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ABSTRACT 

Aquatic organisms are exposed to diverse and dynamic combinations of stressors in their 

environment that may interact to alter mitochondrial function. It is important to understand 

mechanisms of joint effects of stressors to more accurately monitor and predict adverse 

biological outcomes. I studied the mechanisms of interactions of cadmium (Cd), hypoxia-

reoxygenation (H-R) and temperature induced stress on mitochondrial bioenergetics. My overall 

hypothesis was that when present together Cd, hypoxia and temperature affect common target 

sites exacerbating single stressor-induced effects on mitochondrial function. In the first 

investigation I studied the effects of hypoxia-cadmium interactions on rainbow trout 

(Oncorhynchus mykiss) mitochondrial bioenergetics and showed that H-R enhances the 

sensitivity of mitochondria to Cd-induced stress. Interestingly, I observed that Cd at low dose 

attenuates H-R-induced proton leak. In the second study, I investigated how temperature 

modulates cadmium-induced mitochondrial dysfunction and volume changes. I showed that high 

temperature exacerbates Cd-induced mitochondrial dysfunction and volume changes in part by 

increasing metal uptake through the mitochondrial calcium uniporter. In the third study, I 

investigated the effect of H-R on the thermal sensitivity of complex 1 oxidative capacity. I 

showed that effects of H-R on mitochondrial function are exacerbated by thermal stress. My 

fourth study investigated the combined effects of cadmium, temperature and hypoxia-

reoxygenation on mitochondrial function. I found that the ternary interactions of Cd, H-R and 

temperature exacerbate their binary effects on mitochondrial function. I linked the alterations in 

mitochondrial function to impaired volume homeostasis, complex I A-D transition, dissipation of 

mitochondrial membrane potential, increased ROS production and loss of structural integrity. 

Although the effects of Cd and/or H-R were greater at both high and low temperatures, this was 

not explained by increased Cd accumulation. Overall oxidative stress could explain to a large 
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extent the effects of Cd, H-R and temperature on mitochondrial structure and function. In the 

fifth study I investigated the role of mitoKATP and the effects of pharmacological modulators on 

H-R-induced mitochondrial dysfunction. I found that in the presence of Mg-ATP both the 

opening of mitoKATP channels and bioenergetic effects of diazoxide were protective against the 

deleterious effects of H-R while in the absence of Mg-ATP only the bioenergetic effects of 

diazoxide was protective. Overall, my research unearthed previously unknown mechanisms of 

interactions of Cd, hypoxia and temperature on mitochondrial bioenergetics and increased our 

understanding of the impact of multiple stressors on cellular energy metabolism in aquatic 

organisms. 
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CHAPTER 1   

 

INTRODUCTION 
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1.1 THESIS SCOPE 

Aquatic organisms are exposed to varied and dynamic combinations of environmental stressors 

as a regular part of their life. Empirical evidence shows that physiological outcomes can be 

altered by sequential and/or simultaneous exposure to multiple environmental stressors 

(Hertzberg and Teuschler, 2002; Sexton and Hattis, 2007). Current methods of risk assessment 

utilize data from individual stressors to predict effects of multiple stressors (U.S. Environmental 

protection Agency [EPA] 1998) and therefore may not be accurate. Although there is a growing 

knowledge base of joint and single effects of stressors on aquatic systems (Bryce et al., 1999; 

Dale et al., 1998; US EPA, 1998), sufficient and proper data are seldom obtainable to perform a 

thorough assessment of the impact of multiple stressors on aquatic organisms. Among the 

stressors of major concern to the aquatic environment are temperature fluctuation in part due to 

climate change, hypoxia (low O2) and the presence of metals (e.g., cadmium: Cd). These three 

stressors commonly occur together in the aquatic environment and may interact to either reduce 

or exacerbate their individual effects in aquatic organisms. Therefore understanding the 

mechanisms of the interactions of metals (Cd), temperature and hypoxia would help in predicting 

their effects on aquatic organisms. 

The central goal of my project was to investigate the combined effects of Cd, hypoxia and 

temperature on cellular energy balance with a focus on mitochondrial physiology. My thesis was 

that the effects of stressors will be different than when applied alone, and that results will depend 

on the metric used because the stressors would act differently when combined together. I first 

determined the individual effects of the stressors on mitochondrial bioenergetics, and thereafter 

determined their binary and ternary interactions (Fig. 1.1). Second, I studied how different 

reporters of the mitochondrial function such as volume regulation, membrane potential, reactive 
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oxygen species (ROS) production and structure are altered by the three stressors individually and 

in combination. Lastly, I used pharmacological agents to elucidate the pathways of stressor-

stressor interactions and ways to mitigate stressor-induced mitochondrial dysfunction. Overall 

my research advanced our knowledge of how multiple stressors interact to alter mitochondrial 

function. 

1.2 CADMIUM 

Cd is a highly toxic ubiquitous trace metal with a relatively long biological half-life (Byczkowski 

and Sorenson, 1984; Kamunde, 2009). Cd enters aquatic systems through both natural and 

anthropogenic processes with the latter being the major source (McGeer et al., 2012). Cd occurs 

in nature mainly in mineral form in association with Zn, Pb and Cu ore deposits, and is released 

via weathering/leaching of rocks and volcanic activity (Mortvedt and Osborn, 1982; ATSDR, 

2008; Pan et al., 2010). Anthropogenic sources include mining and smelting of ores, cement, 

paint (as a stabilizer), Ni-Cd batteries, sewage, municipal waste and phosphate fertilizers (Moore 

and Luoma, 1990; International Cadmium Association, 2000; Panagapko, 2007; Pan et al., 

2010). In the aquatic environment, Cd
 
in solution either adsorbs on components such as 

particulate matter and iron oxide leading to Cd removal from solution into the sediments 

(Thornton, 1995; Lawrence et al., 1996; Skeaff et al., 2002), or is taken up by aquatic biota such 

as fish. 
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Figure 1.1: Diagram showing the stressors and interactions investigated in this thesis: T: 

temperature, Cd: cadmium, H: hypoxia, Cd×H: cadmium hypoxia interaction, Cd×T: cadmium 

temperature interaction, T×H: temperature hypoxia interaction and Cd×T×H: cadmium 

temperature and hypoxia interaction 
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1.2.1 Uptake of Cd by fish 

The two main uptake routes of Cd in fish are the gastrointestinal tract for dietary and the gill for 

waterborne metal (Hollis et al., 1999; McGeer, et al., 2012). Waterborne Cd uptake occurs 

through the lanthanum-sensitive voltage-independent epithelial Ca channel (Galvez et al., 2006) 

and the divalent metal transporter-1 (DMT-1) (Cooper et al., 2007). Following epithelial Cd 

uptake, some of the metal is sequestered by low molecular weight proteins (Olsson and 

Hogstrand, 1987; Zalups and Ahmad, 2003). The metal may be transported across the basolateral 

membrane via the high-affinity Ca-ATPase and the Na/Ca exchanger into the blood stream as 

free Cd or as a conjugate (metallothionein (MT)-Cd, glutathione (GSH)-Cd) (Verbost et al., 

1989; Flik, 1990; McGeer et al., 2012). Following uptake in fish, Cd is rapidly distributed in 

plasma to various internal organs with the highest percent accumulation occurring in the liver 

followed by the kidney (McGeer et al., 2012). The accumulation of Cd in fish tissues may result 

in toxicity. Generally the toxicity of Cd in aquatic organisms depends on the concentrations of its 

bioavailable form, which is determined by the total dissolved concentration of Cd and water 

chemistry. Specifically, it is the concentration of the free Cd ions that is associated with toxicity 

(Di Toro et al., 2001). In this regard, Cd complexation with other ions and natural organic matter 

reduces the amount of free Cd thus reducing toxicity. For example, dissolved organic carbon 

(DOC) complexes Cd and reduces the amount of the free metal available to bind to fish gill and 

cause toxicity (Playle et al., 1993; Niyogi et al., 2008). 

1.2.2 Toxic effects of Cd in aquatic environment 

A key mechanism of action of Cd is the disruption of ion homeostasis that has been 

demonstrated in several fish species including the European flounder (Larsson et al., 1981), trout 

(Giles, 1984), Atlantic salmon (Rombough and Garside, 1984), tilapia (Kalay, 2006) and carp 
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(Reynders et al., 2006). All of these fish show reduced plasma Ca, Na and Cl with Cd exposure. 

The disruption of ionic balance is transient in nature and has been suggested to be part of the 

classic damage-repair hypothesis (McDonald and Wood, 1993). Following chronic Cd exposure, 

two types of responses are initiated in response to Cd-induced damage. The first response is to 

assemble and recruit metal binding thiols/proteins such as GSH/MT that sequester and detoxify 

Cd (Mason and Jenkins, 1995; Chowdhury et al., 2005) while the second response includes the 

processes that mend or compensate for the physiological disorder caused by Cd damage. 

Depending on the exposure concentration and duration, Cd may affect the growth and survival of 

aquatic organisms (Hollis et al., 1999; Hansen et al., 2002). Furthermore, Cd accumulation has 

been suggested to increase production of reactive oxygen species (ROS) resulting in oxidative 

damage of biomolecules such as proteins, membrane lipid and DNA (Livingstone, 2001). 

1.2.3 Mitochondria as one target of Cd toxicity 

While the potential sites of action of Cd within the cell are numerous, mitochondria appear to be 

one of the principal target sites of this metal (Kurochkin et al., 2011; Adiele et al., 2012a). The 

toxic effects of Cd on this organelle include promotion of ROS production, alteration of their 

membrane permeability and potential, and respiration in mammals (Dorta et al., 2003; Li et al., 

2003; Lopez et al., 2006). Despite appreciable work on the mechanisms of Cd-induced 

mitochondrial dysfunction in aquatic organisms (Sokolova, 2004; Adiele et al., 2010) our 

knowledge of the combined effect of Cd with other environmental stressors such as temperature 

and/or hypoxia on mitochondrial bioenergetics is sparse. 

1.3 HYPOXIA 

The majority of eukaryotic aquatic organisms require O2 to sustain life because of their 

dependence on aerobic respiration (Diaz and Breitburg, 2009). When O2 supply declines or its 
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demand exceeds supply, dissolved O2 levels in water bodies decline (Diaz and Breitburg, 2009) 

resulting in hypoxia. Hypoxia in water bodies occurs naturally as a result of poor circulation, 

high natural organic matter loads, diurnal and seasonal thermal stratification and 

anthropogenically through activities such as agriculture and discharge of domestic and industrial 

organic wastes that promote eutrophication (Wu, 2002; Hattink et al., 2005; Richards, 2011). In 

order to protect water bodies, regulatory authorities have classified the levels of dissolved O2 

concentrations in freshwater and marine environments. Concentrations of O2 <2-3 mg O2/l in 

marine/estuarine environments and <5-6 mg O2/l in freshwater are considered hypoxic (Diaz and 

Breitburg, 2009). The drawback of this classification of dissolved O2 concentration is that fish 

vary in their sensitivity to hypoxia, making what is hypoxic for one fish not so for another 

(Vaquer-Sunyer and Duarte, 2008). Because of this variability, the terms functional and 

environmental hypoxia has been proposed to describe hypoxic conditions in aquatic systems. 

Environmental hypoxia is defined as the water PO2 at which physiological function is 

compromised dependent upon the system under examination (Richards, 2009) while functional 

hypoxia denotes conditions at which tissue O2 demands surpass circulatory O2 supply, for 

example, during severe exercise (Richards et al., 2002; Steinhausen et al., 2008), temperature 

extremes (Clark et al., 2008; Portner and Lannig, 2009), anemia (Axelsson, 2005; Simonot and 

Farrell, 2007), acidosis (Nikinmaa, 2006; Wells, 2009) or disruption of gill structure (Gonzalez 

and McDonald, 1992; Matey et al., 2008). 

1.3.1 Responses of fish to environmental hypoxia 

To preserve biological function in the face of hypoxia fish use a suite of mechanisms ranging 

from behavioural to the molecular level, geared toward oxyregulating or oxyconforming 

(Richards, 2011). These mechanisms increase O2 transfer from the environment to tissues and/or 
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avoid problems associated with hypoxia (Perry et al., 2009). Some of these responses can be 

initiated swiftly (e.g., min, hours), acclimation responses take longer (days) while others are 

fixed genetically and/or developmentally (e.g., generations) (Chapman and Mckenzie, 2009). If 

circumstances permit, many fish species employ adaptive behavioural responses such as surface 

respiration (Lam et al., 2006; Mandic et al., 2009) and spontaneous swimming activity (Herbert 

and Steffensin, 2006) to facilitate O2 uptake and enhance survival or move to areas that are 

normoxic (Chapman and Mckenzie, 2009). 

A key physiological response of fish to low environmental O2 is hyperventilation to increase the 

supply of O2 to the tissue (Perry et al., 2009). During hyperventilation improved water flow 

across the gill surface maintaining blood-to-water PO2 slope and ultimately increasing the 

arterial PO2 (Perry et al., 2009). Additionally, hyperventilation causes respiratory alkalosis as the 

arterial PCO2 drops, because more CO2 is removed from the blood at the gills (Gilmour, 2001). 

The ensuing rise of red blood cell pH boosts the affinity of haemoglobin for O2 through the Bohr 

effect, leading to enhanced O2 uptake at the gills (Jensen, 1991; Jensen et al., 1998). Although 

hyperventilation response increases branchial O2 transfer contributing to the maintenance of 

oxygen supply under hypoxic conditions in oxyregulators, it also increases energy expenditure 

(Edwards, 1971; Steffensen, 1985). Thus the maintenance of metabolic rate under these 

conditions becomes a fight of diminishing benefits, in which the cost of increasing ventilation to 

maintain O2 uptake from an environment of reduced O2 availability eventually exceeds the 

returns of the O2 so obtained (Perry et al., 2009). The ventilation response is different between 

hypoxia tolerant and sensitive species in that the latter increase the ventilation to sustain O2 

delivery (Boutilier, 2001; Richards, 2011) while the former down-regulate ventilation to conform 
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with low environmental O2 levels (Boutilier and St-Pierre, 2000; Bickler and Buck, 2007; 

Richards, 2011). 

1.3.2 Hypoxia-reoxygenation (H-R) 

Aquatic organisms commonly encounter intermittent environmental hypoxia especially during 

the night and return to normal during the day time (Richards, 2011; McBryan et al., 2013). For 

example, at night the levels of O2 drop because of absence of photosynthetic activity by plants 

and return to normal during the day time as plants resume photosynthesis that releases O2 to the 

water body. Fluctuation in levels of environmental O2 implies that resident organisms have to 

deal with consequences of both hypoxia and reoxygenation, collectively referred to as hypoxia-

reoxygenation (H-R). H-R is comparable to ischemia-reperfusion (IR) wherein a brief period of 

pause in tissue blood supply resulting in a drop or stoppage of tissue O2 delivery is followed by 

the return of blood flow and tissue O2 (Kalogeris et al., 2012). Unlike IR that has been widely 

studied (Yellon and Hausenloy, 2007; Linfert et al., 2009; Baines, 2011), H-R (episodic hypoxia) 

in the aquatic environment has received limited attention (Borowiec et al., 2015) with most of 

the studies focussing on general physiological parameter such as growth, swimming rates and 

substrate utilization (Speers-Roesch et al., 2010; Burt et al., 2013; Yang et al., 2013). In aquatic 

organisms very few studies have investigated the effects of intermittent hypoxia on 

mitochondrial function (Hickey et al., 2012).  

1.4 TEMPERATURE 

Global climate change is associated with increased temperature variability and frequency of 

temperature extremes. Ectotherms such as fish are particularly vulnerable to changes in 

temperature because their body temperatures vary closely with that of the environment (Stevens 

and Fry, 1974). Importantly, physiological processes in fish including swimming, metabolic rate, 
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growth and reproduction are highly affected by temperature fluctuations. To cope with 

environmental temperature change, aquatic organisms have evolved a wide array of mechanisms. 

In fish many of these mechanisms entail modulation of energy metabolism (Guderley and St-

Pierre, 2002; Kraffe et al., 2007; Lockwood and Somero, 2012).  

1.4.1 Responses of fish to changing temperature 

Temperature is a measure of the heat energy present in a system; thus the kinetic energy of 

molecules in a system changes in parallel with temperature. In general, biochemical processes 

are modulated by temperature through the alterations of protein structure and membrane 

properties (Hofmann and Todgham, 2010). At optimum environmental temperatures enzymes 

maintain functional structural configuration for proper substrate and cofactor binding but also 

permit the conformational changes required to catalyze reactions (Somero, 1995). These changes 

are geared towards enhancing the function of the enzyme depending on the temperature by first 

modifying the constituent amino acids (Fields and Somero, 1998) or changing to isoforms that 

are more suited for function at different temperatures (Baldwin and Hochachka, 1971). These 

two mechanisms affect both the catalytic rate and temperature dependency of substrate and 

cofactor affinity (Hofmann and Todgham, 2010). 

Membrane lipids are not only critical for the function of proteins but are highly sensitive to 

temperature induced-stress (Hazel, 1995; Somero, 2011). Temperature stress alters the capacity 

of the lipid membrane environment to carry out its functions (Hazel, 1995; Portner et al., 2007) 

that include acting as a barrier for the transport of molecules, aiding in the formation of ion 

gradients across cellular compartments, and serving as a platform for the assembly of multi-

constituent metabolic and signal transduction pathways (Hazel, 1995). To protect against 

temperature-induced alteration in membrane function, aquatic organisms modify their membrane 



11 
 

environment, particularly the acyl chain and the head groups of the lipids, for function at the 

prevailing temperature (Hazel, 1995; Logue et al., 2000; Somero, 2011). Changes in the lipid 

head groups involve alteration in the ratio of the phospholipids class between 

phosphatidylcholine and phosphatidylethanolamine (Hazel and Carpenter, 1985). In contrast, 

changes in the acyl chain usually entail the modification of chain length, double bond content, 

double bond positions, cis and trans configuration of the double bonds and the position of the 

acyl chain in the lipid molecule (Okuyama et al., 1979; Crockford and Johnston, 1990; Hazel et 

al., 1992). These acclimation changes occur over periods of days to weeks and may not apply to 

this thesis which studies acute responses. 

1.5 CELLULAR ENERGY METABOLISM 

All living things need energy for growth, reproduction, maintenance and other cellular functions 

(Berg et al., 2007). Cellular energy (ATP) is obtained from the catabolism of energy stored in 

food (Berg et al., 2007) through glycolysis, Krebs cycle, β-oxidation and oxidative 

phosphorylation (OXPHOS) (Berg et al., 2007). In eukaryote because the mitochondria is 

responsible for over 90% of the ATP production for cellular function, any alteration in their 

structure and function would affect cellular energy homeostasis. 

1.5.1 Mitochondrion 

Mitochondria comprise roughly 20% of the cytoplasmic volume of eukaryotic cells. These 

organelles have a diameter of 0.5-1 µm, and they are highly dynamic, moving about in the cell, 

regularly fusing and dividing, and varying in their shape and size (Berg et al., 2007; Rich and 

Marechal, 2010; Alberts et al., 2015). The mitochondrion (Fig. 1.2) contains two membranes, the 

inner and outer membrane, composed of phospholipid bilayers and proteins (Berg et al., 2007; 

Nelson and Cox, 2009; Rich and Marechal, 2010). The composition of the proteins and 
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phospholipids in these two membranes vary noticeably leading to distinct properties for the inner 

and outer membrane (Rich and Marechal, 2010). The outer mitochondrial membrane (OMM) 

that surrounds the whole organelle is about 60-75 Ǻ thick and has a protein to phospholipid ratio 

of 1:1 by weight (Alberts et al., 2015). The OMM has porins that allow molecules of about 5 

kDa to diffuse freely (Berg et al., 2007; Rich and Marechal, 2010). The intermembrane space 

(IMS) is the gap between the inner membrane and OMM. Because of the permeability of the 

OMM to smaller molecules, the concentrations of ions in the IMS and cytosol are similar (Berg 

et al., 2007). In contrast, the inner mitochondrial membrane (IMM) is highly specialized and 

impermeable to molecules except via specialized transport mechanisms. It contains high amounts 

of cardiolipin and has a high protein to phospholipid ratio (3:1 by weight; one protein for every 

15 phospholipids) (Alberts et al., 2015). The IMM is folded into several cristae that significantly 

amplify its surface area thereby enhancing its ability to produce ATP (Berg et al., 2007; Rich and 

Marechal, 2010). The IMM contains three types of proteins specifically, those that carry out the 

redox reactions of the electron transport system (ETS), the ATP synthase that makes ATP, and 

transport proteins that allow the passage of substances and metabolites into and out of the matrix 

(Berg et al., 2007; Rich and Marechal, 2010). The matrix is a large space surrounded by the 

IMM and contains approximately 2/3 of the total mitochondrial proteins, the mitochondrial 

DNA, ribosomes, tRNAs, and enzymes that are involved in gene expression, and β-oxidation and 

Krebs cycle redox reactions (Berg et al., 2007; Rich and Marechal, 2010). 
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Figure 1.2: Structure of mitochondrion. Outer mitochondrial membrane (OMM), inner 

mitochondrial membrane (IMM), intermembrane space (IMS). (Illustration generously provided 

by Dr. L. Bate). 
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1.5.2 Electron transfer system (ETS) and oxidative phosphorylation (OXPHOS) 

The ETS consists of enzyme complexes in the IMM that allow the transfer of electrons from one 

complex to another in a tightly regulated manner. The ETS can be physically separated by mild 

treatment with detergents enabling the resolution of four distinct electron carrier protein 

complexes namely complex І (CІ), complex ІІ (CІІ), complex ІІІ (CІІІ) and complex ІV (CІV) as 

shown in Fig. 1.3. Each of these complexes catalyzes electron transfer through a portion of the 

ETS (Baradaran et al., 2013; Nicholls and Ferguson, 2013).  

CІ, also known as NADH:ubiquinone oxidoreductase or NADH dehydrogenase, has 44 subunits 

and a molecular weight of 980 kDa (Efremov and Sazanov, 2011; Baradaran et al., 2013; 

Nicholls and Ferguson, 2013). Structurally, CІ has an L shape that consists of hydrophilic matrix 

side and hydrophobic membrane domain (Hunte et al., 2010; Nicholls and Ferguson, 2013). CІ 

receives reducing equivalents (NADH) from the Krebs cycle, and then in a redox reaction pumps 

out four protons into the IMS and transfers two electrons to flavin mononucleotide of complex І 

as a hydride anion (Nelson and Cox, 2009; Hunte et al., 2010; Nicholls and Ferguson, 2013). 

These two electrons are then transferred one by one along a chain of seven Fe-S clusters and then 

to ubiquinone (Q) reducing it to ubiquinol (QH2) (Efremov and Sazanov, 2011; Baradaran et al., 

2013; Nicholls and Ferguson, 2013). QH2 diffuses in the IMM from CІ to CІІІ where it is 

oxidized back to Q with the pumping of protons to the IMS (Rich and Marechal, 2010). 

CІІ (Succinate dehydrogenase) the only membrane bound enzyme in the Krebs cycle catalyzes 

the oxidation of Q to QH2 without pumping of protons into the IMS (Rich and Marechal, 2010; 

Maklashina and Cecchini, 2010). CІІ contains four distinct subunits, two are located in the 

hydrophobic domain (subunits C and D) and the other two in the hydrophilic domain (subunit A 

and B) that extends into the matrix (Rich and Marechal, 2010; Maklashina and Cecchini, 2010).  
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Figure 1.3: Diagram showing mitochondrial electron transport system: (І) complex І, (ІІ) 

complex ІІ, (ІІІ) complex ІІІ, (ІV) complex ІV, (V) complex V, (e
-
) electron, (Q) ubiquinone, 

(cyt c) cytochrome c, (H
+
) proton, NADH reducing equivalent for complex І and FADH2 

reducing equivalent for complex ІІ. (Drawing by Dr. L. Bate). 
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Subunits A and B contain a binding site for the substrate succinate, a covalently bound FAD and 

three 2Fe-2S centers (Nelson and Cox, 2009). Subunits C and D are integral membrane proteins 

with six transmembrane domains comprising three helices for each subunit. Subunit C also 

contains heme b and a binding sites for ubiquinone, the last acceptor of electron transported by 

CІІ (Nelson and Cox, 2009; Rich and Marechal, 2010). 

CІІІ, also called cytochrome bc1 (cyt bc1) or ubiquinone:cytochrome c oxidoreductase, couples 

the transfer of electrons from QH2 to cytochrome c (cyt c) with the pumping of four protons from 

the matrix to the IMS (Crofts, 2004; Nicholls and Ferguson, 2013). The net effect of the transfer 

is that QH2 is oxidized to Q and two molecules of cyt c are reduced (Nelson and Cox, 2009; 

Sweierczek et al., 2010; Nicholls and Ferguson, 2013). Cyt c is a soluble protein of the IMS 

(Nicholls and Ferguson, 2013) that upon receiving electrons from CІІІ moves to CІV to donate 

the electrons to copper A (CuA) center (Lange and Hunte, 2002; Kaila et al., 2010; Rich and 

Marechal, 2010).The final enzyme of the ETS is CІV, also referred to as cytochrome c oxidase 

that moves electrons from cyt c to molecular O2 reducing the latter to H2O. For every four 

electrons passing through this complex, the enzyme consumes four protons from the matrix in 

converting O2 to H2O and pumps an additional two protons to the IMS (Kaila et al., 2010; 

Nicholls and Ferguson, 2013). Overall, for each pair of electrons transferred to molecular O2, 

four protons are pumped out by CІ, four by CІІІ and two by CІV. 

The protons generated as a result of the redox reactions described above are used for ATP 

synthesis by CV, ATP synthase (Walker, 2013). CV is also capable of ATP hydrolysis linked to 

proton translocation from the matrix to the cytosolic side of the IMM (Walker, 2013; Nicholls 

and Ferguson, 2013). CV is composed of two principal domains that are connected together by a 

central stalk (Nicholls and Ferguson, 2013); these domains are called F1 and Fo (Rich and 
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Marechal, 2010; Muench et al., 2011; Walker, 2013). Fo is the membrane domain that contains a 

pore through which protons leaks to F1, the non-membrane bound section located in the matrix 

and catalyzes the reaction of ADP with Pi to form ATP (Berg et al., 2007; Rich and Marechal, 

2010; Nicholls and Ferguson, 2013; Walker, 2013). The process of transfer of electrons along the 

ETS coupled with transport of protons from the matrix into the IMS to create a proton-motive 

force (membrane potential and pH gradient) across the IMM that drives the synthesis ATP from 

ADP and inorganic phosphate is known as OXPHOS (Mitchell, 1966). 

1.5.3 Mitochondrial reactive oxygen species (ROS) 

Mitochondria are a major site of ROS production (Kowaltowski et al., 2009; Drӧse and Brandt, 

2012) and this ROS (superoxide and H2O2) generation is closely associated with the primary 

function of the mitochondria (Murphy, 2009). The generation of superoxide radical (O2
∙‒

) by the 

mitochondria is in part due to one-electron reduction of O2 (Murphy, 2009; Drӧse and Brandt, 

2012). Under normal conditions O2 has two unpaired electrons in its outer shell that are aligned 

side by side making O2 to only accept one electron at a time, thus creating the chance for O2
∙‒

 to 

be formed. Although thermodynamically small-molecules such as electron carriers (NADH, 

QH2, NADPH and GSH) have the potential to reduced O2 to O2
∙‒

 most of them do not react with 

O2 to produce O2
∙‒

. Instead, O2
∙‒

 production occurs once electron carriers (QH2) bind to proteins 

or at the redox-active prosthetic clusters inside the proteins (Murphy, 2009).  

1.5.3.1 Sources of mitochondrial ROS 

The mitochondria are thought to be the major site of ROS production in the cell with about 0.2-

0.5% of the O2 consumed by these organelles converted to ROS (Murphy, 2009; Drӧse and 

Brandt, 2012). The amount of ROS produced by mitochondria depends on the redox state, 

substrate oxidized, metabolic state, O2 saturation, and the concentration and nature of the 
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enzymes that generate the ROS (Murphy, 2009). Thermodynamically all four complexes of the 

ETS are capable of generating ROS; however, CІ and CІІІ (Fig. 1.4) are regarded as the main 

sites of ROS generation in the mitochondria (Turrens and Boveris, 1980; Adam-Vizi and 

Chinopoulos, 2006). CІІІ releases ROS on both sides of the membrane (Murphy, 2009; Drӧse 

and Brandt, 2012). The inhibition of Qi site of CІІІ by antimycin leads to the production of large 

amounts of ROS as a result of O2 reacting with ubisemiquinone bound to the Qo site (Adam-Vizi 

and Chinopoulos, 2006; Murphy, 2009; Drӧse and Brandt, 2012). In the absence of antimycin, 

production of ROS at CIII Qo site is minimal because ubisemiquinone is not stable (Murphy, 

2009; Zorov et al., 2014). The loss of cyt c or the inhibition of CІV by cyanide does not result in 

appreciable increase in CІІІ ROS production raising questions about the significance of ROS 

produced by CІІІ (Sipos et al., 2003; Adam-Vizi and Chinopoulos, 2006). On the other hand, 

ROS produced by CІ is more physiologically relevant because the modulation of key 

bioenergetics factors such as NADH:NAD ratio and the proton motive force (∆Ψm and ∆pH) 

alters ROS production at CІ (Adam-Vizi and Chinopoulos, 2006, Murphy 2009; Zorov et al., 

2014). This suggests that any factor that regulates the membrane potential and/or the ratio of the 

NADH:NAD could alter the rate of ROS production at CІ. For example, ADP increases the rate 

of state 3 respiration thus depleting the pool of reduced NADH and membrane potential and 

reducing ROS production at CІ (Adam-Vizi and Chinopoulos, 2006). Apart from CІ and CІІІ 

there are other mitochondria ROS producing sites namely: 2-oxoglutarate dehydrogenase 

(Starkov., et al., 2004; Tretter and Adam-Vizi, 2004), dihydrolipoamide dehydrogenase (Bunik 

and Sievers, 2002; Tretter and Adam-Vizi, 2004), pyruvate dehydrogenase (Starkov et al., 2004), 

electron transfer flavoprotein (Eaton, 2002; Zorov et al., 2014), dihydroorotate dehydrogenase 

(Andreyev et al., 2005; Murphy, 2009), palmitoyl-CoA (Murphy, 2009), α-glycerophosphate 



19 
 

dehydrogenase (Zorov et al., 2014), succinate dehydrogenase (Andreyev et al., 2005; Zorov et 

al., 2014), monoamine oxidase (Andreyev et al., 2005; Zorov et al., 2014), aconitase (Zorov et 

al., 2014) and NADPH-oxidase (Zorov et al., 2014). ROS produced by the mitochondria can be 

beneficial or detrimental to mitochondrial and cellular function depending on the amount. 

1.5.3.2 Physiological and pathological roles of ROS 

ROS produced at physiological levels has been reported to play key roles in mitochondrial 

function. These roles include modulating signalling pathways important for mitochondrial 

survival, fission/fusion and mitophagy, a mechanism for removal of abnormal mitochondria 

(Droge, 2002; Dai et al., 2012). On the other hand excessive ROS levels have been linked with 

oxidative stress that damage biomolecules such as proteins, membrane lipids and DNA 

(Livingstone, 2001) as well as several human disorders including neurodegenerative diseases, 

diabetes and senescence (Adam-Vizi and Chinopoulos, 2006; Drӧse and Brandt, 2012). ROS is 

usually produced in excess as a result of stressful conditions that overwhelm the capacity of the 

antioxidant system. Under normal conditions mitochondria produce low levels of ROS that is 

adequately detoxified by antioxidant enzymes located in the mitochondria and the cytosol 

(Turrens, 2003, Zorov et al., 2014). Specifically, antioxidant enzymes such as superoxide 

dismutase (SOD), with isoforms located in the matrix, extra cellular space and IMS, convert the 

O2
∙‒ 

to H2O2 (Inoue et al., 2003). The H2O2 is further reduced to water by the antioxidant 

enzymes including catalase and glutathione peroxidase (Fig. 1.4) (Turrens, 2003).  
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Figure 1.4: Diagram showing sources of mitochondrial ROS. Complex І, ІІ and ІІІ, G3PDH 

(glycerol-3-phosphate dehydrogenase), DHODH (dihydroorotate dehydrogenase), PRODH 

(proline dehydrogenase) and ETFQO (electron transfer flavoprotein oxidoreductase) are sites of 

ROS production in the ETS. O2
∙‒
:
 
superoxide radical, H2O2: hydrogen peroxide, SOD: superoxide 

dismutase, GPx: glutathione peroxidase. Other potential sites of ROS are mentioned in the text. 

(Drawing by Dr. L. Bate). 

  



21 
 

1.5.4 Mitochondrial volume  

The regulation of mitochondrial volume is critical for ATP production and many physiological 

and pathophysiological conditions are known to impose volume changes on these organelles 

(Guerrieri et al., 2002; Fujii et al., 2004). Mitochondrial matrix volume is regulated by the IMM, 

which acts as the main barrier for molecules moving into and out of the organelle (Bernardi, 

1999; O'Rourke, 2000; Lee and Thevenod, 2006). This tight control of IMM permeability 

enables the mitochondria to create a high proton gradient that drives the production of ATP that 

in turn supports functions important for cellular maintenance and survival. Alteration in IMM 

permeability leads to unguarded flux of solutes and water disrupting the function of the 

mitochondria (Belyaeva et al., 2001; Li et al., 2003; Orlov et al., 2013). Additionally, volume 

dysregulation can affect the activities/function of mitochondrial membrane channels that provide 

selective transport of ions and solutes across the IMM. 

1.5.5 Mitochondrial membrane channels and transporters 

Mitochondria possess different types of channels and transporters (Fig. 1.5) that facilitate the 

movement of materials between the mitochondria and the cytosol. The transporters and channels 

of particular interest to my research include the mitochondrial calcium uniporter (MCU), the 

mitochondrial potassium ATP sensitive channel (mitoKATP), the mitochondrial permeability 

transition pore (MPTP), the voltage dependent anion channel (VDAC), and the adenine 

nucleotide translocator (ANT). 
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Figure 1.5: Diagram showing mitochondrial membrane channels: VDAC: voltage dependent 

anion channel, UCP: uncoupling protein, ANT: adenine nucleotide translocator, mitoKATP: 

mitochondrial potassium ATP channel, MPTP: mitochondrial permeability transition pore and 

MCU: mitochondrial calcium uniporter. (Illustration by Dr. L. Bate). 
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1.5.5.1 Mitochondrial calcium uniporter (MCU) 

The major role of the MCU (Fig. 1.5) is to transport Ca from the cytosol down its 

electrochemical gradient into the mitochondrial matrix (Gunter et al., 2000; Pendin et al., 2014; 

Kevin Foskett and Philipson, 2015). This transport is not coupled with any other ion or molecule 

and is highly dependent on ∆Ψm (Gunter et al., 2000; Pendin et al., 2014) and is inhibited by 

ruthenium red (Gunter et al., 2000, Nicholls and Ferguson, 2013). Although the MCU has high 

affinity for Ca (Kirichok et al., 2004), it has been shown to transport other ions with the 

selectivity order of Ca > Sr > Mn > Ba > Fe > La (Drahota et al., 1969; Vainio et al., 1970). This 

implies that the MCU can be an important uptake pathway for divalent cations into the 

mitochondria. Indeed, the MCU has been shown to be involved in Cd uptake by mitochondria 

since its inhibition with ruthenium red reduces Cd uptake by the mitochondria (Lee et al., 2005; 

Adiele et al., 2012b). 

1.5.5.2 Mitochondrial potassium ATP sensitive channel (mitoKATP) 

The mitoKATP channel (Fig. 1.5) was first identified in 1991 by Inoue et al. (1991) who used 

mitoplasts from rat liver mitochondria to show that a highly selective small conductance K 

channel exists in the IMM. Since then the mitoKATP has been identified in mitochondria from the 

heart (Paucek et al., 1992; Wojtovich and Brookes, 2009), brain (Bajgar et al., 2001; Debska et 

al., 2001), skeletal muscle (Gurke et al., 2000; Debska et al., 2002), and kidney (Cancherini et 

al., 2003). Numerous, studies have suggested a role for the mitoKATP channel in ischemic 

preconditioning (IPC) a process in which short ischemic periods protect against damage from 

subsequent longer episodes of ischemia (Kloner et al., 1998; Cohen et al., 2000). In addition to 

the IPC, pharmacological modulation of the mitoKATP has been instrumental in elucidating the 

pathophysiology of ischemia-reperfusion (IR) injury in mammals (Garlid et al., 1997; Grover et 



24 
 

al., 2001). In this regard the pharmacological mitoKATP opener (diazoxide) was found to protect 

against IR injury (Garlid et al., 1997) while 5-hydroxydecanoate (5-HD), a blocker of the 

channel (Jaburek et al., 1998) reduced the protection.  

The exact mechanisms through which mitoKATP protects the mitochondria against IR injury are 

not clear but several hypotheses have been proposed (Ardehali and O‟Rourke, 2005). The first 

hypothesis posits that opening mitoKATP causes mild ROS production that serve as a signal that 

activates kinases, which initiate cellular defence against IR (Zweier et al., 1987). The second is 

that opening of mitoKATP results in increased mitochondrial matrix swelling (Kowaltowski et al., 

2001; Heinen et al., 2007; Szabo et al., 2012). It has been proposed that matrix swelling induced 

by mitoKATP opening brings the IMM and OMM closer to each other thereby promoting contact 

between proteins on these membranes which in turn facilitates the transport of ADP and 

enhances ATP synthesis (Kowaltowski et al., 2001). However, this hypothesis has been disputed 

by Lim et al. (2002) who argued that since diazoxide inhibits mitochondrial respiration, 

activation of OXPHOS by matrix swelling is unlikely to be the mechanism by which mitoKATP 

induces protection. The third hypothesis is that opening mitoKATP attenuates Ca uptake by 

mitochondria (Holmuhamedov et al., 1999; Liu et al., 1998; Wang et al., 2001; Korge et al., 

2002) subsequently preventing the opening of the MPTP during reoxygenation thereby 

preserving mitochondrial integrity.  

1.5.5.3 Mitochondrial permeability transition pore (MPTP) 

Mitochondrial permeability transition pore (MPTP) as shown (Fig. 1.5) denotes a condition 

wherein mitochondria become leaky and swell, characteristically after exposure to high 

concentrations of Ca (Halestrap, 2010; Bernardi, 2013). Haworth and Hunter (1979) first 

suggested the name permeability transition pore (PTP) and showed that it involved the opening 
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of a non-specific channel permeable to molecules <1.5 kDa. Earlier this phenomenon was 

thought to be due to the activation of endogenous phospholipase A2 leading to disintegration of 

phospholipids within the IMM (Gunter and Pfeiffer, 1990). Later Crompton et al. (1988) 

demonstrated that the pore could be blocked by sub-micromolar concentrations of cyclosporin A 

(CsA) an inhibitor of cyclophilin D that led to the identification of one of the components of 

MPTP. In addition to CsA, MPTP is inhibited by adenine nucleotides (ADP and ATP) and 

opened by IR injury, temperature stress and metals (e.g., Cd) that cause oxidative stress (Clarke 

et al., 2002; Leung et al., 2008; Di Lisa and Bernardi, 2009). Although the molecular identity of 

the MPTP is yet to be determined, several proteins have been implicated in its formation and 

regulation including, ANT (Halestrap, 2009; Bernardi, 2013), phosphate carrier (Halestrap, 

2009; Bernardi, 2013), ATP synthase (Bonora et al., 2013; Alavian et al., 2014), cyclophilin D 

(Bernardi, 2013) and VDAC (Bernardi, 2013; Halestrap and Richardson, 2015).  

1.5.5.4 Voltage dependent anion channel (VDAC) 

VDAC (Fig. 1.5), also known as the mitochondrial porin, is a 31 kDa protein (Benz, 1985) that 

surrounds the OMM and regulates the movement of material across the OMM (Lemasters and 

Holmuhamedov, 2006; Shoshan-Barmatz et al., 2010). The channel possesses the capacity for 

both voltage dependence and ion selectivity with anions being favoured over cations (Gincel et 

al., 2000; Lemasters and Holmuhamedov, 2006; Shoshan-Barmatz et al., 2010). Apart from 

small lipophilic compounds such as short chain fatty acids, acetaldehyde and O2 that are 

permeable to membranes, all other molecules pass across OMM through VDAC (Lemasters and 

Holmuhamedov, 2006). Thus, VDAC has been reported to participate in the transport of a wide 

array of compounds including cholesterol, heme precursors and ATP/ADP (Rebeiz et al., 1996; 

Rostovtseva et al., 2002). Moreover, the closure of VDAC stops the passage of organic anions 
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such as Pi, ATP, ADP, creatine phosphate and substrates for OXPHOS (Rostovtseva et al., 2002; 

Lemasters and Holmuhamedov, 2006). 

1.5.5.5 Adenine nucleotide translocator (ANT) 

The primary function of ANT (Fig. 1.5) is the trafficking of adenine nucleotides (ATP/ADP) 

across the IMM (Halestrap and Brenner, 2003). In addition to this basic role, ANT together with 

other proteins (VDAC, cyclosphilin D and ATP synthase) has been implicated in the formation 

of MPTP (Halestrap and Brenner, 2003). Structurally, ANT exists in two conformations as 

revealed by the inhibitors of the protein, carboxyatractyloside (CAT) and bongkrekic acid 

(BKA). These inhibitors induce two different conformational states of the ANT. Notably, BKA 

binds ANT on the matrix side resulting in the „M‟ conformation while CAT binds ANT from the 

cytosolic side leading to the „C‟ conformation (Klingenberg, 1989). Although it is certain that 

CAT and BKA stabilise different conformations in the translocation cycle, it remains unclear 

whether or not these conformations are identical to an outward facing and inward facing single 

binding site. What is clear is that ANT shuttle the electrogenic exchange of ATP
4‒

 with ADP
3‒

; 

the charge disparity enables the ∆Ψm to drive ATP out of the mitochondria into the cytosol in 

exchange for ADP entering the matrix (Klingenberg, 1980). When the ETS is inhibited, the ANT 

can work in reverse and allow the entry of ATP into the mitochondria (Halestrap and Brenner, 

2003). Under these conditions the mitochondria become consumers of the energy due to 

hydrolysis of the internalized ATP. The hydrolyzed ATP is used to pump protons from the 

mitochondrial matrix into the inter-membrane space in an attempt to maintain the ∆Ψm (Boutilier 

and St-Pierre, 2000; St-Pierre et al., 2000). 
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1.6 HYPOTHESIS AND OBJECTIVES 

In the preceding sections I have discussed the stressors of interest for my thesis research: Cd, 

hypoxia and temperature. I demonstrated that these stressors compromise cellular energy balance 

and discussed how cellular energy (ATP) is produced by the mitochondria and the machinery 

that enables mitochondria to carry out this function. Importantly, it became clear to me that our 

knowledge of interactive effects of multiple stressors on energy metabolism is limited. Therefore 

the goal of my research was to unveil the interactions of Cd, hypoxia (with reoxygenation) and 

temperature –stressors that present immediate and increasing threat to aquatic systems– on 

mitochondrial physiology. The overall hypothesis was that when present together Cd, 

temperature and hypoxia affect common mitochondrial pathways exacerbating single stressor-

induced structural-functional alterations. I tested this hypothesis with the following objectives: 

1) Investigate the mechanisms of stressor-stressor interactions on mitochondrial bioenergetics 

following exposure to Cd, H-R and/or temperature.  

2) Investigate how different reporters of mitochondrial function are altered following Cd, H-R 

and/or temperature exposure.  

3) Elucidate ways to mitigate stressor-induced mitochondrial dysfunction using 

pharmacological agents. 

  



28 
 

CHAPTER 2 

 

EFFECT OF HYPOXIA-CADMIUM INTERACTIONS ON RAINBOW TROUT 

(Oncorhynchus mykiss) MITOCHONDRIAL BIOENERGETICS: ATTENUATION OF 

HYPOXIA-INDUCED PROTON LEAK BY LOW DOSES OF CADMIUM 

A version of this chapter has been published with slight modification as: 

Onukwufor, J.O., MacDonald, N., Kibenge, F., Stevens, D., Kamunde, C., 2014. Effects of 

hypoxia-cadmium interactions on rainbow trout (Oncorhynchus mykiss) mitochondrial 

bioenergetics: attenuation of hypoxia-induced proton leak by low doses of cadmium. J. Exp. 

Biol. 217, 831-840. 
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2.1 ABSTRACT 

The goal of the present study was to elucidate the modulatory effects of cadmium (Cd) on 

hypoxia-reoxygenation-induced mitochondrial dysfunction in light of the limited understanding 

of the mechanisms of multiple stressor interactions in aquatic organisms. Rainbow trout 

(Oncorhynchus mykiss) liver mitochondria were isolated and energized with complex I 

substrates, malate-glutamate, and exposed to hypoxia (0>PO2 <2 torr) for 0–60 min followed by 

reoxygenation and measurement of coupled and uncoupled respiration and complex I enzyme 

activity. Thereafter, 5 min hypoxia was used to probe interactions with cadmium (Cd) (0–20 

µM) and to test the hypothesis that deleterious effects of hypoxia-reoxygenation on mitochondria 

were mediated by reactive oxygen species (ROS). Hypoxia-reoxygenation inhibited state 3 and 

uncoupler-stimulated (state 3u) respiration while concomitantly stimulating state 4 and 4ol 

(proton leak) respirations, thus reducing phosphorylation and coupling efficiencies. Low doses of 

Cd ( 5 µM) reduced, while higher doses enhanced, hypoxia-stimulated proton leak. This was in 

contrast to the monotonic enhancement by Cd of hypoxia-reoxygenation-induced reductions of 

state 3 respiration, phosphorylation efficiency and coupling. Mitochondrial complex I activity 

was inhibited by hypoxia-reoxygenation, hence confirming the impairment of at least one 

component of the electron transport system (ETS) in rainbow trout mitochondria. Similar to the 

effect on state 4 and proton leak, low doses of Cd partially reversed the hypoxia-reoxygenation-

induced complex I activity inhibition. The ROS scavenger and sulfhydryl group donor, N-

acetylcysteine (NAC), administrated immediately prior to hypoxia exposure, reduced hypoxia-

reoxygenation-stimulated proton leak without rescuing the inhibited state 3 respiration 

suggesting that hypoxia-reoxygenation influences distinct aspects of mitochondria via different 

mechanisms. These results indicate that hypoxia-reoxygenation impairs the ETS and sensitizes 
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mitochondria to Cd via mechanisms that involve, at least in part, ROS. Moreover I provide, for 

the first time in fish, evidence for hormetic effect of Cd on mitochondrial bioenergetics –the 

attenuation of hypoxia-reoxygenation-stimulated proton leak and partial rescue of complex I 

inhibition by low Cd doses. 

2.2 INTRODUCTION 

Aquatic organisms face multiple stressful conditions in their natural environments and their 

combined effects may not be predicted accurately using current single-stressor-data-based risk 

assessment procedures (Callahan and Sexton, 2007; Sexton, 2012). The difficulty in predicting 

effects of multiple stressors hinges on the fact that the mechanisms underlying interactive 

responses such as additivity, synergy or antagonism (Callahan and Sexton, 2007; Sexton, 2012) 

are not well known. Among the aquatic systems stressors, hypoxia and metals pollution are 

commonly encountered. Hypoxia denotes reduced dissolved oxygen levels in water bodies and 

occurs naturally as a result of poor circulation, high natural organic matter loads, diurnal and 

seasonal thermal stratification and anthropogenically through activities such as agriculture and 

discharge of domestic and industrial organic wastes that promote eutrophication (Wu, 2002; 

Hattink et al., 2005). Although low levels of oxygen in aquatic ecosystems have been associated 

with a range of deleterious effects including mass mortality, alteration in biodiversity, reduced 

growth, slowed development, and impaired reproduction of aquatic organisms (Wu, 2002; 

Hattink et al., 2005; Diaz and Rosenberg, 2008), fish do have mechanisms that, to variable 

extents, enable them to respond to and adapt to hypoxic conditions. These mechanisms include 

behavioral, physiological and biochemical adjustments and are geared initially at sustaining 

oxygen delivery to tissues and later to energy conservation with improved efficiency of ATP 

generation (Hochachka et al., 1996; Boutilier, 2001; Wu, 2002; Richards, 2011).  
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The metabolic response to hypoxia varies among aquatic organisms depending on their hypoxia 

sensitivity. Hypoxia-tolerant organism, e.g., oysters (Storey and Storey, 1990), African lungfish 

(Dunn et al., 1983), goldfish (Krumschnabel et al., 1996), eel (Busk and Boutilier, 2005) and 

carp (Bickler and Buck, 2007) possess the capacity for metabolic suppression (hypometabolism), 

ability for anaerobic fermentative ATP production to sustain reduced ATP turnover, mechanisms 

for handling toxic by-products of anaerobic metabolism, and the capacity to avoid and/or repair 

cellular injury following reoxygenation after hypoxia (Boutilier and St-Pierre; 2000; Bickler and 

Buck 2007). In contrast, hypoxia sensitive organisms such as rainbow trout generally lack these 

adaptive mechanisms. When oxygen becomes limiting these organisms can reduce metabolic 

costs behaviorally but do not adapt by suppressing metabolism at the cellular level (Ferguson and 

Boutilier, 1989; Krumschnabel et al., 1996; Boutilier, 2001).  

Hypoxia often co-occurs with other stressful conditions including metals pollution. A metal of 

particular importance due to its persistence, wide environmental distribution and high toxicity to 

aquatic organisms is Cd (Byczkowski and Sorenson, 1984; Hattink et al., 2005; Kamunde, 2009). 

Cadmium enters the environment from both natural and anthropogenic sources and is readily 

accumulated by aquatic organisms (Kraemer et al., 2005; 2006). Although the cellular targets 

and toxic effects of Cd are numerous, the mitochondrion is arguably the most important target 

site of its toxic action. In this regard, extant literature indicates that several aspects of the three 

mitochondrial subsystems –phosphorylation, substrate oxidation and proton leak– are impacted 

by Cd (Kesseler and Brand, 1994a; Belyaeva and Korotkov, 2003; Cannino et al., 2009; 

Kurochkin et al., 2011; Adiele et al., 2012a; Ivanina et al., 2012).  

While it is apparent that both hypoxia and Cd impact energy homeostasis as single stressors, our 

knowledge of their interactions is limited to a very few studies on hypoxia-tolerant aquatic 
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species, the carp and oysters (Hattink et al., 2005; Kurochkin et al., 2009; Ivanina et al., 2012; 

Sussarellu et al., 2013). These interaction studies showed that while hypoxia-tolerant species are 

able to withstand the effect of hypoxia on mitochondrial function, concurrent Cd and hypoxia 

exposure increased the Cd burden (relative to Cd alone exposure) in oysters (Kurochkin et al., 

2009) but not in carp (Hattink et al., 2005) suggesting that different organisms respond to 

hypoxia-metals exposure differently. Moreover, Cd exposure impaired the mechanisms that 

oysters utilize to adjust their energy metabolism in response to hypoxia (Kurochkin et al., 2009; 

Ivanina et al., 2012). 

In so far as I know, there are no studies on the interactive effects of hypoxia and Cd in hypoxia-

sensitive aquatic species and the main goal of the present study was to fill that gap. I reasoned 

that mitochondria from a hypoxia-sensitive species, rainbow trout, would be more sensitive to 

hypoxia than those from hypoxia-tolerant species, and further that Cd would exacerbate the 

deleterious effects of hypoxia. My initial experiments focused on the effects of hypoxia alone 

and then I studied the interactive effects of hypoxia and Cd. By focusing on the mitochondria I 

sought to unveil the mechanisms of interactions of multiple stressors (Cd and hypoxia) on energy 

homeostasis and improve our ability to extrapolate results to other species and different exposure 

scenarios. In as much as mitochondria in vivo are exposed to extremely low oxygen levels and 

that metabolic function of isolated mitochondria is technically impossible to measure at these 

low levels, I measured mitochondrial respiration after hypoxia and subsequent reoxygenation. 

2.3 MATERIALS AND METHODS 

2.3.1 Fish 

Rainbow trout (142 ± 10 g) were obtained from Ocean Farms Inc, Brookvale, PEI, and 

maintained in a 400-l tank containing aerated well water at the Atlantic Veterinary College 
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Aquatic Facility. The water contained (mg/l): Ca
2+

 72, Na
+
 119, K

+
 3.1, Mg

2+
 35.6, Cl

-
 289, 

SO4
2-

 28.9, hardness (as CaCO3) 326 and total alkalinity (as CaCO3) 156. The temperature and 

pH were 10 ± 1 
o
C and 7.7, respectively. The fish were fed 1% of their body weight daily with 

commercial trout chow pellets (Corey Feed Mills, Fredericton, NB) containing, according to the 

manufacturer: crude protein 48% (minimum), crude fat 22% (minimum), crude fiber 1.1% 

(maximum), calcium 1.2% (actual), phosphorous 1.1% (actual), sodium 0.80% (actual), vitamin 

A 3125 IU/kg (minimum), vitamin D3 3000 IU/Kg (minimum), and vitamin E 193 IU/Kg 

(minimum). The background Cd concentrations measured in the feed and water were 0.78 μg/g 

and below our limit of detection (0.03 μg/l), respectively. Trout were randomly sampled from the 

tank to isolate liver mitochondria for all experiments. All experimental procedures that fish were 

subjected to were approved by the University of Prince Edward Island Animal Care Committee 

in accordance with the Canadian Council on Animal Care. 

2.3.2 Mitochondrial isolation 

Rainbow trout were sacrificed by a blow to the head and were dissected to remove the liver. 

Mitochondria isolation was done according to the method of Adiele et al. (2010). Briefly, the 

livers were rinsed with mitochondrial isolation buffer (MIB: 250 mM sucrose, 10 mM Tris-HCl, 

10 mM KH2PO4, 0.5 mM EGTA, 1 mg/ml BSA [free fatty acid], 2 µg/ml aprotinin, pH 7.3), 

blotted dry and weighed. The livers were then diced and homogenized in 1:3 (weight to volume) 

ratio of liver to MIB in a 10-ml Potter-Elvehjem homogenizer (Cole Parmer, Anjou, QC). Three 

passes of the pestle mounted on a hand-held drill (MAS 2BB, Mastercraft Canada, Toronto) 

running at 200 rpm were found to be optimal for rainbow trout liver mitochondria isolation. The 

homogenate was then centrifuged at 800 ×g for 15 min at 4 
o
C. The supernatant was collected 

and spun at 13,000 ×g for 10 min at 4 
o
C and the mitochondrial pellet was washed twice by re-
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suspending in MIB and centrifuging at 11,000 ×g for 10 min at 4 
o
C. The pure mitochondrial 

pellet was re-suspended in a 1:3 (weight to volume) ratio of mitochondrial respiration buffer 

[MRB: 10 mM Tris-HCl, 25 mM KH2PO4, 100 mM KCl, 1 mg/ml BSA (fatty acid free), 2 µg/ml 

aprotinin, pH 7.3] and used in the subsequent experiments.  

2.3.3 Determination of mitochondrial content and integrity 

Mitochondrial content in the samples used in the respiration experiments was estimated by 

measurement of the activity of citrate synthase (CS), a mitochondrial matrix enzyme of the 

tricarboxylic acid cycle that remains highly invariable in mitochondria and is considered a 

reliable marker of mitochondrial content (Pallotti and Lenaz, 2001; Barrientos, 2002; 

Wredenberg et al., 2002; Larsen et al., 2012). Here, the method of Spinazzi et al. (2012) was 

adapted to microplate and used for CS activity measurement. Briefly, an assay mixture (pH 8.1) 

containing 1M Tris-HCl buffer, 2 mM 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), 2 mM acetyl 

coenzyme A and 1% (v/v) Triton X-100 was made. To each well in a 96-well microplate were 

added 50 µl of the assay mixture, appropriate amount of mitochondria protein and the assay 

volume brought to 240 l with Millipore water. Subsequently the reaction was started by the 

addition of 10 µl of 12.5 mM oxaloacetate (freshly made) and the reduction of DTNB was 

monitored at 412 nm every 15 sec for 10 min. Samples were run in triplicate with and without 

oxaloacetic acid and CS activity was calculated by subtracting the oxaloacetic acid controls from 

the samples with oxaloacetic acid added. Enzyme activity was measured in 1-20 µg of both the 

13,000 g pellet (13P: mitochondrial fraction) and the 13,000 g supernatant (13S: cytosolic 

fraction) to check for potential damage to mitochondrial during isolation and purification. The 

final enzyme activities were expressed as mol DTNB reduced/min (ε412 = 13.6 mM
−1

 cm
−1

). 

Figure 2.1 shows that my isolation and purification protocol causes negligible damage to 
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mitochondria because CS activity is high in 13P and minimal in 13S. Importantly, the CS 

activity was highly correlated (R
2
=0.99) with mitochondrial protein. Lastly, the integrity of 

mitochondrial membranes was confirmed polarographically (Lanza and Nair, 2009) wherein 

addition of cyt c and NADH during state 4 did not stimulate respiration indicating that the OMM 

and IMM were intact, respectively (Fig. 2.2). 
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Figure 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Mitochondrial content: citrate synthase (CS) activity in 13,000 ×g pellet (P13, 

mitochondria) and 13000 ×g supernatant (S13). P13 has high CS activity indicating high 

mitochondrial content whereas S13 supernatant has low CS activity indicating negligible amount 

of mitochondria and/or minimal disruption of mitochondria during isolation and purification. 

Data are means ± SEM (n = 5). 

 

  

Protein concentration

0 5 10 15 20 25

C
S

 a
c
ti

v
it

y
 (


m
o

l 
D

T
N

B
/m

in
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P13 (mitochondrial pellet)

S13 (supernatant)

R
2
 = 0.99

 



37 
 

Figure 2.2 

 

 

 

 

 

 

 

 

 

Figure 2.2: Mitochondrial integrity: representative polarographic tracing showing results of 

cytochrome c (Cyt c) and NADH tests of mitochondrial membrane integrity. The oxygen 

consumption slopes for the respective segments are: state 3 (a) = -0.013; state 4 (b) = -0.0016; + 

Cyt c (c) = -0.0017; + NADH (d) = -0.0017. The lack of stimulation of oxygen consumption 

indicates that the outer (Cyt c) and inner (NADH) mitochondrial membranes are intact 
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2.3.4 Normoxic mitochondrial respiration 

The protein content of the mitochondria was determined spectrophotometrically (Spectramax 

Plus 384, Molecular Device, Sunnyvale, CA) by the method of Bradford (1976). Measurement of 

mitochondrial respiration under normoxic conditions was done using Clark-type oxygen 

electrodes (Qubit Systems, Kingston, ON) in 1.5 ml cuvettes after a two-point calibration at 0 

and 100% oxygen. A traceable digital barometer was used to measure the atmospheric pressure 

(Fisher Scientific, Nepean, ON) and temperature was monitored and maintained at 13 
o
C with the 

aid of a recirculating water-bath (Haake, Karlsruhe, Germany). After the calibration, 1.45 ml of 

MRB and 100 µl of mitochondrial suspension containing 2.3-2.7 mg of protein (23-27 mg of 

mitochondrial mass, wet weight) were loaded into cuvettes and continuously stirred. To initiate 

the Krebs cycle, 5 mM malate and 5 mM glutamate were added to the cuvettes. State 3 (ADP-

stimulated) respiration rate was evoked by the addition of 250 µmole of ADP, the depletion of 

which imposed state 4 (ADP-limited) respiration. Addition of 2.5 µg/ml oligomycin to inhibit 

ATP synthase activity allowed the measurement of state 4ol, an estimate of mitochondrial proton 

leak (Brand et al., 1994; Kesseler and Brand, 1995; St-Pierre et al., 2000). Finally, uncoupled 

respiration (state 3u) was measured after adding 0.5 mmoles of 2,4-dinitrophenol (DNP) into the 

cuvette during state 4 respiration. All of the oxygen consumption recordings were captured and 

analyzed using LabPro data acquisition software (Qubit Systems, ON). From the measured 

respiration rates, the phosphorylation efficiency (ratio of ADP used to oxygen consumed) as well 

as the respiratory control ratio (RCR: the ratio of state 3 to state 4 respiration) were calculated 

according to Estabrook (1967) and Chance and Williams (1955), respectively.  
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2.3.5 Mitochondrial respiration following hypoxia exposure 

The protocol used for the hypoxia experiment was based on the methods of Chandel et al. (1995) 

and Shiva et al. (2007) with modifications (Fig. 2.3). Initially, mitochondrial complex-1 driven 

oxygen consumption was measured under normoxic conditions as described above. Then, to 

make the MRB hypoxic, nitrogen gas was bubbled into the cuvettes depleting the partial pressure 

of oxygen (PO2) to <2 torr but > 0 torr (0.002-0.003 mg O2/l) at prevailing environmental 

conditions. This concentration is below the 2.25-3.75 torr intracellular level of oxygen typically 

encountered by mitochondria in vivo and therefore hypoxic but not anoxic (Gnaiger and 

Kuznetsov, 2002). Mitochondria failed to regain functionality on reoxygenation if incubated at 0 

torr. Once the PO2 reached the desired level, the cuvettes were sealed to maintain the hypoxic 

conditions for the required hypoxia exposure durations. At the end of the hypoxic exposure 

period, the cuvettes were opened and fully re-oxygenated (100% air saturation) and ADP (250 

µmol) was added to impose the second phosphorylation with measurements of a second (post-

hypoxic) set of respiration parameters. The difference between the first and second set of 

respiration parameters represented the effect of hypoxia-reoxygenation on mitochondrial 

bioenergetics.  
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Figure 2.3 

 

 

Figure 2.3: Protocol for the exposure of rainbow trout liver mitochondria to hypoxia-

reoxygenation in vitro. Initially a two-point calibration at 0 and 100% O2 saturation was done 

and normoxic (control) mitochondrial respiration parameters were measured after addition of 

mitochondria, substrates (malate and glutamate) and ADP. After normoxic respiration, nitrogen 

gas was bubbled into the respiratory cuvette to deplete the O2 levels to <2 torr (hypoxic 

conditions). The mitochondria were then incubated under the hypoxic conditions for the desired 

duration (0, 5, 15, 30, and 60 min) followed by reoxygenation of the cuvette to 100% O2 

saturation. A second dose of ADP was added to initiate the second (hypoxic-reoxygenated) 

oxidative phosphorylation with taking of a second set of respiration parameters. A typical 

polarographic tracing with oxygen consumption slopes after a 30 min hypoxic episode is 
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displayed: normoxic (control) state 3 (a) = -0.013; normoxic (control) state 4 (b) = -0.0015; 

hypoxic-reoxygenated state 3 (c) = -0.0063; hypoxic-reoxygenated state 4 (d) = -0.0027; 

hypoxic-reoxygenated state 4ol (e) = -0.0022. 
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2.3.6 Individual and combined effects of hypoxia and Cd on mitochondrial respiration 

In one set of experiments the effects of Cd alone were measured by adding pre-determined 

concentrations (0, 1, 5, 10 and 20 µM) as CdCl2•2.5H2O (Sigma-Aldrich, Oakville, ON) during 

state 3 respiration in actively phosphorylating mitochondria. Another experiment assessed the 

effect of hypoxia duration alone on mitochondrial respiration following 5, 15, 30 and 60 min 

incubations at 0<PO2<2 torr oxygen. Based on the results of the duration of hypoxia study, 5 min 

hypoxia followed by reoxygenation (it took 10-15 min to re-saturate the MRB with O2) was 

selected to investigate the interactions with Cd. Here, required Cd doses (0, 1, 5, 10 and 20 µM) 

were added after 5 min hypoxia incubation and re-oxygenation and respiratory parameters 

measured as described above. For comparison with the state 3u respiration measured under 

normoxic conditions, the effect of hypoxia on uncoupler-stimulated mitochondrial respiration 

also was measured by adding DNP during state 4 respiration following 5 min of hypoxia 

incubation. Finally, to assess the involvement of oxidative stress in the observed hypoxia-

reoxygenation effects, 5 mmoles of N-acetyl cysteine (NAC), a ROS scavenger and source of 

sulfhydryl groups (Zafarullah et al., 2003), were added to the cuvette at the beginning of hypoxia 

induction and incubated with the mitochondria for 5 min. The respiration parameters described 

above were again measured after reoxygenation. 

2.3.7 Mitochondrial complex I (NADH:ubiquinone oxidoreductase) activity 

At the end of the respiration experiments assessing the interaction of hypoxia and Cd, the 

mitochondria were removed from the cuvettes and centrifuged at 10,000 ×g for 5 min at 4 
o
C. 

The resultant supernatants were discarded and the pellets were washed twice with 500 µl of MIB 

with pelleting at 10,000 ×g for 5 min at 4 
o
C. The pellets were stored at -80

o
C and used for 

complex I assay within 2-3 weeks. Mitochondrial complex I assay was done according to the 
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methods of Janssen et al. (2007) and Kirby et al. (2007) with significant modifications to 

accommodate microplate reader and fish liver mitochondria. Briefly, the mitochondrial samples 

were thawed and re-suspended in 100 µl of MRB and equal volumes of each sample and 2% 

Triton X-100 were mixed, sonicated on ice for 10 sec and the protein concentrations were 

measured. Subsequently 240µl of complex I enzyme assay buffer (25 mM potassium phosphate, 

3.5 mg/ml BSA, 100 µM DCIP, 70 µM decylubiquinone, 0.6 mg/l antimycin A, and 200 µM 

NADH, pH 7.3) was added to wells of a 96-well microplate. To initiate the reaction, 60 µg of 

mitochondrial protein were added to all wells except the blanks and each sample was analyzed in 

triplicate with and without 2 µM rotenone. The decrease in absorbance due to reduction of DCIP, 

the terminal electron acceptor in this assay, was monitored spectrophotometrically (Spectramax 

384 Plus) at 600 nm for 5 min at 15 sec intervals. The complex I activity was then calculated by 

subtracting the rotenone-insensitive activity from the total activity and converted to micromoles 

of DCIP reduced using a molar extinction coefficient of 19.1 mM
-1

 cm
-1

. 

2.3.8 Data analysis 

All of the data were first tested for normality (Kolmogorov-Smirnov) and homogeneity of 

variances (Cochran C) and submitted to one-or two-way analysis of variance (ANOVA) 

(Statistica version 5.1, Statsoft, Inc., Tulsa, OK). If the data did not pass the normality test, they 

were submitted to Box-Cox transformation; all data passed after transformation. An ANOVA is 

only slightly affected by inequality of variance using our models (equal sample sizes and all 

factors fixed). Specifically, the duration of hypoxia, uncoupler-stimulated respiration, ROS 

scavenger and complex I activity data were analyzed by one-way ANOVA with “duration of 

hypoxia” or “group” as independent variables as appropriate. The hypoxia-Cd interactions data 

were analyzed using a two-way ANOVA with “group” and “Cd concentration” as the 
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independent variables. Significantly different means were separated using Tukey post hoc test at 

P<0.05. Linear regression analysis and curve fitting were done using SigmaPlot 10 (Systat 

Software, Inc., San Jose, CA).  

2.4. RESULTS 

2.4.1 Effect of duration of hypoxia on mitochondrial bioenergetics 

An increase in the duration of exposure to hypoxia resulted in a marked decreased (F4,20=86, 

P<0.0001) in state 3 respiration (Fig. 2.4A). Surprisingly even the shortest hypoxia incubation (5 

min) used caused a significant (22%) reduction in state 3 respiration relative to the controls 

whereas 60 min incubation caused 60% reduction in respiration. In contrast, hypoxia stimulated 

state 4 respiration rate (Fig. 2.4B) with a highly significant effect of hypoxia duration (F4,20=33, 

P<0.0001). Specifically following 5 and 60 min of hypoxia, the respective state 4 respiration 

rates were 44 and 80% higher than the controls. A similar trend was observed for state 4ol, albeit 

with greater % stimulation by hypoxia-reoxygenation (Fig. 2.5A). Here, the state 4ol respiration 

rates were 68% and 131% higher than the controls after 5 and 60 min of exposure, respectively, 

with an overall highly significant effect of hypoxia duration (F4,20=70, P<0.0001).  

Hypoxia imposed a clear inverse relationship (R
2
 = 0.71) between state 3 and 4 rates of 

respiration (Fig. 2.3C) leading to a precipitous decline in estimates of mitochondrial coupling 

and phosphorylation efficiency (Fig. 2.6A, B). In this regard, the phosphorylation efficiency 

(P/O ratio) (Fig.2.6A) was reduced by hypoxia duration (F4,20=142, P<0.0001) with 5 and 60 min 

incubation resulting in 24% and 51% reductions relative to the normoxic controls. Similarly, the 

respiratory control ratio (RCR) was reduced by 47 and 76% after 5 and 60 min (Fig. 2.6B) with a 

highly significant overall effect of duration of hypoxia (F4,20=165, P<0.0001). Additionally, 
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hypoxia duration had a highly significant inhibitory effect (F4,20=423, P<0.0001) on RCRol ( Fig. 

2.5B). 
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Figure 2.4 
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Figure 2.4: The effect of duration of hypoxia exposure on state 3 (A) and 4 (B) respirations rates 

in isolated rainbow trout liver mitochondria. (C): the relationship between state 3 and 4 

respiration rates. Mitochondria were incubated under hypoxic conditions for 0, 5, 15, 30, and 60 

min followed by reoxygenation (100% O2 saturation) and measurement of oxygen consumption 

rates. Data are means ± SEM (n = 5). Points with different letters are significantly different from 

each other (one-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 2.5 
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Figure 2.5: Effect of duration of hypoxia exposure on state 4ol (A) and RCRol (B) in isolated 

rainbow trout liver mitochondria. Mitochondria were incubated under hypoxic conditions for 0, 

5, 15, 30, and 60 min followed by reoxygenation (100% O2 saturation) and measurement of 

oxygen consumption rates. Data are means ± SEM (n = 5). Points with different letters are 

significantly different from each other (one-way ANOVA with Tukey‟s HSD, P<0.05). 

  



50 
 

Figure 2.6 
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Figure 2.6: The effect of duration of hypoxia on P/O ratio (A) and RCR (B) in isolated rainbow 

trout liver mitochondria. Mitochondria were incubated under hypoxic conditions for 0, 5, 15, 30, 

and 60 min followed by reoxygenation (100% O2 saturation) and measurement of oxygen 

consumption rates. Data are means ± SEM (n = 5). Points with different letters are significantly 

different from each other (one-way ANOVA with Tukey‟s HSD, P<0.05). 
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2.4.2 Interactions of hypoxia and cadmium on liver mitochondrial respiration 

The effects of combined 5-min hypoxia and Cd (0–20 µM) on state 3 respiration in Fig. 2.7A 

show that hypoxia exacerbates the inhibitory effect of Cd (F2,60=257, P<0.0001). Moreover, the 

interaction between hypoxia level and Cd exposure was highly significant (F8,60=26, P<0.0001) 

indicating that the effect of hypoxia-reoxygenation on state 3 respiration depended on the level 

of Cd the mitochondria were exposed to or vice versa. Thus while the lowest (1 µM) and highest 

(20 µM) Cd doses inhibited state 3 respiration by only 6 and 48%, respectively, superimposing a 

5-min exposure of hypoxia-reoxygenation caused 42 and 77% inhibition, respectively. In 

contrast to the state 3 respiration inhibition, hypoxia-roxygenation significantly stimulated the 

state 4 (F2,60=122, P<0.0001) and state 4ol (F2,60=131, P<0.0001) respirations. Interestingly, Cd 

imposed a biphasic response on hypoxia-reoxygenation-stimulated state 4 and 4ol whereby low 

(5 µm) inhibited but higher (>5 µM) doses of Cd stimulated these respiration rates (Fig. 2.7B; 

Fig. 2.8A). Similar to state 3 respiration, the interaction terms of hypoxia and Cd on state 4 

(F8,60=11, P<0.0001) and state 4ol (F8,60=33, P<0.0001) were both significant indicating that the 

observed responses depended on the levels of the independent factors. The overall effect on 

mitochondrial functional integrity is that hypoxia exacerbated Cd-induced mitochondrial 

uncoupling (i.e., reduced RCR). Thus, while the control mitochondria were highly coupled with 

an RCR >8, combined 5-min hypoxia-reoxygenation and 20 µM Cd exposure reduced the RCR 

and RCRol by 82 and 85%, compared with the 59 and 51% reductions cause by Cd alone, 

respectively (Fig. 2.7C; Fig. 2.8B). There was a significant 2-way interaction on both the RCR 

(F8,60=47, P<0.0001) and RCRol (F8,60=62, P<0.0001) indicating co-dependence of the reduction 

in coupling on duration of hypoxia and Cd dose. 
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Figure 2.7 
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Figure 2.7: The interactions of hypoxia and Cd on rainbow trout liver mitochondria function: 

(A), state 3 respiration; (B), state 4 respiration; (C) RCR. Mitochondria were exposed to Cd (0, 

1, 5, 10, and 20 µM) with and without 5 min hypoxia. Data are means ± SEM (n = 5). Points 

with different letters are significantly different from each other (two-way ANOVA with Tukey‟s 

HSD, P<0.05). 
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Figure 2.8 
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Figure 2.8: The interactions of hypoxia and Cd on rainbow trout liver mitochondria state 4ol 

respiration (A) and RCRol (B). Mitochondria were exposed to Cd (0, 1, 5, 10, and 20 µM) with 

and without 5 min hypoxia. Data are means ± SEM (n = 5). Points with different letters are 

significantly different from each other (two-way ANOVA with Tukey‟s HSD, P<0.05). 
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The potential role of ROS in mediating the effects of hypoxia-reoxygenation and Cd was 

assessed by adding 5 mM NAC, a ROS scavenger, at the initiation of hypoxic conditions in the 

cuvettes. The results show a significant effect of group (F6,28=42, P<0.0001) on state 3 

respiration in which (i) hypoxia-reoxygenation-induced inhibition persisted in the presence of 

NAC, (ii) Cd alone had no significant effect and (iii), synergistic inhibition by combined 

hypoxia-reoxygenation and Cd was partially rescued by NAC (Fig. 2.9A). Similarly there was a 

significant effect of experimental group (F6,28=24, P<0.0001) on state 4 (Fig. 2.8B) wherein (i), 

NAC reduced the hypoxia-reoxygenation-induced stimulation of state 4, (ii) Cd alone and Cd + 

NAC had no effect and (iii), hypoxia and Cd with NAC had no effect. For state 4ol/proton leak 

(Fig. 2.10) a highly significant effect of experimental group (F6,28=65, P<0.0001) was observed. 

Here NAC reduced the hypoxia-reoxygenation-induced stimulation and, surprisingly, the 

reduction of proton leak caused by hypoxia + Cd was reversed by NAC. 

To test the hypothesis that hypoxia impairs the electron transport, DNP, an uncoupler of 

mitochondrial respiration, was added with and without hypoxia-reoxygenation incubation. 

Additionally, the effects of Cd alone and in combination with hypoxia-reoxygenation on DNP-

stimulated respiration were assessed. The results (Fig. 2.9C) indicate that the groups analyzed 

were significantly different (F7,32=68, P<0.0001). It was evident that hypoxia inhibited 

uncoupler-stimulated respiration to a greater extent (45 vs. 29%) than it did the coupled state 3 

respiration. Although Cd (5 µM) alone had no effect on state 3 and 3u respirations, marked 

inhibition (>50%) of both states was observed when Cd was combined with hypoxia-

reoxygenation. 
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2.4.3 Complex I activity 

The effect of hypoxia and the interaction with Cd on complex I activity assessed using 5-min of 

hypoxia and 5 µM Cd (Fig. 2.9D) show an overall highly significant treatment group effect 

(F3,12=77.8, P <0.0001). It is worth noting that 5 min only of hypoxia inhibited complex I 

enzyme activity by a massive 70%. Interestingly, while 5 µM Cd alone had no effect on the 

enzyme, it partially (22%) rescued hypoxia-induced complex I activity inhibition. 
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Figure 2.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: The effect of N-acetylcysteine (NAC) on hypoxia-, Cd-, and hypoxia + Cd-induced 

respiration disturbances in rainbow trout liver mitochondria. (A): state 3 respiration; (B): state 4 

respiration. (C): effect of 5 min hypoxia with and without 5 µm Cd on maximal coupled and 2,4-
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dinitrophenol (DNP)-uncoupled respiration. (D): effect of 5 min hypoxia with and without 5 µm 

Cd on mitochondrial electron transport chain complex 1 enzyme activity. Data are means ± SEM 

(n = 5). Groups with different letters are significantly different from each other (one-way 

ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 2.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: The effect of N-acetylcysteine (NAC) on Cd-, hypoxia-, and Cd + hypoxia-induced 

changes on proton leak (state 4ol respiration). Data are means ± SEM (n = 5). Groups with 

different letters are significantly different from each other (one-way ANOVA with Tukey‟s 

HSD, P<0.05). 
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2.5 DISCUSSION 

The present study clearly demonstrates that rainbow trout liver mitochondria are highly sensitive 

to hypoxia-reoxygenation and that depending on the measured endpoint and dose, Cd either 

exacerbates or attenuates the deleterious effects of hypoxia-reoxygenation. I show that a brief (5 

min) hypoxia exposure reduced state 3 respiration by 22% and within 60 min of incubation, only 

40% of the pre-hypoxia respiration rate was preserved. These findings are similar to the 

observations made in hypoxia-sensitive mammalian mitochondria that typically exhibit reduced 

oxidative phosphorylation following hypoxia-reoxygenation (Schumacker et al., 1993; da Silva, 

2003; Shiva et al., 2007). Indeed, my results are not only strikingly similar to the study by da 

Silva et al. (2003) who reported 25% inhibition of NADH-driven rat heart mitochondrial 

respiration after two 5-min ischemic exposures but also are consistent with the consensus that 

hypoxia-reoxygenation imposes severe mitochondrial stress in hypoxia-sensitive animals. In 

contrast, studies carried out in vivo with hypoxia-resistant species such as oysters show both 

similarities and differences with the results obtained in the present study. Whereas reduced 

mitochondrial state 3 respiration occurs following both long (Ivanina et al., 2012) and short 

(Sussarellu et al., 2013) term in vivo hypoxia exposure and reoxygenation in seawater, 

Kurochkin et al. (2009) observed a significant state 3 respiration overshoot relative to normoxic 

controls within the first 1-6 hours of reoxygenation following air-exposure-induced anoxia in the 

same species. This overshoot, thought to assist oysters in recovery from the oxygen debt and 

attendant energy (ATP) deficit incurred during the anoxic period, is apparently nonexistent in 

mitochondria from rainbow trout and probably other hypoxia-sensitive species. 

The clearly elevated state 4/4ol respiration observed following hypoxia and reoxygenation of 

rainbow trout liver mitochondria is in stark contrast with the findings in hypoxia-resistant species 
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wherein hypoxia-reoxygenation of oysters in seawater reduced state 4 respiration (St-Pierre et 

al., 2000; Ivanina et al., 2012; Sussarellu et al., 2013). My results are nonetheless similar to those 

obtained following 6 days of anoxia by air exposure (Kurochkin et al., 2009) wherein state 4 

respiration was elevated within the first 6 hours of post anoxia reoxygenation. Sussarellu et al. 

(2013) speculated that oysters employ different mechanisms to adjust energy metabolism 

depending on how hypoxia is experienced, i.e., via low dissolved oxygen in seawater or by air 

exposure. High state 4 respiration, and more specifically state 4ol, indicates increased proton leak 

and high cost of mitochondrial maintenance (Bishop et al., 2002; Abele et al., 2007). Although 

the actual mechanisms remain to be fully characterized, proton leak across the inner 

mitochondrial membrane (IMM) is believed to be mediated by adenine nucleotide translocase 

(ANT), uncoupling proteins (UPCs) and other IMM proteins (Parker et al., 2008; Jastroch et al., 

2010). Unsurprisingly therefore, even the mechanisms via which hypoxia-reoxygenation 

activates proton leak pathways are not well known. Nonetheless, reactive oxygen species (ROS), 

together with resultant products of oxidation, stimulate mitochondrial proton leak (Jastroch et al., 

2010), and the proportion of electrons redirected to ROS production increases as PO2 decreases 

in isolated rat mitochondria (Hoffman et al., 2007). The role of ROS in stimulating proton leak 

was, at least in part, substantiated in the present study by the finding that NAC, a ROS 

scavenger, attenuated hypoxia-reoxygenation-stimulated state 4 and 4ol respirations. It is also 

possible that the phosphorylation system (ATP synthase and phosphate and adenylate transport) 

was inhibited under the hypoxia-reoxygenation conditions in the present study, decreasing the 

utilization/dissipation of proton-motive force (p) and thus contributing to increased state 4 

respiration and proton leak. Additionally, inhibition of oxidative phosphorylation likely caused 

the ATP synthase to function in reverse, hydrolyzing ATP and pumping protons from the 
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mitochondrial matrix into the inter-membrane space in an attempt to maintain the mitochondrial 

p (Boutilier and St-Pierre, 2000; St-Pierre et al., 2000). This would conceivably be visualized 

polarographically as elevated oxygen consumption in state 4/4ol. Note that while hypoxia-

tolerant species are able to reduce ATP hydrolysis by inhibiting ATP synthase and thus can 

withstand hypoxic conditions longer, hypoxia-sensitive ectothermic species lack this ability 

(Rouslin et al., 1995) and rapidly experience catastrophic cellular energy imbalance that can lead 

to cell death. 

Because state 3 respiration decreased as state 4 increased (Fig. 2.3), the rainbow trout 

mitochondria became markedly uncoupled (reduced RCR) and inefficient (reduced P/O ratio) in 

line with previous findings in hypoxia-sensitive mammalian mitochondria (Gnaiger et al., 2000; 

Blomgren et al., 2003; Kim et al., 2003; Navet et al., 2006; Hoffman et al., 2007). In contrast, 

mitochondria from hypoxia-tolerant species maintain or increase the phosphorylation efficiency 

and coupling following hypoxia-reoxygenation (Storey and Storey, 1990; Kurochkin et al., 2009; 

Ivanina et al., 2012; Sussarellu et al., 2013). Thus these disparate responses are defensible, in 

part, based on hypoxia tolerance/sensitivity of the experimental animal species employed in 

various studies. It is noteworthy that reduced RCR has been linked with increased ROS 

production and with damage to mitochondria and impaired oxidative phosphorylation (Blomgren 

et al., 2003; Navet et al., 2006; Kurochkin et al., 2009).  

To determine the potential mechanisms of the observed hypoxia-induced mitochondrial 

dysfunction, I tested the hypothesis that it entailed impairment of the electron transport system 

(ETS). First, I found that DNP-uncoupled respiration was inhibited (notably to a greater extent 

than state 3 respiration) following hypoxia-reoxygenation (Fig. 2.8C). Second, while 5 M Cd 

alone did not significantly affect DNP-stimulated respiration, it induced marked inhibition when 



65 
 

combined with hypoxia-reoxygenation. Mitochondrial uncouplers such as DNP shuttle protons 

from the inter-membrane space into the matrix increasing oxygen consumption and dissipating 

the p without causing damage to the mitochondrial membrane or ETS. Thus inhibition of the 

uncoupler-stimulated respiration is indicative of impaired ETS (Belyaeva and Korotkov, 2003). 

Importantly, the impairment of ETS was directly confirmed by enzyme activity measurements 

that revealed a greatly reduced complex I activity (Fig. 2.6D) consistent with previous studies in 

mitochondria from hypoxia-sensitive species (da Silva et al., 2003; Heerlein et al., 2005; Galkin 

et al., 2009) that implicated a role of complex I in hypoxia-reoxygenation-induced dysfunction. 

Irrespective of the cause, the quintessential effect of complex I inhibition is leakage of electrons 

from the ETS leading to increased production of ROS (Raha et al., 2000; Turrens, 2003; Galkin 

and Brandt., 2005, Shiva et al., 2007; Fato et al., 2009; Murphy, 2009), with oxidative damage of 

not only the enzyme itself but also other mitochondrial components. I therefore tested the 

hypothesis that inhibition of complex I-driven state 3 respiration was mediated by oxidative 

damage following over-production of ROS after hypoxia-reoxygenation. Surprisingly, NAC did 

not rescue the hypoxia-inhibited state 3 and 3u respirations, although ROS generation has 

previously been linked to complex I-driven respiration inhibition during ischemia-reperfusion 

(da Silva et al., 2003; Murphy, 2009). However, NAC did reduce hypoxia-reoxygenation-

stimulated state 4/4ol suggesting that ROS-dependent mechanisms are involved in hypoxia-

reoxygenation-imposed uncoupling and inefficiency. Although ROS scavengers are commonly 

used to implicate ROS in pathophysiological processes, unambiguous confirmation of ROS 

involvement in the stimulation of proton leak observed in the present study requires actual 

measurements of ROS generation. It is also worth noting that while there is wide acceptance of 

the notion that ROS production by the mitochondria increases in hypoxia (Bell et al., 2005; 

http://www.jbc.org/search?author1=Ulrich+Brandt&sortspec=date&submit=Submit
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Waypa and Schumacker, 2002; Murphy, 2009), reduced ROS generation has also been 

demonstrated and convincingly justified (Weir et al., 2005; Hoffman et al., 2007). 

The observed lack of protection of complex-1 mediated state 3 respiration by NAC does not 

preclude ROS-mediated damage involving the distal ETS complexes or other mitochondrial 

components. Typically, electrons from complex I are delivered to and ferried by co-enzyme Q 

(CoQ) to complex III and by cytochrome c to complex IV. Thus complex III and IV are active 

and contribute to oxygen consumption when mitochondria are energized with malate-glutamate 

and damage to these distal complexes also would manifest as reduced complex I driven 

respiration. Employing a regimen of sequential inhibition of ETS complexes and complex-

specific substrates would help identify if the distal enzymes were affected. In the apparent 

absence of ROS-mediated complex I damage, I speculate that hypoxia caused conformational 

changes to the enzyme that interfered with NADH oxidation and thus impaired electron transport 

and proton pumping. In this regard, two structurally and catalytically different forms of 

mitochondrial complex I –an active (A-form) and a deactivated (D-form)– have been identified 

(Vinogradov, 1998; Galkin et al., 2009) and, more importantly, hypoxia caused accumulation of 

the D-form in human kidney epithelial cells (Galkin et al., 2009) and isolated mitochondria 

(Murphy, 2009).  

On the effects of Cd, I demonstrated that rainbow trout liver mitochondria were impaired by this 

metal dose-dependently. Concentrations of Cd ≤ 5µM did not affect mitochondrial bioenergetics 

whereas concentrations ≥10 µM reduced the maximal respiration and both coupling and 

phosphorylation efficiencies, and increased state 4/proton leak respiration. These results are 

consistent with our previous findings (Adiele et al., 2010; 2011; 2012b) except the stimulation of 

proton leak which is a novel finding in the present study for rainbow trout liver mitochondria. 
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Other effects of Cd on the mitochondria, which are beyond the scope of the present study, are 

comprehensively discussed in a recent review (Cannino et al., 2009). Therefore having 

confirmed that both hypoxia and Cd affect mitochondrial function, I sought to understand their 

combined effects with the overarching hypothesis that they would act additively or 

synergistically. The results indicate that the joint effects of hypoxia-reoxygenation and Cd on 

mitochondria depend on the measured response and dose of Cd. Specifically, Cd at all of the 

doses tested including those that had no effect alone, acted cooperatively with hypoxia-

reoxygenation to impair mitochondria and reduce the coupling and phosphorylation efficiency. 

For example, 1 µM Cd alone did not impair mitochondrial function but when in combination 

with 5 min hypoxia it evoked a substantial (42%) inhibition of state 3 respiration, an effect 

significantly greater than the 22% inhibition caused by 5 min hypoxia alone. This can be taken to 

mean that hypoxia-reoxygenation sensitizes rainbow trout liver mitochondria to Cd damage or 

that Cd potentiates the effects of hypoxia.  

Interestingly, Cd imposed a biphasic response on state 4 and proton leak wherein low doses of 

the metal attenuated hypoxia-reoxygenation-stimulated state 4 and 4ol while higher doses 

increased these rates to levels comparable to those caused by hypoxia alone. The greatest 

reduction in proton leak was seen at 5 µM Cd while the greatest stimulation occurred at 20 µM 

Cd, the highest dose used in the present study. Whether or not higher Cd doses combined with 

hypoxia would have resulted in stimulation of proton leak beyond that caused by hypoxia alone 

remains unknown. Nonetheless, the biphasic response observed in the present study is akin to 

hormesis (Calabrese and Baldwin, 2002; Calabrese and Baldwin, 2003; Nascarella et al., 2003) 

wherein low doses of stereotypically noxious (inhibitory) substances elicit beneficial 

(stimulatory) effects. A similar beneficial response was observed with regards to the combined 
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action on complex I activity in that while hypoxia acting alone inhibited complex I activity, 

administration of 5 µM Cd partially reversed this inhibition. To the best of my knowledge, this is 

the first report of possible beneficial effects of low Cd doses in attenuating mitochondrial proton 

leak and rescuing complex I from hypoxia-reoxygenation-induced inhibition. However, among 

other potentially toxic compounds, the beneficial effect of low dose of nitric oxide (NO), a 

reactive nitrogen species, in mitigating hypoxia-induced inhibition of complex I enzyme activity 

has been reported in mice mitochondria (Shiva et al., 2007; Murphy, 2009).  

The fundamental mechanisms by which low doses of Cd attenuate proton leak and partially 

protect against hypoxia-reoxygenation-induced complex I inhibition remain unknown but likely 

entail modulation of both IMM permeability and complex I conformation. Thus, potential 

mechanisms may involve (i), Cd-induced opening of the mitochondrial permeability transition 

pore (MPTP) with influx of protons (ii), inhibition of mechanisms that drive proton leak 

including but not limited to ANT and UCPs by low Cd doses and (iii), activation of the 

mitochondrial ATP-sensitive potassium channels (mitoKATP) or K
+
 cycling by low levels of Cd 

in the presence of ROS leading to K
+
 influx, IMM depolarization and reduction in p. In this 

regard, Cd is known to induce MPTP, inhibit ANT and activate mitochondrial K
+
 cycling (Li et 

al., 2003; Lee et al., 2005; Adiele et al., 2012) while opening of mitoKATP and ROS have been 

implicated in ischemia-reperfusion cytoprotection (da Silva, 2003; Shiva et al., 2007). It is also 

possible that low doses of Cd promoted the conversion of hypoxia-deactivated (D-form) complex 

I to the A-form thus alleviating the impediment of electron flow and promoting oxidative 

phosphorylation which subsequently consumed part of the proton gradient. Regardless of the 

actual causal mechanisms, reduction of proton leak/state 4 respiration decreases ROS production 

(Ramsey et al., 2000) and is consistent with our findings that NAC reversed hypoxia-
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reoxygenation-stimulated state 4 respiration and proton leak. Surprisingly, NAC attenuated the 

proton leak lowering effect of 5 M Cd, a result that can be attributed metal-chelating property 

of NAC (Banner et al., 1986; Kadima and Rabenstein, 1990) lowering the effective 

(bioavailable) concentration of Cd. Indeed, the protective effective of 1 µM Cd is lower than that 

of 5 M Cd (Fig. 2.5B). It is, however, notable that the outcome of combined Cd-hypoxia 

exposure appear to depend on the level of hypoxia sensitivity of investigated species because 

when Cd exposure was overlain on hypoxia stress in oysters (hypoxia-tolerant organism) in vivo, 

the hypoxia defense mechanisms were impaired and no beneficial effects were observed 

(Kurochkin et al., 2009; Ivanina et al., 2012). Additional research is clearly necessary to 

understand the mechanisms of reduction of proton leak by low doses of Cd following hypoxia-

reoxygenation in oxygen-sensitive species like trout. 

In conclusion the present study revealed that rainbow trout liver mitochondria are highly 

sensitive to hypoxia and exhibit marked inhibitory and stimulatory effects on state 3 and state 

4/proton leak respiration, respectively, following short term hypoxia exposures and 

reoxygenation in vitro. The ROS scavenger, NAC, partly reversed hypoxia-stimulated proton 

leak but not the state 3 inhibition, suggesting different mechanisms underlie the two responses. 

Hypoxia-reoxygenation-induced mitochondrial dysfunction was associated with impairment of 

the ETS at least at the complex I level. Lastly, I show that the combined effects of hypoxia and 

Cd depended on the mitochondrial endpoint measured and the dose of Cd administered wherein 

state 3 respiration, RCR and P/O all were synergistically reduced whereas Cd imposed a bi-

phasic response on hypoxia-stimulated proton leak and state 4 respiration. I believe that the 

attenuation of hypoxia-reoxygenation-induced proton leak and partial rescue of complex I 
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activity inhibition by low Cd doses observed in the present study is the first report of potential 

beneficial effects of Cd on vertebrate aerobic energy metabolism. 
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CHAPTER 3 

 

MODULATION OF CADMIUM-INDUCED MITOCHONDRIAL DYSFUNCTION AND 

VOLUME CHANGES BY TEMPERATURE IN RAINBOW TROUT (Oncorhynchus 

mykiss). 

A version of this chapter has been published with slight modification as: 

Onukwufor, J. O., Kibenge, F., Stevens, D., Kamunde, C., 2015. Modulation of cadmium-

induced mitochondrial dysfunction and volume changes by temperature in rainbow trout 

(Oncorhynchus mykiss). Aquat. Toxicol 158: 75-87. 
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3.1 ABSTRACT  

I investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic 

disturbances and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of 

experiments, rainbow trout liver mitochondrial function and Cd content were measured in the 

presence of complex I substrates, malate and glutamate, following exposure to Cd (0-100 µM) at 

three (5, 13 and 25 
o
C) temperatures. The second set of experiments assessed the effect of 

temperature on Cd-induced mitochondrial volume changes, including the underlying 

mechanisms, at 15 and 25 
o
C. Although temperature stimulated both state 3 and 4 rates of 

respiration, the coupling efficiency (respiratory control ratio [RCR]) was reduced at temperature 

extremes due to greater inhibition of state 3 at the lowest temperature and greater stimulation of 

state 4 at the highest temperature. On the other hand, co- exposure of Cd and temperature 

reduced the stimulatory effect of temperature on state 3 respiration, but increased that of state 4 

respiration thus exacerbating mitochondrial uncoupling. I further found that the interaction of Cd 

and temperature yielded different responses on the Q10 of state 3 and 4 respiration wherein the 

Q10 values for state 3 respiration increased at low temperature (5-13 
o
C) while those for state 4 

increased at high temperature (13-25 
o
C). The mitochondria accumulated more Cd at high 

temperature suggesting that the observed greater impairment of oxidative phosphorylation at 25 

o
C was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume 

changes were characterized by an early phase of contraction followed by swelling, with 

temperature intensifying these effects. Interestingly, at low doses of Cd (5µM), there was no 

initial swelling phase. Lastly, using specific modulators of mitochondrial ion channels, I 

demonstrated that the mitochondrial volume changes were associated with Cd uptake via the 

mitochondrial calcium uniporter (MCU) without significant contribution of the permeability 

transition pore and/or potassium channels. Overall, it appears that high temperature exacerbates 
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Cd-induced mitochondrial dysfunction and volume changes in part by increasing metal uptake 

through the MCU.  

3.2 INTRODUCTION  

In a natural environment aquatic ectotherms, such as fish, are particularly vulnerable to changes 

in temperature because their body temperatures are close to that of the environment (Stevens and 

Fry, 1974). Indeed, major physiological and biochemical processes in fish, including swimming, 

metabolic rate, growth and reproduction are highly affected by temperature fluctuations. To cope 

with environmental temperature change, aquatic organisms have evolved a wide array of 

mechanisms. In fish many of these mechanisms entail modulation of energy metabolism and 

include changes in mitochondrial membrane properties, density and enzyme activity (Guderley 

and St-Pierre, 2002; Kraffe et al., 2007; Lockwood and Somero, 2012; Oellermann et al., 2012). 

Within a zone of tolerance, these changes allow organisms to cope with the challenges associated 

with extreme temperatures. Because the mitochondria perform several other important functions 

such as cell signalling, redox regulation, Ca
2+

 homeostasis and control of apoptosis, temperature-

induced mitochondrial dysfunction typically leads to loss of the cell function with cell death as 

the terminal sequel. 

Environmental temperature stress is commonly encountered together with chemical pollutants 

including metals such as Cd. Cadmium is an important trace metal contaminant in aquatic 

systems due to its environmental persistence and high toxicity to aquatic organisms (Byczkowski 

and Sorenson, 1984; Hattink et al., 2005). When present at elevated levels in aquatic systems, Cd 

is readily taken up and accumulated in tissues of resident organisms resulting in toxicity 

(Kraemer et al., 2005; 2006). Although the toxic effects of Cd are numerous, the mitochondria 

are arguably the most important target site of its toxic action. In this regard, several authors have 
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demonstrated that many aspects of mitochondrial function are compromised by Cd in plants 

(Kesseler and Brand, 1994a), mammals (Belyaeva and Korotkov, 2003), invertebrates 

(Kurochkin et al., 2011) and fish (Adiele et al., 2012a; Chapter 2). The mechanisms through 

which Cd alters mitochondrial function include, formation of complexes with thiol proteins and 

the displacement of iron and/or Cu from their binding sites in key proteins of the respiratory 

chain (Rikans and Yamano, 2000; Dorta et al., 2003). 

Although, it is evident from the foregoing that temperature and Cd affect cell/organismal 

function individually, our knowledge of their combined effects is limited to few studies that have 

to date failed to generate a consistent theme regarding temperature-metals interactions. For 

example, when Daphnia magna where exposed to Cd at increasing temperatures, the median and 

threshold lethal body burdens decreased suggesting that lower metals accumulation was needed 

to kill daphnids at higher temperature (Heugens et al., 2003). In contrast, Lannig et al. (2006) 

working with the eastern oyster (Crassostrea virginica) reported that exposure to Cd at 28 
o
C 

caused significantly higher mortality compared with exposure at 20 or 24 
o
C, even though both 

groups had the same tissue Cd burdens. With regard to interactions on energy homeostasis, 

Sokolova (2004) found that oyster mitochondria were more sensitive to Cd at high temperatures 

and concluded that temperature sensitizes mitochondria to Cd. Overall, the existing literature 

suggests that aquatic organisms may be vulnerable to metals levels that ordinarily would not be 

toxic in the absence of thermal stress. 

The mechanisms through which thermal stress moderates metals-induced mitochondrial 

dysfunction have not been clearly elucidated but may include changes in mitochondrial volume. 

Mitochondrial volume (permeability) is critical for the activity of the electron transport system 

(i.e. ATP production) and many physiological and pathophysiological conditions are known to 
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impose volume changes on these organelles (Guerrieri et al., 2002; Fujii et al. 2004). Under 

normal physiological conditions the mitochondrial matrix volume is regulated by the inner 

mitochondrial membrane (IMM) which acts as the main barrier for molecules moving into and 

out of the organelle. However, the IMM is endowed with ion exchangers, uniporters and 

channels that impart selective permeability to specific molecules (Bernardi, 1999; O'Rourke, 

2000; Lee and Thevenod, 2006). This tight control of IMM permeability enables the 

mitochondria to create a high proton gradient that drives the production of ATP that supports 

functions important for cellular maintenance and viability. Alteration in IMM permeability leads 

to unguarded passage of solutes and water disrupting the function of the mitochondria (Belyaeva 

et al., 2001; Li et al., 2003; Orlov et al., 2013). Cadmium and temperature stress may alter the 

permeability of IMM to solutes resulting in matrix volume changes. Indeed, evidence of Cd-

induced mitochondrial volume changes has been provided, including swelling and contraction in 

mammals (Lee et al., 2005a), moderate swelling in rainbow trout (Adiele et al., 2012b) and 

contraction in oysters (Sokolova, 2004). These varied observations suggest that additional 

studies are required to clarify the mechanisms of Cd induced-mitochondrial volume changes. 

Furthermore, although there is evidence that temperature causes mitochondrial volume changes 

in both mammals and fish (Richardson and Tappel, 1962), little is known about the 

combined/interactive effects of thermal stress and Cd on mitochondrial volume. 

In the present study the effect of temperature on Cd-induced mitochondrial dysfunction and 

volume changes were investigated. First, I sought to unveil the interactive effects of Cd and 

temperature on oxidative phosphorylation (OXPHOS) by testing the prediction that high 

temperature will increase mitochondrial Cd accumulation resulting in greater OXPHOS 

impairment. Second, given the importance of mitochondrial permeability in determining their 
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function, the mechanisms of Cd-induced mitochondrial volume changes and the effect of 

temperature on this phenomenon were investigated. I anticipate that findings from my study will 

highlight how temperature change in the context of the global climate change in combination 

with metals, in this case Cd, would impact energy homeostasis in fish. 

3.3 MATERIALS AND METHODS 

3.3.1 Ethics 

All experimental procedures were approved by the University of Prince Edward Island Animal 

Care Committee in accordance with the Canadian Council on Animal Care. 

3.3.2 Experimental Animals 

Rainbow trout were obtained from Ocean Farms Inc, Brookvale, PE, and maintained at the 

Atlantic Veterinary College Aquatic Facility in a 400-l tank containing aerated well-water with 

temperature of 10±1 
o
C and a pH of 7.7. The fish were fed at 1% of their body weight daily with 

commercial trout chow pellets (Corey Feed Mills, Fredericton, NB) until sampled to isolate liver 

mitochondria used in the experiments. Fish weight ranged from 506 to 560 g during the 

experimental period. 

3.3.3 Mitochondrial isolation  

Fish were sacrificed by a sudden blow to the head and dissected to remove the liver and 

mitochondrial isolation was done according to the method described in chapter 2. Briefly, the 

livers were rinsed with mitochondrial isolation buffer (MIB: 250 mM sucrose, 10 mM Tris-HCl, 

10 mM KH2PO4, 0.5 mM EGTA, 1 mg/ml BSA [free fatty acid], 2 µg/ml aprotinin, pH 7.3), 

blotted dry and weighed. The livers were then diced and homogenized in 1:3 (weight to volume) 

ratio of liver to MIB in a 10-ml Potter-Elvehjem homogenizer (Cole Parmer, Anjou, QC). Three 

passes of the pestle mounted on a hand-held drill (MAS 2BB, Mastercraft Canada, Toronto, ON) 
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running at 200 rpm were optimal for rainbow trout liver mitochondria isolation. The homogenate 

was then centrifuged at 800 ×g for 15 min at 4 
o
C. The supernatant was collected, centrifuged at 

13,000 ×g for 10 min at 4 
o
C and the pellet (mitochondria) was washed twice by re-suspending 

in MIB and centrifuging at 11,000 ×g for 10 min at 4 
o
C. The pure mitochondrial pellet was 

finally re-suspended in a 1:3 (weight to volume) ratio of mitochondrial respiration buffer [MRB: 

10 mM Tris-HCl, 25 mM KH2PO4, 100 mM KCl, 1 mg/ml BSA (fatty acid free), 2 µg/ml 

aprotinin, pH 7.3]. The protein content of the isolated mitochondrial was measured 

spectrophotometry (Spectramax Plus 384, Molecular Devices, Sunnyvale, CA) according to 

Bradford (1976) before respirometry. 

3.3.4 Mitochondrial respiration  

Mitochondrial respiration was measured using Clark-type oxygen electrodes (Qubit Systems, 

Kingston, ON) in 1.5 ml cuvettes after a two-point calibration at 0 and 100% oxygen saturation. 

A traceable digital barometer (Fisher Scientific, Nepean, ON) was used to measure the 

atmospheric pressure and temperature was monitored and maintained at 5, 13 or 25 
o
C with the 

aid of a recirculating water-bath (Haake, Karlsruhe, Germany). Following the calibration, 1.45 

ml of MRB and 100 µl of mitochondrial suspension containing 2.2-2.4 mg of protein (22-24 mg 

of mitochondrial mass, wet weight) were loaded into cuvettes and continuously stirred. Complex 

l substrates (5 mM malate and 5 mM glutamate) and 250 µM ADP were added to initiate state 3 

respiration which transitioned to state 4 upon depletion of the ADP. Lastly, 2.5 µg/ml 

oligomycin was added to inhibit ATP synthase activity in order to measure state 4ol, a metric of 

mitochondrial proton leak (Brand et al., 1994; St-Pierre et al., 2000). To measure the combined 

effect of Cd and temperature, mitochondria isolated from each fish was tested at 5, 13 and 25 
o
C 

using 0-100 µM Cd for a total of n = 5 per temperature. Because the respiration rates varied 
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greatly across the 3 temperatures, Cd exposure times were synchronized by varying the durations 

of state 4 and state 4ol. Thus, readings at all temperatures were taken after 2, 8 and 16 min of Cd 

addition for state 3, 4 and 4ol respiration rates, respectively, thereby allowing valid comparison of 

the data. Note that the cuvettes remained well-oxygenated and never hypoxic after 16 min of Cd 

addition at the 3 temperatures. LabPro data acquisition software (Qubit Systems) was used to 

record and analyze all the oxygen consumption data. The phosphorylation efficiency (P/O ratio: 

ADP used/oxygen consumed) and the respiratory control ratio (RCR: ratio of state 3 to state 4 

respiration) were calculated according to Estabrook (1967) and Chance and Williams (1955), 

respectively. 

The temperature coefficients (Q10 values) for state 3 and 4 respirations were calculated for the 

temperature ranges 5-13 and 13-25 
o
C using the equation: Q10 = (R2/R1)

[10/(T2-T1)
, where R2 and 

R1 represent mitochondrial oxygen consumption rates at two temperatures, T2 and T1, and 

where T2>T1. 

3.3.5 Mitochondrial Cd content analysis 

Cadmium accumulation in the mitochondria was measured by atomic absorption 

spectrophotometry (AAS: PinAAcle 900T, Perkin Elmer, Woodbridge, ON). Briefly, after 

measuring the respiration rate, mitochondria samples were removed from the cuvettes and 

centrifuged at 10,000 ×g for 5 min at 4 
o
C. The supernatants were discarded and the pellets were 

washed with 500 µl of MIB to remove non-specifically bound Cd, with pelleting at 10,000 ×g 

for 5 min at 4 
o
C. The pellets were then stored at -80 

o
C until analyzed for Cd. For AAS, the 

pellets were oven-dried to constant weight at 70 
o
C (ISOTEMP, Fisher Scientific), weighed and 

digested with 500 µl of 30% H2O2 and 70% HNO3 (trace metal grade, Fisher) in a 1:15 mixture 

for 24 h at room temperature. The digests were diluted appropriately using 0.2% HNO3 and the 
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Cd concentrations were measured by AAS in furnace mode and expressed as µmol Cd/g 

mitochondrial dry weight (mdw). All Cd analyses were done in the presence of modifiers 

(NH4H2PO4 and Mg [NO3]2). Standard reference material (SRM: TMDA-70.2) and blanks were 

analyzed concurrently with the samples. Cadmium was not detected in blanks and the recovery 

rate of Cd from the SRM ranged between 95 and 106%. 

3.3.6 Mitochondrial volume 

Mitochondrial volume changes were measured as described by Lee et al. (2005a) and Sappal et 

al. (2014b). Briefly, mitochondria isolated as described above were re-suspended as 1 mg/ml 

protein in swelling buffer (100 mM KCl, 10 mM Tris-HCl, 25 mM KH2PO4, 1 mg/ml BSA, 5 

mM glutamate and 5 mM malate adjusted to pH 7.3). Volume changes were then measured at 15 

and 25 
o
C using 0, 5, 50 and 100 µM Cd, with 200 µM Ca as a positive control. The cation (Cd 

or Ca) doses were added to microplate wells as 20 µl of appropriate stock solutions and brought 

to assay volume of 200 µl by adding 180 µl of the 1 mg/ml mitochondrial suspension 

equilibrated to test temperature. The changes in absorbance at 540 nm, wherein a decrease 

indicates swelling and an increase indicates contraction, were then monitored every 10 sec for 30 

min. An additional study tested the effect of heat shock on Cd-induced mitochondrial volume 

changes by loading the 1 mg/ml mitochondrial suspension directly (i.e., without equilibration to 

assay temperature) from ice to microplate wells at 15 and 25 
o
C with the absorbance at 540 nm 

being monitored as above. 

To unveil the mechanisms of Cd-induced volume changes, the effects of modulators of the 

mitochondrial permeability transition pore (MPTP: cylosporin A (CsA), 1 µM), mitochondrial 

calcium uniporter (MCU: ruthenium red, 5 µM) and mitochondrial potassium channels 

(mitoKATP: diazoxide, 100 µM and 5-hydroxydecanoate (5-HD), 400 µM) on 100 (Cd)- and 200 
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µM (Ca)-induced volume changes were assessed. Here, the modulators were added to the wells 

as 10 µl of stock solutions and pre-incubated with 170 µl of 1 mg/ml of mitochondrial 

suspension for 5 min, after which 100 µM Cd and 200 µM Ca were added as 20 µl of appropriate 

stock solutions. Absorbance changes at 540 nm were then monitored every 10 sec for 30 min at 

15 and 25 
o
C. 

3.3.7 Data analysis  

The data were tested for normality and homogeneity of variances (Cochran C) then submitted to 

one or two-way analysis of variance (ANOVA) (Statistica version 5.1, Statsoft, Inc., Tulsa, OK). 

If the data did not pass the normality test, they were submitted to Box-Cox transformation; all 

data passed after transformation. An ANOVA is only slightly affected by inequality of variance 

using our models (equal sample sizes and all factors fixed). In these analyses, “temperature” and 

“treatment” or “Cd dose” were the independent variables. Significantly different means were 

separated using Tukey‟s post hoc test at P<0.05. Linear regression analysis was performed using 

SigmaPlot 10 (Systat Software, San Jose, CA, USA). 

3.4 RESULTS 

3.4.1 Mitochondrial respiration 

The effects of Cd on mitochondrial respiration were different at the 3 temperatures tested as 

clearly demonstrated by the significant 2-way interaction terms (Table 1). As well, temperature 

and Cd individually significantly altered all of the mitochondrial respiration indices except that 

thermal sensitivity (Q10 coefficient) of state 3 was not affected by Cd.  

Temperature alone greatly stimulated (F2,72=671, P<0.0001) state 3 respiration resulting in an 

overall 2.8-fold increase in respiration between 5 and 25 
o
C (Fig. 3.1A) in the controls. In 

contrast, Cd dose-dependently inhibited (F5,72=222, P<0.0001) state 3 respiration at all the 
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temperatures, resulting in 3, 2.5 and 3-fold reductions in respiration rates relative to the 

corresponding controls in the 100 µM Cd exposure for 5, 13 and 25 
o
C, respectively (Fig. 3.1A). 

Overall, a significant interaction (F10,72=18, P<0.0001) between Cd and temperature on state 3 

respiration was observed. The temperature sensitivity (Q10 coefficient) of state 3 respiration (Fig. 

3.1B) was significantly higher at the low (5-13
 o
C) compared with the high (13-25 

o
C) 

temperature range (F1,48=558, P<0.0001). In contrast there was no significant effect of Cd on 

state 3 Q10 (F5,48=1.08, P=0.3847) but a significant temperature and Cd interaction (F5,48=5.6, 

P<0.0003) was evident. 
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Table 3.1: Summary of 2-way ANOVA for mitochondrial respiration indices and Cd accumulation. Mitochondria isolated from each 

fish were exposed to Cd (0, 5, 10, 20, 50 and 100 µM) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Two-way ANOVA with 

Tukey‟s HSD, P<0.05 

 

Main Effect 

Cadmium (Cd) Temperature (T) Interaction (Cd × T) 

Parameter df F P df F P df F P 

State 3 5,72 222 <0.0001 2,72 671 <0.0001 10,72 18 <0.0001 

State 3 Q10 5,48 1.08 0.3847 1,48 558 <0.0001 5,48 5.6 0.0003 

State 4 5,72 114 <0.0001 2,72 2455 <0.0001 10,72 53 <0.0001 

State 4 Q10 5,48 47 <0.0001 1,48 2238 <0.0001 5,48 21 <0.0001 

P/O ratio 3,48 22 <0.0001 2,48 76 <0.0001 6,48 9 <0.0001 

RCR 5,72 919 <0.0001 2,72 657 <0.0001 10,72 24 <0.0001 

[Cd] 5,81 357 <0.0001 2,81 7.85 <0.001 10,81 3.6 <0.001 
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Figure 3.1 
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Figure 3.1: Interactive effects of temperature and Cd on (A) state 3 respiration and (B) Q10 of 

state 3. Mitochondria isolated from each fish were exposed to Cd (0, 5, 10, 20, 50 and 100 
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µM) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Points with different letters are 

statistically different from each other (two-way ANOVA with Tukey‟s HSD, P<0.05). 
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Akin to state 3, the resting (state 4) respiration increased significantly (F2,72=2455, P<0.0001) 

with temperature, attaining a 2.3-fold increase between 5 and 25 
o
C in the controls (Fig. 

3.2A). Cadmium (F5,72=114, P<0.0001) acted in synergy with temperature to further 

stimulate state 4 respiration (Fig. 3.2A) culminating in a 3.6-fold increase in state 4 between 

5 and 25 
o
C for the 100 µM Cd exposure. Moreover, the interaction between Cd exposure 

and temperature on state 4 respiration was significant (F10,72=53, P<0.0001). In contrast with 

state 3 respiration, the control Q10 values for state 4 respiration (Fig. 3.2B) increased 

(F1,48=2238, P<0.0001) with temperature from 1.1 to 1.8 for the temperature ranges 5-13 and 

13-25 
o
C, respectively. While Cd exposure did not affect state 4 thermal sensitivity over the 

5-13 
o
C range, the Q10 values were increased (F5,48 =47, P<0.0001) by Cd doses >20 M over 

the 13-25 
o
C range. A significant (F5,48 =21, P<0.0001) interaction between temperature and 

Cd on state 4 thermal sensitivity was observed. Similar to state 4 respiration, state 4ol (Fig. 

3.3), a measure of proton leak, was highly stimulated by temperature (F2,72=1826, P<0.0001) 

and Cd exposure (F5,72=104, P<0.0001) intensified this leak as verified by the significant 2-

way interaction (F10,72=46, P<0.0001). 

The P/O ratio, which indicates mitochondrial phosphorylation efficiency, was increased 

(F2,48=76, P<0.0001) by temperature (Table 2) and reduced (F3,48=22, P<0.0001) by Cd 

exposure. Overall, a significant (F6,48=9, P<0.0001) 2-way interaction between Cd and 

temperature on P/O ratio was observed. Note that P/O ratios for Cd doses >20 µM were not 

calculated because the transition to state 4 could not be unambiguously estimated. 
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Figure 3.2 
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Figure 3.2: Interactive effects of temperature and Cd on (A) state 4 respiration and (B) Q10 of 

state 4. Mitochondria isolated from each fish were exposed to Cd (0, 5, 10, 20, 50 and 100 
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µM) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Points with different letters are 

statistically different from each other (two-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 3.3 
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Fig 3.3: Interactive effects of temperature and Cd on state 4ol. Mitochondria isolated from 

each fish were exposed to Cd (0, 5, 10, 20, 50 and 100 µM) at 5, 13 and 25 
o
C. Data are 

means ± SEM (n = 5). Points with different letters are statistically different from each other 

(two-way ANOVA with Tukey‟s HSD, P<0.005). 
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Table 3.2: Effects of Cd and temperature on phosphorylation efficiency (P/O ratio) in 

rainbow trout liver mitochondria. NM indicates not measured.  

Cadmium (M) Temperature (
o
C) 

 5 13 25 

0 2.51±0.07
cd

 3.42±0.06
a
 3.61±0.11

a
 

5 2.54±0.05
cd

 3.11±0.07
b
 3.50±0.14

a
 

10 2.43±0.12
d
 3.00±0.08

b
 3.29±0.07

ab
 

20 2.42±0.12
d
 2.94±0.09

bc
 2.42±0.02

d
 

50 NM NM NM 

100 NM NM NM 

 

Table 3.2: Interaction of temperature and cadmium on P/O ratio of rainbow trout liver 

mitochondria. Mitochondria isolated from each fish were exposed to Cd (0, 5, 10, 20, 50 and 

100 µM) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Points with different letters are 

statistically different from each other (two-way ANOVA with Tukey‟s HSD, P<0.05). 
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The mitochondrial coupling efficiency (as estimated by the RCR) significantly influenced 

(F2,72=657, P<0.0001) by temperature (Fig. 3.4) and was highest at 13 
o
C for all Cd 

concentrations. Exposure to Cd decreased (F5,72=919, P<0.0001) the RCR at all temperatures, 

with mitochondria from fish held at high temperature (25 
o
C) showing the greatest reduction. 

The interaction between temperature and Cd on RCR was significant (F10,72=24, P<0.0001). 

3.4.2 Mitochondrial Cd accumulation 

The amount of Cd accumulated by mitochondria increased dose-dependently (F5,81=357.75, 

P<0.0001) with all exposures 20 µM Cd being significantly different from the control (Fig. 

3.5A). Importantly, elevated temperature enhanced (F2,81=7.85, P<0.001) Cd accumulation as 

affirmed by a significant 2-way interaction (F10,81=3.61, P<0.001) between Cd and 

temperature. In addition, Cd accumulation was impacted by temperature as demonstrated by 

the clear inverse relation between state 3 (normalized to control values) and log 

mitochondrial Cd concentration with R
2
 values of 0.93, 0.82, and 0.82 for 5, 13 and 25 

o
C 

respectively (Fig. 3.5B- D). 
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Figure 3.4 
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Figure 3.4: Interactive effects of temperature and Cd on RCR. Mitochondria isolated from 

each fish were exposed to Cd (0, 5, 10, 20, 50 and 100 µM) at 5, 13 and 25 
o
C. Data are 

means ± SEM (n = 5). Points with different letters are statistically different from each other 

(two-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 3.5 
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Figure 3.5: Interactive effects of temperature and Cd on (A) metal accumulation, and 

regression of state 3 and Cd accumulation at (B) 5 
o
C, (C) 13 

o
C and (D) 25 

o
C. Mitochondria 

isolated from each fish were exposed to Cd (0, 5, 10, 20, 50 and 100 µM) at 5, 13 and 25 
o
C. 
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Data are means ± SEM (n = 5). Points with different letters are statistically different from 

each other (two-way ANOVA with Tukey‟s HSD, P<0.05). 
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3.4.3 Mitochondrial volume 

Cadmium at concentrations 50 µM initially caused the mitochondria to contract before 

inducing swelling (Fig. 3.6A and B) with an overall significant treatment effect at both 15 
o
C 

(Fig. 3.6C: F4,20=11.51, P<0.001) and 25 
o
C (Fig. 3.6D: F4,20=27.59, P<0.0001). Although the 

amplitude of swelling achieved after 30 min was not different from that in the controls for all 

the Cd doses. As expected, the positive control (Ca, 200 µM) caused highly significant 

swelling, and unlike that caused by Cd, was not associated with an initial contraction phase. 

Moreover, temperature had no effect on the pattern (Fig. 3.6A vs 3.6B) or amplitude (Fig. 

3.6C vs. 3.6D) of swelling. To test if the early contraction caused by high Cd doses was due 

to a chemical or physical interaction between Cd and buffer constituents, 100 µM Cd was 

added to the swelling buffer alone and absorbance monitored for 30 min; there were no 

changes in absorbance (Fig. 3.7). Finally, temperature shock resulted in greater volume 

changes at both 15 (F4,20=58.04, P<0.00001) and 25 (F4,20=38.47, P<0.00001) 
o
C (Fig. 3.8) 

compared with mitochondria equilibrated to test temperature prior to the swelling assay (Fig. 

3.6). Moreover, temperature-shocked mitochondria exhibited complex volume changes with 

two phases of contraction and swelling. Interestingly, the low dose (5 µM) of Cd reduced the 

amplitude of spontaneous swelling. Lastly, while Ca-induced swelling reached steady state in 

4-5 min swelling evoked by Cd did not level out even after 30 min.  

The prediction that Cd-induced mitochondrial volume changes are mediated by mitoKATP, 

MPTP and MCU were tested using specific modulators of these mitochondrial membrane 

pathways. We found that the MitoKATP blocker, 5-HD, reduced Ca-induced swelling but had 

no effect on volume changes associated with Cd (Fig. 3.9A and B). However, a significant 

treatment effect on mitochondrial volume at 15 (Fig. 3.9C: F5,24=228.29, P<0.00001) and 25 
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(Fig 3.9D: F5,24=29.8, P<0.00001) 
o
C was observed. Diazoxide, a mitoKATP agonist, had no 

effect on both Ca- and Cd-induced volume changes (Fig. 3.10A-D), however, there were 

overall significant treatment effects on the volume changes both at 15 (F5,24=46.78, 

P<0.00001) and 25 (F5,24=33.40, P<0.00001) 
o
C (Fig 3.10C and D).  

With regard to the role of MPTP, CsA, an inhibitor of MPTP, reduced Ca-induced swelling 

but did not alter Cd-induced volume changes (Fig. 3.11A-D). A significant treatment effect 

was observed for tests done at both 15 (F5,24=31.98, P<0.00001) and 25 (F5,24=18.05, 

P<0.00001) 
o
C (Fig. 3.11C and D). Lastly, ruthenium red, an MCU blocker, completely 

blocked Ca-induced swelling and abolished the Cd-induced contraction and spontaneous 

(control) swelling at both 15 and 25 
o
C (Fig 3.12A-D). Significant treatment effects were 

observed at both 15 
o
C (F5,24=74.58, P<0.00001) and 25 

o
C (F5,24=46.94, P<0.00001). 

Ruthenium red (Fig. 3.12A), and to some extent CsA (Fig. 3.11A), altered the kinetics of Cd-

induced swelling at 15 
o
C. 
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Figure 3.6 
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Figure 3.6: Dose response of Cd on mitochondrial volume changes. Mitochondrial 

suspensions were exposed to Cd (0, 5, 50 and 100 µM) and 200 µM Ca (positive control) and 

swelling kinetics were monitored every 10 sec for 30 min as 540 nm absorbance changes at 

(A) 15 
o
C and (B) 25 

o
C. The means ± SEM (n = 5) amplitude of swelling after 30 min are 

shown in c (15 
o
C) and d (25 

o
C). Points with different letters are statistically different from 

each other (one-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 3.7 
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Fig 3.7: The effects of Cd induced mitochondrial volume changes on buffer and 

mitochondrial suspension. Mitochondrial suspension were exposed to (0 and 100 µM) Cd 

and Buffer (without mitos) to 100 µM Cd. Swelling kinetics were monitored every 10 sec for 

30 min as 540 nm absorbance changes at 25 
o
C . Data are means ± SEM (n = 5). 
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Figure 3.8 
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Figure 3.8: The effect of temperature shock (ice→15 or 25
o
C) on Cd-induced mitochondrial 

volume changes. Mitochondrial suspensions were exposed to Cd (0, 5, 50 and 100 µM) and 

200 µM Ca (positive control) and swelling kinetics were monitored every 10 sec for 30 min 

as 540 nm absorbance changes at (A) 15 
o
C and (B) 25 

o
C. The means ± SEM (n = 5) 

amplitude of swelling after 30 min are shown in c (15 
o
C) and d (25 

o
C). Points with different 
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letters are statistically different from each other (one-way ANOVA with Tukey‟s HSD, 

P<0.05). 
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Figure 3.9 
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Figure 3.9: The effect of 5-hydroxydecanoate on Cd-induced mitochondrial volume changes. 

Mitochondrial suspensions were exposed to Cd (0 and 100µM) and 200 µM Ca and swelling 

kinetics were monitored every 10 sec for 30 min as 540 nm absorbance changes at (A) 15 
o
C 

and (B) 25 
o
C. The means ± SEM (n = 5) amplitude of swelling after 30 min are shown in c 

(15 
o
C) and d (25 

o
C). Points with different letters are statistically different from each other 

(one-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 3.10 
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Figure 3.10: The effect of diazoxide on Cd-induced mitochondrial volume changes. 

Mitochondrial suspensions were exposed to Cd (0 and 100 µM) and 200 µM Ca and swelling 

kinetics were monitored every 10 sec for 30 min as 540 nm absorbance changes at (A) 15 
o
C 

and (B) 25 
o
C. The means ± SEM (n = 5) amplitude of swelling after 30 min are shown in C 
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(15 
o
C) and D (25 

o
C). Points with different letters are statistically different from each other 

(one-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 3.11 
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Figure 3.11: The effect of cyclosporin A on Cd-induced mitochondrial volume changes. 

Mitochondrial suspensions were exposed to Cd (0 and 100µM) and 200µM Ca and swelling 

kinetics were monitored every 10 sec for 30 min as 540 nm absorbance changes at (A) 15 
o
C 

and (B) 25 
o
C. The means ± SEM (n = 5) amplitude of swelling after 30 min are shown in C 
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(15 
o
C) and D (25 

o
C). Points with different letters are statistically different from each other 

(one-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 3.12 
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Figure 3.12: The effect of ruthenium red on Cd-induced mitochondrial volume changes. 

Mitochondrial suspensions were exposed to Cd (0 and 100 µM) and 200 µM Ca and swelling 

kinetics were monitored every 10 sec for 30 min as 540 nm absorbance changes at (A) 15 
o
C 

and (B) 25 
o
C. The means ± SEM (n = 5) amplitude of swelling after 30 min are shown in C 

(15 
o
C) and D (25 

o
C). Points with different letters are statistically different from each other 

(one-way ANOVA with Tukey‟s HSD, P<0.05) 
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3.5 DISCUSSION  

The co-occurrence of fluctuating temperatures and elevated metals concentrations in aquatic 

systems calls for increased understanding of their combined effects on the physiology of 

resident organisms in order to more accurately predict the environmental impacts. To identify 

the potential interactive effects of Cd and temperature on mitochondrial function and volume 

I assessed the effects of the metal at 3 temperatures. I demonstrate that all mitochondrial 

respiration indices except the thermal sensitivity of state 3 were significantly modulated by 

temperature and Cd exposure with significant 2-way interactions. Importantly, the inhibitory 

effect of Cd and its effects on volume were greater at high temperature suggesting that 

temperature increases as projected to occur naturally and due to global climate change may 

make fish energy generating systems more vulnerable to metals such as Cd. 

Individually temperature had stimulatory effects on mitochondrial respiration, increasing the 

phosphorylating (state 3) respiration by approximately 3× between 5 and 25 
o
C. This finding 

is consistent with several other studies in a wide range endothermic and ectothermic animal 

species (Willis et al., 2000; Bouchard and Guderley, 2003; Birkedal and Gesser, 2003; 

Fangue et al., 2009; Lemieux et al., 2010; Zukiene et al., 2010; Schulte et al., 2011). At low 

temperatures the aerobic capacity of the mitochondria is believed to be limited by low 

substrate oxidation rates (Blier and Guderley, 1993) and reduced diffusion rate of substrates 

(Dunn 1988) that are in part caused by changes in membrane properties (Kraffe et al., 2007). 

In converse, raising the temperature increases the rates of substrate oxidation because of 

stimulation of activities of enzymes and decreased substrate binding affinities (Blier and 

Guderley 1993; Guderley and Johnston 1996; Somero, 2011), resulting in high respiration 

rate. Contrasting the stimulatory effect of temperature, Cd dose-dependently reduced state 3 
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respiration at all temperatures which is in agreement with several previous studies (Kesseler 

and Brand, 1994b; Adiele et al., 2010; Kurochkin et al., 2011; Chapter 2). The mechanism 

through which Cd inhibits state 3 respiration include direct impairment of the activity of ETS 

enzymes and substrate transporters (Rikans and Yamano, 2000; Wang et al., 2004; 

Kurochkin et al., 2011), inhibition of substrate oxidation (Ivanina et al., 2008), increased 

mitochondrial membrane permeability (Belyaeva and Korotkov, 2003), and uncoupling of 

oxidative phosphorylation (Belyaeva et al., 2001; Adiele et al., 2010), leading to the overall 

inhibition of oxidative phosphorylation (Dorta et al., 2003; Wang et al., 2004). The combined 

exposure showed significant interaction between temperature and Cd wherein thermal stress 

exacerbated the inhibitory effect of Cd on state 3 mitochondrial respiration. This suggests, 

similar observation has been made in oysters (Sokolova, 2004), that elevation in 

environmental temperature would lead to greater disturbances of OXPHOS in fish.  

The increase in state 4 respiration observed on raising the temperature from 5 to 25 
o
C is 

consistent with several other studies (Chamberlin, 2004; Sokolova, 2004; Fangue et al., 

2009). This increase in state 4 was largely due to increase in state 4ol, a measure of 

mitochondrial proton leak. It is likely that high temperature stimulates mechanisms that 

mediate proton leak such as the adenine nucleotide translocase, uncoupling proteins and 

other inner mitochondrial membrane proteins (Jastroch et al., 2010). Alternatively, 

temperature-induced increase in IMM permeability (Dahlhoff and Somero, 1993) would 

elevate inward flux of protons (Echtay et al., 2002; Goglia and Skulachev, 2003; Talbot et 

al., 2004). Interestingly, the combined exposure showed that temperature and Cd acted 

cooperatively in stimulating state 4/proton leak suggesting that aquatic organisms that are 

concurrently exposed to thermal stress and Cd would have increased mitochondrial 
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inefficiency. In addition to reducing ATP synthesis, high proton leak may lead to increased 

ROS production in inhibited mitochondria (Brookes, 2005) with damage to membrane lipids, 

proteins and DNA. 

The Q10 values measured in the present study indicate that the thermal sensitivity of state 3 

respiration was higher at low temperature which is in line with an earlier study by 

Chamberlin (2004). Interestingly, Cd exposure increased the Q10 values of state 3 respiration 

over the low temperature range. While the mechanisms underlying the high state 3 

temperature coefficients at low temperature and their enhancement by Cd remain to be 

determined, this finding implies that mitochondria exhibit exaggerated changes in OXPHOS 

when faced with Cd stress at high temperature. Surprisingly unlike the maximal respiration, 

state 4 Q10 values were higher at high temperature and increased further on exposure to Cd 

indicating a synergistic interaction of temperature and Cd on basal mitochondrial respiration. 

While this is the first study to report that Cd increases state 4 thermal sensitivity, high Q10 

values at the high temperature have been observed in earlier studies (Hulbert et al., 2002; 

Chamberlin, 2004). Because state 4 respiration is predominantly proton leak (Fig. 3.3) the 

enhancement of sensitivity of state 4 to temperature by Cd indicates decreased mitochondrial 

efficiency as confirmed by the lower RCR and P/O ratio in the high temperature-Cd 

exposure. Similar to this findings, temperature was shown to increase the sensitivity of oyster 

gill mitochondria to Cd (Sokolova, 2004), indicating that mitochondrial dysfunction would 

occur at lower concentration of Cd in the presence of thermal stress. Overall, the inhibition of 

state 3 coupled with preferential stimulation of 4 culminated in greatly reduced RCR in the 

combined exposure indicative of highly compromised OXPHOS. 
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The prediction that the greater mitochondrial dysfunction observed following Cd exposure at 

high temperature results from increased Cd accumulation was confirmed (Fig. 3.5). Notably, 

there were strong correlations between state 3 respiration and log mitochondrial Cd 

concentration at all temperatures indicating that low burdens of Cd impose big reductions in 

respiration while high burdens cause small reductions. Though the mechanisms of 

enhancement of mitochondrial Cd uptake at high temperature were not explored, it is 

possible that the inner mitochondrial membrane exhibited increased leakiness (Dahlhoff and 

Somero, 1993), thereby allowing greater influx of Cd. An alternative explanation for the 

increased Cd accumulation at high temperature is increased activity of mitochondrial 

transporters such as the MCU which my study and others (Lee et al., 2005a; Adiele et al., 

2012b) have shown to be involved in Cd uptake by the mitochondria. Similar enhancement 

of Cd accumulation at high temperature was reported (Goncalves et al., 1988; Tessier et al., 

1994; Bervoets et al., 1996; Heugens et al., 2003) suggesting that the augmenting effect of 

temperature on Cd accumulation cuts across different species of aquatic organisms.  

The mitochondria functional integrity is guaranteed by the selective permeability of the IMM 

which regulates the flow of materials between the matrix and the cytosol/IMS and, 

importantly, allows the generation of a protonmotive force that drives ATP synthesis 

(Mitchell, 1966). Despite the importance of osmotic movement of water into and out of the 

mitochondria for mitochondrial function, the interactive effects of metals e.g., Cd and 

thermal stress on volume changes of these organelles have not been investigated. I therefore 

tested the idea that the deleterious effects of Cd and adverse temperature on mitochondria 

result from altered IMM permeability. By monitoring mitochondrial volume changes (i.e., 

changes in absorbance at 540 nm) over time as an indicator of changes in IMM permeability 



110 
 

I showed that Cd at doses ≥50 µM evoke early mitochondrial contraction before inducing 

swelling. Cadmium-induced swelling-contraction has been reported in mammalian 

mitochondrial by Lee et al. (2005a; b) who, similar to my study, monitored volume changes 

kinetically. A study that performed endpoint volume measurements detected only contraction 

in oyster (Sokolova, 2004) and suggested that oyster mitochondria do not undergo a 

mitochondrial permeability transition and associated swelling. The author speculated that 

oyster mitochondria retain sufficient proton pump activity to mitigate depolarization and 

swelling when exposed to Cd. More recently, Adiele et al. (2012b) observed mild swelling in 

an endpoint assay using rainbow trout liver mitochondria and argued that liver mitochondria 

in this species are recalcitrant to swelling. The present study, in particular the effect of Ca, 

indicates that these mitochondria are capable of substantial swelling, highlighting the 

importance of kinetic measurement of mitochondrial volume changes.  

Mitochondria behave like osmometers capable of swelling and contraction due to water 

movement that accompanies the net transport of osmotically active solutes into and out of the 

matrix of these organelles (Beavis et al., 1985). Regarding the contraction I observed in the 

early phase of Cd exposure, the possibility that the change in absorbance was due to Cd or 

complexes formed by reaction of Cd with components of the swelling buffer were ruled out 

(Fig. 3.7). Furthermore, the possibility of an increase in refractive index due to Cd 

complexation with phosphate in the mitochondrial matrix that can be interpreted as 

contraction as observed following Ca exposure of brine shrimp, Artemia franciscana 

mitochondria (Menze et al., 2005; Holman and Hand, 2009), was ruled out because the 

contraction I observed was transient, whereas the formation of calcium phosphate in brine 

shrimp mitochondria was a permanent monotonic phenomenon. This suggests that the 
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mitochondrial contraction observed here was due to specific effects of Cd on the mechanisms 

or structures that regulate solute and water transport in these organelles. Therefore, a possible 

explanation of the volume changes is that Cd at high doses may initially activate 

mitochondrial K
+
/H

+
 exchanger leading not only to the dissipation of membrane potential but 

also contraction due to loss of water from the mitochondria associated with K
+
 efflux. With 

time, however, matrix contraction would block the K
+
/H

+
 exchange creating an osmotic 

gradient that drives K
+
 back into the matrix causing progressive osmotic mitochondrial 

swelling which may ultimately cause rupture of the outer membrane with leakage of the 

intermembrane space contents into the cytosol (Zoratti and Szabo, 1995; Bernardi, 1999; 

Halestrap et al., 2002). It is also possible that Cd activates mitochondrial aquaporins, 

channels that regulate the osmotic movement of water across IMM (Ferri et al., 2003), thus 

increasing influx of water leading to swelling. Indeed, blocking mitochondrial aquaporins 

with AgNO3 abolished Cd-induced swelling (Lee et al., 2005a), a compelling indication that 

these channels are involved in the Cd-induced mitochondrial volume changes.  

My mechanistic analysis revealed that contrary to my prediction, Cd-induced rainbow trout 

liver mitochondrial volume changes are not mediated by MPTP. Specifically, CsA, an MPTP 

inhibitor, did not stop or reduce Cd-induced swelling. Note that the induction of the MPTP 

occurs in these mitochondria (Adiele et al., 2012b) and was confirmed here by my finding 

that Ca-induced swelling was blocked by CsA. The inability of CsA to block mitochondrial 

swelling is not unique to my study having been observed in previous studies using Cd (Lee et 

al., 2005b), Hg (Eliseev et al., 2002) and long-chain fatty acid (Schӧnfeld et al., 2000) as 

inducers. However, Cd-induced volume changes were abolished by ruthenium red, an 

inhibitor of the MCU, indicating that Cd entry through this channel is an important 
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requirement for the observed volume changes. The involvement of MCU in Cd-induced 

swelling has previously been reported for rat mitochondria (Li et al., 2003; Lee et al., 2004; 

2005b) although a role for the voltage-dependent anion channel (VDAC) cannot be ruled out 

because it is also sensitive to ruthenium red (Ryu et al., 2010). Lastly, neither diazoxide nor 

5-HD had effect on Cd-induced volume changes, suggesting non-involvement of mitoKATP 

despite the importance of K
+
 fluxes in the regulation of mitochondrial volume (Garlid et al., 

1996; Jaburek et al., 1998; Lee et al., 2005b). 

The mitochondrial volume changes observed in my study, with a clear early contraction 

followed by two phases swelling were highly influenced by temperature. While mitochondria 

equilibrated to test temperature showed moderate contraction and swelling, those tested after 

temperature shock (abrupt transfer from ice→15 or 25 
o
C) had complex patterns of 

contraction and swelling with higher amplitudes. The complex swelling-contraction pattern is 

possibly associated with temperature-induced changes on mitochondrial membrane 

characteristics (Connell, 1961; Richardson and Tappel, 1962; Somero, 2011). Interestingly, 5 

µM Cd prevented spontaneous swelling in both equilibrated and temperature-shocked 

mitochondria, suggesting that at low doses Cd blocks the mechanisms of solute and water 

movement across the inner mitochondrial membrane. Additional studies are required to 

unveil the mechanisms by which low Cd doses inhibit spontaneous swelling in isolated 

mitochondria. 

In conclusion, I have shown that adverse temperature and Cd exposure interactively impair 

mitochondrial function and alter their volume. Whereas individually temperature stimulated 

both the maximal and basal/leak respirations, Cd inhibited the former while stimulating the 

later, leading to severe uncoupling and exacerbation of functional impairment in the 
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combined exposure. Interestingly, Cd increased the thermal sensitivity (Q10 values) of 

maximal respiration at low temperature and that of basal respiration at high temperature. 

Importantly, I show that the aggravation of Cd-induced mitotoxicity at high temperature was, 

at least in part, due to increased accumulation of the metal in the organelles. Additionally, my 

data suggest that Cd alters mitochondrial permeability leading to contraction and swelling 

that is aggravated by temperature change. It appears that mitochondrial volume alterations 

require Cd uptake via the MCU. 
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CHAPTER 4 

 

HYPOXIA-REOXYGENATION DIFFERENTIALLY ALTERS THE THERMAL 

SENSITIVITY OF COMPLEX I BASAL AND MAXIMAL MITOCHONDRIAL 

OXIDATIVE CAPACITY 

A version of this chapter has been published with slight modification as: 

Onukwufor, J. O., Kibenge, F., Stevens, D., Kamunde, C., 2016. Hypoxia-reoxygenation 

differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial 

oxidative capacity. Comp. Biochem. Physiol A. 201:87-94 
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4.1: ABSTRACT 

Hypoxia-reoxygenation (H-R) transitions and temperature fluctuations occur frequently in 

biological systems and likely interact to alter cell function. To test how H-R modulates 

mitochondrial function at different temperatures I measured the effects of H-R on isolated 

fish liver mitochondrial oxidation rates over a wide temperature range (5-25 
o
C). 

Subsequently, the mechanisms underlying H-R induced mitochondrial responses were 

examined. H-R inhibited the complex I (CI) maximal (state 3) and stimulated the basal (state 

4) mitochondrial oxidation rates with temperature enhancing both effects. As a result, the 

thermal sensitivity (Q10) for CI maximal respiration was reduced while that for basal 

respiration was increased by H-R. H-R reduced both the coupling and phosphorylation 

efficiencies more profoundly at high temperature suggesting that mitochondria were more 

resilient to H-R at low temperature. The H-R induced mitochondrial impairments were 

associated with increased reactive oxygen species (ROS) production and proton leak, 

dissipation of membrane potential, and loss of structural integrity of the organelles. Overall, 

my study provides insight into the mechanisms of H-R induced mitochondrial 

morphofunctional disruption and shows that the moderation of effects of H-R on oxidative 

phosphorylation by temperature depends on the functional state. 

4.2 INTRODUCTION  

Mitochondria produce the majority of the energy (ATP) needed for cellular function and 

maintenance through oxidative phosphorylation (OXPHOS) in which the transfer of electrons 

by the electron transport system (ETS) is coupled with transport of protons from the matrix 

into the intermembrane space creating a proton-motive force (membrane potential plus pH 

gradient) across the inner mitochondrial membrane (IMM) (Mitchell, 1966). These protons 
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are channeled back into the matrix via the ATP synthase to synthesize ATP from ADP and 

inorganic phosphate. Under stressful conditions, the ability of the mitochondria to synthesize 

ATP may be compromised in part by the disruption of the ETS and/or altered structural 

integrity with increased IMM permeability that typically manifests as changes in 

mitochondrial volume (Lee et al., 2005a, Orlov et al., 2013, Chapter 3). The regulation of 

mitochondrial volume is therefore important for ETS function and thus generation of the 

proton gradient for ATP synthesis. 

Changes in temperature and oxygen fluctuations (hypoxia-reoxygenation, H-R) are common 

variables encountered by biological systems naturally or under experimental and clinical 

settings. Existing literature suggests that the disruption of biological systems by temperature 

and H-R results from altered mitochondrial function (Broderick 2006; Ivanina et al., 2012; 

Tissier et al., 2013; Sappal et al., 2015). For example, high temperature stress differentially 

increases the maximal and basal respiration rates that ultimately reduces the respiratory 

control ratio (RCR) in mitochondria from a variety of animal species (Zukiene et al., 2010; 

Galli and Richards 2012; Rodnick et al., 2014; Sappal et al., 2014b). Similarly, H-R can 

reduce RCR by inhibiting the ETS and/or increasing proton leak (da Silva et al., 2003; Navet 

et al., 2006; Hickey et al., 2012; Chapter 2). While the individual effects of temperature and 

hypoxia without and with reoxygenation on mitochondria are reasonably well known, it 

remains unclear how H-R modulates mitochondria function at different temperatures. 

Specifically, existing data are contradictory as to whether or not high/low temperature 

exacerbates/abrogates the effects of H-R (Yellon et al., 1992; Overgaard et al., 2004; 

Broderick, 2006; Tissier et al., 2010). 
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In my previous study (Chapter 2) I reported that a short period (5 min) of hypoxia followed 

by reoxygenation resulted in a decrease in state 3 and an increase in state 4 respiration. In the 

present study I reasoned that H-R damages one or more of the ETS complexes and I tested 

some predictions focused on this hypothesis. First, I predicted that the response would scale 

with the duration of the hypoxia. Second, I predicted that the response would be temperature 

sensitive but that state 3 alteration would be more sensitive to temperature change than state 

4 alteration because the former reflects an active process (pumping protons) whereas the 

latter is a passive process (protons leaking back through the inner mitochondrial membrane). 

Third, I predicted that if H-R damaged all ETS proteins respiration rate in state 3 would 

ultimately drop to zero. Fourth, I predicted that if the decrease in state 3 respiration was due 

to damage to proton pumping proteins it would be associated with a decrease in membrane 

potential and if it was associated with damage to ATP synthase then it would result in a 

decrease in the P/O ratio. Finally, in as much as many mitochondrial insults result in 

disruption of mitochondrial membrane and matrix integrity, I predicted that H-R would be 

associated with changes in mitochondrial structure. 

4.3 MATERIALS AND METHODS 

4.3.1 Ethics 

The procedures that experimental animals were subjected to were approved by the University 

of Prince Edward Island Animal Care Committee (Protocol # 11-034) in accordance with the 

Canadian Council on Animal Care. 

4.3.2 Fish  

Female rainbow trout (Oncorhynchus mykiss) were obtained from Ocean Farms Inc., 

Brookvale, PE, and kept in a 400-I tank supplied with flow-through aerated well water at the 



118 
 

Atlantic Veterinary College Aquatic Facility. Water temperature and pH were 10 ± 1 
o
C and 

7.7, respectively. The fish were fed at 1% body weight daily with commercial trout chow 

(Corey Feed Mills, Fredericton, NB). At sampling the fish were about 6 months old and 

weighed 188 ± 17 g.  

4.3.3 Mitochondrial isolation  

To isolate mitochondria, fish were randomly sampled from the tank, stunned with a blow to 

the head, decapitated and immediately dissected to remove the liver. Mitochondria were 

isolated according to the method described in chapter 2. Briefly, the livers were rinsed with 

mitochondrial isolation buffer (MIB: 250 mM sucrose, 10 mM Tris-HCl, 10 mM KH2PO4, 

0.5 mM EGTA, 1 mg/ml BSA [free fatty acid], 2 µg/ml aprotinin, pH 7.3), blotted dry and 

weighed. Livers were diced and homogenized in 1:3 (weight to volume) ratio of liver to MIB 

in a 10-mls Potter-Elvehjem homogenizer (Cole Parmer, Anjou, QC). Three passes of the 

pestle mounted on a hand-held drill (MAS 2BB, Mastercraft Canada, Toronto, ON) running 

at 200 rpm were optimal for rainbow trout liver mitochondria isolation. The homogenate was 

then centrifuged at 800 ×g for 15 min at 4 
o
C. The supernatant was collected, centrifuged at 

13,000 ×g for 10 min at 4 
o
C and the pellet (mitochondria) was washed twice by re-

suspending in MIB and centrifuging at 11,000 ×g for 10 min at 4 
o
C. Finally, the -

mitochondrial pellet was re-suspended in a 1:3 (weight to volume) ratio of mitochondrial 

respiration buffer [MRB: 10 mM Tris-HCl, 25 mM KH2PO4, 100 mM KCl, 1 mg/ml BSA 

(fatty acid free), 2 µg/ml aprotinin, pH 7.3]. Mitochondrial protein concentration was 

measured by spectrophotometry (Spectramax Plus 384, Molecular Device, Sunnyvale, CA) 

according to Bradford (1976) with BSA as the standard. 
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4.3.4 Mitochondrial respiration  

Rainbow trout can experience temperatures ranging from 4 to 27 
o
C in their environment 

(Threader and Houston, 1983; Taylor et al., 1996; Aho and Vornanen, 2001). To capture this 

temperature range normoxic mitochondrial oxidation rates were assessed at 5, 13 and 25 
o
C 

using Clark-type oxygen electrodes (Qubit Systems, Kingston, ON) in 1.5 ml cuvettes after a 

two-point calibration at 0 and 100% air saturation at the ambient atmospheric pressure. 

Temperature during the assays was maintained at the desired level using a recirculating 

water-bath (Haake, Karlsruhe, Germany). Although the system was equilibrated with 

atmospheric air initially and after reoxygenation, the concentration of O2 was different at the 

different test temperatures because the solubility is different. The dissolved O2 concentration 

was about 11.9, 9.9, and 7.8 mg/l at 5, 13 and 25 
o
C, respectively, when equilibrated with air. 

After the calibration, 1.45 ml of MRB and 100 µl of mitochondrial suspension containing 

2.0-2.9 mg of protein were loaded into the cuvettes and continuously stirred. To spark the 

Krebs cycle, 5 mM malate was added and respiration was supported with saturating 

concentration (5 mM) of glutamate, a complex I substrate. The addition of 250 µM ADP 

initiated the maximal CI respiration (state 3) which changed to basal respiration (state 4) 

upon depletion of the ADP. To measure respiration after hypoxic-reoxygenation (H-R) the 

method in chapter 2 was used. Briefly, following normoxic respiration above, the MRB was 

made hypoxic by bubbling nitrogen into the cuvettes for about 2 min with the stirrer on until 

the O2 concentration reached 0.1 mg/l, depleting the Po2 to1.3, 1.6, and 2.0 torr at 5, 13, and 

25 
o
C, respectively. This Po2 is below the 2.25-3.75 torr intracellular level of O2 typically 

encountered by rat liver mitochondria in vivo (Gnaiger and Kuznetsov, 2002). Then the 

bubbling tube was removed, the cuvettes were sealed and mitochondria were maintained 

under hypoxic conditions for the required duration. At the end of the hypoxic period, the 
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cuvettes were opened and the contents were fully re-oxygenated to > 95% saturation with no 

bubbling but with the stirrer still on. Reoxygenation usually took 10 to 20 min. Thereafter 

ADP was added and a second set of respiration measurements post H-R was made in a 

similar manner as for normoxic conditions described above. The difference between the first 

and second set of respiration parameters represented the effects of H-R (exemplary trace 

shown in supplementary material, Fig. 4.1). To determine the interactions of temperature and 

H-R on mitochondrial oxidation rates, isolated mitochondria were tested at 5, 13 and 25 
o
C 

using (0, 5, 15 and 30 min) hypoxic conditions (n = 5 fish for each of the 12 treatments: 3 

temperatures and 4 hypoxia durations). LabPro data acquisition software (Qubit Systems) 

was used to record and analyze all the O2 consumption data. The phosphorylation efficiency 

(P/O ratio: ADP used/oxygen consumed) and the respiratory control ratio (RCR: ratio of state 

3 to state 4) were calculated according to Estabrook (1967) and Chance and Williams (1955), 

respectively. The Q10 values for state 3 and 4 respiration rates were calculated for the 

temperature ranges 5-13 and 13-25 
o
C using Q10 = (R2/R1)

[10/(T2-T1)]
, where R2 and R1 

represent mitochondrial oxygen consumption rates at two temperatures, T2 and T1, and 

where T2>T1. 

I carried out a control experiment to test for the effect of bubbling in and of itself. In this case 

I bubbled with air rather than nitrogen but for the same length of time as for the H-R trails, 2 

min. This test showed that there was no effect of bubbling with air on respiration rate during 

state 3 (Student's t-test, t = -0.56, p = 0.59) and state 4 (t = 0.00, p = 0.99), or RCR (t = -0.73, 

p = 0.50). 

For all of the trials used to measure MMP, H2O2, and structural changes (transmission 

electron microscopy), the mitochondria were isolated in the same way, incubated and treated 
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the same way in the same cuvettes and the same solutions as they were for the respiration 

experiments. Substrates were not added in the cuvettes for MMP and H2O2 but were used in 

the experiments. ADP was not used in MMP, H2O2 and structural changes experiments. In all 

the experiments (MMP, H2O2 and structural changes) the mitochondria were subjected to the 

same normoxic or H-R protocols. 
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Figure 4.1 
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Figure 4.1: Exemplary trace showing hypoxia-reoxygenation (H-R) treatment and 

measurement of respiration rates in rainbow trout liver mitochondria. In this tracing obtained 

at 5 
o
C, the initial O2 concentration was 11.9 mg/L when the respiration buffer was 

equilibrated with air. A: entire tracing. B: hypoxic zone of the trace revealing the O2 

concentration attained after bubbling the respiration buffer with N2. Nor 3: normoxic state 3 

respiration; Nor 4: normoxic state 4; N2: nitrogen bubbling; H: hypoxia treatment; Reox: 

reoxygenation; H-R 3: post H-R state 3 respiration; H-R 4: post H-R state 4 respiration. 
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4.3.5 Mitochondrial membrane potential (MMP) 

MMP changes under normoxia and after H-R were measured fluorimetrically (Synergy
TM

 HT 

BioTek, US) using Rhodamine (Rh) 123 (excitation 485 nm; emission 586 nm) as described 

(Sappal et al., 2014a). Briefly, 1 mg/ml protein of normoxic and H-R treated mitochondria in 

MRB were added to microplate wells in duplicate. Thereafter, 5 µM Rh123 was loaded into 

wells and the mitochondria were allowed to equilibrate to assay conditions for 15 min and an 

initial reading was taken. The mitochondria were then energized with 5 mM each of malate 

and glutamate then incubated for 5 min and a second reading was taken. For positive control, 

0.5 µM FCCP was added to another duplicate set of wells containing energized mitochondria 

to dissipate the membrane potential. An additional experiment tested the idea that vitamin E 

would protect against H-R induced dissipation of MMP by incubating the mitochondria for 5 

min with vitamin E (20 µM) under normoxia and after 15 min of H-R. Overall in this assay, a 

decrease in Rh123 fluorescence indicates a surge in MMP while an increase indicates its 

dissipation. 

4.3.6 H2O2 production 

Mitochondrial H2O2 production under normoxia and after H-R was determined 

fluorimetrically (Synergy
TM

 HT) using Amplex red-horseradish peroxidase assay as recently 

described for rainbow trout liver mitochondria (Sharaf et al., 2015). Briefly, normoxic and H-

R-treated mitochondria were resuspended as 1 mg/ml protein in MRB. Thereafter 10 µl of 20 

U/ml horseradish peroxidase and 5 µl each of 200 mM of malate and glutamate were loaded 

to each microplate well followed by 170 µl of 1 mg/ml normoxic or H-R-treated 

mitochondrial suspensions. In a different duplicate set of wells, 170 µl of mitochondrial 

suspension and 10 µl of 0.1 mg/ml antimycin A, complex III (CIII) Qi site inhibitor to boost 
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H2O2 production, were added. To all the wells 10 µl of 1 mM Amplex red was added 

bringing the total assay volume to 200 µl, and the microplate was incubated in the dark at 20 

o
C for 30 min. Thereafter fluorescence was read at 15 min intervals for 30 min following 

excitation at 530 nm and emission at 590 nm. Known concentrations of H2O2 (0-5 µM) 

added to the assay buffer without mitochondria were used to generate a standard curve during 

each run for converting fluorescence data to actual H2O2 concentrations. Additionally, 

background fluorescence of assay components without mitochondria was determined during 

each run and subtracted from all fluorescence readings. 

4.3.7 Mitochondrial structure 

Mitochondrial ultrastructural changes were assessed in normoxic or H-R-treated 

mitochondria by transmission electron microscopy (TEM). Briefly, energized mitochondria 

were suspended in the cuvettes for 30 min under normoxic or H-R conditions. After pelleting 

by centrifugation at 10000 × g for 5 min, the mitochondria were fixed with 1:1 volume of 6% 

glutaraldehyde in MRB at 4 
o
C overnight, washed with 0.1 M phosphate buffer and post-

fixed in 1% OsO4 for 1 h at room temperature. Subsequently the mitochondrial pellets were 

embedded in low melting point agar and dehydrated in a graded series (50-100%) of ethanol. 

The dehydrated pellets were cleared in propylene oxide, infiltrated with Epon and propylene 

oxide (sequentially in a ratio of 1:1 and 2:1) and embedded in 100% Epon resin. Thick (500 

µm) and thin (80 nm) sections were obtained using an ultramicrotome (Reichert-Jung 

Ultracut E, Leica Microsystems, Richmond Hill, Canada). The thick sections were stained 

with 1% toluidine blue while thin sections were stained with uranyl acetate and Sato lead. 

The thin sections were then viewed at 80 kV using TEM (Hitachi BioTEM 7500; Nissei-

Sangyo) and AMT XR40 digital camera (Advanced Microscopy Techniques, Danvers, MA, 
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USA) was used to photograph the mitochondria. Mitochondrial diameter was measured in 

five random fields per experimental group at 15000×. A total of 10 mitochondria in each of 5 

fields (n = 50) for each treatment were measured to obtain the mean organelle diameter. 

4.3.8 Data analysis 

Data were tested for normality of distribution (chi-square test) and homogeneity of variances 

(Cochran C), before submission to one or two-way analysis of variance (ANOVA) (Statistica 

version 5.1, Statsoft, Inc., Tulsa, OK). If the data did not pass the normality test, they were 

submitted to Box-Cox transformation; all data passed after transformation. An ANOVA is 

only slightly affected by inequality of variance using our models (equal sample sizes and all 

factors fixed). Hypoxia and/or temperature were the independent variables and significantly 

different means were separated using Tukey‟s post hoc test at P<0.05. Differences in 

diameters of control and H-R-treated mitochondria were tested using Student‟s t-test, P<0.05. 

The data are reported as means ± SEMs except the kinetics of membrane potential changes 

which are means without SEMs). 

4.4 RESULTS 

4.4.1 Effects of interactions of temperature stress and H-R on OXPHOS  

Temperature and H-R individually and in combination had significant effects on all measures 

of mitochondrial oxidation assessed (Table 4.1). Increasing the temperature from 5 to 25 
o
C 

stimulated (F2,48 = 367, P<0.0001), while H-R inhibited (F3,48 = 99.5, P<0.0001) respiration 

rate during state 3 (hereinafter referred to as state 3) (Fig. 4.2A). Notably, the severity of H-R 

induced inhibition of state 3 increased with the duration of hypoxia. There was a significant 

(F6,48 = 11.7, P <0.0001) interaction of the stress factors in which H-R reduced the 

stimulatory effect of temperature on state 3. The decreases in state 3 resulting from 30 min 
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H-R relative to normoxic controls were similar (51 to 62%) at all temperatures (Fig. 4.2A). 

The thermal sensitivity of state 3 (Fig. 4.2B) was altered by temperature (F1,32 =4.44, P=0.04) 

wherein the Q10 values for the low (5-13 
o
C) were higher than those for the high (13-25 

o
C) 

temperature range. H-R similarly had an overall significant inhibitory effect (F3,32 =3.22, 

P=0.04) on the thermal sensitivity because the Q10 values decreased with duration of 

hypoxia, but only in the low temperature range. A significant (F3,32 = 10.3, P<0.0001) 

interaction of temperature and H-R on Q10 of state 3 was observed wherein the thermal 

sensitivity was reduced by H-R. 

Temperature increased (F2,48 =307, P<0.0001) respiration rate during state 4 (hereinafter 

referred to as state 4) (Fig. 4.3A) whereas H-R stimulated (F3,48 =29.9, P<0.0001) state 4 and 

exacerbated the effects of temperature (Fig. 4.3A) as evidenced by the significant (F6,48 

=17.6, P<0.0001) interaction. The increases in state 4 relative to normoxic controls were 

markedly different at different temperatures after 30 min hypoxia; the increase was only 22% 

at 5 
o
C (not statistically significant) but was 95% at 25 

o
C, and the differences were even 

greater after only 5 min H-R stress (Fig. 4.3A). Unlike state 3, the thermal sensitivity of state 

4 increased with temperature (F1,32 =20.2, P<0.0001) and H-R (F3,32 =11.6, P< 0.0001) (Fig. 

4.3B). The effect of H-R at the high temperature range peaked after 5 min H-R and declined 

thereafter with increasing duration of hypoxia (Fig. 4.3B). There was a significant interaction 

between temperature and H-R on state 4 thermal sensitivity (F3,32 =4.07, P=0.014) (Fig. 

4.3B) in that the state 4 Q10 was higher after H-R than for the normoxic control. 
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Table 4.1: Two-way ANOVA. Main effects and interactions of temperature and H-R on 

mitochondrial bioenergetics. Significant effects are highlighted in bold. F = F-statistic, df = 

degrees of freedom, and P = P-value. 

Main Effects and Interactions 

Parameter Temperature (T) Hypoxia (H) Interaction (T×H) 

df F P df F P df F P 

State 3 2,48 367 < 0.0001 3,48 99.5 < 0.0001 6,48 11.7 < 0.0001 

State 3 Q10 1,32 4.44 = 0.043 3,32 3.22 = 0.04 3,32 10.3 < 0.0001 

State 4 2,48 307 < 0.0001 3,48 29.9 < 0.0001 6,48 17.6 < 0.0001 

State 4 Q10 1,32 20.2 < 0.0001 3,32 11.6 < 0.0001 3,32 4.07 = 0.014 

P/O ratio 2,48 113 < 0.0001 3,48 834 < 0.0001 6,48 24 < 0.0001 

RCR 2,48 60.4 < 0.0001 3,48 463 < 0.0001 6,48 38.1 < 0.0001 
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Figure 4.2 
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Figure 4.2: The effects of temperature and H-R on state 3 respiration (A) and Q10 (B). 

Isolated mitochondria were exposed to H-R (0, 5, 15 and 30 min) at 5, 13 and 25 
o
C. Data are 
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means ± SEM (n = 5). Points with different letters are statistically different from each other 

(two-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 4.3 
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Figure 4.3: The effects of temperature and H-R on state 4 respiration (A) and Q10 (B). 

Isolated mitochondria were exposed to H-R (0, 5, 15 and 30 min) at 5, 13 and 25 
o
C. Data are 

means ± SEM (n = 5). Points with different letters are statistically different from each other 

(two-way ANOVA with Tukey‟s HSD, P<0.05). 
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The phosphorylation efficiency (P/O ratio) was increased (F2,48 =43.6, P<0.0001) by 

temperature (Fig. 4.4A) and reduced by H-R (F3,48 =262, P<0.0001). The three temperature 

exposure regimes differently modulated the effects of H-R. Specifically, at 5 
o
C the initial 

drop in P/O ratio after 5 min H-R was not followed by additional reduction with increasing 

durations of hypoxia but for 13 and 25 
o
C the ratios decreased with increasing duration of H-

R. Moreover, the reduction in the P/O ratio was greater at 25 compared with either 13 or 5 

o
C. A significant (F6,48 =11.6, P<0.0001) interaction was observed between temperature and 

H-R since H-R reduced the effect of temperature on P/O ratio. 

While temperature increased (F2,48 =60.4, P<0.0001) the RCR (mitochondria coupling 

efficiency), the effect was not monotonic (Fig. 4.4B). In the controls, RCR values were 

lowest at 5 
o
C and the highest at 13 

o
C, with the 25 

o
C values falling in between. H-R greatly 

reduced the RCR (F3,48 =463, P<0.0001) but the effects were different at the 3 temperatures 

consistent with the significant (F6,48 =38.1, P<0.0001) two way interaction. It was evident 

that RCR was more resistant to H-R at 5 
o
C than at 13 or 25 

o
C. Additionally, while the RCR 

attained maximal reduction after only 5 min of exposure to H-R at 25 
o
C, it continued to 

decline with the duration of hypoxia at both 5 and 13 
o
C. 
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Figure 4.4 
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Figure 4.4: The effects of temperature and H-R on P/O ratio (A) and RCR (B). Isolated 

mitochondria were exposed to H-R (0, 5, 15 and 30 min) at 5, 13 and 25 
o
C. Data are means 
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± SEM (n = 5). Points with different letters are statistically different from each other (two-

way ANOVA with Tukey‟s HSD, P<0.05). 
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4.4.2 Effects of H-R on mitochondrial membrane potential (MMP) and H2O2 production 

Under normoxic conditions, un-energized mitochondria had minimal membrane potential; 

however, energization with malate and glutamate resulted in generation of MMP that was 

dissipated by the uncoupler, FCCP (Fig. 4.5). Energized mitochondria exposed to H-R had 

lower membrane potential relative to the normoxic energized mitochondria and vitamin E, an 

antioxidant, protected the mitochondria against H-R induced membrane potential dissipation. 

Direct measurement of mitochondrial H2O2 production showed it was stimulated by H-R 

when CIII was inhibited at its Qi site with antimycin A (Fig. 4.6).  

4.4.3 Effects of H-R on mitochondrial structure and size 

Compared with the controls in which the outer and inner membranes were intact with visible 

cristae and electron dense matrix (Fig. 4.7A), mitochondria exposed to H-R were swollen and 

their membranes damaged (Fig. 4.7B). There was degeneration of the organelle characterized 

by cristolysis and loss of matrix density wherein the mitochondria appeared translucent (Fig. 

4.7B). Notably, H-R-treated mitochondria had larger diameter than the controls (Fig. 4.7C). 
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Figure 4.5 
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Figure 4.5: The effects of H-R on mitochondrial membrane potential. A: kinetics and B: 

amplitude of fluorescence change after 20 min under normoxia without energization (Nor), 

normoxia with energization (Nor+EN), normoxia with energization and FCCP 

(Nor+EN+FCCP), hypoxia-reoxygenation without energization (H-R), hypoxia-

reoxygenation with energization (H-R+EN), vitamin E with hypoxia-reoxygenation without 

energization (Vit E+H-R), vitamin E with hypoxia-reoxygenation and energization (Vit E+H-

R+EN). ↑ indicates dissipation of membrane potential and ↓ indicates increase in membrane 

potential. Trend lines (panel A) are mean values of 5 tracings obtained from mitochondria 

isolated from 5 different livers. Bar graphs (panel B) show means ± SEMs (n = 5) of 

amplitude of fluorescence change after 15 min. Bars with different letters are statistically 

different from each other (one-way ANOVA with Tukey‟s HSD, p < 0.05). 
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Figure 4.6 
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Figure 4.6: The effects of H-R on mitochondrial H2O2 production with and without 

antimycin A. Data are means ± SEM (n = 5). Bars with different letters are statistically 

different from each other (one-way ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 4.7 
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Figure 4.7: The effects of H-R on mitochondrial ultrastructure. A: normoxic (Nor) 

mitochondria with visible cristae and intact inner and outer membranes. B: H-R mitochondria 

showing swelling, damaged inner and outer membranes, reduced matrix density and loss of 
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cristae. C: Mitochondrial diameter (means ± SEM, n = 50). Nor = normoxia and H-R = 

hypoxia-reoxygenation. The asterisk (*) indicates significant difference from the controls (t-

test, P<0.05) 
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4.5 DISCUSSION 

In my previous studies (Chepter 2, and 3) I characterized the effects and interactions of Cd 

with temperature stress or H-R on mitochondrial bioenergetics. Here, I focused on the joint 

effects of temperature and H-R and demonstrated they modify each other‟s effects on 

mitochondrial function (Table 4.1). Different temperatures evoked different responses under 

H-R conditions with both additive/synergistic and antagonistic interactions that could impede 

attempts to generate a consensus regarding the combined effects of the two stressors on 

mitochondrial function. 

4.5.1 H-R resulted in a smaller decrease in state 3 respiration at low temperature 

While H-R was less detrimental to mitochondrial oxidation at low temperature, state 3 was 

significantly inhibited at the 3 temperatures tested contrasting a recent study (Tissier et al., 

2013) that reported reversal of per-ischemic inhibition of state 3 by mild hypothermia in 

endothermic rabbit heart mitochondria. State 3 was more highly inhibited (48% inhibition at 

25 
o
C vs. 38% inhibition at 5 

o
C) by H-R at high relative to low temperatures indicating that 

temperature enhanced the deleterious effects of H-R. However, my H-R treatment and per-

ischemia (Tissier et al., 2013) are different procedures and my fish are ectotherms that 

normally experience temperature change whereas hypothermia in rabbits is abnormal; this 

could in part account for the discordant outcomes. It previously has been reported that H-R 

reduces state 3 by inhibiting the activities of the ETS enzyme complexes (Heerlein et al., 

2005; Shiva et al., 2007; Di Lisa et al., 2011; Maruyama et al., 2013; Chapter 2). Although 

H-R has been shown to have specific effects on complex I (Galkin et al., 2009), the pervasive 

inhibition of the maximal mitochondrial respiration rate suggests that it may also act non-

specifically. In this regard, my study showed that H-R increased the capacity for H2O2 
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production in isolated mitochondria. Interestingly, the thermal coefficient for state 3 was 

higher at low temperature and the severity of H-R-induced reduction of Q10 increased with 

the duration of hypoxia at low temperature. This reduction of state 3 Q10 at low temperature 

could have resulted from altered IMM structure and/or changes in the conformation of ETS 

enzymes. Another possible explanation is that control of mitochondrial function could switch 

from ETS and phosphorylation to dehydrogenases and redox processes upstream of the ETS 

at low temperature. That is, the lower Q10 at lower temperatures could reflect a change in an 

upstream rate limiting step. 

At high temperature H-R induced a biphasic response on state 4 characterized by peak 

stimulation after a short duration (5 min) of hypoxia. The decrease of state 4 with longer 

durations of H-R suggests that the processes that mediate proton leak and/or generate the 

protonmotive force were impaired. In contrast, the monotonic and muted response at 5 
o
C 

suggests that low temperature preserves mechanisms that mediate proton leak and/or those 

that generate the protonmotive force during H-R. It is conceivable that reduced substrate 

oxidation (Blier and Guderley, 1993) and diffusion rates (Dunn, 1988) at low temperature 

altered the sensitivity of mitochondria to H-R. Thus, low temperature may stabilize 

mitochondria allowing them to better resist the deleterious effects of H-R. Moreover, the 

increase in thermal sensitivity for state 4 (proton leak) with temperature and its enhancement 

by H-R indicates that the combined stressors increase the permeability of IMM. 

Although H-R reduced the stimulatory effect of temperature on the P/O ratio, the 

mitochondria apparently were more efficient in utilizing O2 at low temperature. This implies 

that at low temperature the mitochondria would be able to maintain relatively stable ATP 

production under hypoxia. An alternative explanation is that the change in P/O ratio is due to 
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a change in proton leak. The reduction of RCR with temperature that I observed is consistent 

with previous studies (Rodnick et al., 2014, Sappal et al., 2014b; Chapter 3) and in my study 

it resulted from preferential stimulation of state 4. Moreover, the profound decrease in RCR 

after H-R treatment at high temperature and the resilience of mitochondria to this stressor at 

low temperature support the notion that low temperature insulates mitochondria from effects 

of H-R. While evidence that hypothermic conditions offer protection against ischemia-

reperfusion has been presented (Khaliulin et al., 2007; Shao et al., 2010, Mochizuki et al., 

2012, Tissier et al., 2012), the underlying mechanisms have not been fully elucidated. It has 

been proposed that reduced rate of biochemical activity at low temperature prevents 

mitochondrial Ca overload and reduces the production of ROS (Gambert et al., 2004) 

ultimately inhibiting the opening of mitochondrial permeability transition pore and 

preserving mitochondrial functional integrity. 

4.5.2 H-R-induced mitochondrial membrane potential (MMP) dissipation and 

structural damage can be explained by increased ROS production 

The dissipation of MMP by H-R observed in my study has been reported previously (Di Lisa 

et al., 1995; Honda et al., 2005; Pi et al., 2007) and is believed to result from inhibition of 

activities of ETS enzymes (Morin et al., 2004; Pi et al., 2007). However, this decrease in 

MMP could also be explained by a decrease in supply of reducing equivalents to the ETS. In 

my study, MMP dissipation was caused, at least in part, by ROS because I showed that H-R 

directly increased H2O2 production and that vitamin E partially conserved the MMP. Lastly, 

similar to previous studies (Ozcan et al., 2001; Solenski et al., 2002; Schild et al., 2003; 

Honda et al., 2005), H-R caused mitochondrial structural damage that also could be attributed 

to increased ROS production. These effects on MMP and structure likely contributed to the 

>40% loss of maximal complex I supported respiration following H-R in the present study. 
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4.5.3 CONCLUSIONS 

H-R impaired OXPHOS by dissipating the MMP, stimulating proton leak (state 4), 

increasing ROS production and damaging mitochondrial structure. Temperature differentially 

modulated H-R-induced mitochondrial dysfunction wherein the sensitivity of OXPHOS to H-

R was lessened and heightened by low and high temperatures, respectively. H-R reduced the 

stimulatory effects of temperature on state 3 and either increased (high temperature) or did 

not alter (low temperature) state 4. Furthermore, the phosphorylation efficiency was 

increased by temperature and reduced by H-R while both low and high temperatures 

exacerbated the RCR-reducing effect of H-R. Overall my study indicates that elevated 

temperature worsens the H-R-induced stress on rainbow trout mitochondria. 
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CHAPTER 5 

 

COMBINED EFFECTS OF CADMIUM, TEMPERATURE AND HYPOXIA-

REOXYGENATION ON MITOCHONDRIAL FUNCTION IN RAINBOW TROUT 

(Oncorhynchus mykiss)  

A version of this chapter has been submitted for publication with slight modification as: 

Onukwufor, J. O., Stevens, D., Kamunde, C., 2016. Combined effects of cadmium, 

temperature and hypoxia-reoxygenation on mitochondrial function in rainbow trout 

(Oncorhynchus mykiss). AQTOX-D-16-00483. 

Author contributions 

C.K. conceived the project, C.K. and J.O.O. designed the study, J.O.O. carried out the 

experiments and data analysis and wrote the first draft of the article. D.S. participated in the 

study design. All authors contributed to the interpretation of results and the editing of the 

article. 
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5.1 ABSTRACT 

Although aquatic organisms face multiple environmental stressors that may interact to alter 

adverse outcomes, our knowledge of stressor-stressor interaction on cellular function is 

limited. I investigated the combined effects of cadmium (Cd), hypoxia-reoxygenation (H-R) 

and temperature on mitochondrial function. Juvenile rainbow trout were exposed to Cd (0-20 

µM) and H-R (0 and 5 min) at 5, 13 and 25 
o
C followed by measurements of mitochondrial 

Cd load, volume, complex І active (A)↔deactive (D) transition, membrane potential, ROS 

production and ultrastructural changes. At high temperature Cd exacerbated H-R-imposed 

reduction of maximal complex I (CI) respiration whereas at low temperature its lower doses 

(5 and 10 µM) stimulated maximal CI respiration post H-R. The basal respiration showed a 

biphasic response at high temperatures with low doses of Cd reducing the stimulatory effect 

of H-R and high doses enhancing this effect. At low temperature Cd monotonically enhanced 

H-R-induced stimulation of basal respiration. The thermal sensitivity for maximal CI 

respiration increased and that for basal respiration decreased at the high temperature range 

while the sensitivity of both maximal and basal respiration rates decreased at the low 

temperature range. Both the P/O ratio and the RCR were reduced at all of the 3 temperatures. 

Temperature rise alone increased mitochondrial Cd load and toxicity, while combined H-R 

and temperature exposure reduced mitochondrial Cd load but surprisingly exacerbated the 

mitochondrial dysfunction. Although mitochondrial dysfunction induced by Cd and H-R was 

associated with swelling of the organelle and conversion of CІ A to D form, low doses of Cd 

protected against H-R induced swelling and enhanced CІ A form. Both H-R and Cd 

dissipated mitochondrial membrane potential (Δψm) and damaged mitochondria structure. I 

observed increased H2O2 production that together with the protection afforded by EGTA, 

vitamin E and N-acetylcysteine against the Δψm dissipation suggested involvement of the 
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metal and oxidative stress. Overall, my findings indicate that mitochondrial sensitivity to Cd 

toxicity was enhanced by the effects of H-R and temperature, and changes in mitochondrial 

Cd load did not always explain this effect.  

5.2 INTRODUCTION 

Cadmium is a highly toxic ubiquitous trace metal (Byczkowski and Sorenson, 1984; Hattink 

et al., 2005; Kamunde, 2009). Due to its relatively long biological half-life Cd tends to 

accumulate in animal organs including kidney, liver, and gills in fish (McGeer et al., 2000; 

Hollis et al., 2001; Sokolova et al., 2005; Kamunde, 2009). Among numerous potential 

cellular sites of action, the mitochondria have emerged as key targets of Cd toxicity in a 

variety of animal species including eastern oysters (Sokolova, 2004; Kurochkin et al., 2011), 

rainbow trout (Adiele et al., 2012a; Chapter 2), and rat (Dorta et al., 2003; Belyaeva et al., 

2006; Lopez et al., 2006). However, the mechanisms and effects of interactions of the metal 

and other environmental stress factors have not been comprehensively investigated. In this 

regard, hypoxia-reoxygenation (H-R) and temperature fluctuations are two environmental 

stressors that commonly co-occur in nature with Cd. There is some evidence that Cd, hypoxia 

(without and with reoxygenation) and temperature may act interactively to alter cellular and 

organismal function (Hattink et al., 2005; Kurochkin et al., 2009) but much remains 

unknown regarding their combined effects on mitochondrial function.  

Mitochondrial structural integrity is critical for mitochondrial function (Kaasik et al., 2007). 

There is empirical evidence that the disruption of mitochondrial structure by Cd and/or H-R 

increases the permeability of the IMM to solute resulting in increased organelle volume (Lee 

et al., 2005a; Orlov et al., 2013; Chapter 3). Mitochondrial volume dysregulation has been 

shown to decrease mitochondrial membrane potential (Kaasik et al., 2007) the force that 
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drives ATP production. Furthermore, inhibition of the ETS by stressors could increase ROS 

production that then damage the mitochondrial structure and impair OXPHOS (Wang et al., 

2004; Navet et al., 2006; Lopez et al., 2006). 

Complex І (CІ) is a key mitochondrial enzyme in OXPHOS responsible for the oxidation of 

NADH (produced in the Krebs cycle) with reduction of ubiquinone (Q) and transport of four 

protons across the IMM thus contributing to the proton-motive force (Δψm and ΔpH) used in 

ATP synthesis (Murphy, 2009; Hirst, 2013). Mitochondrial CІ is known to adopt two 

catalytically and structurally distinct conformation –active (A) and de-active (D)– depending 

on the prevailing conditions (Babot et al., 2014). For example, under conditions of low 

oxygen (hypoxia), levels of the D-form increase rendering the enzyme incapable of 

ubiquinone reduction (Maklashina et al., 2004; Gorenkova et al., 2013). Other factors such as 

temperature, pH and presence of divalent metals also increase the levels of the D-form 

(Maklashina et al., 2002; Babot et al., 2014). However, the combined effects of H-R and 

divalent metals (Cd) on complex І A to D transition remain unknown. 

In the present study I first tested the hypothesis that the ternary interactions of Cd, 

temperature and H-R would alter the individual and/or binary effects of the stressors on 

mitochondrial bioenergetics. I predicted that the alterations in mitochondrial function can be 

explained by differential Cd accumulation in the mitochondria. Second, I investigated the 

interactions of H-R and Cd on key indicators of mitochondrial functional integrity including 

volume homeostasis, complex І A↔D transition, Δψm, ROS production and structure. 
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5.3 MATERIALS AND METHODS 

5.3.1 Ethics 

The University of Prince Edward Island Animal Care Committee approved all the 

experimental procedures that were used in this study in accordance with the Canadian 

Council of Animal Care. 

5.3.2 Fish and mitochondrial isolation  

Juvenile rainbow trout weighing (142 ± 24.5 g) were obtained from Ocean Farms Inc, 

Brookvale, PE, and maintained in the Aquatic Facility of Atlantic Veterinary College in a 

400-l tank. The tank was supplied with flow-through water at a temperature of 11 ± 1 
o
C and 

pH of 7.7. The fish were fed at 1% of their body weight daily with commercial trout chow 

pellets (Corey Feed Mills, Fredericton, NB). The concentrations of Cd measured in the feed 

and water were 0.78µg/g and below our limit of detection (0.003µg/l), respectively. To 

isolate mitochondria, trout were randomly sampled from the tank and killed with a blow to 

the head. The liver was quickly removed, minced and homogenized and mitochondria were 

isolated as described (Chapter 2) and suspended in mitochondrial respiratory buffer (MRB) 

in a 3:1 ratio. Mitochondrial protein was determined spectrophotometrically (Spectramax 

Plus 384, Molecular Devices, Sunnyvale, CA) according to the method (Bradford, 1976) with 

BSA as the standard.  

5.3.3 Interactions of Cd, temperature and hypoxia on mitochondrial bioenergetics 

Mitochondrial respiration was measured with Clark-type oxygen electrodes (Qubit Systems, 

Kingston, ON) in 1.5 ml assay volume after a two-point calibration at 0 and 100% oxygen 

saturation. A traceable digital barometer (Fisher Scientific, Nepean, ON) was used to 

measure the atmospheric pressure, and the temperature was maintained at 5, 13 or 25 
o
C with 
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the aid of a recirculating water-bath (Haake, Karlsruhe, Germany). Following calibration, 

1.45 ml of MRB and 100 µl of the mitochondrial suspension containing 2.3-2.9 mg of protein 

(23-29 mg of mitochondrial mass, wet weight) were loaded into the cuvettes and mixed 

continuously. A saturating amount of complex l substrates (5 mM malate and 5 mM 

glutamate) were added to the cuvette and maximal (state 3) respiration rate was evoked by 

the addition of 250 µM ADP. When the ADP was exhausted, the state 3 transitioned to basal 

(state 4) respiration rate. To measure respiration rate after H-R the method in chapter 2 was 

used. Briefly, after normoxic respiration, the MRB was made hypoxic by bubbling in N2 to 

reduce PO2 to < 2 torr (Note that in a control experiment we found that bubbling with air has 

no effect on mitochondrial state 3 and 4 respiration rates and the RCR). These PO2 are below 

the 2.25-3.75 torr intracellular level of oxygen typically experienced by rat mitochondria in-

vivo (Gnaiger and Kuznetsov, 2002). After the hypoxia exposure period, the cuvettes were 

opened and the mitochondrial suspension was allowed to fully reoxygenate. The post H-R 

measurement of respiration with or without Cd addition was then carried out in the same 

fashion as the normoxic measurement. Ternary interactions of the stressor on OXPHOS were 

measured at 3 temperatures levels (5, 13 and 25 
o
C), 2 H-R durations (0 and 5 min) and 4 Cd 

exposure concentrations (0, 5, 10 and 20 µM). The state 3 and 4 respiration were measured 

for all stressor combinations and the phosphorylation efficiency (P/O ratio, ADP/O) and 

respiratory control ratio (RCR, state 3/state 4 respiration) were calculated according to 

Estabrook (1967) and Chance and Williams (1955), respectively. In addition, temperature 

coefficients (Q10 values) were calculated for state 3 and 4 for the temperature ranges 5-13 
o
C 

and 13-25 
o
C using the equation: Q10=(R2/R1

)[10/(T2-T1)]
 where R2 and R1 represents 

mitochondrial oxygen consumption rates at two temperatures, T2 and T1 and where T2>T1. 
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5.3.4 Interactions of Cd, H-R and temperature on mitochondrial Cd accumulation 

Cd accumulation in the mitochondria was measured by atomic absorption spectrophotometry 

(AAS) (PinAAcle 900T, Perkin Elmer, Woodbridge, ON). Briefly, after measuring the 

respiration rates, mitochondria suspensions were removed from the cuvettes and pelleted by 

centrifuging at 10000 ×g for 5 min at 4 
o
C. The supernatants were discarded, and the pellets 

were washed twice with 500 µl of mitochondrial isolation buffer (MIB) to remove non-

specifically bound Cd, with re-pelleting at 10000 ×g for 5 min at 4 
o
C. The pellets were then 

stored at -80 
o
C until analyzed for Cd. For AAS, the pellets were oven-dried at 70 

o
C 

(ISOTEMP, Fisher Scientific) to a constant weight. After weighing, the pellets were digested 

with 500 µl of 30% H2O2 and 70% HNO3 (trace metal grade, Fisher) in a 1:15 mixture for 24 

h at room temperature. The resulting digests were appropriately diluted using 0.2% HNO3, 

and the Cd concentrations were measured by AAS in furnace mode and expressed as µmol 

Cd/g mitochondrial dry weight (mdw). All of my Cd analyses were carried out in the 

presence of modifiers (NH4H2PO4 and Mg [NO3]2). Standard reference material (SRM: 

TMDA-70.2:20, lot 0310 [Environment Canada]) and blanks were analyzed simultaneously 

with the samples. Cadmium was not detected in the blanks, and the recovery rate of Cd from 

the SRM ranged between 94 and 101%. 

5.3.5 Interactions of Cd and H-R on mitochondrial volume homeostasis  

The interactions of Cd and H-R on mitochondrial volume were assessed using a 

spectrophotometric method (Chapter 3). Briefly, isolated mitochondria were energized with 5 

mM each of malate and glutamate in the respiratory cuvettes under normoxia and 5 min H-R. 

The mitochondrial suspensions were then diluted with air-saturated swelling buffer to a final 

assay concentration of 1 mg/ml of mitochondrial protein. Cd doses (0, 5 and 50 µM) or 200 
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µM Ca (positive control) were added to microplate wells as 20 µl of appropriate stock 

solutions and brought to assay volume of 200 µl by adding 180 µl of the 1 mg/ml 

mitochondrial suspension. Volume changes were monitored spectrophotometrically at 540 

nm with reading every 10 s for 30 min at 25 
o
C. Here, a decrease in absorbance indicated 

mitochondrial swelling. 

5.3.6 Effect of Cd and H-R on complex 1 conformation 

Mitochondrial CІ exists in two different states –the active (A) and de-active (D) 

conformation– that are catalytically and structurally distinct (Vinogradov, 1998; Maklashina 

et al., 2004; Babot et al., 2014). Only the A form of CІ is capable of catalyzing ubiquinone 

reduction by NADH (Vinogradov, 1998; Maklashina et al., 2004). To quantify the 

proportions of A and D forms of CІ we monitored NADH-induced oxygen consumption. 

Because NADH does not permeate intact mitochondria, isolated mitochondria were taken 

through 5 cycles of freeze (-80) and thaw (at room temperature) to disrupt their membranes 

allowing NADH access to CI and thus stimulate respiration. Thereafter, 100 µl of 

mitochondria with disrupted membranes were added to the cuvette containing 1.45 ml of 

MRB followed by 350 µmoles of NADH as substrate under normoxic conditions. In another 

set of experiments with the same mitochondrial prep on the same day, 1 mM N-

ethylmaleimide (NEM) was added 5 min after the addition of 350 µM NADH. NEM 

permanently binds to the D-form preventing its conversion to A-form thus leaving only the 

A-form available to oxidize NADH during the trial (Gavrikova and Vinogradov, 1999). The 

addition of NEM allows estimation of the amount of CI in the A-form. To assess the effect of 

H-R on CІ A↔D transformation, N2 gas was bubbled into the cuvette after normoxic 

respiration to deplete the PO2 exactly as in the respiration experiments. The disrupted 
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mitochondria were then incubated for 5 min under hypoxic conditions followed by 

reoxygenation and measurement of NADH-stimulated respiration. The effect of a low dose 

of Cd (5 µM) was tested using normoxic or H-R conditions by adding the metal to the 

disrupted mitochondria 5 min after adding the NADH with O2 consumption monitored for 5 

min. These trials were carried out only at 13
 o
C. 

5.3.7 Interactions of Cd and H-R on mitochondrial membrane potential  

The effects of Cd and H-R individually and in combination on ∆Ψm were measured 

fluorometrically (Synergy
TM

 HT BioTek, US) using rhodamine 123 (Rh123; excitation set at 

485 nm; emission at 528 nm). Briefly, 170 µl of 1 mg/ml normoxic or post H-R 

mitochondrial suspension in MRB and 5 µM (final concentration as 10 µl of appropriate 

stock solution) Rh123 were loaded into the microplate wells and fluorescence was read every 

17 s for 15 min at room temperature to allow the mitochondria to equilibrate to assay 

conditions. Mitochondria were then energized with 5 mM each of malate and glutamate (total 

contribution of 10 µl to assay volume) and fluorescence was read every 17 s for 5 min. The 

dose response of Cd on membrane potential was measured using 6 doses (0, 5, 10, 20, 50 and 

100 µM) of Cd added as 10 µl of appropriate stock solutions with fluorescence reading every 

17 s for 15 min. Thus the final total assay volume was 200 µl. For positive control 0.5 µM of 

FCCP (as 10 µl) was added to another set of duplicate wells containing energized normoxic 

mitochondria and fluorescence was recorded as described above. To assess the interactions of 

Cd and H-R on ∆Ψm, Cd (0, 5, 20 and 50 µM) was added to the microplate wells containing 

post H-R mitochondria and fluorescence was monitored as described above. Additional tests 

assessed the effect of a metal chelator (EGTA) and antioxidants (N-acetylcysteine, NAC, and 

vitamin E) on ∆Ψm changes imposed by Cd (100 µM), H-R, or H-R (5 min) + Cd (20 µM). In 
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these experiments a decrease in Rh123 fluorescence indicates an increase of ∆Ψm while an 

increase indicates its dissipation. 

5.3.8 Interactions of Cd and hypoxia-reoxygenation on mitochondrial H2O2 production 

H2O2 production by the mitochondria following individual and combined exposure to Cd (0 

and 20 µM) and 5 min H-R was measured by fluorometry (Synergy 
TM

 HT BioTek) using 

Amplex Red-horseradish peroxidase (HRP) assay (Sharaf et al., 2015; Chapter 4). 

Mitochondria were suspended as 1 mg/ml protein in MRB containing 1 mg/ml BSA and 

aprotinin. To measure H2O2 10 µl of 20 U/ml HRP and 5 µl each of malate and glutamate 

(assay concentration 5 mM) were added to the microplate wells. Thereafter 170 µl of 1 

mg/ml mitochondrial suspension (normoxic or post H-R) and 10 µl of each Cd dose (0-20 

µM) were added to the microplate wells. In other duplicate sets of wells with and without Cd, 

170 µl of the mitochondrial suspension and 10 µl of 0.1 mg/ml antimycin A (complex ІІІ 

inhibitor to boost H2O2 production) were added. Lastly, 10 µl of 1 mM Amplex Red were 

added bringing final volume to 200 µl and the assay was incubated in the dark at room 

temperature for 30 min. In this assay HRP catalyzes the conversion of Amplex red by H2O2 

to resorufin of which fluorescence (excitation 530 nm, 590 nm) was recorded at 15 min 

intervals for 30 min. Standard curves were obtained using known concentrations of H2O2 (0-

5 µM) in an assay with MRB alone and were used to convert fluorescence data to actual 

H2O2 concentrations. Background fluorescence of assay components (without mitochondria) 

was determined during each run and subtracted from all fluorescence readings. 

5.3.9 Interactions of Cd and hypoxia-reoxygenation on mitochondrial ultrastructure 

Ultrastructural changes of mitochondria were assessed by transmission electron microscopy 

(TEM) following exposure to Cd under normoxic and H-R conditions. Briefly, mitochondria 
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were suspended in the cuvettes for 30 min under normoxic and 5 min H-R with or without 

graded levels of Cd (0, 5 and 20 µM). After the exposure, mitochondrial suspensions were 

pelleted by centrifugation at 10000 × g for 5 min and fixed with 1:1 volume of 6% 

glutaraldehyde in MRB at 4 
o
C overnight then washed with 0.1 M phosphate buffer and post-

fixed in 1% OsO4 for 1 h at room temperature. Mitochondrial samples were embedded in low 

melting point agar before dehydration in an ascending series (50-100%) of ethanol. The 

samples were cleared in propylene oxide, infiltrated with Epon and propylene oxide (1:1 and 

2:1) and embedded in 100% Epon resin. Thin sections (80 nm) were cut using an 

ultramicrotome (Reichert-Jung Ultracut E, Leica Microsystems, Richmond Hill, Canada), 

stained with uranyl acetate and Sato lead and viewed using TEM (Hitachi BioTEM 7500; 

Nissei-Sangyo) under 80 kV. A digital (AMT XR 40) camera (Advanced Microscopy 

Techniques, Danvers, MA, USA) was used to take photographs of the mitochondria, and 

mitochondrial diameters were measured in five random fields per experimental group at 

15000×. A total of 10 mitochondria in each of 5 fields (n = 50) for each treatment were 

measured to obtain the mean organelle diameter. 

5.3.10 Statistical analysis 

All of the data were first tested for normality of distributions and homogeneity of variances 

(Kolmogorov and Levene‟s tests respectively) before being subjected to one, two or three-

way analysis of variance (ANOVA) (Statistica version 5.1, Statsoft, Inc., Tulsa, OK). If the 

data did not pass the normality test, they were submitted to Box-Cox transformation; all data 

passed after transformation. An ANOVA is only slightly affected by inequality of variance 

using our models (equal sample sizes and all factors fixed). Cd dose, hypoxia, and/or 

temperature were the independent variables. Significantly different means were separated 
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using Tukey‟s post hoc test at P<0.05. Linear regression analysis was performed using 

Sigmaplot 10 (Systat Software, San Jose, CA, USA). 

5.4 RESULTS 

5.4.1 Effects of interactions of Cd, H-R and temperature on mitochondrial bioenergetics 

For state 3 respiration, the 3-way interaction term, temperature × H-R × Cd, was significant 

(F6,96 =5.8, P<0.0001) indicating that the 3 stressors modulated the effects of each other (Fig. 

5.1A). Cd decreased state 3 respiration (main effect F3,96 =169, P<0.0001) but the absolute 

state 3 rates decreased with a decrease in temperature and were greater after H-R. Although 

the absolute changes were different, the relative decreases in state 3 from control to 20 µM 

Cd during normoxia were similar at the three temperatures: 43% at 5 
o
C, 38% at 13 

o
C, and 

44% at 25 
o
C. The state 3 Q10 values presented in Table 5.1 show significant 3-way 

interactions of temperature × Cd × H-R (F3,64 =16, P<0.0001), mainly because both Cd and 

H-R affected state 3 thermal sensitivity differently. For state 4 respiration, the 3-way 

interaction term, temperature × H-R × Cd, was significant (F6,96 =15.4, P<0.0001) indicating 

that the 3 stressors altered the effects of each other (Fig. 5.1B). Cd increased state 4 

respiration (main effect F3,96 =9.8, P<0.0001) but the absolute and relative increases in state 4 

increased with temperature and were greater after H-R. The state 4 Q10 values (Table 5.2) 

show that the effect of Cd × temperature × H-R interaction was not significant (F3,64 =2.3, 

P=0.08).  

For the P/O ratio, the 3-way interaction term, temperature × H-R × Cd, was significant (F6,96 

=7, P<0.0001) showing that the 3 stressors altered the effects of each other (Fig. 5.2A). 

While Cd decreased P/O ratio during normoxic conditions by 70% at 25 
o
C and 33% at 13 

o
C, there was no change at 5 

o
C. H-R markedly decreased but temperature stimulated the P/O 
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ratio. For RCR the 3-way interaction term, temperature × H-R × Cd, was significant (F6,96 

=20, P<0.0001) showing that the 3 stressors altered the effects of each other (Fig. 5.2B). 

RCR was highest with no Cd, during normoxia and at 13 
o
C. Cd and H-R decreased RCR, as 

did the high (25 
o
C) and low (5 

o
C) temperatures. The relative decrease in RCR with Cd 

during normoxic conditions was similar at the 3 temperatures (50% at 5 
o
C, 51% at 13 

o
C, 

and 60% at 25 
o
C) but greater after H-R (60% at 5 

o
C, 84% at 13 

o
C, and 78% at 25 

o
C). 

5.4.2 Modulation of mitochondrial Cd accumulation by temperature and H-R 

Mitochondrial Cd accumulation increased with Cd dose and increased with temperature but 

was lower after H-R than for normoxia at each dose (Fig. 5.3A). The 3-way interaction term, 

temperature × H-R × Cd, was significant (F6,96 =7.9, P<0.0001) showing that the 3 stressors 

altered the effects of one another. The decrease in RCR was associated with an increase in 

mitochondrial Cd concentration at all temperatures (Fig. 5.3B, C and D). The curves relating 

RCR to mitochondrial [Cd] were shifted down after H-R relative to those for normoxia at all 

temperatures; that is, normoxic mitochondria contained more Cd at the same RCR at all 

temperatures (Fig. 5.3B, C and D). 
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Figure 5.1 
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Figure 5.1: The interactions of temperature, H-R and Cd on state 3 (A) and state 4 (B) 

respiration rates. Isolated mitochondria were exposed to Cd (0, 5, 10 and 20 µM) and 
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Hypoxia (5 min) followed by reoxygenation (H-R) at 5, 13 and 25 
o
C. Data are means ± 

SEM (n = 5). Points with different letters are statistically different from each other (ANOVA 

with Tukey‟s HSD, P<0.05). 
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Table 5.1: The interactions of temperature, H-R and Cd on state 3 Q10. Isolated mitochondria were exposed to Cd (0, 5, 10 and 20 µM) 

and Hypoxia (5 min) followed by reoxygenation (H-R) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Points with different letters 

are statistically different from each other (ANOVA with Tukey‟s HSD, P<0.05). 

 

5-13 
o
C 13-25 

o
C 

 Control Cd H-R Cd x H-R Control Cd H-R Cd x H-R 

5 µM Cd 2.03±0.06
a
 2.32±0.07

a
 1.73±0.07

b
 0.66±0.03

e
 1.47±0.02

bc
 1.22±0.02

d
 1.46±0.07

bc
 1.71±0.11

b
 

10 µM Cd 2.03±0.06
a
 2.28±0.08

a
 1.73±0.07

b
 0.49±0.05

e
 1.47±0.02

bc
 1.37±0.04

c
 1.46±0.07

bc
 1.92±0.15

a
 

20 µM Cd 2.03±0.06
a
 2.24±0.11

a
 1.73±0.07

b
 0.54±0.03

e
 1.47±0.02

bc
 1.37±0.06

c
 1.46±0.07

bc
 2.24±0.16

a
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Table 5.2: The interactions of temperature, H-R and Cd on state 4 Q10. Isolated mitochondria were exposed to Cd (0, 5, 10 and 20 µM) 

and Hypoxia (5 min) followed by reoxygenation (H-R) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Points with different letters 

are statistically different from each other (three-way ANOVA with Tukey‟s HSD, P<0.05). 
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Control Cd H-R Cd x H-R Control Cd H-R Cd x H-R 

5µM Cd 
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10µM Cd 
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20µM Cd 
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Figure 5.2 
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Figure 5.2: The interactions of temperature, H-R and Cd on P/O ratio (A) and RCR (B). 

Isolated mitochondria were exposed to Cd (0, 5, 10 and 20 µM) and Hypoxia (5 min) 
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followed by reoxygenation (H-R) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Points 

with different letters are statistically different from each other (ANOVA with Tukey‟s HSD, 

P<0.05). 
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Figure 5.3 
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Figure 5.3: The interactions of temperature, H-R and Cd on metal accumulation (A) and 

relationship between RCR and Cd accumulation at 5 
o
C (B), 13 

o
C (C) and 25 

o
C (D). 

Isolated mitochondria were exposed to Cd (0, 5, 10 and 20 µM) and hypoxia (5 min) 

followed by reoxygenation (H-R) at 5, 13 and 25 
o
C. Data are means ± SEM (n = 5). Points 

with different letters are statistically different from each other (ANOVA with Tukey‟s HSD, 

P<0.05). 
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5.4.3 Interactions of Cd and H-R on mitochondrial volume homeostasis  

All treatments showed some swelling but those exposed to 50 µM Cd (both normoxic and H-

R) showed a short period of contraction before swelling (Fig 5.4A). Ca (positive control) 

caused rapid swelling that peaked earlier than all of the other treatments. H-R, Ca, H-R + Ca, 

and H-R + 50 µM Cd caused the most swelling; these 4 treatments did not differ from one 

another at 30 minutes (Fig 5.4B). The interaction term „H-R × treatment‟ on the amplitude of 

mitochondrial swelling after 30 min was significant (F3,32 =8.97, P=0.0002). This significant 

interaction was due to the effect of 5 µM Cd with H-R – 5 µM would reduce the swelling 

caused by H-R to control levels.  

5.4.4 Modulation of complex І A↔D transition by H-R and Cd 

Fig. 5.5 shows the effect of H-R and Cd on CI AD transition. In the absence of NADH 

mitochondrial respiration was minimal. The addition of NADH stimulated respiration and the 

addition of NEM (blocking conversion of CI from the D → A form) reduced respiration by 

49% suggesting that about 49% of CI was in the A-form at the start of the trial and that 51% 

of the respiration during the trial was due to conversion of DA. H-R markedly reduced 

respiration and almost completely blocked the conversion of DA during the trial; only 15% 

of the respiration was due to DA. Cd (5 µM) also reduced respiration but the fraction 

contributed by the conversion of DA during the trial (57%) was almost the same as for the 

control. Respiration after H-R when Cd was present was not as marked as with H-R alone. 

Moreover, presence of Cd increased the fraction contributed by the conversion of DA 

during the trial to 68% so that the absolute amount of activity was almost the same as the 

control (Fig. 5.5B). Thus H-R blocked the conversion of DA almost completely but 5 µM 

Cd prevented this blockage. While respiration induced by H-R + NEM was similar to that 
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due to H-R alone, respiration resulting from Cd + NEM exposure was less than that due to 

Cd alone. Lastly, exposure to Cd + H-R + NEM resulted in lower respiration rate compared 

with Cd + H-R. 
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Figure 5.4 
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Figure 5.4: The interactions of Cd and H-R on mitochondria volume. Swelling kinetics (A) 

and swelling amplitude (B). Energized mitochondria in MRB were exposed to either 

normoxic or 5min of hypoxia followed by reoxygenation (H-R) at 13
 o
C in respirometry 

cuvettes. On the microplate to monitor swelling, they subsequently were exposed to Cd (0, 5 

and 50 µM) or 200 µM Ca as positive control at 20 
o
C. Swelling was monitored every 10 s 
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for 30 min as absorbance changes at 540 nm and the kinetics and terminal amplitude of 

volume changes after 30 min shown. Data in panel A are means while in panel B they are 

means ± SEM (n = 5). Points with different letters are statistically different from each other 

(ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 5.5 
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Figure 5.5: The effect of Cd and H-R on complex І A↔D form transition. NADH (350 µM) 

stimulated respiration (with [w] and without [wo] NEM (A). Amount of D converted to A are 

shown in B. Mitochondria with disrupted membranes were exposed to normoxia (Ctl) wo 

NEM, Ctl w NEM, H-R wo NEM, H-R w NEM, Cd wo NEM, Cd w NEM, H-R + Cd wo 
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NEM and H-R + Cd w NEM, with the measurement of complex І activity. Data are means ± 

SEM (n = 5). Points with different letters are statistically different from each other (ANOVA 

with Tukey‟s HSD, P<0.05). 
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5.4.5 Interactions of Cd and H-R on mitochondrial membrane potential (∆Ψm) 

Energizing mitochondria resulted in the development of the membrane potential that was 

dissipated by Cd dose-dependently (Fig. 5.6A and B) in a first-order manner. With 100 µM 

Cd, the dissipation of the membrane potential was not significantly different from that caused 

by FCCP (Fig. 5.6B). The treatment of mitochondria with EGTA, NAC or vitamin E reduced 

(F6,28 =76, P<0.0001) 100 µM Cd-induced dissipation of ∆Ψm with EGTA being the most 

protective (Fig. 5.6D). 

Energized mitochondria post H-R exhibited slightly lower ∆Ψm relative to their normoxic 

counterparts (Fig. 5.7A and B). The interactions of Cd with H-R exacerbated (F6,28 =105, 

P<0.0001) the ∆Ψm dissipating effect of H-R (Fig. 5.7B). EGTA, NAC and vitamin E all 

protected against the ∆Ψm dissipating effect of combined H-R and Cd exposure with EGTA 

being the most protective in a manner very similar to Cd under normoxic conditions (Fig. 

5.7C and D). 

5.4.6 Interactions of Cd and H-R on mitochondrial H2O2 production  

When antimycin A was absent (Fig. 5.8), neither the interaction term „Cd × H-R (F1,19 =2.57, 

P=0.13) nor the H-R effect were not significant (F1,19 =0.82, P=0.38). However there was a 

significant increase in H2O2 production with Cd (F1,19 =52.35, P<0.001). When antimycin A 

was present (Fig. 5.8), again the interaction term „Cd × H-R was not significant (F1,19 =2.64, 

P=0.12). However, in this case the Cd effect was significant (F1,19 =42.87, P<0.001) with an 

increase in Cd resulting in an increase in H2O2 production. H-R increased the effect of Cd so 

that H2O2 production was about 4 times higher after H-R (F1,19 =41.21, P<0.001) than for the 

normoxic condition (Fig. 5.8). 
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Figure 5.6 
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Figure 5.6: The effects of Cd on mitochondrial membrane potential. Kinetics of dose 

response of Cd (A), amplitude of fluorescence change for Cd dose response (B), kinetics of 

chelator and antioxidant effects on Cd dissipation of ∆Ψm (C) and amplitude of fluorescence 

change of chelator and antioxidant effects on Cd dissipation of ∆Ψm (D). Mitochondria were 

exposed to control without energization (Ctl), energization (EN), energization and FCCP (EN 
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+ FCCP), energization and 5 µM Cd (EN + 5 µM Cd), energization and 20 µM Cd (EN + 20 

µM Cd), energization and 50 µM Cd (EN + 50 µM Cd), energization and 100 µM Cd (EN + 

100 µM Cd), energization + EGTA + 100 µM Cd (EN + EGTA + 100 µM Cd), energization 

+ NAC + 100 µM Cd (EN + NAC + 100 µM Cd) and energization + Vit E + 100 µM Cd (EN 

+Vit E + 100 µM Cd). Data are means ± SEM (n = 5). Points with different letters are 

statistically different from each other (ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 5.7 
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Figure 5.7: The interactions of Cd and H-R on mitochondrial membrane potential (∆Ψm). 

Kinetics of ∆Ψm change (A), amplitude of ∆Ψm change (B), effects of EGTA and antioxidant 

on kinetics of ∆Ψm change (C) effects of EGTA and antioxidant on amplitude of ∆Ψm change 

(D). The treatment groups were normoxia without energization (Nor), normoxia with 
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energization (Nor + EN), normoxia with energization and FCCP (Nor + EN + FCCP), 

hypoxia reoxygenation without energization (H-R), hypoxia-reoxygenation with energization 

(H-R + EN), hypoxia-reoxygenation with energization and 5 µM Cd (H-R + EN + 5 µM Cd), 

hypoxia-reoxygenation with energization and 20 µM Cd (H-R + EN + 20 µM Cd), hypoxia-

reoxygenation with energization + NAC + 20 µM Cd (H-R + EN + NAC + 20 µM Cd), 

hypoxia-reoxygenation with energization + Vit E + 20 µM Cd (H-R + EN + Vit E + 20 µM 

Cd) and hypoxia-reoxygenation with energization + EGTA + 20 µM Cd (H-R + EN + EGTA 

+ 20 µM Cd). Data are means ± SEM (n = 5). Points with different letters are statistically 

different from each other (ANOVA with Tukey‟s HSD, P<0.05). 
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Figure 5.8 
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Figure 5.8: The interactions of Cd and H-R on mitochondrial H2O2 production with and 

without antimycin A (ANT). Treatment groups were control (Ctl), hypoxia-reoxygenation 

(H-R), 20 µM Cd, H-R + 20 µM Cd, ANT, H-R + ANT, 20 µM Cd + ANT and H-R + 20 

µM Cd + ANT. Data are means ± SEM (n = 5). Points with different letters are statistically 

different from each other (ANOVA with Tukey‟s HSD, P<0.05). 
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5.4.7 Interactions of Cd and H-R on mitochondrial ultrastructure 

Mitochondria exposed to Cd and/or H-R exhibited varied degrees of structural alterations 

depending on the stressor (Fig. 9). Specifically, mitochondria exposed to Cd at low 

concentration (5 µM) showed signs of matrix contraction with the organelles assuming rod 

configurations. On the other hand, mitochondria exposed to 20 µM Cd were donut shaped 

with electron dense matrix and visible signs of swelling. Exposure of mitochondria to 5 min 

H-R resulted in loss of matrix density and swelling. Co-exposure of mitochondria to H-R and 

5 µM Cd reduced the swelling and restored the matrix density. In contrast, co-exposure of H-

R and 20 µM Cd worsened the effects of H-R on mitochondrial structure producing swelling 

and translucent matrix. Overall, mitochondrial diameter increased with the exposure to Cd 

(F2,114 =53, P<0.0001) and H-R (F1,114 =81, P<0.0001). More importantly, the interaction term 

between Cd and H-R was significant (F2,114 =14, P<0.0001) largely because there was no 

difference between normoxic and H-R for 5 µM Cd (Fig. 5.10). 
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Figure 5.9 

 

 

 

Figure 5.9: The interactions of Cd and H-R on mitochondrial structure. Control (Ctl) (A), 5 

µM Cd (B), 20 µM Cd (C), H-R (D), H-R + 5 µM Cd (E) and H-R + 20 µM Cd (F). Data are 

means ± SEM (n = 50). 
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Figure 5.10 
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Figure 5.10: The interactions of Cd and H-R on mitochondrial diameter. Data are means ± 

SEM (n = 50). Points with different letters are statistically different from each other (two-

way ANOVA with Tukey‟s HSD, P<0.05). 
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5.5 DISCUSSION  

The combined effects of Cd, H-R and temperature were either greater or less than their 

individual or binary effects on mitochondrial function. To explain the ternary effects of Cd, 

H-R and temperature I included data on the binary interactions of temperature and Cd 

(Chapter 3). My analysis revealed that while exposure to these stressors differently altered a 

range of mitochondrial functional traits and structure, changes in metal accumulation 

explained only in part, the synergistic effect of Cd with temperature and/or H-R. Overall 

there were additive, antagonistic or synergistic interactive effects among the three stressors 

and the nature of these interactions depended on the endpoint measured. 

5.5.1 Temperature modulates mitochondrial response to combined Cd and H-R-

induced stress 

Temperature significantly influenced mitochondrial response to individual and combined 

effects of Cd and H-R on maximal CI respiration. My data indicate that Cd and H-R 

synergistically reduced CI state 3 respiration and that the threshold doses for Cd toxicity 

progressively shifted to lower values at high temperature. A similar result has been observed 

with oysters (hypoxia-tolerant species) exposed to combined anoxia-reoxygenation and Cd 

stress in-vivo (Kurochkin et al., 2009). In my study, Cd alone, H-R alone and Cd + H-R 

markedly inhibited CI maximal respiration rate at 25 and at 13
 o
C. In contrast, at 5

 o
C, Cd + 

H-R did not alter state 3 respiration suggesting that at low temperature CІ maximum 

respiration was resilient to the effects of Cd + H-R. It is possible that at low temperature 

mitochondrial membrane phospholipids and proteins were less sensitive to Cd + H-R induced 

stress (Jones, et al., 1986; Fadhaoui and Couture, 2016). 
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Individually, the stressors I tested stimulated CI basal respiration in agreement with my 

previous studies and those of others for Cd (Chapter 2), temperature (Abele et al., 2002; 

Chamberlin et al., 2004; Chapter 3) and H-R (Schild et al., 2003; Bosetti et al., 2004; Chapter 

2). Stimulated basal respiration (proton leak) indicates Cd, H-R and thermal stress reduced 

the efficiency of ATP production (Bishop et al., 2002; Abele et al., 2007). I demonstrated 

that the combined effect of Cd and H-R on basal respiration depended on the temperature: at 

13 and 25
 o
C the 5 µM Cd reduced the stimulation of basal respiration by H-R. In contrast, 

Cd at higher doses combined with H-R increased the basal respiration suggesting that Cd and 

H-R interact on basal respiration via a common mechanism, likely involving alteration of 

IMM permeability. It appears that low doses of Cd + H-R at high temperature reduce the 

permeability of the IMM to protons while high doses of the metal combined with H-R 

increase it. In contrast, at low temperature (5 
o
C) Cd acted in synergy with H-R to stimulate 

the basal respiration above their individual effects. This stimulation of basal respiration at 

low temperature may in part be due to the effect of Cd and/ or H-R on the mitochondrial 

membrane phospholipid and proteins (Jones et al., 1986; Fadhaoui and Couture, 2016). 

However, these changes were observed in acclimated conditions and may not apply to acute 

temperature change. Additional study on the membrane phospholid and proteins is required 

to increase our understanding of the mechanisms of Cd and/or H-R induced stress following 

acute temperature change. 

The observation that individually Cd, temperature, and H-R reduced P/O ratio is consistent 

with several earlier reports (Sokolova et al., 2005; Adiele et al., 2010; Sappal et al., 2015; 

Chapter 2, Chapter 3). Additionally, I showed that temperature exacerbated the inhibitory 

effect of combined Cd and H-R on phosphorylation efficiency (P/O ratio) possibly due to 
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greater inhibition of the ATP synthase and/or increased proton and electron leaks. Similar to 

the P/O ratio, RCR was reduced by all the 3 stressors individually in agreement with previous 

findings for Cd (Sokolova 2004; Adiele et al., 2010; Chapter 2), H-R (Navet et al., 2006; 

Hoffman et al., 2007; Chapter 2) and temperature (Lemieux et al., 2010; Iftikar and Hickey, 

2013; Chapter 3). When combined, the stressors worsened the reduction of RCR suggesting 

additivity/synergy of their toxic effects. Previous studies with binary combination reported 

additive/synergistic interactions of Cd × temperature (Sokolova, 2004; Cherkasov et al., 

2010; Chapter 3), H-R × Cd (Kurochkin et al., 2009; Chapter 2) and H-R × temperature 

(Chapter 4). In this study the effects of Cd × H-R × temperature interaction reduced the RCR 

to a greater extent than the binary combinations. The greater reduction of RCR induced 

jointly by the 3 stressors suggests increased mitochondrial sensitivity to Cd in the presence of 

H-R and temperature or vice versa. Consistent with greater reduction of RCR, the 

dysregulation of mitochondrial volume, structural damage, dissipation of membrane potential 

and ROS production were all exacerbated by combined exposure to the stressors. 

5.5.2 Mitochondrial Cd accumulation is modulated by Cd, temperature, and H-R 

At the organismal (Heugens et al., 2003; Hallare et al., 2005; Khan et al., 2006; Sassi et al., 

2010) and mitochondrial (Cherkasov et al., 2007; Chapter 3) levels, Cd toxicity was shown to 

increase with a rise in temperature. This effect has been associated with increased Cd uptake 

/accumulation (Kӧck et al., 1996; Heugens et al., 2003; Cherkasov et al., 2010; Dorts et al., 

2012; Chapter 3) but not always (Hallare et al., 2005; Bao et al., 2008; Vergauwen et al. 

2013). This discrepancy may be due to the differences in experimental conditions and the 

animal species/experimental models that were used in the investigations. In particular, in 

some studies the animals were acclimated to different temperatures whereas in others, like 
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my present study, the effects of acute temperature change were studied in vitro. Regardless, a 

possible mechanism for the increased Cd accumulation at high temperature is increased 

permeability of mitochondrial membranes to Cd (Capter 3). Moreover, it is plausible that a 

rise in temperature would increase the activity of mitochondrial Ca
2+

 uniporter that has been 

shown to be involved in Cd uptake (Lee et al., 2005b, Adiele et al., 2012b). 

My study also revealed that the combination of H-R and temperature stress increased the 

sensitivity of mitochondria to Cd-induced damage. Notably, my study clearly linked 

mitochondrial functional impairment with Cd accumulation in the organelles at the 3 

temperatures I tested (Fig. 5.3B, C and D). While the mechanisms for the enhancement of Cd 

toxicity by combined temperature and H-R stress remain to be characterized, my study ruled 

out increased metal accumulation. It is possible that H-R and/or temperature alter the 

conformation of mitochondrial macromolecules e.g., membrane phospholipids and proteins 

(Kraffe et al., 2007), rendering them more metal-sensitive. Moreover, both H-R (Navet et al., 

2006; Chen et al., 2008) and temperature (Abele et al., 2002; Iftikar and Hickey, 2013; 

Chung and Schulte, 2015) stimulate ROS production that would work in concert with Cd to 

exacerbate mitochondrial dysfunction. 

5.5.3 Low doses of Cd protected against H-R-induced alterations of mitochondrial 

volume and preserved mitochondrial complex І A form activity 

In the present study mitochondrial dysfunction induced by Cd and H-R was associated with 

volume changes indicating altered IMM permeability. These results are consistent with 

earlier studies with Cd (Lee et al., 2005a; Lee et al., 2005b; Chapter 3) and H-R (Ozcan et al., 

2001; Chapter 4). Interestingly, low Cd doses protected against H-R-induced swelling while 

high doses exacerbated the mitochondrial swelling induced by H-R. The mechanisms through 
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which low doses of Cd protect against H-R-induced swelling are not known but it appears 

that low doses of this metal minimize changes in IMM permeability and/or reduce ROS-

induced membrane phospholipids oxidation following exposure to H-R. This would 

ultimately reduce the influx of solute and water into the mitochondria thereby minimizing 

swelling. These findings, together with my previous report that Cd at low dose protected 

against H-R-induced mitochondrial dysfunction by enhancing the activity of CІ (Chapter 2), 

cement the hypothesis that Cd at low doses may induce beneficial responses (hormesis) 

during stress. 

Previously I speculated that the protective effect of low doses of Cd against H-R-induced 

mitochondrial impairment was due to the prevention of conversion of A-form of CІ to the D-

form (Chapter 2). First, I showed that rainbow trout liver mitochondrial CІ undergoes A↔D 

transformation (Fig. 5.5). While not universal, this transformation has been demonstrated in 

mitochondria of several animal species including the common carp (Cyprinus carpio) 

(Maklashina et al., 2003), pig (Sus scrofa) (Grivennikova et al., 2001), frog (Rana spp) 

(Maklashina et al., 2003), and rat (Rattus rattus) (Grivennikova et al., 2001; Maklashina et 

al., 2002). Second, H-R converted CI A- to D-form consistent with the observation that lack 

of oxygen promotes the accumulation of the D-form (Malklashina et al., 2004; Gorenkova et 

al., 2013). However, unlike other divalent metals (e.g., Ni, Co, Mn, Ca, Mg) that slow the 

conversion of the D- to the A-form (Kotlyar et al., 1992; Babot et al., 2014), Cd blunted the 

transition of the A- to D-form resulting in higher levels of the A-form, particularly after H-R. 

This is clearly demonstrated by comparing NADH-stimulated respiration evoked by NEM 

that permanently modifies the D-form preventing its transition to the A-form (Gavrikova and 

Vinogradov, 1999) with the respiration rates measured after Cd and H-R treatments (Fig. 
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5.5). However, the concentration of the other divalent cations used is usually in the mM 

range, 3 orders of magnitude greater than the low dose of Cd that I used. To the best of my 

knowledge this is the first report showing that low doses of Cd blunt conversion of CI A-

form to D-form following H-R thereby improving CІ activity (Chapter 2). While preservation 

of CI activity may generally be viewed as beneficial, it would be detrimental in mitochondria 

exposed to hypoxia because a high proportion of C1 D- relative to A-form reduces both the 

surge in respiration of downstream enzymes and ROS production on re-oxygenation (Babot 

et al., 2014). Lastly, my study showed that H-R inhibits the conversion of DA but that 5 

µM Cd unblocks this inhibition so that the D form continues to convert to the A form during 

the trial.  

5.5.4 Antioxidants and metal chelators protect against Cd and/or H-R induced 

dissipation of ∆Ψm  

The mitochondrial dysfunction induced by Cd and/or H-R resulted in part from ∆Ψm 

dissipation consistent with earlier studies (Li et al., 2003; Lopez et al., 2006; Belyaeva et al., 

2006; Mao et al., 2011). Here I show that the combined effects of Cd and H-R exacerbated 

∆Ψm dissipation, possibly due to synergistic impact on substrate oxidation and proton leak 

subsystems and/or IMM permeability. In this regard, Cd and H-R individually have been 

shown to inhibit enzymes involved in substrate oxidation (Lopez et al., 2006; Cherkasov et 

al., 2007; Adiele et al., 2012a; Chapter 2), increase proton leak (Bosetti et al., 2004; Navet et 

al., 2006; Chapter 2) and cause mitochondria to swell (Morin et al., 2004; Lee et al., 2005a; 

Chapter 3). The observation that EGTA inhibited Cd-induced ∆Ψm dissipation confirms a 

direct role of Cd. Moreover, the protection afforded by antioxidants (vitamin E and NAC) 

against Cd and/or H-R-induced dissipation of ∆Ψm suggests a role of oxidative stress 

probably due to inhibition of the ETS by ROS (Navet et al., 2006; Lopez et al., 2006; 
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Cherkasov et al., 2007; Adiele et al., 2012a; Chapter 2). I confirmed a role of oxidative stress 

by direct measurement of H2O2 production following exposure to Cd and/or H-R (Fig. 5.8). 

Furthermore, Cd and H-R acted in synergy to increase mitochondrial ROS production 

resulting in the worsening mitochondrial dysfunction I observed when the two stressors were 

combined in the presence of antimycin A. Cd and/or H-R are known to stimulate 

mitochondrial ROS production by inhibiting the activity and/or imposing conformational 

changes of the ETS enzymes (Wang et al., 2004; Chen et al., 2008; Gorenkova et al., 2013). 

Inhibition of the ETS would increase NADH/NAD
+
 ratio resulting in a backup of electrons 

and formation of superoxide radicals (Murphy, 2009; Tomanek, 2015). The excess ROS thus 

produced would then oxidize membrane lipids and proteins including the TCA and ETS 

enzymes, resulting in structural damage, changes in IMM permeability and loss of 

mitochondrial oxidative function. 

5.5.5 Exposure to Cd and H-R damages mitochondrial ultrastructure  

Cd and H-R altered mitochondrial structure differently in that Cd at high concentration (20 

µM) caused contraction of matrix, formation of donut-shaped mitochondria and overall 

swelling, while H-R caused loss of matrix and cristae resulting in translucent and swollen 

mitochondria. The formation of donut-shaped mitochondria has been described as a hallmark 

of mitochondrial oxidative stress (Ahmad et al., 2013), and is associated with reduced 

mitochondrial function (Hara et al., 2014). Similarly, loss of cristae contributes to reduced 

mitochondrial function. The combined Cd and H-R exposure revealed that at low dose Cd 

reduced the H-R induced mitochondrial swelling and restored organelle diameter to control 

levels while at high dose (20 µM) it exacerbated the structural damage. I speculate that ROS 

produced following Cd and H-R exposure (Fig. 5.8) were responsible for the mitochondrial 
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structural and functional changes I observed. For example, oxidation of membrane lipids 

could alter IMM permeability leading to swelling/contraction and cristolysis, while protein 

oxidation and loss of matrix content via leaky membranes could explain the reduced matrix 

density. 

5.6 CONCLUSIONS  

My hypothesis that the ternary interactions of Cd, temperature and H-R would alter their 

individual and/or binary effects on mitochondrial bioenergetics was validated in this study. I 

demonstrated that mitochondria at low temperature (5
 o
C) were more resilient than those at 

high temperature to the combined effects of Cd and H-R. The alterations in mitochondrial 

function were associated with impaired volume homeostasis, CІ A to D transition, dissipation 

of ∆Ψm, increased ROS production and loss of structural integrity. Although the effects of Cd 

and/or H-R were greater at both high and low temperatures, this was not explained by 

increased Cd accumulation. Overall oxidative stress could explain to a large extent the effects 

of Cd, H-R and temperature on mitochondrial structure and function. 
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CHAPTER 6 

 

BIOENERGETIC AND VOLUME REGULATORY EFFECTS OF MITOKATP 

MODULATORS PROTECT AGAINST HYPOXIA-REOXYGENATION-INDUCED 

MITOCHONDRIAL DYSFUNCTION 

A version of this chapter has been published with slight modification as: 

Onukwufor, J. O., Stevens, D., Kamunde, C., 2016. Bioenergetic and volume regulatory 

effects of mitoKATP modulators protect against hypoxia-reoxygenation-induced 

mitochondrial dysfunction. J. Exp. Biol. 219, 2743-2751. 

Author contributions 

C.K., J.O.O. conceived the project, C.K., J.O.O., D.S., designed the study, J.O.O. carried out 

the experiments and data analysis and wrote the first draft of the article. All authors 

contributed to the interpretation of results and the editing of the article. 
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6.1 ABSTRACT 

The mitochondrial ATP-sensitive K
+
 (mitoKATP) channel plays a significant role in 

mitochondrial physiology and protects against ischemic reperfusion injury in mammals. 

Although fish frequently face oxygen fluctuations in their environment, the role of mitoKATP 

channel in regulating the responses to oxygen stress is rarely investigated in this class of 

animals. To elucidate whether and how mitoKATP channel protects against hypoxia-

reoxygenation (H-R)-induced mitochondrial dysfunction in fish, I first determined the 

mitochondrial bioenergetic effects of two key modulators of the channel, diazoxide and 5-

hydroxydecanoate (5-HD), using a wide range of doses. Subsequently, the effects of low and 

high doses of the modulators on mitochondrial bioenergetics and volume under normoxia and 

after H-R using buffers with and without magnesium and ATP (Mg-ATP) were tested. In the 

absence of Mg-ATP (mitoKATP channel open) both low and high doses of diazoxide 

improved mitochondrial coupling but only the high dose of 5-HD reversed post H-R coupling 

enhancing effect of diazoxide. In the presence of Mg-ATP (mitoKATP channel closed) 

diazoxide at low dose improved coupling post H-R and this effect was abolished by 5-HD at 

low dose. Interestingly, both low and high doses of diazoxide reversed H-R-induced swelling 

under mitoKATP channel open conditions but this effect was not sensitive to 5-HD. Under 

mitoKATP channel closed conditions diazoxide at low dose protected the mitochondria from 

H-R-induced swelling and 5-HD at low dose reversed this effect. In contrast, diazoxide at 

high dose failed to reduce the swelling caused by H-R and the addition of high dose of 5-HD 

enhanced mitochondrial swelling. Overall my study showed that in the presence of Mg-ATP 

both opening of mitoKATP channels and bioenergetic effects of diazoxide were protective 

against H-R in fish mitochondria, while in the absence of Mg-ATP only the bioenergetic 

effect of diazoxide was protective. 
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6.2 INTRODUCTION  

The mitochondrial ATP-sensitive K
+
 (MitoKATP) channel was first identified in rat liver 

(Inoue et al., 1991) as a highly selective, small conductance K
+
 channel located in the inner 

mitochondrial membrane. Since then it has also been identified in heart (Paucek et al., 1992; 

Wojtovich and Brookes, 2009), brain (Bajgar et al., 2001; Debska et al., 2001), skeletal 

muscle (Gurke et al., 2000; Debska et al., 2002), and kidney (Cancherini el al., 2003). 

Pharmacological modulation of the MitoKATP channel has been instrumental in elucidating 

the pathophysiology of ischemia- reperfusion (IR) injury in mammals (Garlid et al., 1997; 

Jaburek et al., 1998; Grover et al., 2001). In this regard the mitoKATP channel opener 

(diazoxide) was found to protect against IR injury (Garlid et al., 1997) and this protection 

was inhibited by 5-hydroxydecanoate (5-HD), a blocker of the channel (Jaburek et al., 1998). 

Although the exact mechanisms of protection are still debated, several potential explanations 

have been proposed (Garlid and Paucek, 2003; Ardehali and O‟Rourke, 2005; Costa et al., 

2006). First, it is hypothesized that opening of the MitoKATP channel increases mitochondrial 

matrix volume through uptake of K
+
 from the cytosol into the matrix thus preventing 

intermembrane space (IMS) contraction (Garlid, 2000; Garlid et al., 2003). Second, opening 

mitoKATP channel is believed to cause mild mitochondrial uncoupling that triggers ROS with 

activation of kinases that protect against H-R/IR injury (Krenz et al., 2002; Andrukhiv et al., 

2006). Support for this hypothesis is provided by the finding that ROS scavengers blocked 

the protection conferred by mitoKATP (Vanden Hoek et al., 1998; Pain et al., 2000; Baines et 

al., 2001; Cohen et al., 2001). Third, it has been argued that it is the reduction/inhibition of 

ROS production that causes protection (Ferranti et al., 2003; Facundo et al., 2007; Kulawiak 

et al., 2008) while others have suggested that the opening of mitoKATP channel would result 

in matrix alkalinisation triggering increased ROS production (Costa et al., 2006). Lastly, it 
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has been suggested that functions attributed to the mitoKATP channel may essentially be the 

effects of pharmacological modulators used to study the effect of the channel on 

mitochondrial function (Holmuhamedov et al., 1999; 2004; Drӧse et al., 2006; 

Kopustinskiene et al., 2010). 

Overall, empirical evidence from the use of pharmacological modulators of mitoKATP 

channel suggest two general bases of the mechanisms of protection against IR/H-R-induced 

deleterious effects: modulation of mitochondrial bioenergetics (Holmuhamedov et al., 1999; 

2004; Drӧse et al., 2006; Kopustinskiene et al., 2010) and/or volume (Garlid et al., 1997; 

Jaburek et al., 1998; Costa et al., 2006). However, Garlid (2000) argued that bioenergetic 

effects of mitoKATP channel modulators (diazoxide and 5-HD) were observed at high (toxic) 

concentrations with the channel already open because of the absence of Mg-ATP in the assay 

buffer. Given the controversies cast above, the present study sought to elucidate the relative 

contribution of bioenergetic and volume regulation modes of mitoKATP channel protection 

against H-R-induced stress with focus on mechanisms not mediated by ROS. First, I 

predicted that the effects of the mitoKATP opener (diazoxide) and blocker (5-HD) on 

mitochondrial respiration and volume would be diametrically opposite and dose-dependent. 

Second, I predicted that in the absence of Mg-ATP, diazoxide and 5-HD would modulate 

mitochondrial bioenergetics but not volume. Third, I predicted that low doses of diazoxide in 

the presence of Mg-ATP would protect against H-R-induced effects only by altering 

mitochondrial volume. Fourth, I predicted that high doses of both diazoxide and 5-HD in the 

presence and absence of Mg-ATP would alleviate H-R-induced damage by altering 

mitochondrial bioenergetics. The only previous studies on the mitoKATP channel in non-

mammals have been concerned with the sarcolemmal mitoKATP channel; to the best of my 
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knowledge this is the first study to probe the role of mitoKATP channel in H-R-induced stress 

in isolated fish mitochondria.  

6.3 MATERIALS AND METHODS 

6.3.1 Ethics 

The procedures that experimental animals were subjected to were approved (Protocol # 11-

034) by the University of Prince Edward Island Animal Care Committee in accordance with 

the Canadian Council on Animal Care. 

6.3.2 Fish  

Juvenile rainbow trout [Oncorhynchus mykiss (Walbaum 1792)] weighing 150 ± 4.8 g (mean 

± SEM) at sampling were obtained from Ocean Farms Inc., Brookvale, PE, and kept in a 

400-I tank supplied with flow-through aerated well water at the Atlantic Veterinary College 

Aquatic Facility. Water temperature and pH were 10 ± 1 
o
C and 7.7, respectively. The fish 

were fed at 1% body weight daily with commercial trout chow (Corey Feed Mills, 

Fredericton, NB, Canada).  

6.3.3 Mitochondrial isolation 

To isolate mitochondria, fish were randomly sampled from the tank, stunned with a blow to 

the head, decapitated and immediately dissected to remove the liver. Mitochondria were 

isolated according to the method described in chapter 2 and re-suspended in a 1:3 (weight to 

volume) ratio of mitochondrial respiration buffer [MRB: 10 mM Tris, 25 mM KH2PO4, 100 

mM KCl, 1 mg/ml bovine serum albumin (BSA, fatty acid free), 2 µg/ml aprotinin, pH 7.3]. 

Mitochondrial protein concentration was measured by spectrophotometry (Spectramax Plus 

384, Molecular Device, Sunnyvale, CA) according to Bradford (1976) with BSA as the 

standard. 
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6.3.4 Measurement of mitochondrial respiration  

Mitochondrial respiration rates were measured using Clark-type oxygen electrodes (Qubit 

Systems, Kingston, ON) in 1.5 ml cuvettes after a two-point calibration at 0 and 100% air 

saturation at the ambient atmospheric pressure. Temperature during the assays was 

maintained at 13 
o
C using a recirculating water-bath (Haake, Karlsruhe, Germany). After the 

calibration, 1.45 ml of MRB and 100 µl of mitochondrial suspension containing 2.2-3.1 mg 

of protein were loaded into the cuvettes and continuously stirred. To spark the Krebs cycle, 5 

mM malate was added and respiration was supported with saturating concentration (5 mM) 

of glutamate, a complex l substrate. The addition of 250 µM ADP initiated the state 3 

respiration which transition to state 4 upon depletion of the ADP. All rates of oxygen 

consumption were monitored using Logger Pro 3 with Vernier Labpro interface (Vernier 

Software and Technology, Beaverton, OR, USA). The respiratory control ratio (RCR: ratio of 

state 3 to state 4) were calculated according to Chance and Williams (1955). 

6.3.5 Exposure of mitochondria to hypoxia-reoxygenation (H-R) 

The protocol used for the hypoxia-reoxygenation was based on the study in chapter 2. 

Briefly, mitochondrial complex-1 driven oxygen consumption was measured under normoxic 

conditions as described above. To make the MRB hypoxic, nitrogen gas was bubbled into the 

cuvettes depleting the partial pressure of oxygen (PO2) to <2 torr (actual concentrations were 

0.002-0.003 mg O2/l) at prevailing environmental conditions. This concentration is below the 

2.25-3.75 torr intracellular level of oxygen typically encountered by rat mitochondria in vivo 

(Gnaiger and Kuznetsov, 2002). Once the PO2 reached the desired level, the cuvettes were 

sealed and the hypoxic conditions were maintained for 15 min. At the end of the hypoxia 

exposure period, the cuvettes were opened and fully re-oxygenated (100% air saturation) and 
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ADP (250 µM) was added to impose the second phosphorylation with measurements of state 

3 and 4 respiration rates. The difference between the first and second set of respiration 

parameters represented the effect of H-R on mitochondrial bioenergetics.  

A control experiment was done to test the effect of bubbling with air on mitochondrial 

respiration. In this experiment I bubbled with air rather than nitrogen but for the same length 

of time (2 min) as the H-R trials. The results showed that there was no effect of bubbling 

with air on respiration rate during state 3 (Student‟s t-test t= -0.56, p = 0.59) and state 4 (t= 

0.00, p = 0.99) or RCR (t= -0.73, p = 0.50). 

6.3.6 Bioenergetics effects of mitoKATP  

The prediction that diazoxide (mitoKATP channel opener) would protect against H-R damage 

by modulating mitochondrial bioenergetics and 5-HD (mitoKATP channel blocker) would 

reverse this effect was tested by measuring mitochondrial respiration before and after 15 min 

H-R at 13 
o
C. I first carried out dose response studies for diazoxide (10, 25, 100, 200 and 500 

µM) and 5-HD (50, 100, 200, 500 and 1000 µM) and thereafter selected low (25 µM 

diazoxide and 50 µM 5-HD) and high (500 µM diazoxide and 1 mM 5-HD) dose 

combinations and assessed their effects on post H-R respiration rates using respiration 

buffers with and without 1 mM MgCl2 and 200 µM ATP (Mg-ATP). The goal here was to 

delineate the direct effects of diazoxide and 5-HD on mitoKATP channels from their potential 

effects on oxidative phosphorylation (OXPHOS) by carrying out the assay with mitoKATP 

channel closed (with Mg-ATP) and open (without Mg-ATP). In these experiments, the 

mitochondria were pre-incubated with diazoxide alone and in combination with 5-HD for 5 

min in the respiratory cuvettes after the measurement of normoxic respiration, and thereafter 

exposed to H-R followed by a second measurement of respiration rates. 
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6.3.7 Volume regulatory effects of mitoKATP  

Mitochondrial volume was measured using spectrophotometric method (Chapter 3) under 

normoxic conditions and after H-R, without and with diazoxide alone and in combination 

with 5-HD using buffers with and without Mg-ATP. In this assay, 100 µl of mitochondrial 

suspension was first energized with 5 mM glutamate and 5 mM malate in the cuvette and 

exposed to 15 min of hypoxia followed by reoxygenation. At the end of the reoxygenation 

the mitochondrial suspension was recovered and diluted with air-saturated buffer (10 mM 

Tris, 25 mM KH2PO4, 100 mM KCl) to give mitochondrial protein concentration of 1 mg/ml. 

Volume changes were then measured at 25 
o
C, with 200 µM Ca as a positive control for 

swelling, by spectrophotometric monitoring of changes in absorbance at 540 nm every 10 s 

for 30 min. In this assay, a decrease in absorbance indicates swelling. To assess the role of 

mitoKATP channel on normoxic and H-R-induced mitochondrial volume changes, energized 

mitochondria were pre-incubated with 25 or 500 µM diazoxide alone and in combination 

with 5-HD at either low (50 µM) or high (1 mM 5-HD) dose, respectively, for 5 min, and 

changes in absorbance at 540 nm under normoxia were measured every 10 s for 30 min. For 

post H-R swelling, mitochondrial suspensions were incubated with diazoxide and 5-HD for 5 

min and exposed to hypoxia for 15 min followed by full reoxygenation and measurement of 

changes in absorbance as described above. Lastly, to confirm that the swelling response was 

mediated by mitoKATP channel, K
+
 was replaced with tetraethylammonium (TEA

+
) and 

changes in absorbance at 540 nm in the presence of 25 µM diazoxide alone and in 

combination with 50 µM 5-HD were measured. 
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6.3.8 Data analysis 

Data were tested for normality of distribution (chi-square test) and homogeneity of variances 

(Cochran C) before submission to one or two-way analysis of variance (ANOVA) or mixed 

model repeated measures general linear model (GLM) (Statistica version 13.0, Dell 

Statistica, Tulsa, OK). If the data did not pass the normality test, they were submitted to Box-

Cox transformation; all data passed after transformation. An ANOVA is only slightly 

affected by inequality of variance using our models (equal sample sizes and all factors fixed). 

Significantly different means were separated using Tukey‟s post hoc test at P<0.05. The data 

are reported as means ± s.m.s. except the kinetics of volume changes which are means (n = 5) 

without s.m.s. 

6.4 RESULTS 

6.4.1 Effects of mitoKATP modulators on OXPHOS  

I first measured the effects of diazoxide and 5-HD on OXPHOS with the mitoKATP channels 

open (i.e., in the absence of Mg-ATP) to characterize their bioenergetic effects. Diazoxide 

(0-500 µM) did not alter state 3 respiration (F5,24 =0.92, P=0.49; Fig. 6.1A) but did stimulate 

state 4 respiration (F5,24 =4.69, P=0.004; Fig. 6.1B), leading to a significant dose-related 

reduction in RCR (F5,24 =6.64, P=0.0005; Fig. 6.1C). Similarly, 5-HD did not significantly 

alter state 3 respiration (F5,24 =2.47, P=0.06; Fig. 6.1D) but did reduce state 4 respiration 

(F5,24 =4.37, P=0.006; Fig. 6.1E). These effects of 5-HD on state 3 and 4 respiration resulted 

in dose related enhancement of RCR (F5,24 =4.61, P=0.004; Fig. 6.1F). 
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Figure 6.1 
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Figure 6.1: The dose response (D-R) of diazoxide and 5-hydroxydecanoate (5-HD) on 

normoxic mitochondrial respiration. A: D-R of diazoxide on state 3, B: D-R of diazoxide on 

state 4, C: D-R of diazoxide on RCR, D: D-R of 5-HD on state 3, E: D-R of 5-HD on state 4 
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and F: D-R of 5-HD on RCR. Isolated mitochondria were exposed to diazoxide (10, 25, 100, 

200 and 500 µM) or 5-HD (50, 100, 200, 500 and 1000 µM). Data are means ± SEM (n = 5). 

Bars with different letters are statistically different from each other (one-way ANOVA with 

Tukey‟s HSD, P<0.05). 
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I then used combinations of low doses without bioenergetic effects (25 µM diazoxide and 50 

µM 5-HD) and high doses with bioenergetic effects (500 µM diazoxide and 1 mM 5-HD) 

and tested their effects on post H-R respiration using buffers without and with Mg-ATP. Mg-

ATP blocks mitoKATP channels on the cytosolic (cis) side (Bednarczyk et al., 2005) and in its 

absence the channels are open (Garlid, 2000) and therefore not amenable to modulation by 

diazoxide or 5-HD. I found that state 3 and state 4 respiration were slightly higher while 

RCR was slightly lower during normoxia when tested in the absence of Mg-ATP; however, 

these results were from different experiments and were not compared statistically. 

In the absence of Mg-ATP (Fig. 6.2A), H-R (F1,20 =53.9, P<0.0001), treatment with 

mitoKATP modulators (F4,20 =8.21, P=0.0004) and interaction (F4,20 =6.18, P=0.002) 

significantly altered state 3 respiration. This response was primarily driven by the inhibitory 

effect of H-R in controls and that of H-R combined with the low and high doses of diazoxide. 

Interestingly, diazoxide at both low and high doses in the presence of 5-HD resulted in the 

restoration of state 3 respiration to the normoxic level. Similarly, state 4 respiration (Fig. 

6.2B) was altered by H-R (F1,20 =121, P<0.0001) and mitoKATP modulators (F4,20 =37.8, 

P=0.0001) as well as their interaction (F4,20 =23.0, P<0.0001). Specifically, H-R stimulated 

state 4 respiration, with the high but not the low dose of diazoxide inhibiting this stimulation. 

Moreover, diazoxide at the high dose in the presence of 5-HD (high dose) exacerbated the 

stimulatory effect on state 4 respiration. Consistent with their effects on state 3 and 4 

respiration, H-R (F1,20=728, P<0.0001) and mitoKATP modulators (F4,20 =25.1, P<0.0001) 

reduced the RCR and showed a significant interaction effect (F4,20 =11.45, P<0.0001; Fig. 

6.2C). Here, except for the combined high doses of diazoxide and 5-HD, all of the treatments 

minimized the RCR-reducing effect of H-R. 
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With Mg-ATP in the buffer (Fig. 6.2D), the interaction between treatment with mitoKATP 

modulators and H-R was significant for state 3 (F4,20 =3.50, P=0.03) but their individual 

effects were not. Interestingly, low dose of diazoxide alone and with low dose of 5-HD did 

not affect state 3 respiration, but their combination at high doses reduced state 3 respiration 

relative to the controls. In contrast, H-R (F1,20 =179, P<0.0001) and treatment mitoKATP 

modulators (F4,20 =6.55, P=0.0015) and their interaction (F4,20 =8.27, P=0.0004) significantly 

altered state 4 respiration (Fig.6.2E). Here, as expected, H-R stimulated state 4 respiration, 

and the low but not the high dose of diazoxide reversed the H-R effect. Importantly, the low 

dose of 5-HD reversed the inhibitory effect of diazoxide on state 4 respiration, essentially 

restoring it to the H-R level. However, the high dose of 5-HD reduced the stimulatory effects 

of high dose of diazoxide on state 4 after H-R. Lastly, the RCR was significantly reduced by 

H-R (F1,20 =897, P<0.0001), treatment with mitoKATP modulators (F4,20 =8.29, P=0.0004) and 

their interaction (F4,20 =13.89, P=0.0001; Fig. 6.2F). The low dose of diazoxide partially 

protected against the RCR-reducing effect of H-R, this protection was blocked by low dose 

of 5-HD. In contrast, the high dose of diazoxide alone and in combination with 5-HD (high 

dose) did not alter the RCR-reducing effect of H-R. 
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Figure 6.2 
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Figure 6.2: The effects of diazoxide and 5-HD on mitochondrial OXPHOS capacity during 

H-R in Mg-ATP free respiration buffer. A: state 3, B: state 4 and C: RCR and in buffer 

containing Mg-ATP, D: state 3, E: state 4, F; RCR. Low doses (25 µM diazoxide and 50 µM 

5-HD) and high doses (500 µM and 1 mM 5-HD) were tested under normoxia and after 15 
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min H-R at 13 
o
C. Data are means ± SEM (n = 5). Points with different letters are statistically 

different from each other (mixed model repeated measures ANOVA with Tukey‟s HSD, 

P<0.05). 
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6.4.2 Role of mitoKATP in mitochondrial function and volume homeostasis 

Under normoxia without Mg-ATP (Fig 6.3A, B), high dose of diazoxide and Ca (positive 

control) caused mitochondrial swelling of similar form and amplitude. The low dose (25 µM) 

of diazoxide without and with the low dose of 5-HD did not significantly alter mitochondrial 

volume, whereas its high dose induced significant swelling that was reversed by the high 

dose of 5-HD. Mitochondrial swelling following exposure to H-R alone was similar to that 

resulting from exposure to combined H-R and Ca or Ca alone (Fig. 6.3C, D). Incubating 

mitochondria with low and high doses of diazoxide before exposure to H-R resulted in less 

swelling relative to H-R alone, and 5-HD at both low and high doses did not reverse these 

effects of diazoxide (Fig. 6.3C, D). 

In the presence of Mg-ATP, mitochondria displayed high-amplitude, swelling as shown by 

the Ca-positive control (Fig. 6.4A, B). Here, the low dose of diazoxide caused significant 

swelling that was reversed by the low dose of 5-HD. Moreover, the high dose of diazoxide 

resulted in greater swelling than that which resulted from its low dose, but this swelling was 

exacerbated by 5-HD at the high dose. Exposure of mitochondria to H-R resulted in swelling 

relative to normoxia; however, Ca-induced swelling after H-R was of similar magnitude as 

that observed under normoxia (Fig. 6.4). Importantly, the H-R-induced swelling was reversed 

by low dose of diazoxide, and 5-HD at low dose blocked this effect. In contrast, the high 

dose of diazoxide did not alter H-R-induced swelling, and addition of high dose of 5-HD 

exacerbated the swelling. The role of mitoKATP channel was corroborated by the observation 

that 5-HD reversed swelling in the presence of K
+
 but not TEA

+
 when Mg-ATP was present 

(Fig. 6.5). 
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Figure 6.3 
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Figure 6.3: The effects of diazoxide and 5-HD on mitochondrial volume under normoxic 

(Nor) and after 15 min H-R in Mg-ATP free swelling buffer at 24 
o
C. A: Normoxic swelling 

kinetics, B: Normoxic swelling amplitude at 30 min, C: H-R swelling kinetics, D: H-R 

swelling amplitude at 30 min. Low doses (25 µM diazoxide and 50 µM 5-HD) and high 

doses (500 µM and 1 mM 5-HD) were tested with 200 µM Ca as positive control. Swelling 

was monitored every 10 s for 30 min as absorbance changes at 540 nm and the kinetics and 

terminal amplitude of volume changes after 30 min are shown. The trend lines represent 
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means of swelling data from 5 independent mitochondrial preparations (i.e., n = 5). Bars with 

different letters are statistically different from each other (one-way ANOVA with Tukey‟s 

HSD, P<0.05, n = 5). 
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Figure 6.4 

Time (sec)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (sec)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
b

s
o

rb
a

n
c

e
 5

4
0

 n
m

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

Nor +
 M

g +
 A

TP

Nor +
 M

g +
 A

TP +
 C

a

Nor +
 M

g +
 A

TP +
 2

5 u
M

 D
ia

z

Nor +
 M

g +
 A

TP +
 2

5 u
M

 D
ia

z +
 5

0 u
M

 5
-H

D

Nor +
 M

g +
 A

TP +
 5

00 u
M

 D
ia

z

Nor +
 M

g +
 A

TP +
 5

00 u
M

 D
ia

z +
 1

 m
M

 5
-H

D

A
b

s
o

rb
a

n
c

e
 5

4
0

 n
m

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

A

B

C

a

b

c

d

e
e

Nor +
 M

g +
 A

TP

M
g +

 A
TP +

 H
-R

M
g +

 A
TP +

 H
-R

 +
 C

a

M
g +

 A
TP +

 H
-R

 +
 2

5 u
M

 D
ia

z

M
g +

 A
TP +

 H
-R

 +
 2

5 u
M

 D
ia

z +
 5

0 u
M

 5
-H

D

M
g +

 A
TP +

 H
-R

 +
 5

00 u
M

 D
ia

z

M
g +

 A
TP +

 H
-R

 +
 5

00 u
M

 D
ia

z +
 1

 m
M

 5
-H

D

a

b

d

a

b b

c

D

Nor+Mg+ATP+500uMDiaz+1mM 5-HD

Nor+Mg+ATP+25uM Diaz+50uM 5-HD

Nor+Mg+ATP+500uM DiazNor+Mg+ATP+Ca

Nor+Mg+ATP+25uM DiazNor+Mg+ATP

Mg+ATP+25uM Diaz+ 50uM 5-HD+ HR

Mg+ATP+500uM Diaz +1mM 5-HD +HR

Mg+ATP+500uM Diaz+HR Mg+ ATP+HR + Ca

Mg+ATP+HR Mg+ATP+25uMDiaz+HR

 

Figure 6.4: The effects of diazoxide and 5-HD on mitochondrial volume under normoxic 

(Nor) and after 15 min H-R in the presence of Mg-ATP in swelling buffer at 24 
o
C. A: 

Normoxic swelling kinetics, B: Normoxic swelling amplitude at 30 min, C: H-R swelling 

kinetics, D: H-R swelling amplitude at 30 min. Low doses (25 µM diazoxide and 50 µM 5-

HD) and high doses (500 µM and 1 mM 5-HD) were tested with 200 µM Ca as positive 

control. Swelling was monitored every 10 s for 30 min as absorbance changes at 540 nm and 
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the kinetics and terminal amplitude of volume changes after 30 min are shown. The trend 

lines represent means of swelling data from 5 independent liver mitochondrial preparations 

(i.e., n = 5). Bars with different letters are statistically different from each other (one-way 

ANOVA with Tukey‟s HSD, P<0.05, n = 5). 
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Figure 6.5 
A

b
s

o
rb

a
n

c
e

 (
%

 c
h

a
n

g
e

 f
ro

m
 n

o
rm

o
x

ia
)

0

50

100

150

200
Nor

Nor + 25 M diaz

Nor + 25 M diaz + 50 M 5-HD

K+ buffer TEA+ buffer

a

c

b

a

b b

 

Figure 6.5: The percent change in mitochondrial volume from control in K
+
 and TEA

+
 

buffers containing Mg-ATP under normoxia. Volume changes were measured following 

exposure of mitochondrial suspension to 25 µM diazoxide and 25 µM diazoxide + 50 µM 5-

HD. Swelling was monitored every 10 s for 30 min absorbance changes at 540 nm. Data are 

means ± SEMs (n = 3) after 30 min. Bars with different letters are statistically different from 

each other (two-way ANOVA with Tukey‟s HSD, P<0.05) 
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6.5 DISCUSSION 

Opening mitoKATP channels is believed to protect against the deleterious effects of IR; 

however, the effects of the two widely used mitoKATP channel modulators, diazoxide 

(channel opener) and 5-HD (channel blocker) are controversial. Specifically, Garlid (2000) 

argued that opening mitoKATP channel has minimal direct effects on mitochondrial 

bioenergetics and that bioenergetic effects observed by others (Holmuhamedov et al., 1999; 

2004; Drӧse et al., 2006; Kopustinskiene et al., 2010) reflect toxic effects secondary to the 

use of excessively high doses of the modulators. Thus I sought to shed light on the 

controversies surrounding the effects of diazoxide and 5-HD on OXPHOS and mitochondrial 

volume. I found that under mitoKATP channel open conditions (no Mg-ATP), both low and 

high doses of diazoxide improved mitochondrial coupling but only the high dose of 5-HD 

reversed the post H-R coupling-enhancing effect of diazoxide (Fig. 6.2C). Although 5-HD 

can be converted to 5-HD-CoA, which is metabolized via β-oxidation to provide NADH, 

which in turn supplies electrons to the ETS thus stimulating mitochondrial respiration (Lim 

et al., 2002; Hanley et al., 2005), its high doses inhibit both β-oxidation and succinate 

dehydrogenase/complex II (Hanley et al., 2002, 2005; Lim et al., 2002). The 5-HD dose 

range tested in my study did not significantly alter state 3 respiration of mitochondria 

respiring on a complex I substrate but inhibited state 4 respiration, thereby improving 

coupling. In tests carried out in the presence of Mg-ATP, the low dose of diazoxide alone had 

a bioenergetic effect evidenced by improved coupling post H-R, and this effect was abolished 

by 5-HD at low dose (Fig. 6.2F). Note that this low dose of diazoxide had no effect on 

complex-I-supported OXPHOS under normoxia (Fig. 6.1). That is, my findings are 

consistent with earlier reports on the beneficial effects of low dose of diazoxide on 

mammalian mitochondrial coupling (Iwai et al., 2000; Dos Santos et al., 2002).  
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The primary role of mitoKATP channel is believed to be mitochondrial volume regulation 

(Jaburek et al., 1998; Garlid, 2000; Costa et al., 2006). In my study, diazoxide at low dose 

had no effect in the absence of Mg-ATP under normoxic conditions but its high dose caused 

mitochondria to swell and 5-HD at high dose reversed this effect. Because mitoKATP channel 

were open throughout during this assay, these volume changes were likely mediated by 

mechanisms other than mitoKATP channel, e.g., opening of mitochondrial permeability 

transition pores (Hausenloy et al., 2004) and/or inhibition of K
+
/H

+
 exchanger. Under these 

conditions, the reversal of diazoxide effect by 5-HD can be explained by their diametrically 

opposite effects on OXPHOS (Fig. 6.1). Additional evidence of diazoxide altering 

mitochondrial volume via mechanisms independent of mitoKATP channel was that its reversal 

of H-R-induced swelling was not sensitive to 5-HD. In contrast, in the presence of Mg-ATP 

under normoxia, swelling induced by diazoxide (low dose) was partially reversed by 5-HD 

and could therefore in part be attributed to opening of the mitoKATP channel. The fact that 

diazoxide at high dose caused greater swelling relative to the low dose and the addition of 5-

HD worsened this effect implies that this was a toxic response. Notably, low dose of 

diazoxide protected the mitochondria from H-R-induced swelling, an effect that was reversed 

by low dose of 5-HD thus suggesting a role of mitoKATP channel in this phenomenon and in 

preserving state 3 respiration. In contrast, diazoxide at high dose failed to reduce the swelling 

caused by H-R and the addition of 5-HD (high dose) enhanced mitochondrial swelling (Fig. 

6.4). Because mitoKATP channel is closed by Mg-ATP, it is logical that H-R-induced swelling 

would be less pronounced in the presence of Mg-ATP than in its absence. Overall, my study 

showed that while both the opening of mitoKATP channels and bioenergetic effects of 

diazoxide were protective against H-R-induced swelling in the presence of Mg-ATP, only the 
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bioenergetic effect was protective in the absence of Mg-ATP. Furthermore, mitochondrial 

swelling was responsive to low doses of diazoxide and 5-HD in K
+
 but not TEA

+
 buffer 

confirming the involvement of mitoKATP channel in mitochondrial volume regulation (Beavis 

et al., 1993, Garlid et al., 1996, Jaburek et al., 1998). 

Several previous studies have reported that mitochondria shrink/contract at high 

phosphorylation state/state 3 respiration (Packer, 1960; Garlid, 2000; Hackenbrock, 1968; 

Kowaltowski et al., 2001) and swell in state 4 respiration (Packer, 1960; Hackenbrock, 1968; 

Bosetti et al., 2004). In my study, the relationship between H-R-induced swelling and state 3 

respiration was positive in the presence of Mg-ATP and negative in its absence. In contrast, 

state 4 respiration (proton leak) was positively correlated with mitochondrial volume both in 

the presence and absence of Mg-ATP but the leak was five times higher in the presence of 

Mg-ATP. A possible explanation of these findings is that during phosphorylation (state 3) the 

proton gradient that drives electrogenic K
+
 entry into mitochondria matrix is consumed for 

ATP synthesis, thus reducing influx of K
+
, and subsequently that of osmotically obliged 

water (Garlid, 2000). Conversely, the swelling in state 4 respiration was possibly due to the 

high membrane potential (proton gradient) that supports high rates of K
+
 and water influx. 

Overall, it appears that assay conditions and the procedure of inducing swelling define the 

mitochondrial volume-functional state relationship.  

6.6 CONCLUSIONS 

The prediction that modulators (diazoxide and 5-HD) of mitoKATP channel would exhibit a 

dose-dependent opposite effect on mitochondrial bioenergetics was confirmed in my study, 

and explains their antagonistic effects on mitochondrial responses not mediated by mitoKATP 

channel opening. The prediction that in the absence of Mg-ATP diazoxide and 5-HD would 
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modulate only mitochondrial bioenergetics was corroborated by my findings and highlighted 

the physiological role of Mg-ATP in blocking mitoKATP channel. Notably, low dose of 

diazoxide in the presence of Mg-ATP had both volume regulatory and bioenergetic effects. 

Finally, high doses of diazoxide and 5-HD alleviated H-R-induced damage by altering 

mitochondrial bioenergetics in the absence but not in the presence of Mg-ATP. Thus, both 

the opening of mitoKATP channel and bioenergetic effects of diazoxide protected against H-

R-induced mitochondrial swelling and preserved their functional states. 
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CHAPTER 7 

 

DISCUSSION AND FUTURE DIRECTIONS  
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7.1 Discussion 

My project probed the impact of multiple stressor factors on mitochondrial function. Because 

aquatic organisms are exposed to diverse and dynamic combinations of stressors in their 

environment it is important to understand mechanisms of joint effects of stressors to more 

accurately monitor and predict adverse biological outcomes. I utilized robust and sensitive 

techniques that enabled me to study the mechanisms of interactions of Cd, hypoxia (with 

reoxygenation) and temperature induced stress on mitochondrial bioenergetics. The 

overreaching hypothesis was that when present together Cd, hypoxia and temperature affect 

common target sites exacerbating single stressor-induced effects on mitochondrial function. 

My PhD research unearthed previously unknown mechanisms of interactions of Cd, hypoxia 

and temperature on mitochondrial bioenergetics and increased our understanding of the 

impact of multiple stressors on cellular energy metabolism in aquatic organisms. 

7.1.1 Co-exposure of multiple stressors exacerbates their individual effects on 

mitochondrial function 

My findings that mitochondrial respiration was altered following exposure to Cd and H-R 

(Chapter 2), Cd and temperature (Chapter 3), temperature and H-R (Chapter 4) and Cd, 

temperature and H-R (Chapter 5) on state 3 and 4 respiration rate, P/O ratio and the RCR 

supported the hypothesis that the combined effects of multiple stressors would exacerbate 

their individual effect on mitochondrial function. I showed that the responses induced by 

single stressors on mitochondrial function were different from those caused by binary and/or 

ternary combination of the same stressors. Importantly, the nature (additive, antagonistic or 

synergistic) of the interactive effects was unpredictable and depended on the assessment 

endpoint. For example in Chapter 5 I showed that Cd and H-R synergistically reduced 

maximal mitochondrial respiration and that the threshold doses for Cd toxicity progressively 
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shifted to lower values at high temperatures. A similar result has been observed with oysters 

(hypoxia-tolerant species) exposed to combined anoxia-reoxygenation and Cd stress in-vivo 

(Kurochkin et al., 2009). However, at low temperature Cd in synergy with H-R stimulated 

state 3 respiration rates, a response that could be attributed to alteration of membrane 

phospholipids and proteins with enhancement of the activity of ETS and substrate 

transporters (Hazel, 1995; Kraffe et al., 2007; Portner et al., 2007).  

Furthermore, I demonstrated that at high temperature Cd at low dose antagonized the 

stimulation of basal respiration by H-R to a greater degree at 25 compared with 13 
o
C. 

Contrastingly, Cd at high doses in synergy with H-R increased the basal respiration 

indicating that Cd and H-R interact on basal respiration via a common mechanism, likely 

involving alteration of IMM permeability. It appears that low doses of Cd + H-R at high 

temperature reduce the permeability of the IMM to protons while high doses of the metal 

combined with H-R increase it. On the other hand, at low temperature (5 
o
C) Cd dose-

dependently acted in synergy with H-R to stimulate the basal respiration above their 

individual rates.  

I observed that individually Cd, temperature, and H-R reduced P/O ratio that is consistent 

with several earlier reports (Sokolova et al., 2005; Adiele et al., 2010; Sappal et al., 2015). 

Additionally, I showed that temperature exacerbated the inhibitory effect of combined Cd 

and H-R on phosphorylation efficiency (P/O ratio) possibly due to greater inhibition of the 

ATP synthase and/or increased proton and electron leaks. Similarly I showed that the RCR 

was worsened with subsequent addition of stressors that suggests additivity/synergy of their 

toxic effects. Previous studies with binary combination reported additive/synergistic 

interactions of Cd × temperature (Sokolova, 2004; Cherkasov et al., 2010; Chapter 3), H-R × 
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Cd (Kurochkin et al., 2009; Chapter 2) and H-R × temperature (Chapter 4). In Chapter 5 the 

effects of Cd × H-R × temperature interaction reduced the RCR to a greater extent than the 

binary combinations. The greater reduction of RCR induced jointly by the 3 stressors could 

result from increased mitochondrial sensitivity to Cd in the presence of H-R and temperature 

or vice versa. Consistent with greater reduction of RCR (Chapter 2, 3, 4 and 5), the 

dysregulation of mitochondrial volume (Chapter 3 and 5), structural damage (Chapter 4 and 

5), dissipation of ∆Ψm (Chapter 4 and 5) and ROS production (Chapter 4 and 5) were all 

exacerbated by combined exposure to the stressors.  

The interactive responses of temperature, Cd and/or H-R on mitochondrial bioenergetics are 

summarized in Fig. 7.1. I propose that the inhibition of ETS by the stressors results in 

excessive ROS production that damage biomolecules (membrane lipids and proteins) 

resulting in mitochondrial swelling and loss of structural integrity. The increased swelling 

and/or loss of structure together with the impaired ETS would result in decreased ∆Ψm 

leading to reduced RCR an indication of compromised mitochondria.  
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Figure 7.1: Temperature (high [Hi] or low [Lo]) exacerbates Cd and/or H-R induced ETS 

impairment. The impaired ETS increases ROS production and decreases mitochondrial 

membrane potential (MMP). The increase in ROS causes mitochondrial swelling and 

structural damage. The decrease MMP due to impaired ETS and/or swelling/structural 

damage results in a decrease in RCR  
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7.1.2 Low dose of Cd alleviate H-R induced mitochondrial dysfunction 

The discovery that low doses of Cd were protective against H-R-induced mitochondrial 

dysfunction is another key highlight of my doctoral research. I showed that when in 

combination with H-R, Cd at low dose (5 µM) protected mitochondria against H-R induced 

structural damage, swelling, complex І activity inhibition, complex І A→D transition and 

proton leak (Chapter 2 and 5). The effects of Cd on H-R-induced stimulation of proton leak 

and complex I activity were akin to hormesis (Calabrese and Baldwin, 2002; Calabrese and 

Baldwin, 2003; Nascarella et al., 2003) wherein low doses of stereotypically noxious 

(inhibitory) substances elicit beneficial (stimulatory) effects. To the best of my knowledge, 

these are the first reports of possible beneficial effects of low Cd doses in attenuating 

mitochondrial proton leak and rescuing complex I from H-R-induced inhibition. In Chapter 

2, I speculated that the protective effect of low doses of Cd against H-R-induced 

mitochondrial impairment of CI supported respiration emanated from the prevention of 

conversion of A-form of complex І to the D-form. I tested this hypothesis in Chapter 5 and 

showed that during combined Cd and H-R exposure, Cd at low doses converted complex I D- 

to A-form thus shielding the later from the effects of H-R. To the best of my knowledge this 

is the first study to show that low doses of Cd convert complex I D-form to A-form following 

H-R thereby improving enzyme activity.  

With respect to swelling I observed that Cd at low doses protected against H-R-induced 

swelling while at high doses the metal exacerbated the mitochondrial swelling induced by H-

R. While the mechanisms of this protection are not known, it is possible that at low doses Cd 

minimizes the changes in IMM permeability and/or reduces ROS-induced oxidative damage 
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following exposure to H-R. These findings were supported by the TEM work wherein 5 µM 

Cd prevented mitochondrial swelling following H-R treatment. 

7.1.3 Bioenergetic and volume regulatory effect of mitoKATP protect against H-R 

induced mitochondrial dysfunction 

The long controversy as to whether mitoKATP bioenergetics and volume regulatory effects 

protect against H-R induced mitochondrial dysfunction was addressed in Chapter 6. It had 

been earlier (Garlid, 2000) argued that opening mitoKATP has minimal direct effects on 

mitochondrial bioenergetics and that bioenergetic effects observed by others 

(Holmuhamedov et al., 1999; 2004; Drӧse et al., 2006; Kopustinskiene et al., 2010) reflect 

toxic effects secondary to the use of excessively high doses of mitoKATP modulators. Thus I 

sought to shed light on the controversies surrounding the effects of diazoxide and 5-HD on 

OXPHOS and mitochondrial volume. I found that low doses of diazoxide in the presence of 

Mg-ATP had both volume regulatory and bioenergetics effects that alleviated H-R-induced 

mitochondrial dysfunction. Because in the presence of Mg-ATP the channel is closed and 

low doses of diazoxide open the channel, my data suggested that the mechanisms of 

protection involve the opening of mitoKATP channel. On the other hand, my observation that 

in the absence of Mg-ATP high doses of diazoxide protected against H-R induced 

mitochondrial respiration impairment shows that it has bioenergetic effect but not volume 

regulation. Since under these conditions the channel was open the protection involved 

mechanisms not mediated by the opening of the mitoKATP channel. 

7.1.4 Mechanisms of Cd-induced mitochondrial volume changes 

Prior to my research, Sokolova (2004) observed only contraction in oyster‟s gills while 

Adiele et al. (2012b) reported mild swelling in rainbow trout liver following exposure of 
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isolated mitochondria to Cd. I found that Cd and/or temperature stress are capable of 

inducing both swelling and contraction depending on their levels. Specifically, Cd induced 

transient contraction before swelling and temperature modulated the contraction and swelling 

(Chapter 3). Regarding the contraction I observed in the early phase of Cd exposure, the 

possibility that the change in absorbance was due to Cd or complexes formed by reaction of 

Cd with components of the swelling buffer were ruled out. Furthermore, the possibility of an 

increase in refractive index due to Cd complexation with phosphate in the mitochondrial 

matrix that can be interpreted as contraction as observed with following Ca exposure of brine 

shrimp, Artemia franciscana mitochondria (Menze et al., 2005; Holman and Hand, 2009), 

was ruled out because the contraction I observed was transient, whereas the formation of 

calcium phosphate in brine shrimp mitochondria was a permanent monotonic phenomenon. 

Therefore this suggests that the mitochondrial contraction I observed was due to specific 

effects of Cd on the mechanisms or structures that regulate solute and/or water transport in 

these organelles. 

Additionally, I showed that the mitochondrial volume changes I observed in my study, with a 

clear early contraction followed by two phases of swelling, were highly influenced by 

temperature (Chapter 3). While mitochondria equilibrated to test temperature showed 

moderate contraction and swelling, those tested after temperature shock (abrupt transfer from 

ice→15 or 25 
o
C) had complex patterns of contraction and swelling with higher amplitudes. 

The complex swelling-contraction pattern is possibly associated with temperature-induced 

changes on mitochondrial membrane characteristics (Connell, 1961; Richardson and Tappel, 

1962; Somero, 2011). Interestingly, 5 µM Cd prevented spontaneous swelling in both 

equilibrated and temperature-shocked mitochondria, suggesting that at low doses Cd blocks 
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the mechanisms of solute and/or water movement across the inner mitochondrial membrane. 

Additional studies are required to unveil the mechanisms by which low Cd doses inhibit 

spontaneous swelling in isolated mitochondria. 

7.1.5 Modulation of Cd accumulation by temperature and H-R 

In view of the limited knowledge on mitochondrial Cd accumulation and the role of multiple 

stressors in enhancing or abating mitochondrial Cd load, I addressed three questions: (i) Does 

mitochondrial impairment increase with Cd accumulation? (ii) Is mitochondrial Cd 

accumulation dose-dependent? (iii) Do temperature and H-R affect Cd accumulation in the 

mitochondria? Additionally, I tested the prediction that the greater mitochondrial dysfunction 

I observed following Cd exposure to temperature and/or H-R results from increased Cd 

accumulation. I found that mitochondrial Cd accumulation is dose-dependent and is 

influenced by temperature. Notably, there were strong correlations between state 3 

respiration rates and log mitochondrial Cd concentration at all temperatures indicating that 

low burdens of Cd impose relatively greater reductions in respiration compared with the high 

burdens. Though the mechanisms of enhancement of mitochondrial Cd uptake at high 

temperature were not explored, it is possible that the IMM exhibited increased leakiness 

(Dahlhoff and Somero, 1993), thereby allowing greater influx of Cd. An alternative 

explanation for the increased Cd accumulation at high temperature is increased activity of 

mitochondrial transporters such as the MCU that I (Chapter 3), that others (Lee et al., 2005a; 

Adiele et al., 2012b) have shown to be involved in Cd uptake by the mitochondria.  

Surprisingly, my research also revealed that the combination of H-R and temperature stress 

increased Cd-induced mitochondrial impairment without a corresponding change in Cd 

accumulation (Chapter 5). It is possible that H-R and/or temperature alter the conformation 
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of mitochondrial macromolecules e.g., membrane phospholipids and proteins (Kraffe et al., 

2007), rendering them more metal-sensitive. Overall my research revealed that temperature 

increases mitochondrial Cd accumulation and toxicity while combined temperature and H-R 

increased mitochondrial sensitivity to Cd but not accumulation. 

7.2 Future directions 

Despite the substantial new findings reported in this thesis, several issues do require 

additional research to strengthen our understanding of the mechanisms of multiple stressor 

interaction on mitochondrial physiology and energy metabolism in general. First, the 

mechanisms underlying the beneficial effects of low doses of Cd against H-R induced 

mitochondrial dysfunction need to be investigated. Specifically, there is a need to identify if 

and what parts of mitochondrial proteins and membrane lipids are altered by Cd to reduce the 

deleterious effects of H-R. Here proteomics and lipidomics would be useful. Additionally, 

the use of NMR, optical spectroscopy, mass spectrometry and X-ray crystallography could 

elucidate potential structural changes in proteins and phospholipids that explain the 

functional changes associated with low dose Cd and H-R exposures. 

The finding that mitochondrial dysfunction observed in my project was due to increased ROS 

production is another area that could benefit from additional research to identify how ROS 

damage macromolecules. In this regard, using optogenetic techniques to target and localize 

ROS produced by the complexes would help to differentiate pathological and beneficial 

ROS.  

Furthermore, the finding that the combined effects of the stressors exacerbate or antagonize 

their individual effects needs further investigation by focussing on measuring multiple 
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parameters (ROS, ∆Ψm, ATP production, and respiration rates) of mitochondrial function at 

the same time. Ultimately there is a need to investigate the effects of the three stressors at the 

cellular and organism levels to obtain a more holistic picture of effects of multiple stressors 

on aquatic organisms. 
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