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ABSTRACT 

 

Fish kills are a common phenomenon in Prince Edward Island (Canada) and their 

cause often remains unexplained. I hypothesized that fish exposure to selected 

environmental toxicants leads to increased mortality and morbidity by depressing cardiac 

function, precipitated by suppression of cardiac electrical activity and rhythm 

disturbances. These rhythm disturbances could result from toxicant-induced changes in 

the function of specific cardiac ion channels.  

Recently, the zebrafish heart has been shown to hold promise as a suitable model 

to study cardiac cellular electrophysiology. The purpose of the present study was to 

evaluate the effects of selected environmental toxicants on cardiac action potential 

morphology. More specifically, the present work focused on evaluating the effects on 

atrial action potential in adult zebrafish of: 1) acetylcholine (1-10 µM); 2) a documented 

acetylcholinesterase inhibitor, physostigmine (50 µM); 3) pesticides with 

acetylcholinesterase inhibition properties that are commonly used in Prince Edward 

Island (mancozeb and phorate). Zebrafish hearts were isolated under anesthesia and 

action potentials were recorded in vitro using a standard single microelectrode technique. 

Action potential morphology was then assessed by measuring parameters including action 

potential duration (APD) and action potential amplitude (APA).  

Results revealed that in vitro exposures to high concentrations of acetylcholine 

and physostigmine led to suppression of cardiac electrical activity by significantly 

reducing APD and APA, a phenomenon known as cholinergic non-excitability. 
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Experiments evaluating the effects of commercial pesticides (mancozeb and phorate) did 

not reveal similar effects. 

This study supports the possibility that environmental toxicants containing 

acetylcholinesterase inhibitors may participate in fish kills by suppressing cardiac 

electrical activity. However, the specific pesticides mancozeb and phorate did not 

demonstrate such dramatic cardiotoxic effects, even at high concentrations. 
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1. General introduction 

 

On average, there has been more than one documented fish kill per year in Prince 

Edward Island (PEI), Canada, over the past 50 years (DCLE 2011a, 2011b, 2015d, 2015e; 

Johnston and Cheverie 1980; Macphail 2013). This increasing concern with fish kills in 

PEI is associated with an increase in the use of environmental toxicants, including 

agricultural pesticides (DCLE 2015a, 2015b). A causal relationship between the use of 

pesticides and fish kills has been challenging to demonstrate, and necropsies performed 

on dead fish are often unremarkable. In this project, I hypothesized that fish exposure to 

selected environmental toxicants leads to increased mortality and morbidity by depressing 

cardiac hemodynamic function precipitated by cardiac rhythm disturbances. These 

rhythm disturbances likely result from toxicant-induced changes in the function of 

specific ion channels. 

 

The rationale for this project derives from several recent studies that have 

demonstrated that exposure to several environmental toxicants leads to abnormal cardiac 

development and/or abnormal cardiac function. These environmental toxicants include 

dioxins (Antkiewicz et al. 2006; Scott et al. 2011; Plavicki et al. 2013; Brown et al. 2015, 

2016a), polybrominated diphenyl ethers (PBDEs) (Lema et al. 2007), crude oil 

constituents such as polycyclic aromatic hydrocarbons (PAHs) (Incardona et al. 2004; 

Incardona et al. 2005; Incardona et al. 2009; Hicken et al. 2011; Jung et al. 2013; Brette et 

al. 2014; Incardona et al. 2014; Raimondo et al. 2014; Brown et al. 2015; Edmunds et al. 

2015; Gerger and Weber 2015; Incardona et al. 2015; Brown et al. 2016a), or pesticides 

containing  acetylcholinesterase inhibitors (AChEIs) (Lin et al. 2007; Jee et al. 2009; 
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Tryfonos et al. 2009; Simoneschi et al. 2014; Watson et al. 2014; Du et al. 2015; Pamanji 

et al. 2015). More specifically, heart rhythm disorders ranging from bradyarrhythmias to 

tachyarrhythmias have the potential to decrease cardiac output, which at best could have 

consequences on growth rates or swimming speed and at worst could lead to fish 

mortality (Gerger and Weber 2015). The electrophysiological mechanisms responsible for 

these rhythm disturbances rarely have been explored. Given the substantial impact of 

environmental toxicants on fish health and possibly on the economics of the fishing 

industry, identifying these mechanisms could lead to improved preventive strategies and 

regulations.  

 

In order to contribute to a better understanding of this problem, I investigated the 

effects of selective environmental toxicants, including the commonly used AChEIs, on 

cardiac action potential morphology using standard microelectrode techniques in adult 

zebrafish (Dano rerio). The first part of my thesis will focus on providing an overview on 

fish kills in PEI, followed by an assessment of the possible cardiac dysfunctions caused 

by environmental toxicants in fish, before exploring the cardiac specificities of zebrafish 

used as models. 
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2. Background and literature review 

 

2.1. Fish kills in Prince Edward Island (Canada) 

 

2.1.1. History of fish kills in Prince Edward Island 

 

Fish kills are defined as localized mass die-offs of fish that can occur in marine, 

estuarine, or fresh waters (Meyer and Barclay 1990). The first reported fish kill in PEI 

occurred in 1962 after accidental spillage of the agricultural fungicide nabam (disodium 

ethylene bisdithiocarbamate) and the insecticide endrin, a chlorinated hydrocarbon, into 

Mill River (Saunders 1969). Extensive mortalities, including a total of at least 8000 fish, 

were observed among brook trout (Salvelinus fontinalis) and juvenile Atlantic salmon 

(Salmo salar). Since that time, fish kills have become a chronic issue throughout the 

province of PEI, with 51 fish kills reported between 1962 and 2011 (Figure 1) (DCLE 

2011a, 2011b, 2015d, 2015e; Johnston and Cheverie 1980; Macphail 2013). 
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Figure 1. Map of reported fish kills in Prince Edward Island from 1962 to 2011 
(DCLE 2011a). 

 

Fish kills typically occur between June and September, with a peak between July 

19th and July 25th (DCLE 2011b; Macphail 2013). The two worst years for reported fish 

kills were 1999 and 2002 with eight fish kills per season (DCLE 2011b; Macphail 2013). 

Fish kills often occur in cultivated watersheds where pesticide applications are likely, and 

following rainfalls, suggesting pesticide wash-off as a likely cause (Mutch 2002; Birt 

2007; Gordon et al. 2011; Bauer et al. 2013; Dunn et al. 2011).  
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2.1.2. Impact on fish populations 

 

It has been demonstrated that different species of fish have variable responses to 

toxicant exposure (Post and Leasure 1974; Gormley et al. 2005; Guignion et al. 2010), 

which can lead to changes in fish communities over time (Gormley et al. 2005, Bauer et 

al. 2013). For example, Gormley et al. (2005) showed that brook trout (Salvelinus 

fontinalis) suffered higher mortality than rainbow trout (Oncorhynchus mykiss) 

immediately after runoff events involving the pesticide azinphos-methyl, an 

organophosphate, on the Wilmot River, PEI, in 2002. Similarly, within the same species, 

susceptibility to certain toxicants can vary with fish life stages (Van Leeuwen et al. 1985; 

Gormley et al. 2005). During the 2002 Wilmot River events, young-of-the-year fish were 

more susceptible than older age classes. Most interestingly, new sampling performed a 

year after the events, revealed fish communities that were still skewed in terms of the 

proportions of species and the proportions of age classes (Gormley et al. 2005), 

highlighting the long-term consequences of fish kills on fish populations. 

 

2.1.3. Public interest and perception of fish kills 

 

There has been an increase in public awareness regarding fish kills over the years, 

with an increased demand for determining their cause and reducing their occurrence (La 

and Cooke 2011). Over the past several years, fish kills have been extensively discussed 

in the media in PEI, including major local newspapers (Figure 2) (McCarthy 2016a, 

2016b; Guardian 2016; Yarr 2016). 

.  
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Figure 2. Local newspapers discussing fish kills in Prince Edward Island (McCarthy 
2016a, 2016b; Guardian 2016; Yarr 2016). 
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Fish kills are highly visible to the public and may be signs of detrimental 

environmental changes (Holck et al. 1993, La and Cooke 2011). Moreover, they may be 

seen as precursors for future human illnesses. In addition, when it is demonstrated that 

fish kills have been caused by the release of toxicants such as pesticides, civil and or 

criminal penalties may be levied against individuals or groups determined to be 

responsible for the release (Holck et al. 1993). This was the case of a potato farmer in PEI 

fined $70,000 in connection with a fish kill that occurred in 2011 in a Prince County 

waterway (Environment Canada 2014). Fish kills may also have political consequences 

and are increasingly discussed during political campaigns in PEI (NDP PEI 2013). 

Recently, a petition was mounted by environmental groups to criticize the appointment to 

the board of Health PEI of two members of the potato industry (Campbell 2016). 

 

2.1.4. The causes of fish kills 

 

Although fish kills sometimes can be attributed to natural phenomena, they are 

most commonly caused by human modifications and pollution of the environment (Table 

1) (La and Cooke 2011). In a study analyzing 170 fish kill events in North American 

freshwaters and estuaries, the major proximate causes of fish kills were agricultural 

pollution (19.5%), biotoxins (17.2%), and chemical pollution (7.1%) (La and Cooke 

2011). Minor causes were extreme changes in temperatures (5.9%), low dissolved oxygen 

(5.3%), gas bubble trauma (3.6%), disease (3.6%), exhaustion (2.4%), and acidification 

(1.2%). Notably, the majority of surveyed fish kills were caused by human activities 

(67%), while natural events were only responsible for 10% (La and Cooke 2011). 
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Table 1. Most common causes of fish kills in freshwaters and estuaries (La and 
Cooke 2011). 
 
Cause Definition 
Agricultural pollution Pollution that pertains to pesticide, fertilizer and manure, silo 

and feedlot drainage, animal waste, etc. Can be direct or lead 
to other problems, such as hypoxia, as a result of biological 
oxygen demand 
 

Acidification Acidification by oxidation of sulphide minerals; can be 
delivered via precipitation (e.g., acid rain) 
 

Biotoxin Toxic algal and dinoflagellate blooms that are caused by 
Karena brevis, Pfiestera, etc. 
 

Disease Various bacteria, parasites, fungus, and viruses 
 

Exhaustion Physical exhaustion of fish typically leading to cardiac 
collapse (e.g., during challenging migration) 
 

Extreme temperature 
changes 

Rapid changes in temperature (e.g., cold shock) 
 
 

Gas bubble trauma Gas-supersaturation downstream from dams or other 
infrastructure or natural barriers 
 

Industrial pollution Pollution arising from various resource extraction, processing, 
and manufacturing activities (e.g., mining, food and kindred 
products, chemicals, metals, petroleum, and paper products) 
 

Low dissolved oxygen 
(hypoxia) 

Low levels of oxygen in the water, usually associated with 
urban runoff, decay of organic material (i.e., biological 
oxygen demand), rainfall events, etc. 
 

Municipal pollution Pollution arising from refuse disposal, water system, 
swimming pools, power, and sewage systems 
 

Transportation pollution Pollution that pertains to rail, trucks, barge or boats, and 
pipeline ruptures 
 

Unknown/undetermined Fish kill events in which no cause can readily be determined 
 

In PEI, at least 30 out of 51 reported fish kills were likely caused by agricultural 

pollution (pesticides) between 1962 and 2011 (DCLE 2001b). Potatoes are the single 
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most common agricultural commodity in PEI in terms of farm cash receipts, and their 

intensive production may play a role in fish kills. Approximately 89,500 acres of potatoes 

were planted in 2015 (DAF 2015). Over the last five years farm cash receipts values have 

ranged from $203 to $257 million (DAF 2015). Intense production systems are used 

including monoculture row production (Chow et al. 1990), intensive tillage, cultivation 

along slopes, and limited rotations (Edwards et al. 2000; Jatoe et al. 2008). PEI soil types 

are particularly suitable for potato production: sandy loams on PEI have moderately high 

silt content and are well drained. However, these types of soil are also vulnerable to 

erosion and pesticide wash-offs during heavy rainfalls (Jatoe et al. 2008). In addition, the 

use of pesticides in agriculture has significantly increased over the 10 past years, with 

pesticide sales reaching more than a million kilograms in 2013 and 2014 (Figure 3) 

(DCLE 2015a, 2015b). More than 50 different pesticides are used, including mostly 

fungicides commonly used on potato crops (Table 2) (DCLE 2015c). AChEIs are 

commonly used, including carbamates such as mancozeb, or organophosphates such as 

phorate (DCLE 2015c). 

  



	
   10	
  

 

Figure 3. 1993-2014 sales of non-domestic pesticides in Prince Edward Island (DCLE 2015a, 2015b). 
Others: this includes combination products (i.e. insecticide / fungicide), rodenticides, animal and bird repellents, disinfectant, and preservatives. Only reported in 
2013 and 2014.   

1993 1995 1996 1997 1998 1999 2000 2001 2002 2006 2007 2008 2013 2014 
Others 0 0 0 0 0 0 0 0 0 0 0 0 15574 19758 
Herbicides 104000 103000 101900 106789 105039 119945 129552 119951 111237 82526 82515 96004 158114 161536 
Fungicides 390000 515000 893600 680764 722502 848340 899658 622538 667862 605829 517158 556768 766805 647627 
Insecticides 108000 88000 58400 63346 58677 86220 60899 43489 35004 48032 30609 27779 222124 190376 
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Table 2. 2013-2014 Non-domestic pesticide sales in Prince Edward Island (DCLE 
2015c). 
 

Active Ingredient Amount Sold 
(kilograms) 
2013 2014 

2,4-D 1 605 1 844 
atrazine 2 114 2 870 
azoxystrobin 1 229 1 952 
boscalid 1 822 1 771 
captan 1 640 1 040 
carbathiin 1 083 2 319 
chlorantraniliprole 1 187 1 382 
chlorothalonil 141 457 140 491 
chlorpropham 531 1 028 
chlorpyrifos 788 741 
clethodim 804 834 
clothianidin 879 1 322 
copper hydroxide 1 647 1 423 
cymoxanil 197 536 
diazinon 455 247 
dimethoate 4 296 2 376 
diquat 16 284 22 409 
fenamidone 1 179 816 
flonicamid 1 202 1 138 
fluazifop-p-butyl 813 711 
fluazinam 616 1 596 
fludioxonil 567 693 
glyphosate 52 351 57 696 
hexazinone 6 619 7 627 
imidacloprid 3 453 3 919 
linuron 31 625 27 528 
maleic hydrazide 5 122 3 700 
mancozeb 424 457 303 957 
mandipropamid 748 1 380 
MCPA 21 442 18 361 
metalaxyl-M and S-isomer 2 014 1 982 
metiram 43 565 39 535 
s-metolachlor 2 994 2 249 
metribuzin 6 284 9 528 
mineral oil 175 987 140 961 
mono- and di-basic sodium, potassium, and ammonium 
phosphites 

5 810 7 749 

mono- and di-potassium phosphite 124 992 124 733 
phorate 21 945 27 557 
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Table 2 (continued). 2013-2014 Non-domestic pesticide sales in Prince Edward 
Island (DCLE 2015c). 
	
  
phosmet 8 222 6 796 
propiconazole 1 892 1 591 
propyzamide 1 621 1 673 
pyraclostrobin 2 084 1 981 
rimsulfuron 4 600 276 
surfactant blend 8 264 12 617 
terbacil 1 652 2 025 
thiabendazole 865 604 
thiophanate-methyl 5 184 5 988 
thiram 965 2 060 
tribenuron-methyl 1 218 42 
trifuralin 1 021 944 
all other active ingredients 13 226 14 699 
TOTAL 1 162 617 1 019 297 
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Although many fish kills are suspected to be caused by agricultural pollution, 

establishing a causal relationship between fish kills and pesticides remains challenging 

for several reasons (Holck et al. 1993; Muñoz et al. 1994; Mutch 2002; La and Cooke 

2011; DCLE 2015d, 2015e): 1) The unpredictable nature of fish kills limits the amount of 

control that can be exercised over sampling locations, timing and procedures used for 

investigation. 2) There is often a substantial delay between pesticide wash off into a 

stream after a rainfall event, and first notice of the resulting impacts on fish (from two 

hours to as much as a week). 3) Pathology results are often inconclusive due to advanced 

tissue decomposition or absence of visible lesions. 4) Pesticides can be flushed from the 

stream water by the time sampling can be initiated (especially with the short length of PEI 

streams). 5) In cases where one or several pesticides can be identified, the exact 

mechanism by which they lead to a fish kill is often unknown. 6) Fish kills are often 

multifactorial in origin (for example, specific conditions including the presence of a 

pesticide, water oxygen level, or water temperature may have synergistic effects).  
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2.2. Cardiac effects of environmental toxicants in fish 

 

2.2.1. Common cardiotoxic environmental pollutants in fish 

 

The majority of fish kills are caused by human activities including agricultural, 

industrial, municipal and transportation-related activities (La and Cooke 2011). Over the 

recent years, several environmental toxicants have shown to be associated with abnormal 

cardiac function in fish including dioxins (Antkiewicz et al. 2006; Scott et al. 2011; 

Plavicki et al. 2013; Brown et al. 2015, 2016a), PBDEs (Lema et al. 2007), crude oil 

constituants such as PAHs (Incardona et al. 2004; Incardona et al. 2005; Incardona et al. 

2009; Hicken et al. 2011; Jung et al. 2013; Brette et al. 2014; Incardona et al. 2014; 

Raimondo et al. 2014; Brown et al. 2015; Edmunds et al. 2015; Gerger and Weber 2015; 

Incardona et al. 2015; Brown et al. 2016a), and pesticides including AChEIs (Lin et al. 

2007; Jee et al. 2009; Tryfonos et al. 2009; Simoneschi et al. 2014; Watson et al. 2014; 

Du et al. 2015; Pamanji et al. 2015). 

 

2.2.2. Common cardiac disturbances caused by cardiotoxic environmental pollutants in 

fish  

 

The exact mechanisms by which pollutants are causing fish kills often remain 

unknown (La and Cooke 2011). However, based on the existing knowledge, it can be 

speculated that selected environmental toxicants lead to fish kills by depressing cardiac 

hemodynamic function, which can be the result of cardiac developmental abnormalities, 
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cardiac rhythm disturbances, impaired myocardial excitation-contraction coupling, or 

impaired myocardial contractility or relaxation. 

 

Developmental abnormalities may include altered cardiac looping as seen in 

zebrafish exposed to dioxins (Antkiewicz et al. 2006), PAHs (Jung et al. 2013) or 

organophosphates (Pamanji et al. 2014; Du et al. 2015), as well as in mahi mahi 

(Coryphaena hippurus) exposed to PAHs (Edmunds et al. 2015). Abnormal epicardial 

development has been demonstrated in zebrafish exposed to dioxins, and abnormal 

myocardial development has been demonstrated in zebrafish exposed to PAHs or 

organophosphates (Scott et al. 2011; Du et al. 2015; Incardona et al. 2015). For example, 

the study from Incordona et al. (2015) revealed the development of an abnormally 

hypertrophic spongy myocardium. These morphological abnormalities are often 

associated with altered cardiac function manifested as decreased myocardial contractility 

and/or signs of congestive heart failure. Pericardial edema is often identified as a 

cardiotoxic effect in fish (Scott et al. 2011; Incardona et al. 2014; Pamanji et al. 2014; 

Raimondo et al. 2014; Watson et al. 2014; Brown et al. 2015; Edmunds et al. 2015). 

 

Cardiac rhythm disturbances associated with acute exposure to environmental 

toxicants include asystole, 2nd degree (intermittent) atrioventricular conduction block and 

supraventricular or ventricular tachyarrhythmias. Ventricular asystole or standstill was 

reported in zebrafish larvae exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and 

manifested as a beating atrium and a complete loss of visible ventricular contraction 

(Antkiewicz et al. 2006). However, no electrophysiological study was performed to 
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determine if asystole was caused by complete atrioventricular block with no ventricular 

escape rhythm or by ventricular inexcitability. Sinus node arrest in the absence of 

subsidiary pacemaker activity could also explain asystole, but in this case the atrium 

would also not be contracting. Asystole leads to complete cessation of blood flow to vital 

organs and subsequent death. 

 

Second-degree atrioventricular block occurs when one or more atrial impulses 

fail(s) to conduct to the ventricles due to impaired atrioventricular electrical conduction. 

This type of block leads to decreased cardiac output and potentially insufficient perfusion 

of vital organs, especially when the fish is active. 2:1 atrioventricular block (every other 

atrial electrical impulse is being blocked from conducting to the ventricles) was observed 

in zebrafish embryos exposed to PAHs (Incardona et al. 2004). In this case too, the exact 

electrophysiological mechanism was not described and diagnosis was suspected based on 

direct visualization of the heart in zebrafish embryos that are nearly transparent. Lema et 

al. (2007) also observed 4:1, 5:1 and 8:1 2nd degree atrioventricular block in zebrafish 

embryos exposed to different concentrations of PBDE. 

 

Tachyarrhythmias, either supraventricular or ventricular, have been observed 

experimentally in zebrafish embryos exposed to PBDE (Lema et al. 2007), as well as in 

large predatory pelagic fish after the Deepwater Horizon disaster released more than 636 

million liters of crude oil into the northern Gulf of Mexico. Tachyarrhythmias also lead to 

decreased cardiac output secondary to decreased cardiac chamber filling time. Again, the 

electrophysiological mechanisms of these tachyarrhythmias were not described in most of 

these studies, but may include abnormal automaticity or early afterdepolarization-induced 
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triggered activity or re-entry (Gilmour 2015). One study demonstrated that crude oil 

(PAHs) can cause prolongation of the action potential by blocking the delayed rectifier 

potassium current IKr in juvenile bluefin and yellowfin tuna, which predisposes to 

afterdepolarization-induced triggered activity (Brette et al. 2014).  

 

Bradycardia is often encountered in fish exposed to pesticides containing AChEIs 

(Lin et al. 2007; Simoneschi et al. 2014; Watson et al. 2014). However, as for other 

arrhythmias, the electrophysiological mechanisms responsible for bradycardia rarely have 

been explored. Abramochkin et al. (2012) studied the effects of the organophosphorous 

AChEI paraoxon, active metabolite of the insecticide parathion, on different 

electrophysiological parameters, including action potential duration, on isolated atrial and 

ventricular myocardium preparations of cod. Incubation of isolated atrium with paraoxon 

caused significant reduction of action potential duration (which can result in decreased 

contractility) and marked slowing of sinus rhythm. These effects likely cause a serious 

decrease in cardiac output in vivo and, secondarily, death.  

 

One study specifically highlighted the occurrence of altered excitation-contraction 

coupling due to the reduction of calcium (Ca2+) transients through the sarcolemma and 

sarcoplasmic reticulum of ventricular cardiomyocytes in juvenile bluefin and yellowfin 

tuna exposed to crude oil samples obtained from the Deepwater Horizon disaster 

previously mentioned (Brette et al. 2014). 

 

 



	
   18	
  

2.2.3. The zebrafish as a model to evaluate the cardiac effects of environmental 

toxicants 

 

Over the past decade, the zebrafish has been increasingly used as a research model 

for studies of human cardiac development and electrophysiology, as well as for cardiac 

toxicological studies (Figure 4) (Arnaout et al. 2007; Ververk and Remme 2012; 

Bournele and Beis 2016; Brown et al. 2016b; Genge et al. 2016; Sarmah and Marrs 

2016). Zebrafish provide several advantages over other vertebrates, such as low cost, 

small size, easy handling and maintenance, high fecundity, rapid development outside the 

mother’s body, and well-characterized cardiogenesis stages easily visualized through the 

transparent embryos or larvae (Ververk and Remme 2012; Sarmah and Marrs 2016). 

Moreover, the zebrafish genome has been fully sequenced, and approximately 71% of 

human genes have at least one ortholog in the zebrafish genome (Postlethwait et al. 1998; 

Howe et al. 2013; Vornanen and Hassinen 2016). The zebrafish also has a remarkable 

cardiac regenerative capacity, which makes it a valuable model to study myocardial 

regeneration after infarction, the leading cause of death worldwide (Kikuchi 2014; 

Kikuchi 2015; WHO 2017). 

 

The main disadvantage of the zebrafish as a research model for cardiovascular 

development and disease is that the heart is extremely small (see section 2.3.1.), making 

pressure and cardiac output measurements particularly challenging (Genge et al. 2016). 
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Figure 4. Research areas using zebrafish models (Bournele and Beis 2016). SNP: 
single-nucleotide polymorphism. With permission of Springer. 

 

Until recently, mice have been predominantly used for the investigation of 

electrophysiological conditions in humans. However, mice have several limitations for 

modeling cardiovascular disease, including a fast basal heart rate, a large phase-1 

repolarization phase and a short action potential (Ververk and Remme 2012). Despite 

being coldblooded and having a two-chamber heart morphology, the zebrafish has a heart 

rate and action potential shape and duration that more closely resemble those of humans 

(See section 2.3.3.). Over the recent past, the zebrafish has been increasingly used as a 

model to investigate channelopathies, especially human IKr channel-related disease, 

including long QT syndrome (Ververk and Remme 2012). 

 

In toxicology, the zebrafish has been very useful in investigating chemical toxicity 

during prenatal development; heart rate can be counted and cardiac edema can be easily 

visualized in transparent developing embryos with a simple dissecting microscope, and 

more advanced imaging techniques can be used to study cardiac developmental defects 
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(Sarmah and Marrs 2016). The zebrafish embryo has been used to assess the impact of 

exposure to environmental pollutants including dioxins, PAHs, PBDEs, AChEIs (see 

section 2.2.2.), but also exposure to nanoparticles (Chakraborty et al. 2016), alcohol 

(Dlugos and Rabin 2010; Sarmah and Marrs 2016), recreational drugs such as cocaine 

(Mersereau et al. 2015), or cigarette smoke (Ellis et al. 2014). 

 

Many fewer studies have used juvenile or adult zebrafish in toxicology, compared 

with embryos or larvae (Sarmah and Marrs 2016). The effects of cocaine on the heart rate 

of adult zebrafish have been evaluated using electrocardiography (Mersereau et al. 2015). 

Recently, Gerger and Weber (2015) determined the acute effects on ventricular rate in 

adult zebrafish of exposure to the PAH, benzo-a-pyrene, by intraperitoneal injection or 

simple aqueous contact. While electrophysiological data have been obtained in adult 

zebrafish using standard intracellular microelectrode or patch clamp techniques, no study 

has been performed to date to evaluate the effects of environmental pollutants on 

electrophysiological parameters in this species. Thus, there is an opportunity for further 

research using the adult zebrafish as a model in toxicology. 
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2.3.The cardiovascular system in zebrafish (Danio rerio) 

 

2.3.1. Cardiac anatomy 

 

Cardiac anatomy varies considerably among fish species, depending on body 

morphology and physiology (Santer 1985). In zebrafish, the heart is located 

anteroventrally to the thoracic cavity between the operculum and the pectoral girdles 

(Figure 5) (Hu et al 2001; Farrell and Pieperhoff 2011).  The heart is contained in a silver-

coloured membranous sac, the pericardium. More specifically, within the pericardium, 

there are four distinct chambers that comprise the heart: the sinus venosus, the atrium, the 

ventricle, and an outflow tract, called the bulbus arteriosus (Figure 6). However, the fish 

heart is often referred to as being two-chambered, with one atrium and one ventricle (Hu 

et al 2001). 

 

	
  
Figure 5. Anatomy of the adult zebrafish (White et al. 2013). 
With permission of Macmillan Ltd.	
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Figure	
  6.	
  Cardiovascular	
  anatomy	
  of	
  the	
  zebrafish	
  (Hu	
  et	
  al.	
  2001).	
  	
  
With	
  permission	
  of	
  John	
  Wiley	
  and	
  Sons.	
  
 

Blood returns to the heart from the ductus of Cuvier (which receives blood from 

anterior and posterior cardinal veins and lies outside the pericardium), and from hepatic 

portal veins, which opens directly into the sinus venosus (Hu et al 2001; Farrell and 

Pieperhoff 2011).  The sinus venosus is directly connected to the single-chambered 

atrium, which lies dorsal to the ventricle, via the sino-atrial canal. The sino-atrial canal 

has a one-way ostial valve, which prevents blood from back-flowing into the sinus 

venosus when the atrium contracts (Farrell and Pieperhoff 2011). The atrium is then 

connected to the single-chambered ventricle via the atrioventricular orifice and valve (Hu 

et al 2001). The atrioventricular orifice is positioned on the dorsal and anterior portion of 

the ventricle, adjacent to the bulbus arteriosus. The atrioventricular valve has four distinct 

leaflets oriented anterior, posterior, left, and right of the atrioventricular orifice. Finally, 
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the pyramidal ventricle pumps blood through the bulboventricular orifice into a pear-

shaped bulbus arteriosus (Hu et al 2001). The bulboventricular valve is located at the 

anterior portion of the ventricle and has two semilunar valve cusps, one right and one left. 

The bulbus arteriosus is connected to the ventral aorta, which lies outside the pericardium 

and provides blood to the gill vasculature (Hu et al 2001; Farrell and Pieperhoff 2011). 

 

The zebrafish heart is relatively small. The length of the ventricle is approximately 

1 mm in the adult zebrafish, or 4.28% of the body length (Singleman and Holtzman 

2012).  

 

2.3.2. Histology of the zebrafish heart 

 

All cardiac chambers are lined internally with endothelial cells, forming the 

endocardium. The external surface of the heart has a layer of epithelial cells and 

connective tissue called the epicardium, which represents the inner part (infolding) of the 

pericardium.  The cardiac muscle (myocardium) lies between the endocardial and 

epicardial layers. 

 

The atrium of the zebrafish has a thin wall (two to three cell layers) and shows an 

extensive network of pectinate muscles, which are heavily branched (Figure 7) (Hu et al. 

2001). In the ventricle, cardiac muscle is composed of a relatively thin compact layer 

(three to four cells thick) and an extensive spongy network of muscular trabeculae, which 

account for the greater proportion of ventricular mass (Figure 7) (Hu et al. 2000, 2001).  

A network of coronary vessels is present on the epicardial surface of the ventricle and 
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penetrates the compact layer to terminate at the subtrabecular layer level (Hu et al. 2000, 

2001). The trabeculae lack a coronary supply, and likely receive oxygen and nutrients via 

diffusion from blood present in the ventricular cavity (Hu et al. 2001). 

 

  
Figure 7. Ultrastructure of the zebrafish heart (from Hu et al. 2001). A: Scanning 
electron microscopic image of the sagittal section of the left half of a 3 months postfertilization zebrafish 
heart depicting the atrium (A), ventricle (V), bulbus arteriosus (BA), and a portion of the smooth-walled 
ventral aorta (VAo). The asterisk indicates the bulboventricular valve. The arrowhead identifies one of the 
elevated ridges along the inner surface of the bulbar wall. The boxed area on the left side corresponds to B; 
the right box corresponds to C. tr: trabeculae; trf: trabecular fold; pm: pectinate muscle. B: Arrowheads 
point to the coronary vessels, which penetrate into the compact layer (Co) of the ventricular wall. tr: 
trabeculae. C: Arrowheads point to the trabecular bands that act as pillars supporting the leaflet of the 
atrioventricular valve (AV) to prevent retrograde flow. Scale bar = 100 µm in A, 40 µm in B,C. With	
  
permission	
  of	
  John	
  Wiley	
  and	
  Sons.	
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Cardiomyocytes are relatively small and rod-shaped in zebrafish, with ventricular 

myocytes being larger than those found in the atrium (Hu et al. 2001).  Freshly isolated 

ventricular myocytes from adult zebrafish are approximately 100 x 5 x 6 µm in size 

(lengh x width x height; Brette et al. 2008) and are very narrow compared with human 

ventricular myocytes (Figure 8) (Verkerk and Remme 2012). Myofibrils occupy more 

than half of the atrial and ventricular myocytes, and are centrally located in the cell, with 

abundant mitochondria in the periphery (Hu et al. 2001). Sarcoplasmic reticulum is sparse 

in the zebrafish ventricle, and there is no T-tubule system (Hu et al. 2001).  

 

  
Figure 8. Photographs of atrial myocytes of zebrafish and human (enzymatically 
isolated) (Verkerk and Remme 2012). Notice the narrow shape of the zebrafish atrial myocyte. 

 

The distensible bulbus arteriosus has three distinct layers: externa (outer layer), 

media (middle layer) and intima (inner layer) (Figure 9) (Hu et al. 2001). The intima is 

composed of a subendothelium overlying a thin endothelial layer. The media is composed 

of seven to ten layers of helically arranged smooth muscle cells surrounded by a fine 

network of collagen and reticular and elastic fibrils. The externa is composed of the 

external elastic lamina.  
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Figure 9. Cross section of the bulbus arteriosus showing the three concentric layers 
(Hu et al. 2001). The three successive concentric layers of the bulbous arteriosus are marked by line 
bars. EL: endothelial layer. Arrowheads: ridges separating the luminal surface. bc: nucleated red blood cell. 
Hematoxylin-eosin staining. Scale bar 20 µm. With	
  permission	
  of	
  John	
  Wiley	
  and	
  Sons.	
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2.3.3. Cardiac action potentials in zebrafish 

 

Adult zebrafish action potential recordings have been reported for isolated 

ventricular cardiomyocytes using the patch clamp technique (Brette et al. 2008), as well 

as for intact atria and ventricles using a standard intracellular microelectrode technique 

(Nemtsas et al. 2010). These studies showed that the zebrafish adult cardiomyocytes have 

a resting membrane potential of approximately -70 mV and that all phases (0-4) of the 

cardiac action potential are present in the zebrafish heart, except the rapid phase-1 

repolarization (“spike”). Zebrafish action potentials have a rapid upstroke, followed by a 

long lasting plateau phase and a rapid terminal repolarization phase (Figure 10). The 

plateau phase is shorter in atrial than in ventricular tissue. This type of morphology is 

relatively similar to the one found in large mammals such as humans, except for the 

absence of phase 1 (Brette et al. 2008; Nemtsas et al. 2010; Verkerk and Remme 2012; 

Alday et al. 2014, Vornanen and Hassinen 2016). Action potential morphology is 

typically characterized by its duration at different levels of repolarization such as 50% or 

90% (APD 50 or APD 90), its amplitude (APA) and the slope of phase 0, which 

represents the maximum rate of voltage change (dV/dtmax). Average action potential 

parameters measured with sharp microelectrodes in the intact adult zebrafish heart at a 

physiologic temperature of 28°C are summarized in Table 3 (Nemtsas et al. 2010). The 

adult zebrafish spontaneous heart rate (149 ± 8 bpm) is much closer to the human 

spontaneous heart rate (60-100 bpm) than to the mouse spontaneous heart rate (300-600 

bpm) (Nemtsas et al. 2010; Bournele and Beis 2016). 
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Figure 10. Representative shapes of atrial (left column) and ventricular (right 
column) cardiac action potentials in the adult zebrafish (A), human (B) and mouse 
(C) (Nemtsas et al. 2010). Action potentials were recorded from spontaneously beating (149 ± 8 bpm) 
intact zebrafish hearts at 28 °C, while human and mouse cardiac tissues were stimulated at a frequency of 1 
Hz and measured at 37 °C. Zebrafish recordings were obtained from the apical half of the ventricle and 
from the central area of the atrium. Note that the induced heart rate used for the mouse is substantially 
lower than the spontaneous heart rate in this species, which influences action potential morphology.	
  With	
  
permission	
  of	
  Elsevier.	
  
 
Table 3. Action potential parameters in atria and ventricles of adult zebrafish as 
compared with human and mouse (Nemtsas et al. 2010). 
 Atrium  Ventricle 
 Zebrafish Human Mouse  Zebrafish Human Mouse 
n (preparations) 16 28 7  16 5 6 
APA (mV) 100 ± 2 97 ± 2 104 ± 1  99 ± 2 101 ± 4 95 ± 2 
RMP (mV) -74 ± 2 -74 ± 1 -81 ± 2  -72 ± 2 -77 ± 3 -74 ± 1 
dV/dtmax (V/s) 129 ± 9 246 ± 22 239 ± 10  92 ± 5 180 ± 10 166 ± 11 
APD 20 (ms) 29 ± 2 9 ± 2 3 ± 0  69 ± 3 98 ± 5 4 ± 1 
APD 50 (ms) 46 ± 2 148 ± 8 9 ± 1  110 ± 4 165 ± 12 9 ± 3 
AP 90 (ms) 62 ± 2 316 ± 7 42 ± 4  132 ± 4 242 ± 15 82 ± 4 
Action potentials were measured with sharp microelectrodes in intact zebrafish hearts, mouse left atrial 
trabeculae and right ventricular muscle strips, human right atrial appendage trabeculae and right ventricular 
papillary muscles. Recordings were obtained from the apical half of zebrafish ventricles and the central area 
of atria. Zebrafish hearts were beating spontaneously at 149 ± 8 bpm and kept at 28 °C, while human and 
mouse tissues were electrically stimulated at 1 Hz and kept at 37 °C. APA, action potential amplitude; 
RMP, resting membrane potential; dV/dtmax, maximum depolarization velocity; APD 20, APD 50 and APD 
90, action potential duration measured at 20%, 50% and 90% of repolarization, respectively. With	
  
permission	
  of	
  Elsevier.	
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In ectothermic fish, the duration of the action potential varies with body 

temperature within the thermal tolerance range from 6.2°C to 41.7°C (Lopez-Olmeda and 

Sanchez-Vazquez  2011;Vornanen 2016; Vornanen and Hassinen 2016). For example, at 

19°C the duration of the ventricular action potential in zebrafish is similar to the one in 

humans at 37°C. However, at 37°C the duration of the ventricular action potential in 

zebrafish only represents one fifth of the human action potential (Vornanen and Hassinen 

2016). Action potential recordings have also been reported in embryonic zebrafish 

through the use of a patch clamp technique (Jou et al. 2010), and voltage sensitive dyes 

(Panáková et al. 2010; Wythe et al. 2011). 

 

2.3.4. Ion currents contributing to the action potential 

 

2.3.4.1. Sodium currents 

 

As in mammals, the rapid upstroke of the zebrafish cardiac action potential (phase 

0) is generated by a fast sodium (Na+) current (INa), in the atrium and in the ventricle. The 

current flows through voltage-gated Na+ channels, as demonstrated by Nemtsas et al. 

(2010). Indeed, exposure of the heart to the specific Na+ channel blocker tetrodotoxin 

induced a significant reduction in upstroke velocity to 25% in the atrium and 19% in the 

ventricle (reduced dV/dtmax), as well as a reduction in APA.  On the other hand, the 

duration of the action potential was not affected by tetrodotoxin, suggesting that there is 

no sustained (non-inactivating) INa. A study using isolated ventricular cardiomyocytes 

indicated that the density of the Na+ current in zebrafish was approximately four times 
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smaller than in mammals (Brette et al. 2008). In zebrafish, two Na+ channel isoforms, 

coded by the genes scn5Laa and scn5Lab, were found in larval cardiac tissue (72 hpf) 

(Novak et al. 2006; Vornanen and Hassinen 2016). These genes are orthologous to the 

mammalian gene SCN5A, and are required for cardiac development (Chopra et al 2010). 

In the adult zebrafish, only scn5Lab has been identified (Chopra et al 2010; Vornanen and 

Hassinen 2016). 

 

2.3.4.2. Calcium currents 

 

Ca2+ currents are necessary for the plateau phase (phase 2) of the action potential 

and they participate in contraction by triggering the interaction between actin and myosin. 

Two types of Ca2+ currents (ICa) have been demonstrated in adult zebrafish atrial and 

ventricular cardiomyocytes: the T-type (ICaT) and the L-type (ICaL) currents (Vornanen 

and Hassinen 2016).  

 

The L-type Ca2+ channel blocker nifedipine causes shortening of the action 

potential duration, and the ICaL activator BayK8644 causes prolongation of the QT 

interval in a dose-dependant manner, indicating that ICaL is responsible for the plateau 

phase of the action potential (phase 2) (Nemtsas et al. 2010; Tsai et al. 2011). Patch-

clamp recordings demonstrated that ICaL was associated with a fast run-down or decrease 

during the first few minutes after membrane rupture (Nemtsas et al. 2010). This 

phenomenon may be explained by the small cell size, which can cause run-down due to 

loss of important intracellular factors during cell dialysis (Nemtsas et al. 2010). 
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Alternatively, it may be a characteristic property of zebrafish α1C-channel subunits caused 

by the C-terminal sequence, which is reported to play an important role in run-down 

(Kepplinger et al. 2000, Nemtsas et al. 2010). It was also demonstrated that in the 

zebrafish, ventricular contraction was abolished by mutation in the α1C-channel subunit 

(Vornanen and Hassinen 2016). This subunit, also named Cav1.2, is the dominant cardiac 

isoform in mammals among four subunits (α1S, α1C, α1D, α1F, or Cav1.1-4), suggesting that 

it is produced by orthologous genes in mammals and zebrafish (Vornanen and Hassinen 

2016). Transcripts of the α1D-channel subunit are also expressed in the hearts of adult 

zebrafish (Sidi et al. 2004; Vornanen and Hassinen 2016). Notably, there is a significantly 

larger density of ICaL in zebrafish ventricular cardiomyocytes than in human 

cardiomyocytes (Zhang et al. 2011; Vornanen and Hassinen 2016). 

 

The expression of T-type Ca2+ channels in atrial and ventricular cardiomyocytes in 

the adult zebrafish was demonstrated by Nemtsas et al. (2010). ICaT was identified using 

the following criteria: 1) the potential range of activation (usually a low-voltage range), 2) 

insensitivity to nifedipine, 3) high sensitivity to nickel (Ni2+), and 4) resistance to 

tetrodotoxin for discrimination from INa. This substantial expression of T-type Ca2+ 

channels in adult zebrafish is very different from many mammalian hearts, where T-type 

Ca2+ channels are only expressed in the fetal heart and pathologically in the adult 

(Nemtsas et al. 2010). Two cardiac subunits for T-type Ca2+ channels are known in 

mammals, α1G and α1H (respectively also named Cav3.1 and Cav3.2). In zebrafish, T-type 

Ca2+ channels most likely consist of the subunit α1G based on their sensitivity to Ni2+ 

(Nemtsas et al. 2010). However, immunofluorescence findings suggested the presence of 

α1H subunits (Alday et al. 2014). Some authors speculate that the presence of ICaT 
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indicates that zebrafish cardiomyocytes in adults have a more immature phenotype than 

adult mammalian cardiomyocytes (Nemtsas et al. 2010). 

 

2.3.4.3. Potassium currents 

 

• Delayed rectifier potassium currents  

In zebrafish cardiomyocytes, only the IKr current has been clearly demonstrated by 

using the IKr blocker E4031, which substantially prolonged APD. This result sugests that 

the zebrafish heart does display an ether-à-go-go related gene (Nemtsas et al. 2010, Alday 

et al. 2014, Vornanen and Hassinen 2016). IKr is the main repolarizing potassium (K+) 

current in the atrial and ventricular myocytes, and is active during phase 2 and phase 3 of 

the cardiac action potential. Some studies suggest that zebrafish possess an ortholog of 

the mammalian KCNH2 gene called zerg (also called HERG in humans) coding for the 

pore-forming subunit of the K+ channel (Langheinrich et al. 2003; Arnaout et al. 2007; 

Scholtz et al. 2009; Leong et al. 2010). When this orthologous gene was mutated, 

zebrafish embryos exhibited electrocardiographic changes similar to humans with long 

QT syndrome LQT2, including increased Q-T interval and atrioventricular block 

(Langheinrich et al. 2003). Vornanen and Hassinen (2016) suggested that as opposed to 

mammals, IKr was mostly produced by erg2 channels, which are encoded by the zebrafish 

ortholog to the mammalian KCNH6 gene, mainly expressed in the nervous tissue and not 

in the heart, instead of erg1 channels (KCNH2 gene) mainly expressed in the mammalian 

heart. 
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The presence of IKs in zebrafish cardiomyocytes is still controversial (Verkerk and 

Remme 2012; Vornanen and Hassinen 2016). Nemtsas et al. (2010) concluded that IKs 

had no significant role in repolarization in adult zebrafish cardiomyocytes, because the IKs 

blocker HMR 1556 had no effect on membrane outward currents during patch-clamp 

recordings on isolated cardiomyocytes. In contrast, Tsai et al. (2011) found that the IKs 

blocker chromanol 293B prolonged both QT interval and action potential duration in a 

dose-dependent manner in adult zebrafish cardiomyocytes, suggesting the presence of IKs. 

Transcripts orthologous to the mammalian KCNQ1 gene are also expressed in the 

zebrafish heart (Wu et al. 2014). In mammals, the KCNQ1 gene encodes for the α-subunit 

(Kv7.1), which is part of the K+ channel responsible for IKs (Vornanen and Hassinen 

2016). Moreover, IKs has been identified in another species of the zebrafish family 

(Cyprinidae), Carassius carassius (Hassinen et al. 2011). In this case, IKs was mainly 

produced by homotetramers of Kv7.1 channel without the MinK β-subunit as in 

mammals. In humans, it was demonstrated that IKs blockade significantly increases APD 

only when “repolarization reserve” is attenuated or with sympathetic activation (Jost et al. 

2005; Verkerk and Remme 2012). This phenomenon may explain the contrasting results 

of studies assessing the effect of IKs blockade on the zebrafish action potential. 

• Inward rectifier potassium current 

As in mammals, a robust background of the inwardly rectifying K+ current IK1 is 

present in the atrial and ventricular cardiomyocytes of the zebrafish (Hassinen et al. 2015; 

Vornanen and Hassinen 2016). This current is also blocked by barium (Ba2+) (Hassinen et 

al. 2015). IK1 mainly participates in the maintenance of the resting membrane potential 

(phase 4), but also plays a role in early depolarization and late repolarization (phase 3). 
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However, marked differences were seen in terms of the composition of the channel 

responsible for IK1 compared with mammals. The main channel isoform identified in the 

zebrafish ventricle is Kir2.4, which represents 92.9 % of the total Kir2 population. In the 

zebrafish atrium, Kir2.2a and Kir2.4 represent 64.7 % and 29.3 % of the Kir2 transcripts, 

respectively (Hassinen et al. 2015; Vornanen and Hassinen 2016). In humans, by contrast, 

Kir2.4 is hardly expressed in cardiomyocytes and Kir2.1, Kir2.2 and Kir2.3 are 

predominant. These findings may have functional implications, as the zebrafish Kir2.4, 

for example, is approximately two times more sensitive to Ba2+ than its mammalian 

counterpart (Vornanen and Hassinen 2016). 

 

2.3.4.4. Other ionic currents 

 

• IK,ATP: The ATP-sensitive channels Kir6.1, Kir6.2 and Kir6.3 are present in the 

zebrafish genome, occupying three different chromosomes. Kir6.1 and Kir6.2 are 

orthologs to Kir6.1 and Kir6.2 of mammals (Zhang et al. 2006; Vornanen and 

Hassinen 2016). While Zhang et al (2006) presented Kir6.3 as a new member of 

the inward rectifier K+ channel family; others consider Kir6.3 as a paralog of 

Kir6.2 (i.e., Kir6.2b) (Vornanen and Hassinen 2016). 

• IK,ACh: Acetycholine (ACh) induces a large inwardly rectifying K+ current in the 

zebrafish heart (Nemtsas et al. 2010; Vornanen and Hassinen 2016). However, 

this effect is limited to the atrium and the molecular basis of this current has not 

been described at this time (Vornanen and Hassinen 2016). 

• Ih or If: The “pacemaker current” Ih has been identified in the zebrafish heart. The 
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slow mo mutation reduces Ih and heart rate in embryos and adult zebrafish (Baker 

et al. 1997; Warren et al. 2001). The transcription factor Isl1 is the first identified 

molecular marker for pacemaker cells in the zebrafish heart, and its expression in 

pacemaker cells is conserved from fish to human (Tessadori et al. 2012). Thanks 

to this marker, it was determined that the functional pacemaker of the zebrafish 

was likely organized as a ring around the venous pole (Figure 11) (Tessadori et al. 

2012). The presence of the hyperpolarization-activated cyclic nucleotide-gated ion 

channels HCN4, which are characteristic of mammalian pacemaker cells, was also 

detected in this region of the zebrafish heart (Tessadori et al. 2012; Stoyek et al. 

2015). 

 

 
Figure 11. Expression of Isl1 and likely location of the functional pacemaker in the 
adult zebrafish heart (Tessadori et al. 2012). A: Sagittal section through zebrafish heart labeled 
with the myocardial marker myl7. sv: sinus venosus; a: atrium; avc: atrioventricular canal; v: ventricle; ba: 
bulbus arteriosus.The box indicates the region of the sinoatrial junction. B: 3D reconstruction of the 
sinoatrial junction. Isl1 (yellow) is expressed around the entire sinoatrial junction, forming a ring-like 
structure.  
  

A	
   B	
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2.3.5. Excitation-contraction coupling 

 

As in all vertebrate hearts, cardiac contraction in zebrafish is caused by the 

generation of cross bridges between thick filaments composed of the protein myosin, and 

thin filaments mainly composed of the protein actin (Gillis 2011). The thin filaments of 

actin contain two chains that intertwine in a helical pattern, and each actin filament is 

carried on a twisting backbone of the heavier tropomyosin protein (Opie 2004). Each 

thick filament of myosin is composed of hundreds of myosin molecules that have a head 

and a tail. The tails are aligned side by side but the heads emerge in a spiral fashion. 

Within the cardiomyocytes, thick and thin filaments are arranged in a parallel overlapping 

patterns within structures called sarcomeres. Necessary to the interaction between actin 

and myosin are the cardiac troponin (cTn) complexes that occur at regular intervals along 

tropomyosin (Figure 12). Each cTn complex is composed of three types of proteins: the 

cardiac troponin C (cTnC, C for Ca2+) responds to the Ca2+ released as a result of the 

action potential during systole, and binds to the inhibitory molecule troponin I (cTnI, I for 

inhibitor) that otherwise restricts the interaction between actin and myosin heads. When 

Ca2+ is low, as in diastole, cTnI binds to actin to inhibit myosin interaction. Troponin T 

(cTnT, T for tropomyosin) is involved in distributing the inhibitory effect of the cTn 

complex, via tropomyosin, to other actin monomers with which it interacts in the absence 

of Ca2+. In the presence of Ca2+, cTnT removes these inhibitions. Thereby, Ca2+ handling 

has a key role in excitation-contraction coupling. 
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Figure 12. Schematic diagram of the cardiac sarcomere and of the regulatory 
complex associated with the actin filament responsible for making the contractile 
reaction activated by calcium (Gordon et al. 2001; Gillis 2011). TnC: troponin C; TnI: 
troponin I; TnT: troponin T. With permission of Elsevier. 
 

In mammals, the wave of depolarization leads to an influx of extracellular Ca2+ 

through the L-type calcium channels, which triggers the release of more Ca2+ from the 

sarcoplasmic reticulum by the process of Ca2+-induced Ca2+ release with activation of the 

ryanodine receptors (Opie 2004). This process requires a direct interface between the cell 

membrane and the sarcoplasmic reticulum membrane, which is made possible in 

mammalian cardiomyoctes by invaginations of the cell membrane called T-tubules. The 

cytosolic Ca2+ then increases and contraction occurs. During relaxation, cytosolic Ca2+ 

decreases thanks to the activity of the ATP-dependent Ca2+ uptake pump of the 

sarcoplasmic reticulum called SERCA, as well as trans-sarcolemmal calcium efflux 

through the Na+- Ca2+ exchanger (NCX) and a sarcolemmal Ca2+-ATPase.  
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As opposed to the situation in mammals, T-tubules are absent in zebrafish 

cardiomyocytes (Brette et al. 2008; Bovo et al. 2013; Haustein et al. 2015), and ryanodine 

receptors are not sensitive to the mechanism of Ca2+-induced Ca2+ release (Bovo et al. 

2013). As a result, trans-sarcolemmal Ca2+ influx has been suggested to be the main 

contributor to the increase in cytosolic Ca2+ (Ca2+ transient) during cardiac contraction 

while Ca2+-induced Ca2+ release from the sarcoplasmic reticulum appears to be less 

important (Figure 13) (Brette et al. 2008; Zhang et al. 2011; Bovo et al. 2013). The 

absence of T-tubules is compensated by the small diameter of fish cardiomyocytes and 

the presence of flask-like invaginations of the membrane (caveolae), both of which 

increase the cell surface-to-volume ratio (Galli 2011). This also would explain the larger 

density of ICaL in zebrafish ventricular cardiomyocytes compared with large mammals 

such as humans (Zhang et al. 2011; Vornanen and Hassinen 2016). However, a recent 

study in zebrafish suggests that sarcoplasmic Ca2+ release is more important than 

previously thought, especially in contractile force generation (Haustein et al. 2015). In 

contrast to mammals, it also was demonstrated that the force-frequency relationship is 

strongly negative in the zebrafish heart (Haustein et al. 2015). Mechanisms of relaxation 

have not been fully determined in zebrafish, but studies suggested that NCX significantly 

contributes to Ca2+ removal (Bovo et al. 2013; Haustein et al. 2015). This also was shown 

to be the primary pathway to remove cytosolic Ca2+ during relaxation in rainbow trout 

cardiomyocytes (Shiels 2011). 



	
   39	
  

 
Figure 13. Calcium handling in the fish cardiomyocyte (Shiels 2011). The sarcolemma 
(SL) is being excited by an action potential (AP), which opens L-type Ca2+ channels (LTCC) in the cell 
membrane allowing Ca influx (red arrows) down its concentration gradient into the cell. Calcium can also 
enter the cell via reverse-mode Na+–Ca2+ exchange (NCX). Calcium influx can trigger calcium release from 
the sarcoplasmic reticulum (SR) through ryanodine receptors (RyR). Together, these calcium influxes cause 
a transient rise in calcium that initiates contraction at the myofilaments. Relaxation occurs when calcium is 
removed from the cytosol (green arrows) either back across the SL via forward-mode NCX or back into the 
SR via the SR Ca2+-pump (SERCA). With permission of Elsevier. 
 

As for cardiac action potentials, Ca2+ handling during excitation-contraction 

coupling depends on the environmental temperature (Shiels 2011; Vornanen 2016). The 

amplitude of the rising phase of the Ca2+ transient is correlated with the temperature: 

warm temperatures tend to increase the rate of rise of the Ca2+ transient and low 

temperatures tend to decrease the rate. This observation is partially caused by the L-type 

Ca2+ channels, which show increased kinetics at warm temperatures (Shiels 2011). 

Certain hormones can also play a role, such as epinephrine, which stimulates Ca2+ influx, 

and can counteract the effect of low temperatures when higher cardiac output is needed. 

In contrast to L-type Ca2+ channels, the activity of NCX is not significantly affected by 

the environmental temperature. However, the activity of SERCA is very temperature-
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dependent and its activity decreases markedly when temperature decreases (Shiels 2011). 

In this case as well, epinephrine can counteract this depression effect of cold temperatures 

by activating phospholamban, an accessory protein attached to SERCA (Shiels 2011). 

 

2.3.6.  Cardiovascular control: innervation of the zebrafish heart. 

 

As in mammals, cardiac output of zebrafish is regulated based on the body’s 

oxygen and metabolic demands and oxygen supply. The autonomic nervous system is the 

main controller of cardiac output by regulating heart rate and contractility, and is 

composed of the cranial limb or parasympathetic limb that causes cardioinhibition, and 

the spinal limb or sympathetic limb that causes cardioexcitation (Figure 14) (Nilsson 

2011; Zaccone et al. 2011; Stoyek et al. 2015). Each pathway is composed of two 

neurons, the preganglionic and postganglionic neurons.  

 

For the cranial autonomic limb, preganglionic neurons originate in vagal motor 

nuclei of the brainstem and project in the vagus nerve to synapse on postganglionic 

neurons in the intracardiac nervous system (Stoyek et al. 2015). Between the pre- and 

postganglionic neurons, the neurotransmitter ACh is released in the synaptic junction 

acting at postsynaptic nicotinic receptors. ACh also is released at the synaptic junction 

between postganglionic neurons and the myocardium, but it binds to muscarinic receptors 

(Stoyek et al. 2015).  

 

For the spinal autonomic limb, preganglionic neurons originate in spinal cord 
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nuclei and their axons leave the cord to synapse on somata of postganglionic neurons in 

the paravertebral ganglia. ACh is released at the preganglionic synaptic junctions acting 

on nicotinic receptors, and epinephrine or norepinephrine is released at the postganglionic 

synaptic junction acting on adrenergic receptors (Stoyek et al. 2015). Although the vagus 

is only parasympathetic at its origin, it receives postganglionic fibres from the 

sympathetic chain in the head region, creating the vagosympathetic trunk (Zaccone et al. 

2011). 

 

In teleost fish, chromaffin cells controlled by preganglionic neurons also cause 

cardioexcitation by releasing catecholamines into the bloodstream (Figure 14) (Nilsson 

2011). 

 

 
Figure 14. Autonomic cardiac control in teleost fish (Nilsson 2011). CATs: 
catecholamines; Symp: sympathetic; VS: vagosympathetic; X: vagus. With permission of Elsevier. 

 

The intracardiac nervous system in the zebrafish has been described in detail by 

Stoyek et al. (2015, in press). This work showed that all cardiac chambers were 

innervated using the pan-neuronal markers AcT and Hu (Figure 15). A major nerve 
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plexus called the sinoatrial plexus is located at the sinoatrial junction and receives inputs 

from the cardiac vagosympathetic rami. A few of these rami also project to the atrial wall 

and the atrioventricular junction. A second nerve plexus also is present at the 

atrioventricular junction surrounding the valve. The ventricle and bulbus arteriosus also 

are innervated by axons arising from the venous pole or entering the heart along the aorta. 

 

 
Figure 15. Organization of intracardiac nervous system demonstrated with 
acetylated tubulin (AcT) and human neuronal protein (Hu) immuhistochemistry 
(Stoyek et al. 2015). A,B: Whole mount of heart (A) and schematic (B) show an overview of the 
chambers of the heart and the major elements of cardiac innervation. Blood passes serially from the paired 
ducts of Cuvier (DC) into the sinus venosus (SV), through the sinoatrial valves and into the atrium (A), then 
into the ventricle (V), the bulbus arteriosus (BA), and the ventral aorta (VA) to the gills. The lower-boxed 
areas in A and B correspond to the region containing the sinoatrial valve, where the sinoatrial plexus (SAP) 
is located. The upper-boxed areas correspond to the region of the atrioventricular plexus (AVP) at the 
atrioventricular junction. RX, LX: right and left vagosympathetic trunks. With permission of John Wiley 
and Sons. 

 

Cholinergic innervation was demonstrated using immunoreactivity for choline 

acetyltransferase (ChaT), an enzyme involved in ACh synthesis, as well as an antibobody 

against vesicular acetylcholine transporter (VAChT) (Stoyek et al. 2015). The vast 
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majority of neurons in the sinoatrial region (sinoatrial plexus) showed uptake with ChaT 

and VAChT and thus were determined to be cholinergic. Muscarinic cholinergic type 2 

receptors (M2R) were also identified using immunohistochemical methods mainly in the 

sinoatrial and atrioventricular junctions where putative pacemaker cells were determined 

to be, as well as in the atrial and ventricular myocardium (Stoyek et al. in press). The 

density of M2R appeared to be significantly higher in the atrial myocardium than in the 

ventricular myocardium. All these regions also expressed adrenergic β2 receptors, but the 

density of this receptor was higher in the ventricular myocardium than in the atrial 

myocardium (Stoyek et al. in press). 

 

In summary, the zebrafish heart has been increasingly used as a model of 

mammalian, and especially human cardiac function. Zebrafish have similar properties to 

human hearts with respect to heart rate and action potential duration and morphology, 

although they differ with respect to the cardiac structure and ultrastructure and the 

molecular basis of the components of some cardiac ionic currents (Genge et al. 2016). On 

the whole, zebrafish are an attractive and useful model to study human electrophysiology. 

For the present study involving fish kills, they also appear to be a representative model 

for freshwater fish in general.  

 

To test the hypothesis that selected environmental toxicants lead to increased fish 

morbidity and mortality by precipitating cardiac rhythm disturbances, adult zebrafish 

hearts were exposed to selected toxicants in vitro in order to characterize their effects on 

action potential morphology.  
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3. Materials and methods 

 

3.1. Animals 

 

Wild-type zebrafish were obtained from two commercial suppliers (Aquatron 

Laboratory, Dalhousie University, Halifax, NS and Pet Culture, Charlottetown, PE). They 

were maintained in separate 20 L glass aquaria (40 x 20 x 25 cm) at a stocking density of 

maximum 1.5 fish/L. Temperature was maintained at approximately 27 °C by 

submersible heaters. The water was filtered through multistage external power filters with 

mechanical, chemical and biological components. Water aeration was provided using air 

stones. The light cycle was 10 hours on 14 hours off and fish were fed flake food daily 

(Nutrafin Max, Hagen, Montreal, QC). The mean ± standard deviation fish weight was 

1.09 g ± 0.41 (based on a sample of 20 fish from both providers). All fish were 

maintained and treated according to ethical guidelines of the CCAC; this project was 

approved by the University of Prince Edward Island Animal Care Committee (Protocol 

number: 13-020; File number: 6005334).  

 

3.2. Procedures common to all experiments 

 

• Fish euthanasia and heart explantation 

Zebrafish were euthanized using a two-step procedure. They were first 

anesthetized using tricainemethanesulfonate (TMS; 100-150 mg/L of water bath, buffered 

with sodium bicarbonate using a 1:1 ratio) (Matthews and Varga 2012; Leary et al. 2013; 

Spears et al. 2014). Secondly, after cessation of opercular movements, their hearts 
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(including atrium, ventricle and bulbus arteriosus, Figure 16) were rapidly excised under 

stereomicroscopy following a midline sternotomy and were immediately transferred to a 

plexiglas chamber, where they were immobilized to the floor of the chamber using a 

bipolar stimulating electrode and superfused with Tyrode’s solution (containing no TMS) 

at room temperature (approximately 20 °C) at a rate of approximately 30 ml/hour. All 

hearts were allowed to equilibrate for at least 15 min before intracellular action potentials 

were recorded (Nemtsas et al. 2010). Tyrode’s solution was of the following composition 

(in mM): NaCl 124, KCl 4, CaCl2 0.5, MgCl2 0.7, NaHCO3 24, NaHPO4 0.9, and D-

glucose 5.5. CaCl2 concentration was reduced in order to decrease contractility and obtain 

more stable recordings. Although a stimulating electrode was used to immobilize the 

heart, no stimulation was used for the purpose of the present study. 

 

 
Figure 16. Adult zebrafish heart after explantation from the throracic cavity. The 
heart measures approximately 1 mm in diameter. A: atrium; V: ventricle; BA: bulbus arteriosus. 
 

• Action potential recordings 

The setup is shown in Figure 17. Transmembrane action potentials were recorded 

with sharp machine-pulled glass capillary electrodes (1 mm diameter borosilicate 

V	
  

A	
  
BA	
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capillaries, World Precision Instruments, Saratosa, FL) filled with 3M KCl connected to 

an amplifier (Duo 773,World Precision Instruments, Saratosa, FL) via a Ag/AgCl wire 

and a probe (712P, World Precision Instruments, Saratosa, FL). The reference electrode 

(Ag/AgCl pellet, World Precision Instruments, Saratosa, FL) was immersed in the bath 

and connected to the amplifier. The amplifier was connected to an oscilloscope (2522A, 

BK Precision, Yorba Linda, CA) and to a personal computer. Each heart was visualized 

using a fixed stage upright microscope (Olympus BX51WP, Richmond Hill, ON) placed 

on a vibration isolation table (Technical Manufacturing Corporation, Peabody MA) in a 

custom-made Faraday cage, and recordings were obtained from the epicardial surface of 

the heart. The microelectrode was positioned using a hydraulic micromanipulator 

(MP285, Sutter Instrument Company, Novato, CA). Action potentials from stable 

impalements were recorded with a sampling rate of 1 or 10 kHz using a custom written 

data acquisition program (Real Time Experiment Interface RTXI, rtxi.org) and off-line 

analysis was performed using custom-written programs written in MATLAB 

(MathWorks, Natick, MA). Measured parameters included APD 90, APD 50 and APA. 

For each recording, parameters were measured from 10 consecutive action potentials and 

were averaged. The solutions used for superfusion were contained in 60 mL syringes and 

switched manually using three-way stopcocks. All treatments were diluted in Tyrode’s 

solution (same formula as above). When solutions were switched (from plain Tyrode’s 

solution to a treatment), action potential parameters were measured only once a stable 

morphology could be visualized on the oscilloscope (typically 15-30 min after switching). 
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Figure 17. Intracellular action potential recording setup. 1: vibration isolation table; 2: 
supertable with Faraday cage; 3: microscope; 4: hydraulic micromanipulator; 5: controller unit for hydraulic 
micromanipulator; 6: superfusion system; 7: waste; 8: amplifier; 9: oscilloscope; 10: personal computer. 
 

3.3. Treatments 

 

All treatments performed are summarized in Table 4. The compounds that were 

tested are summarized in Table 5. 
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3.3.1. Choice of toxicants to investigate 

 

The choice of toxicants to investigate was based on the list of agricultural 

pesticides commonly used in PEI, as well as past fish kills in PEI for which specific 

pesticides have been identified in run-offs and may have contributed to fish mortality: 

• Chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile)  

Chlorothalonil is a broad-spectrum organochlorine fungicide and mildewicide 

extensively used on PEI’s potato crops (Van Scoy and Tjeerdema 2014; DCLE 2015c). It 

has been suspected of contributing to several fish kills in PEI over the past 20 years 

(Mutch 2002; MacPhail 2013). The effect of chlorothalonil on the ventricular action 

potential morphology was qualitatively assessed using a concentration found in PEI run-

off (3.8 nM or 0.2 µg/ml) and with a high concentration (94.0 nM or 5 µg/ml) (Purcell 

and Giberson 2007). No visible change of action potential morphology was identified 

with a low concentration and the effect seen with a high concentration (mainly shortening 

of APD) was similarly seen when hearts were exposed to chlorothalonil’s vehicle, 

acetonitrile, exclusively. Based on these preliminary observations, further experiments 

with this pesticide were not pursued.  

 

• Acetylcholinesterase inhibitors (AChEIs)  

AChEIs such as organophosphates or carbamates are very commonly used as 

pesticides in agriculture and cause toxic effects due to the accumulation of the 

neurotransmitter ACh at parasympathic neuroeffector junctions (Roberts and Reigarts 

2013). Organophosphates primarily act by phosphorylation of the acetylcholinesterase 

enzyme (AChE), while carbamates act by carbamylation of AChE (Roberts and Reigarts 
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2013). The decision to investigate the effect of AChEIs on zebrafish action potential 

morphology was motivated by the extensive use of this class of pesticide in PEI (DCLE 

2015c). Indeed, mancozeb, a dithiocarbamate fungicide, represents the leading pesticide 

sold in PEI in kilograms per year and was suspected to contribute to several fish kills in 

PEI (MacPhail 2013; DCLE 2015c). Phorate is the most commonly sold organophosphate 

(in kilograms per year) in PEI (DCLE 2015c). Moreover, a study from Abramochkin et 

al. (2008) revealed that exposure of cod atria to high concentrations of ACh caused 

suppression of electrical activity, an effect called the “cholinergic non-excitability 

phenomenon”. Preliminary qualitative experiments revealed a visible effect on atrial 

action potential morphology of ACh at a high concentration (10 µM) and further 

experiments evaluating the effects of ACh, a documented AChEI, physostigmine, and the 

commonly used pesticides mancozeb and phorate were pursued. Action potential 

recordings were performed on the atrium, because cholinergic innervation appears more 

prominent in the atrium than in the ventricle (Newton 2010; Stoyek et al. 2015). 

 

3.3.2. Treatments with acetylcholine (treatments 1a, 1b and 1c) 

 

Because the effect of ACh on the atrial action potential morphology had not been 

previously investigated in zebrafish, initial experiments consisted of evaluating the effects 

of a low concentration of ACh (1 µM, n = 5, treatment 1a) as well as a high concentration 

of ACh (10 µM, n = 6, treatment 1b) on APD 90, APD 50 and APA. The same 

impalements were maintained throughout these experiments.  
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The reversible effect of ACh was assessed after exposure to a high concentration 

of ACh (treatment 1b) while maintaining the same atrial impalements. After recordings 

were obtained following exposure to ACh 10 µM, all preparations were superfused with 

Tyrode’s solution until the action potential morphology had stabilized (approximately 15-

30 min). APD 90, APD 50 and APA, were again measured after ACh was washed-out. 

 

In order to assess whether ACh was acting via muscarinic receptors, another set of 

experiments was performed (n = 5). Each heart was exposed to a high concentration of 

ACh (10 µM), followed by atropine (1 µM, antagonist of the muscarinic receptors) + ACh 

(10 µM) (treatment 1c). Because the same impalement could not be maintained during all 

experiments of this set, only APD 90 was measured at baseline (Tyrode’s solution), after 

exposure to ACh (10 µM), and after exposure to atropine (1 µM) + ACh (10 µM). 

 

3.3.3. Treatment with physostigmine (treatment 2) 

 

The effect of a documented AChEI, physostigmine (50 µM), was assessed on 

APD 90, APD 50 and APA in the presence of a low concentration of ACh (1 µM) (n = 6). 

The same atrial impalements were maintained throughout these experiments. It has been 

previously documented that physostigmine at a concentration of 50 µM significantly 

reduces AChE activity in zebrafish embryos (Küster 2005). 
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3.3.4. Treatment with mancozeb (treatment 3) 

 

The effect of the pesticide mancozeb (18.5 µM or 10 mg/L) was assessed on APD 

90, APD 50 and APA in the presence of a low concentration of ACh (1 µM) (n = 6). The 

same atrial impalements were maintained throughout these experiments.  

 

3.3.5. Treatment with phorate (treatment 4) 

 

The effect of the pesticide phorate (38.4 µM or10 mg/L) was assessed on APD 90, 

APD 50 and APA in the presence of a low concentration of ACh (1 µM) (n = 6). The 

same atrial impalements were maintained throughout these experiments.  

 

Table 4: Summary of the different treatment protocols. 

Treatment 
group 

Treatment performed Number of 
experiments (n) 

1a ACh 1 µM 5 
1b ACh 10 µM, followed by washing with Tyrode’s solution 6 
1c ACh 10 µM, followed by atropine 1 µM + ACh 10 µM 4 
2 Physostigmine 50 µM + ACh 1 µM 5 
3 Mancozeb 18.5 µM (10 mg/L) + ACh 1 µM 6 
4 Phorate 38.4 µM (10 mg/L) + ACh 1 µM 6 
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Table 5: Mechanisms of action, chemical properties, and structures of the tested 
compounds (INERIS 2017; NCBI 2017). 
 

Molecule 
Mechanism of action 

and chemical 
properties 

Structure 

Acetylcholine  
chloride 

- Cholinergic receptor 
agonist  
- MW: 181.7 g/mol 
- Solubility in water: 100 
mg/mL 
 

 Cl- 
Physostigmine 
hemisulfate 

- Cholinesterase inhibitor 
(carbamate) 
- MW: 324.4 g/mol 
- Solubility in water: 32 
g/L 
 

 1/2H2SO4 
Mancozeb - Cholinesterase inhibitor 

(carbamate) 
- MW: 541.1 g/mol 
- Solubility in water: 2-20 
mg/L 
 

 

Phorate - Cholinesterase inhibitor  
(organophosphate) 
- MW: 260.4 g/mol 
- Solubility in water: 50 
mg/L 
 

 
 

3.4. Statistical Analysis 

 

All statistical analysis was performed using Prism 7 for Mac OS X (GraphPad 

Software, La Jolla, CA). Each treatment was considered to be an independent set of 

independent experiments (one fish per experiment). For treatments 1a, 3 and 4, 

differences between baseline values and post-treatment values for each parameter (APD 



	
   53	
  

90, APD 50 and APA) were assumed to be normally distributed based on Shapiro-Wilk 

normality tests and graphical examination of residuals, and were compared using paired t-

tests. Statistical significance was defined as P < 0.05. In order to address potential Type I 

error, it was mentioned whether or not statistically significant results would withstand 

Bonferroni’s correction. Bonferroni’s correction was applied to paired t-test results by 

dividing the alpha of 0.05 by 3, the number of variables tested within each treatment 

(APD 90, APD 50 and APA) to obtain a lower P-value of 0.0167. 

 

Non-parametric Friedman tests were used for treatments 1b and 1c (In these cases 

assumptions for repeated measures ANOVA could not be met). Multiple comparisons 

were performed using Dunn’s tests. 

 

Because the experiments of treatment 1b were chronologically performed first, a 

power analysis based on the results of this treatment revealed that at least 4 experiments 

were necessary to detect a significant change (P < 0.05) in APD 90 with a power of 80% 

(G*Power, version 3.1.9.2, Heinrich Heine Universität, Düsseldorf). Based on these 

results, at least 4 experiments (4 different fish) were used for other treatments (1a, 2, 3 

and 4).  

 

For each parameter (APD 90, APD 50 and APA), treatments 1b, 3 and 4 were 

compared with treatment 1a using a one-way analysis of variance (ANOVA) with 

Dunnett’s adjustments for multiple comparisons. Homogeneity of variance was first 

calculated as the ratio between largest and smallest group standard deviation, which 

should not exceed 2. Normal distribution of residuals was determined graphically.  
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4. Results 

 

4.1. Treatments with acetylcholine (treatments 1a, 1b and 1c) 

 

• Treatment 1a 

A low concentration of ACh (1 µM) caused a significant reduction in APD 90 and 

in APD 50, but no significant reduction in APA in atrial myocytes (Table 6, Figure 18). 

These results did withstand Bonferroni’s correction.  

 

• Treatment 1b 

A high concentration of ACh (10 µM) caused a significant reduction in APD 90, 

in APD 50, and in APA in atrial myocytes (Table 7, Figure 19). The effect of ACh 

persisted during the immediate washing period for three out of five experiments, while it 

appeared reversible in two experiments. No significant difference could be identified 

between exposure to ACh and washing with Tyrode’s solution for any of the action 

potential parameters. 

  

• Treatment 1c 

The effect of ACh (10 µM) on APD 90 was reversed with atropine, suggesting an 

effect of ACh on muscarinic receptors (Table 8, Figure 20).  
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Table 6. Atrial action potential parameters before and after exposure to acetylcholine (1 µM) – treatment 1a (n = 5). 
 Baseline ACh 1 µM P-value 
APD 90 (ms) 142.5 ± 11.2 (128.1-157.9) 106.2 ± 17.5 (88.1-134.3) 0.0107*† 
APD 50 (ms) 117.5 ± 8.9 (109.6-131.8) 78.4 ± 19.8 (61.3-112.1) 0.0099*† 
APA (mV) 104.3 ± 4.4 (98.5-109.6) 95.9 ± 5.5 (90.9-105.3) 0.0531 
ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% repolarization; APA: action potential 
amplitude. Baseline heart rate: 100 ± 39 bpm (66-164). Results expressed as mean ± standard deviation (range);  *: P < 0.05; †: P < 0.0167 (after Bonferroni’s 
correction). t-values (degrees of freedom) for APD 90, APD 50 and APA: 4.52 (4),  4.61 (4), 2.71 (4), respectively. 
 

 
Figure 18. Atrial action potential parameters before and after exposure to acetylcholine (1 µM) – treatment 1a (n = 5). ACh: 
acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% repolarization; APA: action potential amplitude; 
*: P < 0.05. 
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Table 7. Atrial action potential parameters before and after exposure to acetylcholine (10 µM) followed by a washing period – 
treatment 1b (n = 6). 
 

Baseline ACh 10 µM Washing 
Adjusted  
P-value 

Baseline vs ACh 

Adjusted  
P-value 

ACh vs Washing 

Adjusted 
 P-value 

Baseline vs Washing 
APD 90 (ms) 114.7 ± 35.5  

(69.9-176.0) 
59.2 ± 41.3  
(29.4-133.6) 

75.6 ± 54.6 
(32.6-157.6) 

0.0045* 0.1299 0.7446 

APD 50 (ms) 86.2 ± 21.5  
(50.4-109.6) 

29.7 ± 23.1  
(12.6-71.3) 

46.3 ± 43.9 
(13.1-109.3) 

0.0117* 0.4467 0.4467 

APA (mV) 93.6 ± 10.4  
(81.7-104.1) 

71.8 ± 21.6  
(46.6-96.8) 

88.4 ± 12.4 
(72.6-102.2) 

0.0117* 0.0628 >0.9999 

ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% repolarization; APA: action potential 
amplitude. Baseline heart rate: 111 ± 19 bpm (74-125). Results expressed as mean ± standard deviation (range); vs: versus; *: P < 0.05. Friedman statistics for 
APD 90, APD 50 and APA: 10.33, 8.33, 9.33, respectively. 
 

 
Figure 19. Atrial action potential parameters before and after exposure to acetylcholine (10 µM) followed by a washing period 
– treatment 1b (n = 6). ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% 
repolarization; APA: action potential amplitude; *: P < 0.05.  



	
   57	
  

Table 8. Atrial action potential parameters before and after exposure to acetylcholine (10 µM) followed by atropine (1 µM) – 
treatment 1c (n = 4). 
 

Baseline ACh 10 µM Atropine 1 µM + 
ACh 10 µM 

Adjusted  
P-value 

Baseline vs ACh 

Adjusted  
P-value 

Atropine + ACh 
vs ACh 

Adjusted  
P-value 

Baseline  
vs Atropine + ACh 

APD 90 (ms) 118.8 ± 24.6  
(83.3-138.0) 

75.83 ± 37.54  
(31.8-121.3) 

155.3 ± 26.84  
(129.6-191.6) 

0.4719 0.0140* 0.4719 

ACh: acetylcholine; APD 90: action potential duration at 90% repolarization. Baseline heart rate: 109 ± 49 bpm (66-176). Results expressed as mean ± standard 
deviation (range); vs: versus; *: P < 0.05. Friedman statistic for APD 90: 8. 
 

 
Figure 20. Atrial action potential parameters before and after exposure to acetylcholine (10 µM) followed by atropine (1 µM) – 
treatment 1c (n = 4). ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; *: P < 0.05. 
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4.2. Treatment with physostigmine (treatment 2) 

 

Physostigmine (50 µM), in presence of a low concentration of ACh (1 µM), 

caused near-complete suppression of electrical activity in atrial myocytes in all 

experiments (Figures 21 and 22). The very short and narrow atrial action potentials were 

not detectable by the program used for analysis. Baseline values are presented in Table 9. 

 

	
  
 

Figure 21. Suppression of atrial action potential induced by physostigmine (50 µM) 
in presence of a low concentration of acetylcholine (1 µM). A: Experiment 1 of treatment 2 
(action potential parameters at baseline: APD 90: 133.1 ms, APD 50: 99.2 ms, APA: 85.8 ms); B: 
Experiment 3 of treatment 2 (action potential parameters at baseline: APD 90: 101.8 ms, APD 50: 80.9 ms, 
APA: 101.1 ms). 
 

 
Figure 22. Change in action potential morphology induced by physostigmine (50 
µM) in presence of a low concentration of acetylcholine (1 µM). A: Atrial action potential 
at baseline; B: Atrial action potential after exposure to physostigmine (50 µM) +ACh (1 µM). These 
recordings are magnified images of the experiment shown in figure 21A. Action potential parameters at 
baseline: APD 90: 133.1 ms, APD 50: 99.2 ms, APA: 85.8 ms. 

A B 

A B 
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Table 9. Atrial action potential parameters at baseline – treatment 2 (n = 5). 
 Baseline 
APD 90 (ms) 121.1 ± 24.7 (91.5-153.1) 
APD 50 (ms) 92.7 ± 22.2 (66.9-126.2) 
APA (mV) 89.1 ± 12.4 (76.5-103.1) 
APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% 
repolarization; APA: action potential amplitude. Baseline heart rate: 103 ± 30 bpm (83-153). Results 
expressed as mean ± standard deviation (range). 
 

4.3. Treatment with mancozeb (treatment 3) 

 

Mancozeb (18.5 µM), in presence of a low concentration of ACh (1 µM), caused a 

significant reduction in APD 90 and in APD 50 in atrial myocytes (Table 10, Figure 23). 

This reduction was modest and statistical significance did not withstand Bonferroni’s 

correction. No significant change in APA was observed. 

 

4.4. Treatment with phorate (treatment 4) 

 

Phorate (38.4 µM), in presence of a low concentration of ACh (1 µM), caused a 

significant reduction in APD 90, in APD 50, and in APA in atrial myocytes (Table 11, 

Figure 24). The reductions in APD 90 and APD 50 did withstand Bonferroni’s correction. 

The reduction in APA was modest and statistical significance did not withstand 

Bonferroni’s correction for this parameter. 
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Table 10. Atrial action potential parameters before and after exposure to mancozeb (18.5 µM ) + acetylcholine (1 µM) – 
treatment 3 (n = 6). 
 Baseline Mancozeb 18.5 µM   

+ ACh 1 µM P-value 

APD 90 (ms) 129.2 ± 20.4 (91.69-144.6) 99.8 ± 30.7 (63.0-137.9) 0.0493* 
APD 50 (ms) 105.3 ± 17.4 (72.9-121.4) 75.7 ± 33.7 (34.0-116.5) 0.0374* 
APA (mV) 96.3 ± 8.4 (88.4-107.3) 100.0 ± 8.8 (86.4-109.9) 0.4275 
ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% repolarization; APA: action potential 
amplitude. Baseline heart rate: 78 ± 23 bpm (45-99). Results expressed as mean ± standard deviation (range);  *: P < 0.05; †: P < 0.0167 (after Bonferroni’s 
correction). t-values (degrees of freedom) for APD 90, APD 50 and APA: 2.58 (5),  2.81 (5), 0.86 (5), respectively. 

 
Figure 23. Atrial action potential parameters before and after exposure to mancozeb (18.5 µM ) + acetylcholine (1 µM) – 
treatment 3 (n = 6). ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% repolarization; 
APA: action potential amplitude; *: P < 0.05 
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Table 11. Atrial action potential parameters before and after exposure to phorate (38.4 µM ) + acetylcholine (1 µM) – 
treatment 4 (n = 6). 
 Baseline Phorate 38.4 µM   

+ ACh 1 µM P-value 

APD 90 (ms) 122.5 ± 5.7 (114.8-129.2) 75.8 ± 15.5 (57.1-96.6) 0.0010*† 
APD 50 (ms) 99.6 ± 4.8 (93.2-106.8) 44.8 ± 16.4 (23.6-67.4) 0.0004*† 
APA (mV) 94.6 ± 4.5 (88.0-98.8) 84.5 ± 10.6 (71.5-96.4) 0.0454* 
ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% repolarization; APA: action potential 
amplitude. Baseline heart rate: 94 ± 30 bpm (47-130). Results expressed as mean ± standard deviation (range);  *: P < 0.05; †: P < 0.0167 (after Bonferroni’s 
correction). t-values (degrees of freedom) for APD 90, APD 50 and APA: 6.91 (5), 8.31 (5), 2.65 (5), respectively. 
 

 
Figure 24. Atrial action potential parameters before and after exposure to phorate (38.4 µM ) + acetylcholine (1 µM) – 
treatment 4 (n = 6). ACh: acetylcholine; APD 90: action potential duration at 90% repolarization; APD 50: action potential duration at 50% repolarization; 
APA: action potential amplitude; *: P < 0.05. 
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4.5. Between-group comparisons of atrial action potential parameters 

 

The relative effects of treatments 1b, 3 and 4 were compared to the relative effect 

of treatment 1a on APD 90, APD 50 and APA. Physostigmine caused a dramatic effect 

on APD 90, APD 50 and APD with almost complete loss of electrical activity, and could 

not be included in the subsequent analysis. 

 

• APD 90 

All treatments caused a significant reduction in APD 90 (Figure 25). There was 

no significant effect of treatment on the relative change from baseline in APD 90 using a 

one-way ANOVA: F(3,19) = 1.64, P = 0.21. 

 

 
Figure 25. Relative change from baseline in action potential duration at 90% 
repolarization (APD 90). *: indicates significant change from baseline, P < 0.05. 
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• APD 50 

All treatments caused a significant reduction in APD 50 (Figure 26). There was 

no significant effect of treatment on the relative change from baseline in APD 50 using a 

one-way ANOVA: F(3,19) = 2.34, P = 0.11. 

 

Figure 26. Relative change from baseline in action potential duration at 50% 
repolarization (APD 50). *: indicates significant change from baseline, P < 0.05. 
 

• APA 

Only treatments 1b (ACh 10 µM) and 4 (phorate 38.4 µM + ACh 10 µM) caused 

a significant decrease in APA (Figure 27). There was a significant effect of treatment on 

the relative change from baseline in APA using a one-way ANOVA: F(3,19) = 6.37, P = 

0.003. However, there was no significant difference between the relative effects of 

treatment 1a (1 µM) and the relative effects of treatments 1b, 3 and 4 (1a-1b: P = 0.10; 

1a-3: P = 0.15; 1a-4: P = 0.99). 
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Figure 27. Relative change from baseline in action potential amplitude (APA). *: 
indicates significant change from baseline, P < 0.05. 
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5. Discussion 

 

5.1. Overview of objectives 

 

 The primary goal of the present study was to test the hypothesis that selected 

environment toxicants lead to increased fish morbidity and mortality by depressing 

cardiac function, and more specifically by precipitating cardiac rhythm disturbances. To 

test this hypothesis, adult zebrafish hearts were used as models and exposed to selected 

toxicants in vitro in order to characterize their effects on action potential morphology.  

 

 Based on historical data on fish kills in PEI, pesticide sales statistics, and 

preliminary experiments, my work focused on evaluating the effects of cholinesterase-

inhibiting pesticides, including the two main classes: organophosphates and carbamates. 

Due to the prominent cholinergic innervation of the zebrafish atrial myocardium, I used 

standard microelectrode techniques to record atrial action potentials exclusively. The 

effect of ACh on the atrial action potential morphology was described first. Although 

previous studies determined the effect of ACh on atrial action potential morphology in 

other fish species, this effect had not been previously evaluated in zebrafish and it is 

known that atrial cholinergic innervation varies among teleost species (Newton et al. 

2013). Following these experiments, zebrafish hearts were exposed to AChEIs, 

including the documented AChEI physostigmine and pesticides commonly used in PEI: 

mancozeb and phorate. The results of my study are discussed below. 
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5.2. Effects of acetylcholine (treatments 1a, 1b and 1c)  

 

In these experiments, I revealed the depressive effects of ACh on the atrial action 

potential in zebrafish. Indeed, exposure to low concentrations of ACh caused a 

significant reduction in atrial action potential duration (APD 90 and APD 50) and 

exposure to high concentrations of ACh also caused a significant reduction in APA. This 

phenomenon has been named cholinergic non-excitability and has been previously 

observed in the atrial myocardium of other teleosts including cod (Gadus morhua), carp 

(Cyprinus carpio), and trout (Oncorhynchus mykiss), as well as in frogs (Rana 

temporaria and Rana cotesbeiana) (Rozenshtraukh and Kholopov 1975; Giles and 

Noble 1976; Molina et al. 2007; Abramochkin et al. 2008; Abramochkin et al. 2009; 

Abramochkin et al. 2010). Cholinergic non-excitability appears to affect lower 

vertebrates only, because ACh has not been reported to alter APA in mammals or 

reptiles (Abramochkin et al. 2010). In dogs, for example, ACh only induces 

hyperpolarization of the resting membrane potential and shortening of APD (Calloe et 

al. 2013). It is worth mentioning that the graphs representing APD 90 and APD 50 

followed the same pattern, suggesting that when APD 90 dramatically decreases APD 50 

also dramatically decreases, and inversely. 

 

The changes observed in atrial action potential morphology can lead to several 

deleterious consequences, including:  

 

1) Reduced contractility caused by APD shortening, which in turn diminishes 

calcium influx during the plateau phase of the action potential (Ten Eick et al. 1976). 
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Although inotropy appeared subjectively depressed during experiments with ACh, the 

present study was not designed to quantitatively measure contractility.  

2) Bradycardia or asystole. If a large proportion of the atrium becomes 

inexcitable, electrical conduction to the atrioventricular junction and ventricle may be 

interrupted and ventricular contraction may only rely on subsidiary ventricular 

pacemaker activity (escape rhythm). The heart rate generated by an escape focus is by 

definition slower than the sinus rate. Moreover, it has been demonstrated that ACh also 

reduces or even supresses the depolarization rate of cardiac pacemaker cells in fish, 

which can lead to asystole (Saito 1973). Optical mapping experiments revealed full 

cessation of electrical activity in approximately 60% of studied atrial zones after 

exposure to ACh (10 µM) in carp and frog (Abramochkin et al. 2010).  

 

3) Initiation of reentry circuits and tachyarrhythmias. The effect of ACh is not 

uniform through the atrial myocardium, and this heterogeneity creates an 

arrhythmogenic substrate by facilitating the initiation and maintenance of reentry 

circuits (Abramochkin et al. 2010, Dobrev et al. 2014). Reentry is defined as continuous 

impulse propagation around a functional barrier (such as inexcitable areas of the atrial 

myocardium caused by ACh) or an anatomical obstacle. Moreover, one requirement for 

the maintenance of reentry is that the initially activated tissue regains excitability while 

the electrical impulse propagates around the reentry circuit. Recovery of excitability is 

more likely when the effective refractory period becomes shorter, as seen with a reduced 

APD duration (Dobrev et al. 2014). Lin et al. (2007) demonstrated the initiation of atrial 

tachyarrhythmias caused by ACh (1-10 µM) in tilapia fish. This mechanism has also 
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been demonstrated to initiate vagally induced atrial fibrillation in mammals and frogs 

(Dobrev et al. 2014; Abramochkin et al. 2010). 

 

In mammals, ACh is known to alter action potential morphology via modulation 

of several ionic currents, including activation of the inwardly rectifying current IK,ACh, 

suppression of ICaL, and in pacemaker cell suppression of If (Ten Eick et al. 1976; 

Renaudon et al. 1997; Harvey and Belevych 2003; Dobrev et al. 2014). ACh modulates 

these currents via the activation of the muscarinic cholinoreceptors M2R (Dobrev et al. 

2014). Binding of ACh to M2R leads to dissociation of Gi proteins and direct activation 

of the IK,ACh channels by Gβγ-subunits. The exact ionic mechanisms by which ACh alters 

atrial action potential morphology in fish are not fully understood yet, but several studies 

have suggested the presence of a strong inwardly rectifying current mediated by ACh in 

atrial myocardium (Molina et al. 2007, Nemtsas et al. 2010). Abramochkin et al. (2010) 

demonstrated that barium chloride (BaCl2) completely prevented the onset of cholinergic 

non-excitability, including suppression of APA. Ba2+ is known to block channels 

responsible for IK,ACh and for the background inwardly rectifying current IK1 (Hassinen 

et al. 2008). Because ACh has not been shown to affect IK1 in fish, it is suspected that 

the suppression of APA is related to IK,ACh alterations (Harvey and Belevych 2003; 

Abramochkin et al. 2010). Furthermore, recent experiments in crucian carp (Carassius 

carassisus) and rainbow trout (Oncorhynchus mykiss) revealed the likely existence of a 

new cardiac inward rectifier current modulated by ACh, named IK,ACh2. As opposed to 

IK,ACh and IK1, IK,ACh2 is mostly an outward current with only a small inward component 

(Abramochkin et al. 2014). IK,ACh2 also was shown to be activated by M2R stimulation. 

This newly discovered current might contribute to the decrease in APA observed in 
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some fish and amphibians. In the present study, the cholinergic non-excitability 

phenomenon on atrial myocardium was demonstrated for the first time in zebrafish. The 

effect of ACh was reversed by atropine, suggesting activation of M2R receptors. Based 

on the recent findings from Abramochkin et al. (2014), I speculate that IK,ACh2 may be 

present in zebrafish as well. 

 

5.3. Effects of physostigmine (treatment 2) 

 

A large proportion of pesticides currently in use are AChEIs, including 

organophosphates and carbamates. Organophosphorus pesticides were first developed in 

Germany in the 1930s and were initially used as chemical weapons (nerve agents) 

(Fulton and Key 2001; King and Aaron 2015). They are potent insecticides and have 

become attractive because of their rapid degradation in the environment. They are now 

the most widely used classes of insecticides worldwide (Fulton and Key 2001; King and 

Aaron 2015). AChEIs act by inhibiting synaptic AChE, which normally prevents further 

downstream neurotransmission by hydrolyzing ACh to acetate and choline. The 

inactivation of AChE by the binding of organophosphates or carbamates leads to 

accumulation of ACh at the synapses of all autonomic ganglia, at many autonomically 

inervated organs, including the heart, at the neuromuscular junction, and at many 

synapses in the central nervous system (King and Aaron 2015).  

 

Organophosphates and carbamates inhibit AChE by causing phosphorylation or 

carbamylation of the AChE protein catalytic site (King and Aaron 2015). However, 

carbamate-AChE bonds spontaneously hydrolyze more rapidly and their effects are 
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more readily reversible. Although AChEIs are rapidly degraded in the environment, they 

generally lack target specificity and can be acutely toxic to many nontarget vertebrate 

and invertebrate species (Fulton and Key 2001). In fish, AChEI pesticides have been 

shown to cause cardiac developmental abnormalities, as well as rhythm disturbances, 

including bradycardia and tachyarrhythmias (Lin et al. 2007; Jee et al. 2009; Tryfonos et 

al. 2009; Simoneschi et al. 2014; Watson et al. 2014; Du et al. 2015; Pamanji et al. 

2015). Considering the effects caused by high concentrations of ACh on the atrial action 

potential (i.e., cholinergic non-excitability) I speculated that AChEIs, which lead to ACh 

accumulation, would produce comparable changes that may cause acute cardiac 

depression and subsequent death. Prior to the present study, only one publication 

reported the effect of an AChEI, paraoxon (5-50 µM), on the atrial action potential 

morphology of fish (cod, Gadus morhua) (Abramochkin et al. 2012). Paraoxon caused 

significant reduction in APD but did not alter APA, as opposed to high concentrations of 

ACh.  

 

Before testing the effects of AChEIs commonly used in PEI, this series of 

experiments first involved investigating the effect of a known and documented AChEI, 

physostigmine also known as eserine. Physostigmine is the active ingredient of the 

ordeal bean of Old Calabar in Nigeria (Physostigma venenosum Balfour), which was 

used to determine if individuals were innocent or guilty of some serious misdemeanour 

in the mid-19th century. It also was the first carbamate isolated by Europeans (Fulton and 

Key 2001; Proudfoot 2006). The effect of physostigmine on the heart of fish has been 

documented since at least 1941, when physostigmine was shown to cause bradycardia in 

hearts of common carp (Cyprinus carpius) and tench (Tinca vulgaris) (Filippova 1941). 
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Jullien and Ripplinger (1949) demonstrated that intracoelomic injections of 

physostigmine in smoothhounds (Mustelus laevis, now called Mustelus mustelus, which 

is a type of shark) and blackscorpion fish (Scorpaena porcus, which is a teleost) caused 

a significant increase in acetylcholine concentration in cardiac tissues (as high as six-

fold). Physostigmine at a concentration of 50 µM significantly reduced AChE activity in 

zebrafish embryos (Küster 2005). However, the effect of physostigmine on the atrial 

action potential of fish had not been investigated prior to my study. My results showed a 

dramatic suppression of atrial action potentials in all experiments using physostigmine 

(50 µM) in the presence of a low concentration of ACh (1 µM) acting as a substrate. All 

action potential parameters including APD 90, APD 50 and APA were suppressed, as 

seen with cholinergic non-excitability. These dramatic effects were attributed to 

physostigmine, because a low concentration of ACh (1 µM) only reduced APD 90 and 

APD 50 and its relative effects on these parameters were smaller (approximately 30% 

reduction in APD 90 and APD 50). 

 

5.4. Effects of mancozeb and phorate (treatments 3 and 4)  

 

The last step in this series of experiments consisted of testing the effects of acute 

exposure to two commonly used AChEIs in PEI, mancozeb and phorate at high 

concentrations (10mg/L or 18.5 µM for mancozeb; 10mg/L or 38.4 µM for phorate). No 

previous studies were available in adult zebrafish, but concentrations causing 50% 

mortality (LC50) in zebrafish embryos or other species of fish were reported to be lower 

than the concentrations used in the present study. For mancozeb, reported 20h LC50 in 

zebrafish embryos was 0.4 mg/L, reported 48h LC50 in carp (Cyprinus carpio) was 4-24 
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mg/L, and reported 48h LC50 in rainbow trout (Oncorhynchus mykiss) was1.9 mg/L 

(NIH 2017). Reported 96h LC50 for phorate included 13 µg/L in rainbow trout 

(Oncorhynchus mykiss), 5 µg/L in largemouth bass (Micropterus salmoides) or 280 µg/L 

in channel catfish (Ictalarus punctatus) (NIH 2017). Despite the high concentrations 

used, the present experiments failed to demonstrate a significant cardiotoxic effect of 

mancozeb or phorate in zebrafish compared with the effect of ACh at a low 

concentration (1 µM) alone. However, one could argue that phorate caused a significant 

reduction in APA compared with baseline (- 11%), which was not observed with ACh (1 

µM) alone (- 8%). This slightly greater effect of phorate over ACh is likely not relevant 

biologically and the effect of phorate is by far not as robust as the effect seen with 

physostigmine. Moreover the statistically significant reduction in APA observed with 

phorate did not withstand Bonferroni’s correction. I suspect that although mancozeb and 

phorate have AChE inhibitory properties, they may not be as potent as physostigmine, at 

least on the atrial myocardium of zebrafish. 

 

5.5. Limitations of the study 

  

The present series of experiments had several limitations, mainly due to technical 

difficulties and its in vitro nature. It was highly challenging to maintain stable atrial 

impalements during an extended period of time to allow all necessary recordings. 

Zebrafish cardiomyocytes are small and narrow, and motion due to superfusion or 

cardiac contractions causes the microelectrode to move out of the cells easily. Attempts 

to reduce motion were made by using the excitation-contraction uncoupler blebbistatin 

(10 µM) in order to inhibit cardiac contraction without altering action potentials (Jou et 
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al. 2010). However, blebbistatin needed to be dissolved in dimethylsulfoxide (DMSO), 

which caused changes in atrial action potential morphology. The solution I chose for the 

present work consisted of using a formulation of Tyrode’s solution with a minimal 

calcium concentration in an attempt to decrease contractility and avoid excessive 

motion. 

 

Our experiments were performed at room temperature (approximately 20 °C) and 

Tyrode’s solution was not continuously gassed. The room temperature, pH and oxygen 

content of the Tyrode’s solution may have varied slightly from one experiment to 

another, which may have affected action potential parameters as previously 

demonstrated in fish (Vornanen 2016). However, to limit this problem, Tyrode’s 

solution was always made fresh and action potential parameters obtained after exposure 

to selected drugs were compared to their own baseline values recorded within an hour 

prior.  

 

The use of TMS for euthanasia may also have influenced action potential 

morphology (Ryan et al. 1993). This problem was limited by washing explanted hearts 

with Tyrode solution for at least 15 min before starting experiments and by comparing 

action potential parameters to their own baseline values (Roberts and Syme 2016). 

 

All experiments were performed in vitro on explanted hearts, removing extrinsic 

sources of cardiac control (nervous or hormonal). The effects of the pesticides that were 

used in this work may be modulated by these extrinsic sources of cardiac control and are 

likely influenced by the bioconcentration and bioaccumulation properties of each 
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toxicant. The bioconcentration factors (BCFs) of the pesticides we used have not been 

determined experimentally, but modeled BCFs suggest that physostigmine (average 

BCF: 35.2) and phorate (average BCF: 183) do not bioaccumulate substantially, whereas 

mancozeb appears to be very bioaccumulative (average BCF: 49000) (EPA 2017). In 

vivo studies may involve performing electrocardiograms on live and immobilized fish 

exposed to various pesticides, which raises ethical questions. One option may be to 

perform electrophysiological studies in euthanized zebrafish while keeping their hearts 

in situ to maintain extrinsic cardiac innervation; however, this approach is a technically 

difficult one considering the challenges encountered with explanted hearts.  

 

Finally, although zebrafish have many advantages as research models, fish kills 

in PEI involve other species of fish, which may have different sensitivities to 

environmental toxicants including AChEIs. A logical approach would be to use 

zebrafish as research models to identify possible electrophysiological mechanisms to 

explain fish kills, and then to test whether or not these findings are reproducible in 

species of fish commonly found in PEI’s rivers.  
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6. Conclusion and future directions 

 

 Fish kills are a common phenomenon in PEI and agricultural pesticides are 

suspected to be responsible for many events. However, a causal relationship is often 

impossible to demonstrate retrospectively. The present series of experiments aimed to 

investigate the possible cardiac effects of commonly used pesticides, focusing on the 

effects of AChEIs including mancozeb and phorate. While I was able to demonstrate the 

cholinergic non-excitability phenomenon, including suppression of atrial action potential 

duration and amplitude, for the first time in isolated adult zebrafish hearts exposed to the 

known AChEI physostigmine, similar toxic effects could not be observed after exposure 

to high concentrations of mancozeb and phorate. 

 

Future investigations may include testing the effects of mancozeb and phorate on 

atrioventricular conduction by performing simultaneous recordings of atrial and 

ventricular actions potentials. Indeed, the atrioventricular junction may be more 

sensitive to the AChE inhibiting effects of these two pesticides. Because no substantial 

acute effects were found with these pesticides in the present study, their chronic effects 

on electrophysiological parameters may be evaluated as well. Other types of AChEIs or 

other classes of pesticides also may be tested. 

 

Further experiments could also involve characterizing selected Na+, Ca2+ and K+ 

currents in isolated zebrafish atrial and ventricular myocytes using patch clamp 

techniques, before and after exposure to AChEIs or other pesticides. Isolation of 

cardiomyocytes could be performed using enzymatic dissociation (Brette et al. 2008; 
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Sander 2013). These experiments could explore the precise ionic basis for the changes in 

action potential morphology previously identified, such as cholinergic non-excitability. 

They also could provide further evidence for the mechanisms responsible for the 

development of cardiac arrhythmogenesis in this context. 
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8. Annexes: raw data tables 

 



APA Treatment 1a

Exp 1 108,24 110,82 110,82 109,53 109,53 109,21 109,21 109,21 109,53 109,53 93,421 93,421 94,71 94,71 93,099 93,421 94,065 94,388 94,065 94,388
Exp 2 98,575 98,575 98,575 97,931 98,575 98,253 97,931 98,253 98,575 99,22 94,387 94,71 94,71 94,065 94,387 94,71 94,71 94,387 94,71 95,032
Exp 3 107,27 107,6 107,6 107,6 107,6 107,6 107,6 107,27 107,27 107,27 94,71 94,71 95,032 95,032 95,354 95,354 94,71 94,388 94,065 95,676
Exp 4 101,8 101,8 101,47 101,8 101,8 101,8 102,12 102,12 101,8 101,47 90,844 90,844 90,522 90,844 90,844 91,166 91,166 91,166 90,522 90,844
Exp 5 102,76 103,41 103,41 103,73 103,73 105,02 105,66 105,02 104,05 103,73 105,34 105,66 105,34 105,02 105,34 105,34 105,02 105,34 105,02 105,34

Baseline ACh 1 µM



APD 90 Treatment 1a

Exp 1 140,5 141,0 141,1 140,7 140,9 141,9 141,8 141,0 141,4 141,1 133,6 131,5 134,5 135,7 131,6 134,7 134,7 135,1 135,4 136,0
Exp 2 148,4 146,6 147,6 146,3 149,9 149,0 148,8 147,6 148,3 146,4 101,9 102,1 102,9 102,1 103,5 103,4 103,3 102,0 103,2 102,6
Exp 3 158,0 158,2 159,8 157,0 158,2 158,0 157,8 157,3 157,6 157,1 109,4 108,5 110,9 109,0 110,2 108,7 110,4 110,1 106,2 110,1
Exp 4 136,7 138,3 138,3 137,5 137,6 138,0 138,1 137,2 137,6 136,6 87,9 89,4 87,4 87,5 88,4 88,7 89,4 88,1 86,6 88,0
Exp 5 128,1 127,6 127,5 128,3 128,1 128,6 128,7 128,4 127,6 128,3 96,8 97,3 96,8 96,8 96,4 96,0 96,6 97,0 96,1 96,6

Baseline ACh 1 µM



APD 50 Treatment 1a

Exp 1 119,9 119,1 119,9 119,5 119,1 119,9 119,9 119,9 119,8 119,7 112,1 109,7 112,1 112,4 110,2 112,5 113,0 112,7 113,2 113,7
Exp 2 112,4 111,6 112,1 111,5 111,1 112,1 111,1 112,3 112,0 111,5 69,5 69,2 69,5 69,4 69,9 70,0 69,6 69,9 69,9 69,7
Exp 3 132,3 131,8 133,6 131,6 131,8 131,7 131,4 131,4 131,6 131,2 78,2 78,2 78,2 77,0 78,3 76,9 78,5 77,9 75,9 77,8
Exp 4 114,5 115,1 114,8 114,8 114,8 114,6 114,6 114,6 114,6 114,6 60,9 61,7 61,2 61,2 62,1 61,5 61,6 61,7 61,0 59,9
Exp 5 109,4 109,5 109,5 109,7 109,6 109,8 109,3 109,9 109,5 109,8 71,4 71,3 71,2 71,1 71,0 71,1 71,2 71,2 71,0 71,5

Baseline ACh 1 µM



APA Treatment 1b

Exp 1 90,8 84,7 84,1 88,6 89,2 84,1 92,5 92,5 92,1 92,1 57,3 46,7 54,4 55,7 59,0 56,7 57,0 58,0 58,0 61,5 73,1 68,3 74,1 74,1 73,4 73,4 68,9 74,4 74,4 71,8
Exp 2 102,8 103,1 102,4 103,1 102,4 103,4 103,4 102,8 103,4 103,4 81,2 82,1 82,1 81,5 81,5 81,8 82,1 81,8 81,8 82,1 87,6 87,6 87,9 87,9 88,3 88,3 87,6 88,6 88,6 87,9
Exp 3 104,4 104,4 103,7 97,9 108,9 108,9 103,1 104,1 103,7 102,4 87,3 92,1 92,8 93,7 93,4 97,9 98,6 87,9 95,0 95,0 97,3 97,9 92,1 98,6 98,6 99,5 97,3 97,6 98,3 100,2
Exp 4 81,5 80,9 81,2 79,2 84,1 84,1 82,1 83,1 80,2 80,5 54,1 57,3 57,3 53,2 52,5 55,1 57,7 56,1 57,3 54,1 94,1 96,0 96,6 94,4 94,4 93,4 95,0 96,3 96,3 95,0
Exp 5 101,2 101,2 101,8 101,5 100,5 101,2 102,1 98,3 100,5 100,5 96,0 97,9 98,6 96,3 97,6 97,0 95,0 96,3 96,3 97,0 101,8 102,1 102,1 101,8 101,5 103,1 102,8 102,4 102,4 102,1
Exp 6 83,8 82,5 83,4 82,1 82,5 83,1 82,5 81,5 82,8 81,2 46,1 46,4 48,3 48,3 45,7 45,7 45,1 47,0 46,4 46,4 71,5 71,5 70,9 71,5 75,4 74,7 70,2 70,2 68,9 98,7

Baseline ACh 10 µM Washing



APD 90 Treatment 1b

Exp 1 95,3 92,5 92,1 95,6 93,9 92,1 93,3 93,0 96,8 96,7 31,4 24,2 28,8 28,1 32,3 30,9 32,2 30,3 32,0 35,0 45,6 39,6 48,0 41,7 46,8 43,5 44,0 48,2 46,5 45,8
Exp 2 115,4 115,4 114,3 115,3 115,9 115,2 119,2 114,9 116,0 116,4 37,1 36,1 35,3 35,8 34,4 35,0 36,0 35,9 36,5 37,2 39,3 39,2 39,6 39,3 39,6 39,4 39,4 41,3 42,2 41,4
Exp 3 74,4 73,5 72,2 66,4 70,1 69,2 69,2 68,8 69,2 66,5 38,3 42,7 42,7 43,8 43,7 50,3 50,7 38,9 45,2 44,2 47,1 45,9 38,5 47,8 46,2 47,5 45,0 46,1 45,5 49,0
Exp 4 127,2 124,6 123,1 121,9 121,2 128,9 120,4 119,8 121,1 124,6 81,0 98,3 87,0 81,6 73,7 78,5 81,9 86,3 78,9 72,2 129,6 128,7 138,2 132,2 132,0 132,1 134,6 134,9 131,4 132,2
Exp 5 107,9 109,2 108,4 109,6 109,9 109,6 108,7 105,6 115,6 107,1 28,3 28,3 29,5 29,9 31,4 29,9 29,5 29,2 28,7 29,1 32,5 36,4 31,9 31,6 32,1 32,0 32,0 33,9 32,6 30,9
Exp 6 176,5 169,4 172,6 172,0 173,2 183,2 181,2 175,1 183,9 173,0 136,9 134,7 129,9 141,3 132,9 130,0 134,8 135,8 123,4 136,4 157,3 156,0 156,2 159,8 149,0 153,5 161,5 159,6 159,5 163,3

Baseline ACh 10 µM Washing



APD 50 Treatment 1b

Exp 1 77,1 76,0 75,2 78,1 76,5 76,4 74,2 76,0 78,0 78,1 18,4 15,7 17,8 18,1 18,0 17,7 18,5 17,8 18,6 18,8 26,4 24,3 27,2 23,4 26,9 25,0 26,2 27,1 26,8 27,1
Exp 2 98,1 97,6 97,2 97,7 98,2 97,4 97,5 97,9 98,2 98,3 13,0 12,5 12,4 12,7 12,8 12,3 12,5 12,7 12,6 12,6 12,7 13,0 12,8 12,9 13,3 12,9 13,5 12,9 13,5 13,5
Exp 3 51,6 51,2 51,3 50,3 50,5 49,1 50,6 50,3 50,2 49,3 18,9 20,1 20,8 20,7 21,2 21,6 21,6 19,2 20,4 20,4 18,8 18,3 17,4 18,9 18,7 18,7 18,3 18,4 18,7 18,5
Exp 4 100,2 101,8 102,5 101,4 100,8 103,2 100,0 99,5 102,0 102,1 42,4 45,5 41,9 43,4 39,5 43,2 41,9 42,5 38,7 43,6 108,1 106,5 110,2 109,5 109,5 108,4 110,0 111,7 108,6 110,4
Exp 5 81,8 80,8 81,6 81,3 83,9 82,1 81,6 80,8 81,6 80,9 13,6 13,4 13,1 13,4 13,6 13,7 13,2 13,5 13,2 13,4 15,2 15,5 15,2 15,0 15,6 15,2 15,1 15,3 15,2 15,2
Exp 6 109,6 109,6 108,3 108,2 110,1 111,4 108,3 109,9 110,8 109,3 72,1 71,5 67,3 71,4 72,8 69,8 72,9 71,6 71,2 72,4 93,5 94,4 95,7 97,3 95,7 91,5 98,4 94,3 95,7 98,7

Baseline ACh 10 µM Washing



APD 90 Treatment 1c

Exp 1 120,7 124,3 123,1 119,1 158,9 118,6 120,3 159,5 120,9 157,0 66,4 66,9 67,3 76,7 61,7 68,8 65,8 64,9 53,3 53,7 195,3 194,0 185,8 191,0 193,7 194,1 192,0 195,6 190,6 183,6
Exp 2 120,2 126,8 119,4 122,6 118,3 120,0 123,5 120,6 126,1 119,8 120,6 120,6 121,2 119,9 119,6 121,5 122,3 122,7 122,5 122,0 140,6 179,6 120,6 147,4 142,7 129,5 142,6 141,9 125,3 149,5
Exp 3 137,5 139,2 140,3 138,0 139,1 137,1 136,0 138,0 137,3 137,8 85,0 86,8 85,3 84,4 89,9 85,1 84,8 85,2 86,1 83,8 158,5 159,5 158,5 158,9 159,0 157,8 158,8 158,6 158,7 151,6
Exp 4 83,3 83,6 84,2 83,8 83,0 84,0 83,5 82,5 82,2 82,6 30,9 33,4 30,8 31,6 30,2 31,6 32,3 32,8 32,2 32,2 127,7 130,7 130,6 129,8 130,2 129,3 128,8 128,6 129,6 130,4

Baseline ACh 10 µM Atropine 1 µM + ACh 10 µM



APA Treatment 2

Exp 1 85,4 84,4 85 85 87 87 85,7 83,4 87,6 87,9
Exp 2 101,8 102,8 102,8 103,1 102,8 102,4 102,8 103,7 104,4 104,4
Exp 3 102,8 102,8 99,5 99,2 99,5 102,1 102,4 100,2 100,8 101,8
Exp 4 78,9 78,9 79,2 78,9 78,6 79,9 79,2 78,9 79,2 78,3
Exp 5 75,7 74,7 74,7 76 76,7 76,3 78,6 78,6 76,3 77

Baseline



APD 90 Treatment 2

Exp 1 134,5 131 132 132 132,4 133,2 133,9 135,3 134,3 132,2
Exp 2 152,7 153 153,6 153,7 153,5 152,5 153,3 151,7 153,8 153,5
Exp 3 103,9 101,2 100,8 100,8 100,8 103,2 100,2 102 102,2 102,8
Exp 4 126,3 127,9 126,7 128,1 125,8 126,5 126,2 124,7 125,2 124,5
Exp 5 90,1 90,4 90,3 90,8 91 91,4 95,8 93 90,3 92

Baseline



APD 50 treatment 2

Exp 1 98,0 97,9 98,8 98,2 100,7 99,5 98,9 99,8 102,2 98,2
Exp 2 126,5 126,5 126,4 126,2 126 126,1 125,7 126,1 126,5 126,1
Exp 3 82,9 80,1 79,5 79,6 80,5 83 79,9 80,2 81 82,3
Exp 4 90,9 91,2 89,7 91,4 90,9 91,7 91,2 90,1 90 87,9
Exp 5 65,5 65,7 66,2 67,4 66,6 67,6 67,2 68,2 66,7 67,4

Baseline



APA Treatment 3

Exp 1 96,3 96,6 96,6 97,3 97,3 98,3 98,6 98,3 98,6 98,6 92,8 93,4 93,7 93,4 93,7 93,7 93,4 93,4 93,7 93,7
Exp 2 88,3 88,3 88,3 88,3 88,3 88,3 87,6 87,9 87,6 87,3 76,7 76,7 77,0 77,0 76,0 76,3 76,7 76,7 76,0 76,0
Exp 3 93,1 93,1 92,8 93,7 92,8 93,7 94,1 94,1 94,1 92,8 95,0 96,0 97,0 97,0 96,3 96,3 96,3 96,6 96,6 97,0
Exp 4 89,9 90,2 91,8 91,8 90,5 90,8 91,5 90,8 89,9 90,5 71,5 72,2 73,1 71,8 71,8 72,2 69,3 70,9 69,6 72,2
Exp 5 100,2 100,2 98,9 98,3 98,3 97,6 97,6 97,3 99,5 100,2 75,7 78,9 78,9 76,3 76,3 78,6 78,6 75,1 78,3 78,3
Exp 6 97,6 98,6 98,9 99,2 98,9 98,3 98,3 98,6 98,9 99,2 91,8 91,8 91,2 91,2 92,1 92,5 92,1 91,5 91,5 91,5

Baseline Phorate 38.4 µM + ACh 1 µM



APD 90 Treatment 3

Exp 1 119,5 119,3 118,2 119,1 119,0 119,5 118,6 120,1 119,4 119,3 77,8 78,5 78,6 78,4 78,4 78,8 78,7 78,7 79,5 79,0
Exp 2 121,0 120,9 122,0 123,5 123,9 124,7 123,3 122,8 121,1 122,4 83,0 82,4 83,1 83,7 82,3 83,0 83,9 84,1 82,8 83,1
Exp 3 116,0 115,0 114,2 115,0 114,7 114,6 115,0 113,6 115,4 114,4 81,4 82,0 81,3 81,9 82,6 81,5 82,2 82,2 82,4 81,9
Exp 4 131,4 130,6 128,0 127,5 126,8 128,6 129,8 130,3 127,0 129,2 56,1 55,0 54,0 57,1 55,9 57,6 55,1 59,7 63,3 57,0
Exp 5 123,3 122,2 119,9 119,4 118,6 119,1 118,7 117,7 123,7 122,2 57,5 57,2 57,0 56,3 56,3 56,5 60,8 59,9 57,2 58,5
Exp 6 127,9 129,6 128,9 129,4 129,6 129,2 128,4 129,4 129,1 130,7 95,8 96,2 96,4 96,0 97,2 96,8 95,9 97,3 96,1 97,9

Baseline Phorate 38.4 µM + ACh 1 µM



APD 50 Treatment 3

Exp 1 102,1 102,1 100,5 102,1 101,7 102,0 100,6 102,7 101,7 102,0 45,7 45,7 45,6 45,8 45,2 45,8 45,6 45,7 45,9 45,4
Exp 2 95,9 96,0 96,3 96,4 96,5 96,3 96,4 96,2 95,8 96,2 49,1 49,5 49,8 49,8 49,3 49,3 50,1 49,9 50,1 49,5
Exp 3 93,0 93,2 93,3 93,3 93,4 93,2 93,2 93,0 93,5 93,1 53,9 53,6 54,1 53,4 54,0 54,2 53,7 54,4 53,9 54,3
Exp 4 98,5 99,0 98,7 98,0 97,5 99,2 97,0 98,5 97,0 98,7 28,0 27,9 27,8 28,8 28,6 27,8 28,6 28,8 29,2 28,9
Exp 5 104,7 103,3 100,5 100,3 99,5 99,8 99,0 98,7 105,0 103,5 24,5 22,7 22,9 24,1 23,1 22,9 24,6 23,6 23,4 23,8
Exp 6 106,0 106,8 106,9 107,0 106,2 106,9 106,6 107,5 106,6 107,1 66,5 67,3 67,2 67,2 67,4 68,0 67,4 67,0 68,2 68,0

Baseline Phorate 38.4 µM + ACh 1 µM



APA Treatment 4

Exp 1 87,6 88,6 88,6 87,9 87,9 87,9 87,9 89,2 89,2 88,6 93,1 93,1 92,8 92,5 92,1 92,1 92,1 92,1 92,5 92,5
Exp 2 105,0 106,0 106,6 106,6 107,0 107,0 106,0 105,7 106,6 106,6 103,7 103,4 104,1 104,7 105,0 105,3 105,3 104,7 105,3 105,3
Exp 3 91,8 92,1 92,1 91,5 91,5 91,2 91,2 91,2 91,2 91,8 102,8 104,1 104,1 104,1 104,4 104,4 104,1 104,4 105,0 104,4
Exp 4 107,6 107,6 107,6 107,3 107,6 107,6 107,0 107,3 107,0 107,0 102,4 103,1 103,1 103,1 102,1 102,1 102,1 102,1 102,1 102,1
Exp 5 87,3 89,9 90,5 89,9 90,8 90,5 90,5 91,2 90,8 90,8 109,5 110,2 109,9 109,5 110,2 110,2 109,9 109,9 109,9 109,9
Exp 6 93,4 94,1 94,1 93,7 94,4 94,1 93,7 93,7 93,7 94,1 86,3 86,3 86,7 86,7 86,7 86,3 86,7 86,7 86,3 85,7

Baseline Mancozeb 18.5 µM + ACh 1 µM



APD 90 Treatment 4

Exp 1 90,3 92,9 91,0 91,7 91,3 91,6 91,5 94,6 91,2 90,8 73,2 72,8 73,5 72,7 73,0 72,1 72,4 72,9 72,7 73,3
Exp 2 138,9 143,3 141,4 138,7 145,8 142,2 140,8 142,5 137,4 141,0 136,8 134,1 137,6 136,5 137,4 139,0 139,6 139,3 140,5 138,0
Exp 3 121,6 123,0 123,1 123,0 122,7 121,4 120,6 121,0 120,9 120,6 95,2 93,7 93,6 94,6 94,1 93,6 94,6 93,8 94,7 94,3
Exp 4 131,5 131,7 131,3 130,8 131,8 131,1 130,4 131,4 130,9 130,9 98,5 98,1 98,3 98,4 97,5 95,7 95,9 96,4 97,7 97,7
Exp 5 143,5 146,2 143,7 144,3 143,5 143,6 145,0 144,6 145,5 145,4 134,0 133,8 133,6 133,4 133,7 133,5 133,2 133,3 133,3 133,4
Exp 6 147,4 141,1 146,0 145,5 145,1 143,6 145,8 144,7 143,8 142,6 63,2 63,2 63,6 63,5 63,4 63,0 63,3 63,0 62,6 61,3

Baseline Mancozeb 18.5 µM + ACh 1 µM



APD 50 Treatment 4

Exp 1 71,8 74,6 72,4 72,7 72,3 72,2 72,4 75,5 73,0 72,5 48,2 47,8 48,5 47,9 48,3 47,9 48,1 48,3 47,9 48,1
Exp 2 118,5 121,2 119,9 114,5 122,1 119,1 119,8 120,9 115,2 117,5 115,6 113,2 116,4 115,6 116,2 117,5 118,2 117,8 119,1 115,9
Exp 3 101,8 102,7 102,7 102,8 103,3 101,9 101,3 101,9 101,6 101,5 70,7 70,0 70,0 70,3 70,4 70,4 70,1 70,3 70,6 70,2
Exp 4 108,3 108,3 108,2 108,2 108,7 108,6 108,0 108,1 108,1 108,0 72,7 72,2 72,0 71,9 71,4 70,6 70,5 70,9 71,4 71,3
Exp 5 120,4 122,5 120,6 120,9 120,9 120,8 122,4 120,7 122,2 122,3 114,4 114,3 114,0 113,5 114,2 114,1 113,8 113,7 113,8 114,0
Exp 6 108,8 109,4 108,2 110,4 106,9 107,6 108,5 107,9 107,6 107,6 34,5 34,6 34,4 34,0 33,9 34,2 33,7 34,0 33,4 33,1

Baseline Mancozeb 18.5 µM + ACh 1 µM
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