval 

stage to settle on the mussel socks. Therefore, a combination of treatment time and 

frequency that is considered the best mitigation strategy under one temperature condition 

may not perform well when implemented under different temperature conditions. A set of 

optimization exercises must therefore be carried out for various temperature profiles to 

gain a better understanding as to the most effective strategies for the control of C. 

intestinalis populations. 

Given that the best mitigation strategies based on baseline conditions did 

not work well for other modelled temperature profiles, treatment optimizations were also 

attempted for the warmer temperature conditions (i.e. long summer and warm spring). 

The optimal time of the first treatment under these warmer conditions appeared to be 2-6 

weeks later than was suggested for the baseline scenario (Table 5.3). As discussed above, 

temperature plays an important role in the development of C. intestinalis populations 

(Dybern, 1965; Yamaguchi, 1975) and should be taken into careful consideration when 

exploring the mitigation strategies to control this biofouling species. An alternative 

method of evaluating the temperature component may involve a modification of the 

model which replaced temperature-linked rates with degree-days to account for the strong 

influence of temperature in the population dynamics of C. intestinalis.     
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5.5.3. Sensitivity to treatment efficacy variation 

As might be expected, an increase in treatment efficacy resulted in an 

increase in the objective value, which is after all an indication of successful treatment. 

The increased effectiveness of treatments rose substantially up to an efficacy level of 

approximately 70%. Thereafter, any increase in effectiveness of the treatment did not 

result in a significant improvement in terms of reduced abundance of C. intestinalis. This 

suggests that a minimum treatment efficacy of 70% should be sufficient to sustain control 

of C. intestinalis populations. However, this result should be interpreted with caution, as 

the objective value in this study is based on the abundance of aggregated surface-

occupying stages, and has not accounted for the difference in the size/ weight of life 

stages (e.g., juvenile and adult), which is associated with sock attachment strength of 

mussels. Although biomass is an appropriate value to measure the effectiveness of a 

treatment, it was not applied to this study due to limited data from which to parameterize 

the model. Further research should explore the effectiveness of treatments, using 

biomass, before more conclusive statements regarding treatment efficacy are made. 

In conclusion, this mathematical model performs reasonably well in terms of 

providing information on treatment optimization for the control of C. intestinalis 

populations, and can be used to assess the population under different temperature 

conditions. The model provides flexibility to explore the effectiveness of different 

treatment scenarios, e.g., varying the time of treatment, treatment frequency, and 

treatment efficacy. This model can therefore be used as a tool to develop better mitigation 

strategies to control populations of aquatic invasive species under different environmental 

conditions and to help improve bay management plans for the mussel industry. Future 
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models should include information on C. intestinalis biomass, and cost effectiveness, to 

find the best mitigation strategies for controlling C. intestinalis populations without 

compromising mussel yield. 
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Table 5.1 Mathematical equations for Ciona intestinalis population dynamics model used to 

evaluate the effectiveness of mitigation strategies. 

 

Mathematical equations 

 

 

Number 

 
𝑑𝐸(𝑡)

𝑑𝑡
=

(𝑥×𝑎)×𝐹𝑓(𝑇°)

𝐺𝑆𝐼
× (𝐴𝑠𝑝(𝑡) + 𝐴𝑎𝑢(𝑡)) −

𝐹ℎ(𝑇°)

𝐺𝐸(𝑇°)
× 𝐸(𝑡) −

𝐸(𝑡)

𝐿𝐸
; 𝑥 = {

0, 𝑇° < 4℃
1, 𝑇° ≥ 4℃

  
Eq. 1 

𝑑𝐿(𝑡)

𝑑𝑡
=

𝐹ℎ(𝑇°)

𝐺𝐸(𝑇°)
× 𝐸(𝑡) −

𝐹𝑠(𝑇°)

𝐺𝐿(𝑇°)
× 𝛾(𝑎, 𝑡) × 𝐿(𝑡) −

𝐿(𝑡)

𝐿𝐿
  Eq. 2 

𝑑𝑅(𝑡)

𝑑𝑡
=

𝐹𝑠(𝑇°)

𝐺𝐿(𝑇°)
× 𝛾(𝑎, 𝑡) × 𝐿(𝑡) −

𝐹𝑚(𝑇°)

𝐺𝑅
× 𝑅(𝑡) −

1−𝐹𝑚(𝑇°)

𝐺𝑅
× 𝑅(𝑡)  Eq. 3 

𝑑𝐽(𝑡)

𝑑𝑡
=

𝐹𝑚(𝑇°)

𝐺𝑅
× 𝑅(𝑡) −

𝐽(𝑡)

𝐺𝐽(𝑇°)
− 𝑚𝐽 × 𝐽(𝑡) − 𝜔 × 𝛿(𝑡) × 𝐽(𝑡)  Eq. 4 

𝑑𝐴𝑠𝑝(𝑡)

𝑑𝑡
=

𝐽(𝑡)

𝐺𝐽(𝑇°)
× 𝑦 −

𝐴𝑠𝑝(𝑡)

𝐿𝐴𝑠𝑝

− 𝜔 × 𝐴𝑠𝑝(𝑡); 𝑦 = {
0, 𝑡 > 120
1, 𝑡 ≤ 120

  
Eq. 5 

𝑑𝐴𝑎𝑢(𝑡)

𝑑𝑡
=

𝐽(𝑡)

𝐺𝐽(𝑇°)
× (1 − 𝑦) −

𝐴𝑎𝑢(𝑡)

𝐿𝐴𝑎𝑢

− 𝜔 × 𝐴𝑎𝑢(𝑡); 𝑦 = {
0, 𝑡 > 120
1, 𝑡 ≤ 120

  
Eq. 6 

𝑑𝐷𝐽(𝑡)

𝑑𝑡
= 𝑚𝐽 × 𝐽(𝑡) − (𝜇𝐷𝐽 + 𝜔 × 𝛿(𝑡)) × 𝐷𝐽(𝑡)  Eq. 7 

𝑑𝐷𝐴(𝑡)

𝑑𝑡
=

𝐴𝑠𝑝(𝑡)

𝐿𝐴𝑠𝑝

+
𝐴𝑎𝑢(𝑡)

𝐿𝐴𝑎𝑢

− (𝜇𝐷𝐴 + 𝜔) × 𝐷𝐴(𝑡)  Eq. 8 

𝛾(𝑎, 𝑡) = 1 −
𝑁𝑆𝑂(𝑡)

𝐾×𝑎
  Eq. 9 

𝛿(𝑡) = 1 −
𝐴𝑠𝑝(𝑡)+𝐴𝑎𝑢(𝑡)+𝐷𝐴(𝑡)

𝐴𝑠𝑝(𝑡)+𝐴𝑎𝑢(𝑡)+𝐷𝐴(𝑡)+𝐽(𝑡)+𝐷𝐽(𝑡)
  Eq. 10 
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Table 5.2 Parameter definitions and estimates for Ciona intestinalis population dynamics model 

that includes a treatment effect. (Temperature-dependent parameters are marked with an asterisk). 
 

Parameter Description Value Unit 

GE(T˚) Development time of egg* 0.51 – 2.63 day 

GL(T˚) Development time of larva* 0.31 - 10 day 

GR Development time of recruit 12 day 

GJ(T˚) Development time of juvenile* 30 - 90 day 

GSI Spawning interval 3 day 

α Number of eggs laid per spawning 1,000 – 1,500 egg 

Ff(T˚) %Fertilization* 0 – 85 % 

Fh(T˚) %Hatchability* 0 - 85 % 

Fs(T˚) %Settlement* 0 - 65 % 

Fm(T˚) %Metamorphosis* 0 – 80 % 

LE Lifespan of egg 1.25 day 

LL Lifespan of larva 0.25-1.5 day 

LAsp Lifespan of spring-adult 150 day 

LAau Lifespan of autumn-adult 180 day 

mJ % Mortality of juvenile 0.11 % 

µDJ % daily drop-off of dead juvenile 0.05 % 

µDA % daily drop-off of dead adult 0.05 % 

ω Treatment efficacy# 80 % 

K Environmental carrying capacity 40 individual∙cm-2 

* designates temperature dependent parameter. 

# This effect depends on the proportion of live and dead adult on the surface (see Eq. 4, 7 and 10 in Table 

5.1). 
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Table 5.3 The objective values (sum of the differences in surface-occupying stage between 

control and treatment; mean (standard deviation)), median of treatment time (D1-D4), and 

number of run (N) with the objective values, ranking above the 95th percentile days under 

baseline, long summer, and warm spring temperature conditions. Day 1 was set to the 1st of May. 

Temperature 

condition 

Treatment 

Frequency 
N Objective value D1 D2 D3 D4 

Baseline 1 8 1,772 (0) 145 - - - 

 2 28 2,309 (24) 75 138 - - 

 3 113 2,464 (12) 68 96 152 - 

 4 410 2,533 (7) 68 89 124 166 

Long summer 1 8 947,132 (0) 163 - - - 

 2 28 1,317,279 (29,064) 121 173 - - 

 3 113 1,565,439 (71,809) 96 145 173 - 

 4 410 1,776,395 (51,952) 75 117 145 180 

Warm spring 1 8 1,174,553 (0) 142 - - - 

 2 28 1,592,415 (33,666) 124 173 - - 

 3 113 1,896,000 (51,479) 96 138 173 - 

 4 410 2,167,043 (38,210) 82 117 145 173 
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Figure 5.1 Diagram showing parameters related to drop-off rate from treatment effect (ω) on 

juvenile (J), adult (A), dead juvenile (DJ), and dead adult (DA) stages, the treatment effect 

adjustment factor for J and DJ (δ(t)), and natural drop-off for dead stages (µDJ, and µDA). 

 

 
 

Figure 5.2 Violin plot of the objective values (sum of the differences in modelled surface 

occupying stages (NSO)) from Ciona intestinalis population dynamics model, and number of 

model runs (in brackets) associated with different treatment frequency groups. 
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Figure 5.3 Treatment times of the first to fourth treatments (D1-D4) and number of observations 

(N) associated with the best mitigation strategies, which are the runs with objective values 

ranking above the 95th percentile of the objective values for each treatment frequency group. 
 

 
Figure 5.4 Violin plot of the objective values (sum of the differences in modelled surface 

occupying stages (NSO)) from Ciona intestinalis population dynamics model, and number of 

model runs (in bracket) for different treatment frequencies (one to four times) and fixed intervals 

(14, 28, and 56 days). 
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Figure 5.5 The temperatures for 3 different conditions: baseline (replicating temperature from 

Georgetown Harbour in 2008), long summer, and warm spring. 

 
 

 

Figure 5.6 The modelled surface-occupying stages of Ciona intestinalis (NSO) with the ‘best’ 

quadruple treatment (first treatment on Day 92 and repeated every 14 days) under baseline, long 

summer, and warm spring temperature conditions. 
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Figure 5.7 The modelled surface-occupying stages of Ciona intestinalis (NSO (individuals per 30 

cm sock length)) with the ‘best’ quadruple treatment (first treatment on Day 92 and repeated 

every 14 days) under different treatment efficacy assumptions with 80% treatment efficacy as the 

base case. 

 
Figure 5.8 The changes in objective value (sum of the differences in surface-occupying stage 

between control and treatment) relative to base case (80% treatment efficacy) of C. intestinalis 

population dynamics under baseline temperature condition. 
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5.7. Supplementary materials for Chapter 5 

Figure S5.1 The modelled surface-occupying stages of Ciona intestinalis (NSO) when no 

treatment was administered (control) under baseline, long summer, and warm spring temperature 

conditions. 

 

 

Figure S5.2 The objective values (sum of the difference in surface-occupying stage of Ciona 

intestinalis between control and treatment models) for the variation of treatment efficacy from 

10% to 100%. 
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6.   

Chapter 6 

 

General Discussion and Conclusion 
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6.1. General discussion 

The use of modelling in two specific aquatic epidemiological contexts to better 

understand disease and the factors related to the health of aquatic animals has been 

demonstrated through the research documented in this dissertation. Two general classes 

of problems, risk factor analyses in the case of sea lice infestation in wild salmon 

populations and the use of mathematical simulation in modelling the infestation of 

tunicates on farmed mussels, were explored. The hypotheses associated with each 

research chapter were investigated and it was found that the use of the proposed models 

could adequately address the issues being studied.  

Multivariable logistic regression modelling performed well for the purpose of 

determining the factors associated with inter-annual variation of sea lice infestations in 

wild Pacific salmon populations (Chapter 2). The use of this model aided our 

understanding of the varying infestation patterns on chum and pink salmon, while taking 

account of spatio-temporal correlations. 

Space-time cluster modelling was also seen to be an adequate framework for the 

detection of cluster areas that had elevated numbers of fish infected with sea lice (Chapter 

3). This research illustrated that this technique has the capacity to study disease in an 

aquatic context using a non-Euclidean distance merit to reflect the transmission 

mechanism through water of aquatic organisms. Furthermore, the use of this cluster 

modelling approach, spatial scan statistic with multivariable option, in particular, allows 

for an assessment of the consistency in detected clusters between different datasets (i.e. 

fish species), and the ability to compare risk estimates associated with the clusters across 
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the fish species. The results from this model can facilitate hypothesis-generation, which 

should prove useful in future studies. 

This research also illustrated how a research question can be answered by different 

modelling methods, each of which requires different inputs and resources. In this case, to 

assess the spatial aggregation of sea lice, two modelling approaches were used: 

multivariable logistic regression with random effects (Chapter 2) and the space-time scan 

statistic (Chapter 3). Both methods provided consistent results in confirming that spatial 

clustering of sea lice infestation on wild chum and pink salmon existed in the Broughton 

Archipelago. When there is a need to adjust for other factors in the analysis, the 

multivariable model has a flexibility to take account both categorical and continuous 

variables in the analysis, but it is not able to identify the location of clusters. On the other 

hand, spatial cluster analysis (assuming a Poisson distribution) can indicate where the 

clusters are located; however, the software used in the analysis described here (i.e. 

SaTScanTM) can only adjust for categorical variables. These two methods have their own 

merits; the choice of the ‘best’ model depends on the questions of interest. In this 

dissertation, random effects-multivariable model was used for the explanatory purpose, 

while the spatial cluster analysis model was used for the exploratory purpose. 

In addition, the application of mathematical modelling to describe the dynamics of 

tunicate populations that emerge on farmed mussel provided promising results (Chapter 

4). The study suggested that this approach could be used not only to model parasite 

populations, but also to evaluate intervention strategies under different temperature 

scenarios (Chapter 5). The use of treatment optimization in Chapter 5 allows for the 

determination of the best treatment strategy to control C. intestinalis populations in terms 
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of treatment timing and frequency. The optimization process for a large number of 

treatment combinations, especially in a complex model, can take a considerable amount 

of time to execute and, therefore, a good model building practice is to simplify the model 

and use powerful computers to minimize the issue. 

6.2. Challenges in applying modelling to the study of aquatic diseases 

When using modelling approaches to study diseases in an aquatic environment, 

details regarding the transmission of the disease or pathogen of interest through the water 

must be considered. Several challenges were encountered during the model building 

phase of the research documented in this dissertation and are discussed below. Some of 

these challenges have also been identified when modelling diseases of humans or 

terrestrial animals. 

6.2.1. Parameter estimation 

Parameter estimation is an essential step in the model building process, 

and is typically carried out after the model has been constructed. Three types of estimates 

(i.e. estimated values, referenced values, and assumed values) can be obtained 

respectively from, empirical data, where available, from scientific literature, and from 

expert opinion when there are no data available (Dorjee et al., 2013). However, this is 

rarely simple, especially when developing a system dynamic model (e.g. the C. 

intestinalis population dynamic model in Chapter 4) with parameters that depend on other 

parameter values, such as temperature-dependent parameters. This type of parameter 

appears to be common in biological modelling within aquatic environments (Filgueira et 

al., 2013, 2014) and is also a key feature in modelling vector-borne diseases such as 

Dengue (Andraud et al., 2012). Obtaining the estimates for these temperature-dependent 
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parameters can be difficult due to the lack of information on the relationship between the 

parameters and temperatures, especially for relationships that are non-linear. Sensitivity 

analysis may help to clarify whether or not it is worth conducting experiments to collect 

data in order to obtain better estimates for these parameters. 

6.2.2. Temperature dependencies 

Because the population of C. intestinalis predicted from the model, in 

Chapter 4, depended so much on temperature, changes in one parameter (such as the 

environmental carrying capacity (K)) may have major impacts on the population growth 

under one temperature condition, but may have only a modest effect under another set of 

conditions. For example, results suggested that changes in K have a larger impact on 

population growth under warm summer or long summer-like conditions, as compared to 

what would be the case in cold years. However, if the impact of changes in K had only 

been assessed under cold year conditions, the conclusion might have been drawn that 

space management does not impact the population and so control plans could disregard 

this intervention, which is not true for warm temperature conditions. This suggests that 

extra care is required when making any conclusions where population growth is modelled 

based on temperature-dependent parameters, as small variations may have a large impact 

on optimal intervention plans. 

6.2.3. Missing data 

Missing data can be a challenge in modelling, as it may cause bias in the 

analysis if the remaining samples with complete data are not representative of the full 

data set. In the study of spatial clustering of sea lice infestation in Chapter 3, the dataset 
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contained missing data due to non-sampling and the analysis was carried out with the 

adjustment of relative risks associated with that sites/times combinations which contained 

missing data to prevent false positive detection of clusters (Kulldorff, 2014). 

6.2.4. Model validation 

A final stage in model construction is model validation, which is a process 

that evaluates the reliability of the model in predicting outcomes, by checking modelled 

output against independent datasets (Vynnycky and White, 2010). One of the most 

common approaches to validate statistical models is ‘split-sample analysis’, which 

randomly divides data into two groups, builds a model based on one half of the data 

(“training set”), and then uses the other half validate the model (“test set”) (Dohoo et al., 

2009, pp. 388-390); however, the results may vary widely depending on the division of 

the data. The resampling methods (e.g., random subsampling, k-fold cross validation, 

bootstrap, etc.) can be used to overcome this problem (Kohavi, 1995; Steyerberg et al., 

2001). 

For system modelling with mathematical equations, model validation can 

be a challenge when there is limited data to carry out the comparison between the 

modelled and empirical data. This has also been a challenge of disease modelling in 

terrestrial animals. For example, a direct comparison between the observed larval 

concentrations and the modelled abundance of C. intestinalis at the larval stage, in 

Chapter 4, could not be carried out due to the differences in measurement scales and, 

therefore, validation was based on a comparison of temporal patterns. Although the 

magnitudes of the modelled output and the empirical data can be different, the model still 
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has the advantage when it can show a good comparison in terms of temporal patterns, 

depending on the purposes of the model. 

6.2.5. Over-fitting of the model 

Over-fitting is a term used to describe a model that was made to predict 

the training data too closely, such that it does not reflect the big picture in reality. An 

over-fitted model will generally have poor predictive performance due to its lack of 

flexibility. The temperature model that was used to model C. intestinalis populations was 

fitted to the observed data from Georgetown Harbour in 2008, using a trigonometric 

regression model. The best model fit consisted of three sine and cosine terms, which was 

too complex and was not easy enough to generalize to use in different contexts, and so 

the more parsimonious model (i.e. one using a single sine term) was selected to model 

temperatures, with a trade-off in terms of the prediction performance to the particular 

temperatures recorded in Georgetown Harbour in 2008.  

6.2.6. Distance and disease transmission in an aquatic environment  

For an infectious disease, one can possibly be infected if an animal has 

had contact with the causative agent. One element that plays a role in the transmission of 

disease is proximity to such infective agents, which in many cases will be measured in 

terms of Euclidean distance. For disease transmission in aquatic systems, which may 

involve complex river topology or coastal geography, the organism has to travel through 

the water body, and Euclidean distance is probably not suitable. In such situations, non-

Euclidean distance metrics should be used. Hydrodynamic modelling may be a suitable 

approach to modelling disease transmission in an aquatic environment, as the model 
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concentrates on the movement of particles and takes into account the characteristics of 

water, such as tides and water current. However, such models also tend to be highly 

complex and require significant amounts of computing resource and time. Typically they 

are constrained physical models that must be ‘forced’ to fit specific sets of environmental 

parameters and as such may suffer from the problems of over-fitting noted above. It may 

therefore be more appropriate to use some simpler distance measure to estimate 

transmission probabilities in aquatic environments; measures such as sea-way distance or 

a connectivity matrix between the sites of interest, are examples of such alternatives 

(Salama and Murray, 2013; Rees et al., 2015)  

6.3. Future directions 

Although the use of these types of modelling approaches has been increasing in 

the veterinary field, they have had limited application to the modelling of disease in 

aquatic animals. Choosing between the various types of models that are available to 

model disease in aquatic animals will depend on the purpose of the analysis.  

Mathematical models are commonly used to predict the growth of animal 

populations and the transmission of disease. A combination of models may be used to 

help understand population growth and increased production of aquatic food animals. For 

example, using population dynamic modelling to model the growth of fish populations, 

and then evaluating the effects of an intervention to increase population growth with an 

economic model, such as cost-benefit analysis, to find an optimal solution that can 

maximize the production while the costs are kept to a minimum. Similar approaches may 

also be applied to the study of disease control in aquatic animals. 
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Such multi-method modelling is an alternative approach that may be used to 

model the complex system of host-pathogen-environment interactions. This may integrate 

system dynamic models with agent-based models to capture elements of heterogeneity at 

the individual level and then utilise this information in the system dynamic model. 

Hydrodynamic modelling uses the environmental data such as water current to 

evaluate the flow of water and track particles. This approach can be used to model 

disease or pathogen dispersal. It may be used to determine the invasion feasibility of 

aquatic invasive species into a bay area. This may provide information to the decision 

maker to help create more robust management plans for the prevention and control of 

aquatic diseases. 

The population dynamic model of C. intestinalis developed in this research was 

based on a static number of mussels. To help with management decisions within the 

mussel industry it would be important to include the dynamics of mussel populations that 

reflect the actual culture system. Thus in addition to modelling the abundance of C. 

intestinalis populations, the model should be able to predict output in term of biomass, 

which would provide a more meaningful measure of the C. intestinalis population from 

the farmer’s point of view and enhance the model’s ability to reflect the interaction 

between mussels and C. intestinalis; for instance, the level of mussel loss that might 

occur due to a given increase in C. intestinalis biomass resulting in mussel fall-off. At 

present, the use of the C. intestinalis model is limited to a one-year scenario. To use the 

model for multi-year scenarios, factors related to mortality during the winter would be 

required to adequately predict a realistic number of surviving adults at the start of each 

new yearly cycle. As such, the effects of a broader range of temperature profiles on 
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physiological rates and development stages of this species, particularly in the colder 

winter months, would have to be studied in greater detail. 

The sampling to estimate sea lice infestations on wild salmon in the Broughton 

Archipelago area required considerable labour and time. On several occasions the 

sampling failed to retrieve sufficient wild samples due to a timing mismatch between 

sampling effort and fish migration. Some of the findings from the current research, 

particular those linked to the spatial distribution of both the wild host and sea lice 

populations, could be used to more precisely plan sampling activities. 

6.4. Conclusion 

The studies included in this dissertation demonstrate the ability of modelling to 

address production and health issues in the context of aquatic animals. Modelling allows 

a broader set of scenarios to be investigated and management decisions formulated, at a 

distinct advantage in terms of time and cost savings when compared to field-based trials.  

The variety of models being applied to aquaculture can help it mature as a vibrant 

industry which successfully addresses the many challenges associated with its growth and 

sustainability. 
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