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Abstract

The objective of the thesis was to assess the performance of statistical procedures for
the analysis of binary longitudinal data in veterinary science, specifically, to describe
and quantify’their performance in terms of statistical properties such as unbiasedness,
confidence interval coverage and efficiency. The focus was on marginal and random
effects procedures including: ordinary logistic regression (OLR), alternating logistic
regression (ALR), generalized estimating equations (GEE), marginal quasi likelihood
(MQL), penalized quasi likelihood (PQL), pseudo likelihood (REPL), maximum like-
lihood (ML) and Bayesian Markov chain Monte Carlo (MCMC). The marginal and
random effects procedures handle the within-subject dependence differently, and
they offer different interpretations of regression estimates for binary longitudinal
data. Several simulation studies covered a wide range of data structures and designs
including a two-level balanced longitudinal design, a three-level balanced setting of
binary repeated measures data, and repeated measures data with missing values. A

statistical simulation approach was used as the tool for the assessment.

The first study involved a two-level setting of binary repeated measures data.
Results for the marginal model data showed the autoregressive GEE showed to be
highly efficient when treatment was within subjects, even with strongly correlated
responses. For treatment between subjects, random effects methods also performed

well in some situations; however, a small number of subjects with short time series
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proved a challenge for both marginal and random effects methods. Results for the
random effects model data showed bias in estimates from random effects methods

while the marginal model produced estimates close to the marginal parameters.

The second study involved binary repeated measures data with an additional hier-
archical structure. Results indicate that in data generated by random intercept mod-
els, the ML and MCMC procedures performed well and had fairly similar estimation
errors. The PQL regression estimates were attenuated while the variance estimates
were less accurate than ML and MCMC, but the direction of the bias depended on
whether binomial or extra-binomial dispersion was assumed. In datasets with au-
tocorrelation, random effects estimates procedures gave downward biased estimates,
while marginal estimates were little affected by the presence of autocorrelation. The
results also indicate that in addition to ALR, a GEE procedure that accounts for
clustering at the highest hierarchical level is sufficient. The REPL procedure per-
formed poorly and produced unsatisfactory estimates regardless of autocorrelation

values.

The third study involved binary repeated measures data with an additional hi-
erarchical structure and missing values, where five different scenarios of simulated
incomplete datasets were considered. The first scenario corresponded to a combina-
tion of three types of missingness patterns present in a real (scc40) dataset: delayed
entry and drop-outs as well as intermittent missing values. The remaining scenarios
involved only drop-outs, and corresponded to either moderate or high percentages
of values either missing at random (MAR) or not missing at random (NMAR), re-

spectively.

In the first scenario, all estimation procedures except OLR performed well and
produced estimates with small relative bias (generally less than 5%) for levels of miss-

ingness that roughly corresponded to the scc40 data. In MAR missingness scenarios,
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some biases were found for ALR, GEE and PQL procedures, whereas the likelihood-
based procedures were largely unaffected by the missing values. In NMAR, scenarios,
all procedures experienced similar and strong biases in the time coefficient; however,
fixed effects estimates at the subject and cluster level were relatively unaffected.
The presence of autocorrelation in the data did not substantially alter the impact
of missing values although the shrinkage of random effects estimates was marginally

less pronounced than in the full datasets.

Additionally, a hierarchical data structure arising in an aquaculture vaccine trial
on Infectious Salmon Anaemia Virus (ISAV), where multiple treatment groups of
fish in the same tanks were observed over time, was studied. The focus was to assess
and account for neighbour treatment effects. By neighbour treatment effects in an
incomplete block design setting, we mean that treatments present in the same block
(tank) may affect each other in their performance. Two statistical models were pro-
posed to assess and account for neighbour treatment effects. The first approach was
based on a non-linear model, and the second involved cross-classified and multiple

membership models. The performance of the models was evaluated by simulation.

Results demonstrated that both proposed models show promise in capturing neigh-
bour treatment effects of the type assumed, whenever such neighbour effects are of
at least moderate magnitude. Analyses of the ISAV trial data by both models did

not provide any evidence of substantial neighbour effects.
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An overview of statistical models for
binary repeated measures and

hierarchical data in veterinary science

1.1 Introduction

Repeated measures data are data with multiple records on the same sub-
jects (e.g., animals or farms). In multi-level terminology [77, Chapter 12],
this may be termed a two-level data structure, with observations (“mea-
sures”) corresponding to level one (such as tests) and subjects to level
two. However, measures on the same subject are usually ordered (e.g., by
time) which make such data more challenging than a two-level structure
with no ordering of units within clusters (e.g., animals in farms). Such
data are commonly encountered in both experimental and observational

studies.

Binary repeated measures data are encountered across a wide range of



applications in veterinary science and veterinary epidemiology. The most
evident examples of two-level data are records of presence or absence of
disease conditions over time. Disease conditions may be detected clini-
cally (e.g., mastitis) or by a test such as bacterial culture [66], faecal egg
counts [2] or antibody determination for parasites [72]. Other examples
are success of fertilization (e.g., in repeated reproduction cycles [3]), oc-
currence of certain behaviours in animal welfare studies [35, 81], or of
treatment side effects in clinical trials (e.g., treatments for diabetes in
dogs [41]). If the binary outcome is created by thresholding a quantita-
tive outcome at a predefined cut-off value (e.g., ELISA for the diagnosis
of Johne’s disease; [78]) a substantial loss of information is implied but
the dichotomous outcome may be of greater interest than the quantita-
tive measurement. Another range of applications occur in the context of

farm-level monitoring of product quality (e.g., milk [69]).

An extension of the two-level structure arises if subjects in addition are
nested within some (physical) clusters (e.g., hospitals, herds, provinces).
Such structure may be termed three-level repeated measures data, where

clusters correspond to level three.

Binary repeated measures data with an additional hierarchical level
has formed the basis of many studies of mastitis and dairy management

factors (e.g., [30, 66]). Some examples from human preventive medicine



include the effects of air pollution on school absences in the southern
California Children’s Health study [82] and the sickness episodes for

workers over time [65].

This introductory chapter is intended to give the reader an overview of
the current state of knowledge on statistical theory for modeling binary
repeated measures (longitudinal, time series) data with/without addi-
tional hierarchical structure. Emphasis will be placed on reviewing and
assessing the existing statistical models and estimation procedures that

are implemented in broadly accessible statistical software.

1.2 Efficiency, data structure and experimental de-

sign

This section briefly introduces the efficiency, data structure and experi-
mental study designs that will be discussed in this chapter and through-

out the thesis.

1.2.1 Efficiency

By efficiency we mean the ability of a statistical procedure to produce a
smaller variance estimate of the effect of interest in comparison with al-

ternative methods. Efficiency is often expressed numerically as the ratio



of estimated variances for the reference (“best”) method and the proce-
dure under study. The same terminology can be applied for study designs
where the choice of a proper study design may result in a reduction of the
variance estimate of the treatment effect (such as in longitudinal studies
versus cross-sectional studies). In comparing competing experimental
designs, an efficient design is one that can achieve the same precision as

other designs but with fewer resources.

1.2.2 Data structure

In veterinary epidemiology there are two types of study designs: obser-
vational and experimental studies [16, chapters: 7-12]. In experimental
studies, subjects are randomly allocated to different comparison groups,
whereas in observational studies, subjects are observed and their data
is recorded. In general, experimental studies permit drawing stronger
conclusions than observational studies, but often observational studies
are the only visible option [24, Chapter 2]. Within the context of experi-
mental studies, two types of data structure “repeated measures” and “hi-
erarchical” are selected to form the basis of the data structures discussed
though-out the thesis. Generally, failure to account for the consequences
of such type of data structure may result in a violation of regression

model assumptions and result in a poor fit of a statistical model and a



questionable statistical inference ([15, Chapter 7| and [17]).

1.2.2.1 Hierarchical data structure

" In veterinary epidemiology, animals (subjects) within the same herd
(cluster) are more alike, compared to animals from different herds. Ani-
mals within a particular herd share the experience of being in the same
environment (food, management practice,..etc.) which may lead to in-
creased homogeneity over time [16, chapter 21]. This type of data struc-
ture is called hierarchical, multilevel [77] or clustered [16, chapter 20]

data structure.

The goal of multilevel analysis is to account for all the variation in the
outcome, including the contributed information from each level of clus-
tering in the data. In multilevel data, the outcome is usually measured
at the lowest level of the hierarchy. One advantage of a multilevel data,
structure is its flexibility to allow researchers to combine multiple levels
of analysis in a single comprehensive model by specifying predictors at
different levels. It is also possible to include cross-level interactions to
determine the dependence of lower-level predictors on higher level pre-
dictors [26]. A consequence of the hierarchical structure implies that the
observations from subjects within the same cluster are similar. i.e., the

same covariance structure between the measurements on subjects within



the same cluster, usually termed an exchangeable covariance structure.
One way to account for the similarity between responses is by modeling

the covariance structure of the outcome.

A common approach for the analysis of hierarchical data with a contin-
ues outcome variable is the linear mixed model, also known as multilevel
model [77], or variance component model [76]. These models account for
the hierarchical structure of the data by specifying random effects for all
levels above the bottom level. Then the variability in the outcome can
be split into variances at different levels, i.e., each level contributes to
the variation in the outcome. Goldstein et al. [28] presented a measure of
the percentage of variability attributable to cluster over total variability,
called the intra-class correlation (ICC) or variance partition coefficient
(VPC). They described also how to extend VPC to binary response mod-
els. The ICC measures the degree of similarity of measurements within
a cluster. It takes values between 0 and 1. Goldstein [26] suggests using
“intra-unit” instead of intra-class correlation and replace unit with an

appropriate term (i.e., herd, hospital, etc.).

1.2.2.2 Repeated measures data structure

Repeated measures data structure exists when repeated measurements

are taken on the same subject at different ordered times or various con-



ditions [12, Chapter 2]. Longitudinal data [15] are a common form of
repeated measures where measurements are recorded on subjects over a
period of time. However, throughout the thesis, repeated measures and
times series are used to refer to longitudinal data setting. The statisti-
cal objective in longitudinal data design is making inference about the
expected value of outcomes, in terms of treatment effects and how such
effects change over time. A longitudinal study design has the advan-
tage over a cross-sectional design in that changes over time in treatment
effects can be estimated [15, Chapter 1]. The positively correlated mea-
surements per subject in longitudinal studies may reduce the variance es-
timate of treatment effect in comparison to cross-sectional studies. Thus

the design has a potential for substantial gains in efficiency ([15, Chapter
1}, [22}).

Similarly as for the hierarchical data structure, repeated measures data
structure implies that the multiple measurements on the same subject
are correlated. The correlation p(7,j') between observations (e.g., at
times) 7 and j' can be expressed in a range of correlation structures,
including independent (p(j,j’) = 0), exchangeable (p(j,5') = ), and
autoregressive (AR) (p(j4,§') = 7/77). The autoregressive process im-
plies that correlation between the two measurements on the same subject
that are close in time is higher than the two that are further apart. The

within-subject dependence (as a result of the correlated observations)

7



violates the basic assumption for simpler statistical methods that obser-
vations are independent. Similarly as to the hierarchical data structure,
the within-subject dependence is usually accounted for by modelling the

covariance structure [16].

1.2.2.3 Repeated measures data with additional hierarchical structure

Repeated measures data with additional hierarchical structure exists
when multiple records are taken over time on the same subjects (e.g.,
animals or farms) which are nested within some (physical) clusters (e.g.,
hospitals, herds, provinces). In multi-level modelling terminology [77],
this may be termed three-level repeated measures data, with observa-
tions corresponding to level one and clusters to level three. Such data
structures are encountered across a wide range of applications in veteri-
nary and human epidemiology. An example of this type of data structure
is the records of presence or absence of bacteria in monthly milk samples
from cows housed in multiple herds. Thus, the hierarchical structure
is the clustering of cows in herds, and the repeated measures are the

monthly test records based on the milk samples.

Dealing with the hierarchical structure in addition to the repeated
measures will at the very least increase the complexity (conceptual and

numerical) of the model/analysis considerably. Some procedures (GEE



in Section 1.4.2.1) were designed for two-level structures and offer no
straightforward estimation to three-level structures. Other procedures
(ML in Section 1.4.1.1) may be affected in their performance by the
increased model complexity and size of datasets. Comparison of proce-
dures for repeated measures with additional hierarchical structure exist
for single datasets [65] but no comprehensive review has to our knowledge

been undertaken.

1.2.3 Experimental design

Generally, one of the basic principles in experimental design is the reduc-
tion of variation between the treated units (experimental error). Often
this can be achieved through the randomization of the treated units [13]
and blocking groups of similar experimental units. The characteristic
of an experiment usually involves, the imposition of a treatments ran-
domly to n experimental units, in which their responses are measured.
The experimental units can be divided into a groups based on the treat-
ments they receive, or to treatments per block, or multiple blocks of

homogenous units per treatments.



1.2.3.1 Treatments between subjects: parallel group design

In randomized controlled clinical trials with two treatments (a = 2),
the eligible subjects are randomly assigned into two groups with the
objective to compare the effect of the two treatments ([16, Chapter 11]
and [13, Chapter 3]). The results are then analyzed by the comparison
of the groups. An implication of design is that differences between the

subjects contribute to the variability of measurements.

1.2.3.2 Treatments within subjects: cross-over design

In a cross-over study with two treatments (a = 2), each eligible subject
is assigned to receive both treatments in sequence, with a time period
before the adminstration of the second treatment, usually termed “wash-
out” [16, Chapter 11]. Each subject is randomly assigned its first treat-
ment. Then, the outcome is monitored during each period of treatment,

and in this way each subject can serve as its own control.

In a repeated measurements design, it may be of interest to randomly
expose each subject in the study to a sequence of treatments to reduce the
error (within subject) variance as well as to enable an unbiased estimate
of treatment effects, by having each subject serve as its own control. One
major advantage of the within-subjects design is that it eliminates almost

all confounding effects that may be caused by the subject differences.

10



Another advantage of this type of treatment adminstration is that it
reduces the sample size requirements. One disadvantage of this design,
is the potential of confounding of the order effect of treatment. This can
be usually be avoided by randomly assigning the sequence of treatments
and ensuring an adequate wash-out period to eliminate the effect of one

treatment on subsequent treatment(s).

1.2.3.3 Incomplete block design

The design of many experimental studies may face some logistical con-
straints (e.g., sample size space or time limitations) to allocate (a > 2)
treatments to all e blocks. Thus only a portion of the treatments can
be allocated to each block. This design is called the “incomplete block
design”. Designs for incomplete blocks include balanced and unbalanced
block designs. Multiple types of balanced and partially incomplete de-
signs exist. Dean and Voss [13, Chapter 11] presented balanced incom-
plete block design, group divisible designs, and cyclic designs. The clas-
sical balanced incomplete block design (BIBD) exists for certain combi-
nations of the number of treatments, blocks, and block sizes. This design
requires that every pair of treatments occurs together within the same
block an equal number of times [13, Chapter 11]. In the group divisible
design, treatments are divided into groups, and within each group the
same requirement as for a BIBD is imposed. In the cyclic design, the ex-

11



perimental units are grouped into different blocks of different sizes, where
each block is obtained from its previous block by cycling the treatments.
However, many experimental studies fall into the unbalanced incomplete
block design where the above requirements can not be fulfilled. In gen-
eral a block design where experimental units are nested within blocks
can be thought of as hierarchical, multilevel [77], clustered [16, Chapter
20] data structure. However, in certain situations, it can be considered
also as a form of repeated measures data [15] structure, where blocks

refer to a sequence of measurements over time.

1.3 Statistical models

1.3.1 Generalized linear models

Generalized linear models (GLMs) constitute a framework that unifies
the regression models for independent outcomes [55, Chapter 4]. It con-
sists of three main items, a distribution function f that is a member of
an exponential family, a linear predictor n and a link function g, so a

simple regression model takes the following form:

E(y) =p=g9"(n)

12



where E(y) is the mean of y, and Var(y) =V (u)=V(g71(n)).

Consider independent binary outcomes y;,7 = 1,...,n, and a set of p
explanatory variables z;1, ..., x;p. For some specific functions a(.), b(.)
and c¢(.), the likelihood function of the exponential family [12, Chapter
9] takes the following form:

vif; — b(6;)

£ (s 01, 8) = exp{ e

+ c(ys; ¢)} : (1.2)

where 6 is a canonical parameter and ¢ is a dispersion parameter, b(6)
is called cumulant function [55, Chapter 2| that does not depend on
the data. As an example, for binomial random variable y, with (n, u),
where n is the number of trial and u is the probability of success, the
probability mass function can be expressed in the following exponential

family form:

S (yln, ) = (Z) Pl —p)""

= exp [log (Z) + ylogp+ (n —y)log(1l — #)}

= exp [y log (1—f;> —nlog(l — p) + log (Z)] )

where (ylog(f_l—u), (nlog(1l — p) and log (Z)) refer to (y0,b(0) and c(y))

respectively in the likelihood function (1.2) (see, e.g., [12, Chapter 9]).

13



The log likelihood of (1.2) takes the form:

6; — b(6;)

log f(yi; i, &) = 2 + clys; &), (1.3)
a(9)
S0,
0 . — b (6;
—a—elog f(yi;0i,0) = qubg),

then taking the expected value and equating it to zero (e.g., [12, Chapter
9]) implies that the mean is,

0

i =25 log f (i 0;, @) = V' (6;)

It follows from (1.3) that the variance of y; is,

2

0
Var(y;) = aﬁlog f(ys; 03, 0) = b"(6;)a(d).

The linear predictor incorporates all the information for the explanatory
variables z;1, . .., z; into the model, i.e. n; = Bo+Lizi .. . +5pTip, Where
[ is vector of the regression coefficient. The link function establishes a
relationship between the linear predictor and the mean of the distribution
by mapping the (0,1) interval into a whole real line (—o0, 00), i.e. p; =
E(y) = g7 Y(Bo + bizi1, - - ., +8pzip). Various link functions commonly
used [55, Chapter 4] for binomial distributions include: logit, probit,
cloglog and log-log; the logit and probit models are discussed in more

detail in Section 1.3.1.1.
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Given the relationship between 6 and g through the link function and
the variance function, the f(y; 6, ¢) can be expressed as f(y; 3, ¢), so
the likelihood of 8 and ¢ takes the following form:

> o1 0:(8)ys — b(6:(B3))
a(e)

1(3,0) = exp { + c(Ys; ¢)} . (19

Then, the regression coefficients are estimated by solving the following

estimating equation which equates the score function to zero:

0 - ;
54(60,6) = 55 1081(6,9) = > (%
1=1

YVar (y)(y; — u;) = 0. (1.5)

This corresponds to maximizing the (log) likelihood function, i.e. ML
estimation. In the absence of the assumption about a full specification of
the distribution belonging to the exponential family, the equation (1.5)
is solved for the regression coefficients (8) by iterative weighted least

squares (i.e. quasi-likelihood estimation, see 1.4.1.3).

1.3.1.1 Logistic and probit regression

The logit link function defined as g(i) = log(p/(1—w)) [5] is widely used
due to its simple interpretation in terms of the odds ratio [55, Chapter

4]. Logistic regression refers to model with logit link which in its simple

15



form can be written

IOgit(/_Li) =M1 = ﬁo + /811:7:1 et ﬂp.’lfip, (16)

where p; = E(y;) = Pr(y; = 1). Similarly, the probit link g(u) =
®~1(p), where @ is the cumulative distribution function of the standard
normal distribution N(0, 1). This leads to the following probit regression

model

O w) =n = Bo + Bizir - - - + BpTip, (1.7)

The logit and probit regression models are similar. However, their re-
gression parameter estimates are scaled: the logit coefficients exceed the
probit coefficients by the approximation factor 7/+/3 = 1.814. However,
even adjusting regression coeflicients by this factor, a slight difference
between the logistic regression and the probit coefficients may still ex-
ist due to the difference between logistic and normal curves. Haley [33]
showed that the logistic distribution, whose cumulative distribution func-
tion (cdf) takes the simple form F(z) = (1+¢e™*) with density function
f(z) = F(z)(1 — F(z)), is very close to a normal distribution. More-
over, Haley showed that the maximum difference |F'(dz) —®(z)| between
the logistic cdf, F(dz), with zero mean and scale parameter d = v/3/7
and the standard normal cdf, ®(z), is about 0.0228. Kotz [43, Chapter

22] showed graphically that the difference is minimized to 0.009 when

16



d = (v/3/7)(16/15).

1.3.2 Generalized linear mixed models

The generalized linear mixed models (GLMMs) extend the generalized
linear models (GLMs) [55, Chapter 4] by incorporating random effects
for each subject. Thus called random effects models [15, Chapter 7] or
subject-specific models [31, Chapter 5|. The idea is to link the mean of
the response to the linear predictor n conditional on the random effects
[66, Chapter 1], as well as to reflect the natural heterogeneity across sub-
jects [15, Chapter 7|. Suppose we have a collection of binary observations
yi; on each of n subjects (4 = 1,...,n) at ¢ time points (j = 1,...,t), as
well as a set z1, ..., z, of explanatory variables recorded for each subject
at every time point. A random effects logistic regression model, often

termed a logistic random intercept model, takes the following form:

logit(Pr(yij = 1|uz)) = Wij = ﬂo + ﬂlxlij + ...+ ﬁpxpij + U, (18)

where Pr(y;; = 1|u;) is the conditional probability and us,...,u, are
independent random variables and commonly assumed normally dis-
tributed, say u; ~ N(0, 0?), where o? represents the heterogeneity (vari-
ance) between subjects. A more general form of the model (1.8) is to

replace the single random effect u; for subject ¢ by a series of autocor-

17



related random effects resulting in a repeated measures random effects

model [15, Chapter 11] that takes the form:

logit(Pr(Y;j = llum)) = [+ ﬁ1.’131ij + ...+ ﬁp.’E‘m'j + Ui (19)

Where the w1, ..., u; are series of autocorrelated random effects with
p(u;j,uyr) = pli=7'l. The most commonly assumed distribution is the
Gaussian (normal), say u;; ~ N(0,0?%) where o2 represents the hetero-
geneity (variance) between subjects. Both models (1.8) and (1.9) are
for the conditional probability of an “event” given the random effects of
the ith subject. However, model (1.9) forms a better basis for random
effects modelling of repeated measures data because of its ability to in-
corporate autocorrelation structure between the repeated measurements

[15, Chapter 11].

Several alternative approaches have been suggested to allow for non-
exchangeable correlation structures, such as, a multivariate approach
involving estimation of all correlations between measures on the same
subject [85]. However, this approach seems unsuited to deal with long
time series. Another approach has been proposed to model correlations
between lowest level residuals, conditional upon the random effects in
(1.8), by an autoregressive function of time [4]; this method is imple-

mented in a macro for the MLwiN software.
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1.3.2.1 Intra-class correlation

Typically, generalized linear mixed models provide an approximate esti-
mate of the dependence of the outcomes p(y;;, vi;7) within a subject or
a cluster (ICC, see 1.2.2.1). It depends on the mean (and therefore the
fixed effects), the distribution of the random effects and their correlation
structure. For model (1.8) with normally distributed random effects and
in the absence of time-dependent predictors in the fixed effects, any two
observations on the same subject are correlated to the same degree. No
exdct formula for the ICC is available but several approximations have
been developed with the simplest of these, based on latent variable in-
terpretation of the binary outcome [77]. By this interpretation, a binary
event (y = 1) is created whenever a continuous latent variable exceeds
a threshold. For example, a subject may succumb when its severity of
disease exceeds a threshold, or a subject may become diseased when
exposure exceeds a threshold. Mathematically, a binary outcome can al-
ways be represented by a latent variable and a threshold, although their
interpretation can be only hypothesized. In a logistic model, the latent
variable can be shown to have a logistic distribution with a variance of
72 /3. Therefore, the following formula for the ICC is exact for the latent

variable and may be used as an approximation for the observed binary
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outcome:

0.2

ICC ~ ———. 1.1
o2+ m2/3 (1.10)

Likewise, in model (1.9) the correlation between two observations & time
steps apart can be expressed approximately as,

oFo?

ICC ~ ————
cC 024 72/3’

where k=1,...,t — 1. (1.11)

1.3.3 Generalized linear marginal models

Marginal (population-averaged or PA) models [86] are expressed in terms
of the marginal expectation of the outcomes without conditioning on
the random effects. Then the marginal expectation (or probability of
an event) is modeled as a function of the explanatory variables and
regression parameters through the link function in a GLM. A marginal

logistic regression model takes the following form:

logit(uij) = mij = Bo + BT + - - - + BpTyij, (L.12)

where p;; = E(yi;) = Pr(y;; = 1), note that in marginal and random
effects models the regression parameters are not equal and their effects
have different interpretations. A method to scale random effects param-

eters to marginal parameters is available (see Section 1.5.1).

The avoidance of such scaling by separating fixed and random effects
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estimates was one of the key ideas behind the development of marginal-
ized models [34]. Marginalized models employ the marginal model (1.12)
for the regression coefficients and the random effects model (1.8) for the
correlation structure. In the latter model, the fixed part is replaced
by the equivalent of the marginal model fixed part for the conditional
probability [34]. Marginalized models may be programmed using flexi-
ble statistical optimization tools (such as the nlmixed procedure in SAS;
[32]), but to our knowledge these models are not yet available in standard

statistical software, or as an add-on package.

1.4 Statistical estimation procedures

1.4.1 Random effects estimation procedures

The likelihood contribution of subject 7 in model (1.8) involves an inte-
gral over the random effect distribution, and takes the following form:

+oo ¢ 1 1 9
1(8,02) = / [ emtovo (1 + emote) ! ———ei “du;.  (1.13)
~o0 i1 V2rao,

In general, there is no analytic expression available for the equation
(1.13) and a numerical procedure is needed. Alternatively several ap-
proximation algorithms have been proposed aimed at producing esti-

mates close to the global ML estimate without actually computing the
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likelihood function [6]. These algorithms carry a number of different
names and acronyms typically involving “weighted least squares” and

“quasi’™- or “pseudo-likelihood”.

1.4.1.1 Maximum likelihood estimation via numerical integration

The exponential part in equation (1.13) makes the Gauss-Hermite quadra-
ture procedure [53] a logical method to evaluate it numerically. The
adaptive quadrature procedure is preferable for normally distributed
random effects [68]. In adaptive quadrature, the quadrature points are
rescaled and shifted to the shape of the log likelihood function. ML es-
timation by numerical integration for model (1.8) has become available
in several statistical packages in recent years, the most flexible of these
being the (gllamm) macro for Stata for latent variable models (includ-
ing the generalized linear mixed models) [67]. In addition, Stata offers

(xtmelogit) procedure for multilevel models.

1.4.1.2 Markov Chain Monte Carlo

The Bayesian statistical framework is based on the well-known Bayes
theorem [23]. One major distinction from classical (frequentist) statis-
tics is that in Bayesian statistics the parameters are stochastic variables

with prior and posterior distributions. Our interest is in the full pos-
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terior distribution, which depends on the likelihood function and the
prior distribution over the unknown parameters in the model of interest.
For a density function p, parameter 6, observed data D, and a prior
distribution p(@), the posterior distribution takes the following form:

p(D|0)p(6)

p(0|D) = (D)

(1.14)

where p(D|0) is the likelihood function. Markov chain Monte Carlo
(MCMC) offers techniques to generate samples from Markov chains which
in a wide variety of models can be devised to converge to the posterior
distribution of @ (for more details, see e.g., [8]). Our focus here is on using
MCMC techniques as an estimation algorithm for the frequentist model
(1.8), rather than exploring genuine Bayesian models with informative
prior distributions. By this approach, prior distributions are generally
taken as vague (“non-informative”), and the inference is based on poste-
rior distributions using a posterior median (or mean) as a substitute for
a maximum likelihood estimate and 95% probability intervals instead of
confidence intervals. A common non-informative prior for the fixed ef-
fects is N(0, 10°), for inverse variances or precisions gamma (1073,1073)

[9] or for the standard deviation a uniform distribution (0,100)) [46, 23].

MCMC techniques exist to compute “real” maximum likelihood es-

timates (see e.g., [29, Chapter 14]) but these are beyond the present

23



scope. The MCMC approach avoids computation of the full likelihood
function, and has been shown to perform well across a range of settings
including multilevel random intercept models [9]. The essential statis-
tical software for Bayesian analysis is WinBugs; in addition, a range of

multi-level models can be fitted in MLwiN.

The flexibility of MCMC allows us to implement complicated models.

Congdon {11, Chapter 7| describes one way of constructing a series of
autocorrelated random variables, such as (u;q, . .., u;) in model (1.9) for

MCMC analysis,

Ujj = PUjj—1 T € (1.15)

where €;; is an uncorrelated random variable ~ N(0, 02), u;; ~ N(0,0?)

and uo ~ N(0,03). The correlation between (u;j, u;;—¢) is established

through the variances, where a first order autoregressive process is as-
2

sumed, i.e. 03 = 02(1 — p?) and 0% = po3 (for more details, see e.g., [11,

Chapter 7]).

1.4.1.3 Quasi-likelihood method

Quasi-likelihood is a term used to describe a function that has similar
properties to the likelihood function (1.4), but without being strictly
derived from a probability distribution. The quasi-likelihood requires a

known specification of a relation between the mean and the variance of
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the observations, i.e., for a set of independent binary variables yi, . .., yn,
the Var(y;) = V() = oui(1 — ;) [56, Chapter 5]. ¢ is a scale (or
dispersion) parameter, and is usually estimated from the data. Alter-
natively, one may fix the scale parameter to a value of 1 to reflect the
actual relationship in the binomial distribution. McCullagh and Nelder
[55, Chapter 9] refer to the following integral (if it exists) as the log

quasi-likelihood for u; given y;:

i —
Q (i, i) :/ Y 'uudﬂ- (1.16)
"

Then, the regression coefficients are estimated by solving the following
estimating equations which equate the jth element of the score function

to zero:

~ " O, yi — i .
Ss(B,0) = > ==Qi, vi) Z%Zyivdjro’ i=1....p
- (1.17)

I

the parameter ¢ can be estimated separately using

’ 1 - (v — f)? X’
b= Z( fhi) _ 7

n—p<= V() n—p

where x? is the generalized Pearson statistic (e.g., [55, Chapter 2]). The
inclusion of the scale factor ¢ in quasi-likelihood models, give them the
ability to directly accommodate overdispersion, and since ¢ is constant,

equation (1.17) is identical to equation (1.5).
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For model (1.8), an iterative weighted least squares procedure iter-
atively applies mixed linear model estimation to an “adjusted” variate
obtained by Taylor approximation of the outcome around its current es-
timated mean, until convergence, using either ML or REML, thus results
in IGLS “iterative generalized least square” or RIGLS “restricted itera-
tive generalized least square”, respectively. The resulting regression coef-
ficient estimates are called maximum quasi-likelihood estimates because
they can be obtained from optimizing a quasi-likelihood function which
only involves first and second order conditional moments, augmented
with a penalty term on the random effects [59]. Breslow and Clayton [7]
presented two estimation procedures based on quasi-likelihood function
called penalized quasi-likelihood (PQL) and marginal quasi-likelihood
(MQL). The MQL estimates are derived under random effects model
assumptions [25]. Both procedures use Laplace approximation to ap-
proximate the likelihood function. One major difference between the
two algorithms is that MQL does not incorporate the random effects
u; in the linearization of the mean [59, Chapter 14]. It has been sug-
gested to refine the approximations by including a second-order term in
the Taylor expansions, usually denoted as second order PQL and MQL
procedures [27, 71]. These quasi-likelihood algorithms are implemented
in MLwiN by adapting an iterative generalized least squares for binary

series by combination of Taylor series approximation.
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1.4.1.4 Pseudo-likelihood method

Pseudo-likelihood (PL) is a term used to describe a function of the data
that has similar properties to the likelihood function (1.4) ([59, Chapter
9] and [84]). Wolfinger and O’Connell [84] suggest a pseudo-likelihood
approach for generalized linear mixed models, based on Gaussian ap-
proximation and Taylor’s theorem. It differs from the quasi-likelihood
approach by using a true joint likelihood function in an iterative estima-
tion process. It involves assuming the regression parameters are known,
then applies a linear mixed model to estimate the dispersion ¢ and the
variances parameters, and then assume the variances are known and
estimates the regression parameters. The use of either ML or REML
in the linear mixed model estimation process, resulted in either pseudo-
likelihood (PL) or restricted pseudo-likelihood (REPL), respectively [84].
The (restricted) pseudo-likelihood approach allows for both random ef-
fects in the linear predictor and correlation structure in the observations
scale errors conditional (on the mean) [84]. Intuitively, one would expect
this procedure to be suitable for models such as model (1.9). Modelling
by correlation structure only yields marginal estimates [59]. Adding
random effects effectively yields a random effects model with serial cor-
relation [59, Chapter 22]. The (restricted) pseudo-likelihood approach is

implemented in SAS (proc glimmix) and R (glmmPQL library), in addi-
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tion to the (restricted) pseudo-likelihood approach, the SAS procedure

offers first order PQL and MQL estimation ([84] and [59, Chapter 15]).

1.4.2 Marginal estimation procedures

Likelihood-based marginal approaches do exist, namely, Dale and Ba-
hadur models (see, e.g., [59, Chapter 7] and [15, Chapter 8]). However, |
these approaches became unattractive due to the extensive computa-
tional requirements. In Bahadur model [15, Chapter 98|, the within-
subject dependence is captured via marginal correlations. One drawback
of this model is that, the correlations among binary responses are con-
strained by marginal means [15, Cﬁa,pter 8] and the parameters increase

rapidly with ¢ (the number of repeated measurements per subject).

Two alternative and more common approaches for longitudinal data
are generalized estimating equations (GEE) [48, 86, 36] and alternating
logistic regression (ALR) [10]. These procedures are often referred to as
semi-parametric because they do not assume a specific form of the depen-
dence between observations on the same subject, i.e. the within-subject
correlation structure. Both GEE and ALR estimation yield PA estimates
that are asymptotically unbiased and can be nearly efficient relative to
the maximume-likelihood estimate in a fully and correctly specified model

[15, Chapter 8]. The GEE procedure is available in most major statistical
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packages (e.g., SAS, S-Plus/R and Stata), with only slight differences in

their implementation, and ALR is available in the former two packages.

1.4.2.1 Generalized estimating equations

The GEE extension to generalized linear models for the analysis of lon-
gitudinal data was introduced in a series of papers [48, 86]. For binary
observations y;; on each of n subjects (i = 1,...,n) at ¢ time points
(7 =1,...,t), as well as a set of explanatory variables zy, ..., z,, the

“estimating equation” takes the following form:

Oy \ Yij — Mij
Sp(B, ¢) = E ﬁE (F2) T+ =0, (1.18)
o o 86: )V (is)

the parameter ¢ can be estimated separately using

n t
E: yzj :LLZJ
V(i)

i=1 j=1

~ 1
o=
n._.

where 7;; = (yi; — flij)/ m is the Pearson residual. The solution of
the multidimensional estimating equation (1.18) determines the param-
eter estimates, usually obtained in a stepwise (iterative) manner where
an iterated and updated equation between regression and within-subject
dependence estimates is solved in each step and the process terminates
when the solution no longer changes (“convergence”). Specifically, the

GEE procedure involves a user-specified “working” correlation matrix

29



to approximate the true within-subjects correlation structure. When
using a robust variance estimation method (“Huber/White” or “sand-
wich”, [36]) the statistical properties for the PA estimates hold even
for a misspecified working correlation structure; this is often referred
to as a robustness property of the GEE procedure. However, a cor-
rect specification of the correlation structure enhances its efficiency [83].
Most software implementations offer a range of correlation structures,
including independent, exchangeable, and autoregressive (AR) (see Sec-
tion 1.2.1.2). The estimated Pearson residual #;; is used to estimate the
correlation [36, Chapter 3]. In an autoregressive correlation structure
(p(4,7") = 7777, one way of estimating the scalar v is by the following
equation [73]:
no t-1

S — 1 A‘ ,A. .
T -1 - p)qBZ 2 P

i=1 j=1

where p in the number of fixed effects parameters. The correlation matrix
can then be built from the autoregressive structure implied by the AR
correlation [36, Chapter 3]. GEE is limited to the classical two-level

settings in repeated measures data.
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1.4.2.2 Alternating logistic regression

Generally, the correlations among binary data are constrained by the
(marginal) probabilities [64]. Thus the GEE estimates of the association
among the binary outcomes can be inefficient [10]. To overcome this
problem Carey et al. [10] suggested using pairwise odds ratios to model
the association between pairs of the outcomes and they proposed a proce-
dure called alternating logistic regression (ALR). It refers to a procedure
that iterates between a logistic regression using GEE to estimate re-
gression coefficients and a logistic regression for modeling within-subject
dependence in terms of pairwise odds ratios. For binary observations
yi; on each of n subjects (i = 1,...,n) at ¢ time points (j = 1,...,1),
the odds ratio parameter [10] for each unique pair of outcomes within
subjects (yi;, ¥ij7) takes the following form:

Pr(yi; = 1, yir = 0)Pr(ys; = 0,45 = 1)

V)50 = (1.19)

The ALR approach has the same robustness properties of the GEE pro-
cedure with respect to regression parameters, and is considered efficient
in estimating the association parameter [10]. The ALR procedure has
the advantage of providing standard errors for the association parame-
ters ¢ between the pairs of responses, and is numerically more efficient

than GEE for large clusters [10]. The ALR has the ability to accom-
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modate up to three levels of hierarchical structure, where it allows one
to distinguish between odds-ratios within clusters and within subjects;
however, both the within-cluster correlation and the within-subject cor-
relation must be modelled as exchangeable. To illustrate by a numerical
example, an ALR, analysis of the scc40 dataset of [16, Chapter 27] gave a
common log odds ratio within subjects (cows) of 2.27 (OR = 9.68) and
a common log odds-ratio for within clusters (herds) of 0.22 (OR = 1.25).
The within-subject pairwise odds-ratio is relating two observations from
the same cow, and a value of 9.68 suggests a positive outcome in a cow
at one time point increases the odds for a positive outcome at another
time point (in the same cow) almost 10-fold. In essence, some cows are
at higher risk of a positive outcome than others. The within-cluster
pairwise odds-ratio of 1.25 indicates that a positive outcome in a cow in-
creases the odds of a positive outcome in another cow (in the same herd)
by 25%. In essence, this corresponds to clustering of positive outcomes

in farms.
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1.5 Relationship and performance of marginal and

random effects models

1.5.1 Relationship between marginal and random effects mod-

els

The relation between random effects and marginal estimates has been
discussed and described [86, 60]; see also the summary by Diggle et al.
[15]. The inferential goal of a marginal model is the marginal probability
(averaged across the population of subjects), thus provides a population
average interpretation of the estimates. On the other hand the inferential
goal of the random effects model is the probability conditional on the
unobserved (subject) random effects. This provides a subject-specific
interpretation of the estimates. Zeger et al. [86] provided a conversion

formula for logistic regression with normally distributed random effects:
B~ (2o? +1)726%,  where c¢=16v3/(157) = 0.588. (1.20)

For a probit model, the above conversion formula becomes an exact

formula (see, e.g., [56, Chapter 8]):

ﬂPA — (02 + 1)—1/2555. (1021)
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Both formulas can be used to relate subject specific to population average
models/estimates under the assumption that random effects are normally
distributed. Without any distributional assumptions on the random ef-
fects it holds that the marginal regression parameters are attenuated or
diluted (towards zero) relative to the random effects parameters, unless

the variance is zero [56, Chapter 8].

1.5.2 Performance of random effects estimation procedures

The performance of random effects estimation procedures rely on the
ability of the statistical algorithm to approximate the log likelihood
function. The estimation procedures based on adaptive quadrature to
maximize the log likelihood (ML) ([63, Chapters: 2-4] and [62, 68]) are
preferred and produce reliable estimates of the regression parameters.
However, caution should be taken in their use because “even with adap-
tive Gaussian quadrature and with relatively simple models, convergence
to a global maximum can be difficult to obtain” [47]. Rabe-Hesketh et
al. [68] showed that adaptive quadrature to approximate the integral
for maximum likelihood performs better than PQL. The performance of
MCMC as a maximum likelihood estimation procedure was evaluated
by Browne and Draper [9], they found that MCMC produced the closest

reproduction of true model values in comparison with PQL and MQL.
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In many studies, PQL showed a tendency to give biased estimates [71];
in particular, the variance components were biased towards zero [31].
The PQL procedure was shown to perform poorly in datasets with small
numbers of repeated measurements per subject [59, Chapter 14], and
an improvement was noticed by increasing both the number of subjects
as well as the number of measurements per subject. One study [18]
reported the performance of REPL with a focus on the variance parame-
ters. This study indicated that REPL suffers from convergence problems
and produces biased estimates for the interclass correlation, especially
for a small number of subjects with a small number of repeated mea-
surements. However for large numbers of clusters, it seems to converge

to steady but biased estimates especially when the variance is large.

1.5.3 Performance of marginal estimation procedures

The performance of GEE has been studied by many researchers over
the last decade. In summary, the use of an independent working corre-
lation in GEE provides highly efficient regression estimates [86]. Pepe
and Anderson [61] reported that the use of non-independent working
correlations may lead to biased regression estimates and indicated that
there is an advantage in using the independent structure for models that

include time-varying covariates. However, Fitzmaurice et al. [20] found
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that the independence structure may lead to a substantial loss of effi-
ciency for models including time-varying covariates. Sutradhar and Das
[79] have shown that the use of misspecified correlation structures in
GEE leads to loss of efficiency for regression estimates. vDifferent studies
(e.g., [54, 87, 83, 74]) have shown that the independent working cor-
relation produces efficient estimates only for very restricted cases and
are subject to a substantial loss in efficiency even when the design is
balanced. Wang and Carey [83] concluded that the choice of working
correlation in GEE has a substantial impact on the efficiency of regres-
sion estimates. They recommended the choice of the working correlation
should coincides with the true correlation of the data and can be chosen
based on either statistical criteria or biological background. Wang and
Carey [83] recommended also carrying out a simulation study based on
the covariate structure to evaluate the impact of the working correlation

in practical data analysis.

Breslow and Clayton [7] showed that MQL is a marginal procedure.
Nevertheless, the performance of MQL has been studied by many re-
searchers as a random effects procedure (e.g., {71, 9]). Rodriguez and
Goldman [71] reported in their simulation that MQL produce biased re-
gression estimates and underestimated variances. Browne and Draper
[9] demonstrated that MQL performed worse than PQL when the ran-

dom effects variances are large. MQL was reported to perform poorly in
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datasets with a small number of repeated measurements per subject [59,
Chapter 14]. Goldstein and Rasbash [27] and Rodriguez and Goldman
[71] showed that second order MQL performs only slightly better than

first order MQL.

1.5.4 Comparison of marginal and random effects procedures

For binary repeated measures outcomes, random effects and marginal
estimation procedures handle the within subject dependence differently
and provide different parameter estimates with different interpretations.
In the context of a longitudinal smoking prevention trial, Hu et al. [39]
compared the traditional stratified analysis, ordinary logistic regression,
random effects logistic model and GEE. They reported that the absolute
values of the random effects estimates were larger than those from GEE
models. They indicated that the correlation between the repeated mea-
sures play a role in the discrepancy between the estimates from the two
models. They also reported that the marginal estimates of the fitted ran-
dom effects models (random effects estimates converted using 1.20) were
similar to GEE estimates. In the context of longitudinal comparative

studies, Kuchibhatla and Fillenbaum [44] compared three procedures,
ordinary logistic regression, random intercept model and GEE. They re-

ported that the absolute values of the random intercept estimates and
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their standard error were larger than those from the ordinary logistic and
GEE models. The ordinary logistic regression under- and over-estimated
the standard errors of time invariant covariates and time varying covari-
ates, respectively. However, an argument regarding these findings can
be made that these differences may be due to the difference between
the subject-specific and population average estimates. Preisser et al.
[65] presented a comparison of ALR, GEE and random-effects logistic
regression for analysis of a single dataset on patterns of occupational
illness. They reported that ALR. is a useful method for estimating the

regression parameters and detecting the clustering in longitudinal data.

In general, the choice of procedure, in particular the choice between
marginal and random effects procedures should first and foremost be
guided by the desired interpretation of effects. Diggle et al. [15, Chapter
7] argue that PA effects are of primary interest in clinical trials because
“the average difference between control and treatment is most impor-
tant, not the difference for any one individual”. Lindsey and Lambert
[49] warn that the population average may hide individual effects, and
that “in extreme cases, a marginal analysis can show an average positive
treatment effect when the effect would in fact be judged negative for

each individual”.
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1.6 Missing values

By missing values in binary repeated measures data we mean data with
incomplete records over time on the same subjects (e.g., animals or
farms). Missing data usually arise when some subjects are not available
for certain measurements. Subjects may leave the study at some point
in time before completing their measurements (drop-outs), subjects may
miss some measurements and reappear again for later measurements (in-
termittent missing values), or subjects may join the study at different
times. Missing data in experimental studies may occur by design where
some logistical restrictions force an unbalancedness of the data, such as

in the incomplete block design.

Generally, missingness in longitudinal data presents a potential source
of bias. In part, the bias could be due to the changes in data structure
from being balanced to being unbalanced, which in turn may raise tech-
nical difficulties, especially for those statistical methods that can only
cope with balanced data [15, Chapter 13]. If the process of the observa-
tions being missing (the missingness mechanism) varies from subject to
subject, the distribution of the observed data may not be the same as

for the full data.
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1.6.1 Classification of missing data

Despite the large body of literature on missing data [52, 45, 14, 19, 51,
37, 38], most authors agree that handling missing values is not a trivial
task and that in many instances there is a need for sensitivity analyses
[40]. Thus, additional information about the missingness mechanism
is required. Missing data mechanisms have been classified into three
categories [52]: missing completely at random; missing at random; not

missing at random.

Within the context of binary repeated measures data, let y;; refer to
complete binary records on each of n subjects (i = 1,...,n) at ¢ time
points (j = 1,...,t). Furthermore, let y;; = (y5;, yi;) where y7; is the
observed subset of the data, and y;7 is the subset of the data that would
have been available had they not been missing. Note that the y; is there-
fore unobserved or latent. Let 7;; be an indicator of missing y;;. Little
and Rubin [52] consider the conditional distribution f(ri;|y;., ., ¢) for
ri; given y;; where y; represents all the intended repeated measurements
of the response of subject 7, and z;. is for all repeated measurements of a
particular predictor for subject i. The ¢ denotes unknown parameter(s)

involved in the modeling of the missing data process.

In the above notation, a subject 7 drops out from the study at time d,

if Tid—1 = 0 and Tij = 1 for all] Z d.
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Missing completely at random (MCAR) [52, 45] refers to a missing data
mechanism that does not depend on either prior observed or unobserved
outcome values. Then, the conditional distribution for r;; takes the form:
flrilye, v, xi, &) = f(rijlai., ¢). Little and Rubin [52] indicated that
under a large sample assumption, the maximum likelihood estimator
obtained from the observed data is equivalent to that obtained from the

full dataset, i.e. the missing process can be ignored.

Diggle and Kenward [14] introduced a completely random drop-out
(CRD) process that assumes missing completely at random. One impli-
cation of the MCAR assumption is that the distribution of the observed
outcomes at time j is the same regardless of whether a subject drops
out or remains in the study after that particular time point. Also, the

distribution of the unobserved outcomes is unaffected by the drop-out.

Missing at random (MAR) [52, 45] or random drop-out (RD) [14] refers
to a missing data (drop-out) process that depends on the observed values
only, (i.e., there are no unknown or unmeasured factors that influence the
probability of an observation being missing). In this case the conditional
distribution for r;; takes the form: f(r;|y?, vi", zi., @) = f(745|y7, %i., ¢).
Little and Rubin [52] showed how to simplify the full likelihood function
of the model data when MAR holds. They concluded that under a large

sample assumption, the maximum likelihood estimator obtained from the
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observed data is equivalent to that obtained from the full dataset. Diggle

and Kenward [14] proposed a logistic model for the drop-out process:

logit(Pr(ri; = 1)) = Bo + Bitime; + Boyij—1, (1.22)

where Pr(r;; = 1) is the probability that subject ¢ drops out at time j.

Not missing at random (NMAR, sometimes also MNAR) [52, 45] or in-
formative drop-out (ID) [14] refers to a drop-out missing data mechanism
that depends on the unobserved outcome (current or future missing val-
ues). The conditional distribution for 7, f(ri;|y?, y™, z;.,¢), does not
permit any reduction. Little and Rubin [52] indicated that inference
based on the likelihood function ignoring the missing data mechanism
is biased and concluded that a NMAR missing process can not be ig-
nored under likelihood inference. Contrary to MAR, the NMAR process
implies that the distribution of outcomes prior to a drop-out is not the

same for those subjects who drop-out and those who do not.

1.6.2 Impact of missing values

The impact of missing values has been studied and several approaches
have been proposed to handle it. These approaches range from impu-
tation to statistical modeling. Several imputation algorithms have been

proposed, including last observation carried forward (LOCF); uncon-
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ditional mean imputation [52]; and conditional mean imputation [59,
Chapter 27]. They all make the strong assumption about the data miss-
ing process to be completely at random, which may not be always the

case. The simplicity of these approaches is one motivation behind their

use.

Several approaches have been proposed to assess and account for miss-
ing values [19], including the complete case method (also termed “listwise
deletion” [58, Chapter 5]). By this method, subjects with at least one
missing value are dropped from the analysis. Fitzmaurice [19] and Little
and Rubin [52] showed that this method is valid only under the MCAR
missing data process. Another approach is based on the observed data
and called the available case method (or “pairwise deletion” [58, Cahpter
5] and [52, 19]). Fitzmaurice [19] argued that a weighted version of GEE
(WGEE) falls under this approach. Kim and Curry [42] showed that for
a MCAR process, methods based on the available cases are considered
more efficient than complete case methods, as one would expect because
all the available data is used. Little [50] and Little and Rubin [52] ex-
plained that these methods assume the strong MCAR process. Little
and Rubin [52] argued that neither the complete case method nor the

available case method is generally satisfactory.

Little and Rubin [52] showed that an MAR process can be ignored
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when using likelihood-based inference. Hogan et al. [38] defined ignor-
ability as the situation where “the missing data model can be left un-
specified or ignored”. The GEE estimation procedure [48, 86| requires
the stronger assumption MCAR about missing values. Robins et al. [70]
showed that ordinary GEE does not allow a MAR, process to be ignored,
and outlined a weighting scheme (WGEE) to achieve valid inference un-
der the MAR assumption. Its implementation for drop-out missing data
is detailed by Janson et al. [21]. In brief, the weight for each subject can
be calculated by fitting a marginal logistic regression for the binary indi-
cators of previous drop-outs. Then the predicted values from this model
can be used to compute probability weights w;; for the subject 7, as the
inverse probabilities of not dropping out up to the current time point. By
introducing a probability weight w;; into the estimating equation (1.18)
this leads to the following:

n t

f% \Yis — s
w;; = 0, 1.23
Z 5@ ¢V(Nw) ( )

i=1 j=1

Fitzmaurice [19] argued that WGEE falls under the available case method,
because it uses only the observed data. Ali and Talukder [1] demon-
strated the application of weighted GEE for MAR, and GEE for MCAR,
they concluded that WGEE is valid for MAR. Touloumi et al. [80] re-
ported that the degree of bias in GEE estimates increases with the sever-

ity of non-randomness and with the proportion of MAR data.
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1.7 Purpose and overall objective

The purpose of this research project was to assess the performance of
statistical procedures belonging to marginal and random effects models
for the analysis of binary longitudinal data in veterinary science, specif-
ically, to describe and quantify their performance in terms of statistical
properties such as unbiasedness, confidence interval coverage and effi-

ciency.

In summary, binary records made on the same subjects over time are
likely to be correlated [57, 75] or clustered [16]. A within-subject depen-
dence violates the basic assumption of logistic regression that observa-
tions are independent, and may, if not accounted for, lead to biases in
parameter estimates and standard errors ([15, Chapter7] and [17]). Such
data structures challenge the statistical methods to hold its properties,
such as asymptotic unbiasedness and nominal confidence interval cov-
erage. Marginal and random effects procedures (models) ([15, Chapter
7-9], [60]) have been proposed for the analysis of binary repeated mea-
sures data. However, none of these approaches and methods combines

perfectly with an additional hierarchical structure.

We will motivate and illustrate all aspects of these models in veterinary
epidemiology research. In this thesis we will discuss the performance
of these statistical models through simulation studies in the context of
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binary repeated measures with /without additional hierarchical structure.
Emphasis will be placed on assessing the existing statistical methods
through simulation studies. In order to realistically reflect the choice an
applied researcher faces when it comes to data analysis, only procedures
implemented in broadly accessible statistical software are included. The
goal of the assessment is to establish some practical guidelines for the
choice of statistical procedures for the analysis of longitudinal binary

repeated measures data in veterinary science.

The overall objective of this thesis is to carry out a statistical assess-
ment and comparison of marginal and random effects procedures, in
terms of statistical properties such as unbiasedness, confidence interval
coverage and efficiency. In addition the study will explore the effect
of design parameters such as the length of time series, the hierarchical
structure, the number of replicate subjects, the level at which the treat-
ments are applied (between versus within subjects), and the impact of
missing values, in a longitudinal design. There are four specific objec-
tives:

1: The first objective is to give a statistical assessment of marginal
and random effects procedures, in terms of properties such as unbi-
asedness, efficiency and confidence interval coverage, in a two-level
balanced longitudinal design (Chapter 2).

2: The second objective is to explore and compare marginal and ran-
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dom effects estimation procedures for the analysis of binary repeated
measures data with additional hierarchical structure (Chapter 3).

3: The third objective is to assess the impact of missing values on
the performance of different statistical estimation procedures for the
analysis of binary repeated measures data with additional hierarchi-
cal structure (Chapter 4).

4: The fourth objective is to explore statistical approaches to assess and
account for specific correlation structures in hierarchical data arising

from incomplete experimental designs (Chapter 5).
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A simulation study to assess
statistical methods for binary

repeated measures data

2.1 Abstract

Binary repeated measures data are commonly encountered in both ex-
perimental and observational veterinary studies. Among the wide range
of statistical methods and software applicable to such data, one major
distinction is between marginal and random effects procedures. The
objective of the study was to review and assess the performance of
marginal and random effects estimation procedures for the analysis of
binary repeated measures data. Two simulation studies were carried
out, using relatively small, balanced, two-level (time within subjects)
datasets. The first study was based on data generated from a marginal

model with first order autocorrelation, the second on a random effects
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model with autocorrelated random effects within subjects. Three ver-
sions of the models were considered in which a dichotomous treatment
was modelled additively, either between or within subjects, or modelled
by a time interaction. Among the studied statistical procedures were:
Generalized Estimating Equations (GEE), Marginal Quasi Likelihood,
Likelihood based on numerical integration, Penalized Quasi Likelihood,
Restricted Pseudo Likelihood and Likelihood based approximation by
Bayesian Markov Chain Monte Carlo. Results for the marginal model
data showed autoregressive GEE to be highly efficient when treatment
was within subjects, even with strongly correlated responses. For treat-
ment between subjects, random effects methods also performed well in
some situations; however, a small number of subjects with short time
series proved a challenge for both marginal and random effects methods.
Results for the random effects model data showed bias in estimates from
random effects methods while the marginal model produced estimates

close to the marginal parameters.

2.2 Introduction

Repeated measures studies refer to data with multiple records over time
on the same subject (e.g., animal or farm) with the objective of making

inference about the expected value of outcomes, in terms of treatment

62



effects and how such effects change over time. This type of study design,
also referred to as longitudinal, has the advantage over a cross-sectional
design that changes over time in treatment effects or in individuals can be
estimated [10, Chapter 1]. The design also has a potential for substantial

gains in efliciency.

Binary repeated measures data are encountered across a wide range of
applications in veterinary science and veterinary epidemiology. The most
evident examples of two-level data are records of presence or absence of
disease conditions over time. Disease conditions may be detected clini-
cally (e.g., mastitis) or by a test such as bacterial culture [34], faecal egg
counts [1] or antibody determination for parasites [41]. Other examples
are success of fertilization (e.g., in repeated reproduction cycles [2]), oc-
currence of certain behaviours in animal welfare studies [18, 48], or of
treatment side effects in clinical trials (e.g., treatments for diabetes in
dogs [23]). If the binary outcome is created by thresholding a quantita-
tive outcome at a predefined cut-off value (e.g., ELISA for the diagnosis
of Johne’s disease; [45]) a substantial loss of information is implied but
the dichotomous outcome may be of greater interest than the quantita-
tive measurement. Another range of applications occur in the context of

farm-level monitoring of product quality (e.g., milk [38]).

Binary records made on the same subject (or unit) over time are likely
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to be correlated [30, 43] or “clustered” [11, Chapters: 20-21]. A within-
subject dependence violates the basic assumption of logistic regression
that observations are independent, and may, if not accounted for, lead to

biases in parameter estimates and standard errors ([10, Chapter 7] and

12]).

Several procedures (models) have been proposed for the analysis of
binary repeated measures data, and they are usually classified into dif-
ferent models: marginal (population-averaged), random effects (subject-

specific), and transition models ([33] and [10, Chapters 7-10]).

In marginal, random effects, and transitional models the treatment
effects have different interpretations. Generally speaking, the choice of
model should be guided by the data structure, the available information
as well as the scientific questions of interest. The inferential goal of a
marginal model is the marginal probability (averaged across the popu-
lation of subjects), while for random effects models it is the probability
conditional on the unobserved (subject) random effects. In transitional
models, the inferential goal is the probability conditional on the previous
response, i.e. the (transition) probability of moving from one binary state
to the next state. Treatment effects refer to the impact of a treatment on
these probabilities. Apart from an approximate conversion formula from

random effects to marginal estimates (discussed below) no simple ana-
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lytical links exist between the treatment estimates of the three models.
In some situations, the question of interest largely determines the prefer-
able model, for example if the interest is in transition probabilities and
effects. If the factor of primary interest represents an inherent trait of the
subjects, a subject-specific interpretation makes little sense [11, Chapter
22]. In practice, the choice between a marginal and a random effects
model is often open to additional considerations such as software acces-
sibility and statistical efficiency. Therefore, and by the fundamentally
different interpretation of transition effects already noted, this study is

focused on the choice between marginal and random effects models.

Despite the large body of literature on binary repeated measures data,
the applied researcher may find little specific guidance on the choice of
method for the data at hand (see however, [28]). Analysis of a single
dataset by multiple procedures (e.g., [22]) does not necessarily provide
much insight into which procedures provide the right answers, and does
not cover all aspects of statistical inference. Statistical assessments of
marginal and random effects procedures for clustered binary data are
abundant (e.g., more recently [21]), though often without addressing all
issues related to the repeated measures. One study for repeated mea-
sures focused entirely on variance and correlation parameters [13]. The
assessments are usually based on statistical simulation, whereby artifi-

cial datasets are generated according to a statistical model with fixed
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and known parameters (true model). The parameter estimates from the
analyses of simulated datasets by different statistical procedures are then
compared to the known (true) parameters. This approach depends criti-
cally on the relevance of the selected true model. In the present context,
the true model should reflect the longitudinal character of the data by
allowing for autocorrelation, i.e. the dependence being stronger between
observations on the same subject obtained close in time than distant in
time. Moreover, Stryhn et al. [46] suggest that its data structure might
be matched to the data at hand as closely as possible. Longitudinal
data structures range from balanced two-level structures (e.g., random-
ized clinical trials with no structural dependence between subjects) to
unbalanced, incomplete multi-level structures (e.g., observational records
of farm animals). The focus here will be on the former, simpler structure
while exploring the effect of other design parameters such as the length
of the time series, the number of replicate subjects and the level at which

the treatments are applied (between versus within subjects).

The objective of this study is to give a statistical assessment of marginal
and random effects procedures, in terms of properties such as unbiased-
ness and efficiency, in a two-level balanced longitudinal design. The
assessment includes a range of different design parameters as well as
true model assumptions of either marginal or random effects type. In

order to realistically reflect the choice an applied researcher faces when
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it comes to data analysis, only procedures implemented in broadly acces-
sible statistical software are included. The goal of the assessment is to
establish some practical guidelines for the choice of statistical procedure

for the analysis of balanced, binary repeated measures data.

2.3 Statistical models and estimation procedures

Consider binary records (e.g., presence or absence of bacteria in monthly
milk samples) y;; on each of n subjects (¢ = 1,...,n) at ¢ time points
(j=1,...,t),aswellasaset x, . .., xp of explanatory variables recorded

for each subject at every time point.

2.3.1 Marginal or population-averaged (PA) model

A marginal logistic regression model takes the following form:

logit(pi;) = B3 + Bz + ... + By Tpij, (2.1)

where, p;; = E(y;;) = Pr(y; = 1). Thus, the marginal expecta-
tion (or probability of an “event”) is modelled as a function of the ex-
planatory variables through the logit link function. Furthermore, the
marginal variance is related to the marginal expectation by the equation

Var(yi;) = oépij(1 — pij), where ¢ is a scale parameter, and subjects are
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assumed independent. Hereafter, 3" refers to a marginal, or population-

averaged [52] regression parameter.

2.3.1.1 Marginal model estimation procedures

The most commonly used marginal estimation procedures, generalized
estimating equations (GEE) and alternating logistic regression (ALR),
are often referred to as semi-parametric because they do not make as-
sumptions about the specific form of a dependence between observations
on the same subject, i.e. the within-subject correlation structure. Both
GEE and ALR estimation yield estimates for 34 that are asymptotically
unbiased and can be nearly efficient relative to the maximum-likelihood

estimate in a fully and correctly specified model [10)].

The GEE approach to analysis of longitudinal data by generalized

linear models was introduced in a series of papers [27, 52].

The “estimating equation” refers to a (multidimensional) equation whose
solution determines the parameter estimates, usually in a stepwise (iter-
ative) manner where an updated equation is solved in each step and the
process terminates when the solutions no longer change (“convergence”).
The GEE procedure involves a user-specified “working” correlation ma-
trix to approximate the true within-subjects correlation structure. Most

software implementations offer a range of correlation structures, includ-
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ing independent (p(4, ') = 0), exchangeable (p(j,7") = p), and (first
order) autoregressive (p(7,5') = p'~7'), where p(j, ') is the correlation
between observations at times j and j/. When using a robust variance
estimation, the statistical properties for the estimates of 8 hold even
for a misspecified working correlation structure; this is often referred to
as a robustness property of the GEE procedure. However, a substantial
loss of efficiency due to misspecification of the working correlation struc-

ture may occur as has been shown in studies involving different data

structures [29, 53, 49, 42].

The ALR procedure uses the same estimating equation for 3 as GEE,
but differs from GEE by modelling the association among responses in
terms of pairwise odds ratios, and is numerically more efficient as the

cluster size gets large [7].

The GEE procedure is available in most major statistical packages
(e.g., SAS, S-Plus/R. and Stata), with only slight differences in their

implementation, and ALR is available in the former two packages.
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2.3.2 Random effects or subject-specific (SS) model

The simplest random effects model, often termed a random intercept

model, takes the following form:
logit(Pr(y;; = 1w)) = B5° + Bz + ... + Bz + wi,  (2.2)

where uy,...,u, are independent random variables with the same dis-
tribution. The most commonly assumed distribution is the Gaussian
(normal), say u; ~ N(0, 02) where o represents the heterogeneity (vari-
ance) between subjects. Model (2.2) is for the conditional probability of
an “event” given the random effect u; of the ith subject, rather than the
marginal probability in model (2.1). Hereafter, 3% refers to a random

effects, or subject-specific [52], regression parameter.

The relation between random effects and marginal estimates has been
discussed and described([52, 32]; see also the summary by Diggle et al.
[10, Chapter 7]. Without any distributional assumptions on the random
effects it holds that the marginal regression parameters are attenuated or
diluted (towards zero) relative to the random effects parameters, unless
the subject variance o is zero. For normally distributed random effects,

the following approximation formula holds:

B ~ (Pot+1)7Y28%,  where ¢ =16v/3/(157) = 0.588. (2.3)
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2.3.2.1 Random intercept model estimation procedures

Random effects models for binary outcomes do not have a closed form of
the full log likelihood function. As the likelihood involves an integral over
the random effect distribution, numerical integration by Gauss-Hermite
quadrature is a possibility (for normally distributed random effects).
The preferable form of the integration is adaptive quadrature, whereby
the quadrature points are successively adapted to the shape of the log
likelihood function. Statistical estimation procedures based on numer-
ical integration via adaptive quadrature to maximize the log likelihood
(ML), produce reliable estimates of the regression parameters [37]. One
should be cautioned that “even with adaptive Gaussian quadrature and
with relatively simple models, convergence to a global maximum can be

difficult to obtain” [26].

Before numerical integration became computationally feasible in prac-
tice, several approximation algorithms aimed at producing estimates
close to the global ML estimate without actually computing the like-
lihood function were developed (see [4], for a recent review). These
algorithms carry a number of different names and acronyms typically in-
volving “weighted least squares” and “quasi”™- or “pseudo-likelihood”. The
algorithms iteratively employ mixed linear model estimation to an “ad-

justed” variate obtained by Taylor approximation of the outcome around
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its current estimated mean, until convergence. It is well-known that cau-
tion should be exercised in using these algorithms because under certain
conditions they are prone to bias towards the null (e.g., [39, 40]). A “sec-
ond order” PQL procedure eliminates some of the bias [15]. A marginal
version of the algorithms (e.g., termed MQL) yields parameter estimates
with a marginal interpretation [5], although computed under random

effects model assumptions.

ML estimation by numerical integration for generalized linear mixed
models has become available in several statistical packages in recent
years, the most flexible implementation being the gllamm package for
Stata [36]. Weighted least squares approximation algorithms are avail-
able in most statistical software packages (e.g., SAS, S-Plus/R and Stata)

as well as in special-purpose multilevel software (e.g., MLwiN (including

the 2nd order PQL option) and HLM).

2.3.2.2 Bayesian modeling and estimation procedures

The focus here is on using Markov chain Monte Carlo (MCMC) tech-
niques within a Bayesian framework as an estimation algorithm for the
frequentist model (2.2), rather than exploring genuine Bayesian models
with informative prior distributions. The MCMC approach avoids com-

putation of the full likelihood function, and has been shown to perform
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well across a range of settings [6]. The essential statistical software for

Bayesian analysis.is WinBugs; in addition, a range of multi-level models

can be fitted in MLwiN.

2.3.2.3 Randqm effects repeated measures models and estimation pro-

cedures

A serious objection against model (2.2) for longitudinal data is that it
implicitly assumes an exchangeable correlation structure whereby any
two observations on the same subject are correlated to the same de-
gree. As the variances and correlations in generalized linear (mixed)
models depend on the fixed effects, this statement is only strictly true if
the fixed effects include no time-dependent predictors. Intuitively, one
would expect the correlation between two observations to decrease with
their distance in time. Several approaches have been suggested to al-
low for non-exchangeable correlation structures (e.g., [3, 51]; and [31,
Chapter 22]), but to our knowledge the only one in widespread use and
implemented in standard statistical software is the restricted pseudo like-
lihood approach (REPL; SAS: proc glimmix, R: glmmPQL library). It
is based on a similar weighted least squares algorithm approximation
algorithm as described above, but allows for both random effects and
error correlation structure in the linear mixed model estimation of the

“adjusted variate” [50]. The correlation structures are for the binary
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repeated measures; modelling by correlation structure alone therefore
yields PA estimates [31, Chapter 9]). Adding random effects effectively

yields a random effects model with serial correlation [31, Chapter 22].

Another idea is to replace the single random effect u; for subject
by a series (u;1, ..., us) of N(0,0?) distributed, autocorrelated random
effects (as in the marginal model, p(j,5') = p7). The extension of

model (3.2) then takes the form,
logit(Pr(y,-j = 1|ui1, ce ey ult)) = gs+ﬂf5$1ij+ ee +ﬂgs$pij + Uy - (24)

If p =1, model (2.4) reduces to the random intercept model (2.2). In
our view, model (2.4) forms a better basis for random effects modelling
- of repeated measures data because of its ability to incorporate auto-
correlation [10]. In principle, model (2.4) can be set up and estimated
in a Bayesian framework using MCMC methods ([9, Chapter 5], [10,
Chapter 11]), e.g., in WinBUGS software. In our experience, however,
it is a non-trivial task to achieve acceptable trajectories of the resulting

Markov chains.

A further refinement of this idea, and an amalgamation of marginal and
random effects procedures, marginalized models employ the marginal
model (2.1) for the regression coefficients and the random effects model

(2.4) for the correlation structure. In the latter model, the fixed part is
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replaced by the equivalent of the marginal model fixed part for the condi-
tional probability [20]. Marginalized models may be programmed using
flexible statistical optimization tools (such as the nlmixed procedure in
SAS; [17]), but to our knowledge these models are not yet available in

standard statistical software, or as an add-on package.

2.4 Simulation studies

2.4.1 Models for simulated data

Two simulation studies were carried out using relatively small, balanced,
two-level (time within subjects) datasets. The first study was based
on the marginal logistic regression model (2.1) with a first order auto-
correlation between the binary outcomes. The second study used the
random effects model (2.4) with autocorrelated subject random effects.
The fixed part of the models included a dichotomous treatment and a
linear effect of time. The treatment was “applied” either to subjects
(between-subjects (BS) design) or to two periods within each subject
(WS) in a balanced cross-over type design. Three versions of the fixed
part structure were studied: additive time and treatment effects in BS

and WS designs, as well as an interaction model for the BS design.

All studies and designs were furthermore assessed in different settings
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intended to reflect a range of experimental data encountered in practice.
The number of subjects was set to either small or large (n = 20 and
100, respectively). Datasets with substantially less than 20 subjects per
treatment would usually not be analyzed by random effects methods,
and therefore fall beyond the scope of this study. The length of longitu-
dinal series on each subject was short, medium or long (¢ = 4, 8 and 16,
respectively). The marginal autocorrelation between adjacent observa-
tions was high, moderate, or low (p = 0.7, 0.5 and 0.2, respectively). In
the random effects model, the between-subjects standard deviation was
set at ¢ = 1, and the same correlation values as above were used for the
autocorrelated subject random effects. We also included the special case
p = 1 corresponding to a random intercept model. Note that the corre-
lation between binary outcomes is different than the correlation between
the random effects. In particular, the latent variable approximation with
an observation-level variance component of 72/3 [44, Chapter 14] yields
an intra-class correlation of 02/(0? + n2/3) = 0.23 and a first-order
correlation of pa?/(0? + 72/3), and the values 0.16, 0.12 and 0.05 for

p=0.7,0.5,0.2, respectively.

Simulated data from the marginal model were generated by the bindata
package in R software [25]. The algorithm generates binary random
variables with a given correlation structure by converting multivari-

ate random variables into binary variables. Correlations among bi-
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nary data are constrained by the (marginal) probabilities [35], which,
in a logistic regression, depend on the predictors. Hence, the fixed ef-
fects parameters were chosen to avoid extreme probabilities that would
make the desired correlation structures infeasible. The fixed parame-
ters were set at: [y = —0.5, B(treatment) = 0.35, f(time) = 0.10,
B(interaction) = —0.15. The autocorrelated random effects of each sub-
ject were obtained by multiplying a vector of ¢ independent variables by
the upper triangular factor of the Cholesky decomposition of the cor-
relation matrix as described by Congdon [9]. Generation of the binary
outcomes then followed the usual scheme for random effects logistic re-

gression models [46).

2.4.2 Software and settings for estimation procedures

The GEE estimation procedures used the implementation in R, version
2.1.0 software (gee version 4.13.10) with different working correlation
structures: independence, autoregressive (Afﬁ), exchangeable, and au-
toregressive with known (true) correlation (8%4). The ALR. estimation
procedure (374,) was carried out in R version 1.9 software (alr 4.2 pack-
age) and used an exchangeable correlation structure. The random ef-
fects procedures used the first order MQL ( AﬁgL) and second order PQL

(AS'%L) procedures implemented in the MLwiN software (version 2.02),
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the REPL procedure (355,,) in proc glimmix of SAS (version 9.1), as
well as the adaptive quadrature algorithms for ML estimation (35 ) im-
plemented in Stata version 9 software (xtLlogit and gllamm commands),
and the non-adaptive quadrature glmmML (version 0.26) package for R
software. The REPL procedure was set up with subject random effects
and a first order autoregressive correlation structure (including also an
additional overdispersion parameter); in addition, a marginal REPL pro-

cedure without subject random effects was included.

The Bayesian estimation procedures (Ginnc) were implemented in

WinBUGS version 1.4 called from the R software using the RZWinBUGS
package [47]. Vague (“non-informative”) prior distributions (i.e. N(0, 109))
.were used for all fixed effects parameters. The recently recommended
uniform distribution for inverse variances [24, 14| proved sensitive to
trap messages, even after truncation of the distribution, so we reverted
to the classical gamma, distribution (1073, 1073) for the inverse between-
subjects variance [6]. The Markov chains were run with 300 burn-in
samples, and the subsequent estimates (posterior distribution medians)
were based on 1000 samples. These burn-in and estimation sample sizes
were arrived at after inspecting MCMC diagnostics for selected datasets;

Browne et al. [6] used a somewhat larger burn-in period of 500 samples.

In order to reduce the computing time, the datasets generated by a
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model including an interaction term were analyzed only by a restricted
set of estimation procedures: GEE with autoregressive correlation, ALR,

ML by numerical integration as implemented in Stata, and MCMC.

2.4.3 Analysis of and performance of simulated data

For the analysis of the simulated marginal model data, the estimates and
standard errors of random effects estimation procedures (except MQL)
were converted to marginal parameter estimates by the formula (2.3),
using the estimated between-subject variance. The bias-adjusted relative

efficiency of an estimate B was computed by the formula,

v&r(/étme) + (E(/Btme) - /80)2

relative efficiency = A . : (2.5)

Var(f) + (E(8) — fo)?

where (; refers to the true model parameter, Btme refers to an autoregres-
sive GEE analysis with a correlation structure fixed at the true value,
denoted by 874 [49, 8]. Thus, the relative efficiency measures the vari-
ance around the true value, caused by either random variation or bias,
relative to a “correct” estimation procedure. The means and variances in
formula (2.5) were computed from the distribution of the corresponding
estimate across the simulated datasets. Note that by the lack of a refer-
ence method for the autoregressive random effects model, no analogous

relative efficiency could be computed.

79



The presence of statistically significant bias in the estimates was as-
sessed by a z-test based on the true value and the standard deviation
among simulations. The statistical significance of bias in the standard
errors was assessed by comparing the mean standard error to a 95%
confidence interval for the standard deviation based on the simulations.
This simple procedure was considered acceptable because the statistical
variation in the estimated standard deviation was generally much larger
than that of the mean standard error. The confidence intervals were com-
puted by the large-sample normal approximation based on the standard
error; for the GEE procedures, the robust standard error was used. The
coverage of 95% confidence intervals was computed as the proportion
of simulated datasets for which the confidence interval (in the Bayesian

analysis: the credibility interval) contained the true parameter.

If non-convergence or non-sensible estimates occurred for a certain
method and dataset, the analysis was attempted by the same or a simi-
lar method in a different software implementation. For example, in some
small data settings the autoregressive GEE procedures failed to produce
a useful (an extreme value of) robust standard error. By the close agree-
ment between model-based and robust standard errors in other settings,
the model-based standard error was used in such instances. Also, the
ALR estimate was in some cases obtained from SAS instead of R, and

different optimization techniques were tried in for the REPL procedure
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in SAS if the default quasi-Newton method failed. If the problems per-
sisted across different implementations, the corresponding dataset was

omitted.

2.5 Results of performance analysis

Generally, results are shown only for the treatment parameter. Means of
estimates and of the associated standard errors, as well as standard de-
viations of estimates among the simulations are shown in tables (Tables
2.1-2.4). A summary of performance measures on the bias, confidence
interval coverage and relative efficiency are shown graphically (Figures
2.1-2.6). In the interest of clarity and space, all results of the interaction
models were excluded from the presentation. Furthermore, no results are
shown for GEE estimation with independence and exchangeable correla-
tion structures because throughout they were very close to those of ALR
estimation. We focus here is on ALR estimation because to our knowl-
edge its performance and robustness properties have not been reported.
Also, the marginal REPL analysis has been omitted from the results,
because its close agreement with GEE procedures is well-documented
[31, Chapter 9]. For ML estimation by numerical integration, only the
results from the gllamm implementation are shown because of its greater

flexibility than the xtlogit command in Stata and the glmmML package
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in R. Additional tables (A.1-A.8) of results are reprinted in Appendix A.

2.5.1 Marginal model data

The estimates of the two GEE procedures agreed closely (Tables 2.1 and
2.2). The robust and model-based standard errors (not shown) of the
autoregressive GEE procedures were generally close, and in agreement
with the standard deviation across the simulations. However, in small
datasets (n = 20) the agreement was best for the model-based standard
errors whereas the robust standard errors were up to 10% lower. The
efficiency for 374 relative to 524 was close to 100% in all settings (Fig-
ures 2.2 and 2.4). The estimates of ALR and MQL procedures agreed
closely, and were close to the GEE estimates except for one setting (WS;

(n,t, p) = (20,16,0.7)).

The REPL estimates were close to the GEE estimates in most set-
tings, with scattered deviations in some of the smallest datasets (n = 20
and ¢t < 8). The estimates of the three other random effects proce-
dures were close in many settings (in particular the largest datasets)
and then differed substantially from the marginal estimates; however,
overall there was less agreement among these random effects procedures
than the marginal procedures. Compared to the other random effects

procedures, REPL produced markedly lower estimates of the between-
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subjects variances, which in turn affected the scaling of random effects

to a marginal estimates and overall lead to a performance of REPL akin

to a marginal procedure.

" The variability of estimates, as expressed by the standard deviations,
decreased with increasing size of the dataset (increasing n or t), and
also decreased with decreasing correlation in BS designs. The standard

deviations were higher in BS than WS datasets with the same settings.

2.5.1.1 Treatment between subjects (BS)

The estimates of marginal estimation procedures were generally unbi-
ased, except for a general upwards bias in the smallest datasets ((n,t) =
(20,4)) with moderate to large correlation (Table 2.1). The coverage
of confidence intervals was close to nominal for n = 100 but underesti-
mated (lowest value 91%) in several small dataset settings (Figure 2.1).
The relative efficiency of the ALR and MQL procedures ranged between
0.9 and 1.0 (Figure 2.2).

The REPL estimates were unbiased even in the smallest datasets with
large correlation; this lead to a relative efficiency above 1. The CI cover-
age was close to nominal (range 94-97%), and the relative efficiency was
never below 1. Analysis allowing for extra-binomial dispersion showed

a minor underdispersion with values ranging down to 0.8 (results not
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shown)

The ML and MCMC random effects estimation procedures showed
more instances of an upwards bias than the marginal procedures, and
the bias tended to increase with increasing p. The PQL estimates were
on the average close to the true value, and only some biased settings were
noted (Table 2.1). The CI coverage for the PQL procedure was close to
nominal (range 93-96%), and the relative efficiency ranged between 0.9
and 1.0, except for the smallest dataset where PQL performed better
than the reference procedure. However, the comparison in this setting
was obscured by the fact that due to convergence problems for the second
order PQL procedure, a first order procedure was often used. Both ML
and MCMC procedures had relative efficiencies down to 0.78 for highly
correlated data, and more variable CI coverages; in particular, MCMC
showed less than nominal coverage (lowest 91%) in most settings. It is
notable that for data with the strongest autocorrelation, the between-
subjects variance estimates were more extreme with ML and MCMC
procedures than with PQL; the latter values ranged up to & > 5 in the

smallest datasets ((n,t) = (20,4)).
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2.5.1.2 Treatment within subjects (WS)

The marginal estimation procedures only showed an upward bias for the
longest series with small number of subjects ((n,t) = (20, 16); Table
2.2). The CI coverage for the GEE and ALR procedures was close to
nominal or moderately below (ranging down to 91.5%; Figure 2.3). The
MQL procedure suffered from substantial undercoverage (down to 74%)
unless the series was short (n = 4) or the correlation was low (p =
0.2). This was a result of severely underestimated standard errors (Table
2.2). The relative efficiency of ALR and MQL procedures dropped down
to close to 0.5 for the longer series with high correlation (Figure 2.4).
For the autoregressive GEE procedures, the standard deviations among
estimates seemed to peak at an intermediate true correlation p, except

for the shortest series where they decreased with increasing p.

The REPL procedure performed similarly to the GEE procedures, ex-
cept for a single uncharacteristic downward bias for (n, ¢, p) = (20,4,0.7).
The other random effects procedures gave fairly similar average estimates
and standard deviations, and were all subject to upwards bias in most
settings. The relative efficiency was as low as for the ALR procedure,
ranging down to 0.5 for the longer series with high correlation. The
confidence intervals showed strong undercoverage (down to 66%) except

for the shortest series (t = 4), again owing to at times grossly underes-
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timated standard errors of the procedures. It may be noted that PQL
tended to give larger estimates in comparison with ML and MCMC, as

p increased.

2.5.2 Random effects model data

The estimates of marginal estimation procedures (GEE, ALR and MQL)
can be compared either to the true subject—speciﬁc parameter value
(0.35) or the true marginal parameter value (0.302), obtained from the
conversion formula (2.3) with the known between-subjects standard devi-
ation o = 1. The indicated significance for bias in Tables 2.3-2.4 and the
coverage of confidence intervals in Figures 2.5-2.6 refer to the marginal
parameter. This comparison is, however, theoretical and hypothetical
from a practical point of view because ¢ is not known and no estimate
is provided for ¢ from marginal estimation procedures (except MQL).

Further discussion of the implications of choosing a marginal procedure

1s deferred to Section 2.6.4.

The estimates and standard deviations from marginal estimation pro-
cedures generally agreed closely (Tables 2.3-2.4), except for MQL in the
((n,t,p) = (20,4,0.2)) setting. The random effects estimation proce-
dures, except REPL, also agreed fairly well, and some differences may

be due to convergence problems experienced for the ML, PQL and MQL
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procedures, especially for p < 1. Similarly with the marginal data, the
REPL estimates were generally closer to the estimates of marginal than

random effect estimation procedures.

For the random intercept model (p = 1), the random effects proce-
dures showed no appreciable bias in the treatment effect except for the
smallest dataset in the WS design (Tables 2.3-2.4). Across all settings
and procedures, the average between-subject standard deviations were
close to the true value (data not shown). The CI coverage was close to
nominal (range 93-96%, Figures 2.5-2.6). The autoregressive random
effects model (p < 1) generally showed a downward bias in treatment
effects (except for the smallest dataset in both designs), and the mean
estimates were in most cases closer to the marginal than the random ef-
fects parameter. The between-subject standard deviations were strongly
underestimated, with values decreasing with both ¢ and p, and ranging
from of 0.80 ((¢, p) = (4,0.7)) t0 0.12 ((¢, p) = (16,0.2)). The confidence
intervals showed strongest undercoverage, down to 87%, in those large
datasets (n = 100) where the bias in the standard deviations was most

pronounced.

Irrespective of p, the marginal estimation procedures (including GEE
with exchangeable and independence correlation structures) gave esti-

mates centered around the marginal parameter although a few settings
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showed a minor bias in either direction (Tables 2.3-2.4). The CI cov-
erages were generally above 90% in the larger datasets, owing to an
underestimated standard error, but close to nominal in datasets with

less information.

For p = 1, the estimated between-subjects standard deviation pro-

duced by MQL showed a clear downward bias (range 0.73-0.82).

Convergence problems were encountered with several procedures, most
severely so in small datasets with low correlation. The quasi-likelihood
procedures (MQL and PQL) were strongest affected, and in some cases

the analysis could not be completed in 30-40% of the datasets (e.g
((n,t, p) = (100, 4,0.2), (20, 16, 02), (20,4, < 0.5))).

2.5.3 Interaction model in between subjects design

The parameters of interest were the difference between treatments at
the average time point (treatment main effect when the time predictor
is centered) and the change over time in treatment effect (treatment
by time interaction). Convergence problems due to the complexity of
the interaction model were encountered with most of the procedures; in
particular in the smallest dataset ((n,¢) = (20,4)), so it was excluded
from the analysis. Although results are not shown, the findings are

summarized briefly for both marginal and random effects data.
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2.5.3.1 Marginal model data

The qualitative statement can be made that estimates for the main and
interaction effects showed behaviours similar to the BS and WS de-
signs, respectively. Generally, marginal estimation procedures (GEE and
ALR), and random effects procedures (ML and MCMC), gave estimates
centered around the true value, except for ((n,t,p) = (20,8,< 0.7).
Random effects procedures showed more instances of deviations from

the true value than the marginal procedures.

For the interaction parameter, the GEE and ALR estimation proce-
dures showed no substantial bias and a CI coverage close to nominal
even if ranging down to 92%. The mean standard error and standard
deviation among simulations agreed closely for marginal estimation pro-
cedures, whereas for random effects procedures, the latter was always
larger. The MQL and random effects procedures suffered from CI un-
dercoverage (down to 73 and 65%, respectively) in the presence of high
correlation. All‘ procedures except the autoregressive GEE showed some
loss in relative efficiency, ranging down to 0.7 for random effects proce-

dures in the presence of high correlation.
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2.5.3.2 Random effects model data

The estimates of marginal estimation procedures (GEE and ALR) can
be compared either to the true subject-specific parameter value of inter-
action and treatment main effect (—0.15 and 0.35) or the true marginal
parameter value (— 0.129 and 0.302) respectively, obtained from the
conversion formula (2.3) with the known between-subjects standard de-

viation o = 1. Findings refer to the marginal parameters.

The estimates, standard deviations and the mean standard errors from
marginal estimation procedures (GEE and ALR) generally agreed closely.
For both treatment main effect and interaction effect, and irrespective
of p, the marginal estimation procedures gave estimates centered around
the marginal parameter, although a few settings deviated in either di-
rection (e.g., ((n,t, p) = (100,16, < 0.5) and (n,t, p) = (20,8, < 0.7))).

The CI coverages were generally above 91%.

The estimates, standard deviations and the mean standard errors from
marginal estimation procedures (GEE and ALR) generally agreed closely.
For both treatment main effect and interaction effect, and irrespective
of p, the marginal estimation procedures gave estimates centered around
the marginal parameter, although a few settings deviated in either di-

rection. The CI coverages were generally above 91%.
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For the random intercept model (p = 1), the random effects proce-
dures showed estimates close to the true values in most settings. The
CI coverages were generally close to nominal and down to 92% in some
settings specially for MCMC procedure. Both random effects procedures
(ML and MCMC) gave estimates for the between-subject standard de-
viations close to the true value (data not shown). As with the random
effects model data, the autoregressive random effects model data (p < 1)
generally showed similar patterns for the mean estimates and between-

subject standard deviations.

2.5.4 Summary of performance

The performance of the estimation procedures in terms of bias, coverage
of confidence intervals and efficiency (for marginal model data only) were
summarized to yield Tables 2.5 and 2.6. For each procedure and effect
type (BS or WS), the tendency across all data settings were assessed
as either 0 (no bias, nominal coverage, 100% efficiency), — (underesti-
mation, undercoverage, <95% efficiency), or as + for converse findings.
Where multiple patterns existed across data settings, additional symbols
were given in parenthesis for findings present in more than two settings,

with the more common patterns listed first.

Across all marginal data settings, the marginal estimation procedures
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predominantly performed well, the one exception being MQL for the WS
design. REPL performed as a marginal procedure, and at times better
than the reference GEE method. The other random effects procedures
performed acceptably in the BS design, despite some loss in relative
efficiency, but failed in many settings of the WS design on all performance

parameters assessed.

For the random effects data settings, the marginal estimation proce-
dures performed reasonably well, when compared to the true PA param-
cter, despite some tendency towards negative bias. As a random effects
procedure, REPL was compared to the true SS parameter, which was
generally underestimated irrespective of the true value of p. The other
random effects procedures performed well in the compound symmetry

setting (p = 1) but showed similar underestimation and undercoverage

as REPL for p < 1.

2.6 Discussion

Although stated generally, the conclusions in the following are evidently

confined to the range of procedures and settings covered by the study.
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2.6.1 Marginal estimation procedures

The GEE estimation procedure with autoregressive working correlation
matrix remained highly efficient across all marginal data settings, and the
model-based and robust standard errors agreed closely. The procedure
performed on par with other marginal procedures for the random effects
data (with exchangeable, and non-autoregressive correlation structures).
Although these results covered only a small range of non-autoregressive
correlation structures, they are in our view supportive of the use of an
autoregressive working correlation structure when using GEE procedures

for longitudinal binary data [42].

Other correlation structures for GEE (exchangeable and independence)
showed substantial loss in efficiency relative to the autoregressive struc-
ture in the marginal model data, in particular for the WS design with
a moderate to large autocorrelation. The independence structure has
been described as sufficient for datasets up to moderate size [19, Chap-
ter 3|, but the loss in efliciency was observed even in the small (n = 20)
datasets. The estimates for ALR were very close to those of GEE with ex-
changeable correlation structure. If there is, within the marginal estima-
tion framework, interest in a parameter quantifying the within-subjects
dependence, the log odds-ratio of the ALR procedure is in our view

preferable to values of the GEE working correlation matrix. Evidently
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the odds-ratio is a better and more commonly used measure of associa-
tion between binary outcomes than the correlation [10]. Also, the ALR
procedures provides a standard error of the estimated association so that
a confidence interval can be constructed. However, the ALR procedure
does not in its current implementations allow for repeated measures cor-

relations such as autocorrelation.

The demonstrated downward bias in MQL estimates of the between-
subjects variance is well-known (e.g., [39]). As a marginal procedure [5],
MQL performed on par with other procedures involving the exchangeable
correlation assumption (ALR, GEE), except for a strong CI undercov-
erage (similar to the random effects procedures) in the WS and interac-
tion datasets. As the undercoverage is largely a result of underestimated
standard errors, it is suggested to add robust (“sandwich”) variance esti-
mation to the MQL procedure; the usefulness of this suggestion remains

however to be assessed in practice.

In the smallest BS datasets (n = 20), all marginal procedures ex-
perienced problems with some CI undercoverage and upwards bias in
estimates (only ¢ < 8). These findings are agreement with previous find-
ings, e.g., summarized in a recommendation to apply GEE only “if the
number of clusters is at least 30 for a cluster size of about 4 for low to

moderate correlation” [53].
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2.6.2 Random effects estimation procedures

All the random effects procedures (except REPL discussed below) per-
formed well and had fairly similar estimation errors in the data generated
from random intercept models (p = 1). Recently, Heo and Leon [21] con-
cluded that the full likelihood approach “appears to be preferable for the
analysis of clustered binary observations with underlying random effects
models”. On the other hand, Browne and Draper [6] reported the clos-
est reproduction of true model values with MCMC procedures, a finding
that could not be reproduced in the current study settings, in which,

with one exception, the procedures showed no bias.

For marginal model data, the PQL procedure seemed less affected
by the model misspecification than the ML and MCMC procedures, in
particular for the BS design, and the MCMC procedure had lowest ef-
ficiency and CI coverage in several settings. These tendencies may be
linked to the higher estimated between-subjects variances for ML and
MCMC procedures. As the data were generated from a marginal model
no true value exists for assessment of these estimates; however, one may
speculate that the PQL estimates were biased towards zero as previously
mentioned (e.g., [40]). Another possible explanation is a selection bias
resulting from convergence problems for all random effects procedures,

most severely for the PQL procedure.
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For the autoregressive random effects model data (p < 1), all regres-
sion estimates of random effects procedures were similar but downward
biased and close to the marginal estimates. This can be seen largely
as a scaling effect caused by the underestimation of the random effect
variances. The avoidance of such scaling problems by separating fixed
and random effects estimates was one of the key ideas behind the devel-
opment of marginalized models [20]. Finally, the agreement between the
two Stata implementations of ML estimation based on adaptive quadra-
ture (xtlogit and gllamm) suggested the use of the former, and faster,

procedure for simple two-level models.

The inclusion of both random effects and a correlation structure in
the REPL procedure makes it difficult to characterize the resulting ap-
proach in terms of the PA/SS dichotomy. This is due to the modelling of
parts of the variance/correlation structure on different scales [31, Chap-
ter 22]. For both marginal and random effects datasets, the estimated
variance by REPL was substantially lower than by other random effects
procedures. This could in part be due to the well-known attenuation
of variance parameters by PQL in certain settings [13], but could also
be due to the “competing” explanation of the variance/correlation struc-
ture on the two scales. In effect, REPL performed mostly as a marginal
estimation procedure, and showed no promise for estimation of the vari-

ance and autoregressive parameter in the autoregressive random effects
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data. The performance was actually similar to that of a REPL approach
without any random effects (results not shown) which was already noted
to be similar to GEE, except for an increased sensitivity to convergence
problems in datasets with a small number of subjects and long series, in
accordance with the findings reported by Molenberghs and Verbeke [31,
Chapter 14].

2.6.3 Issues related to statistical design

The precision of parameter estimates and performance of estimation pro-
cedures were generally better in within-subjects (WS) than between-
subjects (BS) designs, in agreement with the general notion that the
former, whenever logistically and biologically feasible, are the more pow-
erful. The smallest (n = 20) marginal BS designs presented problems
for all estimation procedures whereas performance in the corresponding
WS designs was clearly better for the marginal estimation procedures.
Also, the WS designs produced more pronounced differences in perfor-
mance than the BS designs. Different impacts of autocorrelation on the
precision of parameter estimates were noted in the BS and WS designs.
In the former, precision decreased with increasing p whereas in the latter
precision seemed to be non-monotonic as a function of p (see also the

discussion by Diggle et al. [10]). At closer scrutiny, in some settings with
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low p (both marginal and random effects data) the difference in precision
between BS and WS estimates was fairly small. Thus, the implied gain
in precision by a WS design may not always be the determining factor
when planning an experimental study (when a large number of subjects

are available).

In the presence of an interaction, qualitatively different behaviours for
main effect and interaction parameters were observed. These behaviours
agreed with the intuitive perception that the main effect corresponds to a
fixed point in time and is estimated between subjects in a cross-sectional
manner, whereas the interaction is a time-varying effect estimated within

each subject just like the treatment in the WS design.

2.6.4 Marginal versus random effects estimation procedures

We conclude with a discussion of the implications of the findings for the
choice of procedure, in particular the choice between marginal and ran-
dom effects procedures. As was already stated in the introduction, the
researcher should first and foremost be guided by the desired interpreta-
tion of effects. Diggle et al. [10, Chapter 7] argue that PA effects are of
primary interest in clinical trials because “the average difference between
control and treatment is most important, not the difference for any one

individual”. Lindsey and Lambert [28] warn that the population aver-
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age may hide individual effects, and that “in extreme cases, a marginal
analysis can show an average positive treatment effect when the effect
would in fact be judged negative for each individual”. We think that
a good study design that pays attention to the randomization and the
allocation process of subjects to different comparison groups should help

to control any confounders and avoid such extreme situations.

If a PA interpretation is desired, the semi-parametric marginal estima-
tion procedures have to their credit the robustness implicit in making
no specific assumptions about random effects and correlation structure.
As the random effects procedures under study here, excluding REPL,
all make the conceptually unreasonable assumption that residual cor-
relations are constant over time, the question for application of such
random effects procedures is the sensitivity of the results to that as-
sumption. For marginal model data, either of the WS or interaction
design, the random effects procedures displayed severe deficiencies, in
terms of both efficiency and CI coverage, which increased with the size
of the dataset and the true autocorrelation. For the BS design, the ran-
dom effects procedures showed a minor loss of efficiency, but for the small
datasets also a CI coverage closer to nominal than marginal procedures.
In the smallest dataset ((n,t) = (20,4)), both marginal and random
effects procedures lead to a marked upwards bias. For the random ef-

fects model and estimation of its corresponding marginal parameter, the
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marginal procedures performed similarly to the procedures for misspeci-
fied correlation structure, considering the low correlation between binary
outcomes. Furthermore, in the presence of autocorrelation between ran-
dom effects the random effects procedures were closer to the marginal
parameter instead of the true, subject-specific value. In summary, the
use of random effects procedures to estimate a marginal parameter is
not recommended generally but may be acceptable in certain settings.
In particular, in some datasets that were too small for the asymptotic
properties of GEE procedures to guarantee approximately unbiased es-
timates and close to nominal CI coverage, the random effects procedures
estimates had slightly better properties. However, we advise against ran-
dom effects procedures if the effect of interest is time-varying and there
is a strong decay in correlations, even for a series as short as 4 time

points.

If an SS interpretation is desired, a marginal estimation procedure
is of little use unless (unrealistically) the between-subjects variance is
known. Nor are marginal procedures attractive in situations where a,
between-subjects variance is of genuine interest. The MQL procedure
does provide a variance estimate, but because of its downward bias
a back-conversion of PA to SS estimates using the conversion formula
(2.3) does not yield an unbiased estimate of the SS parameter. One

advantage of using random effects procedures is the ability to model
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and predict effects at the individual level. The properties of random
effects procedures under exchangeable correlations has been extensively
studied; however, the focus was on situations with decaying correlation
over time. Goldstein et al. [16] described how underdispersion may arise
as a result of unmodelled autocorrelation; the results for the marginal
model did not show any substantial underdispersion. In the presence
of autocorrelation, the random effects procedures failed to reproduce
the subject-specific value, and for this situation we cannot point to any
procedures among those covered in the study to obtain subject-specific
estimates with acceptable performance. Thus, we advise to wait the de-
velopment of marginalized models to see whether they could become the
first choice in such situations. Until then the researcher’s best option
might be to try to reduce the unexplained autocorrelation in the models
by incorporating time-varying fixed effects (in particular, the time points
themselves) and possibly random slopes of such predictors. In the WS
design, a random slope of the treatment effect can also be suggested to

effectively split the series on each subject into the two treatment series.
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Table 2.1: Mean estimate of between-subjects (BS) treatment effect (true value = 0.35), followed in parenthesis by standard
deviation among simulations and mean standard error, based on analyses of 1000 simulated marginal (PA) datasets per setting
(An = number of subjects, £ = number of time points, p = autocorrelation). Analysis by procedure B of type A is designated by
(4, where A = PA (population-averaged) or SS (subject-specific), and B = F (generalized estimating equations (GEE) with fixed
autoregressive correlation), AR (GEE with autoregressive correlation), ALR (alternating logistic regression), MQL (marginal
quasi-likelihood), REPL (restricted pseudo-likelihood), PQL (2nd order penalized quasi-likelihood), ML (maximum likelihood),
MCMC (Bayesian Markov chain Monte Carlo).

Statistical Methods ™

n_t p B Brg Bt AL B3epL B33 A, Briomc

100 16 .7 .359 (.22,22)  .359(.22,22)  .360 (.23,23)  .360 (.23,.23)  .357 (.22,.23*) .375#(.24,24)  .381%(.24,.24)  .383%(.24,.24)

5 .359 (.17,.17)  .360 (.17,.17)  .360 (.17,.18)  .360 (.17,.18)  .360 (.17,.18*) .369%(.18,.18)  .370%(.18,.18)  .371%(.18,.18)

2 .352(.13,13)  .352(.13,.13)  .352 (.13,13)  .352 (.13,.13)  .353 (.13,.13)  .355(.13,.13)  .355 (.13,.13)  .355 (.13,.13)

8 .7 .344 (.27,27)  .345(.27,27)  .342(.28,28)  .342(.28,28)  .340 (.27,.28*) .348 (.28,.30*) .371%(.30,.30)  .376%(.30,.30)

— 5348 (.22,.22) 348 (.22,.22)  .348 (.22,23)  .348 (.23,.23)  .348 (.22,.23*) .361 (.23,.23)  .3661(.24,.24)  .3687(.24,.24)
_ 2 .349 (.17,.17)  .349 (.17,.17)  .349 (\17,17)  .349 (.17,17)  .353 (.17,.18*) .355 (.17,.17)  .355 (17,17)  .351 (.17,.17)
4 7 .342(.34,33)  .342(.34,.33)  .341(.35,.33)  .341 (.35,.34)  .340 (.33,.32)  .319%(.33,.36*) .366 (.37,.36)  .362 (.37,.35%)

5341 (.30,.29) 341 (.30,.29)  .343 (.30,.29)  .343 (.30,.30)  .347 (.30,.29)  .351 (.31,.30)  .366 (.32,.31)  .344 (.31,.31)

2 .339(.24,.23)  .340 (.24,.29)  .340 (.24,.23)  .340 (.24,.24)  .340 (.24,.24)  .349 (.25,.23*) .350 (.25,.24)  .341 (.25,.23*)

20 16 .7 .351 (.54,.49%) .352(.54,.49*) .351 (.55,.51*) .351 (.55,.53)  .346 (.52,.53)  .363 (.57,.55)  .371 (.58,.53*) .358 (.58,.57)
5347 (40,.37%) 347 (.40,.37*) 348 (41,.38*) 348 (.41,40)  .346 (.40,42) 357 (42,41) 357 (42,.39%) .364 (.43,.42)

2 .347 (.30,.27*)  .347 (.30,.27*)  .347 (.30,.29)  .347 (.30,.29)  .348 (.29,.31*) .350 (.30,.29)  .349 (.30,.29)  .3721(.30,.30)

8 .7 .377(63,61) .379(.64,61) .379 (.66,.63*) .381 (.66,.66) .348 (.60,.61)  .374%(.65,.69*) .4051(.70,.68)  .397 (.70,.71)

5 371 (.51,49) 373 (.51,.49)  .373 (.53,.50*) .373 (.53,.53)  .359 (.50,.53*) .382 (.54,.54)  .386%(.55,52*) .3867(.55,.57)

2 .363 (.39,.37*) .364 (.39,.37*) .364 (.40,.37*) .364 (.39,.39)  .365 (.39,.41)  .370 (.40,.39)  .369 (.40,.38%) .393%(.41,.40)
4 .7 .4107(.82,75%) .413%(.82,.75*) .4067(.83,76* .406'(.83,.76*) .339 (.71,.70)  .365 (.73,.71)  .4147(.84,.82)  .428%(.85,.81*)

5 .3971(.70,.65%) .400%(.70,.65*) .395 (.71,.66*) .394 (.71,.69)  .353 (.63,.63)  .362 (.65,.63)  .414%(.74,70%) .409%(.74,.77)

2 .382 (.57,.52*) 381 (.57,.52%) .379 (.57,.52*) .379 (.57,.55)  .365 (.56,.55)  .3871(.58,.55%) .384 (.58,.55*) .409%(.61,.61)

T significant bias in estimate at P < 0.05; ! significant bias in estimate at P < 0.01; * significant bias in standard error at P < 0.05
T Note that SS estimates were converted to PA value (see text).



Table 2.2: Mean estimate of within-subjects (WS) treatment effect (true value = 0.35), followed in parenthesis by standard
deviation among simulations and mean standard error, based on analyses of 1000 simulated marginal (PA) datasets per setting
(n = number of subjects, ¢ = number of time points, p = autocorrelation). See Table 2.1 for coding of statistical methods.

Statistical Methods "

¢Il

3 A A 3 PA 35S 2SS a8, Z
n_t p A AR Arir AriQL BREPL PQL Bit, Bricemc
7 .352(.14,.14) 352 (.14,.14)  .356 (.18,.18)  .356 (.18,.11*) .357 (.14,.14)  .371%(.19,.10*) .369%(.19,.10%) .3681(.19,.10*)
5 .3597(.14,.14)  .358 (.14,.14)  .359 (.16,.16)  .359 (.16,.11*) .3617(.14,.14)  .369%(.16,.10%) .368%(.16,.10%) .369%(.16,.10%)
2 .355(.12,.12)  .355 (.12,12)  .355 (.13,.12)  .355 (.13,.11*) .352 (.12,.12)  .357 (.13,.11*) .357 (.13,.11*) .3601(.13,.11*)
7350 (.15,.14)  .350 (.15,.14)  .349 (.18,.18)  .349 (.19,.14*) .357 (.15,.14%) .386%(.20,.12*) .370%(.20,.12*) .3691(.20,.12*)
b .352 (.17,.16)  .352 (.17,.16)  .353 (.19,.18)  .353 (.19,.14*) .356 (.17,.16*) .371%(.20,.13*) .370%(.20,.13*) .371%(.20,.13*)
2 355 (.16,.16)  .355 (.16,.16)  .355 (.16,.16)  .355 (.16,.14*) .357 (.16,.16)  .3621(.17,.14*) .3617(.17,.14*) .3611(.17,.14%)
7355 (.15,15)  .354 (.15,.15)  .353 (.17,.17)  .353 (.17,.20*) .352 (.15,.14*) .410%(.19,.16*) .378%(.18,.15*) .386%(.18,.15%)
5359 (.19,.19)  .359(.19,.19)  .355 (.20,.20)  .355(.20,.20)  .361 (.19,.18)  .381%(.21,.17*) .377%(.21,.18*) .368%(.20,.18*)
2 .356 (.20,.21)  .356 (.20..21)  .355 (.20,.21)  .355 (.20,.20)  .356 (.20,.20)  .365'(.21,.19*) .3651(.21,.20*) .354 (.22,.20*)
7 .366 (.31,.30)  .366 (.31,.30)  .386%(.42,.39%) .387%(.43,24*) .363 (.32,.30*) .404%(.44,.22*) .401%(.44,.23*) .396%(.44,.22%)
b .382%(.33,.31*) .382%(.33,.31*) .383%(.36,.35) .383%(.36,.24*) .385%(.33,.32)  .392%(.37,.23*)  .392%(.37,.23*) .394}(.37,.24*)
2 .373%(.28,.27)  .373%(.28,.27) .3727(.28,27) .3727(.28,.24*) .3727(.28,28) .375%(28,24%) .374%(.28,24*) .389%(.29,.24*)
7 .356 (.33,.31%) .354 (.33,.31*) .358 (.41,.39*) .359 (.42,.33*) .338 (.33,.30*) .392%(.46,.28*) .377 (.44,.28%) .372 (.44,.27%)
5 .349 (.38,.36*) .347 (.38,.36*) .356 (.42,.40)  .355 (.42,.33%) .344 (.38,.36*) .373 (44,.30%) .371 (.44,.31*) .372 (.44,.31%)
2 .351(.36,.34*) .351(.36,.34*) .350 (.37,.35*) .350 (.37,.32*) .352 (.36,.35)  .357 (.37,.31*) .356 (.37,.32*) .3731(.38,.33%)
7 .361(.35,.33*) .357 (.35,.33%) .358 (.38,.36*) .357 (.38,.46*) .308%(.33,.32)  .413%(.43,.38*) .3841(.41,.36*) .406%(.43,.37*)
5361 (.43,.41%)  .356 (.43,41*) .362 (.45,43)  .363 (.45,46)  .338 (.42,.39*) .3887(48,40*) .3821(.47,41*) .3891(.48,.40%)
2 .353 (.47,.46)  .353 (.46,.46)  .356 (.47,46)  .356 (.47,.46)  .344 (.46,.45)  .368 (.48,.43*) .365 (.48,.45%) .3881(.51,.47*)

t significant bias in estimate at P < 0.05; * significant bias in estimate at P < 0.01; * significant bias in standard error at P < 0.05
T Note that SS estimates were converted to PA value (see text).



Table 2.3: Mean estimate of between-subjects (BS) treatment effect (true value = 0.35, marginal true value = 0.302), followed
in parenthesis by standard deviation among simulations and mean standard error, based on analyses of 1000 simulated random
effects (SS) datasets per setting (n = number of subjects, ¢ = number of time points, p = autocorrelation). See Table 2.1 for
coding of statistical methods.

Statistical Methods

€1l

5PA 5PA GPA 555 558 555 5358
not P PaR PALR AMQL PREPL PRQL PML ProMmc
100 16 2871(.20,.19)  .2861(.20,.19)  .2861(.20,.19)  .3251(.23,22)  .341 (.24,.23) .343 (.24,.23) .345 (.24,.23)

20

16

Mo NR DN Rr DN DONRr DS DR

.2871(.14,.13*)
291%(.12,.12)
.291%(.11,.11)

300 (.22,.21)
292 (.18,.17)
293 (.16,.16)
296 (.15,.15)

.306 (.26,.25)
1303 (.24,.23)
297 (.23,.22)
.300 (.22,.21)

.302 (.43,.42)

.292 (.30,.28%)
.2841(.27,.25*)
.278%(.25,.23%)

282 (.48,.46)
.290 (.41,.37%)
292 (.36,.34%)
291 (.33,.32)

290 (.59,.55%)
316 (.52,.50)
321 (.51,.48%)
320 (.47,.45)

.287%(.14,.13*%)
.2911(.12,.12)
.291%(.11,.11)

300 (.22,.21)
292 (.18,.17)
293 (.16,.16)
.296 (.15,.15)

.306 (.26,.25)
302 (.24,.23)
296 (.23,.22)
.299 (.22,.21)

.303 (.43,.42)

.292 (.30,.28*)
.2841(.27,.25%)
.278%(.25,.23*)

282 (.48,.46)
291 (.41,.37*)
292 (.36,.34*)
291 (.33,.32)

290 (.59,.55%)
314 (.51,.50)
1320 (.50,.48*)
319 (.47,.45)

2871(.14,.13*)
2911(.12,.12)
.290%(.11,.11)

300 (.22,.21)
292 (.18,.17)
293 (.16,.16)
296 (.15,.15)

.306 (.26,.25)
301 (.24,.23)
295 (.23,.22)
294 (.22,.22)

303 (.43,.44)
.298 (.30,.30)
.289 (.27,.28)
.2731(.25,.27%)

282 (.48,.48)
293 (.41,.41)
305 (.36,.39*)
292 (.36,.37)

290 (.59,.58)
314 (.51,.53)
320 (.50,.52)
339 (.46,.52%)

.291%(.14,.13)
.2931(.12,.12)
.2031(.11,.11)

.3331(.24,.24)
.297%(.18,.18)
.295%(.16,.16)
.2964(.15,.16)

.336 (.28,.27)
.310%(.25,.24)
.301%(.24,.23)
.2974(.22,.22)

.343 (.48,.50)
.303%(.31,.32)
.290%(.28,.29)
.266%(.25,.27*)

.3117(.54,.54)
.290%(.42,.43)
.308%(.37,.41%)
.298%(.34,.37%)

.331 (.67,.66)
.331 (.67,.66)
.353 (.55,.57)
366 (.50,.54*)

299%(.14,.14)
297%(.12,.12)
293%(.11,.11)

.357 (.26,.25)
.313%(.19,.18)
.304%(.17,.16)
.306%(.15,.15)

.361 (.30,.28*)
.3321(.26,.25)
.314%(.24,.23)
.306%(.23,.22)

365 (.51,.53)
.311%(.32,.32)
.2981(.28,.29)
.279%(.26,.27)

.339 (.58,.58)
.3187(.45,.44)
.326 (.39,.41%)
.3181(.35,.38%)

349 (.72,.70)
.353 (.60,.62)
354 (.58,.59)
373 (.52,.56%)

.299%(.14,.14)
.2964(.12,.12)
.293%(.11,.11)

.361 (.26,.25)
.313%(.19,.19)
.3041(.17,.16)
.300%(.15,.15)

.369 (.31,.30)
.335 (.26,.26)
.315%(.24,.23)
.3074(.22,.22)

.359 (.51,.49)
.301%(.31,.29%)
.289%(.27,.27)
.2891(.27,.27)

.333 (.57,.55)
.308%(.44,.40%)
.3041(.38,.37)
.296%(.34,.35)

.344 (.71,.68*)
.348 (.57,.57)
.346 (.54,.54)
.332 (.49,.51)

2974(.15,.14)
297%(.12,.12)
.2971(.11,.11)

.364 (.27,.26)
.310%(.19,.18)
.302%(.17,.16)
.2991(.16,.15)

.368 (.31,.31)
.3311(.26,.25)
.310%(.24,.23)
.3031(.23,.22)

.361 (.53,.55)
.320%(.31,.30)
.309%(.28,.27)
.303%(.25,.26)

.344 (.59,.61)
.328 (.45,.42%)
.327 (.38,.38)
.3251(.35,.36)

365 (.76,.78)
369 (.60,.63%)
377 (.57,.59)
367 (.52,.55%)

! significant bias in estimate at P < 0.05; * significant bias in estimate at P < 0.01; * significant bias in standard error at P < 0.05



Table 2.4: Mean estimate of within-subjects (WS) treatment effect (true value = 0.35, marginal true value = 0.302), followed
in parenthesis by standard deviation among simulations and mean standard error, based on analyses of 1000 simulated random
effects (SS) datasets per setting (n = number of subjects, ¢ = number of time points, p = autocorrelation). See Table 2.1 for
coding of statistical methods.

Statistical Methods
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n t  p BRR bR B BREPL BB Bt Bitomc
100 16 1 .2941(.10,.10)  .2941(.10,.10)  .294%(.10,.11*) .336%(.11,.11)  .351 (.12,.11) .351 (.12,.12) .353 (.12,.12)
70 .292%(.12,.12)  .2931(.12,.12)  .293%(.12,.11*)  .297%(.12,.11*)  .305%(.13,.11*)  .305%(.13,.11*)  .304%#(.13,.11*)
50 .2057(.11,.11)  .295t(.11,.11)  .295%(.11,11)  .296%(.11,.11)  .301%(.12,.11)  .300%(.12,.11)  .303%(.12,.11)
20 .2047(.11,.11)  .294%(.11,.11)  .294%(.11,.11)  .292%(.11,.11)  .296%(.11,.11)  .295%(.11,.11)  .303%(.11,.11)
8 1 .286%(.14,.13*) .285%(.14,.13)  .285%(.14,.14)  .320%(.15,.15) = .342 (.16,.15*)  .344 (.16,.16) .345 (.16,.16)
7 2841(.15,15)  .2841(.15,.15)  .284%(.15,.14*) .290%(.15,15)  .304%(.16,.15%) .305%(.16,.15*) .302%(.16,.15%)
.5 .2841(.15,.15)  .284%(.15,.15)  .286%(.15,.14*) .287%(.15,.15)  .296%(.15,.14*) .294%(.15,15)  .294%(.15,.14%)
.2 .2907(.15,.15)  .290%(.15,.15)  .290%(.15,.14*) .295%(.15,.14*) .296%(.15,.14*) .294%(.15,14*) .297%(.15,.14%)
4 1 .291(.18,.18) 291 (.18,.18)  .291 (.18,.20*)  .313%(.20,.20)  .347 (.22,21)  .354 (.22,.22)  .353 (.22,.22)
.7 2871(.19,.20)  .2871(.19,.20)  .287%(.19,.20)  .2921(.20,.20)  .316%(.21,.21)  .319%(.22,21)  .316%(.22,.21)
.5 .2807(.20,.20)  .280%(.20,.20)  .278%(.20,.20)  .280%(.20,.20) = .297%(.21,.20)  .300%(.21,.21)  .296%(.22,.21)
.2 .283%(.20,.20)  .284%(.20,.20)  .280%(.20,.20)  .282%(.21,20)  .291%(.21,.20*) .293%(.21,.26%)  .290%(.21,.20)
20 16 1 .283%(.23,.21*) .282%(.23,.21*) .282¥(.23,.24)  .324%(.26,.25)  .340 (.28,.26*)  .336 (.27,.26*)  .343 (.28,.26*)
.7 .301 (.27,.26) .301 (.27,.26) 306 (.27,.24*)  .310%(.27,.25%)  .321%(.28,.24*)  .3121(.28,.24*) .323%(.28,.24%)
5297 (.26,.24*) 297 (.26,.25)  .301 (.26,.24)  .300%(.27,.25*%)  .311%(.27,.24*) .303%(.27,.24*) .318%(.27,.24%)
2204 (.25,.23%) 295 (.25,.23*)  .295 (.25,.24*)  .298%(.25,.24*)  .301%(.26,.24*) .297%(.26,.24*) .317%(.26,.24*)
8 1 .291(.31,28*) .288 (.31,.28*) .288 (.31,.32)  .3237(.35,.33*) .348 (.37,.35*) .344 (.37,.36) .35l (.38,.36*)
.7 .288 (.35,.32*)  .289 (.35,.32*)  .294 (.35,.32*)  .302%(.35,.33*) .3227(.38,.33*) .310%(.37,34*) .3221(.38,.34%)
.5 .303 (.34,.32%)  .304 (.34,.32*)  .310 (.33,.32)  .302%(.35,.33*) .329 (.36,.33*)  .317%(.36,.33*) .333 (.36,.34*)
.2 307 (.33,.32*)  .308 (.33,.32)  .306 (.33,.32) .309%(.33,.32)  .3207(.34,.33)  .314#(.34,.33)  .337 (.35,.33%)
4 1 317 (.42,.40) 318 (.42,.40)  .318 (.42,.46*)  .353 (.51,.45%)  .391%(.53,.50*) .3907(.53,.52)  .409%(.55,.53*)
T 326 (A47,44%) 329 (47,44%) 326 (.47,46)  .362 (.53,45%)  .380 (.55,.48*)  .372 (.54,.49*)  .390%(.56,.51*)
5 318 (.49,45%) 319 (.49,45*)  .308 (48,46)  .334 (.53,45%)  .350 (.55,48%)  .347 (.53,.48*)  .370 (.56,.50*)
2 .318 (.48,45)  .319 (48,45)  .3407(.47,46)  .344 (.51,45%)  .373 (.52,47*)  .337 (.50,.48*)  .369 (.53,.49* )

t significant bias in estimate at P < 0.05; ! significant bias in estimate at P < 0.01; * significant bias in standard error at P < 0.05



Table 2.5: Summary of performance of estimation procedures across marginal (PA)
data settings in terms of: bias of estimate and SE, coverage of confidence inter-
vals and relative efficiency, with multiple patterns (involving at least two settings)
represented by additional symbols in parenthesis, in decreasing order of occurrence.
Coding for estimation procedures: F (generalized estimating equations (GEE) with
fixed autoregressive correlation), AR (GEE with autoregressive correlation), ALR
(alternating logistic regression), MQL (marginal quasi-likelihood), REPL (restricted
pseudo-likelihood), PQL (2nd order penalized quasi-likelihood), ML (maximum like-
lihood), MCMC (Bayesian Markov chain Monte Carlo).

Design Between-subjects (BS) Within-subjects (WS)

Assessment bias 3  bias SE  CIcov. releff. bias 3 bias SE Clcov. releff.

Procedure
F 0(+) 0(=) 0(=) n/a 0(+) 0(-) 0(=) n/a
AR 0(+) 0(=) o(=) o 0(+) 0(-) o(=) o0
ALR 0(+) o0o(=) o(=) o0() 0(+) 0(=) o(=) —(0)
MQL 0(+) 0 0(=) o0(=) 0(+) -(0+) -(0+) -(0)
REPL 0 0(+) o0 0(+) 0(+) 0/- 0(-) 0(+)
PQL 0(+=) 0(+=) o(=) -+ +(0) - - -
ML 0o(+) o(=) o(=) -(0) +(0) - -0 -
MCMC + (0) 0(—) - (0) - (0) +(0) - - (0) —

0 : no significant bias, nominal CI coverage, 100% efficiency
—: downwards significant bias, significant CI undercoverage, <95% efficiency
+: upwards significant bias, significant CI overcoverage, >105% efficiency
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Table 2.6: Summary of performance of estimation procedures across random effects
(SS) data settings separated by true value of autocorrelation (p) in terms of: bias of
estimate and SE, as well as coverage of confidence intervals, with multiple patterns
(involving at least two settings) represented by additional symbols in parenthesis, in
decreasing order of occurrence. For coding of estimation procedures, see Table 2.4.

Design Between-subjects (BS) Within-subjects (WS)

Assessment bias 3 bias SE CI cov. bias 8 bias SE  CI cov.

Data Procedure

p<1 AR 0(=) 0() 0() /= o0(=) —(0)
ALR 0 o0() (0 0/= 0(=) 0/~
MQL 0() o(+) 0(9) 0(=) 0(=+) 0(-+)

p=1 REPL 0/~ 0 0 -~ 0(-) - (0)
PQL 0 0 0 0 ~(0) o0
ML 0 0 0 0 0 0
MCMC 0 0 0 (=) 0 0/— 0

p<l REPL  —(0) o(+) 0(9) - (0) o/- - (0)
PQL -0 o(+) -(@O+) -0 -0 ~(0)
ML -0 o() 0@ =) =) -0
MCMC  -(0) o(+) -(0) -0 - -(0

0 : no significant bias, nominal CI coverage
—: downwards significant bias, significant CI undercoverage
+: upwards significant bias, significant CI overcoverage
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Figure 2.1: Confidence interval coverage for between-subjects (BS) treatment estimates of
different estimation procedures, based on 1000 simulated marginal (PA) datasets per set-
ting (n = number of subjects, ¢ = number of time points, autocorrelation p = (.7,.5,.2) ~
(4,0, x)). Coding for estimation procedures: F (generalized estimating equations (GEE)
with fixed autoregressive correlation), AR (GEE with autoregressive correlation), ALR (al-
ternating logistic regression), MQL (marginal quasi-likelihood), REPL (restricted pseudo-
likelihood), PQL (2nd order penalized quasi-likelihood), ML (maximum likelihood), MCMC
(Bayesian Markov chain Monte Carlo).
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Figure 2.2: Relative efficiency (see text for definition) for between-subjects (BS) treatment
estimates of different estimation procedures (see caption of Figure 2.1), based on 1000
simulated marginal (PA) datasets per setting (n = number of subjects, ¢ = number of time
points, autocorrelation p = (.7,.5,.2) ~ (4,0, X)).
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Figure 2.3: Confidence interval coverage for within-subjects (WS) treatment estimates
of different estimation procedures (see caption of Figure 2.1), based on 1000 simulated
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autocorrelation p = (.7,.5,.2) ~ (4,0, X)).
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Figure 2.4: Relative efficiency (see text for definition) for within-subjects (W'S) treatment
estimates of different estimation procedures (see caption of Figure 2.1), based on 1000
simulated marginal (PA) datasets per setting (n = number of subjects, t = number of time

points, autocorrelation p = (.7,.5,.2) ~ (4,0, X)).
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Figure 2.5: Confidence interval coverage for between-subjects (BS) treatment estimates
of different estimation procedures (see caption of Figure 2.1), based on 1000 simulated
random effects (SS) datasets per setting (n = number of subjects, ¢ = number of time
points, autocorrelation p = (1,.7,.5,.2) ~ (3, A, 0, X)).
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Figure 2.6: Confidence interval coverage for within-subjects (WS) treatment estimates
of different estimation procedures (see caption of Figure 2.1), based on 1000 simulated
random effects (SS) datasets per setting (n = number of subjects, ¢ = number of time

points, autocorrelation p = (1,.7,.5,.2) ~ (0,4, 0, X)).
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A comparison of statistical methods
for the analysis of binary repeated
measures data with additional

hierarchical structure

3.1 Abstract

The objective of the study was to compare statistical methods for the
analysis of binary repeated measures data with an additional hierarchical
level. Such data are commonly encountered in human and veterinary epi-
demiological research, and one motivating setting for the present study
was records of presence or absence of bacteria in milk samples obtained
by approximately monthly sampling throughout the lactations of cows in
dairy herds. As the basis of a simulation study, random effects true mod-
els with autocorrelated (p = 1, 0.9 or 0.5) subject random effects were

used. In general, the settings of the simulation were chosen to reflect
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a real somatic cell count dataset, except that the within-subject time
series were balanced, complete and of fixed length (4 or 8 time points).
Four fixed effects parameters were studied: binary predictors at the sub-
ject (e.g., cow) and cluster (e.g., herd) levels, respectively, a linear time
effect, and the intercept. Marginal and random effects statistical proce-
dures were considered, and their performance was compared specifically
for the four fixed parameters as well as variance and correlation pa-
rameters. Among the estimation procedures considered were: ordinary
logistic regression (OLR), alternating logistic regression (ALR), gener-
alized estimating equations (GEE), marginal quasi-likelihood (MQL),
penalized quasi-likelihood (PQL), pseudo likelihood (REPL), maximum
likelihood (ML) estimation and Bayesian Markov chain Monte Carlo
(MCMC).

The findings of this study indicate that in data generated by random
intercept models (p = 1), the ML and MCMC procedures performed well
and had fairly similar estimation errors. The PQL regression estimates
were attenuated while the variance estimates were less accurate than ML
and MCMC, but the direction of the bias depended on whether binomial
or extra-binomial dispersion was assumed. In datasets with autocorrela-
tion (p < 1), random effects estimates procedures gave downwards biased
estimates, while marginal estimates were little affected by the presence

of autocorrelation. The results also indicate that in addition to ALR, a

124



GEE procedure that accounts for clustering at the highest hierarchical
level is sufficient. The REPL procedure performed poorly and produced

unsatisfactory estimates regardless of autocorrelation values.

3.2 Introduction

Binary repeated measures data with additional hierarchical structure are
data with multiple records over time on the same subjects (e.g., animals
or farms), which in addition are nested within some (physical) clusters
(e.g., hospitals, herds, provinces). In multi-level modelling terminology
[31], this may be termed three-level repeated measures data, with obser-
vations corresponding to level one and clusters to level three. Such data
structures are encountered across a wide range of applications in vet-
erinary and human epidemiology. Our motivating example was records
of presence or absence of bacteria in monthly milk samples from cows
housed in multiple herds. Thus, the hierarchical structure is the clus-
tering of cows in herds, and the repeated measures are the monthly test
records based on the milk samples. Data with this structure are common
in studies of dairy cow udder health (e.g., [15, 26]). Some examples from
human preventive medicine include the effects of air pollution on school
absences in the southern California Children’s Health study [35], and the

sickness episodes for workers over time [25].
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Binary records made on the same subjects, nested within clusters, over
time are likely to be correlated [22, 30] or clustered [8, Chapters: 20-21].
A within-subject dependence violates the basic assumption of logistic
regression that observations are independent, and may, if not accounted
for, lead to biases in parameter estimates and standard errors ([7, Chap-
ter 7] and [9, Chapter 20]). Such data structures challenge the statisti-
cal methods to hold its properties, such as asymptotic unbiasedness and

nominal confidence interval coverage.

Numerous procedures (models) have been proposed for the analysis of
binary repeated measures data; a basic distinction is between marginal
(population-averaged, or PA) and random effects (subject-specific, or
SS) models (|7, Chapters 7-10] and [24]). A large body of literature
on statistical methods of binary repeated measures data have discussed
the choice between these model types and specific procedures, see for
example Diggle et al. [7, Chapters: 7-11] or a recent simulation study
by Masaoud and Stryhn [20]. However, the added hierarchical struc-
ture poses problems for procedures of both types, and to our knowledge
a comparison of statistical methods for the analysis of binary repeated
measures data with such additional hierarchical structure has not yet
been reported. Moreover, the impact of the added hierarchical structure
would intuitively be expected to differ not only between estimation ap-

proaches but also between types of parameters in a model. The fixed
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part of a model could contain predictors at all three levels: the clus-
ter level, the subject level, and observation (within subject) level. The

random part of a model would involve variances and covariances.

In order to realistically reflect the choice an applied researcher faces
when it comes to data analysis, only estimation procedures implemented
in broadly accessible statistical software were considered for the study.
Specifically, the following procedures were included: ordinary logistic
regression (OLR), alternating logistic regression (ALR), generalized es-
timating equations (GEE), marginal quasi-likelihood (MQL), penalized
quasi-likelihood (PQL), pseudo-likelihood (REPL, as implemented in
proc glimmix in SAS), maximum likelihood via numerical integration

(ML) and Bayesian Markov chain Monte Carlo (MCMCQ).

Analysis of a single dataset by multiple procedures (e.g., [25]) does
not necessarily provide much insight into which procedures provide the
right answers, and does not cover all aspects of statistical inference.
The analytical approach taken for the present study was simulation.
Statistical assessments of marginal and random effects procedures for
two levels of either binary repeated measures [20] or clustered data [17]
are abundant, but these studies do not address the issues related to the

additional hierarchical structure.

The objective of the study is to compare marginal and random ef-
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fects estimation procedures, in terms of statistical properties such as
unbiasedness and confidence interval coverage, in a three-level balanced
longitudinal design. The comparison includes a range of design parame-
ters at different hierarchical levels. The goal of the comparison is to gain
insight into how different estimation approaches deal with the complex-
ity of the design, and to eventually establish some practical guidelines
for the choice of statistical procedure for the analysis of balanced, binary

repeated measures data with additional hierarchical structure .

3.3 Statistical models and estimation procedures

Consider binary records y;;r on each of n subjects (¢ = 1,...,n) dis-
tributed on m clusters (k = 1,...,m) at ¢ time points (j = 1,...,t), as
well as a set x1,...,x, of explanatory variables at different hierarchical

levels recorded at every time point.

3.3.1 Random effects models

The general form of a random effects repeated measures model [7, Chap-

ter 11] takes the following form:

logit(Pr(yijx = 1|vk, uijk)) = Bo+Lr1&1ijk+- - -+ BpLpiji+Uijr+vk, (3.1)
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where (vy, ..., Vy,) are are independent random variables with the same
distribution and (ws, ..., uitk) are a series of autocorrelated random
effects with p(uijk, wiyx) = p‘j —7'l. The most commonly assumed distri-
bution is the Gaussian (normal), say u;;x ~ N(0, 05) where o3 represents
the heterogeneity (variance) between subjects and v, ~ N(0,03) where
o3 represents the heterogeneity (variance) between clusters. Model (3.1)
is for the conditional probability of an “event” given the random effects
vr and u;; of the kth cluster and of the ith subject at jth time point,

respectively.

A random intercept model arises as a special case of model (3.1) when
p = 1, i.e., the series (u,...,u;) of autocorrelated random effects is
replaced by the single random effect u;, assumed ~ N (0, 03), for subject

i in cluster £,

log1t(Pr(yUk = 1|’Uk, Uz)) = ﬁo + ﬁlxli]—k +...+ ﬁp:cp,-jk + u; + vg, (32)

with the same assumptions for (vy) as above, and the same interpretation
of 02 and ¢%. In our view, model (3.1) forms a better basis for random
effects modelling of repeated measures data than the simpler model (3.2)

because of its ability to incorporate autocorrelation [7, Chapter 11].
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3.3.2 Random effects estimation procedures

In general, there is no closed form of the full log likelihood function
for models (3.1) and (3.2) and numerical procedures are needed to fit
the model. Alternatively several approximation algorithms have been
proposed, aimed at producing estimates close to the global ML esti-
mate without actually computing the likelihood function [3]. These
algorithms carry a number of different names and acronyms typically

involving “weighted least squares” and “quasi”- or “pseudo-likelihood”.

Estimation in model (3.2) by numerical approximation most commonly
employs the Gauss-Hermite quadrature procedure. Adaptive quadrature
[27] is preferable for normally distributed random effects. In adaptive
quadrature, the quadrature points are rescaled and shifted to the shape
of the log likelihood function. In model (3.2), however, the added random
effects at the cluster level pose some challenges for the direct maximiza-
tion of the log likelihood (ML) and the integration becomes difficult {7]

and may substantially increase computation time.

Estimation by Markov chain Monte Carlo (MCMC) techniques in a
Bayesian framework, may be viewed as a numerical approach to avoid
the computational difficulties of the log likelihood. In this study MCMC
techniques are used as an estimation algorithm for the frequentist model

rather than for exploring the genuine Bayesian models with informative
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prior distributions. The MCMC approach has been shown to perform

well across a range of settings [4, 20].

Breslow and Clayton [2] presented two estimation procedures based
on quasi-likelihood function called penalized quasi-likelihood (PQL) and
marginal quasi-likelihood (MQL). The MQL estimates are derived under
random effects model assumptions [12]. Both procedures iteratively em-
ploy linear mixed model estimation to an “adjusted” variate obtained by
Taylor approximation of the outcome around its current estimated mean,
until convergence, using either maximum likelihood (ML) or restricted
maximum likelihood (REML), thus results in IGLS iterative general-
ized least squares (IGLS) or restricted iterative generalized least squares
(RIGLS), respectively. One major difference between the two algorithms
is that MQL does not incorporate the random effects u; in the lineariza-
tion of the mean [23, Chapter 9] whereas the PQL does. It has been also
suggested to refine the approximations by the including a second-order
term in the Taylor expansions, usually denoted as second order PQL and
MQL procedures [13, 28]. It is well-known that caution should be ex-
ercised in using these algorithms because under certain conditions they

are prone to bias towards the null (e.g., [28, 29]).

In addition, Wolfinger and O’Connell [36] suggested a similar proce-
dure to PQL, called pseudo-likelihood (PL) procedure. It differs from
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the quasi-likelihood approach by using a true joint likelihood function in
its estimation process. Using either ML or REML in the estimation pro-
cess results in PL or restricted pseudo-likelihood (REPL), respectively.
The REPL procedure allows for both random effects in the linear predic-
tor and correlation structure in the observation scale errors conditional
(on the mean) [36]. | Intuitively, one would expect this procedure to be
suitable for models such as model (3.1). Modelling by correlation struc-
ture only yields marginal estimates [23, Chapter 22|; adding random
effects effectively yields a random effects model with serial correlation

|23, Chapter 22].

3.3.3 Marginal estimation procedures

The most commonly used procedure to obtain marginal estimates is
GEE, generalized estimating equations, which from the onset was de-
vised to deal with repeated measures obtained from multiple subjects
[19]. The terms population-averaged and subject-specific inference orig-
inate from this context [38]. However, the idea that subjects might be
part of a hierarchical structure themselves was not part of the scenario
studied. Despite a plethora of extensions of the originally proposed gen-
eralized estimating equations [39], to our knowledge no set of estimating

equations has been proposed to deal specifically with additional hier-
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archical structure. Several options can be explored within the classical
GEE framework for dealing with one level of clustering of the subjects in
addition to the within-subject correlation structure. The simplest idea is
perhaps to model clusters by fixed effects (denoted here GEEf) while re-
taining the usual modelling of within-subject correlation structure. Mod-
elling hierarchical structure by fixed effects has multiple drawbacks, the
most important being that it does not allow for inclusion of cluster-
level predictors [8, Chapter 20]. An even more crude approach (denoted
GEEs), to ignore the additional clustering, would not be expected to
yield acceptable cluster-level inference. To aéhieve correct inference at
the cluster level, the GEE handling of correlation structure must be
shifted from the subject to the cluster level. This might at first seem to
give up on achieving a valid and efficient within-subject inference, but
the robustness of GEE procedures to misspecification of working corre-
lation structure should ensure consistency of estimates. The standard
choices of GEE working correlation structure do not allow to distinguish
between within-cluster and within-subject correlations. In our view the
most promising choices of cluster-level correlation structures would be
independence (GEEci) and exchangeable (GEEce). Independence corre-
lation structures, effectively corresponding to ordinary logistic regression
(OLR) with robust (“sandwich”) variance estimates, has been reported

to work well for data comprising at least 30 subjects [39].
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An alternative variant of the GEE procedure is alternating logistic
regression (ALR). It uses the same estimating equation for the fixed ef-
fects as GEE, but differs from GEE by modeling the association among
responses (e.g., within subjects) in terms of odds ratios. ALR is numeri-
cally more efficient than GEE for large clusters [5]. The ALR procedure
has the a,dvahtage of providing standard errors for the association param-
eters. Furthermore, ALR allows one to distinguish between odds-ratios
within clusters and within subclusters (in the current case subjects);
however, the within-subject correlation must be modelled as exchange-
able. For two-level binary repeated measures data, both GEE with an
exchangeable correlation structure and ALR yield asymptotically unbi-
ased estimates, which can be nearly efficient relative to GEE with a
correctly specified working correlation structure [20] and to maximum-
likelihood estimates in a fully and correctly specified model [7, Chapter
8].

3.3.4 Marginal vs. subject-specific estimation

The relation between random effects and marginal estimates has been
discussed and described (see e.g., [38, 24] and [7, Chapter 7]) see also

Chapter 1. Zeger et al. [38] provided the conversion formula for logistic
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regression with normally distributed random effects:
B~ (Po? +1)7V26%,  where ¢=16v/3/(157) = 0.588. (3.3)

For a probit model, the above conversion formula becomes an exact

formula (e.g., [21, Chapter 8]):
,BPA _ (0_2 + 1)—1/2,855. (34)

Both formulas can be used to relate subject specific to population average
models/estimates under the assumption that random effects are normally
distributed. Without any distributional assumptions on the random ef-
fects it holds that the marginal regression parameters are attenuated or
diluted (towards zero) relative to the random effects parameters, unless

the variance is zero [21, Chapter 8].

3.4 Simulation study

The settings for the simulation study were motivated by the scc40 dataset
of Dohoo et al. [8, Chapter 27] for repeated measures of somatic cell

counts in milk samples from cows housed in multiple herds. In this
observational dataset, up to 11 approximately monthly measures were

taken on each cow, but missing values of different types occurred. The
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impact of missing values will be addressed in a forthcoming study. In
order to create settings more akin to experimental studies, we consider
here balanced and complete series of either t = 4 or t = 8 measurements
per subject. Thirty clusters were included, with 20 subjects per cluster.
In the sccd0 context, factors of interest existed at both the herd and
cow levels; thus, the simulation design included binary covariates at the
cluster and subject levels. Including also (for simplicity) a linear time
effect but no interactions with time, the linear predictor included the

following parameters set at the indicated true values:

Bo = —1 (intercept centered at first time point),
By =0.15 (slope for time =0, ..., — 1),
Bs = —1 (coeflicient for subject level covariate),

Bs =1 (coefficient for cluster level covariate).

The random part of the model included normally distributed subject
and cluster level random effects with standard deviations set at 09 = 1.5
and o3 = (.75, respectively. These values approximated the estimates
in a random intercept model for a binary outcome in the ssc40 dataset
obtained by dichotomizing the somatic cell counts at 200000 cells/ml.
High somatic cell counts are considered an indicator of subclinical mas-

titis. By the latent variable approximation to the variance partition
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coefficient [14], this corresponds to 37% and 9% of the unexplained vari-
ance residing at the subject and cluster levels, respectively. Simulated
datasets were generated for highly and moderately autocorrelated sub-
ject random effects (p = 0.9 and p = 0.5) as well as for a random inter-
cept model (p = 1). Note that the correlation between binary outcomes
is different than the correlation between the random effects. In particu-
lar, the latent variable approximation with an observation-level variance
component of 72/3 [31, Chapter 14] yields an intra-class correlation of
02/(0? + 72/3) = 0.46, where 02 = 02 + 03, and a first-order correla-

tion of po?/(c? + 7?/3), and the values 0.42 and 0.23 for p = 0.9, 0.5,

respectively.

The autocorrelated random effects of each subject were generated by
multiplying a vector of ¢ independent variables by the upper triangu-
lar factor of the Cholesky decomposition of the correlation matrix (as
described in Congdon [6]). Generation of the binary outcomes then fol-

lowed the usual scheme for random effects logistic regression models [32].

3.4.1 Software and settings for estimation procedures

The GEE estimation procedure used the implementation of proc genmod
in SAS software version 9.1, with two working correlation structures: au-

toregressive, and exchangeable. The ALR estimation procedure used the
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implementation in SAS with two pairwise odds ratios: within subcluster
(subject) odds ratio and within cluster odds ratio. The random effects
procedures used the first order MQL, MQLx and second order PQL,
PQLx procedures, with REML option and implemented in the MLwiN
software (version 2.02), the REPL procedure of SAS (proc glimmix),
as well as the adaptive quadrature algorithms for ML estimation im-
plemented in Stata version 10 software (xtmelogit command with 7
quadrature points at both the subject and cluster level). The REPL
procedure was set up with cluster and subject random effects and a first
order autoregressive correlation structure, and the REML option [36].
MQLx, PQLx and REPL estimation procedures included an additional
overdispersion parameter. The Bayesian estimation procedures were im-
plemented in WinBUGS version 1.4 called from the R software using
the R2WinBUGS package [33]. Vague (“non-informative”) prior distri-
butions (i.e. N(0,10°) were used for all fixed effects parameters. The
recently recommended uniform distribution for inverse variances, or pre-
cisions (7 ~ uniform(0,100)) was used [18, 11]. The Markov chains were
run with 500 burn-in samples [4], and the subsequent estimates (poste-
rior distribution medians) were based on 2000 samples. These burn-in
and estimation sample sizes were arrived at after inspecting MCMC di-

agnostics for selected datasets.
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3.4.2 Analysis of results for simulated data

The estimates of marginal estimation procedures can be compared either
to true subject-specific parameter values obtained from the conversion
formula (3.3) with 02 = 02 + 02. Inserting the known true variance pa-
rameters, yields % ~ 0.712 x 3%. Although the marginal parameters
are “theoretical” in the sense that they can only be constructed from the
(unknown) variance parameters, they were used to assess the marginal
estimation procedures against their expected values. Unless all variances
are small, there is little prospect in using marginal estimation procedures
to reconstruct the true parameters of random effects models (see [20] for
discussion of the choice between random effects and marginal estimation
procedures). As the fixed effects parameters are on different scales, the
results were presented in terms of the relative bias defined as the differ-
ence between the average estimate among simulations (4) and the true
value (marginal or subject-specific)(5) divided by the true value,

B-p
g

relative bias = x 100% (3.5)

The presence of statistically significant bias in the estimates (of both
fixed effects and variance parameters) was assessed by a z-test based
on the true value and the standard deviation among simulations. The

statistical significance of bias in the standard errors was assessed by
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comparing the mean standard error to a 95% confidence interval for the
standard deviation based on the simulations. This simple procedure was
considered acceptable because the statistical variation in the estimated
standard deviation was generally much larger than that of the mean
standard error. Confidence intervals (Cls) were computed by the large-
sample normal approximation based on the standard error; for the GEE
procedures, the robust standard error was used. The coverage of 95%
Cls was computed as the proportion of simulated datasets for which the
confidence interval (in the Bayesian analysis: the credibility interval)

contained the true parameter.

3.5 Results

Presentation of results is separated by the type of estimation procedure:
based on either marginal or random effects models. Relative biases of
estimates and standard errors are shown in Tables 3.1-3.2, coverages of
confidence intervals are shown in Figures 3.1-3.2. Table 3.3 gives relative
biases of estimates and standard errors for datasets and analyses based

on the probit link function.
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3.5.1 Random effects estimation procedures

As all random effects estimation procedures except REPL are based on a
random intercept model, the performance of the procedures in datasets
corresponding to this true model (p = 1) is reviewed first, and subse-

quently we turn to the results for autoregressive datasets (p < 1).

3.5.1.1 Variance parameters

The two likelihood-based procedures (ML and MCMC) produced fairly
accurate variance estimates and standard errors (Table 3.1). ML esti-
mates of the level 3 variances were slightly attenuated (biased towards
zero) and the MCMC standard errors for the same parameter were some-
what inflated (biased away from zero). PQL variance estimates were less
accurate, but the direction of the bias depended on whether binomial or
extra-binomial dispersion was assumed. In agreement with previous find-
ings in Chapter 2, PQL showed attenuated estimates, whereas PQLx
showed both downward and upward biases (¢% for ¢t = 8, and o2 for
t = 4, respectively). The extra-binomial parameter estimates were cen-
tered around 0.80 with strongly inflated standard errors. Consequently,
PQLx variance estimates were generally higher than PQL estimates. All

variance estimates of the REPL procedure were strongly attenuated.

Due to the scaling by the variance parameters inherent in random ef-
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fects estimation procedures, any bias in estimated variances is likely to
affect the fixed effects as well (and in the same direction), in particular
for moderate to large variance components. For example, all fixed ef-
fects estimates for REPL indeed showed substantial bias (range 6-16%)
towards zero. Also, the attenuation of both fixed effects and variance
parameters for PQL estimation was more pronounced for shorter time

series, corresponding to less replication at the subject level [20].

3.5.1.2 Level 3 parameters

A similar qualitative behaviour was expected for the intercept and the
predictor at the highest (cluster) level, and generally the results con-
firmed this. Likelihood-based procedures gave unbiased estimates but in
some cases slightly underestimated the standard error. PQL procedures
showed the same bias in the standard error, and some instances of mi-
nor negative (PQL) or positive (PQLx) bias in the estimates. As noted
above, REPL estimates were clearly biased towards zero. CI coverage

(Figure 3.1) was close to or slightly below nominal for all procedures

except REPL.
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3.5.1.3 Level 1 and 2 parameters

The subject-level parameter was estimated without any biases for ML,
MCMC and PQLx; a small negative bias (3-5%) was present in PQL
estimates. The regression coefficient for time (level 1) was estimated
without bias by ML, MCMC and PQL (except for ¢ = 4), whereas the
PQLx estimates were moderately inflated, had too small standard errors

and showed undercoverage of Cls.

3.5.1.4 Autocorrelated data (p < 1)

For all random effects procedures, estimates of both fixed effects and
variance parameters were attenuated in autoregressive datasets (Table
3.1). In the vast majority of settings, the biases were statistically sig-
nificant. The relative bias was strongest for the variance parameters,
increased markedly from p = 0.9 to p = 0.5, and was also somewhat
larger for the long time series (£ = 8). Standard errors were also clearly
underestimated (up to 18%) in several cases, including the variance pa-
rameters and in the long series also the time effect. The bias in standard
errors was less severe for the short series (¢ = 4). Contrary to the other
procedures, MCMC estimation produced inflated (up to 19%) estimates
for 02. Generally, the setting least affected was (p,t) = (0.9,4) where

biases for fixed parameter estimates of ML, MCMC and PQL were below
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10%, and CI coverage was above 90%. In other settings, the biases for
these procedures ranged up to 24% for fixed effects and 88% for variance

parameters, and CI coverage could go below 50% (for (p,t) = (0.5,8)).

Adding the extra-binomial dispersion parameter to the PQL procedure
did not alleviate the attenuation of PQL estimates substantially. For low
autocorrelation (p = 0.5), both PQL procedures and the likelihood-based
procedures showed downward biases and undercoverages of similar mag-
nitudes. However, the extra-dispersion parameter tended to increase in
value (show less bias) for decreasing p. Although the only random ef-
fects procedure examined which incorporated an autoregressive param-
eter, the REPL procedure was equally affected by the autocorrelation
as the other procedures. Moreover, for both values of p the REPL esti-
mates had stronger bias and lower CI coverage than those of the other

procedures.

3.5.2 Marginal estimation procedures

Generally, estimates from OLR, ALR, MQL, and the GEE procedures
except GEESf agreed closely (Table 3.2), and all showed a small negative
relative bias in the range 3—6%. For estimation of a marginal parameter,
all the methods are asympotically consistent, and it is plausible that this

bias is due to approximation error in the calculation of the marginal true
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value; see Section 3.5.2.3 below. As the asymptotic consistency does not
rely on assumptions about the true correlation structure, the presence
of autocorrelation (p < 1) in the data was expected to have less of an

impact for marginal than random effects procedures.

3.5.2.1 Level 3 parameters

The fixed cluster effects included in the linear predictor for GEEf pre-
cluded estimation of effects at the cluster level. For the other procedures,
the relative bias remained relatively constant in the 3-6% range irrespec-
tive of the autocorrelation (p); thus, the differences in performance were
essentially in the standard errors. As expected, OLR grossly underesti-
mated the standard errors at the cluster level. Strongly underestimated
standard errors were also seen for the GEEs procedure, a consequence
of the lack of cluster level effects in the (variance) estimating equations.
The other procedures generally showed a minor (up to 7.5%) downward
relative bias in the standard errors, and CI coverage at or moderately

below the nominal level (Figure 3.2), irrespective of the value of p.

3.5.2.2 Level 1 and 2 parameters

Estimates from GEEf showed a small upwards bias (less than 5%), in

the opposite direction of the downwards bias displayed by all other pro-
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cedures. Standard errors were generally, except for some settings for the
time parameter, unbiased for ALR and all GEE procedures excluding
GEEs, which had substantial upwards bias for the level 2 coeflicient.
Both the MQL and MQLx procedures showed biases in either direction
for the time parameter. Stronger biases were noted for OLR, also in
both directions. CI coverages varied around the nominal level for all

procedures except OLR.

3.5.2.3 Overall marginal bias

We examined the small negative bias experienced by almost all marginal
estimation procedures by rerunning the simulation study using a probit
model both to generate the data and fit the models involved in the es-
timation procedures. For a probit model, the conversion formula (3.3)
becomes an exact formula (3.4) [21, Chapter 8]. Table 3.3 gives the rela-
tive bias for a subset of the previously considered estimation procedures.
The OLR, GEEce, GEEci and ALR procedures gave virtually unbiased
estimates, although some bias in the standard errors remained (similar
to the previously discussed results in Table 3.2). As the exact conversion
formula thus produced unbiased estimates, we consider the approxima-
tion formula as a plausible source of the general downward bias seen in
Table 3.2. The results for the probit link also confirmed the suspected

positive bias in GEESf estimates. As before, the autocorrelation had only
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little impact on the performance of the estimation procedures.

3.6 Discussion

3.6.1 Random effects estimation procedures

In data generated by random intercept models (p = 1), the ML and
MCMC procedures performed well and had fairly similar estimation er-
rors. Generally, the estimation bias in PQL is known [21, Chapter 10]
and could be partly due to the well-known attenuation of variance pa-
rameters by PQL in certain settings [10]. However, the results (especially
when ¢ = 1) were in accordance with the those of Molenberghs and Ver-
beke [23, Chapter 14], who reported that the performance of PQL could
be improved by increasing the number of subjects. Venables and Ripley
[34] concluded that allowing for ¢ in certain applications, yielded regres-
sion estimates that were closer to the maximum likelihood estimates, a
finding that could not be reproduced in the current study settings. Our
results showed an evidence of inflated standard errors for ¢, which does
not support the suggestion by Yang et al. [37] of using ¢ as a diagnostic
tool, and by Barbosa and Goldstein [1] to “allow for model misspecifi-
cation”. Recently, Heo and Leon [17] concluded that the full likelihood

approach “appears to be preferable for the analysis of clustered binary

147



observations with underlying random effects models”.

In datasets with autocorrelation (p < 1), the downward biased esti-
mates of random effects can be seen largely as a scaling effect caused
by the underestimation of the random effect variances. Inference for
all fixed effects parameters was strongly affected, and the biases of esti-
mates were of similar magnitude. The associated pattern of increases in
the inflated standard errors for ¢ with decreases in the correlation value,
could be due to the increase of the variability within each subject as the
correlation decreases. This finding may raise some concern about the
approximation procedures to the log likelihood. However, more research
is needed to confirm it, especially in simpler settings such as correlated

binary data.

The REPL estimation procedure performed poorly and produced un-
satisfactory estimates regardless of autocorrelation (p = 0.5,0.9, 1). These
findings are in support of those by Evans et al. [10] for variance com-
ponent and by [20] for regression estimates. This could be due to the
inclusion of both random effects and a correlation structure in the REPL
procedure, and thus modelling parts of the variance/correlation structure
on different scales [23, Chapter 22]. The ability of the REPL procedure
to incorporate autocorrelation did not render the estimates less suscep-

tible to attenuation bias in datsets with autocorrelation than the other
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random effects procedures.

3.6.2 Marginal estimation procedures

The results suggest that the small general bias observed for marginal es-
timation procedures could be due to the conversion formula (3.3). How-
ever, to our knowledge, the assessment of the accuracy of this formula
in practice has not been reported yet. This conversion formula relies
on the variance of normally distribute random effects to scale subject
specific to population average models/estimates. The avoidance of such
scaling problems by separating fixed and random effects estimates was
one of the key ideas behind the development of marginalized models [16].
The application of marginalized models to repeated measures data with

additional hierarchical structure has to our knowledge not been reported.

Marginal estimates were little affected by the presence of autocorre-
lation; similar performances of the different procedures were seen in all
settings (p = 0.5,0.9,1). ALR, GEEci, and GEEce performed fairly well
with only a few instances of minor statistically significant bias. MQL
(apart form the fluctuation in the the standard error for time coefficient)
performed on a par with ALR, and in agreement with previous finding
in [20]. The results indicate that accounting for clustering at the highest

hierarchical level is sufficient (GEEce, GEEci). In fact, standard errors
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for these procedures and ALR showed a larger bias at the cluster level
than at levels below, probably an effect of of the low number of clusters
[39]. This is an interesting result that we think needs more research to
validate it in different settings and designs of binary data. Accounting
for the additional hierarchical structure by fixed effects (GEEf) resulted
in biased estimates. However, ignoring the hierarchical structure in the
data in (OLR and GEEs) resulted in inflated and biased standard error
of the cluster level fixed effects, this is in agreement with those reported
by Diggle et al [7, Chapter 7] and Dohoo et al]9]. Allowing for ¢ in MQL
had almost no impact on the regression estimates of fixed effects. An
explanation could be that MQL do not incorporate the random effects

u; in the linearization of the mean [23, Chapter 14].

3.6.3 Recommendations

We conclude with a discussion of the implications of the current findings
for the choice of procedure. For the choice between marginal and random
effects approaches, this study adds only little to existing knowledge [20].
The bias seen in marginal estimates should be of no concern for the use of
marginal procedures if the interpretation in this study is correct that it is
caused by the conversion formula. For autoregressive data, the random

effects procedures performed poorly (as was found also in Chapter 2),
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therefore marginal procedures may seem more attractive, unless the time

series is very short (less than 4 time points).

Generally, the likelihood-based random effects procedures (ML, MCMC)
performed better than methods based on quasi-or pseudo-likelihood. The
inclusion of an overdispersion parameter in the latter methods did not
clearly improve their performance. As is well-documented, biases of these
methods in the absence of an overdispersion parameter are towards the
null [28, 29|, whereas in the presence of overdispersion biases tended to
be less predictable (in either direction). Moreover, we are not convinced
about the usefulness of ¢ as a diagnostic tool. The REPL procedure
performed poorly in our settings, substantiating the finding reported in
by Masaoud and Stryhn [20] that REPL performs mostly as a marginal
estimation procedure with no promise for estimation of the variance or
an autoregressive parameter. Further research may be needed to assess

its accuracy and validity for binary repeated measures data.

Among the marginal procedures, ALR and GEE with either indepen-
dence or exchangeable correlation at the cluster-level performed simi-
larly and generally well across the range of settings covered. All other
attempts to incorporate the additional hierarchical level into the GEE
framework produced estimates with serious deficiencies for some of the

fixed effects parameters. In situations where the affected parameters are
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of no interest (or absent), such other schemes may be acceptable but on
the other hand show no advantages over the above-mentioned generally

acceptable schemes.
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Table 3.1: Relative bias of estimates and associated standard errors of fixed effects and variance
parameters obtained by five random effects estimation procedures, based on analysis of 1000 sim-
ulated datasets per setting (¢ = number of time points, p = autocorrelation, parameters: 5y (inter-
cept), B1 (time coefficient), B2 (subject level factor), Bs (cluster level factor),o2 (variance at subject
level), o2 (variance at cluster level), ¢ (extra binomial dispersion)). Coding for estimation proce-
dures: PQL (2nd order penalized quasi-likelihood), PQLx (2nd order penalized quasi-likelihood
with extra binomial dispersion), REPL (restricted pseudo-likelihood), ML (maximum likelihood),
MCMC (Bayesian Markov chain Monte Carlo).

Estimation procedures

PQL PQLx REPL ML MCMC
t p Par Est. SE Est. SE Est. SE Est. SE Est. SE
8 1 fo 0.0 —5.3* 2.7 —59 85t —26 0.9 -4.9 0.6 —5.5%
B 0.97 —2.4* 2.7t —11.8* —6.41 —8.6* 0.7t —0.2 0.9 —0.6
B2 -3.0t 11 —0.6 1.3 —114f 0.2 0.0 1.0 0.2 0.7
Ba -1.9 -5.8* 0.6 —5.8* —11.0f —23 1.0 —5.7* 1.0 —4.8*
o2 —-8.6% —8.9* 2.7% —14.7* -18.8% —64* 01 0.3 1ot 0.0
ol -11.5% 2.1 -0t —22 196t 21 —-6.2% —0.8 3.4 12.7*
¢ —16.2%  44.9* —21.4% 20.9*
9 Bo —9.4% _5.8* -7.6t —-6.3* —18.6t —2.6 —9.5t —5.2* -9.2¢ —4.7*
B -8.61 —14.2* —6.7% —20.2* 173t —11.4* —9.1F —11.7* -8.9% —12.1*
B2 ~10.4t —2.2 —8.7F —1.8 -19.7% —1.1 -9.41 —05 -9.31 —03
B3 -9.7* —6.0* —-7.9ft —6.0* —19.3f —238 —8.8t —5.6*  —84t —4.0*
o3 —43.1% —10.9*  -36.2 —154* 546t —28 3961 25 —39.01 29
o2 -26.1% —12 -231t 11 -357F 46 2470 14  -16.9% 16.2*
¢ —-12.1% 108.8* -15.8% 603
5 Bo —22.6t —8.6* —21.9% 9.0 —283f —46* —229% 78 2317 —6.2*
B1 -22.6% —15.00 —22.0t —17.8* —27.3t —9.0* —229%f-12.9* —23.0f —135*
B2 —23.6% —-3.0 -23.0t -31 284t —05 239} —-04 -23.8t 0.6
B3 —22.0t 7.8 222t _79* _27.8t —4.0 —23.11 —74* 2311 _54*
o2 -88.37 —11.6* -86.4% —17.1* —93.9% —7.6* —874f —1.7  —87.6f 56"
o2 —455t 03  —44.6f 01 —476% 5.0 —459% 32  —404% 19.3*
¢ ~5.4% 187.3* —4.4% 61.9*
4 1 Bo —4.5t —5.1* 2.1t —6.0  —14.87 —4.2* —-1.0 -3.6 —0.8 -2.8
B —2.5% 05 5.81 —14.9* -10.9t —8.2* -0.5 2.7 -0.2 2.3
B2 —4.7% -0.3 1.1t 1.6  -155f —1.1 —-0.2 1.1 02 1.2
33 —5.4t —5.6* 04 —-52* -16.3F —3.1 1.2 —4.6* —09 -25
02  —14.2% —13.8* 17.9% —23.3* —22.2% —12.2* 128 27 31 27
o3 —~13.8% —1.6 —25f —11 2509t 19 -5.9t 0.9 3.9% 141~
¢ —23.0t  19.4* 277t 11.8*
9 Bo -8.81 —5.1* -3.2t  —6.3*  —20.0t —3.2 —6.8t -35 —-6.67 —1.4
B —6.7F —6.9*  —0.1 -18.9* —16.4% —10.1* —5.6f —4.2 —5.1% —4.8*
B2 —8.7% 1.7 -3.51  —04  —20.0f —0.6 -6.0t 1.3 5.7t 1.3
B3 -9.3t —6.2* 41t —6.2* _—21.0f —29 —6.8f —53*  —6.4t -29
o2 —35.5% —18.0*  —10.7% —28.4* —453'-11.7* -254% 17 241} 0.5
o2 —21.9% —4.7* -—12.6% —4.8* -346f 00 -17.6% -1 ~9.2¥  13.1*
¢ —19.5F  37.3*  —22.7% 20.9*
5 Bo —21.7% —5.9* 188t 7.2 2781 —18 —21.4% —43* 2151 —14
81 —20.5¢ —7.5* —17.5% —14.4* 264 —46* —20.31 —-5.0* —20.1f -5.2
B2 —20.3t —1.8 174t 28 -26.91 16 -19.8% 37 -—19.7F 3.0
B3 —21.6% —56* -18.7% —6.0* —28.1f —0.9 212t —46* 213" —06
o2 —80.8% —15.7* -71.6t -31.00 —857t —27 771} 07 774t —6.1*
o2 -41.31 —55* -36.9% -6.7* 4587 36  —40.6% -06  —345! 13.8*
¢ —10.47  87.4* -9.7F  25.9*

I significant bias in estimate at P < 0.05; ! significant bias in estimate at P < 0.01;
* significant bias in standard error at P < 0.05
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Table 3.2: Relative bias of fixed effects parameter estimates (against marginal true values) and their standard errors obtained by eight marginal
estimation procedures, based on analysis of 1000 simulated datasets per setting (¢t = number of time points, p = autocorrelation, parameters:(
Bo (intercept), §; (time coefficient), B2 (subject level factor), B3 (cluster level factor) )). Coding for estimation procedures: OLR (ordinary logistic
regression), GEEci (generalized estimating equations (GEE) with independence correlation at cluster level), GEEce (GEE with exchangeable correlation
at cluster level), GEEf (GEE with fixed effects for cluster level and autoregressive correlation at subject level), GEEs (GEE with autoregressive
correlation at subject level), ALR (alternating logistic regression), MQL (marginal quasi-likelihood), MQLx (marginal quasi-likelihood with extra
binomial dispersion).

Marginal estimation procedures

OLR GEEci GEEce GEEf GEEs ALR MQL MQLx

t p Par. Est. SE SE Est. SE Est. SE  Est. SE Est. SE  Est. SE Est. SE
8 1 fo —3.5% —58.5* _6.4* —4.0f —6.5* n/a n/a  —3.7F -38.8* —3.6f —6.3* 3.5t —55* 3.5t 43
B -39t 188+ -—27 -39t —28 42t 33 35t 33 -39t -28 -39t 17 -39t 18.8*

B2 —4.7% —38.7* 00 —47t 00 31f 16 -—45t 120+ —48f 00 47t 18 47t 18*

Bs —3.6% —72.3* 55 -39f —53* n/a n/a -3.0' —506* 36t 57 35t —58 351 _58*

9 Bo —4.2% —57.0* —55* —45t —49* n/a n/a  —4.2% —40.3* —4.2! 5.4 42 _51* 4.2t a1

B 38t 12 28 38 —28 34t 14 -39t —20 —-38t —28 3.8t —12.0* -3.8t 12

B2 —4.5% —34.1* 24 —45t —24 28t 32 45t 85 —45t —25 45t 11 45t 11

B3 —3.8% —714* 7.0+ —4.0f —52* n/a n/a  -3.7% —53.0* -3.9f —55* —3.8% 5.6 —3.8% _56*

5 Bo —3.7% ~56.1* —75* —50f —77* n/a n/a  —-46t —46.9* 3.7t —75* 37t 77 —43t _72*

81 —-3.7% -89+ —6.3* —4.0f —83* 30t -3.0 -3.9% —6.3* 3.7t —6.3* -—3.7F —14.0*+ -3.7% _g.9*

B2 —4.9% —140* -35 -53f —31 1.7t -28 —53% 144* —49t —3.6 —49f —16 —4.9% 16

Ba —4,1% —70.6* —5.6* —4.4% —6.8* n/a n/a —4.1% —61.3* —41f —7.0* -—41% —7.1* 41t _7.1*

4 1  fBo —5.6% —46.4* -51* —59f —53* n/a n/a =57 —35.00 5.6t —5.1* 5.6t —45* 56t 2.8
B1 —-54t 239* —01 -50t —01 31F 21 50t 2.3 —-5.0f —0.2 50t 24 —5.0f  23.9*

B2 —4.8t —229* 1.0 —4.8f —1.0 33% 17 47 73* 48t -10 47 12 48 12

B3 —5.8% —61.6* -55* —6.0f —55* n/a n/a -58' —46.2* 58t 57 57t 57 57t _57*

9 Bo —5.2% —453* 42 —56% —40 n/a n/a —54% —34.9* —52f —41* -52f —40 52t 24

b1 —-3.7t 115t —4.3* —3.7% —4.3* 41t —25 -39f 27 —3.7% —4.3* 3.7t —48 3.7 11.5*

B2 —4.3% —20.0+ -1.0 —43%f —10 3.7t 18 42 75+ 43t —09 —42t 0.8 —42f 08

B3 —5.3% —-61.0+ —-49* -56f —54* n/a n/a -5.3t —47.3* 53t —55* 52t 56 -52t 56*

5 Bo —5.8% —44.0 —4.6* —6.2f —44* n/a n/a  -58' —37.4* 5.8t —46* -58% —4.7* 58 _38

B1 —-43% 29 34 -—43t -34 31t —04 —43%} —04 —4.3% —34  —43t —47 431 29

B2 —3.8f —6.6* 1.1 -39 11 36t 03 -38 114+ 38t 11 -38 26 38t 27

B3 —5.6f -59.4* 4.7 -59% —47* n/a n/a  -56% —51.5* —5.6f —49* 55t _4.9* _55F _49*

*

! significant bias in estimate at P < 0.05; ¥ significant bias in estimate at P < 0.01; * significant bias in standard error at P < 0.05
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Table 3.3: Relative bias of fixed effects parameter estimates (against marginal true values) and their standard errors obtained by eight
marginal estimation procedures, based on analysis of 1000 simulated datasets per setting (¢ = number of time points, p = autocorrelation,
parameters:( [y (intercept), 81 (time coeflicient), 32 (subject level factor), B3 (cluster level factor))). Coding for estimation procedures with
probit link: OLR (ordinary logistic regression), GEEci (generalized estimating equations (GEE) with independence correlation at cluster
level), GEEce (GEE with exchangeable correlation at cluster level), GEEf (GEE with fixed effects for cluster level and autoregressive
correlation at subject level), GEEs (GEE with autoregressive correlation at subject level), ALR (alternating logistic regression).

Marginal estimation procedure (probit link)
OLR GEEci GEEce GEEf GEEs ALR
t p par. Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

8 1 fo 1.7t —64.8* 1.7t —2.0 1.7 —2.7 n/a n/a 1.77 —38.8* 1.8T —-1.9
51 1.4% 30.6* 1.4f —3.2 1.2t-32 116t —1.7 1.3t —3.0 1.2t —34

B2 0.8 —46.8* 08 22 0.7 24 11.2% 13 0.8 12.2* 0.8 24

B3 2.4t —77.6* 2.4 —8.1* 2.4t -84* n/a n/a 2.3t —52.0* 2.4t 8.2+

9 fBo -0.6 —-64.3* —0.6 —6.8* —0.3 —7.5* n/a n/a —0.6 —44.2* -0.5 —7.0*
B 0.6 1.3 0.6 —0.8 0.6 —0.6  10.3t 1.8 0.6 —0.5 0.6 —0.8

B2 1.4% —44.0* 1.4% —3.5 1.4 -35 112t —5.7* 1.4t 6.6* 1.4t -3.6

B3 -0.5 —75.3* —0.5 —1.8 —0.2 —23 n/a n/a  —-0.5 —53.1* —0.5 —2.0

5 Bo 0.3 —61.1* 0.3 —3.4 0.2 —3.0 n/a n/a 0.3 —48.9* 0.4 —3.6
B1 -05 -9.7* —-0.5 —4.0 —-0.5 —-3.9 8.2 —0.5 -0.5 —1.4 -0.5 —4.0

B2 0.3 —20.3* 0.3 -3.1 0.3 -3.0 9.0t —3.0 0.3 16.5* 0.3 -3.2

B3 1.9t —~75.0* 1.9" —5.0* 1.8 —5.2* n/a n/a 1.9t —63.5* 1.9t —5.1*

4 1 Bo -0.7 —-54.0* —0.7 -5.9* —0.7 —6.3* =n/a n/a —0.7 —38.8* —0.7 —5.9*
51 -0.1 454* -0.1 -06 -—0.1f-06 109% 22 —o0.af 21 -01 -09

B2 0.5 —32.3* 0.5 —L.5 0.5 —1.4  11.4% -1.8 0.7 .7 0.5 —1.4

B3 -0.6 —67.9* —0.6 —5.8* —0.6 —5.7* =n/a n/a —0.6 —48.6* —0.6 —5.9*

9 Bo -0.4 —51.8* —0.4 —2.7 —0.4 -2.7 n/a n/a  —-0.6 —37.7* —0.4 —2.8
B 0.9 24.7* 0.9 —1.9 0.9 —1.9 11.2¢f 05 0.7 0.2 0.9 —1.9

B2 0.9t —25.2* 0.9t 25 0.9 2.6 11.3t 3. .07 13.3* 0.9t 2.6

B3 -1.0 —67.6* —-1.0 —6.8* —-09 —-64* n/a n/a —-1.0 —50.8* -1.0 —6.9*

5 Bo 0.7 —51.5* 0.7 —5.7* 0.8 -5.6* n/a n/a 0.6 —43.1* 0.7 —5.7*
b1 1.1 6.7* 1.1 —0.4 1.1 —0.4 106 24 09 25 1.1 —0.3

B2 0.5 —13.6* 0.5 —1.9 0.5 —1.9  10.0f —2.1 0.6 10.8* 0.5 ~1.9

B3 0.8 —66.3* 0.8 —6.6 0.9 —6.6* n/a n/a 0.9 —56.8* 0.9 —6.7*

*

t significant bias in estimate at P < 0.05; ¥ significant bias in estimate at P < 0.01; * significant bias in standard error at P < 0.05
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Figure 3.1: Confidence interval coverage for estimates of fixed effects parameters of dif-
ferent estimation procedures, based on 1000 simulated datasets per setting (¢ = number
of time points, (p = (1,.9,.5) ~ (0, 4,0))). Coding for estimation procedures: PQL (2nd
order penalized quasi-likelihood), PQLx (2nd order penalized quasi-likelihood with extra
binomial dispersion), REPL (restricted pseudo-likelihood), MCMC (Bayesian Markov chain
Monte Carlo), ML (maximum likelihood).
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Figure 3.2: Confidence interval coverage for estimates of fixed effects parameters of seven
marginal estimation procedures, based on 1000 simulated datasets per setting (¢ = num-
ber of time points, (p = (1,.9,.5) ~ (G, 4,0))).
(ordinary logistic regression) ,GEEf (generalized estimating equations (GEE) with fixed
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ing logistic regression), MQL (marginal quasi-likelihood).
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A simulation study to assess the
impact of missing values on the
performance of different statistical
methods for analysis of binary
repeated measures data with an

additional hierarchical structure

4.1 Abstract

The primary objective of the study was to assess the impact of miss-
ing values on analysis of binary repeated measures data with an addi-

tional hierarchical structure. Such data are commonly encountered in
veterinary epidemiological research, and one motivating example for the

present study was records of high somatic cell counts in milk samples
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obtained by approximately monthly sampling throughout the lactations
of cows in dairy herds. As the basis of a simulation study, random effects
models with autocorrelated (p = 1, 0.9 or 0.5) subject-level random ef-
fects were used. In general, the settings of the simulation were chosen to
reflect a real somatic cell count dataset (scc40), except that the within-
cow time series length was set to 8 time points for each cow. The estima-
tion procedures considered were: Ordinary Logistic Regression (OLR),
Alternating Logistic Regression (ALR), Weighted Generalized Estimat-
ing Equations (WGEE), Penalized Quasi Likelihood (PQL), Maximum
likelihood via numerical integration (ML) and Bayesian Markov chain

Monte Carlo (MCMC).

Five different scenarios of simulated incomplete datasets were consid-
ered. The first scenario corresponded to a combination of three types of
missingness patterns present in the scc40 dataset (scc40 scenario): de-
layed entry and drop-outs (where subjects enter or leave the study at
some point in time, respectively), as well as intermittent missing values.
The remaining scenarios involved only drop-outs, and corresponded to
either moderate or high percentages of values either missing at random

(MAR) or not missing at random (NMAR), respectively. Diggle and

Kenward’s logistic model [5] was adapted to simulate the missing values.

In the scc40 scenario, all estimation procedures except OLR, performed
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well and produced estimates with small relative bias (generally less than
5%) for levels of missingness that roughly corresponded to the scc40
data. In MAR missingness scenarios, some biases were found for ALR,
WGEE and PQL procedures, whereas the likelihood-based procedures
were largely unaffected by the missing values. In NMAR scenarios, all
procedures experienced similar and strong biases in the time coefficient;
however, fixed effects estimates at the subject and cluster level were
relatively unaffected. The presence of autocorrelation in the data did not
substantially alter the impact of missing values although the shrinkage
of random effects estimates was marginally less pronounced than in the

full datasets.

4.2 Introduction

Missing values in binary repeated measures data with an additional hi-
erarchical structure refers to data with incomplete records over time on
the same subjects (e.g., animals or farms), which in addition are nested
within some (physical) clusters (e.g., hospitals, herds, provinces). Miss-
ing data usually arise when some subjects are not available for certain
measurements. Subjects may leave the study at some point in time be-
fore completing their measurements (drop-outs), subjects may miss some

measurements and reappear again for later measurements (intermittent
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missing values), or subjects may join the study at different times. Our
motivating example was incomplete records of presence or absence of
high somatic cell counts in milk samples from cows housed in multi-
ple herds. Thus, the hierarchical structure is the clustering of cows in
herds, the repeated measures are the monthly test records based on the
milk samples, and the missing values are the incomplete records on each

subject.

Generally, missingness in longitudinal data presents a potential source
of bias. In part, the bias could be due to the change in data structure
from being balanced to unbalanced, which in turn may raise technical
difficulties, especially for those statistical methods that can only cope
with balanced data. If the process of the observations being missing (the
missingness mechanism) varies from subject to subject, the distribution
of the observed outcome values may not be the same as for the full

dataset.

Despite the large body of literature on missing data [19, 16, 5, 12, 20,
9, 10] (listed in order of relevance to the present study), most authors
agree that handling missing values is not a trivial task and that in many
instances there is a need for sensitivity analysis [14]. Thus, additional
information about the missingness mechanism is required. Missing data

mechanisms have been classified into different categories [19] according to
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their randomness process. They include, missing completely at random
where the probability of an observation being missing does not depend
on the prior observed nor the future unobserved values of the outcome;
missing at random where the probability of an observation being missing
depends only on the prior observed outcome; and not missing at random
where the probability of an observation being missing depends directly

on the unobserved outcome(s).

Several procedures (models) have been proposed for the analysis of
binary repeated measures data; a basic distinction is between marginal
(population-averaged, or PA) and random effects (subject-specific, or
SS) models ([25] and [6, Chapters: 8-9]). Many articles have discussed
the choice between the two models (PA vs. SS) (e.g., [6, Chapters 8-9]
or more recently for balanced data [21] and Chapter 3 in this thesis).
However, the presence of missing values poses problems for procedures
of both types, and to our knowledge the performance of statistical proce-
dures for the analysis of binary repeated measures data with additional
hierarchical structure in the presence of missing values has not yet been

described.

Previous studies on missing values include assessments of the impact
of drop-out missing data on different statistical methods [1, 32]. To our

knowledge no studies reported a delayed entry missing values pattern
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nor its impact. Fitzmaurice [11] recommends performing analysis of
incomplete data using methods to handle various types of missing data
mechanisms, in order to obtain insight into the actual type of missing
data present. This approach may be difficult to employ and justify if
there is a combination of different types of missing values within the
same dataset. The analytical approach taken for the present study was
simulation. Simulation studies can be targeted towards a specific data
structure by incorporating as much of that structure as possible in the
simulated datasets [31]. This idea can be extended to incomplete data

by matching also the missing data patterns.

In order to realistically reflect the choice an applied researcher faces
when it comes to data analysis, only estimation procedures implemented
in broadly accessible statistical software were considered for the study.
Specifically, the following procedures previously studied for hierarchically
structured binary repeated measures data (Chapter 3) were included:
maximum likelihood via numerical integration (ML), Bayesian Markov
chain Monte Carlo (MCMC), penalized quasi-likelihood with binomial
dispersion (PQL) and extra-binomial dispersion (PQLx), ordinary logis-
tic regression (OLR), alternating logistic regression (ALR), and weighted

generalized estimating equations (WGEE).

The primary objective of this study was to assess the impact of missing
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values on the performance of different statistical estimation procedures
for the analysis of binary repeated measures data with an additional
hierarchical structure. A secondary goal of this study was to demonstrate
a simple simulation approach to assess the impact of missing values in

an actual dataset.

4.3 Missing values

Within the context of binary repeated measures data, let y;; refer to
complete binary records on each of n subjects (i = 1,...,n) at ¢ time
points (j = 1,...,t). Furthermore, let 7;; be the indicator of y;; being
missing. In this notation, a subject ¢ drops out from the study at time
d, if rj4—1 = 0 and r;; = 1 for all j > d. Little and Rubin [19] (for a lon-
gitudinal data context, see e.g., [16]) classified missingness mechanisms
in terms of the conditional distribution of (r;;) given (y;;). Note that
in the following we also use 7;; as an indicator for a missing value of a

particular type, which should be evident from the context.

4.3.1 Classification of missing data

Missing completely at random (MCAR) [19, 16] refers to a missingness

mechanism (or missing data process) that does not depend on prior ob-
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served outcome values or an intended measurement values of the out-
come (unobserved outcome values), but may depend on covariates such
as time. Little and Rubin [19] showed that in the presence of a MCAR
process, the estimated parameters are not biased by the absence of data,
thus the missing data can be ignored. Diggle and Kenward [5] introduced
a completely random drop-out (CRD) process that assumes MCAR. One
implication of the MCAR assumption is that the distribution of the prior
observed outcome values at time j is the same regardless of whether a
subject drops out or remains in the study after that particular time point.
Also, the distribution of the unobserved outcome values is unaffected by
the drop-out. Missing at random (MAR) [19, 16] and random drop-
out (RD) [5] refer to a missing data (drop-out) process that depends on
the prior observed values of the outcome only. Not missing at random
(NMAR) [19, 16] and informative drop-out (ID) [5] refers to a missing-
ness mechanism that depends on the unobserved outcome (current or

future unobserved values).

4.3.2 Approaches to handle missing data

Several approaches have been proposed to assess and account for miss-
ing values [12], including the complete case method (also termed “listwise

deletion” [22, Chapter 5]). By this method, subjects with at least one
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missing value are dropped from the analysis. Fitzmaurice [12] and Little
and Rubin [19] showed that this method is valid only under the MCAR
missing data process. Another approach is based on the observed data
and called the available case method (also termed “pairwise deletion”
(|22, Chapter 5] and [19, 12])). Fitzmaurice [12] argued that WGEE °
falls under this approach. Kim and Curry [15] showed that for an MCAR,
process, methods based on the available cases are considered more effi-
cient than complete case methods, as one would expect because all the
available data is used. Little [18] and Little and Rubin [19] explained
that these methods assume the strong MCAR assumption. Little and
Rubin [19] argued that neither complete case method nor the available

case method is generally satisfactory.

Little and Rubin [19] showed that a MAR process can be ignored
when using likelihood-based inference. Robins et al. [27] showed that
ordinary GEE does not allow a MAR process to be ignored, and outlined
a weighting scheme (WGEE) to achieve valid inference under the MAR
assumption. Its implementation for drop-out missing data is detailed by
Janson et al. [13]. Hogan et al. [10] defined ignorability as the situation
where “the missing data model can be left unspecified or ignored”. For
NMAR processes, both likelihood and GEE approaches can be extended
to model the missing data [24, Chapter 27]. However, these approaches

[28] fall beyond the present scope of this Chapter.
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4.3.3 Assessing the impact of missing data by simulation

A theoretical knowledge of which procedures under certain assumptions
would provide biased or unbiased estimates is valuable, but does not give
the analyst a quantitative sense of the impact of missing data in an actual
dataset. The question posed is what biases might arise from the missing
data under different assumptions about the missingness mechanisms.
Here the impact of missing data means the difference between results
for the incomplete dataset and those for the corresponding full dataset.
Given an actual (incomplete) dataset this approach is counterfactual
because the full dataset is not available. However, it lends itself to

simulation if realistic models for the full dataset as well as the missingness
mechanism can be established. We outline briefly how the MCAR and

the MAR processes may be adapted to an actual dataset.

A first step is to discriminate between drop-outs, intermittent missing
data and any other types of missing data. For each type of missing data,
a binary matrix of indicators of missing values (termed a “shadow matrix”
[4]) with rows corresponding to subjects and columns corresponding to
possible instances of “events” of missing values is created. For example,
each row in the shadow matrix for drop-outs consists of a series of zeros
until either the occurrence of a drop-out (represented by a 1 and followed

by missing values) or the last time point in the series. This structure is
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similar to that of discrete time single event data [30]. For intermittent
missing values, each subject could have multiple events corresponding to

a standard two-level (repeated measures) data structure.

Under an MCAR assumption, shadow matrix data would most nat-
urally be analyzed by logistic regression models that may incorporate
covariates such as subject characteristics or time. Parameter estimates
from the actual dataset are then used to generate missing data patterns
for the simulation. Under an MAR assumption, the logistic regression
models may be extended to include outcomes at one or several previous

time points, for example the model proposed by Diggle and Kenward [5]:

logit(Pr(ry; = 1)) = Gy + Sitime; + Boyij—1. (4.1)

Thus, the probability that subject 7 drops out at time j given that it
was observed at time j — 1 is modelled as a function of the time and the

previous measurement through the logit link function.

4.3.4 Hierarchically structured data

The presence of missing values in multilevel data structures has been
discussed in the literature [8]. In multilevel datasets, it is possible to have
data missing at more than one level [8]. However, it is more problematic

for data analysis, when a unit is missing at a higher level, because it
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implies that the data at lower level is also missing. Snijders and Bosker
[29] argued that even a small proportion of missing values at a higher
level may lead to a loss of a lot of information on individuals at the lower

level.

Gibson and Olejnik [8] added that methods for treating these missing
data could alleviate the problem. Although the focus here is on miss-
ing values for the repeated measures data structure and less on missing
data at higher levels, the basic definitions are unaffected by subjects
being attributed to clusters. Models for missing data such as (4.1) can
be extended to clustered data by adding random effects to represent

heterogeneity between clusters.

4.4 Example: Somatic cell count data

The scc40 dataset |7, Chapter 27] is a small subset of a large mastitis
dataset collected by Jens Agger and the Danish Cattle Organization in
1993-94. It contains 13,487 non-missing observations at the first 9 time
points (of the lactation) for 2,172 cows from 40 herds. Milk samples
from each lactating cow were collected approximately monthly within
the regular milk control scheme. Only records from a single lactation
for each cow were included, and when the study period spanned parts

of two lactations for a cow, the longer period of the two was selected.

175



A binary indicator of intra-mammary infection or mastitis was obtained

by dichotomizing the somatic cell counts at 200000 cells/ml.

The scc40 dataset contains three types of missingness pattern: delayed
entry, drop-outs and intermittent missing values. In general, a delayed
entry occurs if a subject enters the study or becomes under observation
after the start time of the study. For example, if time is measured relative
to a fixed time point, subjects physically arriving after that point to an
open study cohort 7, Chapter 8] are delayed in their entry. For the scc40
data, each cow’s time refers to the days since calving (“days in risk”). In
this situation, a delayed entry occurs if the calving event took place out-
side (before) the study period, and the time points within a cow prior to
study onset were considered as missing values. A drop-out occurs when
a cow exited from the study before ending its intended measurements,
whereas, intermittent missing values are occasions where a cow missed
some measurements but reappeared again for later measurements in the

study.

4.4.1 Analysis of the missing data in the scc40 dataset

In the context of the scc40 dataset, let y;;; refer to complete binary
records on each of n cows (i = 1,...,n) distributed on m herds (k =

1,...,m) at ¢ time points (j = 1,...,t). Furthermore, let r;;; be the
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indicator of y;;x being missing. A shadow matrix was constructed for
the corresponding full dataset, and the distribution of the missing values
was explored. The total percentage of missing values in the constructed
shadow matrix was about 31%, distributed as 17% delayed entry, 14%
drop-out and 0.3% intermittent missing values. We will now detail the

modelling for each type of missing values.

4.4.1.1 Missing values caused by drop-outs

A matrix of binary indicators of drop-outs was constructed according
to the approach described earlier (Section 4.3.3). Subjects with delayed
entry were included only from their point of entry. Conditional on herd
random effects, the probability that cow i in herd £ drops out at time
J was modelled by the random effects extension of Equation (4.1) based

on an MAR process:

logit(PI‘(’f‘ijk = 1|’Uk)) = ﬂo + ﬁltimej + ﬂzyij_lk + Vg, (42)

where (v1,...,v,,) are normally distributed independent random vari-
ables, say vy ~ N(0,0%) where o7 represents the heterogeneity (vari-
ance) between herds. Inclusion of a second order time lag (y;;_ok) as
well as a quadratic term for the effect of time were explored, but not

considered of significance for the modelling.
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4.4.1.2 Missing values caused by delayed entry

A matrix of binary indicators of missing values prior to entry was con-
structed from the shadow matrix. Each row consists of a series of 1’s
until the subject is observed (represented by a 0) for the first time in the
study. Subsequent observations for the subject are not included. This
data structure is similar to the structure for drop-outs, except that 0’s

and 1’s are reversed.

This type of missing values is most likely a result of issues not related
to the observed (or unobserved) values. Therefore was modelled by an
MCAR process. Then, the conditional probabilities were modelled by a
random effects logistic regression model incorporating only time effects

(by linear and quadratic terms):
logit(Pr(rijx = 1|vg)) = Bo + Fitime; + ﬂlgtime§ + vk, (4.3)

with similar random effects assumptions as above. Note that the fixed
and random terms in model (4.3) are different from those in model (4.2)
as well as the forthcoming model (4.4); for simplicity of notation we

retain the same symbols.
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4.4.1.3 Intermittent missing values

The times of the first and last observation for each subject were excluded
in the data for intermittent missing values. FEach subject could have
multiple missing values, either following each other or at isolated time
points. Therefore, the MAR process model in Equation (4.2) was fur-
ther extended to include cow random effects. In addition, the observed
value at the previous time point could legitimately be missing, leading
to the inclusion of an extra parameter in the model. In summary, the
conditional probability that cow 7 in herd k has an intermittent missing
value at time j given the cow and herd random effects (u;;) and (vy),
respectively, was modeled by a random effects logistic regression model

of the form:

logit(Pr(rijr = 1|uik, vi)) = Bo+ Gitime; + Bovij—1r + Barij—1k + Wik + Uk,

(4.4)
for independent random variables uy, ~ N(0,02) and vy ~ N(0,0%)
with the variances 02 and o7 representing the heterogeneity (variance)

between cows and herds, respectively.
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4.5 Statistical methods

4.5.1 Estimation procedures

Random effects and marginal estimation procedures were selected based
on their performance in the full simulated datasets (Chapter 3). For
all procedures except GEE the author refers to the detailed description

given therein.

For missing data scenarios involving drop-outs by an MAR process, a
weighted generalized estimating equation (WGEE) procedure was em-
ployed to account for the bias induced by the MAR mechanism. The
GEE procedure was set up with either an independence or exchange-
able working correlation structure at the cluster (herd) level; results
from Chapter 3 showed that GEE with these correlations at the cluster
level performed well for balanced repeated measures data with an addi-
tional hierarchical structure. The calculations involved in the weighting
scheme have been detailed elsewhere ([13] and [24, chapter 27]). In brief,
the weight for each subject was calculated by fitting a marginal logistic
regression for the binary indicators of drop-outs similar to (4.2). The
differences were: time being modelled as a categorical predictor instead
of a linear term, all fixed effects predictors being included, and the ran-

dom effects being replaced by an exchangeable GEE working correlation
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structure. The predicted values from this model were used to compute
weights for each subject and time point for the actual WGEE analy-
sis, as the inverse probabilities of not dropping out up to the current
time point. The weighting procedure and analysis were implemented
using SAS software, by modifying the SAS code of janson et al. [13] to

facilitate looping across the simulated datasets.

4.5.2 Simulation procedures

In this simulation approach, the full datasets were generated first. Then
the desired missing data patterns were generated from a specified model,
and the actual outcome values were replaced by their counterpart miss-
ing values. The whole process was repeated N = 1000 times. The same
full datasets were used as in Chapter 3 to which the reader is referred for
the details. All full datasets were balanced with 8 time points, 20 sub-
jects per cluster and 30 clusters. A total of five scenarios of missingness
datasets were included. The scc40 scenario included all types of missing
values present in the scc40 dataset. As described previously, about half
of the missing values were due to delayed entry which could be argued

to be assumed missing completely at random.

In order to study the impact of scenarios with higher proportions of

values missing that were not as a result of an MCAR process, missing
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value patterns consisting exclusively of drop-outs were constructed. The
drop-out patterns were modelled by either MAR or NMAR processes
were adjusted to either low (L) (approx. 31%) or high (H) (approx. 52%)
proportions of missing values (designated as MARL/MARH and NMAR-
L/NMARH).

4.5.2.1 Missing values: scc40 scenario

The three types of missing values were simulated in the following order:
delayed entry based on model (4.3), drop-outs based on model (4.2),
and intermittent missing values based on model (4.4). The parameter
estimates of these models for the scc40 data (Table 4.1) were taken as

true values for the simulations of the missing value patterns.

4.5.2.2 Missing at random scenarios: MARL and MARH

The scc40 regression estimates (Table 4.1) for the drop-out coefficients
in model (4.2) were retained except that a stronger dependence on the
previous value was imposed. Specifically, we used Gy = —4.7, 81 = 0.35
and o, = 0.068, and the coeflicient for the previous value was set at
cither o = 2 (MARL) or B, = 4 (MARH). Overall, this produced
expected percentages of missing values of approximately 31% (about

the same overall level as the scc40 data) and 52%, respectively. The
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expected percentages of missing values ranged from 6% and 19% at the
second time point to 70% and 85% at the last time point, for MARL and

MARH respectively.

4.5.2.3 Not missing at random scenarios: NMARL and NMARH

Although this study does not include methods to estimate NMAR mod-
els, data could generate from a NMAR scenario by directly allowing the
probability of a missing value to depend on the actual value from the full
dataset. For simplicity, we used model (4.2) with the previous outcome
replaced by the current outcome and the same parameters as for the
MAR scenarios. This resulted in overall percentages of missing values of

31% and 52% and similar ranges of percentages at individual time points

as for MAR.

4.5.3 Analysis of results for simulated data

The estimates of marginal or random effects estimation procedures under
different scenarios were compared both to the true values of the simu-
lation and to the estimates obtained from the full simulated datasets.
The latter comparison was of interest for studying the impact of miss-
ing data on the performance of the estimation procedures, whereas the

former comparison would be used for an overall assessment of each pro-
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cedure under specific scenarios. The comparison of estimates to the true
values used the same formulae and methods as the analysis of the full
data (see Chapter 3). In brief, the relative bias was defined as difference

between the average estimate among simulations () and the, marginal

or subject-specific, true value (3), divided by the true value,

A

By — B

relative bias to true value (RBT) = x 100% (4.5)

Note that BM refers to the estimate based on the incomplete data. The
scaling by the true value was useful because the parameters were not
standardized to a uniform scale. In a similar fashion, the relative bias

to the average estimate based on the full data (B r) was defined as,

relative bias to full data (RBF) = @ x 100% (4.6)

One could also use fp in the dominator of (4.6); one advantage of our
simpler form is that the RBF is obtained as the difference of the RBTs

for the full and incomplete data.

Only datasets where valid estimates were obtained by both full and
incomplete data were included. For any of the estimates (of both fixed
effects and variance parameters), the presence of statistically signifi-
cant bias compared with the full data was assessed by a t-test based

on the differences between estimates obtained from the full and incom-

184



plete datasets among the simulations.

4.6 Results

After a brief review of the parameter estimates (Table 4.1) obtained
for the different missingness patterns in the scc40 data, the results are
presented subdivided by the true model data (random intercept or auto-
correlated random effects model) and the missing value scenarios. As the
main interest is in the impact of the missing values, the focus here is on
the relative bias to the full data (RBF) in Tables 4.2— 4.5, and defer rela-
tive biases and standard errors to the true values (RBT) to an appendix
(Appendix B, Tables B.1-B.5). The coverages of confidence intervals
are shown in Figures 4.1-4.3; these must necessarily refer to the true
values. The performance of estimation procedures for the corresponding
full datasets was discussed previously (Chapter 3) and includes, briefly,
minor attenuation of variance estimates at the cluster level for random
effects procedures in random intercept model data and strong downwards
biases for all random effects procedures in autocorrelated data, as well
as a small negative relative bias by marginal estimation procedures in

both data settings.
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4.6.1 Missingness types for scc40 data

The strongest effects on patterns of missingness in the scc40 data were
found for drop-outs (Table 4.1). The likelihood of a subject dropping
out increased significantly both with time (OR = 1.42 per month) and
with the previous value being an event (OR = 1.25). The estimated
probabilities of a subject with no events dropping out increase from
1.5% at the second time point to 15% at the last time point (¢ = 9).

There was little between-herd variation in the occurrence of drop-outs.

The probability of a delayed entry also depended strongly on time,
but in a non-linear fashion (Table 4.1). The negative quadratic term
ensures the likelihood of a delayed entry missing value decreases as time
progresses; in the data, all missing value series eventually stop because
otherwise the subject would not be part of the dataset. The estimated
proportion of non-delayed subjects (with ;1 = 0) was 46.6%, slightly
above the 42.4% in the scc40 data. The herd-level variation in delayed

entries was very small, but statistically significant.

The probability of intermittent values declined with time (OR = 0.82
per month) and depended on the previous observation being an event
(OR = 0.50); both of these associations were quite uncertain (Table
4.1), in consequence of the small number (0.3%) of intermittent values

in the scc40 dataset. Variances at the cow and herd levels were estimated
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at moderate values but were however not statistically significant.

4.6.2 Random intercept model data (p =1)

4.6.2.1 Missing values: scc40 scenario

All estimation procedures gave estimates in fairly close agreement with
those of the full datasets (Table 4.2). Small but significant negative
biases for the time coefficient (5;) were found for OLR and PQL. The
variance estimates from PQL, PQLx and MCMC showed some minor
negative and positive biases that in all cases were in the same direction
as the bias in the estimates of the full data (Tables B.1 and 3.1 in Chapter
3).

4.6.2.2 Missing values: MAR scenarios

The positive dependence of the drop-out probability on a preceding event
resulted in datasets with fewer events at the end of the time series than in
the full dataset. For example, at ¢t = 8 the full and MARH datasets had
a proportion of events of 53% and 11%, respectively. Consequently, the
strongest impact of the missing values for the simple OLR analysis was a
negative bias for By, ranging down below -100%, and thus amounting to
a sign switch in the coefficient (Table 4.2). The other coefficients showed
a negative bias as well, and the confidence interval (CI) coverage was far
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below nominal (Figure 4.1).

The two likelihood-based procedures (ML, MCMC) were only a little
affected by the missing values, the only consistent significant changes be-
ing some increased estimates for o2 (Table 4.2). Overall, the proportion
of missing values had no impact, except that the MARH scenario pro-
duced an additional small positive bias for 8; for MCMC. CI coverages

were close to but mostly below nominal (Figure 4.1).

The PQL procedure showed some negative biases, in particular for the
time coefficient and variances parameters, and increasing with the sever-
ity of missing values. The bias of the time coefficient was substantial
(= 20%) and in the same direction as for OLR but less pronounced.
Addition of an extra-binomial dispersion parameter (PQLx) altered the
performance of the procedure dramatically. Biases for all parameters (ex-
cept the dispersion parameter) were positive and of a larger magnitude
(up to approx. 90% for 3;) than for PQL (Table 4.2). The extra-binomial
parameter estimates of PQLx were centered at 0.72. However, except for
B1, the coverage of fixed effects Cls was fairly close to nominal for both

PQL procedures (Figure 4.1).

The ALR procedure performed well in the MARL scenario, but pro-
duced a substantially inflated estimate of 3y for MARH. The two weighted

GEE (WGEE) procedures showed minor biases for MARL and substan-
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tial biases for MARH, in particular in the estimates of 3; (Table 4.5).
The direction of the biases varied across the two WGEE versions and the
two data settings. The exchangeable correlation structure produced bi-
ases away from zero for MARL and towards zero for MARH. For MARH,
all estimates from both versions of WGEE were associated with too small
standard errors relative to the true values (Table B.5), leading to sub-

stantial to strong undercoverage of Cls (Figure 4.1).

4.6.2.3 Missing values: NMAR scenarios

All estimation procedures included in the NMAR scenarios showed strong,
negative relative biases (RBF range 53-320%) for the time coefficient
(Table 4.2). Estimation of subject- and cluster-level fixed effects was
relatively unaffected, with only minor biases (up to 6.4%) of which only
few were significant for NMARL, but all except ALR were significant for
NMARH. All significant biases were negative, except for PQLx. Subject-
and cluster level variances showed similar patterns, with RBF values up
to 14.4% (except for 50.4% for o3 and PQLx). Confidence intervals were
strongly affected for 8; and OLR. but otherwise had coverages fairly close

to nominal (Figure 4.1).

189



4.6.3 Autocorrelated data (p < 1)

Generally, the impact of the missing values was more affected by the
amount of autocorrelation present in the data for random effects than
marginal procedures. This finding is plausibly linked to the strong di-
rect impact of the autocorrelation on the random effects estimates in the
full data (Chapter 3). Specifically, when autocorrelation was present,
estimates from random effects procedures tended to be less shrunk to-
wards zero (i.e., inflated) in datasets with missing values than in the
full data. Thus, the missing values to some extent counteracted the

shrinkage caused by the autocorrelation (Chapter 3).

4.6.3.1 Missing values: scc40 scenario

All random effects estimation procedures showed inflated estimates across
almost all parameters relative to the estimates from the full data (Ta-
bles 4.3—4.4). The extra-binomial dispersion parameter for PQLx was
downwards biased away from nominal dispersion (¢ = 1). The inflation
was in most cases more pronounced at p = 0.5 than p = 0.9, except for
the subject-level variance. Despite the inflation, the estimates were still

clearly attenuated towards zero, although less so than in the full data
(Tables B.2-B.3 and 3.1), and the CIs suffered from strong undercov-

erage for some parameters, in particular for p = 0.5 (Figures 4.2-4.3).
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For the marginal procedures (OLR and ALR), the impact of the missing
values was still minor and almost unchanged from the random intercept

model data.

4.6.3.2 Missing values: MAR and NMAR scenarios

For random effects procedures, the impacts of missing data were similar
to those described above for the scc40 scenario. Some notable exceptions

were that the overdispersion parameter for PQLx moved towards 1 in the
MARH scenario, and some fixed effects estimates for ML and MCMC

were similar at p = 0.9 and p = 0.5, or even closer to zero at the latter.

The marginal procedures showed different bias patterns with decreas-
ing values of p (Table 4.5). For example, OLR biases generally decreased,
whereas ALR biases were stable around zero for MARL, but for MARH
the previously observed positive bias for ; increased in magnitude. In
MARL data, the two weighted GEE procedures performed roughly on
par with the random intercept data. Some bias reduction could be seen
for MARH with decreasing p, but the bias in standard errors and result-

ing poor coverage of Cls remained (Table B.4 and Figures 4.2-4.3).

In NMAR scenarios, the introduction of autocorrelation had similar
impacts on the biases of the different estimation procedures as in the

MAR scenarios. However, from a practical point of view it did not al-
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ter the magnitude and severity of the biases described for the random
intercept model data substantially (Tables 4.3-4.5). The CI coverages
for random effects procedures dropped substantially below nominal with
decreasing p (Figures 4.2—4.3), but this was attributable to the autocor-
relation itself and not a result of the missing values (compare Figure 3.1

in Chapter 3).

4.7 Discussion

4.7.1 Modelling of missing values in a dataset

When an (applied) researcher is confronted with a dataset containing
missing values, they face a crucial decision (among many others) re-
garding the analysis: whether to ignore or model the missing values. A
quick glance through scientific journals publishing studies involving sta-
tistical analyses will show that in most cases the missingness is ignored,
despite the by now well advanced statistical understanding of proce-
dures to model missing data (e.g., [19] and [22, Chapter 5]). Among
the reasons for this apparent negligence in the statistical analysis would
be beliefs that (i) the statistical methods actually used were robust to
missing values, and (ii) statistical methods to deal with missing values

would be difficult to employ and assess. While focusing on the quantifi-
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cation of assumption (i), the present paper also puts forward the idea of
modelling the occurrence of missing values by simple models, in order to
gain insight into the types of missing values in a dataset before deciding

whether the missing values should be modelled or not.

Our example dataset (scc40) contained a total of 31% missing values
relative to a dataset with complete series on all subjects, intuitively
a relatively large proportion. However, more than half of the missing
values were due to a type of missing values (delayed entry) that could
reasonably be assumed to have arisen by the least serious missing value
process (MCAR). Delayed entry can be thought of as a left truncation
of the time series on a subject, whereas a drop-out can be thought of as
a right truncation of the series. Little attention seems to have been paid
in the literature to delayed entry as a source of missing values, but in
our view it may occur commonly for data collected retrospectively from

databases.

It is critically important to model missing values in a single dataset
appropriately. We modelled the different types of missing values by
variants of the logistic regression model proposed by Diggle and Kenward
[5]. Possible extensions of the approach can easily be suggested. For
data including treatment factors of key interest, it would be natural to

include these as fixed effects in the models. Also, if NMAR processes are
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suspected for some of the missingness types, one could consider specific
NMAR models, such as pattern-mixture models [23], even though they
may be more difficult to fit to the missingness patterns. We considered
intermittent missing values as the type most likely to involve NMAR
missingness, and by the very low proportion of such missing values in

the data, NMAR modelling was considered unnecessary in our example.

The simulation results for the scc40 scenario showed almost no impact
of the combination of missing patterns on the estimation procedures.
Obvious reasons for this perhaps somewhat surprising finding, given the
relatively large proportion of missing values, are that delayed entry ac-
counted for a substantial part of the missing values, and that the missing

value mechanisms studied did not include NMAR.

4.7.2 Impact of missing values

Evidently the impact of missing values in a dataset depends on the
types and probabilistic mechanisms of the missing values as well as their
proportions. Our simulation studies gave a sense of the required level
of missingness needed to substantially affect results (of different proce-
dures), and the extent to which individual parameters were affected. As
discussed above, estimation in the scc40 data seemed hardly affected at

all despite a sizeable proportion of missing values. With the most severe
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missingness mechanism (NMAR) at the same level of missing values, the
picture changed completely. The strong biases for time coefficient across
all procedures agrees with findings reported by Little and Rubin [19]
and Laird [16] that ignoring the NMAR missing process leads to biased
estimates, even when only a small proportion of the sample is missing
[3]. It is notable that subject- and cluster-level parameters could be
relatively little affected even in the most extreme scenarios, indicating
that without a direct link to the missingness mechanism results could be

relatively robust. Specific comments for some of the procedures follow.

4.7.2.1 Weighted generalized estimating equations (WGEE)

A GEE procedure may allow an MAR process to be ignored if the work-
ing correlation structure is specified correctly [17, 13]; see however [26] for
examples where this does not hold. The GEE procedures of interest for
the present 3-level structure involved either independent or exchangeable
correlations at the cluster level. As these structures ignore the within-
subject correlations, they seem unlikely to capture the true correlation
structure. The strong biases for OLR in MAR scenarios, whose esti-

mates may be interpreted as of an unweighted GEE with independent

correlation structure, confirmed our suspicion.

The WGEE procedures performed fairly well relative to the full data
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for MARL regardless of the correlation structure in the data, in agree-
ment with findings reported by Janson et al. [13] and Molenberghs and
Verbeke [24, Chapter 27]. Also small biases have been reported [26],
which could substantiate the small bias we found for the time coefficient.
For MARH, the same parameter exhibited substantial biases which seem
to contradict its theoretical (asymptotic) properties [27], but has also
been reported previously for two-level data [26]. One possible source
of the bias is fluctuations in estimating the weights as the number of

measurements per subject becomes small, if not very small.

4.7.2.2 Alternating logistic regression (ALR)

One might expect ALR to be affected by missing values in a similar way
as GEE although to our knowledge this has not been discussed in the
literature. Overall, we found ALR estimates to be in close agreement
with those of the full data (except for the time coefficient in MARH and
NMAR scenarios) regardless of the correlation structure in the data.
The bias in the MARH data was somewhat surprisingly in the opposite
direction of biases for OLR and WGEE. As ALR is based on similar
estimating equations as GEE, one may speculate that a weighting scheme
akin to WGEE could be developed for ALR processes; in any case, the

properties of ALR under MAR processes warrant further study.
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4.7.2.3 Penalized quasi-likelihood procedures (PQL, PQLx)

Drawbacks and caveats of iterative reweighting algorithms such as PQL
for estimation in random effects models have been discussed extensively
in the literature [2]. However, we are not aware of published work dis-
cussing any inferior performance of quasi-likelihood procedures under
MAR processes. Our results for PQL demonstrated a bias’in the time
coefficient that we think is not attributable to the well-known atten-
uation of variance parameters in certain settings, because it does not
affect all fixed effects parameters equally and has the same direction
as for OLR. As for ALR, a suitable weighting scheme for PQL under
MAR processes could be hypothesized. Allowing for extra-binomial dis-
persion (PQLx) produced stronger biases and in the opposite direction,
adding to the evidence from previous work (Chapter 3) that inclusion of
the extra-binomial parameter has more profound impacts on the perfor-
mance of the procedure than one might intuitively expect. Based on our
findings, the inclusion of the extra-binomial parameter in the presence

of substantial missing data is not to be recommended.

4.7.2.4 Likelihood-based procedures (ML, MCMC)

Strictly speaking, both ML and MCMC are based on likelihood approx-

imations, either by quadrature or MCMC sampling. From this perspec-
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tive, our results for these procedures demonstrated that the accuracy of
the approximations were sufficient to, by and large, ensure the ignorabil-
ity of MCAR and MAR, processes predicted from theory [18]. However,
slight increases in MCMC estimates for the time coefficient and clus-
ter level variance remained unexplained. On the other hand, NMAR
processes affected the likelihood-based procedures to roughly the same
extent as the other procedures, so their advantage in this context is

essentially linked to the MAR assumption.
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Table 4.1: Random effects logistic regression estimates of fixed effects and variances, with
standard errors, from analyses for three different types of missing values in the scc40 dataset;
interpretation of parameters: fy = intercept, f; = time coefficient, 512 = quadratic term
for time coefficient, B2 = previous outcome, 3 = previous outcome missing, afl = herd-level

variance, 02 = cow-level variance.

Type of missing values

Param- Delayed entry Drop-out Intermittent

eter Estimate @ SE  Estimate SE  Estimate SE
Bo —0.444 0.083 —-4.850 0.143 —4.582 0.604
£ 0.666  0.055 0.350 0.019 —0.196 0.075
B2 —0.084 0.007
B2 0.224 0.072 -0.698 0.347
B3 1421 0.999
of 0.017  0.011 0.068  0.026 0.295  0.257
o2 0.938 1.008

[+
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Table 4.2: Relative bias of estimates to the full data (RBF) with a significance indication and
standard error in parenthesis, based on analyses of 1000 simulated datasets generated by random
intercept model (p = 1) in five simulated scenarios of missing values: sccd0 (missing values as
in sccd0 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at
random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion of missing
values not at random). Parameters: 3, (intercept), 81 (time coefficient), F2 (subject level factor),
Bs (cluster level factor), o3 (variance at subject level), o2 (variance at cluster level), ¢ (extra-
binomial dispersion). Estimation procedures: OLR. (ordinary logistic regression), ALR, (alternating
logistic regression), PQL (2nd order penalized quasi-likelihood), PQLx (2nd order penalized quasi-
likelihood with extra-binomial dispersion), ML (maximum likelihood), MCMC (Bayesian Markov
chain Monte Carlo).

Scen- Param- Statistical Methods

ario eter OLR ALR PQL PQLx ML MCMC

sccd0 Bo —1.7 (1.2) —-0.9 (1.2) —1.4 (1.2) 0.0 (1.3) —0.8 (1.3) —-0.6 (1.3)
B1 —2.9¥(0.4) —-0.6 (0.4) —1.7¥(0.6) 0.0 (0.6) —0.8 (0.6) ~0.8 (0.6)
B2 —0.6 (0.7) —0.6 (0.6) —~1.1 (0.6) —0.2 (0.7) —-0.5 (0.7) —0.4 (0.7)
B3 0.1 (1.4) 0.3 (1.3) —0.2 (1.4) 0.9 (1.4) 0.5 (1.4) 0.7 (1.4)
o3 —-2.2§(0.4) 4.8%(0.5) 1.0 (0.5) 1.51(0.5)
o2 —3.8%(1.4) —2.2 (1.5) —2.9 (1.5) -3.3 (1.7)
& —2.91(0.1)

MARL o —8.0%(1.3) —-0.3 (1.3) —-1.0 (1.3) 1.9 (1.3) 0.2 (1.3) 2.5 (1.7)
B —52.1%(0.5) 0.1 (0.4) —2.91(0.6) 10.1%(0.7) 0.1 (0.6) 1.2 (0.7)
B2 —3.4%(0.7) —-0.7 (0.7 —1.4%(0.7) 0.6 (0.7) —-1.0 (0.7) —0.4 (0.8)
B3 —3.6%(1.4) —0.9 (1.4) —1.3 (1.4) 0.8 (1.5) —0.8 (1.4) 1.2 (1.7)
o2 —3.5¥(0.4) 8.0%(0.5) 0.8 (0.5) 2.6%(0.6)
o3 —2.4 (1.4) 15 (L) —14 (L5)  —14 (2.0)
& —5.0%(0.1)

MARH 5o —1.5 (1.2) —-5.34(1.3) —3.31(1.3) 10.9%(1.5) 0.4 (1.4) 1.0 (1.4)
B1 —140.1%(0.6) 23.0%(0.5) —22.6%(0.8) 89.2%(1.2) 0.5 (0.9) 3.54(0.9)
B2 ~11.6%(0.7) 0.0 (0.7) —4.1¥(0.7) 11.6%(0.8) -1.0 (0.7) —-0.4 (0.8)
B3 —11.4%(1.3) 0.0 (1.4) —3.6%(1.4) 12.4%(1.6) —0.6 (1.5) 0.3 (1.5)
o2 —17.4%(0.5) 64.0%(1.0) 1.51(0.7) 4.01(0.7)
o2 —7.5%(1.4) 22.8%(1.8) —-1.9 (1.6) —~1.6 (1.7)
& —20.4%(0.2)

NMARL 3o —7.7%(1.3) —0.5 (1.3) —2.67(1.3) -0.1 (1.3) —0.7 (1.3) —0.1 (1.4)
B1 —88.21(0.5)  -53.0%(0.4)  -79.6%(0.6)  —75.05(0.6)  -78.4%(0.6)  —78.27(0.6)
B2 —2.0%(0.7) —0.4 (0.7) —1.84(0.7) 0.0 (0.7) -1.5%(0.7) —~1.4 (0.7)
B3 —2.1 (1.4) —0.5 (1.4) —1.4 (1.4) 0.5 (1.5) -1.2 (1.5) —0.6 (1.5)
o2 —2.6%(0.4) 8.5%(0.5) 0.3 (0.5) 0.9 (0.5)
o3 —24 (1.4) 10 (18)  -22 (15)  —25 (L.7)
& —6.51(0.1)

NMARH 3o 11.0%(1.3) 16.13(1.3) 11.51(1.3) 23.51(1.5) 13.8%(1.4) 14.5%(1.4)
B —317.81(0.9)  -223.5¥(0.9) —318.3%(1.1) —300.21(1.2) —318.6%(1.1) —319.0%(1.1)
Ba —4.3¥(0.8) 0.9 (0.8) ~5.6%(0.7) 5.0%(0.8) —6.2%(0.8) —5.7%(0.8)
B3 —4.91(1.4) 0.4 (1.5) —5.4%(1.4) 5.7¢(1.6) —6.41(1.5) —5.7%(1.5)
o2 —14.41(0.6) 50.4¥(1.0)  —11.2%(0.7) —-9.61(0.7)
o2 ~8.3%(1.4) 12.58(1.7)  -10.1%(1.5)  —11.1%(1.7)
¢ —21.5%(0.3)

t significant bias at P < 0.05; ! significant bias at P < 0.01
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Table 4.3: Relative bias of estimates to the full data (RBF) with a significance indication and
standard error in parenthesis, based on analyses of 1000 simulated datasets generated by autore-
gressive random effects model with (p =0.9) in five simulated scenarios of missing values: scc40
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of miss-
ing values at random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion
of missing values not at random). Parameters: Gy (intercept), 81 (time coefficient), B2 (subject
level factor), 35 (cluster level factor), o2 (variance at subject level), 0% (variance at cluster level),
¢ (extra-binomial dispersion). See Table 4.2 for coding of estimation procedures.

Scen- Param- Statistical Methods

ario eter OLR ALR PQL PQLx ML MCMC

sccd0 Bo —2.21(1.2) —-1.5 (1.2) 3.31(1.2) 4.9%(1.2) 4.28(1.2) 4.1%(1.2)
By —3.2%(0.5) —1.01(0.4) 3.51(0.6) 5.54(0.6) 4.3%(0.6) 4.4%(0.6)
B2 0.0 (0.7) —0.1 (0.6) 4.0%(0.6) —3.0%(0.6) 5.5%(0.6) 5.7¢(0.6)
B3 —0.9 (1.3) —~1.0 (1.4) 3.21(1.3) 4.5%(1.3) 4.6%(1.3) 4.5%(1.3)
o3 17.8%(0.3) 25.9%(0.4) 22.8%(0.4) 23.41(0.4)
o2 5.41(1.3) 7.84(1.3) 8.01(1.3) 8.64(1.5)
¢ ~6.9%(0.1)

MARL o —8.6%(1.2) —14 (1.2) 2.91(1.2) 5.9%(1.2) 4.3%(1.2) 4.0%(1.2)
B —47.5%(0.5) 0.0 (0.4) 2.51(0.6) 14.4%(0.7) 5.2%(0.6) 5.71(0.6)
B2 —2.21(0.6) 0.0 (0.6) 3.9%(0.6) —2.24(0.6) 5.31(0.6) 5.61(0.6)
Bs —4.01(1.3) —1.7 (1.4) 2.3 (1.3) 4.6%(1.3) 3.84(1.3) 3.5%(1.3)
o2 16.4}(0.4) 28.24(0.4) 22.44(0.4) 23.1%(0.4)
02 6.11(1.2) 10.31(1.3) 8.84(1.3) 9.41(1.4)
¢ —8.81(0.1)

MARH fp —0.4 (1.2) —-3.3%(1.2) 1.0 (1.2) 11.6%(1.3) 3.81(1.2) 3.8%(1.2)
B1 —113.1%(0.6) 32.84(0.6) —6.41(0.9) 84.81(1.3) 13.9%(1.0) 16.61(1.0)
B2 —8.8%(0.6) 1.74(0.6) 0.0 (0.6) 6.0%(0.7) 3.41(0.6) 3.9%(0.6)
B3 —10.3%(1.3) 0.0 (1.4) ~1.5 (1.3) 12.73(1.4) 1.8 (1.3) 1.8 (1.3)
03 —3.41(0.4) 54.01(0.9) 11.6%(0.6) 13.44(0.8)
o2 —-1.5 (1.2) 24.1¥(1.5) 4.2%(1.3) 4.8%(1.4)
¢ —~18.1%(0.2)

NMARL S —7.0%(1.2) —2.1 (1.2) —2.1 (1.1) —-0.2 (1.2) —1.2 (1.1) -1.3 (1.2)
B1 —80.61(0.5) -56.01(0.5) —-75.21(0.6) —72.4%(0.7) -74,1¥(0.6) —74.0%(0.6)
B2 —~0.6 (0.6) 0.5 (0.6) 0.4 (0.6) —6.4%(0.6) 0.7 (0.6) 0.9 (0.6)
Ba —2.4 (1.3) —-1.3 (1.3) -1.1 (1.3) 0.5 (1.3) —~0.9 (1.3) -1.1 (1.3)
03 2.1%(0.3) 9.9%(0.4) 4.6%(0.4) 4.9%(0.4)
o2 0.5 (1.2) 3.11(1.2) 0.9 (1.2) 0.9 (1.3)
¢ —6.11(0.1)

NMARH g 13.0%(1.3) 16.0(1.3) 14.9%(1.2) 25.71(1.3) 16.3¥(1.2) 16.41(1.2)
B -209.61(0.9) -232.11(0.9) —301.1%(1.0) —291.2%}(1.1)  -300.7¥(1.0) —301.0¥(1.0)
B2 —-3.34(0.7) 1.0 (0.7) —~2.54(0.6) -1.3 (0.7) —2.0%(0.6) —-1.67(0.6)
Ba —4.4%(1.4) —0.3 (L.4) —-3.21(1.3) 6.64(1.4) —-3.11(1.3) —3.27(1.3)
032 —1.4%(0.5) 46.14(0.8) 3.0%(0.5) 3.9%(0.5)
02 —~1.9 (1.2) 15.64(1.5) -1.6 (1.2) —-1.9 (1.4)
¢ —19.61(0.3)

T significant bias at P < 0.05; ¥ significant bias at P < 0.01
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Table 4.4: Relative bias of estimates to the full data (RBF) with a significance indication and
standard error in parenthesis, based on analyses of 1000 simulated datasets generated by autore-
gressive random effects model with (p =0.5) in five simulated scenarios of missing values: scc40
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of miss-
ing values at random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion
of missing values not at random). Parameters: §y (intercept), 51 (time coefficient), 82 (subject
level factor), 85 (cluster level factor), o2 (variance at subject level), o2 (variance at cluster level),
¢ (extra-binomial dispersion). See Table 4.2 for coding of estimation procedures.

Scen- Param- Statistical Methods

ario eter OLR ALR PQL PQLx ML MCMC

sccd Bo —1.3 (1.2) —0.8 (1.2) 5.91(1.0) 7.25(1.0) 6.03(1.0) 6.11(1.0)
B1 -1.94(0.5) -0.5 (0.5) 6.13(0.5) 7.5%(0.5) 6.24(0.5) 6.44(0.5)
B2 0.6 (0.5) 0.7 (0.5) 7.0%(0.4) 8.14(0.4) 7.44(0.4) 7.54(0.4)
B3 —0.5 (1.4) —0.4 (1.3) 6.07(1.1) 7.28(1.1) 6.41(1.1) 6.44(1.1)
o2 19.9%(0.2) 24.5%(0.2) 21.9%(0.2) 22.2%(0.2)
o2 9.21(0.9) 11.0%(0.9) 9.6%(0.9) 10.8%(1.0)
@ —8.51(0.1)

MARL fo —6.0%(1.2) -1.0 (1.2) 5.84(1.0) 7.74(1.0) 6.1%(1.0) 6.2%(1.0)
B ~31.6%(0.5) —0.5 (0.5) 5.34(0.6) 11.1¥(0.6) 5.74(0.6) 6.0%(0.6)
B2 —1.0 (0.5) 0.6 (0.5) 7.13(0.4) 8.54(0.4) 7.34(0.4) 7.43(0.4)
B3 -1.0 (1.3) 0.6 (1.3) 7.28(1.1) 8.6%(1.1) 7.34(1.1) 7.44(1.1)
o2 23.04(0.2) 25.61(0.2) 22.1¥(0.2) 22.5%(0.2)
ol 10.5%(0.9) 13.0%(0.9) 10.84(0.9) 12.1%(1.0)
¢ —9.7%(0.1)

MARH S 1.5 (1.2) 2.2 (1.2) 4.2%(1.0) 9.44(1.0) 5.44(1.0) 5.44(1.0)
B/ ~56.9%(0.7) 40.1%(0.7) 4.1%(0.8) 42.9%(1.2) 14.0%(0.9) 12.84(0.9)
Bz ~4.5%(0.5) 2.81(0.6) 1.61(0.4) 8.11(0.5) 3.21(0.5) 3.01(0.5)
Bs —4.3%(1.3) 2.9%(1.3) 1.7 (1.1) 8.3%(1.1) 3.21(1.1) 3.21(1.1)
o2 2.81(0.2) 17.4%(0.4) 6.91(0.3) 6.2%(0.3)
o2 2.2¥(0.8) 12.41(1.0) 4.61(0.9) 4.91(1.0)
é —10.3%(0.2)

NMARL S —2.81(1.2) —1.0 (1.2) —0.1 (0.9) 0.7 (1.0) 0.1 (1.0) 0.1 (0.9)
61 —65.71(0.5)  —55.41(0.5) —62.67(0.6)  —62.21(0.6)  —62.11(0.6)  —62.0%(0.6)
B2 0.4,0.5 0.8 (0.5) 1.24(0.4) 1.9¥(0.4) 1.3%(0.4) 1.44(0.4)
B3 0.6,1.3 1.0 (1.3) 1.3 (1.0) 2.1 (1.1) 1.4 (1.1) 1.5 (1.1)
o2 2.21(0.1) 4.4%(0.2) 2.9%(0.2) 2.84(0.2)
o2 1.74(0.8) 2.84(0.8) 1.91(0.8) 2.21(0.9)
¢ —3.4%(0.1)

NMARH fgo 18.74(1.2) 19.8%(1.2) 17.81(1.0) 23.34(1.0) 18.0%(1.0) 18.0%(1.0)
B —254.24(0.9) —225.5%(0.9) -251.9%(1.0) —253.8%(1.0) —251.37(1.0) —251.5%(1.0)
Ba —1.21(0.6) 0.7 (0.6) 0.1 (0.5) 4.24(0.5) 0.6 (0.5) 0.5 (0.5)
B3 —~1.4 (1.3) 1.0 (1.3) 0.3 (1.1) 4.74(1.1) 0.7 (1.1) 0.7 (1.1)
o2 4.21(0.2) 17.8%(0.4) 5.61(0.3) 4.4%(0.3)
o2 0.9 (0.9) 7.4%(1.0) 1.5 (0.9) 1.7 (1.0)
) —11.4%(0.2)

i significant bias in estimate at P < 0.05;  significant bias in estimate at P < 0.01

206



20¢

Table 4.5: Relative bias of estimates to the full data (RBF) with a significance indication and standard error in parenthesis, based on analyses of
1000 simulated datasets generated by autoregressive random effects model with (p = 1,0.9,0.5) in five simulated scenarios of missing values: scc40
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), NMARL,
NMARH (low (31%) and high (562%) proportion of missing values not at random). Parameters: Sy (intercept), 8 (time coefficient), 32 (subject level
factor), B3 (cluster level factor). Estimation procedures: WGEEci (weighted generalized estimating equations (WGEE) with independence correlation
at cluster level), WGEEce (WGEE with exchangeable correlation at cluster level).

Scen- Param- correlation p=1 p=0.9 p=0.5

ario eter procedure WGEEci WGEEce WGEEci WGEEce WGEECci WGEEce

MARL 5 0.1 (1.3) 7.13(1.5) —1.5 (1.3) 6.41(1.5) —0.8 (1.3) 14.4'(1.4)
B 1.74(0.6) 3.8%(0.5) 1.41(0.6) 3.0%(0.6) 0.3 (0.6)  1.51(0.6)
Ba —-0.1 (0.8) 0.4 (0.8) 0.9 (0.7) 1.41(0.7) 1.0 (0.6)  2.1%0.6)
Bs —0.6 (1.4) 1.3 (1.8) -1.3 (1.4) 0.0 (1.7) 0.8 (14) 1.0 (1.6)

MARH 3 13.542.7)  —6.81(3.3) 7.8%(2.9) 3.4 (3.3) 7.7%2.4)  8.51(2.7)
b1 —24.0%(2.2) -20.3%(2.1) -22.9%(24) -18.2%(2.3) -13.7%(2.3) —7.6%(2.3)
B2 -0.3 (24) —3.91(1.7) 1.7 (2.3) =3.0 (1.7) 29 (1.8) 1.5 (1.4)
s -17 (2.7) -46 (3.9 16 (26) —1.5 (3.5) 2.5 (2.2) 2.6 (3.0)

T significant bias in estimate at P < 0.05; ¥ significant bias in estimate at P < 0.01
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Figure 4.1: Confidence interval coverage for estimates of fixed effects parameters of eight estimation procedures, based on 1000 simulated
datasets with missing values generated by random intercept model (p = 1) in five simulated scenarios of missing values: scc40 (missing
values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), NMARL,
NMARH (low (31%) and high (52%) proportion of missing values not at random) ~ (O, A, o, %,¢). Parameters: [y (intercept), 81 (time
coefficient), B2 (subject level factor), G5 (cluster level factor). Estimation procedures: OLR (ordinary logistic regression), WGci (weighted
generalized estimating equations (WGEE) with independence correlation at cluster level), WGce (WGEE with exchangeable correlation at
cluster level) ALR (alternating logistic regression), PQL (2nd order penalized quasi-likelihood), PQLx (2nd order penalized quasi-likelihood
with extra-binomial dispersion), ML (maximum likelihood), MCMC (Bayesian Markov chain Monte Carlo).
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Figure 4.2: Confidence interval coverage for estimates of fixed effects parameters of eight estimation procedures, based on 1000 simulated
datasets with missing values generated by random effects model (p = 0.9) in five simulated scenarios of missing values: scc40 (missing
values as in sccd0 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), NMARL,
NMARH (low (31%) and high (52%) proportion of missing values not at random) ~ (O, A, 0, %,¢). Parameters: (g (intercept), 81 (time
coefficient), B2 (subject level factor), B3 (cluster level factor). See Figure 4.1 for coding of estimation procedures.
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Figure 4.3: Confidence interval coverage for estimates of fixed effects parameters of eight estimation procedures, based on 1000 simulated
datasets with missing values generated by random effects model (p = 0.5) in five simulated scenarios of missing values: scc40 (missing
values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), NMARL,
NMARH (low (31%) and high (52%) proportion of missing values not at random) ~ (O, A, o,*,¢). Parameters: Sy (intercept), 81 (time
coefficient), B2 (subject level factor), B3 (cluster level factor). See Figure 4.1 for coding of estimation procedures.



Statistical modelling of neighbour
vaccine effects in aquaculture clinical

trials

5.1 Abstract

In the design of clinical trials involving fish observed over time in tanks,
there may be advantages in housing several treatment groups within the
same tank. In particular, such “within-tank” designs will be more efficient
than designs with treatment groups in separate tanks when substantial
between-tank variability is expected. One potential problem with within-
tank designs is that it may not be possible to include all treatments in
one tank; in statistical terms this means that the blocks (tanks) are

incomplete. In incomplete block designs, there may be a concern that
the treatments present in the same tank (denoted here as “neighbours”)

affect each other in their performance. Thus the need for an assessment
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of neighbour effects. Two statistical approaches to assess and account for
neighbour effects were proposed. The first approach was based on a non-
linear mixed model and the second involved cross-classified and multiple
membership models. Both approaches were illustrated on simulated data
as well as a clinical ISAV (Infectious Salmon Anaemia Virus) trial carried
out at the Atlantic Veterinary College. The objective of the fish trial was
to investigate the effect of 14 vaccine formulations under disease challenge
conditions. The outcome of interest was the mortality during a 6 week

follow-up period after challenge.

The objective of the study is to explore two statistical approaches to
assess and account for neighbour treatment effects in an incomplete block

design setting.

The simulation studies demonstrated that both proposed models show
promise in capturing neighbour treatment effects of the type assumed
for the models, whenever such neighbour effects are of at least moder-
ate magnitude. In the absence of or with low magnitudes of neighbour
effects, the non-linear mixed model faced numerical challenges and pro-
duced noisy results. One version of cross-classified and multiple mem-
bership model was shown to depend strongly on prior information about
variance-covariance parameters for datasets similar to the ISAV data.

Analyses of the ISAV trial data by both models did not provide any
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evidence of substantial neighbour effects.

5.2 Introduction

In order to explain the meaning of “neighbour treatment effects”, consider
our motivating example: an experimental study on vaccination of fish
against Infectious Salmon Anaemia Virus (ISAV). In this vaccine trial,
fish were held in multiple tanks that each contained several but not all
treatment groups. It is common in fish trials to explore and/or adjust
for tank effects derived from fish sharing the same environment [25, 18].
A different effect of sharing the same environment might occur if spe-
cific treatment groups affected each other; that is, effects occur because
of the co-habitation with specific treatments instead of the generally
shared environment. An extreme example would be that the presence of
an ineffective (or control) group in a tank caused the other treatments
groups in the tank to perform poorly due to infection spread. In order to
consider such an effect, it must be biologically plausible that a transfer
of treatment characteristics can take place within the same tank. An
alternative interpretation could be as a competition effect, if fish within
different treatment groups compete for limited resources. Competition

effects have been studied in different contexts such as plant production

[14, 9]; insects [20] and fish [21, 19].
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However, the present work is not based on specific designs in competi-
tion experiments and does not aim to explore the degree to which species
or varieties compete, so we abstain from the using the term competition

and denote simply this type of effect as a “neighbour treatment effect”.

A common usage of the term “neighbour effects” can refer to datasets
or experimental designs in which there is a (strong) correlation between
adjacent experimental units (neighbours). Such designs have been stud-
ied for use e.g., in agriculture and forestry [1], and the analysis typically
involves methods of spatial statistics. In education studies, neighbour

effects can refer to the effect of the neighbourhood social interaction [17].

A necessary condition to study neighbour treatment effects, as de-
scribed above, in designs with subjects in different treatment groups
within clusters, is that the clusters do not contain all treatments (to the
same degree) because then it will not be possible to separate neighbour
treatment effects from the usual treatment and cluster effects. In terms
of statistical experimental design, this means that the clusters form in-
complete blocks for the treatments; we elaborate on the experimental
design below. For the ISAV trial, and similar aquaculture clinical trials,
this condition is met and a neighbour treatment effect seems possible
or perhaps plausible; thus there is a need for statistical methodology to

handle neighbour treatment effects in data analysis.
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The objective of the study is to explore two statistical approaches to
assess and account for neighbour treatment effects in an incomplete block
design setting. The first approach is based on a non-linear model, and the
second involves cross-classified and multiple membership models. Both
approaches will be applied to the ISAV trial data and supplemented by

simulation studies targeted at comparable parameter values.

5.3 Statistical design, modelling and analysis

In this section, we briefly review the concepts of an incomplete block
design, thereafter introduce the two statistical models or approaches for
estimation of neighbour treatment effects, and in a final section discuss

the issue of model identifiability.

5.3.1 Incomplete block designs

Generally, one of the basic principles in experimental design is the reduc-
tion of variation between the treated units (experimental error). This is
the primary motivation for introducing blocks, groups of similar experi-
mental units, in randomized complete block designs [7] where the treat-
ments are allocated randomly among the units within each block. In the

ISAV clinical trial context, the tanks may be considered as blocks. If a
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blocking scheme induces a within-block variation substantially smaller
than the between-block variation, there may be large gains in efficiency
of the block design compared to a completely randomized design (where
each block/tank covers only a single treatment). When designing an ex-
periment, e.g., a clinical trial, the block size may however be determined
or limited on physical /logistical grounds so that the blocks cannot com-
prise all treatments. The resulting design is called an incomplete block

design [7], of which the ISAV trial is an example.

Designs for incomplete blocks range from balanced to unbalanced block
designs. Multiple types of balanced and partially incomplete designs
exists. The classical balanced incomplete block design (BIBD) exists
for certain combinations of the number of treatments, blocks, and block
sizes. This design requires that every pair of treatments occurs together

within the same block an equal number of times [7, Chapter 11].

According to classical statistical theory for incomplete block designs
with fixed effects of treatments and blocks [12], the analysis of incomplete
block designs include both intra- and inter-block information. The intra-
block analysis refers to a situation when the contrasts in the treatment
effects are estimated as linear combinations of comparisons of observa-
tions in the same block. The inter-block analysis refers to the informa-

tion contained in the comparison of block totals and called “recovery of
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inter-block information”.

An alternative view of (incomplete) block designs is as a simple hierar-
chical structure where the experimental units are clustered within blocks
[8, Chapter 20]. From this perspective it follows that block effects should
be modelled as random effects; they may also be viewed as nuisance pa-
rameters (of no intrinsic interest), and their modelling by random effects
may increase the precision on treatment estimates in incomplete block
designs [11]. Random block effects induce a correlation between units in

the same block whereas units in different blocks remain independent.

5.3.2 Notation and model framework

Throughout we use the following general (single index) notation. Let
y; denote a continuous measurement on the ith experimental unit (i =
1,...,n) located in block bl(¢) and subjected to treatment tx (i), where
bl(7) and tx(i) give the block and treatment number of unit 7. Blocks are
labeled 1,...,b and treatments labeled 1,...,a; thus, a is the number
of treatments and b is the number of blocks. For simplicity of notation,
we will formulate our models in the context of blocks of size three, as
in the ISAV trial data. Therefore, each experimental unit will be joined
by two other treatments in its block; we call these neighbour treatments

and denote their treatment numbers as n1(¢) and n2(7). Both models
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can be applied to other block sizes in a straightforward manner.

5.3.3 Non-linear mixed model (NLM)

The idea of this model is to capture a simple, possibly the simplest, way
in which a treatment may affect its neighbour treatments in the same
block: by an additive effect determined by scaling of the treatment ef-
fect itself. As an illustration, it might be conceivable that a treatment
in addition to its effect on the treated unit contributes 20% of this effect
to the neighbour units as well. In the context of competition for lim-
ited resources one might expect the neighbour effect to be negative (say
-20%), so that a high-performing treatment reduces the neighbour treat-
ments by 20% of its own effect. In a model equation including also the
previously discussed random block effects, this idea takes the following

form:

Yi = 1+ Bz + 0(Bni) + Br2w)) + b + €, (5.1)

where p is the overall mean; (i,...,[03, are fixed treatment parame-
ters normalized by the restriction > 3; = 0 where (j = 1,...,a); 6
is a fixed neighbour treatment parameter; uy,...,uy are random block
effects assumed to follow the Gaussian (normal) distribution N (0, ¢?);
and ey, ..., e, are error terms assumed ~ N (0, 02). The equation shows

how the neighbour treatment effects enter as additive terms formed by
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multiplying the respective treatment effects by the scaling parameter 4.
Obviously, § = 0 corresponds to no neighbour treatment effects, and ¢
may take both positive and negative values. As d and the 3;’s enter into
the equation in a non-linear manner (by the multiplication), the model

is non-linear in its parameters and therefore a non-linear mixed model

(27].

The fixed part of the model takes a non-standard form, but the ran-
dom part of the model is very simple and allowed the model to be fit
using the (nlmixed) procedure in SAS software [27, 23]. The procedure
employed adaptive Gaussian quadrature to approximate the likelihood
function and a quasi-Newton search algorithm to locate the maximum of
the (approximate) log-likelihood function. The restriction on the treat-
ment parameters that their sum be zero is equivalent to setting a baseline
treatment, but avoided choosing an arbitrary baseline treatment and im-
proved the performance of the search algorithm. Sensible starting values
were given for all parameters (for J a range of values were offered), and §
was restricted in range to values within (—3,3) to prevent the algorithm
from diverging into nonsensical domains of the parameter values. Vari-
ances were bounded below at (0.001)2 to avoid problems for the search

algorithm resulting from zero variances.

A change of the model (5.1) to incorporate random instead of fixed
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treatment effects, in the spirit of the models to be described in the next
section, was not possible within the estimation framework of the SAS
procedure (or any other software), and was therefore not investigated

further.

5.3.4 Cross-classified and multiple membership models (CC,
MMTI and MMCP)

Cross-classified and multiple membership models extend multilevel mixed
models to non-hierarchical data structures, in two different ways. A
cross-classified data structure exists if each experimental unit is a mem-
ber of two separate hiercharchies instead of a single hierarchy with mul-
tiple levels. Models for randomized block designs with random effects of
both treatment and block factors can be viewed as the simplest example
of a cross-classified data structure [7, 24]. The models in this section
represent the treatment effects by random effects instead of fixed effects
in order to model neighbour treatment effects in terms of correlation
structure instead of fixed effects. For reference, we formulate first the

cross-classified model (CC) without neighbour treatment effects,

Yi = P+ Upii) T Vtz(i) + €y (5.2)
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where p is the overall mean, and where (uq,...,up), (v1,...,9,) and
(é1,...,e,) are sets of independent random variables representing the
random block, treatment and error terms, respectively, and assumed to

follow zero-mean Gaussian distributions with variances o2, o7 and o?2.

Multiple membership (MM) models allow a lowest level unit to be a
member of more than one higher classification unit [15, 6]. Examples of
the use of this model are: students (pupils) changing schools during a
term which therefore have contributions from two schools; patients in a
hospital attended by more than one doctor or nurse; and populations of
production animals (fish, chicken) that originate from several different
sources (hatcheries). The multiple membership model has also been
proposed as a model for spatial dependence as an alternative to e.g.,
the commonly used CAR models [3]; the idea is that the neighbours
of a given unit (e.g., region) has its neighbouring regions included in a
multiple membership classification. This is the closest analogy to our use
of multiple membership here; the neighbour treatments within a block
are treated as (spatial) neighbours in a (spatial) MM model. Adding
these terms to the CC model yields our MMCP (multiple membership

with correlated pairs) model,

Yi = U+ Upl (i) + Ut (i) + 0.5’0;1(1;) + 0'5?};2(1') + e;, (53)
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where the variables v}, ..., v} represent the neighbour effects of each of
the treatments. The assumptions for the u; and e; are unchanged from
above, and the pairs (v, v}),..., (v, v}) are independent and assumed
to follow a two-dimensional normal distribution N (0,0, 02,02, p). The
variances represent the heterogeneity between treatments and neighbours
respectively, whereas the correlation is between the treatments effects
and its associated neighbour effects. A simpler version of model (5.3)
assumes independence between treatment and neighbour effects, i.e. p =

0 (MMI model).

The MMI model corresponds to the MM model previously used in the
literature, but the assumption that treatment and neighbour effects are
unrelated may seem unnatural in the present context. The MMCP ex-
tension is designed to quantify a correlation between the treatment and
neighbour effects, and is similar to an extension of the multiple member-
ship model for spatial applications proposed by Langford et al. [16]. If
the MM variance component is substantial, one could furthermore plot
the estimated random effects for treatments and neighbour effects to
study their dependence pattern. A positive correlation would mean that
being together with a “good” treatment tends to produce a “good” perfor-
mance, a negative correlation produces the converse. In Equation (5.3),
the neighbour effects enter with weights of 0.5; generally the weights are

assumed to sum to 1 for each lowest level unit. Criteria for choosing
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appropriate weights may depend on the information available, however

we have followed a simple approach and assigned equal weights [6].

MM models are generally fit in a Bayesian setting using MCMC esti-
mation, but if the model is specified with vague (“non-informative”) prior
distributions the approach effectively uses the Bayesian framework as an
estimation algorithm for an otherwise untractable model. The CC and
MMI models can be fit using the MLwiN software [3], but the MMCP
extension was programmed in the WinBUGS software; for convenience,
WinBUGS version 1.4 was used for all analyses. Prior distributions
were generally vague: N(0,10°) for u; the classical gamma distribution
(1073,1073) for the inverse variances o; ? and ;2 [4]; and a Wishart dis-
tribution with a diagonal variance covariance matrix of 0.1 and degrees of
freedom of 2 for the inverse covariance matrix of two-dimensional normal
distribution. Browne and Draper [5] reported in a simulation study that
using Wishart priors may result in biases especially in small datasets
(see also the discussion on Wishart priors by Browne [2]). Thus a sen-
sitivity analysis based on a range of values (0.01, 0.25) for the diagonal
variance covariance matrix was carried out. Given the range of the treat-
ment and neighbour effects standard deviations (0.1-0.5), the choice of
0.1 in the diagonal variance covariance matrix seemed a reasonable over-
all choice. For the simulated data, Markov chains were run with 10000

burn-in samples, and the subsequent estimates (posterior distribution

223



medians) were based on 100000 samples, whereas for the ISAV dataset

the posterior distribution medians were based on 1000000 samples.

5.3.5 Model identifiability

A model is defined as identifiable in a situation where the model pa-
rameters are uniquely determined from the distribution of the observed
random variables [22]. For estimation procedures based on maximization
of a target function (e.g., the log-likelihood function), non-identifiability
of parameters usually manifests itself as non-convergence of the search al-
gorithm or extreme sensitivity of the final estimates to initial values pro-
vided to the algorithm. Such deficiencies will often appear more clearly
in data with low residual (error) variation, and the identifiability of a
model may therefore be determined from simulated data with low resid-
ual variation [10]. Preliminary analyses of the NLM model established
that the model could be non-identifiable in some designs with small num-
ber of treatments and block sizes (e.g., in the smallest possible BIBD),
and that its non-linear model counterpart with fixed block effects could

be non-identifiable even for larger designs.

Non-identifiability of Bayesian models estimated by MCMC often man-
ifests itself by poor convergence of the Markov chains to a stationary

distribution, although a nicely converged chain may still contain non-
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identifiable parameters or combinations of parameters [26]. We used the
BGR diagnostic based on multiple chains [13] to assess convergence from
different starting values and examined the correlations of model param-
eters to ascertain that converged chains did not mask non-identifiable

parameters.

5.4 Infectious Salmon Anaemia Virus (ISAV) trial

The objective of the ISAV clinical trial was to evaluate the immune re-
sponse to Infectious Salmon Anaemia Virus in Atlantic Salmon after
vaccination with different vaccine formulations. Fourteen vaccine formu-
lations were investigated. Fourteen tanks were used in the trial, each
containing three different randomly allocated vaccinated groups com-
posed of 50 fish each. Each vaccine formulation was replicated three
times among the study tanks, and each tank held a unique combina-
tion of three applied vaccination formulations, for a total of 42 vaccine
groups. The fish were tagged with a unique colour-coded tag to identify
the vaccine group. The outcome of interest here is the mortality during a
6-week follow-up period after challenge with the virus. The trial was car-
ried out during March—August 2000 by Dr. Shona White at the Atlantic

Veterinary College, University of Prince Edward Island, Canada.

The design of the ISAV trial is shown in Table 1, with mortality rates
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for each treatment—tank combination. The incomplete nature of the
blocks is evident from the table. It is also clear that all pairs of treat-
ments do not occur equally often in the same tank; e.g., treatments 6
and 9 meet once in tank 14, whereas treatments 1 and 2 do not meet at
all. Therefore, the design is not balanced in the sense of a BIBD, and

nor does it correspond to any other specialized incomplete block design

[7, Chapter 11].

The ISAV data was modelled by the models of Section 5.3 by defin-
ing a continuous outcome y; for Models (5.1)—(5.3) for the fish group i
as the mortality rate at 6 weeks. This approach involved two data re-
ductions and approximations. First, the proportions were really scaled
binomial outcomes with denominator 50 and not truly continuous out-
comes. With equal and large denominators as well as proportions well
away from the extremes of the unit interval, the normal distribution
model should provide a fair approximation to the binomial distribution
with fairly homoscedastic variances. A constant variance may be a bet-
ter approximation than the binomial variance (Var(y;) o< pi(1 — p;)) if
there is clustering at the fish group level (i.e., the 50 identically treated
fish are more alike than expected from a binomial distribution). Models
(5.1)-(5.3) can easily be extended to logistic regression models but this
was considered an unnecessary complication for the purpose of studying

the models. Second, a substantial data reduction was implied by ignor-
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ing the survival curve up till 6 weeks and focusing only on the resulting
mortality. We believe the models have the potential to be extended to
survival data, but this was considered beyond the scope of the present
study. It could also be argued that from a practical perspective, the over-
all mortality at the end of the study is a more direct measure of vaccine

eficacy than e.g., hazard rates based on the entire follow-up period.

5.5 Simulation study

A targeted simulation study based around the ISAV clinical trial dataset
was carried out. All simulated data were generated within the experi-
mental design of the ISAV data (Table 5.1); in particular, a = 14, b = 14
and n = 42. Both the NLM model (5.1) and the MMCP model (5.3) were
used as true models for the simulated datasets. A total of six scenarios of
simulated datasets were included: three scenarios (A.1-A.3, Table 5.2)
corresponding to model (5.1), and three scenarios (B.1-B.3, Table 5.3)
corresponding to model (5.3). The first NLM scenario (A.1, Table 5.2)
and the second MMCP scenario (B.2, Table 5.3) were linked to the ISAV
dataset by having true parameters close to those obtained for the ISAV
data (Table 5.4). The first MMCP scenario (B.1, Table 5.3) had p =0
to yield the simpler MMI model. The correlated pair of random effects

(vj,v}) was generated from uncorrelated, standard normally distributed
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random variables (v;, ;) by defining v} as v; = pv; + (/1 — p?)z;,

where z; ~ N(0, 1), and scaling with respective standard deviations.

5.5.1 Analysis of results for simulated data

For the analyses by the NLM model, the means and standard devia-
tions of estimates across simulations, as well as the mean standard errors
were reported (Table 5.2). The treatment estimates were converted to a
standard deviation o; between treatments (without associated standard
error), and the individual treatment estimates were omitted. For the
multiple membership models analyzed within a Bayesian framework, the
means and standard deviations of the estimate’s posterior medians across
simulations, as well as the mean posterior standard deviations were re-
ported. In addition, the difference in the deviance information criterion
(DIC) between the MMCP and MMI models were calculated for each
simulated dataset and reported (Table 5.3). For the ISAV dataset, both
the actual treatment estimates and DIC values were presented (Table

5.4).
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5.6 Results

The results of the simulation studies are presented according to the true
model behind the data (NLM: Table 5.2; MMCP: Table 5.3), then fol-
lowed by the analysis of the ISAV trial dataset (Table 5.4). Our main
focus will be on the neighbour effects 6 and (o, p) . The mean estimates
across simulations will be compared to the true values, and the mean
standard errors (SE), or posterior standard deviations for the Bayesian

models, will be compared to the standard deviations across simulations

(SD).

5.6.1 Non-linear mixed (NLM) model data

Across all scenarios and estimation procedures, the overall mean (u) and
error standard deviation (o.) were estimated consistently close to the
true values (Table 5.2). The performance for the other parameters varied
across both the data scenarios and estimation procedures. A general
pattern observed for the NLM estimates was that the SD was always,
and at times much, larger than the corresponding SE. NLM searches for
the ML estimates frequently lead to the block variance reaching its lower
boundary; this could indeed lead to underestimated standard errors when

calculated from the observed Hessian matrix at the parameter estimates.
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In scenario A.1 with low variances and neighbour effect, the mean NLM
estimates for o3, o, and 6 were far from their true values. The SD for
6 was large, with a wide 95% range across simulations of (—.467, 1.24),
and about 2.5 times the size of the SE. This signals that NLM estimates
in this scenario were very noisy and associated with grossly incorrect in-
ference. In scenarios A.2-3, all estimates were closer to their true value
and associated with smaller SD; these scenarios may be considered to
show an acceptable performance of the procedure although some biases
still exist. For example, the 95% range for ¢ across simulations for sce-
nario A.3 was (.084,.788), which seems quite reasonable. Simulations
of additional scenarios with large between-block variances also showed

large SDs and wide ranges in the estimates of § (results not shown).

As the MMCP models do not match the true models, a close agreement
of the estimates with the true values cannot be expected. For scenario
A.1, the MMI model with independent (and fairly small) neighbour ef-
fects performed better than the MMCP model in terms of parameter
estimates. This could be due the sensitivity of the Wishart prior in the
MMCP model [2]. Using a value of 0.01 in the diagonal variance co-
variance matrix resulted in a better agreement between the estimates
and their corresponds true values, for example the mean estimates of o7,
o2 and their associated SD and SE were equal to .092 (.023, .032) and

089 (.017, .042), respectively. In scenarios A.2-3 (Table 5.2), the MMI
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model showed some discrepancy in estimating its parameters, resulting
in estimates of o; and o, much smaller than their true values, and for o,
a pronounced difference between the SD and SE. However, the MMCP
model seemed to gain some improvement over the MMI model in those
scenarios and resulted in closer estimates of o; and o, to their true values
especially in scenario A.3 (Table 5.2). Note that the linear relationship
between treatment and neighbour effects in the NLM true model of the
data should correspond to a perfect correlation p (irrespective of the
value of §). This explains why p increases in the stronger scenarios,

although the values are still far from 1.

5.6.2 Cross-classified and multiple membership (MMCP) model

data

Similarly to the NLM model data, the overall mean () and error stan-
dard deviation (o.) were estimated consistently close to the true values
(Table 5.3). A general pattern observed for the MMI and MMCP esti-
mates was that the SD was almost always, and at times substantially,

smaller than the corresponding SE.

In scenario B.1 with p = 0, low variances and neighbour effect, the

MMI estimates were close to their true values, with a reasonable agree-

ment between SD and SE. On the other hand, the MMCP estimates
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were further from their true values and associated with a pronounced
disagreement between SD and SE, especially for treatment and neigh-
bour effect standard deviations (Table 5.3). The NLM estimates showed
similar patterns as the MMCP model estimates. The mean estimate of
d was small (0.11) with a wide 95% range across simulations of (-2.409,
2.822), as indicated by the large SD. Allowing for a weak dependence
between treatment and neighbour effects in scenario B.2 produced only
minor changes in the MMI and MMCP estimates. The sensitivity anal-
ysis for the MMCP model showed a strong impaét of the Wishart prior.
For example, in scenario B.2 and with a value of .01 in the diagonal, the
estimates with (SD, SE) for oy and o, were: .093 (.022, .032) and .096

(.020, .046), respectively.

With stronger dependence between treatment and neighbour effects
and larger variation between treatments and neighbours (scenarios B.3),
the MMCP parameter estimates improved further, and were closer to
their true values than those from the MMI model. The sensitivity anal-
ysis showed that a larger value (.25) in the diagonal variance covariance
matrix of the Whishart prior gave estimates very close to the true values
(.482 and .505 for o, and o, respectively). On the other hand, a value
of .01 in the diagonal resulted in shrunk estimates. The main problem

for the MMI model was a far too low estimate of o,,.
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5.6.3 Infectious Salmon Anaemia Virus (ISAV) data

The mortality rates of the ISAV trial were in the range of 0.2-0.7 (Table
5.1). The data were modelled by four different models (NLM, CC, MMI,
MMCP) all assuming normally distributed random effects and errors.
Two additional approaches were briefly explored, one based on binomial
data and rephrasing equations (5.1) and (5.3) on logistic scale, and one
based on restricting the variance of normally distributed proportions
to follow the binomial distribution. Both approaches faced numerical

challenges.

The results (Table 5.4) showed close agreement between the four mod-
els in estimates of u and o,; however, the standard errors from NLM were
of smaller magnitude than those from the other models. The estimated
neighbour effect of the NLM model was moderate in magnitude and sta-
tistically significant, as assessed by a z-test. The MMCP model showed
a bit larger estimates (with small posterior standard deviation) for the
treatment and neighbour effect variances than those from the MMI and
CC models. The correlation estimate was reasonably low (p =.22) how-
ever with a large standard error (Table 5.4). All models MMCP, CC
and MMI models showed almost identical DIC, probably leading one to
choose the simpler CC model. Even the MMI model indicated only minor

variance in neighbour treatment effects, and these two models showed
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good agreement on all other parameter estimates, contrasting the values

of the MMCP model for the treatment and neighbour effect variances.

5.7 Discussion

In this study, we explored two statistical approaches to assess and ac-
count for the neighbour treatment effects in an incomplete block design,
while accounting for block effects. Despite the relatively small dataset
relative to the number of model effects/parameters, the simulation stud-
ies demonstrated a potential utility of these models in the investigated
settings. As mentioned in Section 5.4, the models can easily be extended
to other block sizes. lThey can also easily be programmed as logistic mod-
els for proportion data, although some numerical issues were experienced

in fitting such models.

5.7.1 Non-linear mixed model

Results from the NLM model data indicate that the specific non-linear
relationship between the outcome and the treatments and neighbours
could be captured well enough by the neighbour treatment effect. How-
ever, some restrictions on the variation between treatments and tanks

seemed to apply. Our results showed noisiness in NLM estimates espe-
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cially in scenarios A.1 and B.1-2. These finding probably signal identifi-
ability problems for such data. In the absence of treatment effects (i.e.,
if all 8; = 0 in (5.1)), the parameter 0 is clearly not identifiable. Thus
it is suggested that there should be a minimum variation between the

treatments in order to be able to see and estimate the neighbour effect.

5.7.2 Cross-classified and multiple membership models

The MMI model performed fairly well in scenarios A.1 and B.1-2 with
a weak link (or low correlation) between treatment and neighbour ef-
fects. In datasets with stronger dependence, the estimates of between-
treatment and between-neighbour variances were substantially shrunk
towards zero. It was also noted that the estimates were less variable
than expected from the posterior standard devations for the NLM true
model data, but this may be a result of the model misspecification. For
MMI data (scenario B.1), the discrepancy was less marked and may be
attributable to the fairly low sample size or sensitivity to prior distribu-

tions.

The apparent better performance of the MMI model in scenarios A.1
and B.1-2 over the MMCP model was shown to be caused by a sensi-
tivity to the Wishart prior distribution (matrix) of the MMCP model.

With a suitable prior, the MMCP model could reproduce the true val-
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ues well in all scenarios. However, as the scenarios covered a range of
variances, the same prior could not reproduce the true values exactly
across all scenarios. This observed sensitivity to the Wishart prior is in
agreement with previous work [5, 2| that biases in the estimates may
arise from the prior especially in small datasets. The dependence on
prior information raises the question how one should choose the prior in
a practical application. The best answer we can offer is that one should
always carry out a sensitivity analysis, and that it is often useful to try
to center the prior distribution on values close to the estimates (possibly

in an iterative fashion).

We also noted that the MMCP model requires a substantial correlation
between treatment and neighbour effects to present an improvement over
the MMI model. Given the fairly small dataset, this is not surprising.
In conclusion, our results seem to demonstrate the utility of the MMCP

extension of the standard multiple membership model.

5.7.3 ISAV data

The finding of an apparent significant neighbour effect in the NLM model
was compromised by the results of the simulation studies at low levels of
between-treatment and between-tank variation, in two ways. First, the

NLM estimate of the neighbour effect tended to be very variable and on
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the average inflated (too large); second, its standard error tended to be
substantially underestimated. These two findings cast so much doubt on
the significant neighbour effect that it should probably be disregarded
as a spurious effect. Moreover, the results showed only minor treatment
effects and a between-tank variation that was wholly consumed by the
neighbour effect. Even without any neighbour effect all variances were
fairly small. The natural conclusion seems to be that the actual data did
not exhibit values within a range where the NLM model could provide

evidence of neighbour treatment effect.

This conclusion is supported by the results of analysis by the cross-
classified and multiple membership models. The DIC model selection
criterion pointed towards the cross-classified model with no neighbour
treatment effect, and there was absolutely no evidence of the existence
of a neighbour treatment correlated to the treatment effect itself. When
faced with a negative (non-significant) finding, the question arises whether
there was sufficient power in the data to detect any neighbour effect. The
simulations from scenarios including moderate neighbour effects indicate
that a moderate neighbour effect could have been detected from the data.

Apparently, such an effect was just not present.
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Table 5.1: Study design and Mortality proportions (based on 50 fish per group) at the
end of the follow-up period in a vaccine (ISAV) trial on Atlantic salmon carried out at the
Atlantic Veterinary College.

Tank
Treatment 6 7 8 9 10 11 12 13 14 15 16 18 19 22

44 34 .56
.56 .60 .60
54 46 .08
48 48 42
34 .52 .32
30 42 .20
40 .34 .52
.46 30 .48

Q0T UL W=

52 42 62
62 : 66 .56
66 50 50
_ 64 .48 .60
72 72 .70

=
BN = O
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Table 5.2: Mean parameter estimates followed in parenthesis by standard deviation (SD)
among simulations and mean standard error /posterior standard deviation (SE) of non-linear
mixed model (NLM) and two cross-classified and multiple membership models (MMI and
MMCP the former with p = 0), based on analyses of 1000 simulated datasets generated by
non-linear mixed model (NLM ). Parameters: u (overall mean), oy, ge, 01, op, (standard
deviation between blocks, observations, treatments, neighbour treatments), § (neighbour
treatment effect), p (correlation between treatment and neighbour effects), ADIC (DIC
from MMCP model - DIC from MMI model).

Scen- Param- True NLM model MMI model MMCP model

ario  eter Values Mean (SD, SE)  Mean (SD, SE) Mean (SD, SE)

Al I .50 500 (.029,.017) .500 (.029, .048) 499 ( .029, .079)
T .10 .021 (.042, .026) .106 (.032,.037) .071 ( .021, .037)
Oe .10 .082 (.015, .009) .097 (.016, .017) 094 ( .016, .016)
oy .10 229 (.029, - ) .076 (.023, .030) 145 ( .016, .036)
§ .30 .513 (.400, .161)
On (.06) .065 (.014, .038) 166 ( .018, .049)
P 0 367 ( 125, .280)
ADIC 466 (2.481)

A2 I .50 502 (131, .111) .506 (.131, .193) 502 ( .131, .266)
Ob .50 399 (.163, .087) .546 (.122, .138) 411 ( .142, .162)
Oe .10 .087 (.050,.011) .100 (.018, .020) 101 { .019, .020)
ot .50 527 (126, —* ) .350 (.082,.091) 463 ( .127,.137)
] .30 .296 (.239, .145)
On (.30) 126 (.046, .130) 401 ( .143, .195)
p 0 .643 ( .254, .360)
ADIC 188 ( .559)

A3 I .50 .502 (.131, .109) .508 (.131, .200) 506 ( .132, .301)
Ob .50 400 (.164, .092) .651 (.140, .156) .394 ( .171, .185)
Ce .10 .080 (.030, .012) .100 (.018, .020) .100 ( .018, .020)
o .50 527 (.129, —% ) .246 (.061, .070) 448 ( .143, .146)
é .50 480 (.180, .112)
On (.50) .106 (.020, .108) 517 (.209, .236)
P 0 .804 ( .166, .283)
ADIC —.830 (1.020)

@ Not estimated because treatments modelled by fixed effects

244



Table 5.3: Mean parameter estimates followed in parenthesis by standard deviation (SD)
among simulations and mean standard error/posterior standard deviation (SE) of non-linear
mixed model (NLM) and two cross-classified and multiple membership models (MMI and
MMCP the former with p = 0), based on analyses of 1000 simulated datasets generated by
cross-classified and multiple membership models (MMCP, MMI). Parameters:
(overall mean), oy, 0., 01, 0y (standard deviation between blocks, observations, treatments,

neighbour treatments), § (neighbour treatment effect), p (correlation between treatment
and neighbour effects), ADIC (DIC from MMCP model - DIC from MMI model).

Scen- Param- True NLM model MMI model MMCP model

ario  eter Values  Mean (SD, SE) Mean (SD, SE) Mean (SD, SE)

B1 & 50 496 (.049, .024) .497 (.049, .055) 496 ( .049, .078)
o 10 060 (.058,.026) .095 (.031,.038) 073 (022, .038)
Oe 10 .086 (.023,.010) .102 (.018, .020) 097 ( .016, .017)
o .10 221 (032, —% ) .093 (.029, .034) 148 ( .017, .036)
6 .106 (.968, .326)
On 10 101 (.037, .053) 177 (021, .052)
P .00 0 193 ( .155, .302)
ADIC —1.462 (1.766)

B2 u 50 496 (.052, .023) .497 (.052, .054) 495 (.052, .079)
Tp 10 053 (.059, .026) .102 (.033, .039) 074 ( .022, .038)
e 10 016 (.087,.010) .101 (.018, .019) .096 ( .016, .017)
o 10 223 (034, —% ) .087 (.027,.033)  .147 ( .016, .036)
5 201 (.903, .282)
On 10 .093 (.032, .051) 176 ( .021, .052)
p 25 0 255 ( .148, .296)
ADIC -1.077 (1.900)

B3 4 50 481 (.263,.135) .486 (.263,.227)  .488 ( .263,.257)
op 50 475 (.240, .109) 584 (.155,.168) 538 ( .156, .192)
e 10 074 (.128, .013) .101 (.019, .020) 101 ( .019, .021)
oy 50 495 (161, —¢ ) .410 (.108, .115) 436 ( .111, .137)
6 .004 (.688, .332)
On 50 262 (.162, .208) 375 (.113, .214)
p 50 0 193 ( .400, .470)
ADIC 360 ( .298)

% Not estimated because treatments modelled by fixed effects

245



Table 5.4: Parameter estimates and associated standard errors (SE) or posterior distribu-
tion standard deviation (SD) for non-linear mixed model (NLM) and three cross-classified
and multiple membership models (CC, MMI, MMCP with increasing level of neighbour-
ing effects), from analysis of the ISAV dataset. Parameters: u (overall mean), oy, o¢, ot,
on (standard deviation between blocks, observations, treatments, neighbour treatments), &
(neighbour treatment effect), p (correlation between treatment and neighbour effects) and

B’s

Param- NLM model CC model MMI model MMCP model
eter Est. (SE) Est. (SD) Est. (SD) Est. (SD)
? 497 (010) 497 (.033) 497 (.036) 498 (.062)
o 001 ( — 064 (.020) 058 (.021) 055 (.024)
e 061 (007) 063 (.012) 060 (.011) 060 (.011)
ot 071 ( - 095 (.025) .091 (.026) 140 (.032)

B —.006 (.042)

B2 117 (.037)

Bs 012 (.036)

Ba —.016 (.038)

Bs  —.136 (.038)

Bs  —.197 (.035)

B —.128 (.039)

Bs  —.086 (.035)

By —.037 (.037)

Bio —.013 (.040)

B11 .091 (.036)

Bz .084 (.036)

B 109 (.039)

P14 .206 (.037)
5 280 (.110)
Tn 0 049 (.025) 134 (.033)
p 0 0 .223 (.286)
DIC —92.603 —92.584 —92.281

¢ No standard error available because estimate is on the boundary.

b Not estimated because treatments modelled by fixed effects
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Conclusion

6.1 Introduction

The objective of this research project was to assess the performance of
statistical procedures for the analysis of binary longitudinal data in vet-
erinary science, specifically, to describe and quantify their performance
in terms of statistical properties such as unbiasedness, confidence interval
coverage and efficiency. We identified procedures belonging to two model
types for the assessment: marginal and random effects models. These
models handle the within-subject dependence differently, and they offer
different interpretations of regression estimates for binary longitudinal
data. In order to achieve the objective, we set up a general structure for
studies to examine the characteristics of these procedures. A statistical

simulation approach was used as the tool for the assessment.

The objective of the first study was to give a detailed description of

the choice between marginal and random effects models and procedures
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in a full binary repeated measures data setting (Chapter 2). The second
study objective was to compare statistical procedures in a full binary re-
peated measures data setting with additional hierarchical data structure
(Chapter 3). The objective of the third study was to assess the impact
of a combination of different missing data patterns on selected statisti-
cal procedures described in the second study (Chapter 4). Finally, the
objective of the last study was to develop two statistical approaches to
model neighbour effects in an aquaculture clinical trials setting (Chapter

5).

In this final chapter, we summarize the current knowledge in modelling
of binary longitudinal data. Specifically, to provide some general guide-
lines for the choice between marginal and random effects models. We
also highlight some innovation and limitations of this research project,
and finally, identify areas of potential future research and some possible

directions in this area.

6.2 State of knowledge in modelling binary longitu-

dinal data

The following discussion reflects the knowledge and experience of mod-

elling binary longitudinal data, based on the findings extracted from
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the simulation studies carried out in this project. Both marginal and
random effects estimation procedures were assessed, and among the pro-
cedures included were: ordinary logistic regression (OLR), generalized
estimating equations (GEE), Weighted Generalized Estimating Equa-
tions (WGEE), alternating logistic regression (ALR), procedures based
on pseudo- or quasi-likelihood (REPL, MQL and PQL respectively),
Markov chain Monte Carlo (MCMC) and maximum likelihood estima-
tion (ML). These procedures were examined in a fairly wide range of
correlated binary data settings including a two-level balanced longitu-
dinal design, a three-level balanced setting of binary repeated measures
data, and repeated measures data with missing values. Three types of

missing values patterns were considered; missing completely at random

(MCAR); missing at random (MAR); not missing at random (NMAR).

The following sections will discuss some issues for the choice between
models and procedures. The issues will be converted into a set of prac-
tical guidelines, based, in part, on the literature but primarily on the

findings of the thesis.

249



6.2.1 Guidelines for the choice between marginal and random

effects models

The random effects model was used to create the simulated datasets
(Chapters: 2, 3, 4), additionally, a marginal model was used to cre-
ate some of the simulated datasets in the first study (Chapter 2). A
between-subjects design was considered throughout the simulation stud-
ies, additionally in Chapter 2 the dichotomous treatment was modelled
either within subjects, or by a time interaction. All random effects pro-
cedures under study here, excluding REPL procedure, make the concep-
tually unreasonable assumption that residual correlations are constant
over time, the question for application of such random effects procedures

is the sensitivity of the results to that assumption.

1: For the marginal model data with either the within-subject design
or interaction design (Chapter 2), the random effects procedures dis-
played severe deficiencies in terms of both efficiency and CI coverage,
which increased with the size of the dataset and the true autocor-
relation. For the between-subject design with a small data size, all
marginal estimation procedures experienced problems with CI un-
dercoverage and biased estimates, whereas the random effects pro-

cedures showed a minor loss of efficiency.
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2: For the random effects model data with additional hierarchical struc-
ture (Chapter 3), the quasi-likelihood random effects procedures
showed some attenuation of regression and variance parameters, the
inclusion of an extra-binomial parameter in these methods did not
clearly improve their performance. For autoregressive data, the ran-
dom effects procedures performed poorly, therefore marginal proce-
dures may seem more attractive.

3: For the random effects model data with additional hierarchical struc-
ture and missing values (Chapter 4), although the focus of this study
was the impact on missing values, we concluded here with some find-
ings that could be of help in the choice between marginal and random
effects models. For autoregressive data with drop-outs missing at
random, marginal estimation procedures performed well, with up to
moderate percentages of missing values. The likelihood-based pro-
cedures performed well only for the random intercept models data,
whereas, the quasi-likelihood method resulted in substantially biased
estimates (Chapter 4).

4: The size of the data is controlled by the length of the time series
and the number of replicated subjects. Results demonstrated that
a small number of subjects with a short time series proved to be a
challenge for both marginal and random effects methods. However,

random effects procedures may be acceptable for some small datasets
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that do not guarantee asymptotic properties for marginal methods
(Chapter 2).

: The relationship between random effects and marginal estimates has
been discussed and described previously [8, 5]; see also the summary
by Diggle et al. [2]. For logistic regression, it has resulted in an ap-
proximate conversion formula proposed by Zeger et al. [8]. A simula-
tion study (Chapter 3) carried out in this thesis showed that this for-
mula is the possible source of a small general bias. Therefore, based
on the findings of the thesis, for a marginal (population-averaged)
estimates/interpretation, the marginal procedures may seem more
attractive, especially in a situation with decaying correlation over
time. However, for a random effects (subject-specific) estimate/in-
terpretation, the marginal estimation procedures are of little use

(between-subjects variance is not known).

6.2.2 Guidelines for the choice among marginal procedures

Generally, the semi-parametric marginal estimation procedures have to

their credit the robustness implicit in making no specific assumptions

about random effects and correlation structure. However, the choice be-

tween the procedures included in the current study could be highlighted

in the view of the results.
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1: For the classical two-level settings in repeated measures data (Chap-
ter 2), the autoregressive GEE remained highly efficient in all set-
tings. The estimates of GEE with either exchangeable or inde-
pendenée correlation structures, ALR and MQL procedures agreed
closely; however, in the within-subject design, their relative efficiency
dropped down dramatically for the longer series with high correla-
tion. Additionally, the MQL procedure suffered from substantial
undercoverage for longer series with moderate to high correlation.

2. For repeated measures data with additional hierarchical structure
(Chapter 3), a version of GEE with either independence or exchange-
able correlation at the cluster-level was evaluated and showed to per-
form similarly to ALR procedure and generally well across the range
of settings covered. All other attempts to incorporate the additional
hierarchical level into the GEE framework produced estimates with
serious deficiencies for some of the fixed effects parameters. The
MQL method showed some fluctuation in the standard error for the
time coefficient, but generally performed on par with ALR method.

3: For repeated measures incomplete data with additional hierarchical
structure (Chapter 4), both ALR and WGEE with either indepen-
dent or exchangeable correlation at the cluster-level, performed well
at a low (31%) proportion of missing values at random regardless

of the correlation structure in the data. Additionally, ALR showed
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some robustness against the combination of patterns of the missing
values and for missing values not at random (except for the time

coeflicient) regardless of the correlation structure in the data.

6.2.3 Guidelines for the choice among random effects proce-

dures

Generally, one advantage of using random effects procedures is the abil-
ity to model and predict effects at the individual level. However, in
situations with decaying correlation over time, the random effects pro-
cedures failed to reproduce the subject-specific value. For this situation
we cannot point to any procedures among those covered in the study to
obtain subject-specific estimates with acceptable performance. Here the
focus is on and highlights some issues that might help with the choice

between random effects procedures in view of the results.

1: For the classical two-level settings in repeated measures (Chapter
2), all the random effects procedures (except REPL) performed well
in the data generated from random intercept models. The REPL
method performed mostly as a marginal estimation procedure, and
showed no promise for estimation of the variance and autoregressive

parameter in the autoregressive random effects data.
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: For random intercept models data with additional hierarchical struc-
ture (Chapter 3), the likelihood-based random effects procedures per-
formed better than methods based on quasi- or pseudo-likelihood.

: The REPL procedure demonstrated poor performance for repeated
measures with additional hierarchical structure data performed poorly
in such settings.

: The additional hierarchical structure challenges some statistical pro-
cedures, for example, one procedure (ML) may involve an extensive
and time consuming computation for estimating the model parame-
ters.

. For repeated measures incomplete data with additional hierarchical
structure (Chapter 4), both likelihood-based approximations meth-
ods (ML, MCMC) demonstrated that the accuracy of the approxi-
mations were sufficient to, by and large, ensure the ignorability of
missing completely at random and drop-out missing values at ran-
dom. The penalized quasi-likelihood procedures demonstrated a bias
in the estimates for drop-out missing values either at random or not

at random.
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6.3 Simulation as a tool for modelling repeated mea-

sures and hierarchical data

Statistical simulation showed itself to be an effective approach for study-
ing repeated measures and hierarchical data. By this approach we were
able to explore the properties of different models/procedures and their
ability to hold these properties under the study settings. Here we point
to the additional hierarchical structure and the missing data that com-

monly arise in longitudinal data.

1: By the simulation approach we demonstrated the ability of the au-
toregressive random effects model to simulate binary repeated mea-
sures data with additional hierarchical structure. A marginal model
for the same data structure was complicated and not easy to set up.

2. Similarly, by simulation we illustrated the repeated measures random
effects model to simulate different patterns of missing data. The
finding from this thesis showed the ability of this model to study the
impact of missing values, especially for combination of missing data
patterns within the same dataset (Chapter 4).

3: Through a targeted sirﬁulation study to a specific dataset, we were
able to explore the two proposed statistical approaches for modelling

neighbour treatment effects in aquaculture clinical trials (Chapter 5).
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6.4 Study innovation

Statistical simulation was known to provide solid evidence for the sta-
tistical assessment of the properties of statistical models. In the current
thesis, the simulation approach was used to highlight and assess some
properties of marginal and random effects models for analysis of binary
longitudinal data. The approach of matching the simulated data struc-
ture to the data at hand, as closely as possible can be helpful to provide
much insight into which procedures provide the accurate answers. By
simulation studies, we illustrated the use of autoregressive random effects
model (Chapters: 2, 3, 4, 5) for simulating binary autocorrelated data
in a wide range of settings including balanced and incomplete binary

longitudinal data.

By simulation, two approaches based on random effects model, were
explored and showed to be sufficient for modelling and estimating the
neighbour treatments effects(Chapter 5). In this thesis we demonstrated
a simple simulation approach to study the impact of combination of dif-
ferent types of missing values within the same dataset. By this approach
we were able to show some of the limitations of marginal and random ef-
fects estimation procedures for analysis of incomplete binary longitudinal

data.

Among the specific findings of the current thesis are:
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: Throughout the thesis we demonstrated that for autocorrelated data,
the random effects procedures performed poorly and failed to repro-
duce the subject-specific value (Chapters: 2, 3, 4).

. MQL method performed as a marginal procedure but tended to un-
derestimate the standard errors of fixed effects (Chapter 2).

. In the classical two-level repeated measures data with within-subject
design, the relative efficiency of ALR and MQL procedures decreased
dramatically for the longer series with high correlation (Chapter 2).
. The REPL procedure for repeated measures with additional hierar-
chical structure data demonstrated a bias for the estimates of both
the regression and the variance parameters (Chapter 3).

: The logistic conversion formula from subject-specific parameters may
be a possible source of a small general bias (Chapter 3).

: Two simulation studies showed that the extra-binomial parameter
estimates in quasi- or pseudo-likelihood were associated with inflated
standard errors (Chapters 3, 4)

: In a 3-level data structure, the GEE handling of correlation structure
must be shifted from the subject to the cluster to achieve correct
inference at the cluster level (Chapter 3).

: The ALR procedure was shown to be robust against the combina-
tions of patterns of missing values, moderate proportion of missing

at random and missing values not at random (except for the time co-
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10:

11:

efficient) regardless of the correlation structure in the data (Chapter
4).

The weighted GEE procedure with either independence or exchange-
able correlation at the cluster level was shown to be robust for a
moderate proportion of missing values at random (Chapter 4).

One study demonstrated a potential bias in using penalized quasi-
likelihood procedures for the analysis of an incomplete dataset with
drop-out missing values at random (Chapter 4).

A targeted simulation study demonstrated a potential usage of the
non-linear mixed model and the cross-classified and multiple mem-

bership models in modelling neighbour treatment effects (Chapter

5).

6.5 Study limitations

One limitation of the study was the absence of a real dataset, especially
for the classical two-level setfings in repeated measures. However, the
simulation study settings (Chapter 2) covered a wide range of binary
longitudinal data settings in veterinary science. These limitations might
give the impression that the statistical procedures were not matched
closely enough to data arising from veterinary science. However, this can

also be seen as an advantage, because longitudinal binary data occur in
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many fields. Another limitation may be that the simulation studies were
mainly set up for experimental data, whereas in practice observational

studies are common.

The limitation of the study to only include procedures implemented in
broadly accessible statistical software, could be taken as a disadvantage
as some statistical models/methods were excluded, such as the pattern-
mixture models for incomplete data [6]; the marginalized models [3]; the
transition model [2]; the multivariate approach [7]; the approach pro-
posed by Barbosa and Goldstein [1] to model correlations between lowest
level residuals, conditional upon the random effects, by an autoregressive
function of time. However, the argument was made in Chapter 1 that
the range of procedures included should reflect the choice an applied

researcher faces when it comes to data analysis.

Another limitation was the lack of a reference estimates for the au-
toregressive model. We tried to fit the model by MCMC estimation but
could not achieve acceptable trajectories of the resulting Markov chains.
This had two consequences: First, we could not point to any acceptable
random effects estimation procedure in the presence of autocorrelation.
Second, we were unable to compute efficiencies (relative to reference es-

timates) for the random effects data (Chapters 2,3,4).
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6.6 Future directions for additional research

6.6.1 Confirmation/expansion of findings

Based on Finding 5 (Section 6.4) we suggest that future research should
include ways to assess and improve the relationship between marginal
and random effects models. One idea is through theoretical research
to confirm and improve the logistic conversion formula. Another idea
is through new statistical modelling, where the marginalized models [3]
showed to be a promising approach to overcome some of the limitations

experienced by marginal and random effects models.

Finding 4 indicates that further research may be needed to assess the
accuracy and validity of the REPL procedure. Regarding Finding 6, we
recommend more research to confirm and justify the usefulness of the

extra-binomial parameter as a diagnostic tool.

6.6.2 New ideas or suggestions

Based on Finding 2, we propose to add robust (“sandwich”) variance
estimation to the MQL procedure (Chapter 2). Based on Finding 10,
we suggest that theoretical research could be needed to explain the poor
performance of the penalized quasi-likelihood procedures in data with

values missing at random. One idea could be based on the similarity
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of the PQL procedure to GEE and may indicate a potential weighting
scheme for missingness at random. However, this step requires additional

theoretical and applied research.

Research into methods to account for a combination of missing data
patterns within the same dataset is proposed, because this situation is a
challenge for many of the simple approaches. Some statistical approaches
such as the available case method and imputations may be limited to a
strong MCAR. missingness assumption. Other approaches (WGEE) are
in their current implementation available to only the MAR, missingness
mechanism, whereas likelihood inference based on the available data may
accommodate MCAR and MAR but not the NMAR missingness mech-

anism.

6.6.3 Research into limitations

We recommend the implementation of the autoregressive repeated mea-
sures random effects model through the Bayesian framework using MCMC
methods. We, also recommend further exploration of the following mod-
els for binary longitudinal data: the marginalized model [3] and the

transition model [2].
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Table A.1: Mean estimate of between-subjects (BS) treatment effect (true value = 0.35), followed in parenthesis by standard
deviation among simulations, mean standard error, confidence interval coverage and relative efficiency, based on analyses of
1000 simulated marginal (PA) datasets per setting (n = number of subjects, ¢ = number of time points, p = autocorrela-
tion). Analysis by procedure B of type A is designated by 34, where A = PA (population-averaged) or SS (subject-specific),
and B = IND (generalized estimating equations (GEE) with independence correlation), EXCH (GEE with exchangeable cor-
relation), REPL (marginal restricted pseudo-likelihood) MLa (maximum likelihood based on Gauss Hermite-quadrature in R),
MLb (maximum likelihood based on adaptive quadrature in Stata).

Statistical Methods!

n_t p AR Bgkcn kL Aiita Kb
100 16 .7 .360(.23,23) .95 .95 .360 (.24,24) .96 .87 .359 (.22,.23) .96 1.00 .379 (.24,.24) .95 .83 .381 (.24,.24) .95 .83
5 .360 (.17,.18) .96 .98 .359 (.18,18) .96 .96 .359 (.17,.18) .96 1.00 .370 (.18,.18) .95 .91 .370 (.18,.18) .95 .91
2 .352(.13,.13) .95 1.00 .352 (.13,.13) .95 1.00 .352 (.13,.13) .96 1.00 .355 (.13,.28) .95 .98 .355 (.13,.13) .95 .98
8 .7 .342(.28,28) .96 .93 .341 (.28,.28).96 .92 .344 (.27,.28) .96 1.00 .376 (.31,.30) .94 .75 .378 (.31,.30) .94 .76
5 .348(.23,23) .95 .96 .348(.23,23) .95 .95 .307 (.21,23) .961.00 .366 (.24,.24) .95 .87 .366 (.24,.24) .95 .87
2 349 (17,.17) .95 .96 .349 (.17,.17) .95 .95 .337 (.17,.17) .96 1.00 .355 (.17,.18) .95.96 .355 (.17,.17) .95 .96
4 .7 .341(.35,33) .94 .95 .341(.35,.33) .94 .94 .348 (.34,.33) .951.00 .381 (.41,.37) .93 .69 .380 (.40,.36) .93 .71
5 .343(.30,29) 94 .95 .344 (.30,.29) .94 .95 .340 (.30,.29) .94 1.00 .366 (.32,.31) .95 .85 .366 (.32,.31) .95 .85
2 .340 (:24,.23) .95 .99 .340 (.24,.23) .95 .99 .339 (.24,.24) .951.00 .350 (.25,.24) .95 .94 .350 (.25,.24) .95 .94
20 16 .7 .351(.55,.51).92 .94 .351(.58.53).92 .85 .351 (.54,.52) .941.00 .351 (.57,.49) .89 .87 .371 (.58,.53) .92 .86
5 348 (41,38) .92 .97 .347(.41,.38).92 .95 .347 (.40,40) .951.00 .357 (.42,.39) .92 .93 .357 (.42,.39) .92 .93
2 .347(.29,27) .92 .99 .347(.29,27).92 .99 .347(.29,.29) .95 1.00 .349 (.30,.30) .93 .98 .349 (.30,.28) .93 .98
8 .7 .381(.66,.63) .93 .91 .381 (.68,64) .93 .88 .378(.63,65) .96 1.00 .341 (.72,.54) .82.78 .408 (.70,.60) .90 .82
5 .373(.53,50) 92 .94 .374(.53,50) .93 .93 .372 (.51,52) .951.00 .387 (.55,.52) .93 .87 .387 (.55,.52) .93 .87
2 .364(.40,.37) .92 .99 .365 (.40,.37) .92 .98 .364 (.39,.40) .95 1.00 .369 (.40,.38) .93 .96 .369 (.40,.38) .93 .96
4 .7 406 (.83,76).94 .98 .401 (.81,77) .95 .98 .412(.80,.80).96 1.00 .369 (.87,.97) .84 .88 .401 (.86,.73) .90 .92
5 .394 (.71,.66) .93 .98 .395 (.71,.66) .93 .97 .402 (.71,.69) .95 1.00 .409 (.76,.85) .94 .85 .409 (.74,.70) .94 .91
2 379 (.57,52) 91 .99 .379 (.57,.52) 91 .99 .381 (.57,.55) .941.00 .388 (.58,55) .93 .95 .388 (.58,.55) .93 .95

that SS estimates were converted to PA value (see text).
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Table A.2: Mean estimate of within-subjects (WS) treatment effect (true value = 0.35), followed in parenthesis by standard
deviation among simulations, mean standard error, confidence interval coverage and relative efficiency, based on analyses of 1000
simulated marginal (PA) datasets per setting (n = number of subjects, ¢ = number of time points, p = autocorrelation). See
Table A.1 for coding of statistical methods.

Statistical Methods"

APA APA A A8 A
n t p BIND BEXcH BhapL o Biito
100 16 .7 .355(.18,18) .95.55 .356 (.18,.18) .95 .55 .352 (.14,.14) .95 1.00 .368 (.19,.10) .66 .51 .369 (.19,.10) .66 .51
5 .359 (.16,.16) .95 .79 .359 (.16,.16) .95.79 .358 (.14,.14) .96 1.00 .368 (.16,.10) .77 .74 .368 (.16,.10) .77 .74
2 .355(.13,12) .94 .96 .355 (.13,12) .94 .96 .355 (.12,.12) .951.00 .357 (.13,.11) .89 .94 .357 (.13,.11) .89 .94
8 .7 .349(.19,18) .94 .63 .349 (.19,.18) .94 .63 .350 (.15,.15) .95 1.00 .371 (.20,.12) .76 .56 .371 (.20,.12) .76 .56
5 .353(.19,18) 94 .81 .353 (.19,.18) .94 .81 .326 (.17,.16) .95 1.00 .370 (.20,.13) .80 .73 .370 (.20,.13) .80 .73
2 .355(.16,.16) .95.97 .355 (.16,.16) .95.96 .339 (.15,.16) .97 1.00 .361 (.17,.14) .93 .93 .361 (.17,.14) .93 .93
4 7 .352(17,17) 95.86 .352 (.17,.17) .95 .86 .358 (.15,.15) .95 1.00 .379 (.18,15).90 .74 .379 (.18,.15) .90 .74
5 .355(20,19) .95.92 .355 (.20,.19) .95 .92 .359 (.19,.19) .95 1.00 .378 (.21,.18) .90 .81 .378 (.21,.18) .90 .81 _

2 .355(.20,21) .96 .98 .355 (.20,.21) .96 .98 .356 (.20,.21) .97 1.00 .365 (.21,.20) .94 .92 .365 (.21,.20) .94 .92 ote
20 16 .7 .388 (.43,.40) .93 .53 .387 (.43,.40) .93 .53 .373 (.32,.32) .96 1.00 .396 (.44,.22) .68 .50 .401 (.44,.22) .68 .50
5 .383(.36,.35) .92 .81 .383 (.36,.35) .92 .81 .382 (.33,.33) .95 1.00 .392 (.37,.23) .78 .78 .302 (.37,.23) .78 .78
2 .372(28,27) 94 .97 .372(.28,27) .94 98 .373 (.28,28) .96 1.00 .374 (.28,24) .91 .96 .374 (.28,.24) .91 .96
8 .7 .358(42,40) .93 .62 .358 (.42,40) .92 62 .356 (.33,.33) .95 .99 .370 (.44,.27) .78 .57 .375 (.44,27) .78 .57
5 .355 (.42,40) .93 .81 .355 (.42,.40) .93 .81 .347 (.38,.38) .96 .99 .371 (.44,.31) .83 .74 .371 (.44,.31) .83 .74
2 .350 (.37,.35) 92 .97 .350 (.37,.35) 92 .97 .351 (.36,.36) .95 1.00 .356 (.37,.32) 91 .94 356 (.37,.32) .91 .94
4 .7 .358 (.38,.37) 93 .82 .357 (.38,.37) 93 .82 354 (.34,.35) 95 1.00 .386 (.44,.61) 91 .62 .360 (.40,.35) 94 .77
5 .362 (.45,.43) 94 .94 .362 (.45,.43) 94 .94 .365 (.43,.43) .951.01 .379 (.47,.41) 93 .84 .379 (.47,.40) 93 .85
2 .356 (.47,.46) 94 98 .356 (.47,.46) 94 98 .354 (.46,.47) 951.01 .366 (.48,.45) 94 93 .366 (.48,.45) .94 .93

that SS estimates were converted to PA value (see text).
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Table A.3: Mean estimate of between-subjects (BS) treatment effect (true value = 0.35, marginal true value = 0.302), followed in
parenthesis by standard deviation among simulations, mean standard error and confidence interval coverage, based on analyses of
1000 simulated random effects (SS) datasets per setting (n = number of subjects, ¢ = number of time points, p = autocorrelation).
See Table A.1 for coding of statistical methods.

Statistical Methods

n_t » A% Bf&cn BfEpL BriLa BRiLb
100 16 1 .286 (.20,19) .94 .286 (.20,.19) .93 .287 (.20,.12) .75 .343 (.24,.23) .94 .33 (.24,.23) .94
7287 (14,13) .93 287 (.14,.13) .92 287 (.14,.12) .90  .298 (.14,.14) .91 .29 (.14,.14) .91
5201 (12,12) .93 201 (.12,12) .93 .201 (.12,.11) .93  .295 (.12,12) .91 .296 (.12,.12) .90
2 291 (11,11) .91 201 (.11,.11) .91 201 (.11,.11) .95 .292 (.11,.11) .92 292 (.11,.11) .91
8 1 .300(22,21).94 .300 (.22,21) .94 .297 (:21,.17) .88 .361 (.26,.25) .95 .361 (.26,.25) .95
7292 (18,17) .95 292 (.18,17) .95 .306 (.17,.16) .93  .313 (.19,.19) .94 .313 (.19,.19) .94
5 203 (.16,16) .94 .203 (.16,.16) .94 .305 (.16,.15) .94 .304 (.17,.17) .94 .303 (.17,.16) .94
2 296 (.15,15) .94 .296 (.15,.15) .94 .306 (.15,.15) .95 .300 (.15,.16) .93 .299 (.15,15) .93
4 1 .306(26,25).95 .306 (.26,25).95 .306 (.26,.23) .92 .369 (.31,.30) .95 .369 (.31,.30) .95
7302 (.24,23) .94  .302 (.24,23) .94  .303 (.24,.22) .93  .335 (.26,.26) .94 .335 (.26,.26) .94
5 296 (.23,22) .94 206 (.23,22) .94 .206 (.23,22) .94 .315 (.24,24) .94 .315 (.24,23) .94
2 299 (.22,21) .94 299 (.22,.21) .94 .300 (.22,.21) .94 .307 (.22,.23) .94 .307 (.22,.22) .94
20 16 1 303 (.43,42) .94 .305 (.43,42) .94 .302 (.43,28) .78  .358 (.51,.49) .93 .357 (.51,.49) .93
7 .202(.30,28) .92 .202 (.30,.28) .92 .292 (.30,.26) .91  .301 (.31,.29) .92 .301 (.31,.29) .92
5 284 (.27,25) .93 284 (.27,25) .93 .284 (.27,.25) .94  .289 (.27,.27) .93 .288 (.27,.26) .93
2 278 (.25,23) .91 .278 (.25,23) .92 .278 (.25,24) .94  .280 (.25,25) .93 .280 (.25,.25) .93
8 1 .282(48,46) .94 .282 (.48,46) .94 .280 (.48,38) .89  .333 (.57,.55) .93 .333 (.57,.55) .93
7291 (41,37) .90 .291 (.41,37) .90 .290 (.41,.36) .91 .308 (.44,.40) .92 .308 (.44,.40) .92
5 292 (.36,34) .93 .202 (.36,.34) .93 .21 (.36,.35) .94  .304 (.38,.37) .94 .304 (.38,37) .94
2 201 (.33,32) .93  .291 (.33,.32) .93 .290 (.33,.34) .95 .296 (.34,.35) .95 .296 (.34,.34) .95
4 1 .290(.59,55) .93  .289 (.59,.55) .93  .290 (.59,.53) .91  .345 (.71,.68) .94 .345 (.71,.67) .94
7 314 (51,50) .93 314 (.51,50) .93 316 (.52,51) .95  .348 (.57,.58) .96  .348 (.57,.57) .96
5 .320 (:50,48) .93  .320 (.50,.48) .93  .320 (.51,.50) .94  .346 (.54,.54) .95 .346 (.54,.54) .95
2 319 (47,45) 93 319 (.47,45) .93 .320 (47,.48) .96 .334 (.49,.51) .96 .334 (49,.51) .96
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Table A.4: Mean estimate of between-subjects (BS) treatment effect (true value = 0.35, marginal true value = 0.302), followed in
parenthesis by standard deviation among simulations, mean standard error and confidence interval coverage, based on analyses of
1000 simulated random effects (SS) datasets per setting (n = number of subjects, ¢ = number of time points, p = autocorrelation).
See Table A.1 for coding of statistical methods.

Statistical Methods

nt p AR Acon ARfer AfLa Byiih
100 16 1 .294 (.10,.10) .94 .294 (.10,.10) .94 .290 (.10,.12) .99 .351 (.12,.12) .95 .351 (.12,.12) .95
7 .293 (.12,12) .94 293 (.12,.12) .94 292 (.12,.11) .93  .305 (.13,.11) .88  .305 (.13,.11) .88
5 .295 (.11,11) .96  .295 (.11,.11) .96  .295 (.11,.11) .95 .301 (.12,.11) .90  .301 (.12,.12) .90
2 294 (.11,11) .95 294 (.11,.11) .95 .294 (.11,.11) .95 .296 (.11,.11) .91  .296 (.11,.11) .91
8 1 .285(.14,13).92 .285 (.14,.13) .92 .288 (.14,.16) .97 .344 (.16,.16) .93  .344 (.16,.16) .93
7 284 (.15,15) .95 284 (.15,15) .95 .293 (.15,.15) .97 .305 (.16,.15) .91  .305 (.16,.15) .91
5 284 (\15,15) .94 284 (.15,15) .94 .294 (.15,.15) .95 .294 (.15,.16) .91  .294 (.15,.15) .91
2 .290 (.15,15) .95 .290 (.15,.15) .95 .296 (.15,.15) .95 .293 (.15,.19) .93  .293 (.15,.14) .93
4 1 .291(.18,18).95 .201 (.18,18) .95 .291 (.18,21).98 .354 (.22,.22) .96  .354 (.22,.22) .96
7 287 (.19,.20) .95  .287 (.19,.20) .95 .287 (.19,21) .96 .319 (.22,.21) .94  .319 (.22,.21) .94
5 .280 (.20,.20) .94 280 (.20,.20) .95 .280 (.20,.21) .95 .300 (.21,.21) .94  .300 (.21,.21) .94
2 284 (.20,.20) .94 .284 (.20,.20) .94  .283 (.20,.20) .95 .292 (.21,21) 93  .292 (.21,.21) .93
20 16 1 .282(.23,21).91 .282(.23,21) .91 .283 (.23,27) .94 .336 (.27,.26) .94  .336 (.27,.26) .94
7 .301(.27,26) .93 301 (.27,.26) .93 .301 (.27,26) .94 .312 (.28,.24) .91  .312 (.28,.24) .91
5 .297 (.26,.25) .92 297 (.26,.25) .92  .297 (.26,.25) .94 .303 (.27,.24) .91  .303 (.27,.24) .91
2 .295(.25,23) .92 295 (.25,.23) .92 .294 (.25,.24) .95 .298 (.26,.24) .93  .298 (.26,.24) .93
8 1 .288(.31,28).92 .288 (.31,.28) .93 .291 (.32,36) .97 .344 (.37,.36) .94 .344 (.37,.36) .94
7289 (.35,32) .92 289 (.35,32) .92 .288 (.35,.35) .95 .310 (.37,.34) .92 .310 (.37,.34) .92
5 .304 (.34,.32) .93 .304 (.34,.32) 93  .303 (.34,.34) .95 .317 (.36,.33) .94 .317 (.36,.33) .94
2 .308(.33,32) .93 .308 (.33,32) .93 .307 (.33,33) .95 .314 (.34,.33) .95 .314 (.34,.33) .95
4 1 318 (42,40) .93 .318 (42,40) .93 .318 (.42,47) .97 .390 (.53,52) .96  .390 (.53,.52) .96
T 329 (A4T,44) 94 329 (47,44) 94 326 (A47,47) .96 372 (.54,.49) .95 .371 (.54,.49) .95
5 319 (49,45) .92 319 (49,45) .92 .319 (.49,47) .94 .347 (.53,48) .94  .347 (.53,.48) .94
2 319 (48,.45) .93 .319 (.48,45) .93 .318 (.48,47) .95 .337 (.50,.48) .95 .337 (.50,.48) .93




Table A.5: Mean estimate of interaction effect in (interaction model) (true value
= - 0.15), followed in parenthesis by standard deviation among simulations, mean
standard error and confidence interval coverage, based on analyses of 1000 simulated
marginal (PA) datasets per setting (n = number of subjects, ¢ = number of time
points, p = autocorrelation). Analysis by procedure B of type A is designated by
34, where A = PA (population-averaged) or $9 (subject-specific), and B = AR
(GEE with autoregressive correlation), ALR (alternating logistic regression), ML
(maximum likelihood), MCMC (Bayesian Markov chain Monte Carlo).

Statistical Methods "™

n__t p (M4 Brtn v Erette
100 16 .7 —.152 (.04,04) .95 —.151 (.04,.04) .96 —.156 (.04,.02) .67 —.156 (.04,.02) .65
5 —.151(.03,.03) .94 —.151 (.04,.04) .94 —.155 (.04,.02) .77 —.155 (.04,.02) .75
2 —.151(.03,03) .95 —.151(.03,03) .95 —.152(.03,.02) .90 —.153 (.03,.02) .87
8 .7 —.154(.08,08).94 —.154(.09,08).94 —.160 (.09,.05).73 —.159 (.09,.05) .70
5 —.154(.08,08) .94 —.153(.09,.08) .94 —.160 (.09,.06) .80 —.161 (.09,.06) .78
2 —.152(.07,07) .94 —.152(.07,.07) .95 —.154 (.08,.06) .90 —.162 (.08,.06) .86
4 .7 ~.162(.16,16) .95 —.160 (.16,.16) .94 —.168 (.17,.13) .86 —.176 (.18,.13) .85
5 —.159(.19,18) .94 —.157 (.19,.18) 94 —.166 (.20,.16) .88 —.166 (.20,.15) .85
2 —.158(.20,.19) .93 —.157 (.20,.19) .93 —.161 (.20,.18) .91 —.179 (.21,.17) .87
20 16 .7 —.161(.09,.09) .92 —.160 (.10,.10) .92 —.163 (.10,.05) .69 —.163 (.10,.05) .65
5 —.156 (.08,.07) .93 —.155 (.08,.08) .93 —.158 (.08,.05) .79 —.159 (.08,.05) .76
2 —.152 (.06,.06) .93 —.152 (.06,.06) .93 —.153 (.06,.05) .91 —.156 (.06,.05) .87
8 .7 —.175(.18,18).95 —.174(.19,19).93 —.176(.20,.12).77 —.180 (.20,.12) .72
5 —.169 (.18,.18) .95 —.167(.19,.18) 94 —.173(.19,.14) .85 —.178 (.20,.13) .76
2 —.166 (.16,.16) .94 —.165 (.16,.16) .94 —.167 (.16,.14) .92 —.174 (.17,.14) .89

270

T Note that SS estimates were converted to PA value (see text).



Table A.6: Mean estimate of treatment main effect in (interaction model) (true
value = 0.35), followed in parenthesis by standard deviation among simulations,
mean standard error and confidence interval coverage, based on analyses of 1000
simulated marginal (PA) datasets per setting (n = number of subjects, ¢ = number
of time points, p = autocorrelation). See Table A.5 for coding of statistical methods.

Statistical Methods ™

n_t p Bff bR Eia Brec
100 16 .7 .358( .37, .38) .96 .356 ( .40, .40) .05 .338 ( .42,.30) .83 .342 ( .42,.29) .79
5 .356 ( .32, .32) .95 .356 ( .33, .33) .95 .360 ( .34,.26) .86 .358 ( .40,.25) .82
2 349 ( .25, .25) .95 .350 ( .25, .25) .96 .352 ( .26,.23) .92 .357 ( .26,.22) .89
8 .7 .352( .45, .45).96 .353 ( .47, .47) .96 .349 ( .49,.38) .86 .352 ( .50,.37) .84
5 .353( .42, .42) .95 .353 ( .43, .43) .95 .366 ( .45,.36) .88 .372 ( .46,.35) .85
2 .348( .35, .36) .95 .348 ( .36, .36) .96 .353 ( .36,.33) .93 .391 ( .37,.31) .90
4 .7 .364( .52, .51).94 .360 ( .53, .52) .95 .374 ( .57,.47) .89 .399 ( .59,.47) .87
5 357 ( .55, .53) .94 .354 ( .56, .54) .94 .375 ( .59,.50) .90 .378 ( .58,.48) .87
2 .355( .54, .53) .94 .354 ( .54, .53) .94 .364 ( .55,50) .93 .412 ( .57,.49) .90
20 16 .7 .354( .91, .84) .94 .358 ( .96, .89) .93 .334 (1.00,.63) .78 .332 (1.00,.67) .80
5 .338( .74, .70) .93 .339 ( .76, .73) .94 .342 ( .78,57) .85 .337 ( .80,.56) .84
2 .338( .57, .55) .93 .337 ( .57, .55) .93 .338 ( .58,.51) .92 .348 ( .60,.51) .89
8 .7 .433(1.08,1.03).95 .437 (1.14,1.07) .90 .440 (1.15,.80) .84 .434 (1.21,.87) .81
5 413 (.99, .94) .95 .414 (1.02, .O7) .94 .424 (1.06,.81) .87 .443 (1.09,.81) .85
2 409 ( .82, .79) .94 409 ( .82, .79) .94 .413 ( .83,.75) .93 .434 ( .88,.76) .90

T Note that SS estimates were converted to PA value (see text).
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Table A.7: Mean estimate of interaction effect in (interaction model) (true value
= — 0.15, true marginal value = — 0.129), followed in parenthesis by standard
deviation among simulations, mean standard error and confidence interval coverage,
based on analyses of 1000 simulated random effects (SS) datasets per setting (n =
number of subjects, ¢ = number of time points, p = autocorrelation). See Table A.5
for coding of statistical methods.

Statistical Methods

n_t p BRA BrtR Bri, Briemc

100 16 1 —.126(.02,.02) .96 —.126(.02,02) .96 —.151 (.02,.03).96 —.152 (.02,.03) .95
7 —.126 (.03,03) .95 —.125(.03,03) .96 —.131(.03,02).80 —.131 (.03,02).78

5 —.125(.02,03) .94 —.125(.03,03) .94 —.127 (.03,02) .80 —.130 (.03,.02) .79

2 —.125(.02,02) .94 —.125 (.02,02) .94 —.125(.02,02).79 —.131 (.02,.02) .80

8 1 —.126(.06,06).93 —.126(.06,06).94 —.152 (.07,07).94 —.153 (.07,07) .92

7 —128(.07,07) 94 —.128 (.07,07) .94 —.137 (.07,07) .92 —.143 (.07,.06) .89

5 —.128 (.07,07) .94 —.128 (.07,07) .95 —.133(.07,.06).92 —.144 (.07,.06) .90

2 —.127(.07,06) .94 —.127 (.07,06) .94 ~—.128 (.07,.06) .93 —.144 (.07,.06) .91

4 1 —125(17,17) 95 —.125(.17,16) .95 —.152 (.20,.20) .96 —.160 (.20,.19) .92

7 126 (18,18) .95 —.126 (.18,18) .95 —.140 (.20,.19) .94 —.159 (.20,.18) .91

b —.130 (.18,.18) 95 —.131 (.18,.18) 95 —-.139 (.19,.19) 94 —-.163 (.20,.18) 91

2 -.128(.18,18).95 —.129 (.18,18) .95 —.132(.19,.18).94 —.162 (.20,.18) .92

20 16 1 —.129(.05,.05).92 —.129 (.05,05).92 —.152 (.06,.06).95 —.154 (.06,.06) .93
7 —.126(.06,06) .92 —.126 (.06,06) 92 —.130 (.06,.05) .88 —.127 (.06,.06) .92

5 —.127(.06,05) .92 —.126 (.06,05) .92 —.128 (.06,.05).90 —.126 (.06,.06) .94

2 —.126 (.05,05) .91 —.126 (.05,05) .91 —.127 (.06,.05) .90 —.124 (.06,.06) .96

8 1 -—.131(14,13).93 -—.131(14,13).93 —.154(.16,16).95 —.154 (.17,.16) .91

7 —127(15,15) .94 —.126 (.15,15) .94 —.134 (.16,.15) .93 —.123 (.17,.15) .91

5 —.130 (.15,15) .94 —.131 (.15,15) .93 —.135 (.16,.15) .95 —.123 (.16,.15) .02

2 —.131(15,.14).92 —.131 (.15.14) 92 —.133 (.15,14) .94 —.120 (.16,.15) .92
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Table A.8: Mean estimate of treatment main effect in (interaction model) (true
value = — 0.15, true marginal value = — 0.129), followed in parenthesis by standard
deviation among simulations, mean standard error and confidence interval coverage,
based on analyses of 1000 simulated random effects (SS) datasets per setting (n =
number of subjects, ¢ = number of time points, p = autocorrelation). See Table A.5
for coding of statistical methods.

Statistical Methods

~PA ~PA 255 259
n_t p  Bag BALR. BML Brxiemc

100 16 1 .289(.25,26).96 .289 (.25,.26) .96 .345 (.30,.31) .96 .349 ( .31,.30) .93
7 293 (.26,25) .94 .292 (.26,.25) .94 .304 (.27,.23) .92 .311 ( .27,.23) .89

5 292 (.24,23) .95 .292 (.24,23) .95 .297 (.24,.22) .93 .322 ( .25,.21) .90

2 290 (.22,.22) .95 .290 (.22,.22) .95 .291 (.22,.22) .95 .340 ( .23,.20) .91

8 1 .300(.34,33).94 .301(.34,33) .94 .362 (.41,.40) .95 .373 ( .42,.39) .92

7 .305(.36,.34) .93 .305 (.36,.34) .93 .327 (.38,.35) .92 .360 ( .39,.33) .89

5 .308(.34,.33) .94 .309 (.34,34) .94 319 (.35,.33) .94 .375 ( .36,.31) .90

2 .302(.33,.32) .94 .302(.33,32) .94 .305 (.33,.32) .94 .383 ( .34,.30) .91

4 1 .307(.50,.48) .94 .307 (.50,.48) .95 .372 (.60,.59) .95 .398 ( .60,.56) .92

7 .303 (.51,.50) .95 .303 (.51,.50) .95 .336 (.57,.54) .95 .393 ( .57,.51) .91

5 .309 (.51,.50) .94 .310 (.51,50) .95 .331 (.54,.52) .94 .398 ( .57,.50) .90

2 .309 (.51,.50) .95 .309 (.51,50) .96 .318 (.52,.51) .96 .402 ( .56,.49) .91

20 16 1 .317(.60,56).92 .318 (.60,.56) .93 .373 (.71,.68) .94 .380 ( .74,.70) .92
7 289 (.59,.54) .91 .288 (.59,.54) .91 .297 (.61,.52) .91 .265 ( .62,.56) .94

5 .296 (.55,50) .92 .295 (.54,.50) .92 .300 (.55,.50) .93 .267 ( .56,.55) .95

2 205 (.51,.46) .91 .295 (.51,.46) .92 .297 (.52,.49) .94 .264 ( .52,.54) .96

8 1 .300(.81,73).93 .297(.80,.73) .93 .350 (.96,.90) .94 .337 (1.02,.93) .92

7 .301(.80,.76) .94 .300 (.79,.76) 94 317 (.85,.78) .94 .262 ( .87,.80).94

5 .315(.78,74) .94 317 (.78,74) .94 .329 (.81,.75) .94 .272 ( .83,.78) .94

2 317 (.76,71) .92 .317 (.76,.71) .92 323 (.77,.73) .94 .260 ( .79,.77) .94
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Table B.1: Relative bias of estimates and standard errors to the true values (RBT) with a sig-
nificance indication, based on analyses of 1000 simulated datasets generated by random intercept
model (p = 1) in five simulated scenarios of missing values: scc40 (missing values as in sccd0
dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due
to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing values not
at random). Parameters: fy (intercept), 31 (time coefficient), 32 (subject level factor), 33 (clus-
ter level factor), o2 (variance at subject level), 02 (variance at cluster level), ¢ (extra-binomial
dispersion). Estimation procedures: PQL (2nd order penalized quasi-likelihood), PQLx (2nd or-
der penalized quasi-likelihood with extra-binomial dispersion), ML (maximum likelihood), MCMC

(Bayesian Markov chain Monte Carlo).

Statistical Methods

Scen- parm- PQL PQLx ML MCMC

ario eter. Est. SE Est. SE Est. SE Est. SE

scc40 Bo -1.3  —4.9* 2.7t —5.9* 0.1 —4.3* 00 -3.1
b1 -0.7t  —8.7* 4.0t —16.7* 0.0 —4.3 0.0 —4.3
B2 —4.21 0.6 —4.2 —0.6 —0.5 0.0 —-0.1 0.0
Bs -2.0 —4.3* 1.5 —41 1.5 4.1 .7 -13
o3 —10.8% —~15.1* 7.5t —23.2* 0.87 —2.8 2.5t —2.0
o2 —15.4%  —5.1* —9.28 5.2~ —9.2t 3.1 0.1 8.8*
¢ —17.8% 375"

MARL S -1.0 24 46t 34 1.1 —1.1 3.2t —5.2*
b1 -2.1} 5.0 13.8t  —17.0* 0.8 0.1 2.1 —1.7
B2 —4.5t  -2.0 00 —1.2 -1.0 0.1 -0.1  -1.0
B3 —3.28  _—p5.2* 14  —5.3* 0.2 —4.4* 22 34
o3 —12.1F —12.4* 10.7¢  —23.2* 0.7 2.4 3.5t —0.7
o3 —~14.0¢  —6.4* ~5.5t —6.2* -7.6% 3.8 20  11.0*
¢ —19.0f  25.6*

MARH  § —3.28  —5.3* 13.6f  —6.3* 1.3 21 1.6 —04
b1 —2L.7%F —15.7* 92.9% —45.6* 1.2 2.0 4.4t 0.3
B2 —7.1t 11.0¢ 3.1 -1.0 -06 -0.2 -07
s —5.5t  —8.0* 129t —7.3* 0.5 —5.4* 1.3 =35
o2 —26.0 —26.7* 66.7¢ —49.3* 14" 3.6 50 1.3
o2 —-19.0+  —9.5* 1584 —6.0* -8.1% -34 1.7 8.4*
¢ —27.6f —26.7*

NMARL fp —2.6* —1.6 2.7t 25 0.2 0.7 06 —18
B —78.8t —-38 713t 147 777t 18 —774t 24
B2 —4.88 04 —0.6 0.4 -1.5% 0.7 -1.1t —04
B3 —3.3t  —4.6* 1.1 —4.6* 02 4.1 04 3.2
o2 —11.2¢ —11.9* 11.28  —22.0* 0.2 1.3 1.9 1.1
o2 -13.9+ —6.5* -6.08  —6.5* —8.4F  —4.8* 0.8 7.8*
¢ —19.8¢ 16.4*

NMARH fo 11.5* —6.3* 2621 —5.7* 4.7+ -3.1 15.14  —1.0
b1 -3174%  —57* —296.5% —22.8* -318.0' —10.3* -318.1% —10.9*
B2 —8.7%  —4.0 4.4 1.4 —6.21  —2.2 —5.5t  —2.2
Ba —7.38 7.7+ 6.3t  —6.2¢ -5.31  —6.5* —4.7F —4.3*
o3 —~23.0 -24.8* 53.11  —40.9* 113} 0.8 —8.74 0.3
a3 -19.88  —7.9* 5.5t —3.6 —-16.3t —4.3* ~7.8  7.0*
é —28.31  —47.3*

t significant bias in estimate at P < 0.05; } significant bias in estimate at P < 0.01;

*

significant bias in standard error at P < 0.05
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Table B.2: Relative bias of estimates and standard errors to the true values (RBT) with a
significance indication, based on analyses of 1000 simulated datasets generated by autoregressive
random effects model with (p = 0.9) in five simulated scenarios of missing values: scc40 (missing
values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values
at random due to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing
values not at random). Parameters: 3y (intercept), 61 (time coefficient), G2 (subject level factor), s
(cluster level factor), o2 (variance at subject level), o2 (variance at cluster level), ¢ (extra-binomial
dispersion). see Table B.1 for coding of estimation procedures.

Statistical Methods

Scen- Parm- PQL PQIx ML MCMC

ario eter Est. SE Est. SE Est. SE Est. SE

scc40 Bo —-6.11 -1.3 —2.7t 21 -5.3t  —0.9 -51f —-1.3
N —6.5t  —9.1* -1.3t —13.6* —4.7f  —4.5* —4.7%  —4.5*
B2 —6.4t -14 -3.4% 0.7 —3.9¢ 0.7 =374 0.0
B3 —6.5* -3.8 -35t 3.7 —42f 34 -39t -20
o3 —25.2% —16.6* -10.3% —24.7* -16.8¢ -29  -156% -238
o3 -20.7t  —12.5* 154 —122* 166 9.7 -8.3t 24
¢ —-16.0f  46.7*

MARL G —6.5t  —5.7* -1.7 —6.5* -5.21 41 -5.28 3.7
e —6.1F —11.1* 7.7% —21.6* -3.8% —5.9* -3.21  —6.2*
Ba —6.5%  —04 —2.5t  —0.5 —4.1t 2.3 —3.8% 2.2
B3 —7.4%  —5.4* —34%  —5.4* —5.1t 4.1 -5.08 -2.6
o2 —26.7 —20.2* —8.0f —29.8* —17.2t  —47*  -159% —4.6*
o2 —20.0f 5.7 -12.8¢ 6.0 -15.9+ 2.7 ~7.4%  10.8*
¢ -17.1%1  40.7*

MARH G -84t —84* 4.0t —9.7* -57F  —4.9* -54% -35
e —15.0f —25.8* 78.1% —50.7* 49t —9.0* 7.7¢ —10.6*
Bo -10.4*  —4.1 56t -3.2 —6.1% 2.8 —5.5% 2.8
B3 —11.2%  —6.0* 4.7t —6.2* -71% 3.3 -6.6t —1.6
o2 —46.5* —35.0* 17.8% —57.7* -27.9% 87 256 —10.0"
o3 -27.61  —9.3* 1.0 —9.2* —20.4t —2.5 —~12.0f  10.1*
¢ -22.3t 8.6

NMARL fo —11.5¢  —4.9* —~7.8% —5.8* -10.7%  -3.5 —-10.5* -24
b1 —83.81 —12.2* —79.1% —20.3* -83.2t 9.8« —82.9% —10.3"
B2 -10.0f 0.0 -6.71 05 —8.7% 3.0 -84t 20
B3 -10.8* 3.5 —75t 3.6 -9.74 29 -9.5t -1.0
o3 —40.9% —20.4* -26.3% —29.3* —-35.00  —5.0 -34.1%  —5.0*
o2 —25.7  —6.6* -20.0f 7.0 -23.8 -33  -159% 10.0"
) —15.6%  49.5*

NMARH S 55t —6.8* 18.1F  —7.9* 6.8t —-3.5 72t —0.8
B —309.6f —6.9+ —297.9% —209* —309.8% —-10.6* —309.9% —10.9
B2 ~12.9% -24 -1.6t —1.0 —11.5¢ 0.4 —11.0f 0.2
Ba -12.9% -35 ~-14 -3.1* -12.0f -23 —11.6% 0.8
o2 —44.57 —26.8* 10.0f —48.0* —36.51 3.7 -35.1%  —5.4*
o3 —28.0F  —6.4* —7.5%  —5.4* -26.3t —1.8 —18.8t  10.4*
é —23.11 —39.6*

t significant bias in estimate at P < 0.05; ¥ significant bias in estimate at P < 0.01;

*

significant bias in standard error at P < 0.05
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Table B.3: Relative bias of estimates and standard errors to the true values (RBT) with a
significance indication, based on analyses of 1000 simulated datasets generated by autoregressive
random effects model with (p = 0.5) in five simulated scenarios of missing values: scc40 (missing
values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values
at random due to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing
values not at random). Parameters: gy (intercept), 81 (time coefficient), G2 (subject level factor), 33
(cluster level factor), o3 (variance at subject level), o3 (variance at cluster level), ¢ (extra-binomial
dispersion). see Table B.1 for coding of estimation procedures.

Statistical Methods

Scen- Parm- PQL PQLx ML MCMC

ario eter Est. SE Est. SE Est. SE Est. SE

scc40 Bo -16.78 25 —147% 35 -16.81 —~1.0 ~17.1% 0.0
B —16.7* 0.0 —14.7%  —5.3* —16.7¢ 00 —16.7* 0.0
B2 -16.77 2.7 -14.9*  -35 —~16.5% 0.9 —-16.3¢ 0.0
s —~16.8% -24 -15.08 24 —16.7F  —1.6 —16.7¢ 1.6
o3 —68.41  —14.2* —61.9Y —21.6* —65.5% —1.6 —65.2 0.0
o2 -36.4¢  -10.2* -33.5% -—111* -36.2% 7.0 —29.6 6.3
¢ —10.2%  140.0*

MARL 3 -16.9* —5.5* —142t —64* —16.81 -39 -16.9t —-0.9
By ~18.5  —8.9* -10.8¢ —15.8* 173t 27  —17.0' —36
B2 -16.9Y —4.9* —145% —4.8* -16.6! 0.9 -16.41  —1.0
B3 —16.0f  —7.2* -136t 75 157t —6.3*  —13.7F 27
o3 -68.74 -16.1*  -60.8% -26.0 —65.3} 1.2 -65.0t —0.2
o2 -35.4% 76" —-31.6+ -81* -350t -34  -283% 104"
) —-10.9% 111.7*

MARH § -18.4¢  —5.6* -12.6* 8.2 -—17.5¢ 34 —17.7% —041
B —18.5t —24.5* 20.9% —47.8* -89t 70 -10.1% —124*
B2 —22.0f  —8.0* -14.9% —131* —20.6% -—19 -20.8t 3.1
B3 -21.28 7.6 -13.9% -102* -19.8% —-6.0* —19.9% -13
a3 —85.5F —28.1* -69.1+ -57.3* -80.6t 7.0+ -81.3% -19.8*
o3 —43.37 —11.5* -32.2F  —16.1* 4131 —53* 355! 8.0*
Iy —11.2¢ 9.9*

NMARL 3 —22.7F 5.7 —212t  —65* 228" —45* 230t 17
B —85.2t —12.8* —84.1% —16.6* —85.0¢ —10.9* —85.0% —11.1*
B2 —22.4% -3.6 —21.1}  —40 -22.58  —0.1 —22.5  —0.4
B3 —21.5  —7.1* -20.1% 7.3 216t —6.3* 217t 24
o2 —86.1% —13.3* —82.0% —24.6* 845t 1.2 —84.7%  —6.3*
o3 —43.8t 7.0 —-41.8t  -7.6* —44.0t 32  -38.2F  10.8*
) -7.3+  107.1*

NMARH 3, —4.81 6.7 1.4t —9.9* —4.9t —4.3* -51F —-14
5 —274.6% —12.5* —275.7% —18.2* —274.3% —13.4* 2744 -—13.6*
Bs —23.5 0.4 -188F 2.2 —23.2} 3.5  —23.3% 2.6
B3 —22.54  —7.2* —17.58  —82* 224} —6.1* 224} 24
o3 ~84.1F  —14.8* -68.61 —-46.9* —-81.8% 1.5 —83.2¢ —16.8
o2 —44.6}  —10.0* —37.28  —124* 443t 51+ —38.7¢ 7.4*
¢ —11.8t —21.4*

T significant bias in estimate at P < 0.05; ¥ significant bias in estimate at P < 0.01;

* significant bias in standard error at P < 0.05
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Table B.4: Relative bias of estimates and standard errors to the marginal true values (RBT) with a significance indication, based on analyses of
1000 simulated datasets generated by autoregressive random effects model with (o = 1, 0.9, 0.5) in five simulated scenarios of missing values: scc40
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), MNARL,
MNARH (low (31%) and high (52%) proportion of missing values not at random). Parameters: (3, (intercept), 81 (time coefficient), B2 (subject level
factor), B3 (cluster level factor). Estimation procedures: OLR (ordinary logistic regression), ALR (alternating logistic regression).

correlation p=1 p=0.9 p=0.5
Scen- Parm-  procedure OLR ALR OLR ALR OLR ALR
ario eter Est, SE Est. SE Est, SE Est. SE Est. SE Est. SE
sccd0 Bo -5.31  —50.8* —4.5¢ —4.7* —6.4F  —48.2* —5.8t -1.2 -5.0t  —47.0* —4.5% -3.7
B —8.2t 0.0 —4,5% 12.5* —8.2t 0.0 —5.4% 0.0 —6.4% 6.3* —4.5% —6.3
Bo -5.3%  —36.3* -5.3% -1.9 —4.5t  —34.5* —4.6% -2.9 —4.4%  —22.6* —4.4% -2.2
B3 —3.5t  —66.7* —3.4¢ -3.3 —4.6%  —66.7 —4.8t —2.9 —4.6t  —64.7* —4,5% —2.0
MARL Bo —11.5%  —51.0* —3.8¢ -1.8 —12.8%  —52.7* —5.7% —5.7* -9.7%  —50.8* —a.7% —5.1*
B1 —717.0% —6.0 -3.7¢ -3.3 —70.6t -9.7 -3.8% —8.2* —48.1t -6.9* —4.4% —5.7*
B2 —8.2F  _34.4* —5.5% —2.9 —6.7t  —31.2* —4.5t -0.3 ~-5.9t 216" —4.4% -3.2
B3 -7.28 653" —-46t 3.7 -7.8%  —65.3* —5.6 —4.2* —5.1%  —65.1* —3.5¢ —6.0*
MARH Bo —5.0t  —42.4* 8.8t -1.1 —4.6%F  —44.2% —7.5% —5.8* 2.2t 424+ —1.5% —3.6
B1 —200.7f  —10.0* 28.4% —4.9* -—162.7%  —13.1* 42.2% —9.6* -83.7t  —10.7* 52,61 —16.8*
B2 —16.3%  —19.3* —4,7% —1.6 —13.3% 11.8* —2.8t 2.9 —9.4% —6.8* —2.1% —1.7
Bs —15.0f  —54.2* —3.6t -1.8 —14.1%  —53.9* —3.9% —0.7 —8.4t 552 —1.2% —4.0
NMARL B —11.2%  —50.8* —4.1% -1.9 —11.28  —51.7* —6.4% —4.8* —6.51  —49.6* —4.7% —4.7*
B —127.7% —~5.9* —78.31 -6.5%  —117.1%  —11.4* —82.5% —6.2* —96.08  —11.7* —81.6% —6.5*
B2 —6.7F  —34.2* —5.2% —4.0 —5.1% —27.6* —4.0% -1.5 —4.5% —12.3* —4.1% —3.7
Bs —5.7%  —65.2* —4.11 —4.7* —-6.2F  —64.1* —5.1% -3.3 —3.51  —64.1* —3.1% —6.3*
NMARH S 7.5%  —41.2* —12.6% —5.9* 8.8%  —41.7* 11.8t —~6.9* —15.0%  —40.0* 16.1% —5.8*
B/ —450.2%  —13.7*  -317.7F 383  —4246f —127  -329.7F 279~ -360.7% —13.9* —320.4% —15.9*
B2 —-9.1¥  —20.7* —3.9¢ —8.7* —7.8F 141 —3.5¢ —5.8* —6.2t 34 —4.2% -1.7
Bs —8.5+ —53.1* -3.2¢ —9.6* -8.31  —5L0* —4.1% ~5,7* —5.5% 51.9* -3.1% —8.0*

! significant bias in estimate at P < 0.05; *

*

significant bias in estimate at P < 0.01; * significant bias in standard error at P < 0.05
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Table B.5: Relative bias of estimates and standard errors to the marginal true values (RBT) with a significance indication, based on analyses of
1000 simulated datasets generated by autoregressive random effects model with {(p = 1, 0.9, 0.5) in five simulated scenarios of missing values: scc40
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), MNARL,
MNARH (low (31%) and high (52%) proportion of missing values not at random). Parameters: Fy (intercept), 51 (time coefficient), B2 (subject level
factor), B3 (cluster level factor). Estimation procedures: WGEEci (weighted generalized estimating equations (WGEE) with independence correlation
at cluster level), WGEEce (WGEE with exchangeable correlation at cluster level).

correlation p=1 p=0J9 p=05
Scen- Parm- procedure WGEEci WGEEce WGEEci WGEEce WGEEci WGEEce
ario eter Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
MARL G -3.4t 1.9 3.2t 1.3 -57F  —238 1.9 —28 —45t —4.9* 94 _6.1*
B1 —~1.51 2.3 1.4 3.3 -1.9t -35 0.4 —-2.00 -32t -—14 -1.9¢ 1.3
B —4.9% 3.8 —4.3% 4.2 —3.6t 51* —3.1% 4.2 —4.0% 3.0 -3.1% 2.9
Bs —42t  —06 -25 —34 52t  _16 —4.0f  -36 —-3.3t  —44 -35f -39
MARH 5, 10.0f  —32.9* —10.8% —38.2* 3.6t -—38.2* 79t —39.2* 4.0t -31.5* 3.5 —34.7*
B -37.6f —39.1* —324% -—346* -—36.0' -—36.6* —294% -—334* —229% _—32.3* —14.7% —29.3*
o -5.0t —-89.3« —8&7F 260 —2.8t —404* 76t —25.7 —21t _356* 3.7t —272*
B3 -5.2t 355 84" —431* —54f -—346* 56 —41.1* —1.6%f -329* 18 —41.2*

t significant bias in estimate at P < 0.05; }

significant bias in estimate at P < 0.01; *

significant bias in standard error at P < 0.05



