
Statistical models for binary repeated 

measures and hierarchical data 

in veterinary science

By

Elmabrok A. M. Masaoud

A Thesis

Submitted to the Graduate Faculty 
in Partial Fulfillment of the Requirements 

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Health Management 
Faculty of Veterinary Medicine 

University of Prince Edward Island

©  MAY 2009. F. Masaoud.



M
Library and 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A0N4 
Canada

Bibliothèque et 
Archives Canada

Direction du 
Patrimoine de l'édition

395, rue Wellington 
Ottawa ON K1A0N4 
Canada

Your file Votre référence 
ISBN: 978-0-494-49860-6 
Our file Notre référence 
ISBN: 978-0-494-49860-6

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

1^1

Canada

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.



Condition for the use of the thesis

The author has agreed that the Library, University of Prince Edward Island, may 
make this thesis freely available for inspection. Moreover, the author has agreed that 
permission for extensive copying of this thesis for scholarly purposes may be granted 
by the professor or professors who supervised the thesis work recorded herein or, in 
their absence, by the Chairman of the Department or the Dean of the Faculty in 
which the thesis work was done. It is understood that due recognition will be given 
to the author of this thesis and to the University of Prince Edward Island in any use 
of the material in this thesis. Copying or publication or any other use of the thesis 
for financial gain without approval by the University of Prince Edward Island and 
the author’s written permission is prohibited.

Requests for permission to copy or to make any other use of material in this thesis 
in whole or in part should be addressed to:

Chairman of the Department of Health Management

Faculty of Veterinary Medicine

University of Prince Edward Island

Charlottetown, P. E. I.

Canada CIA 4P3

11



Permission to use postgraduate thesis

Title of thesis: Statistical Models for Binary Repeated Measures and Hierarchical 
Data in Veterinary Science

Name of Author: Elmabrok A. M. Masaoud

Department: Health Management

Degree: Doctor of Philosophy Year: 2009

In presenting this thesis in partial fulfillment of the requirements for a postgraduate 
degree from the University of Prince Edward Island, I agree that the Libraries of 
this University may make it freely available for inspection. I further agree that 
permission for extensive copying of this thesis for scholarly purposes may be granted 
by the professor or professors who supervised my thesis work, or, in their absence, 
by the Chairman of the Department or the Dean of the Faculty in which my thesis 
work was done. It is understood any copying or publication or use of this thesis or 
parts thereof for financial gain shall not be allowed without my written permission. 
It is also understood that due recognition shall be given to me and to the University 
of Prince Edward Island in any scholarly use which may be made of any material in 
my thesis.

Signature:

Address: Department of Health Management

Faculty of Veterinary Medicine

University of Prince Edward Island

550 University Avenue

Charlottetown, PE CIA 4P3

CANADA.

Date: March 25, 2009.

Ill



SIGNATURE PAGES 
  

iv 
  

REMOVED 
 



Dedicated to: 

Family and parents



Abstract

The objective of the thesis was to assess the performance of statistical procedures for 

the analysis of binary longitudinal data in veterinary science, specifically, to describe 

and quantify their performance in terms of statistical properties such as unbiasedness, 

confidence interval coverage and efficiency. The focus was on marginal and random 

effects procedures including: ordinary logistic regression (OLR), alternating logistic 

regression (ALR), generalized estimating equations (GEE), marginal quasi likelihood 

(MQL), penalized quasi likelihood (PQL), pseudo likelihood (REEL), maximum like­

lihood (ML) and Bayesian Markov chain Monte Carlo (MCMC). The marginal and 

random effects procedures handle the within-subject dependence differently, and 

they offer different interpretations of regression estimates for binary longitudinal 

data. Several simulation studies covered a wide range of data structures and designs 

including a two-level balanced longitudinal design, a three-level balanced setting of 

binary repeated measures data, and repeated measures data with missing values. A 

statistical simulation approach was used as the tool for the assessment.

The first study involved a two-level setting of binary repeated measures data. 

Results for the marginal model data showed the autoregressive GEE showed to be 

highly efficient when treatment was within subjects, even with strongly correlated 

responses. For treatment between subjects, random effects methods also performed 

well in some situations; however, a small number of subjects with short time series
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proved a challenge for both marginal and random effects methods. Results for the 

random effects model data showed bias in estimates from random effects methods 

while the marginal model produced estimates close to the marginal parameters.

The second study involved binary repeated measures data with an additional hier­

archical structure. Results indicate that in data generated by random intercept mod­

els, the ML and MCMC procedures performed well and had fairly similar estimation 

errors. The PQL regression estimates were attenuated while the variance estimates 

were less accurate than ML and MCMC, but the direction of the bias depended on 

whether binomial or extra-binomial dispersion was assumed. In datasets with au­

tocorrelation, random effects estimates procedures gave downward biased estimates, 

while marginal estimates were little affected by the presence of autocorrelation. The 

results also indicate that in addition to ALR, a GEE procedure that accounts for 

clustering at the highest hierarchical level is sufficient. The REPL procedure per­

formed poorly and produced unsatisfactory estimates regardless of autocorrelation 

values.

The third study involved binary repeated measures data with an additional hi­

erarchical structure and missing values, where five different scenarios of simulated 

incomplete datasets were considered. The first scenario corresponded to a combina­

tion of three types of missingness patterns present in a real (scc40) dataset: delayed 

entry and drop-outs as well as intermittent missing values. The remaining scenarios 

involved only drop-outs, and corresponded to either moderate or high percentages 

of values either missing at random (MAR) or not missing at random (NMAR), re­

spectively.

In the first scenario, all estimation procedures except OLR performed well and 

produced estimates with small relative bias (generally less than 5%) for levels of miss­

ingness that roughly corresponded to the scc40 data. In MAR missingness scenarios.
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some biases were found for ALR, GEE and PQL procedures, whereas the likelihood- 

based procedures were largely unaffected by the missing values. In NMAR scenarios, 

all procedures experienced similar and strong biases in the time coefficient; however, 

fixed effects estimates at the subject and cluster level were relatively unaffected. 

The presence of autocorrelation in the data did not substantially alter the impact 

of missing values although the shrinkage of random effects estimates was marginally 

less pronounced than in the full datasets.

Additionally, a hierarchical data structure arising in an aquaculture vaccine trial 

on Infectious Salmon Anaemia Virus (ISAY), where multiple treatment groups of 

fish in the same tanks were observed over time, was studied. The focus was to assess 

and account for neighbour treatment effects. By neighbour treatment effects in an 

incomplete block design setting, we mean that treatments present in the same block 

(tank) may affect each other in their performance. Two statistical models were pro­

posed to assess and account for neighbour treatment effects. The first approach was 

based on a non-linear model, and the second involved cross-classified and multiple 

membership models. The performance of the models was evaluated by simulation.

Results demonstrated that both proposed models show promise in capturing neigh­

bour treatment effects of the type assumed, whenever such neighbour effects are of 

at least moderate magnitude. Analyses of the ISAY trial data by both models did 

not provide any evidence of substantial neighbour effects.
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An overview of statistical models for 

binary repeated measures and 

hierarchical data in veterinary science

1.1 Introduction

Repeated measures data are data with multiple records on the same sub­

jects (e.g., animals or farms). In multi-level terminology [77, Chapter 12], 

this may be termed a two-level data structure, with observations (“mea­

sures”) corresponding to level one (such as tests) and subjects to level 

two. However, measures on the same subject are usually ordered (e.g., by 

time) which make such data more challenging than  a two-level structure 

with no ordering of units within clusters (e.g., animals in farms). Such 

data are commonly encountered in both experimental and observational 

studies.

Binary repeated measures data are encountered across a wide range of



applications in veterinary science and veterinary epidemiology. The most 

evident examples of two-level data  are records of presence or absence of 

disease conditions over time. Disease conditions may be detected clini­

cally (e.g., mastitis) or by a test such as bacterial culture [66], faecal egg 

counts [2] or antibody determination for parasites [72]. O ther examples 

are success of fertilization (e.g., in repeated reproduction cycles [3]), oc­

currence of certain behaviours in animal welfare studies [35, 81], or of 

treatm ent side effects in clinical trials (e.g., treatm ents for diabetes in 

dogs [41]). If the binary outcome is created by thresholding a quantita­

tive outcome at a predefined cut-off value (e.g., ELISA for the diagnosis 

of Johne’s disease; [78]) a substantial loss of information is implied but 

the dichotomous outcome may be of greater interest than the quantita­

tive measurement. Another range of applications occur in the context of 

farm-level monitoring of product quality (e.g., milk [69]).

An extension of the two-level structure arises if subjects in addition are 

nested within some (physical) clusters (e.g., hospitals, herds, provinces). 

Such structure may be termed three-level repeated measures data, where 

clusters correspond to level three.

Binary repeated measures data  with an additional hierarchical level 

has formed the basis of many studies of mastitis and dairy management 

factors (e.g., [30, 66]). Some examples from human preventive medicine



include the effects of air pollution on school absences in the southern 

California Children’s Health study [82] and the sickness episodes for 

workers over time [65].

This introductory chapter is intended to give the reader an overview of 

the current state of knowledge on statistical theory for modeling binary 

repeated measures (longitudinal, time series) data w ith/w ithout addi­

tional hierarchical structure. Emphasis will be placed on reviewing and 

assessing the existing statistical models and estimation procedures tha t 

are implemented in broadly accessible statistical software.

1.2 Efficiency, data structure and experimental de­

sign

This section briefly introduces the efficiency, data  structure and experi­

mental study designs tha t will be discussed in this chapter and through­

out the thesis.

1.2.1 Efficiency

By efficiency we mean the ability of a statistical procedure to produce a 

smaller variance estimate of the effect of interest in comparison with al­

ternative methods. Efficiency is often expressed numerically as the ratio



of estim ated variances for the reference (“best”) method and the proce­

dure under study. The same terminology can be applied for study designs 

where the choice of a proper study design may result in a reduction of the 

variance estimate of the treatm ent effect (such as in longitudinal studies 

versus cross-sectional studies). In comparing competing experimental 

designs, an efficient design is one tha t can achieve the same precision as 

other designs but with fewer resources.

1.2.2 D ata structure

In veterinary epidemiology there are two types of study designs: obser­

vational and experimental studies [16, chapters: 7-12]. In experimental 

studies, subjects are randomly allocated to different comparison groups, 

whereas in observational studies, subjects are observed and their data 

is recorded. In general, experimental studies perm it drawing stronger 

conclusions than observational studies, but often observational studies 

are the only visible option [24, Chapter 2]. W ithin the context of experi­

mental studies, two types of data structure “repeated measures” and “hi­

erarchical” are selected to form the basis of the data structures discussed 

though-out the thesis. Generally, failure to account for the consequences 

of such type of data structure may result in a violation of regression 

model assumptions and result in a poor fit of a statistical model and a



questionable statistical inference ([15, Chapter 7] and [17]).

1.2.2.1 Hierarchical data structure

In veterinary epidemiology, animals (subjects) within the same herd 

(cluster) are more alike, compared to animals from different herds. Ani­

mals within a particular herd share the experience of being in the same 

environment (food, management practice,..etc.) which may lead to in­

creased homogeneity over time [16, chapter 21]. This type of data struc­

ture is called hierarchical, multilevel [77] or clustered [16, chapter 20] 

data structure.

The goal of multilevel analysis is to account for all the variation in the 

outcome, including the contributed information from each level of clus­

tering in the data. In multilevel data, the outcome is usually measured 

at the lowest level of the hierarchy. One advantage of a multilevel data 

structure is its flexibility to allow researchers to combine multiple levels 

of analysis in a single comprehensive model by specifying predictors at 

different levels. It is also possible to include cross-level interactions to 

determine the dependence of lower-level predictors on higher level pre­

dictors [26]. A consequence of the hierarchical structure implies th a t the 

observations from subjects within the same cluster are similar, i.e., the 

same covariance structure between the measurements on subjects within



the same cluster, usually termed an exchangeable covariance structure. 

One way to account for the similarity between responses is by modeling 

the covariance structure of the outcome.

A common approach for the analysis of hierarchical data  with a contin­

ues outcome variable is the linear mixed model, also known as multilevel 

model [77], or variance component model [76]. These models account for 

the hierarchical structure of the data by specifying random effects for all 

levels above the bottom  level. Then the variability in the outcome can 

be split into variances at different levels, i.e., each level contributes to 

the variation in the outcome. Goldstein et al. [28] presented a measure of 

the percentage of variability attributable to cluster over total variability, 

called the intra-class correlation (ICC) or variance partition coefficient 

(VPC). They described also how to extend VPC to binary response mod­

els. The ICC measures the degree of similarity of measurements within 

a cluster. It takes values between 0 and 1. Goldstein [26] suggests using 

“intra-unit” instead of intra-class correlation and replace unit with an 

appropriate term (i.e., herd, hospital, etc.).

1.2.2.2 R epeated  measures data structure

Repeated measures data structure exists when repeated measurements 

are taken on the same subject at different ordered times or various con­



ditions [12, Chapter 2]. Longitudinal data [15] are a common form of 

repeated measures where measurements are recorded on subjects over a 

period of time. However, throughout the thesis, repeated measures and 

times series are used to refer to longitudinal data  setting. The sta tisti­

cal objective in longitudinal data  design is making inference about the 

expected value of outcomes, in terms of treatm ent effects and how such 

effects change over time. A longitudinal study design has the advan­

tage over a cross-sectional design in tha t changes over time in treatm ent 

effects can be estimated [15, Chapter Ij. The positively correlated mea­

surements per subject in longitudinal studies may reduce the variance es­

tim ate of treatm ent effect in comparison to cross-sectional studies. Thus 

the design has a potential for substantial gains in efficiency ([15, Chapter

II. [22]).

Similarly as for the hierarchical data structure, repeated measures data 

structure implies tha t the multiple measurements on the same subject 

are correlated. The correlation p ( j , f )  between observations (e.g., at 

times) j  and f  can be expressed in a range of correlation structures, 

including independent { p{ j , j ' )  =  0), exchangeable {p { j , j ' )  =  7 ), and 

autoregressive (AR) {p{j^j ' )  =  The autoregressive process im­

plies tha t correlation between the two measurements on the same subject 

th a t are close in time is higher than the two tha t are further apart. The 

within-subject dependence (as a result of the correlated observations)



violates the basic assumption for simpler statistical methods tha t obser­

vations are independent. Similarly as to the hierarchical data  structure, 

the within-subject dependence is usually accounted for by modelling the 

covariance structure [16].

1.2.2.3 R epeated  m easures data w ith  additional hierarchical structure

Repeated measures data with additional hierarchical structure exists 

when multiple records are taken over time on the same subjects (e.g., 

animals or farms) which are nested within some (physical) clusters (e.g., 

hospitals, herds, provinces). In multi-level modelling terminology [77], 

this may be termed three-level repeated measures data, with observa­

tions corresponding to level one and clusters to level three. Such data  

structures are encountered across a wide range of applications in veteri­

nary and human epidemiology. An example of this type of data structure 

is the records of presence or absence of bacteria in monthly milk samples 

from cows housed in multiple herds. Thus, the hierarchical structure 

is the clustering of cows in herds, and the repeated measures are the 

monthly test records based on the milk samples.

Dealing with the hierarchical structure in addition to the repeated 

measures will at the very least increase the complexity (conceptual and 

numerical) of the model/analysis considerably. Some procedures (GEE



in Section 1.4.2.1) were designed for two-level structures and offer no 

straightforward estimation to three-level structures. Other procedures 

(ML in Section 1.4.1.1) may be affected in their performance by the 

increased model complexity and size of datasets. Comparison of proce­

dures for repeated measures with additional hierarchical structure exist 

for single datasets [65] but no comprehensive review has to our knowledge 

been undertaken.

1.2.3 Experimental design

Generally, one of the basic principles in experimental design is the reduc­

tion of variation between the treated units (experimental error). Often 

this can be achieved through the randomization of the treated units [13] 

and blocking groups of similar experimental units. The characteristic 

of an experiment usually involves, the imposition of a treatm ents ran­

domly to n  experimental units, in which their responses are measured. 

The experimental units can be divided into a groups based on the trea t­

ments they receive, or to treatm ents per block, or multiple blocks of 

homogenous units per treatm ents.



1.2.3.1 Treatm ents betw een subjects: parallel group design

In randomized controlled clinical trials with two treatm ents (a — 2), 

the eligible subjects are randomly assigned into two groups with the 

objective to compare the effect of the two treatm ents ([16, Chapter 11] 

and [13, Chapter 3]). The results are then analyzed by the comparison 

of the groups. An implication of design is th a t differences between the 

subjects contribute to the variability of measurements.

1.2.3.2 Treatm ents w ith in  subjects: cross-over design

In a cross-over study with two treatm ents (a =  2), each eligible subject 

is assigned to receive both treatm ents in sequence, with a time period 

before the adm instration of the second treatm ent, usually termed “wash­

out” [16, Chapter 11]. Each subject is randomly assigned its first trea t­

ment. Then, the outcome is monitored during each period of treatm ent, 

and in this way each subject can serve as its own control.

In a repeated measurements design, it may be of interest to randomly 

expose each subject in the study to a sequence of treatm ents to reduce the 

error (within subject) variance as well as to enable an unbiased estim ate 

of treatm ent effects, by having each subject serve as its own control. One 

major advantage of the within-subjects design is th a t it eliminates almost 

all confounding effects th a t may be caused by the subject differences.
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Another advantage of this type of treatm ent adm instration is th a t it 

reduces the sample size requirements. One disadvantage of this design, 

is the potential of confounding of the order effect of treatm ent. This can 

be usually be avoided by randomly assigning the sequence of treatm ents 

and ensuring an adequate wash-out period to eliminate the effect of one 

treatm ent on subsequent treatm ent (s).

1.2.3.3 Incom plete block design

The design of many experimental studies may face some logistical con­

straints (e.g., sample size space or time limitations) to allocate (a >  2) 

treatm ents to all e blocks. Thus only a portion of the treatm ents can 

be allocated to each block. This design is called the “incomplete block 

design”. Designs for incomplete blocks include balanced and unbalanced 

block designs. Multiple types of balanced and partially incomplete de­

signs exist. Dean and Voss [13, Chapter 11] presented balanced incom­

plete block design, group divisible designs, and cyclic designs. The clas­

sical balanced incomplete block design (BIBD) exists for certain combi­

nations of the number of treatm ents, blocks, and block sizes. This design 

requires th a t every pair of treatm ents occurs together within the same 

block an equal number of times [13, Chapter 11]. In the group divisible 

design, treatm ents are divided into groups, and within each group the 

same requirement as for a BIBD is imposed. In the cyclic design, the ex­

11



perimental units are grouped into different blocks of different sizes, where 

each block is obtained from its previous block by cycling the treatm ents. 

However, many experimental studies fall into the unbalanced incomplete 

block design where the above requirements can not be fulfilled. In gen­

eral a block design where experimental units are nested within blocks 

can be thought of as hierarchical, multilevel [77], clustered [16, Chapter 

20] data structure. However, in certain situations, it can be considered 

also as a form of repeated measures data [15] structure, where blocks 

refer to a sequence of measurements over time.

1.3 Statistical models

1.3.1 Generalized linear models

Generalized linear models (GLMs) constitute a framework tha t unifies 

the regression models for independent outcomes [55, Chapter 4]. It con­

sists of three main items, a distribution function /  tha t is a member of 

an exponential family, a linear predictor rj and a link function g, so a 

simple regression model takes the following form:

E{y)  = g  =  g

12



where E(^) is the mean of y, and Var(^) = V (//)= V (p  iy))

Consider independent binary outcomes =  1 , . . . ,  n, and a set of p  

explanatory variables x n , . . . ,  Xip. For some specific functions a(.), 6(.) 

and c(.), the likelihood function of the exponential family [12, Chapter 

9] takes the following form:

fiVi', î, <f) =  exp I  +  e(%; 4>) I , ( 1.2 )

where <9 is a canonical param eter and 0 is a dispersion parameter, b(9) 

is called cumulant function [55, Chapter 2] tha t does not depend on 

the data. As an example, for binomial random variable y,  with ( n , //), 

where n  is the number of trial and pL is the probability of success, the 

probability mass function can be expressed in the following exponential 

family form:

exp
n

log ( ^  I + y \ o g y + { n - y )  log(l -  y)

exp 2/log n lo g (l -  y )  +  log
n

.1 '  \% /

where { y \ o g { ^ ) ,  (n lo g (l -  y)  and log Q) )  refer to {y0,b{6)  and c{y))  

respectively in the likelihood function (1.2) (see, e.g., [12, Chapter 9]).
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The log likelihood of (1.2) takes the form:

so,

then taking the expected value and equating it to zero (e.g., [12, Chapter 

9]) implies tha t the mean is,

d
m ^  log / ( 2/d (̂ ) =

It follows from (1.3) tha t the variance of yi is,

The linear predictor incorporates all the information for the explanatory 

variables x n , . . . ,  Xip into the model, i.e. rji =  Po^Pi Xn  .. .+f3pXip, where 

(3 is vector of the regression coefficient. The link function establishes a 

relationship between the linear predictor and the mean of the distribution 

by mapping the (0 ,1) interval into a whole real line (—oo, oo), i.e. fii =  

E{yi )  =  9~^{Po +  . - . ,  +Pp^ip)- Various link functions commonly

used [55, Chapter 4] for binomial distributions include: logit, probit, 

cloglog and log-log; the logit and probit models are discussed in more 

detail in Section 1.3.1.1.
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Given the relationship between 0 and (3 through the link function and 

the variance function, the can be expressed as f{y;/3,(l)),  so

the likelihood of /3 and 0  takes the following form:

. d .4 )

Then, the regression coefficients are estimated by solving the following 

estimating equation which equates the score function to zero:

= ^logZ(^,(^) -  -m ) = 0. (1.5)

This corresponds to maximizing the (log) likelihood function, i.e. ML 

estimation. In the absence of the assumption about a full specification of 

the distribution belonging to the exponential family, the equation (1.5) 

is solved for the regression coefficients (/3) by iterative weighted least 

squares (i.e. quasi-likelihood estimation, see 1.4.1.3).

1.3.1.1 Logistic and probit regression

The logit link function defined as g{/i) — l o g { / i / { l —/i)) [5] is widely used 

due to its simple interpretation in terms of the odds ratio [55, Chapter 

4]. Logistic regression refers to model with logit link which in its simple
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form can be written

logit(//i) =ni  =  (3o +  PiXii. . .  +  PpXip, (1.6)

where =  E(%) =  Pr(^i =  1). Similarly, the probit link g{fi) =  

where is the cumulative distribution function of the standard 

normal distribution N (0 ,1). This leads to the following probit regression 

model

(/ î) ~ 'Hi ~ Po T Pl^il - • • T PpXipf (1-7)

The logit and probit regression models are similar. However, their re­

gression param eter estimates are scaled: the logit coefficients exceed the 

probit coefficients by the approximation factor 7t / \ / 3  =  1.814. However, 

even adjusting regression coefficients by this factor, a slight difference 

between the logistic regression and the probit coefficients may still ex­

ist due to the difference between logistic and normal curves. Haley [33] 

showed th a t the logistic distribution, whose cumulative distribution func­

tion (cdf) takes the simple form F{ x )  =  (1 4- e~^) with density function 

f { x )  =  F { x ) { l  — F{ x) ) ,  is very close to a normal distribution. More­

over, Haley showed that the maximum difference \F(dx)  — ̂ { x )  | between 

the logistic cdf, F{ dx) ,  with zero mean and scale param eter d  =  V S / tt 

and the standard normal cdf, 4>(x), is about 0.0228. Kotz [43, Chapter 

22] showed graphically th a t the difference is minimized to 0.009 when
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(f =  ( \ / 3 / 7r ) ( 1 6 / 1 5 ).

1.3.2 Generalized linear mixed models

The generalized linear mixed models (GLMMs) extend the generalized 

linear models (GLMs) [55, Ghapter 4] by incorporating random effects 

for each subject. Thus called random effects models [15, Ghapter 7] or 

subject-specific models [31, Ghapter 5]. The idea is to link the mean of 

the response to the linear predictor r] conditional on the random effects 

[56, Ghapter 1], as well as to reflect the natural heterogeneity across sub­

jects [15, Ghapter 7]. Suppose we have a collection of binary observations 

yij on each of n  subjects (i =  1 , . . . ,  n) at i time points (j =  1 , . . . ,  i), as 

well as a set a: i , . . . ,  of explanatory variables recorded for each subject 

at every time point. A random effects logistic regression model, often 

termed a logistic random intercept model, takes the following form:

logit(Pr(r/jj =  f 1^*)) ~  ~  Po T  PiXnj  PpXpij -|- Uj, (1.8)

where Pr(^ÿ =  l \ui)  is the conditional probability and u i , . . .  ,Un are 

independent random variables and commonly assumed normally dis­

tributed, say Ui ~  N{ 0 ,  cr^), where cr̂  represents the heterogeneity (vari­

ance) between subjects. A more general form of the model (1 .8) is to 

replace the single random effect ui for subject i by a series of autocor­

17



related random effects resulting in a repeated measures random effects 

model [15, Chapter 11] th a t takes the form:

Iogit(Pr(yÿ =  l \ui j ))  =  /?o +  +  . . .  +  PpXpij +  Uij. (1.9)

Where the u n , , ua are series of autocorrelated random effects with 

p{uij,Uij>) ~  ph-l'l. The most commonly assumed distribution is the 

Gaussian (normal), say Uij ~  N{Q,a^)  where cr̂  represents the hetero­

geneity (variance) between subjects. Both models (1.8) and (1.9) are 

for the conditional probability of an “event” given the random effects of 

the 2th  subject. However, model (1.9) forms a better basis for random 

effects modelling of repeated measures data because of its ability to in­

corporate autocorrelation structure between the repeated measurements 

[15, Chapter 11].

Several alternative approaches have been suggested to allow for non­

exchangeable correlation structures, such as, a multivariate approach 

involving estimation of all correlations between measures on the same 

subject [85]. However, this approach seems unsuited to deal with long 

time series. Another approach has been proposed to model correlations 

between lowest level residuals, conditional upon the random effects in

(1.8), by an autoregressive function of time [4]; this method is imple­

mented in a macro for the MLwiN software.
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1.3.2.1 Intra-class correlation

Typically, generalized linear mixed models provide an approximate esti­

mate of the dependence of the outcomes p{y i j , y i f )  within a subject or 

a cluster (ICC, see 1.2 .2 .1). It depends on the mean (and therefore the 

fixed effects), the distribution of the random effects and their correlation 

structure. For model (1.8) with normally distributed random effects and 

in the absence of time-dependent predictors in the fixed effects, any two 

observations on the same subject are correlated to the same degree. No 

exact formula for the ICC is available but several approximations have 

been developed with the simplest of these, based on latent variable in­

terpretation of the binary outcome [77]. By this interpretation, a binary 

event {y =  1) is created whenever a continuous latent variable exceeds 

a threshold. For example, a subject may succumb when its severity of 

disease exceeds a threshold, or a subject may become diseased when 

exposure exceeds a threshold. Mathematically, a binary outcome can al­

ways be represented by a latent variable and a threshold, although their 

interpretation can be only hypothesized. In a logistic model, the latent 

variable can be shown to have a logistic distribution with a variance of 

7t^ /3 . Therefore, the following formula for the ICC is exact for the latent 

variable and may be used as an approximation for the observed binary
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outcome:

Likewise, in model (1.9) the correlation between two observations k  time 

steps apart can be expressed approximately as,

0^(7^
ICC % -%------;5— , where =  1 , . . . ,  t  — 1. (1.11)

1.3.3 Generalized linear marginal models

Marginal (population-averaged or PA) models [86] are expressed in terms 

of the marginal expectation of the outcomes without conditioning on 

the random effects. Then the marginal expectation (or probability of 

an event) is modeled as a function of the explanatory variables and 

regression parameters through the link function in a GLM. A marginal 

logistic regression model takes the following form:

logit(/i.jj) — T]ij — /3q T  (3\X\ij T  . . .  T  (SpXpij  ̂ (1.12)

where //ÿ =  E(y^j) =  Pr(yÿ =  1), note tha t in marginal and random 

effects models the regression parameters are not equal and their effects 

have different interpretations. A method to scale random effects param ­

eters to marginal parameters is available (see Section 1.5.1).

The avoidance of such scaling by separating fixed and random effects
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estimates was one of the key ideas behind the development of marginal­

ized models [34]. Marginalized models employ the marginal model (1.12) 

for the regression coefEcients and the random effects model (1.8) for the 

correlation structure. In the latter model, the fixed part is replaced 

by the equivalent of the marginal model fixed part for the conditional 

probability [34]. Marginalized models may be programmed using flexi­

ble statistical optimization tools (such as the nlm ixed procedure in SAS; 

[32]), but to our knowledge these models are not yet available in standard 

statistical software, or as an add-on package.

1.4 Statistical estimation procedures

1.4.1 Random effects estim ation procedures

The likelihood contribution of subject i in model (1.8) involves an inte­

gral over the random effect distribution, and takes the following form:

/ + 0 0  ^  -I 2

0 0  7_i v27r(7„

In general, there is no analytic expression available for the equation 

(1.13) and a numerical procedure is needed. Alternatively several ap­

proximation algorithms have been proposed aimed at producing esti­

mates close to the global ML estim ate without actually computing the
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likelihood function [6]. These algorithms carry a number of different 

names and acronyms typically involving “weighted least squares” and 

“quasi”- or “pseudo-likelihood”.

1.4.1.1 M axim um  likelihood estim ation via num erical integration

The exponential part in equation (1.13) makes the Gauss-Hermite quadra­

ture procedure [53] a logical method to evaluate it numerically. The 

adaptive quadrature procedure is preferable for normally distributed 

random effects [68]. In adaptive quadrature, the quadrature points are 

rescaled and shifted to the shape of the log likelihood function. ML es­

tim ation by numerical integration for model (1 .8) has become available 

in several statistical packages in recent years, the most flexible of these 

being the (gllaimn) macro for S tata for latent variable models (includ­

ing the generalized linear mixed models) [67]. In addition, S ta ta  offers 

(x tm e lo g it)  procedure for multilevel models.

1.4.1.2 Markov Chain M onte Carlo

The Bayesian statistical framework is based on the well-known Bayes 

theorem [23]. One major distinction from classical (frequentist) statis­

tics is th a t in Bayesian statistics the parameters are stochastic variables 

with prior and posterior distributions. Our interest is in the full pos-
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terior distribution, which depends on the likelihood function and the 

prior distribution over the unknown param eters in the model of interest. 

For a density function p, param eter 9, observed data  D, and a prior 

distribution p{9),  the posterior distribution takes the following form:

v i m  =  h M  (1.1 4)

where p{D\Q)  is the likelihood function. Markov chain Monte Carlo 

(MCMC) offers techniques to generate samples from Markov chains which 

in a wide variety of models can be devised to converge to the posterior 

distribution of 6 (for more details, see e.g., [8]). Our focus here is on using 

MCMC techniques as an estimation algorithm for the frequentist model

(1.8), rather than exploring genuine Bayesian models with informative 

prior distributions. By this approach, prior distributions are generally 

taken as vague (“non-informative”) , and the inference is based on poste­

rior distributions using a posterior median (or mean) as a substitute for 

a maximum likelihood estimate and 95% probability intervals instead of 

confidence intervals. A common non-informative prior for the fixed ef­

fects is N (0 ,10®), for inverse variances or precisions gamma (10“ ®, 10“®) 

[9] or for the standard deviation a uniform distribution (0,100)) [46, 23].

MCMC techniques exist to compute “real” maximum likelihood es­

tim ates (see e.g., [29, Chapter 14]) but these are beyond the present
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scope. The MCMC approach avoids computation of the full likelihood 

function, and has been shown to perform well across a range of settings 

including multilevel random intercept models [9]. The essential statis­

tical software for Bayesian analysis is WinBugs; in addition, a range of 

multi-level models can be fitted in MLwiN.

The flexibility of MCMC allows us to implement complicated models. 

Congdon [11, Chapter 7] describes one way of constructing a series of 

autocorrelated random variables, such as { u n , . . . ,  Uu) in model (1.9) for 

MCMC analysis,

' îj ~  PUij—l T  6ij (1.15)

where is an uncorrelated random variable ~  N{ 0 ,  cr^), Uij ~  N{ 0 ,  cr'̂ ) 

and Uio ~  Æ(0, o-g). The correlation between {uij ,Uij^t)  is established 

through the variances, where a first order autoregressive process is as­

sumed, i.e. (Jq =  (7g(l — p^) and == p a l  (for more details, see e.g., [11, 

Chapter 7]).

1.4.1.3 Q uasi-likelihood m ethod

Quasi-likelihood is a term  used to describe a function th a t has similar 

properties to the likelihood function (1.4), but without being strictly 

derived from a probability distribution. The quasi-likelihood requires a 

known specification of a relation between the mean and the variance of
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the observations, i.e., for a set of independent binary variables y i , . . . ,  

the Var(yi) =  =  0Mi(l — /Xi) [56, Chapter 5). 0 is a scale (or

dispersion) parameter, and is usually estimated from the data. Alter­

natively, one may fix the scale param eter to a value of 1 to reflect the 

actual relationship in the binomial distribution. McCullagh and Nelder 

[55, Chapter 9] refer to the following integral (if it exists) as the log 

quasi-likelihood for y* given y y

Q(iJ-i,yi) =  (1.16)

Then, the regression coefficients are estimated by solving the following 

estimating equations which equate the j th  element of the score function 

to zero:

n ^  n ^

< =  '  ,
i—1 ■' i = l  j  T \ /

(1.17)

the param eter 4> can be estimated separately using

1 (2/i -  f
n - p ^  V  (yi) n - p

where is the generalized Pearson statistic (e.g., [55, Chapter 2]). The 

inclusion of the scale factor 0  in quasi-likelihood models, give them the 

ability to directly accommodate overdispersion, and since 0  is constant, 

equation (1.17) is identical to equation (1.5).
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For model (1.8), an iterative weighted least squares procedure iter­

atively applies mixed linear model estimation to an “adjusted” variate 

obtained by Taylor approximation of the outcome around its current es­

tim ated mean, until convergence, using either ML or REML, thus results 

in IGLS “iterative generalized least square” or RIGLS “restricted itera­

tive generalized least square”, respectively. The resulting regression coef­

ficient estimates are called maximum quasi-likelihood estimates because 

they can be obtained from optimizing a quasi-likelihood function which 

only involves first and second order conditional moments, augmented 

with a penalty term  on the random effects [59]. Breslow and Clayton [7] 

presented two estimation procedures based on quasi-likelihood function 

called penalized quasi-likelihood (PQL) and marginal quasi-likelihood 

(MQL). The MQL estimates are derived under random effects model 

assumptions [25]. Both procedures use Laplace approximation to ap­

proximate the likelihood function. One major difference between the 

two algorithms is tha t MQL does not incorporate the random effects 

Ui in the linearization of the mean [59, Chapter 14]. It has been sug­

gested to refine the approximations by including a second-order term  in 

the Taylor expansions, usually denoted as second order PQL and MQL 

procedures [27, 71]. These quasi-likelihood algorithms are implemented 

in MLwiN by adapting an iterative generalized least squares for binary 

series by combination of Taylor series approximation.
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1.4.1.4 Pseudo-likelihood m ethod

Pseudo-likelihood (PL) is a term  used to describe a function of the data 

tha t has similar properties to the likelihood function (1.4) ([59, Chapter 

9] and [84]). Wolfinger and O ’Connell [84] suggest a pseudo-likelihood 

approach for generalized linear mixed models, based on Gaussian ap­

proximation and Taylor’s theorem. It differs from the quasi-likelihood 

approach by using a true joint likelihood function in an iterative estima­

tion process. It involves assuming the regression param eters are known, 

then applies a linear mixed model to estimate the dispersion cj) and the 

variances parameters, and then assume the variances are known and 

estimates the regression parameters. The use of either ML or REML 

in the linear mixed model estimation process, resulted in either pseudo­

likelihood (PL) or restricted pseudo-likelihood (REPL), respectively [84]. 

The (restricted) pseudo-likelihood approach allows for both random ef­

fects in the linear predictor and correlation structure in the observations 

scale errors conditional (on the mean) [84]. Intuitively, one would expect 

this procedure to be suitable for models such as model (1.9). Modelling 

by correlation structure only yields marginal estimates [59]. Adding 

random effects effectively yields a random effects model with serial cor­

relation [59, Chapter 22]. The (restricted) pseudo-likelihood approach is 

implemented in SAS (proc glimmix) and R (glmmPQL library), in addi­
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tion to  the (restricted) pseudo-likelihood approach, the SAS procedure 

offers first order PQL and MQL estimation ([84] and [59, Chapter 15]).

1.4.2 Marginal estim ation procedures

Likelihood-based marginal approaches do exist, namely. Dale and Ba­

hadur models (see, e.g., [59, Chapter 7] and [15, Chapter 8]). However, 

these approaches became unattractive due to the extensive com puta­

tional requirements. In Bahadur model [15, Chapter 98], the within- 

subject dependence is captured via marginal correlations. One drawback 

of this model is that, the correlations among binary responses are con­

strained by marginal means [15, Chapter 8] and the parameters increase 

rapidly with t  (the number of repeated measurements per subject).

Two alternative and more common approaches for longitudinal data 

are generalized estimating equations (GEE) [48, 86 , 36] and alternating 

logistic regression (ALR) [10]. These procedures are often referred to as 

semi-parametric because they do not assume a specific form of the depen­

dence between observations on the same subject, i.e. the within-subject 

correlation structure. Both GEE and ALR estimation yield PA estimates 

tha t are asymptotically unbiased and can be nearly efficient relative to 

the maximum-likelihood estim ate in a fully and correctly specified model 

[15, Chapter 8]. The GEE procedure is available in most m ajor statistical
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packages (e.g., SAS, S-Plus/R  and Stata), with only slight differences in 

their implementation, and ALR is available in the former two packages.

1.4.2.1 Generalized estim ating equations

The GEE extension to generalized linear models for the analysis of lon­

gitudinal data was introduced in a series of papers [48, 86]. For binary 

observations yij on each of n  subjects (i =  1 , . . . ,  n) at  t  time points 

{ j  =  1 , . . .  , t ) ,  as well as a set of explanatory variables X i , . . .  ,Xp, the 

“estimating equation” takes the following form:

n t n.

the param eter (p can be estimated separately using

0 ^   ̂ ivij ~  Av)
n t , -  \2

i= i j= i

where fÿ  =  {Vij ~  f^ij) /  \ / V is the Pearson residual. The solution of 

the multidimensional estimating equation (1.18) determines the param ­

eter estimates, usually obtained in a stepwise (iterative) manner where 

an iterated and updated equation between regression and within-subject 

dependence estimates is solved in each step and the process terminates 

when the solution no longer changes (“convergence”). Specifically, the 

GEE procedure involves a user-specified “working” correlation m atrix
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to approximate the true within-subjects correlation structure. When 

using a robust variance estimation method (“H uber/W hite” or “sand­

wich”, [36]) the statistical properties for the PA estimates hold even 

for a misspecihed working correlation structure; this is often referred 

to as a robustness property of the GEE procedure. However, a cor­

rect specification of the correlation structure enhances its efficiency [83]. 

Most software implementations offer a range of correlation structures, 

including independent, exchangeable, and autoregressive (AR) (see Sec­

tion 1.2.1.2). The estimated Pearson residual fi j  is used to estimate the 

correlation [36, Chapter 3]. In an autoregressive correlation structure 

{ p U^ f )  — one way of estimating the scalar 7  is by the following

equation [73]:

n t —1

^  (7Z(  ̂ -  1) -  P ) ( ^ §  ^

where p  in the number of fixed effects parameters. The correlation m atrix 

can then be built from the autoregressive structure implied by the AR 

correlation [36, Chapter 3]. GEE is limited to the classical two-level 

settings in repeated measures data.
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1.4.2.2 A lternating logistic regression

Generally, the correlations among binary data are constrained by the 

(marginal) probabilities [64]. Thus the GEE estimates of the association 

among the binary outcomes can be inefficient [10]. To overcome this 

problem Carey et al. [10] suggested using pairwise odds ratios to model 

the association between pairs of the outcomes and they proposed a proce­

dure called alternating logistic regression (ALR). It refers to a procedure 

tha t iterates between a logistic regression using GEE to estimate re­

gression coefficients and a logistic regression for modeling within-subject 

dependence in terms of pairwise odds ratios. For binary observations 

yij on each of n  subjects (i =  1 , . . . ,  n) at  ̂ time points { j  =  1 , . . . , Z) ,  

the odds ratio param eter [10] for each unique pair of outcomes within 

subjects {yij, %y) takes the following form:

/ _  =  1, V i f  — — 0 , y i j '  — 0 ) . .

The ALR approach has the same robustness properties of the GEE pro­

cedure with respect to regression parameters, and is considered efficient 

in estimating the association param eter [10]. The ALR procedure has 

the advantage of providing standard errors for the association param e­

ters ip between the pairs of responses, and is numerically more efficient 

than GEE for large clusters [10]. The ALR has the ability to accom­
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modate up to three levels of hierarchical structure, where it allows one 

to distinguish between odds-ratios within clusters and within subjects; 

however, both the within-cluster correlation and the within-subject cor­

relation must be modelled as exchangeable. To illustrate by a numerical 

example, an ALR analysis of the scc40 dataset of [16, Chapter 27] gave a 

common log odds ratio within subjects (cows) of 2.27 (OR =  9.68) and 

a common log odds-ratio for within clusters (herds) of 0.22 (OR =  1.25). 

The within-subject pairwise odds-ratio is relating two observations from 

the same cow, and a value of 9.68 suggests a positive outcome in a cow 

at one time point increases the odds for a positive outcome at another 

time point (in the same cow) almost 10-fold. In essence, some cows are 

at higher risk of a positive outcome than others. The within-cluster 

pairwise odds-ratio of 1.25 indicates tha t a positive outcome in a cow in­

creases the odds of a positive outcome in another cow (in the same herd) 

by 25%. In essence, this corresponds to clustering of positive outcomes 

in farms.
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1.5 Relationship and performance of marginal and 

random effects models

1.5.1 Relationship between marginal and random effects mod­

els

The relation between random effects and marginal estimates has been 

discussed and described [86, 60]; see also the summary by Diggle et al.

[15]. The inferential goal of a marginal model is the marginal probability 

(averaged across the population of subjects), thus provides a population 

average interpretation of the estimates. On the other hand the inferential 

goal of the random effects model is the probability conditional on the 

unobserved (subject) random effects. This provides a subject-specific 

interpretation of the estimates. Zeger et al. [86] provided a conversion 

formula for logistic regression with normally distributed random effects:

(3̂  ̂ py (c^cr  ̂+  1)'^/^/)^^, where c =  16\/3/(157r) =  0.588. (1.20)

For a probit model, the above conversion formula becomes an exact 

formula (see, e.g., [56, Chapter 8]):

(3^^ =  (o-2 +  (1.21)
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Both formulas can be used to relate subject specific to population average 

models/estim ates under the assumption th a t random effects are normally 

distributed. W ithout any distributional assumptions on the random ef­

fects it holds th a t the marginal regression param eters are attenuated or 

diluted (towards zero) relative to the random effects parameters, unless 

the variance is zero [56, Chapter 8].

1.5.2 Performance of random effects estim ation procedures

The performance of random effects estimation procedures rely on the 

ability of the statistical algorithm to approximate the log likelihood 

function. The estimation procedures based on adaptive quadrature to 

maximize the log likelihood (ML) ([63, Chapters: 2-4] and [62, 68]) are 

preferred and produce reliable estimates of the regression parameters. 

However, caution should be taken in their use because “even with adap­

tive Gaussian quadrature and with relatively simple models, convergence 

to a global maximum can be difficult to obtain” [47]. Rabe-Hesketh et  

a l  [68] showed th a t adaptive quadrature to approximate the integral 

for maximum likelihood performs better than PQL. The performance of 

MCMC as a maximum likelihood estimation procedure was evaluated 

by Browne and Draper [9], they found th a t MCMC produced the closest 

reproduction of true model values in comparison with PQL and MQL.
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In many studies, PQL showed a tendency to give biased estimates [71]; 

in particular, the variance components were biased towards zero [31]. 

The PQL procedure was shown to perform poorly in datasets with small 

numbers of repeated measurements per subject [59, Chapter 14], and 

an improvement was noticed by increasing both the number of subjects 

as well as the number of measurements per subject. One study [18] 

reported the performance of REPL with a focus on the variance parame­

ters. This study indicated tha t REPL suffers from convergence problems 

and produces biased estimates for the interclass correlation, especially 

for a small number of subjects with a small number of repeated mea­

surements. However for large numbers of clusters, it seems to  converge 

to steady but biased estimates especially when the variance is large.

1.5.3 Performance of marginal estim ation procedures

The performance of GEE has been studied by many researchers over 

the last decade. In summary, the use of an independent working corre­

lation in GEE provides highly efficient regression estimates [86]. Pepe 

and Anderson [61] reported tha t the use of non-independent working 

correlations may lead to biased regression estimates and indicated tha t 

there is an advantage in using the independent structure for models tha t 

include time-varying covariates. However, Fitzmaurice et a l  [20] found
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tha t the independence structure may lead to a substantial loss of effi­

ciency for models including time-varying covariates. Sutradhar and Das

[79] have shown that the use of misspecihed correlation structures in 

GEE leads to loss of efficiency for regression estimates. Different studies 

( e.g., [54, 87, 83, 74]) have shown tha t the independent working cor­

relation produces efficient estimates only for very restricted cases and 

are subject to a substantial loss in efficiency even when the design is 

balanced. Wang and Carey [83] concluded th a t the choice of working 

correlation in GEE has a substantial impact on the efficiency of regres­

sion estimates. They recommended the choice of the working correlation 

should coincides with the true correlation of the data and can be chosen 

based on either statistical criteria or biological background. Wang and 

Garey [83] recommended also carrying out a simulation study based on 

the covariate structure to evaluate the impact of the working correlation 

in practical data analysis.

Breslow and Clayton [7] showed th a t MQL is a marginal procedure. 

Nevertheless, the performance of MQL has been studied by many re­

searchers as a random effects procedure (e.g., [71, 9]). Rodriguez and 

Goldman [71] reported in their simulation tha t MQL produce biased re­

gression estimates and underestimated variances. Browne and Draper

[9] demonstrated tha t MQL performed worse than PQL when the ran­

dom effects variances are large. MQL was reported to perform poorly in

36



datasets with a small number of repeated measurements per subject [59, 

Chapter 14]. Goldstein and Rasbash [27] and Rodriguez and Goldman

[71] showed th a t second order MQL performs only slightly better than 

first order MQL.

1.5.4 Comparison of marginal and random effects procedures

For binary repeated measures outcomes, random effects and marginal 

estimation procedures handle the within subject dependence differently 

and provide different param eter estimates with different interpretations. 

In the context of a longitudinal smoking prevention trial, Hu et al. [39] 

compared the traditional stratified analysis, ordinary logistic regression, 

random effects logistic model and GEE. They reported th a t the absolute 

values of the random effects estimates were larger than those from GEE 

models. They indicated th a t the correlation between the repeated mea­

sures play a role in the discrepancy between the estim ates from the two 

models. They also reported th a t the marginal estimates of the fitted ran­

dom effects models (random effects estimates converted using 1.20) were 

similar to GEE estimates. In the context of longitudinal comparative 

studies, Kuchibhatla and Fillenbaum [44] compared three procedures, 

ordinary logistic regression, random intercept model and GEE. They re­

ported th a t the absolute values of the random intercept estimates and
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their standard error were larger than those from the ordinary logistic and 

GEE models. The ordinary logistic regression under- and over-estimated 

the standard errors of time invariant covariates and tim e varying covari­

ates, respectively. However, an argument regarding these findings can 

be made tha t these differences may be due to the difference between 

the subject-specific and population average estimates. Preisser et al.

[65] presented a comparison of ALR, GEE and random-effects logistic 

regression for analysis of a single dataset on patterns of occupational 

illness. They reported th a t ALR is a useful method for estimating the 

regression parameters and detecting the clustering in longitudinal data.

In general, the choice of procedure, in particular the choice between 

marginal and random effects procedures should first and foremost be 

guided by the desired interpretation of effects. Diggle et al. [15, Chapter 

7] argue th a t PA effects are of primary interest in clinical trials because 

“the average difference between control and treatm ent is most impor­

tan t, not the difference for any one individual”. Lindsey and Lambert

[49] warn th a t the population average may hide individual effects, and 

tha t “in extreme cases, a marginal analysis can show an average positive 

treatm ent effect when the effect would in fact be judged negative for 

each individual”.
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1.6 Missing values

By missing values in binary repeated measures data we mean data with 

incomplete records over time on the same subjects (e.g., animals or 

farms). Missing data usually arise when some subjects are not available 

for certain measurements. Subjects may leave the study at some point 

in time before completing their measurements (drop-outs), subjects may 

miss some measurements and reappear again for later measurements (in­

term ittent missing values), or subjects may join the study at different 

times. Missing data in experimental studies may occur by design where 

some logistical restrictions force an unbalancedness of the data, such as 

in the incomplete block design.

Generally, missingness in longitudinal data presents a potential source 

of bias. In part, the bias could be due to the changes in data structure 

from being balanced to  being unbalanced, which in turn  may raise tech­

nical difficulties, especially for those statistical methods th a t can only 

cope with balanced data  [15, Chapter 13]. If the process of the observa­

tions being missing (the missingness mechanism) varies from subject to 

subject, the distribution of the observed data may not be the same as 

for the full data.
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1.6.1 Classification of missing data

Despite the large body of literature on missing data [52, 45, 14, 19, 51, 

37, 38], most authors agree th a t handling missing values is not a trivial 

task and th a t in many instances there is a need for sensitivity analyses

[40]. Thus, additional information about the missingness mechanism 

is required. Missing data mechanisms have been classified into three 

categories [52]: missing completely at random; missing at random; not 

missing at random.

W ithin the context of binary repeated measures data, let yij refer to 

complete binary records on each of n  subjects (i =  1 , . . . ,  n) at t  time 

points ( j  =  l , . . . , t ) .  Furthermore, let yij =  { y ^ .y ^ )  where ^  is the 

observed subset of the data, and y ^  is the subset of the data th a t would 

have been available had they not been missing. Note th a t the y ^  is there­

fore unobserved or latent. Let be an indicator of missing y ĵ. Little 

and Rubin [52] consider the conditional distribution /(rÿ |j/j., Xj., 0) for 

rij given yij where y i  represents all the intended repeated measurements 

of the response of subject z, and Xi_ is for all repeated measurements of a 

particular predictor for subject i. The 0 denotes unknown parameter(s) 

involved in the modeling of the missing data process.

In the above notation, a subject i drops out from the study at tim e d, 

if Tid^i =  0 and =  1 for all j  >  d.
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Missing completely at random (MCAR) [52, 45] refers to a missing data 

mechanism th a t does not depend on either prior observed or unobserved 

outcome values. Then, the conditional distribution for takes the form: 

f  {r i jlv l,  y f^,Xi_,(/)) =  f{rij\xi_,(/)). Little and Rubin [52] indicated th a t 

under a large sample assumption, the maximum likelihood estim ator 

obtained from the observed data  is equivalent to th a t obtained from the 

full dataset, i.e. the missing process can be ignored.

Diggle and Kenward [14] introduced a completely random drop-out 

(CRD) process tha t assumes missing completely at random. One impli­

cation of the MCAR assumption is tha t the distribution of the observed 

outcomes at time j  is the same regardless of whether a subject drops 

out or remains in the study after th a t particular time point. Also, the 

distribution of the unobserved outcomes is unaffected by the drop-out.

Missing at random (MAR) [52, 45] or random drop-out (RD) [14] refers 

to a missing data (drop-out) process th a t depends on the observed values 

only, (i.e., there are no unknown or unmeasured factors th a t influence the 

probability of an observation being missing). In this case the conditional 

distribution for takes the form: f { r i j \ y l ,  (f)) =  / ( r ÿ | î / ° ,  Xi_, 4>).

Little and Rubin [52] showed how to simplify the full likelihood function 

of the model data when MAR holds. They concluded th a t under a large 

sample assumption, the maximum likelihood estim ator obtained from the
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observed data is equivalent to tha t obtained from the full dataset. Diggle 

and Kenward [14] proposed a logistic model for the drop-out process:

iogit(Pr(rÿ =  1)) =  /lo +  +  /?22/û'-i, (1.22)

where P r(rÿ  =  1) is the probability tha t subject i drops out at tim e j .

Not missing at random (NMAR, sometimes also MNAR) [52, 45] or in­

formative drop-out (ID) [14] refers to a drop-out missing data  mechanism 

tha t depends on the unobserved outcome (current or future missing val­

ues). The conditional distribution for f ( r i j \ y f  ,yf^,Xi_,(f)), does not 

permit any reduction. Little and Rubin [52] indicated th a t inference 

based on the likelihood function ignoring the missing data mechanism 

is biased and concluded tha t a NMAR missing process can not be ig­

nored under likelihood inference. Contrary to MAR, the NMAR process 

implies tha t the distribution of outcomes prior to a drop-out is not the 

same for those subjects who drop-out and those who do not.

1.6.2 Impact of missing values

The impact of missing values has been studied and several approaches 

have been proposed to handle it. These approaches range from impu­

tation to statistical modeling. Several im putation algorithms have been 

proposed, including last observation carried forward (LOCF); uncon­
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ditional mean imputation [52]; and conditional mean im putation [59, 

Chapter 27]. They ail make the strong assumption about the data  miss­

ing process to be completely at random, which may not be always the 

case. The simplicity of these approaches is one motivation behind their 

use.

Several approaches have been proposed to assess and account for miss­

ing values [19], including the complete case method (also termed “listwise 

deletion” [58, Chapter 5]). By this method, subjects with at least one 

missing value are dropped from the analysis. Fitzmaurice [19] and Little 

and Rubin [52] showed th a t this method is valid only under the MCAR 

missing data process. Another approach is based on the observed data 

and called the available case method (or “pairwise deletion” [58, Cahpter 

5] and [52, 19]). Fitzmaurice [19] argued tha t a weighted version of GEE 

(WGEE) falls under this approach. Kim and Curry [42] showed th a t for 

a MCAR process, methods based on the available cases are considered 

more efficient than complete case methods, as one would expect because 

all the available data is used. Little [50] and Little and Rubin [52] ex­

plained th a t these methods assume the strong MCAR process. Little 

and Rubin [52] argued tha t neither the complete case method nor the 

available case method is generally satisfactory.

Little and Rubin [52] showed th a t an MAR process can be ignored
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when using likelihood-based inference. Hogan et al. [38] defined ignor- 

ability as the situation where “the missing data model can be left un­

specified or ignored”. The GEE estimation procedure [48, 86] requires 

the stronger assumption MCAR about missing values. Robins et a l  [70] 

showed tha t ordinary GEE does not allow a MAR process to be ignored, 

and outlined a weighting scheme (WGEE) to achieve valid inference un­

der the MAR assumption. Its implementation for drop-out missing data 

is detailed by Janson et a l  [21]. In brief, the weight for each subject can 

be calculated by fitting a marginal logistic regression for the binary indi­

cators of previous drop-outs. Then the predicted values from this model 

can be used to compute probability weights wij for the subject i, as the 

inverse probabilities of not dropping out up to the current time point. By 

introducing a probability weight Wij into the estimating equation (1.18) 

this leads to the following;

n t

% 1 J  1

Fitzmaurice [19] argued tha t W GEE falls under the available case method, 

because it uses only the observed data. All and Talukder [1] demon­

strated the application of weighted GEE for MAR, and GEE for MGAR; 

they concluded tha t W GEE is valid for MAR. Touloumi et a l  [80] re­

ported th a t the degree of bias in GEE estimates increases with the sever­

ity of non-randomness and with the proportion of MAR data.
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1.7 Purpose and overall objective

The purpose of this research project was to assess the performance of 

statistical procedures belonging to marginal and random effects models 

for the analysis of binary longitudinal data in veterinary science, specif­

ically, to describe and quantify their performance in terms of statistical 

properties such as unbiasedness, confidence interval coverage and effi­

ciency.

In summary, binary records made on the same subjects over time are 

likely to be correlated [57, 75] or clustered [16]. A within-subject depen­

dence violates the basic assumption of logistic regression tha t observa­

tions are independent, and may, if not accounted for, lead to biases in 

param eter estimates and standard errors ([15, Chapter7] and [17]). Such 

data structures challenge the statistical methods to hold its properties, 

such as asymptotic unbiasedness and nominal confidence interval cov­

erage. Marginal and random effects procedures (models) ([15, Chapter 

7-9], [60]) have been proposed for the analysis of binary repeated mea­

sures data. However, none of these approaches and methods combines 

perfectly with an additional hierarchical structure.

We will motivate and illustrate all aspects of these models in veterinary 

epidemiology research. In this thesis we will discuss the performance 

of these statistical models through simulation studies in the context of
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binary repeated measures w ith/w ithout additional hierarchical structure. 

Emphasis will be placed on assessing the existing statistical methods 

through simulation studies. In order to realistically reflect the choice an 

applied researcher faces when it comes to data analysis, only procedures 

implemented in broadly accessible statistical software are included. The 

goal of the assessment is to establish some practical guidelines for the 

choice of statistical procedures for the analysis of longitudinal binary 

repeated measures data in veterinary science.

The overall objective of this thesis is to carry out a statistical assess­

ment and comparison of marginal and random effects procedures, in 

terms of statistical properties such as unbiasedness, confidence interval 

coverage and efficiency. In addition the study will explore the effect 

of design parameters such as the length of tim e series, the hierarchical 

structure, the number of replicate subjects, the level at which the trea t­

ments are applied (between versus within subjects), and the impact of 

missing values, in a longitudinal design. There are four specific objec­

tives:

1; The first objective is to give a statistical assessment of marginal 

and random effects procedures, in terms of properties such as unbi­

asedness, efficiency and confidence interval coverage, in a two-level 

balanced longitudinal design (Chapter 2).

2: The second objective is to explore and compare marginal and ran­
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dom effects estimation procedures for the analysis of binary repeated 

measures data with additional hierarchical structure (Chapter 3).

3: The third objective is to assess the impact of missing values on 

the performance of different statistical estimation procedures for the 

analysis of binary repeated measures data with additional hierarchi­

cal structure (Chapter 4).

4: The fourth objective is to explore statistical approaches to assess and 

account for specific correlation structures in hierarchical data arising 

from incomplete experimental designs (Chapter 5).
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A simulation study to assess 

statistical methods for binary 

repeated measures data

2.1 Abstract

Binary repeated measures data are commonly encountered in both ex­

perimental and observational veterinary studies. Among the wide range 

of statistical methods and software applicable to such data, one major 

distinction is between marginal and random effects procedures. The 

objective of the study was to review and assess the performance of 

marginal and random effects estimation procedures for the analysis of 

binary repeated measures data. Two simulation studies were carried 

out, using relatively small, balanced, two-level (time within subjects) 

datasets. The first study was based on data generated from a marginal 

model with first order autocorrelation, the second on a random effects
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model with autocorrelated random effects within subjects. Three ver­

sions of the models were considered in which a dichotomous treatm ent 

was modelled additively, either between or within subjects, or modelled 

by a time interaction. Among the studied statistical procedures were: 

Generalized Estimating Equations (GEE), Marginal Quasi Likelihood, 

Likelihood based on numerical integration. Penalized Quasi Likelihood, 

Restricted Pseudo Likelihood and Likelihood based approximation by 

Bayesian Markov Ghain Monte Garlo. Results for the marginal model 

data showed autoregressive GEE to be highly efficient when treatm ent 

was within subjects, even with strongly correlated responses. For trea t­

ment between subjects, random effects methods also performed well in 

some situations; however, a small number of subjects with short time 

series proved a challenge for both marginal and random effects methods. 

Results for the random effects model data showed bias in estimates from 

random effects methods while the marginal model produced estimates 

close to the marginal parameters.

2.2 Introduction

Repeated measures studies refer to data  with multiple records over time 

on the same subject (e.g., animal or farm) with the objective of making 

inference about the expected value of outcomes, in terms of treatm ent
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effects and how such effects change over time. This type of study design, 

also referred to as longitudinal, has the advantage over a cross-sectional 

design tha t changes over time in treatm ent effects or in individuals can be 

estimated [10, Chapter 1]. The design also has a potential for substantial 

gains in efficiency.

Binary repeated measures data are encountered across a wide range of 

applications in veterinary science and veterinary epidemiology. The most 

evident examples of two-level data are records of presence or absence of 

disease conditions over time. Disease conditions may be detected clini­

cally (e.g., mastitis) or by a test such as bacterial culture [34], faecal egg 

counts [1] or antibody determination for parasites [41]. O ther examples 

are success of fertilization (e.g., in repeated reproduction cycles [2]), oc­

currence of certain behaviours in animal welfare studies [18, 48], or of 

treatm ent side effects in clinical trials (e.g., treatm ents for diabetes in 

dogs [23]). If the binary outcome is created by thresholding a quantita­

tive outcome at a predefined cut-off value (e.g., ELISA for the diagnosis 

of Johne’s disease; [45]) a substantial loss of information is implied but 

the dichotomous outcome may be of greater interest than the quantita­

tive measurement. Another range of applications occur in the context of 

farm-level monitoring of product quality (e.g., milk [38]).

Binary records made on the same subject (or unit) over time are likely
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to be correlated [30, 43] or “clustered” [11, Chapters: 20-21]. A within- 

subject dependence violates the basic assumption of logistic regression 

th a t observations are independent, and may, if not accounted for, lead to 

biases in param eter estimates and standard errors ([10, Chapter 7] and 

(121).

Several procedures (models) have been proposed for the analysis of 

binary repeated measures data, and they are usually classified into dif­

ferent models: marginal (population-averaged), random effects (subject- 

specific), and transition models ([33] and [10, Chapters 7-10]).

In marginal, random effects, and transitional models the treatm ent 

effects have different interpretations. Generally speaking, the choice of 

model should be guided by the data structure, the available information 

as well as the scientific questions of interest. The inferential goal of a 

marginal model is the marginal probability (averaged across the popu­

lation of subjects), while for random effects models it is the probability 

conditional on the unobserved (subject) random effects. In transitional 

models, the inferential goal is the probability conditional on the previous 

response, i.e. the (transition) probability of moving from one binary state 

to the next state. Treatment effects refer to the impact of a treatm ent on 

these probabilities. Apart from an approximate conversion formula from 

random effects to marginal estimates (discussed below) no simple ana­
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lytical links exist between the treatm ent estimates of the three models. 

In some situations, the question of interest largely determines the prefer­

able model, for example if the interest is in transition probabilities and 

effects. If the factor of primary interest represents an inherent trait of the 

subjects, a subject-specific interpretation makes little sense [11, Chapter 

22]. In practice, the choice between a marginal and a random effects 

model is often open to additional considerations such as software acces­

sibility and statistical efficiency. Therefore, and by the fundamentally 

different interpretation of transition effects already noted, this study is 

focused on the choice between marginal and random effects models.

Despite the large body of literature on binary repeated measures data, 

the applied researcher may find little specific guidance on the choice of 

method for the data a t hand (see however, [28]). Analysis of a single 

dataset by multiple procedures (e.g., [22]) does not necessarily provide 

much insight into which procedures provide the right answers, and does 

not cover all aspects of statistical inference. Statistical assessments of 

marginal and random effects procedures for clustered binary data  are 

abundant (e.g., more recently [21]), though often without addressing all 

issues related to the repeated measures. One study for repeated mea­

sures focused entirely on variance and correlation param eters [13]. The 

assessments are usually based on statistical simulation, whereby artifi­

cial datasets are generated according to a statistical model with fixed
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and known parameters (true model). The param eter estimates from the 

analyses of simulated datasets by different statistical procedures are then 

compared to the known (true) parameters. This approach depends criti­

cally on the relevance of the selected true model. In the present context, 

the true model should reflect the longitudinal character of the data by 

allowing for autocorrelation, i.e. the dependence being stronger between 

observations on the same subject obtained close in time than distant in 

time. Moreover, Stryhn et a l  [46] suggest th a t its data  structure might 

be matched to the data at hand as closely as possible. Longitudinal 

data structures range from balanced two-level structures (e.g., random­

ized clinical trials with no structural dependence between subjects) to 

unbalanced, incomplete multi-level structures (e.g., observational records 

of farm animals). The focus here will be on the former, simpler structure 

while exploring the effect of other design param eters such as the length 

of the time series, the number of replicate subjects and the level at which 

the treatm ents are applied (between versus within subjects).

The objective of this study is to give a statistical assessment of marginal 

and random effects procedures, in terms of properties such as unbiased­

ness and efficiency, in a two-level balanced longitudinal design. The 

assessment includes a range of different design param eters as well as 

true model assumptions of either marginal or random effects type. In 

order to realistically reflect the choice an applied researcher faces when
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it comes to data analysis, only procedures implemented in broadly acces­

sible statistical software are included. The goal of the assessment is to 

establish some practical guidelines for the choice of statistical procedure 

for the analysis of balanced, binary repeated measures data.

2.3 Statistical models and estimation procedures

Consider binary records (e.g., presence or absence of bacteria in monthly 

milk samples) yij on each of n  subjects (i =  1 , . . . ,  n) at t time points 

( j  =  1, . . . ,  t), as well as a set Xi , . . . ,  Xp of explanatory variables recorded 

for each subject at every tim e point.

2.3.1 Marginal or population-averaged (PA) model

A marginal logistic regression model takes the following form:

logit(//y) =  I3q  ̂+  +  . . .  +  (3p^Xpij, (2 .1)

where, y i j  =  E(^ÿ) =  P r(^^  =  1). Thus, the marginal expecta­

tion (or probability of an “event”) is modelled as a function of the ex­

planatory variables through the logit link function. Furthermore, the 

marginal variance is related to the marginal expectation by the equation 

Var(^ÿ) =  0 / /ÿ ( l — //ÿ), where 0  is a scale param eter, and subjects are
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assumed independent. Hereafter, (5̂  ̂ refers to a marginal, or population- 

averaged [52] regression parameter.

2.3.1.1 M arginal m odel estim ation  procedures

The most commonly used marginal estimation procedures, generalized 

estimating equations (GEE) and alternating logistic regression (ALR), 

are often referred to as semi-parametric because they do not make as­

sumptions about the specific form of a dependence between observations 

on the same subject, i.e. the within-subject correlation structure. Both 

GEE and ALR estimation yield estimates for th a t are asymptotically 

unbiased and can be nearly efficient relative to the maximum-likelihood 

estimate in a fully and correctly specified model [10].

The GEE approach to analysis of longitudinal data by generalized 

linear models was introduced in a series of papers [27, 52].

The “estimating equation” refers to a (multidimensional) equation whose 

solution determines the param eter estimates, usually in a stepwise (iter­

ative) manner where an updated equation is solved in each step and the 

process term inates when the solutions no longer change (“convergence”) . 

The GEE procedure involves a user-specified “working” correlation ma­

trix  to approximate the true within-subjects correlation structure. Most 

software implementations offer a range of correlation structures, includ-
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ing independent ( p { j , f )  =  0), exchangeable =  p),  and (first

order) autoregressive i p{ j j j ' )  =  p^~ '̂), where p{ j , j ' )  is the correlation 

between observations at times j  and / .  When using a robust variance 

estimation, the statistical properties for the estimates of hold even 

for a misspecified working correlation structure; this is often referred to 

as a robustness property of the GEE procedure. However, a substantial 

loss of efficiency due to misspecification of the working correlation struc­

ture may occur as has been shown in studies involving different data 

structures [29, 53, 49, 42].

The ALR procedure uses the same estimating equation for as GEE, 

but differs from GEE by modelling the association among responses in 

terms of pairwise odds ratios, and is numerically more efficient as the 

cluster size gets large [7].

The GEE procedure is available in most major statistical packages 

(e.g., SAS, S-Plus/R  and Stata), with only slight differences in their 

implementation, and ALR is available in the former two packages.
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2.3.2 Random effects or subject-specific (SS) model

The simplest random effects model, often termed a random intercept 

model, takes the following form:

logit(Pr(yÿ =  l|wi)) =  ^ 0  ̂+  +  . . .  +  +  Ui, (2.2)

where U\^. . .  ^Un are independent random variables with the same dis­

tribution. The most commonly assumed distribution is the Gaussian 

(normal), say Ui ~  N(0, cr )̂ where cr̂  represents the heterogeneity (vari­

ance) between subjects. Model (2.2) is for the conditional probability of 

an “event” given the random effect Ui of the ith  subject, rather than the 

marginal probability in model (2.1). Hereafter, (3̂  ̂ refers to a random 

effects, or subject-specific [52], regression parameter.

The relation between random effects and marginal estimates has been 

discussed and described([52, 32]; see also the summary by Diggle e t al. 

[10, Chapter 7]. W ithout any distributional assumptions on the random 

effects it holds th a t the marginal regression param eters are attenuated or 

diluted (towards zero) relative to the random effects parameters, unless 

the subject variance cr̂  is zero. For normally distributed random effects, 

the following approximation formula holds:

•PA {(?G^ +  1) where c =  16\/3/(157r) =  0.588. (2.3)
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2.3.2.1 Random  intercept m odel estim ation  procedures

Random effects models for binary outcomes do not have a closed form of 

the full log likelihood function. As the likelihood involves an integral over 

the random effect distribution, numerical integration by Gauss-Hermite 

quadrature is a possibility (for normally distributed random effects). 

The preferable form of the integration is adaptive quadrature, whereby 

the quadrature points are successively adapted to  the shape of the log 

likelihood function. Statistical estimation procedures based on numer­

ical integration via adaptive quadrature to maximize the log likelihood 

(ML), produce reliable estimates of the regression param eters [37]. One 

should be cautioned th a t “even with adaptive Gaussian quadrature and 

with relatively simple models, convergence to a global maximum can be 

difficult to obtain” [26].

Before numerical integration became computationally feasible in prac­

tice, several approximation algorithms aimed at producing estimates 

close to the global ML estimate without actually computing the like­

lihood function were developed (see [4], for a recent review). These 

algorithms carry a number of different names and acronyms typically in­

volving “weighted least squares” and “quasi”- or “pseudo-likelihood”. The 

algorithms iteratively employ mixed linear model estimation to an “ad­

justed” variate obtained by Taylor approximation of the outcome around
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its current estimated mean, until convergence. It is well-known th a t cau­

tion should be exercised in using these algorithms because under certain 

conditions they are prone to bias towards the null (e.g., [39, 40]). A “sec­

ond order” PQL procedure eliminates some of the bias [15]. A marginal 

version of the algorithms (e.g., termed MQL) yields param eter estimates 

with a marginal interpretation [5], although computed under random 

effects model assumptions.

ML estimation by numerical integration for generalized linear mixed 

models has become available in several statistical packages in recent 

years, the most flexible implementation being the gllamm  package for 

S tata [36]. Weighted least squares approximation algorithms are avail­

able in most statistical software packages (e.g., SAS, S-Plus/R  and Stata) 

as well as in special-purpose multilevel software (e.g., MLwiN (including 

the 2nd order PQL option) and HLM).

2.3.2.2 Bayesian m odeling and estim ation  procedures

The focus here is on using Markov chain Monte Carlo (MCMC) tech­

niques within a Bayesian framework as an estimation algorithm for the 

frequentist model (2.2), rather than  exploring genuine Bayesian models 

with informative prior distributions. The MCMC approach avoids com­

putation of the full likelihood function, and has been shown to perform
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well across a range of settings [6]. The essential statistical software for 

Bayesian analysis is WinBugs; in addition, a range of multi-level models 

can be fitted in MLwiN.

2.3.2.3 Random  effects repeated measures m odels and estim ation  pro­

cedures

A serious objection against model (2 .2) for longitudinal data is th a t it 

implicitly assumes an exchangeable correlation structure whereby any 

two observations on the same subject are correlated to the same de­

gree. As the variances and correlations in generalized linear (mixed) 

models depend on the fixed effects, this statem ent is only strictly true if 

the fixed effects include no time-dependent predictors. Intuitively, one 

would expect the correlation between two observations to decrease with 

their distance in time. Several approaches have been suggested to al­

low for non-exchangeable correlation structures (e.g., [3, 51]; and [31, 

Chapter 22]), but to our knowledge the only one in widespread use and 

implemented in standard statistical software is the restricted pseudo like­

lihood approach (REPL; SAS: proc glimmix, R: glmmPQL library). It 

is based on a similar weighted least squares algorithm approximation 

algorithm as described above, but allows for both random effects and 

error correlation structure in the linear mixed model estimation of the 

“adjusted variate” [50]. The correlation structures are for the binary
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repeated measures; modelling by correlation structure alone therefore 

yields PA estimates [31, Chapter 9]). Adding random effects effectively 

yields a random effects model with serial correlation [31, Chapter 22].

Another idea is to replace the single random effect Ui for subject i 

by a series (n*i, . . . ,  Ua) of N(0, distributed, autocorrelated random 

effects (as in the marginal model, p { j , f )  =  The extension of

model (3.2) then takes the form,

logit(Pr(2/i; =  l | u j i , . . . ,  Uit)) =  (3Q^+(3fxiij +  . . .  +  (3p^Xpij +  Uij. (2.4)

If p =  1, model (2.4) reduces to the random intercept model (2 .2). In 

our view, model (2.4) forms a better basis for random effects modelling 

of repeated measures data because of its ability to incorporate auto­

correlation [10]. In principle, model (2.4) can be set up and estimated 

in a Bayesian framework using MCMC methods ([9, Chapter 5], [10, 

Chapter 11]), e.g., in WinBUGS software. In our experience, however, 

it is a non-trivial task to achieve acceptable trajectories of the resulting 

Markov chains.

A further refinement of this idea, and an amalgamation of marginal and 

random effects procedures, marginalized models employ the marginal 

model (2 .1) for the regression coefficients and the random effects model

(2.4) for the correlation structure. In the latter model, the fixed part is
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replaced by the equivalent of the marginal model fixed part for the condi­

tional probability [20]. Marginalized models may be programmed using 

flexible statistical optimization tools (such as the nlm ixed procedure in 

SAS; [17]), but to our knowledge these models are not yet available in 

standard statistical software, or as an add-on package.

2.4 Simulation studies

2.4.1 Models for simulated data

Two simulation studies were carried out using relatively small, balanced, 

two-level (time within subjects) datasets. The first study was based 

on the marginal logistic regression model (2 .1) with a first order auto­

correlation between the binary outcomes. The second study used the 

random effects model (2.4) with autocorrelated subject random effects. 

The fixed part of the models included a dichotomous treatm ent and a 

linear effect of time. The treatm ent was “applied” either to subjects 

(between-subjects (BS) design) or to two periods within each subject 

(WS) in a balanced cross-over type design. Three versions of the fixed 

part structure were studied: additive time and treatm ent effects in BS 

and WS designs, as well as an interaction model for the BS design.

All studies and designs were furthermore assessed in different settings
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intended to reflect a range of experimental data  encountered in practice. 

The number of subjects was set to either small or large (n =  20 and 

100, respectively). Datasets with substantially less than 20 subjects per 

treatm ent would usually not be analyzed by random effects methods, 

and therefore fall beyond the scope of this study. The length of longitu­

dinal series on each subject was short, medium or long (i =  4, 8 and 16, 

respectively). The marginal autocorrelation between adjacent observa­

tions was high, moderate, or low (p =  0.7, 0.5 and 0.2, respectively). In 

the random effects model, the between-subjects standard deviation was 

set at (7 =  1, and the same correlation values as above were used for the 

autocorrelated subject random effects. We also included the special case 

p =  1 corresponding to a random intercept model. Note tha t the corre­

lation between binary outcomes is different than the correlation between 

the random effects. In particular, the latent variable approximation with 

an observation-level variance component of 7t^/3  [44, Chapter 14] yields 

an intra-class correlation of cr^/(cr^ +  %^/3) =  0.23 and a first-order 

correlation of pcr^/(cr^ 4- 7t^ /3), and the values 0.16, 0.12 and 0.05 for 

p =  0.7, 0.5, 0.2, respectively.

Simulated data from the marginal model were generated by the b in d a ta  

package in R software [25]. The algorithm generates binary random 

variables with a given correlation structure by converting multivari­

ate random variables into binary variables. Correlations among bi-
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nary data are constrained by the (marginal) probabilities [35], which, 

in a logistic regression, depend on the predictors. Hence, the fixed ef­

fects parameters were chosen to avoid extreme probabilities th a t would 

make the desired correlation structures infeasible. The fixed parame­

ters were set at: /̂ o =  —0.5, /^(treatment) =  0.35, /^(time) =  0.10, 

/^(interaction) =  —0.15. The autocorrelated random effects of each sub­

ject were obtained by multiplying a vector of t  independent variables by 

the upper triangular factor of the Cholesky decomposition of the cor­

relation m atrix as described by Congdon [9]. Generation of the binary 

outcomes then followed the usual scheme for random effects logistic re­

gression models [46].

2.4.2 Software and settings for estim ation procedures

The GEE estimation procedures used the implementation in R version

2.1.0 software (gee version 4.13.10) with different working correlation 

structures: independence, autoregressive (/?Xr)> exchangeable, and au­

toregressive with known (true) correlation The ALR estimation

procedure ( /? X l r )  was carried out in R version 1.9 software ( a i r  4.2 pack­

age) and used an exchangeable correlation structure. The random ef­

fects procedures used the first order MQL (/?mql) second order PQL 

(^pql) procedures implemented in the MLwiN software (version 2.02),
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the REPL procedure (/^repl) p roc glimmix of SAS (version 9.1), as 

well as the adaptive quadrature algorithms for ML estimation (/3̂ l) 

plemented in S tata version 9 software ( x t lo g i t  and gllaimn commands), 

and the non-adaptive quadrature glmmML (version 0.26) package for R 

software. The REPL procedure was set up with subject random effects 

and a first order autoregressive correlation structure (including also an 

additional overdispersion parameter); in addition, a marginal REPL pro­

cedure without subject random effects was included.

The Bayesian estimation procedures ( / ? m c m c )  were implemented in 

WinBUGS version 1.4 called from the R software using the R2WinBUGS 

package [47]. Vague (“non-informative”) prior distributions (i.e. N (0 ,10®)) 

were used for all fixed effects parameters. The recently recommended 

uniform distribution for inverse variances [24, 14] proved sensitive to 

trap  messages, even after truncation of the distribution, so we reverted 

to the classical gamma distribution (10“ ,̂ 10“ )̂ for the inverse between- 

subjects variance [6]. The Markov chains were run with 300 burn-in 

samples, and the subsequent estimates (posterior distribution medians) 

were based on 1000 samples. These burn-in and estimation sample sizes 

were arrived at after inspecting MCMC diagnostics for selected datasets; 

Browne et a l  [6] used a somewhat larger burn-in period of 500 samples.

In order to reduce the computing time, the datasets generated by a
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model including an interaction term  were analyzed only by a restricted 

set of estimation procedures: GEE with autoregressive correlation, ALR, 

ML by numerical integration as implemented in Stata, and MCMC.

2.4.3 Analysis of and performance of simulated data

For the analysis of the simulated marginal model data, the estimates and 

standard errors of random effects estimation procedures (except MQL) 

were converted to marginal param eter estimates by the formula (2.3), 

using the estimated between-subject variance. The bias-adjusted relative 

efficiency of an estimate (3 was computed by the formula,

relative efficiency =  -  P ù f  (3 5)
Var(/3) +  (E(/3) -

where /3q refers to the true model parameter, refers to  an autoregres­

sive CEE analysis with a correlation structure fixed at the true value, 

denoted by /3p  ̂ [49, 8]. Thus, the relative efficiency measures the vari­

ance around the true value, caused by either random variation or bias, 

relative to a “correct” estimation procedure. The means and variances in 

formula (2.5) were computed from the distribution of the corresponding 

estimate across the simulated datasets. Note tha t by the lack of a refer­

ence method for the autoregressive random effects model, no analogous 

relative efficiency could be computed.
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The presence of statistically significant bias in the estimates was as­

sessed by a 2-test based on the true value and the standard deviation 

among simulations. The statistical significance of bias in the standard 

errors was assessed by comparing the mean standard error to a 95% 

confidence interval for the standard deviation based on the simulations. 

This simple procedure was considered acceptable because the statistical 

variation in the estimated standard deviation was generally much larger 

than th a t of the mean standard error. The confidence intervals were com­

puted by the large-sample normal approximation based on the standard 

error; for the GEE procedures, the robust standard error was used. The 

coverage of 95% confidence intervals was computed as the proportion 

of simulated datasets for which the confidence interval (in the Bayesian 

analysis: the credibility interval) contained the true parameter.

If non-convergence or non-sensible estimates occurred for a certain 

method and dataset, the analysis was attem pted by the same or a simi­

lar method in a different software implementation. For example, in some 

small data settings the autoregressive GEE procedures failed to produce 

a useful (an extreme value of) robust standard error. By the close agree­

ment between model-based and robust standard errors in other settings, 

the model-based standard error was used in such instances. Also, the 

ALR estimate was in some cases obtained from SAS instead of R, and 

different optimization techniques were tried in for the REPL procedure
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in SAS if the default quasi-Newton method failed. If the problems per­

sisted across different implementations, the corresponding dataset was 

omitted.

2.5 Results of performance analysis

Generally, results are shown only for the treatm ent parameter. Means of 

estimates and of the associated standard errors, as well as standard de­

viations of estimates among the simulations are shown in tables (Tables

2 .1-2.4). A summary of performance measures on the bias, confidence 

interval coverage and relative efficiency are shown graphically (Figures

2.1-2.6). In the interest of clarity and space, all results of the interaction 

models were excluded from the presentation. Furthermore, no results are 

shown for GEE estimation with independence and exchangeable correla­

tion structures because throughout they were very close to those of ALR 

estimation. We focus here is on ALR estimation because to our knowl­

edge its performance and robustness properties have not been reported. 

Also, the marginal REPL analysis has been omitted from the results, 

because its close agreement with GEE procedures is well-documented 

[31, Ghapter 9]. For ML estimation by numerical integration, only the 

results from the gllamm implementation are shown because of its greater 

flexibility than the x t l o g i t  command in S tata and the glmmML package
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in R. Additional tables (A.1-A.8) of results are reprinted in Appendix A.

2.5.1 Marginal model data

The estimates of the two GEE procedures agreed closely (Tables 2.1 and

2.2). The robust and model-based standard errors (not shown) of the 

autoregressive GEE procedures were generally close, and in agreement 

with the standard deviation across the simulations. However, in small 

datasets (n =  20) the agreement was best for the model-based standard 

errors whereas the robust standard errors were up to 10% lower. The 

efficiency for relative to was close to 100% in all settings (Fig­

ures 2.2 and 2.4). The estimates of ALR and MQL procedures agreed 

closely, and were close to the GEE estimates except for one setting (WS; 

(n ,^ ,^ ) =  (20,16,0.7)).

The REPL estimates were close to the GEE estimates in most set­

tings, with scattered deviations in some of the smallest datasets (n =  20 

and t  <  8). The estimates of the three other random effects proce­

dures were close in many settings (in particular the largest datasets) 

and then differed substantially from the marginal estimates; however, 

overall there was less agreement among these random effects procedures 

than the marginal procedures. Compared to the other random effects 

procedures, REPL produced markedly lower estimates of the between-
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subjects variances, which in turn affected the scaling of random effects 

to a marginal estimates and overall lead to a performance of REPL akin 

to a marginal procedure.

The variability of estimates, as expressed by the standard deviations, 

decreased with increasing size of the dataset (increasing n ox t),  and 

also decreased with decreasing correlation in BS designs. The standard 

deviations were higher in BS than WS datasets with the same settings.

2.5.1.1 Treatm ent between subjects (BS)

The estimates of marginal estimation procedures were generally unbi­

ased, except for a general upwards bias in the smallest datasets ((n, t) =

(20,4)) with moderate to large correlation (Table 2 .1). The coverage 

of confidence intervals was close to nominal for n  =  100 but underesti­

mated (lowest value 91%) in several small dataset settings (Figure 2.1). 

The relative efficiency of the ALR and MQL procedures ranged between 

0.9 and 1.0 (Figure 2.2).

The REPL estimates were unbiased even in the smallest datasets with 

large correlation; this lead to a relative efficiency above 1 . The Cl cover­

age was close to nominal (range 94-97%), and the relative efficiency was 

never below 1. Analysis allowing for extra-binomial dispersion showed 

a minor underdispersion with values ranging down to 0.8 (results not
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shown)

The ML and MCMC random effects estimation procedures showed 

more instances of an upwards bias than the marginal procedures, and 

the bias tended to increase with increasing p. The PQL estimates were 

on the average close to the true value, and only some biased settings were 

noted (Table 2.1). The Cl coverage for the PQL procedure was close to 

nominal (range 93-96%), and the relative efficiency ranged between 0.9 

and 1.0, except for the smallest dataset where PQL performed better 

than the reference procedure. However, the comparison in this setting 

was obscured by the fact th a t due to convergence problems for the second 

order PQL procedure, a first order procedure was often used. Both ML 

and MCMC procedures had relative efficiencies down to 0.78 for highly 

correlated data, and more variable Cl coverages; in particular, MCMC 

showed less than nominal coverage (lowest 91%) in most settings. It is 

notable tha t for data with the strongest autocorrelation, the between- 

subjects variance estimates were more extreme with ML and MCMC 

procedures than with PQL; the latter values ranged up to d  >  5 in the 

smallest datasets ( (n, t )  =  (20,4)).
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2.5.1.2 Treatm ent w ithin subjects (W S)

The marginal estimation procedures only showed an upward bias for the 

longest series with small number of subjects — (20,16); Table

2.2). The Cl coverage for the GEE and ALR procedures was close to 

nominal or moderately below (ranging down to 91.5%; Figure 2.3). The 

MQL procedure suffered from substantial undercoverage (down to 74%) 

unless the series was short (n =  4) or the correlation was low (p =  

0.2). This was a result of severely underestimated standard errors (Table

2.2). The relative efficiency of ALR and MQL procedures dropped down 

to close to 0.5 for the longer series with high correlation (Figure 2.4). 

For the autoregressive O FF procedures, the standard deviations among 

estimates seemed to peak at an intermediate true correlation p, except 

for the shortest series where they decreased with increasing p.

The REPL procedure performed similarly to the O FF  procedures, ex­

cept for a single uncharacteristic downward bias for {n, t^ p) =  (20,4,0.7). 

The other random effects procedures gave fairly similar average estimates 

and standard deviations, and were all subject to upwards bias in most 

settings. The relative efficiency was as low as for the ALR procedure, 

ranging down to 0.5 for the longer series with high correlation. The 

confidence intervals showed strong undercoverage (down to 66%) except 

for the shortest series (t =  4), again owing to at times grossly underes-
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tim ated standard errors of the procedures. It may be noted th a t PQL 

tended to give larger estimates in comparison with ML and MCMC, as 

p increased.

2.5.2 Random effects model data

The estimates of marginal estimation procedures (GEE, ALR and MQL) 

can be compared either to the true subject-specific param eter value 

(0.35) or the true marginal param eter value (0.302), obtained from the 

conversion formula (2.3) with the known between-subjects standard devi­

ation (7 =  1. The indicated significance for bias in Tables 2.3-2.4 and the 

coverage of confidence intervals in Figures 2.5-2 .6 refer to the marginal 

param eter. This comparison is, however, theoretical and hypothetical 

from a practical point of view because a  is not known and no estimate 

is provided for cr from marginal estimation procedures (except MQL). 

Further discussion of the implications of choosing a marginal procedure 

is deferred to Section 2.6.4.

The estimates and standard deviations from marginal estimation pro­

cedures generally agreed closely (Tables 2.3-2.4), except for MQL in the 

((n, t ,p) =  (20,4,0.2)) setting. The random effects estimation proce­

dures, except REPL, also agreed fairly well, and some differences may 

be due to convergence problems experienced for the ML, PQL and MQL
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procedures, especially for p <  1. Similarly with the marginal data, the 

REPL estimates were generally closer to the estimates of marginal than 

random effect estimation procedures.

For the random intercept model (p =  1), the random effects proce­

dures showed no appreciable bias in the treatm ent effect except for the 

smallest dataset in the WS design (Tables 2.3-2.4). Across all settings 

and procedures, the average between-subject standard deviations were 

close to the true value (data not shown). The Cl coverage was close to 

nominal (range 93-96%, Figures 2.5-2.6). The autoregressive random 

effects model (p <  1) generally showed a downward bias in treatm ent 

effects (except for the smallest dataset in both designs), and the mean 

estimates were in most cases closer to the marginal than the random ef­

fects parameter. The between-subject standard deviations were strongly 

underestimated, with values decreasing with both t  and p, and ranging 

from of 0.80 ((t, p) =  (4, 0.7)) to 0.12 {{t, p) =  (16,0.2)). The confidence 

intervals showed strongest undercoverage, down to 87%, in those large 

datasets (n =  100) where the bias in the standard deviations was most 

pronounced.

Irrespective of p, the marginal estimation procedures (including GEE 

with exchangeable and independence correlation structures) gave esti­

mates centered around the marginal param eter although a few settings
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showed a minor bias in either direction (Tables 2.3-2.4). The Cl cov­

erages were generally above 90% in the larger datasets, owing to an 

underestimated standard error, but close to nominal in datasets with 

less information.

For /? =  1, the estimated between-subjects standard deviation pro­

duced by MQL showed a clear downward bias (range 0.73-0.82).

Convergence problems were encountered with several procedures, most 

severely so in small datasets with low correlation. The quasi-likelihood 

procedures (MQL and PQL) were strongest affected, and in some cases 

the analysis could not be completed in 30-40% of the datasets (e.g 

((/I, p) =  (100,4,0.2), (20,16,02), (20,4, <  0.5))).

2.5.3 Interaction model in between subjects design

The param eters of interest were the difference between treatm ents at 

the average time point (treatm ent main effect when the time predictor 

is centered) and the change over time in treatm ent effect (treatm ent 

by time interaction). Convergence problems due to the complexity of 

the interaction model were encountered with most of the procedures; in 

particular in the smallest dataset =  (20,4)), so it was excluded

from the analysis. Although results are not shown, the findings are 

summarized briefly for both marginal and random effects data.
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2.5.3.1 M arginal m odel data

The qualitative statem ent can be made th a t estimates for the main and 

interaction effects showed behaviours similar to the BS and WS de­

signs, respectively. Generally, marginal estimation procedures (GEE and 

ALR), and random effects procedures (ML and MCMC), gave estimates 

centered around the true value, except for { ( n , t , p )  =  (20,8, <  0.7). 

Random effects procedures showed more instances of deviations from 

the true value than the marginal procedures.

For the interaction param eter, the GEE and ALR estimation proce­

dures showed no substantial bias and a Cl coverage close to nominal 

even if ranging down to 92%. The mean standard error and standard 

deviation among simulations agreed closely for marginal estimation pro­

cedures, whereas for random effects procedures, the latter was always 

larger. The MQL and random effects procedures suffered from Cl un­

dercoverage (down to 73 and 65%, respectively) in the presence of high 

correlation. All procedures except the autoregressive CEE showed some 

loss in relative efficiency, ranging down to 0.7 for random effects proce­

dures in the presence of high correlation.
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2.5.3.2 Random  effects m odel data

The estimates of marginal estimation procedures (GEE and ALR) can 

be compared either to the true subject-specific param eter value of inter­

action and treatm ent main effect (—0.15 and 0.35) or the true marginal 

param eter value (— 0.129 and 0.302) respectively, obtained from the 

conversion formula (2.3) with the known between-subjects standard de­

viation a  — 1. Findings refer to the marginal parameters.

The estimates, standard deviations and the mean standard errors from 

marginal estimation procedures (GEE and ALR) generally agreed closely. 

For both treatm ent main effect and interaction effect, and irrespective 

of p, the marginal estimation procedures gave estimates centered around 

the marginal parameter, although a few settings deviated in either di­

rection (e.g., ((n, t, p) =  (100,16, <  0.5) and (n, t, p) =  (20, 8, <  0.7))). 

The Cl coverages were generally above 91%.

The estimates, standard deviations and the mean standard errors from 

marginal estimation procedures (GEE and ALR) generally agreed closely. 

For both treatm ent main effect and interaction effect, and irrespective 

of p, the marginal estim ation procedures gave estimates centered around 

the marginal param eter, although a few settings deviated in either di­

rection. The Cl coverages were generally above 91%.
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For the random intercept model [p — 1), the random effects proce­

dures showed estimates close to the true values in most settings. The 

Cl coverages were generally close to nominal and down to 92% in some 

settings specially for MCMC procedure. Both random effects procedures 

(ML and MCMC) gave estimates for the between-subject standard de­

viations close to the true value (data not shown). As with the random 

effects model data, the autoregressive random effects model data (p <  1) 

generally showed similar patterns for the mean estimates and between- 

subject standard deviations.

2.5.4 Summary of performance

The performance of the estimation procedures in terms of bias, coverage 

of confidence intervals and efficiency (for marginal model data only) were 

summarized to yield Tables 2.5 and 2.6. For each procedure and effect 

type (BS or WS), the tendency across all data settings were assessed 

as either 0 (no bias, nominal coverage, 100% efficiency), — (underesti­

mation, undercover age, <95% efficiency), or as -f for converse findings. 

Where multiple patterns existed across data settings, additional symbols 

were given in parenthesis for findings present in more than  two settings, 

with the more common patterns listed first.

Across all marginal data settings, the marginal estimation procedures
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predominantly performed well, the one exception being MQL for the WS 

design. REPL performed as a marginal procedure, and at times better 

than the reference GEE method. The other random effects procedures 

performed acceptably in the BS design, despite some loss in relative 

efficiency, but failed in many settings of the WS design on all performance 

parameters assessed.

For the random effects data  settings, the marginal estimation proce­

dures performed reasonably well, when compared to the true PA param ­

eter, despite some tendency towards negative bias. As a random effects 

procedure, REPL was compared to the true SS param eter, which was 

generally underestimated irrespective of the true value of p. The other 

random effects procedures performed well in the compound symmetry 

setting (p =  1) but showed similar underestimation and undercoverage 

as REPL for p <  1.

2.6 Discussion

Although stated generally, the conclusions in the following are evidently 

confined to the range of procedures and settings covered by the study.
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2.6.1 Marginal estimation procedures

The GEE estimation procedure with autoregressive working correlation 

m atrix remained highly efficient across all marginal data settings, and the 

model-based and robust standard errors agreed closely. The procedure 

performed on par with other marginal procedures for the random effects 

data (with exchangeable, and non-autoregressive correlation structures). 

Although these results covered only a small range of non-autoregressive 

correlation structures, they are in our view supportive of the use of an 

autoregressive working correlation structure when using GEE procedures 

for longitudinal binary data [42].

Other correlation structures for GEE (exchangeable and independence) 

showed substantial loss in efficiency relative to the autoregressive struc­

ture in the marginal model data, in particular for the WS design with 

a moderate to large autocorrelation. The independence structure has 

been described as sufficient for datasets up to moderate size [19, Ghap­

ter 3], but the loss in efficiency was observed even in the small (n =  20) 

datasets. The estimates for ALR were very close to those of GEE with ex­

changeable correlation structure. If there is, within the marginal estima­

tion framework, interest in a param eter quantifying the within-subjects 

dependence, the log odds-ratio of the ALR procedure is in our view 

preferable to values of the GEE working correlation matrix. Evidently
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the odds-ratio is a better and more commonly used measure of associa­

tion between binary outcomes than the correlation [10]. Also, the ALR 

procedures provides a standard error of the estimated association so tha t 

a confidence interval can be constructed. However, the ALR procedure 

does not in its current implementations allow for repeated measures cor­

relations such as autocorrelation.

The demonstrated downward bias in MQL estimates of the between- 

subjects variance is well-known (e.g., [39]). As a marginal procedure [5], 

MQL performed on par with other procedures involving the exchangeable 

correlation assumption (ALR, GEE), except for a strong Cl undercov­

erage (similar to the random effects procedures) in the WS and interac­

tion datasets. As the undercoverage is largely a result of underestimated 

standard errors, it is suggested to add robust (“sandwich”) variance esti­

mation to the MQL procedure; the usefulness of this suggestion remains 

however to be assessed in practice.

In the smallest BS datasets (n =  20), all marginal procedures ex­

perienced problems with some Cl undercoverage and upwards bias in 

estimates (only t  <  8). These findings are agreement with previous find­

ings, e.g., summarized in a recommendation to apply GEE only “if the 

number of clusters is a t least 30 for a cluster size of about 4 for low to 

moderate correlation” [53].
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2.6.2 Random effects estim ation procedures

All the random effects procedures (except REPL discussed below) per­

formed well and had fairly similar estimation errors in the data generated 

from random intercept models [p =  1). Recently, Heo and Leon [21] con­

cluded th a t the full likelihood approach “appears to be preferable for the 

analysis of clustered binary observations with underlying random effects 

models”. On the other hand, Browne and Draper [6] reported the clos­

est reproduction of true model values with MCMC procedures, a finding 

th a t could not be reproduced in the current study settings, in which, 

with one exception, the procedures showed no bias.

For marginal model data, the PQL procedure seemed less affected 

by the model misspecification than  the ML and MCMC procedures, in 

particular for the BS design, and the MCMC procedure had lowest ef­

ficiency and Cl coverage in several settings. These tendencies may be 

linked to the higher estimated between-subjects variances for ML and 

MCMC procedures. As the data were generated from a marginal model 

no true value exists for assessment of these estimates; however, one may 

speculate tha t the PQL estimates were biased towards zero as previously 

mentioned (e.g., [40]). Another possible explanation is a selection bias 

resulting from convergence problems for all random effects procedures, 

most severely for the PQL procedure.
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For the autoregressive random effects model data {p <  1), all regres­

sion estimates of random effects procedures were similar but downward 

biased and close to the marginal estimates. This can be seen largely 

as a scaling effect caused by the underestimation of the random effect 

variances. The avoidance of such scaling problems by separating fixed 

and random effects estimates was one of the key ideas behind the devel­

opment of marginalized models [20]. Finally, the agreement between the 

two S tata implementations of ML estimation based on adaptive quadra­

ture ( x t lo g i t  and gllamm) suggested the use of the former, and faster, 

procedure for simple two-level models.

The inclusion of both random effects and a correlation structure in 

the REPL procedure makes it difficult to characterize the resulting ap­

proach in terms of the PA/SS dichotomy. This is due to the modelling of 

parts of the variance/ correlation structure on different scales [31, Chap­

ter 22]. For both marginal and random effects datasets, the estimated 

variance by REPL was substantially lower than by other random effects 

procedures. This could in part be due to the well-known attenuation 

of variance parameters by PQL in certain settings [13], but could also 

be due to the “competing” explanation of the variance/ correlation struc­

ture on the two scales. In effect, REPL performed mostly as a marginal 

estimation procedure, and showed no promise for estimation of the vari­

ance and autoregressive param eter in the autoregressive random effects
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data. The performance was actually similar to tha t of a REPL approach 

without any random effects (results not shown) which was already noted 

to be similar to GEE, except for an increased sensitivity to convergence 

problems in datasets with a small number of subjects and long series, in 

accordance with the findings reported by Molenberghs and Verbeke [31, 

Chapter 14].

2.6.3 Issues related to statistical design

The precision of param eter estimates and performance of estimation pro­

cedures were generally better in within-subjects (WS) than between- 

subjects (BS) designs, in agreement with the general notion th a t the 

former, whenever logistically and biologically feasible, are the more pow­

erful. The smallest (n =  20) marginal BS designs presented problems 

for all estimation procedures whereas performance in the corresponding 

WS designs was clearly better for the marginal estimation procedures. 

Also, the WS designs produced more pronounced differences in perfor­

mance than the BS designs. Different impacts of autocorrelation on the 

precision of param eter estimates were noted in the BS and WS designs. 

In the former, precision decreased with increasing p  whereas in the la tter 

precision seemed to be non-monotonic as a function of p  (see also the 

discussion by Diggle et  al. [10]). At closer scrutiny, in some settings with
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low p (both marginal and random effects data) the difference in precision 

between BS and WS estimates was fairly small. Thus, the implied gain 

in precision by a WS design may not always be the determining factor 

when planning an experimental study (when a large number of subjects 

are available).

In the presence of an interaction, qualitatively different behaviours for 

main effect and interaction param eters were observed. These behaviours 

agreed with the intuitive perception th a t the main effect corresponds to a 

fixed point in time and is estimated between subjects in a cross-sectional 

manner, whereas the interaction is a time-varying effect estimated within 

each subject just like the treatm ent in the WS design.

2.6.4 Marginal versus random effects estim ation procedures

We conclude with a discussion of the implications of the findings for the 

choice of procedure, in particular the choice between marginal and ran­

dom effects procedures. As was already stated in the introduction, the 

researcher should first and foremost be guided by the desired interpreta­

tion of effects. Diggle et al. [10, Chapter 7] argue th a t PA effects are of 

primary interest in clinical trials because “the average difference between 

control and treatm ent is most important, not the difference for any one 

individual”. Lindsey and Lambert [28] warn th a t the population aver­
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age may hide individual effects, and th a t “in extreme cases, a marginal 

analysis can show an average positive treatm ent effect when the effect 

would in fact be judged negative for each individual”. We think th a t 

a good study design th a t pays attention to the randomization and the 

allocation process of subjects to different comparison groups should help 

to control any confounders and avoid such extreme situations.

If a PA interpretation is desired, the semi-parametric marginal estim a­

tion procedures have to their credit the robustness implicit in making 

no specific assumptions about random effects and correlation structure. 

As the random effects procedures under study here, excluding REPL, 

all make the conceptually unreasonable assumption th a t residual cor­

relations are constant over time, the question for application of such 

random effects procedures is the sensitivity of the results to th a t as­

sumption. For marginal model data, either of the WS or interaction 

design, the random effects procedures displayed severe deficiencies, in 

terms of both efficiency and Cl coverage, which increased with the size 

of the dataset and the true autocorrelation. For the BS design, the ran­

dom effects procedures showed a minor loss of efficiency, but for the small 

datasets also a Cl coverage closer to nominal than marginal procedures. 

In the smallest dataset { {n , t )  — (20,4)), both marginal and random 

effects procedures lead to a marked upwards bias. For the random ef­

fects model and estimation of its corresponding marginal param eter, the
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marginal procedures performed similarly to the procedures for misspeci- 

fied correlation structure, considering the low correlation between binary 

outcomes. Furthermore, in the presence of autocorrelation between ran­

dom effects the random effects procedures were closer to  the marginal 

param eter instead of the true, subject-specific value. In summary, the 

use of random effects procedures to estim ate a marginal param eter is 

not recommended generally but may be acceptable in certain settings. 

In particular, in some datasets th a t were too small for the asymptotic 

properties of GEE procedures to guarantee approximately unbiased es­

tim ates and close to nominal Cl coverage, the random effects procedures 

estimates had slightly better properties. However, we advise against ran­

dom effects procedures if the effect of interest is time-varying and there 

is a strong decay in correlations, even for a series as short as 4 time 

points.

If an SS interpretation is desired, a marginal estimation procedure 

is of little use unless (unrealistically) the between-subjects variance is 

known. Nor are marginal procedures attractive in situations where a 

between-subjects variance is of genuine interest. The MQL procedure 

does provide a variance estimate, but because of its downward bias 

a back-conversion of PA to SS estimates using the conversion formula 

(2.3) does not yield an unbiased estimate of the SS parameter. One 

advantage of using random effects procedures is the ability to model
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and predict effects at the individual level. The properties of random 

effects procedures under exchangeable correlations has been extensively 

studied; however, the focus was on situations with decaying correlation 

over time. Goldstein et  ai  [16] described how underdispersion may arise 

as a result of unmodelled autocorrelation; the results for the marginal 

model did not show any substantial underdispersion. In the presence 

of autocorrelation, the random effects procedures failed to reproduce 

the subject-specific value, and for this situation we cannot point to any 

procedures among those covered in the study to obtain subject-specific 

estimates with acceptable performance. Thus, we advise to wait the de­

velopment of marginalized models to see whether they could become the 

first choice in such situations. Until then the researcher’s best option 

might be to try  to reduce the unexplained autocorrelation in the models 

by incorporating time-varying fixed effects (in particular, the time points 

themselves) and possibly random slopes of such predictors. In the WS 

design, a random slope of the treatm ent effect can also be suggested to 

effectively split the series on each subject into the two treatm ent series.
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Table 2.1: Mean estimate of between-subjects (BS) treatment effect (true value =  0.35), followed in parenthesis by standard 
deviation among simulations and mean standard error, based on analyses of 1000 simulated marginal (PA) datasets per setting 
{n =  number of subjects, t  =  number of time points, p =  autocorrelation). Analysis by procedure B of type A  is designated by 
/?B, where A  = P A  (population-averaged) or S S  (subject-specific), and B =  F (generalized estimating equations (GEE) with fixed 
autoregressive correlation), AR (GEE with autoregressive correlation), ALR (alternating logistic regression), MQL (marginal 
quasi-likelihood), REEL (restricted pseudo-likelihood), PQL (2nd order penalized quasi-likelihood), ML (maximum likelihood), 
MGMG (Bayesian Markov chain Monte Garlo).

Statistical MethodsT

n  t P
f,PA
bALR

f,PA
VMOX P'REP'L

sag
'"POL /"MCMC

100 16 .7 .359 .22,.22) .359 .22,.22) .360 .23,.23) .360 .23,.23) .357 .22,.23*) .375*(.24,.24) .381î(.24,.24) .3831 (-24,-24)
.5 .359 .17,.17) .360 .17,.17) .360 .17,.18) .360 .17,.18) .360 .17,.18*) .369î(.18,.18) .370*(.18,.18) -37ll(-18,.18)
.2 .352 .13,.13) .352 .13,.13) .352 .13,.13) .352 .13,.13) .353 .13,.13) .355 (.13,.13) .355 (.13,.13) .355 (-13,-13)

8 .7 .344 .27,.27) .345 .27,.27) .342 .28,.28) .342 .28,.28) .340 .27,.28*) .348 (.28,.30*) .37lt(.30,.30) .3761 (-30,-30)
.5 .348 .22,.22) .348 .22,.22) .348 .22,.23) .348 ■23,.23) .348 .22,.23*) .361 (.23,.23) .366l(.24,.24) -368l(-24,-24)
.2 .349 .17,.17) .349 .17,.17) .349 .17,.17) .349 .17,.17) .353 .17,.18*) .355 (.17,.17) .355 (.17,.17) .351 (-17,-17)

4 .7 .342 .34,.33) .342 .34,.33) .341 .35,33) .341 .35,.34) .340 .33,.32) .319î(.33,.36*) .366 (.37,.36) .362 (-37,-35*)
.5 .341 .30,.29) .341 .30,.29) .343 .30,.29) .343 .30,.30) .347 .30,.29) .351 (.31,.30) .366 (.32,.31) .344 (-31,-31)
.2 .339 .24,.23) .340 .24,.29) .340 .24,.23) .340 .24,.24) .340 .24,.24) .349 (.25,.23*) .350 (.25,.24) .341 (-25,-23*)

20 16 .7 .351 .54,.49*) .352 .54,.49*) .351 .55,.51*) .351 .55,.53) .346 .52,.53) .363 (.57,.55) .371 (.58,.53*) -358 (-58,-57)
.5 .347 .40,.37*) .347 .40,.37*) .348 .41,.38*) .348 .41 ,.40) .346 .40,.42) .357 (.42,.41) .357 (.42,.39*) .364 (-43,-42)
.2 .347 .30,.27*) .347 .30,.27*) .347 .30,.29) .347 .30,.29) .348 .29,.31*) .350 (.30,.29) .349 (.30,.29) -3721 (-30,-30)

8 .7 .377 .63,.61) .379 .64,.61) .379 .66,.63*) .381 .66,.66) .348 .60,.61) .374î(.65,.69*) .405t(.70,.68) .397 (-70,-71)
.5 .371 .51,.49) .373 .51,.49) .373 .53,.50*) .373 .53,.53) .359 .50,.53*) .382 (.54,.54) .386t(.55,.52*) -3861 (-55,-57)
.2 .363 .39,.37*) .364 .39,.3P) .364 .40,.37*) .364 .39,.39) .365 .39,.41) .370 (.40,.39) .369 (.40,.38*) .3931 (.41,-40)

4 .7 .410t .82,.75*) .413t .82,.75*) .4061 .83,.76* .4061 .83,.76*) .339 .71,.70) .365 (.73,.71) .4141 (.84,-82) -428l(-85,-81*)
.5 .397^ .70,.65*) .400^ .70,.65*) .395 .71,.66*) .394 .71,.69) .353 .63,.63) .362 (.65,.63) .414l(.74,.70*) .4091 (.74,-77)
.2 .382 .57,.52*) .381 .57,.52*) .379 .57,.52*) .379 .57,.55) .365 .56,.55) .387l(.58,.55*) .384 (.58,-55*) .4091 (.61,-61)

f significant bias in estimate at P  <  0.05; * significant bias in estimate at P  < 0.01; 
^ Note that SS estimates were converted to PA value (see text).

significant bias in standard error at P  <  0.05



Table 2.2: Mean estimate of within-subjects (W S) treatment effect (true value =  0.35), followed in parenthesis by standard 
deviation among simulations and mean standard error, based on analyses of 1000 simulated marginal (PA) datasets per setting 
(n =  number of subjects, t  =  number of time points, p =  autocorrelation). See Table 2.1 for coding of statistical methods.

tsP

n t P

Statistical Methods T

ÔPA
Pa l r

ÔPA
PUOL fREPL

agg
VPQL ^MCMC

100 16 .7 .352 .14,.14) .352 .14,.14) .356 .18,.18) .356 (.18,.ll*) .357 .14,.14) .371+(.19,.10*) -369+(-19,-10') .368+(.19,.10*)
.5 .359t .14,.14) .358 14,.14) .359 .16,.16) .359 (.16,.11*) .361+ .14,.14) .369+(.16,.10*) -368+(-16,-10*) .369+(.16,.10*)
.2 .355 .12,.12) .355 .12,.12) .355 .13,.12) .355 (.13,.11*) .352 .12,.12) .357 (.13,.ll*) .357 (.13,-11*) -360+(-13,-ll*)

8 .7 .350 .15,.14) .350 .15,.14) .349 .18,.18) .349 (.19,.14*) .357 .15,.14*) .386+(-20,-12*) -370+(-20,.12') -369+(-20,-12*)
.5 .352 .17,.16) .352 .17,.16) .353 .19,.18) .353 (.19,.14*) .356 .17,.16*) -371+(-20,-13*) -370+(-20,-13') -371+(-20,-13*)
.2 .355 .16,.16) .355 .16,.16) .355 .16,.16) .355 (.16,.14*) .357 .16,.16) -362+(-17,-14*) -361+(.17,.14') -361+(-17,-14*)

4 .7 .355 .15,.15) .354 .15,.15) .353 .17,.17) .353 (.17,.20*) .352 .15,.14*) .410+(.19,.16*) -378+(-18,-15*) -386+(-18,-15*)
.5 .359 .19,.19) .359 .19,.19) .355 .20,.20) .355 (.20,.20) .361 .19,.18) .381+(.21,.17*) -377+(-21,.18') -368+(-20,-18')
.2 .356 .20,.21) .356 .20..21) .355 .20,.21) .355 (.20,.20) .356 .20,.20) .365+(-21,-19*) .365+(-21,-20') .354 (-22,-20*)

20 16 .7 .366 .31,.30) .366 .31,.30) .3861 .42,.39*) .387+(.43,.24*) .363 .32,.30*) .404+(.44,-22*) .401+(.44,.23*) -396+(-44,-22*)
.5 .3821 .33,.31*) .382* .33,.31*) .3831 .36,.35) .383+(.36,.24*) .385+ .33,.32) .392+(.37,-23*) .392+(-37,-23') -394+(-37,-24*)
.2 .3731 .28,.27) .3731 .28,.27) .372+ .28,.27) .372+(.28,.24') .372+ .28,.28) -375l(.28,-24') -374+(-28,-24') -389+(-29,-24')

8 .7 .356 .33,.3r) .354 .33,.31*) .358 .41,.39*) .359 (.42,.33*) .338 .33,.30*) .392+(.46,-28*) .377 (-44,-28') .372 (-44,-27*)
.5 .349 .38,.36") .347 .38,.36") .356 .42,.40) .355 (.42,.33*) .344 .38,.36') .373 (.44,-30*) .371 (.44,-31*) .372 (-44,-31*)
.2 .351 .36,.34*) .351 .36,.34*) .350 .37,.35*) .350 (.37,.32*) .352 .36,.35) .357 (.37,-31*) -356 (-37,-32') .373+(.38,.33*)

4 .7 .361 .35,.33*) .357 .35,.33*) .358 .38,.36*) .357 (.38,.46*) .308+ .33,-32) -413+(-43,-38') -384+(-41,-36*) .406+(.43,-37*)
.5 .361 .43,.41*) .356 .43,.41*) .362 .45,.43) .363 (.45,.46) .338 .42,.39*) -388+(-48,-40') -382+(-47,-41*) -389+(-48,-40*)
.2 .353 .47,.46) .353 .46,.46) .356 .47,.46) .356 (.47,.46) .344 .46,-45) -368 (-48,-43') .365 (.48,-45*) -388+(-51,-47*)

f significant bias in estimate at P  < 0.05; 1- significant bias in estimate at P  < 0.01; 
^ Note that SS estimates were converted to PA value (see text).

significant bias in standard error at P  < 0.05



Table 2.3: Mean estimate of between-subjects (BS) treatment effect (true value =  0.35, marginal true value =  0.302), followed 
in parenthesis by standard deviation among simulations and mean standard error, based on analyses of 1000 simulated random 
effects (SS) datasets per setting (n  — number of subjects, t  — number of time points, p  =  autocorrelation). See Table 2.1 for 
coding of statistical methods.

CO

n t P

Statistical M ethods
ffPA
^MQL ^REPL ^PQL ^MCMC

100 16 1 .287+(.20,.19) .286+(.20,. 19) .286+ .20,.19) .325+(-23,-22) .341 (-24,-23) .343 (-24,-23) .345 (.24,-23)
.7 .287+(.14,. 13*) .287+(.14,.13’ ) .287+ .14,.13*) .291+(-14,-13) -299+(.14,.14) .299+(.14,.14) .297+(-15,-14)
.5 •291+(.12,.12) .291+(.12,.12) .291+ .12,. 12) .293+(-12,-12) .297+(-12,-12) .296+(.12,.12) -297+(.12,.12)
.2 .2 9 1 + ( .l l , . l l ) .2 9 1 + ( .l l ,. ll) .290+ . l l , . l l ) .2 9 3 + ( .l l ,. ll ) .2 9 3 + ( .l l ,. ll) .2 9 3 + ( .l l , . l l ) .297+011,.11)

8 1 .300 (.22,.21) .300 (.22,.21) .300 .22,.21) .333+(.24,-24) .357 (-26,-25) .361 (-26,-25) .364 (-27,-26)
.7 .292 (.18,.17) .292 (.18,. 17) .292 .18,.17) .297+(-18,-18) •313+(.19,-18) -313+(.19,-19) -310+(.19,.18)
.5 .293 (.16,.16) .293 (.16,.16) .293 .16,.16) .295+(.16,-16) .304+(-17,-16) .304+(.17,. 16) -302+017,-16)
.2 .296 (.15,.15) .296 (.15,.15) .296 .15,.15) .296+(.15,-16) .306+(-15,-15) .300+(.15,.15) -299+016,-15)

4 1 .306 (.26,.% ) .306 (.26,.25) .306 .26,.25) .336 (-28,-27) .361 (.30,-28*) .369 (-31,-30) .368 (-31,-31)
.7 .303 (.24,.23) .302 (.24,.23) .301 .24,.23) .310+(-25,-24) .332+(-26,-25) .335 (-26,-26) .331+(-26,-25)
.5 .297 (.23,.22) .296 (.23,.22) .295 .23,.22) .301+(-24,-23) .314+(-24,-23) .315+(-24,-23) -310+024,-23)
.2 .300 (.22,.21) .299 (,22,.21) .294 .22,-22) .297+(-22,-22) .306+(-23,-22) .307+(-22,-22) -303+023,-22)

20 16 1 .302 (.43,.42) .303 (.43,.42) .303 .43,-44) .343 (-48,-50) .365 (-51,-53) .359 (-51,-49) .361 (-53,-55)
.7 .292 (.30,.28*) .292 (.30,.28*) .298 .30,-30) .303+(-31,-32) .311+(-32,-32) .301+(.31,-29») .320+(-31,-30)
.5 .284+(.27,.25*) .284+(.27,.25*) .289 .27,-28) .290+(-28,-29) .298+(-28,-29) .289+(-27,-27) .309+028,-27)
.2 .278+(.25,.23*) .278+(.25,.23*) .273+ .25,-27*) .266+(.25,.27*) .279+(.26,-27) .289+(-27,-27) .303+025,-26)

8 1 .282 (.48,.46) .282 (.48,.46) .282 .48,-48) .311+(-54,-54) .339 (-58,-58) .333 (-57,-55) .344 (-59,-61)
.7 .290 (.41,.37*) .291 (.41,.37*) .293 .41,-41) .290+(-42,-43) .318+(-45,-44) .308+(.44,-40*) .328 (.45,-42*)
.5 .292 (.36,.34*) .292 (.36,.34*) .305 .36,-39*) .308+(.37,-41') .326 (-39,-41*) .304+(-38,-37) .327 (.38,-38)
.2 .291 (.33,.32) .291 (.33,.32) .292 .36,-37) .298+(.34,-37») .318+(-35,-38*) .296+(-34,-35) .325+(-35,-36)

4 1 .290 (.59,.55*) .290 (.59,.55*) .290 .59,-58) .331 (-67,-66) .349 (-72,-70) .344 (.71,-68*) .365 (-76,-78)
.7 .316 (.52,.50) .314 (.51,.50) .314 .51,-53) .331 (-67,-66) .353 (-60,-62) .348 (-57,-57) .369 (.60,-63*)
.5 .321 (.51,.48*) .320 (.50,.48*) .320 -50,-52) .353 (-55,-57) .354 (-58,-59) .346 (-54,-54) .377 (.57,-59)
.2 .320 (.47,.45) .319 (.47,.45) .339 -46,-52*) .366 (-50,-54*) .373 (.52,-56*) .332 (-49,-51) .367 (.52,-55*)

significant bias in estimate at P  < 0.05;  ̂ significant bias in estimate at P  < 0.01; * significant bias in standard error at P  < 0.05



Table 2.4: Mean estimate of within-subjects (W S) treatment effect (true value — 0.35, marginal true value =  0.302), followed 
in parenthesis by standard deviation among simulations and mean standard error, based on analyses of 1000 simulated random 
effects (SS) datasets per setting (n =  number of subjects, t  =  number of time points, p =  autocorrelation). See Table 2.1 for 
coding of statistical methods.

n t P

Statistical Methods
SPA
% Q L

a g g
% E P L

a g g
^PQL

a g g
^MCMC

100 16 1 .294t(.10,.10) •294t(.10,.10) .294+(.10,-11*) -336*(.11,-11) .351 (-12,-11) -351 (-12,-12) -353 (-12,-12)
.7 •292t(.12,.12) .293+(-12,-12) .293+(-12,-11*) -297*(.12,-11*) -305*(-13,.ll*) -305*(-13,-ll*) -304*(-13,-ll*)
.5 .2 9 5 t ( . l l , . l l ) .2 9 5 + (.l l ,. ll) .295+(.11,-11) -296*(.11,-11) -301*012,-11) -300*012,-11) -303*012,-11)
.2 .2 9 4 t ( . l l , . l l ) .2 9 4 + ( .l l ,. ll) .294+(.11,-11) -2 9 2 * ( .l l ,. ll ) -2 9 6 * (-ll,- ll) -2 9 5 * (- ll,- ll) -3 0 3 * (-ll,- ll)

8 1 .286t(.14,.13*) .285* (.14,-13) .285* (-14,-14) .320* (-15,-15) -342 (-16,-15*) -344 (-16,-16) -345 (-16,-16)
.7 •284t(.15,.15) .284* (.15,-15) .284* (-15,-14*) .290* (-15,-15) -304*(.16,-15') -305* (-16,-15') -302*(-16,-15')
.5 .284*(.15,.15) .284* (-15,-15) .286* (-15,-14*) .287* (-15,-15) -296*015,-14*) -294*015,-15) -294*015,-14*)
.2 .290t(.15,.15) .290+(-15,-15) .290+(-15,-14*) -295*(.15,-14*) -296* (-15,-14*) -294*015,-14') -297*015,-14*)

4 1 .291 (.18,.18) .291 (.18,-18) .291 (-18,-20*) .313* (-20,-20) -347 (-22,-21) -354 (-22,-22) -353 (-22,-22)
.7 .287t(.19,.20) .287+(.19,-20) .287+(-19,-20) .292* (-20,-20) -316*(-21,-21) -319* (-22,-21) -316* (-22,-21)
.5 .280* (.20,.20) .280* (-20,-20) .278* (-20,-20) -280* (-20,-20) -297*021,-20) -300*021,-21) -296*022,-21)
.2 .283* (.20,.20) .284* (-20,-20) .280* (-20,-20) .282* (-21,-20) -291*021,-20*) -293*021,-26') -290*021,-20)

20 16 1 .283* (.23,-21* ) .282*(.23,.21*) .282* (-23,-24) .324* (-26,-25) -340 (-28,-26*) -336 (-27,-26*) -343 (-28,-26*)
.7 .301 (.27,-26) .301 (-27,-26) .306 (-27,-24*) -310*027,-25') -321*(-28,-24*) -312* (-28,-24*) -323* (-28,-24*)
.5 .297 (.26,-24* ) .297 (.26,-25) .301 (-26,-24) .300* (-27,-25*) -311*027,-24*) -303*027,-24*) -318*027,-24*)
.2 .294 (-25,-23*) .295 (.25,-23*) .295 (-25,-24*) .298* (-25,-24*) -301*026,-24*) -297*026,-24') -317*026,-24*)

8 1 .291 (.31,-28*) .288 (.31,.28*) .288 (.31,-32) .323+(-35,-33*) -348 (-37,-35*) -344 (-37,-36) -351 (-38,-36*)
.7 .288 (.85,-32*) .289 (.35,-32*) .294 (-35,-32*) .302* (.35,-33*) -322+(-38,-33*) -310* (-37,-34*) -322+(-38,-34*)
.5 .303 (.34,-32*) .304 (.34,-32*) .310 (-33,-32) -302* (.35,.33*) -329 (-36,-33*) -317*036,-33') -333 (-36,-34*)
.2 .307 (.33,-32*) .308 (.33,-32) .306 (-33,-32) .309* (-33,-32) -320+(-34,-33) -314*034,-33) -337 (-35,-33*)

4 1 .317 (.42,-40) .318 (.42,-40) .318 (-42,-46*) .353 (-51,-45*) -391+(-53,-50*) -390+(-53,-52) -409* (-55,-53*)
.7 .326 (.47,-44*) .329 (.47,.44*) .326 (-47,-46) .362 (-53,-45*) -380 (-55,-48*) -372 (-54,-49*) -390+056,-51*)
.5 .318 (-49,-45*) .319 (-49,-45*) .308 (-48,-46) .334 (-53,-45*) -350 (-55,-48*) -347 (-53,-48*) -370 (-56,-50*)
.2 .318 (-48,-45) .319 (.48,-45) .340+(-47,-46) .344 (.51,-45*) -373 (-52,-47*) -337 050,-48*) -369 (-53,-49* )

significant bias in estimate at P  < 0.05; t significant bias in estimate at P  < 0.01; * significant bias in standard error at P  < 0.05



Table 2.5: Summary of performance of estimation procedures across marginal (PA) 
data settings in terms of: bias of estimate and SE, coverage of confidence inter­
vals and relative efficiency, with multiple patterns (involving at least two settings) 
represented by additional symbols in parenthesis, in decreasing order of occurrence. 
Coding for estimation procedures: F (generalized estimating equations (GEE) with 
fixed autoregressive correlation), AR (GEE with autoregressive correlation), ALR 
(alternating logistic regression), MQL (marginal quasi-likelihood), REEL (restricted 
pseudo-likelihood), PQL (2nd order penalized quasi-likelihood), ML (maximum like­
lihood), MCMC (Bayesian Markov chain Monte Carlo).

Design Between-subjects (BS) Within-subjects (WS)
Assessment bias P bias SE Cl cov. rel.eff. bias P bias SE Cl cov. rel.eff.
Procedure

F o ( + ) O ( - ) 0 ( - ) n / a o ( + ) O ( - ) o ( - ) n/a

AR o ( + ) O ( - ) o ( - ) 0 o ( + ) o ( - ) o ( - ) 0

ALR 0 ( + ) o ( - ) O ( - ) o ( - ) o(+) o ( - ) o ( - ) - ( 0 )

MQL 0 ( + ) 0 o ( - ) O ( - ) 0 ( + ) -  (0+) - ( 0 + ) -  (0)
REPL 0 0 ( + ) 0 0 ( + ) 0 ( + ) 0 / - o ( - ) 0 ( + )

PQL 0 ( + - ) o(-b-) O ( - ) - ( 0 + ) +  (0) - - ( 0 ) -

ML 0 ( + ) o ( - ) 0 ( - ) - ( 0 ) +  (0) - - ( 0 ) -

MCMC +  (0) o ( - ) -  (0) - ( 0 ) +  (0) - - ( 0 ) -

0 :

+:

no significant bias, nominal Cl coverage, 100% efficiency
downwards significant bias, significant Cl undercover age, <95% efficiency
upwards significant bias, significant Cl overcoverage, >105% efficiency
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Table 2.6: Summary of performance of estimation procedures across random effects 
(SS) data settings separated by true value of autocorrelation (p) in terms of: bias of 
estimate and SE, as well as coverage of confidence intervals, with multiple patterns 
(involving at least two settings) represented by additional symbols in parenthesis, in 
decreasing order of occurrence. For coding of estimation procedures, see Table 2.4.

Design Between-subjects (BS) Within-subjects (WS)
Assessment bias /3 bias SE Cl cov. bias /3 bias SE Cl cov.
Data
P < 1

Procedure
AR O(-) O(-) o ( - ) 0 / - 0 (-) - ( 0 )
ALR o ( - ) 0 (-) - ( 0 ) 0 / - o ( - ) 0 / -
MQL 0 (-) 0 (+) O(-) o ( - ) 0 ( -+) 0 ( -+)

P = 1 REPL 0 / - 0 0 — o ( - ) - ( 0 )
PQL 0 0 0 0 - ( 0 ) 0
ML 0 0 0 0 0 0
MCMC 0 0 o ( - ) 0 0 / - 0

p < 1 REPL - ( 0 ) 0 (+) o ( - ) - ( 0 ) 0 / - - ( 0 )
PQL - ( 0 ) 0 ( + ) -  (0+) - ( 0 ) - ( 0 ) - ( 0 )
ML - ( 0 ) o ( - ) o ( - ) - ( 0 ) - ( 0 ) - ( 0 )
MCMC - ( 0 ) 0 (+) - ( 0 ) -  (0) - ( 0 ) - ( 0 )

0 : no significant bias, nominal Cl coverage 
—: downwards significant bias, significant Cl undercoverage 
+: upwards significant bias, significant Cl overcoverage
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Figure 2.1; Confidence interval coverage for between-subjects (BS) treatment estimates of 
different estimation procedures, based on 1000 simulated marginal (PA) datasets per set­
ting (n =  number of subjects, t  =  number of time points, autocorrelation p  =  (.7, .5, .2) ~  
( a ,  o,  x)). Coding for estimation procedures: F (generalized estimating equations (GEE) 
with fixed autoregressive correlation), AR (GEE with autoregressive correlation), ALR (al­
ternating logistic regression), MQL (marginal quasi-likelihood), REPL (restricted pseudo­
likelihood), PQL (2nd order penalized quasi-likelihood), ML (maximum likelihood), MCMC 
(Bayesian Markov chain Monte Carlo).
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Figure 2.2: Relative efficiency (see text for definition) for between-subjects (BS) treatment 
estimates of different estimation procedures (see caption of Figure 2.1), based on 1000 
simulated marginal (PA) datasets per setting (n =  number of subjects, t — number of time 
points, autocorrelation p =  (.7, .5, .2) ~  ( a , o ,  x ) ) .
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Figure 2.3: Confidence interval coverage for within-subjects (W S) treatment estimates 
of different estimation procedures (see caption of Figure 2.1), based on 1000 simulated 
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A comparison of statistical methods 

for the analysis of binary repeated 

measures data with additional 

hierarchical structure

3.1 Abstract

The objective of the study was to compare statistical methods for the 

analysis of binary repeated measures data with an additional hierarchical 

level. Such data are commonly encountered in human and veterinary epi­

demiological research, and one motivating setting for the present study 

was records of presence or absence of bacteria in milk samples obtained 

by approximately monthly sampling throughout the lactations of cows in 

dairy herds. As the basis of a simulation study, random effects true mod­

els with autocorrelated (p =  1, 0.9 or 0.5) subject random effects were 

used. In general, the settings of the simulation were chosen to  reflect
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a real somatic cell count dataset, except th a t the within-subject time 

series were balanced, complete and of fixed length (4 or 8 time points). 

Four fixed effects parameters were studied: binary predictors at the sub­

ject (e.g., cow) and cluster (e.g., herd) levels, respectively, a linear time 

effect, and the intercept. Marginal and random effects statistical proce­

dures were considered, and their performance was compared specifically 

for the four fixed parameters as well as variance and correlation pa­

rameters. Among the estimation procedures considered were: ordinary 

logistic regression (OLR), alternating logistic regression (ALR), gener­

alized estimating equations (GEE), marginal quasi-likelihood (MQL), 

penalized quasi-likelihood (PQL), pseudo likelihood (REPL), maximum 

likelihood (ML) estimation and Bayesian Markov chain Monte Carlo 

(MCMC).

The findings of this study indicate tha t in data generated by random 

intercept models {p — 1), the ML and MCMC procedures performed well 

and had fairly similar estimation errors. The PQL regression estimates 

were attenuated while the variance estimates were less accurate than ML 

and MCMC, but the direction of the bias depended on whether binomial 

or extra-binomial dispersion was assumed. In datasets with autocorrela­

tion (p <  1), random effects estimates procedures gave downwards biased 

estimates, while marginal estimates were little affected by the presence 

of autocorrelation. The results also indicate tha t in addition to ALR, a
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GEE procedure tha t accounts for clustering at the highest hierarchical 

level is sufficient. The REPL procedure performed poorly and produced 

unsatisfactory estimates regardless of autocorrelation values.

3.2 Introduction

Binary repeated measures data with additional hierarchical structure are 

data with multiple records over time on the same subjects (e.g., animals 

or farms), which in addition are nested within some (physical) clusters 

(e.g., hospitals, herds, provinces). In multi-level modelling terminology 

[31], this may be termed three-level repeated measures data, with obser­

vations corresponding to level one and clusters to level three. Such data 

structures are encountered across a wide range of applications in vet­

erinary and human epidemiology. Our motivating example was records 

of presence or absence of bacteria in monthly milk samples from cows 

housed in multiple herds. Thus, the hierarchical structure is the clus­

tering of cows in herds, and the repeated measures are the monthly test 

records based on the milk samples. D ata with this structure are common 

in studies of dairy cow udder health (e.g., [15, 26]). Some examples from 

human preventive medicine include the effects of air pollution on school 

absences in the southern California Children’s Health study [35], and the 

sickness episodes for workers over tim e [25].
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Binary records made on the same subjects, nested within clusters, over 

time are likely to be correlated [22 , 30] or clustered [8 , Chapters: 20-21]. 

A within-subject dependence violates the basic assumption of logistic 

regression th a t observations are independent, and may, if not accounted 

for, lead to biases in param eter estimates and standard errors ([7, Chap­

ter 7] and [9, Chapter 20]). Such data structures challenge the statisti­

cal methods to hold its properties, such as asymptotic unbiasedness and 

nominal confidence interval coverage.

Numerous procedures (models) have been proposed for the analysis of 

binary repeated measures data; a basic distinction is between marginal 

(population-averaged, or PA) and random effects (subject-specific, or 

SS) models ([7, Chapters 7-10] and [24]). A large body of literature 

on statistical methods of binary repeated measures data  have discussed 

the choice between these model types and specific procedures, see for 

example Diggle et al. [7, Chapters; 7-11] or a recent simulation study 

by Masaoud and Stryhn [20]. However, the added hierarchical struc­

ture poses problems for procedures of both types, and to our knowledge 

a comparison of statistical methods for the analysis of binary repeated 

measures data with such additional hierarchical structure has not yet 

been reported. Moreover, the impact of the added hierarchical structure 

would intuitively be expected to differ not only between estimation ap­

proaches but also between types of parameters in a model. The fixed
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part of a model could contain predictors at all three levels: the clus­

ter level, the subject level, and observation (within subject) level. The 

random part of a model would involve variances and covariances.

In order to realistically reflect the choice an applied researcher faces 

when it comes to data analysis, only estimation procedures implemented 

in broadly accessible statistical software were considered for the study. 

Specifically, the following procedures were included: ordinary logistic 

regression (OLR), alternating logistic regression (ALR), generalized es­

tim ating equations (GEE), marginal quasi-likelihood (MQL), penalized 

quasi-likelihood (PQL), pseudo-likelihood (REPL, as implemented in 

p roc  gliimnix in SAS), maximum likelihood via numerical integration 

(ML) and Bayesian Markov chain Monte Carlo (MCMC).

Analysis of a single dataset by multiple procedures (e.g., [25]) does 

not necessarily provide much insight into which procedures provide the 

right answers, and does not cover all aspects of statistical inference. 

The analytical approach taken for the present study was simulation. 

Statistical assessments of marginal and random effects procedures for 

two levels of either binary repeated measures [20] or clustered data  [17] 

are abundant, but these studies do not address the issues related to the 

additional hierarchical structure.

The objective of the study is to compare marginal and random ef­
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fects estimation procedures, in terms of statistical properties such as 

unbiasedness and confidence interval coverage, in a three-level balanced 

longitudinal design. The comparison includes a range of design parame­

ters at different hierarchical levels. The goal of the comparison is to gain 

insight into how different estimation approaches deal with the complex­

ity of the design, and to eventually establish some practical guidelines 

for the choice of statistical procedure for the analysis of balanced, binary 

repeated measures data with additional hierarchical structure .

3.3 Statistical models and estimation procedures

Consider binary records yijk on each of n subjects (z — 1, . . .  , n)  dis­

tributed on m  clusters (A: =  1 , . . . ,  m) a t t time points (jt =  1 , . . . ,  t), as 

well as a set x i , . . . ,  Xp of explanatory variables at different hierarchical 

levels recorded at every time point.

3.3.1 Random effects models

The general form of a random effects repeated measures model [7, Chap­

ter 11] takes the following form:

logit(Pr(z/jj7j =  1 f3pXpij] -̂\-Uij] -̂\-vj^̂  (3.1)
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where (-ui,. . . ,  Vm) are are independent random variables with the same 

distribution and {unk , . . . ,  Uuk) are a series of autocorrelated random 

effects with p{uijk,Uij>k) — The most commonly assumed distri­

bution is the Gaussian (normal), say Uijk ~  A^(0, where represents 

the heterogeneity (variance) between subjects and Vk ~  N[0 ,  a j )  where 

(73 represents the heterogeneity (variance) between clusters. Model (3.1) 

is for the conditional probability of an “event” given the random effects 

Vk and Uij of the kth. cluster and of the ith  subject at j th  time point, 

respectively.

A random intercept model arises as a special case of model (3.1) when 

p =  1, i.e., the series {u n , . . .  ,Uit) of autocorrelated random effects is 

replaced by the single random effect u*, assumed ~  # ( 0 , crl), for subject 

i in cluster k,

logit(Pr(yjjfc =  l|ufc, Uj)) =  /?o T  PiXnjk +  . . .  +  l3pXpijk -h Uj +  (3.2)

with the same assumptions for (vk) as above, and the same interpretation 

of (72 and (7g. In our view, model (3.1) forms a better basis for random 

effects modelling of repeated measures data than the simpler model (3.2) 

because of its ability to incorporate autocorrelation [7, Chapter 11].
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3.3.2 Random effects estim ation procedures

In general, there is no closed form of the full log likelihood function 

for models (3.1) and (3.2) and numerical procedures are needed to fit 

the model. Alternatively several approximation algorithms have been 

proposed, aimed at producing estimates close to the global ML esti­

m ate without actually computing the likelihood function [3]. These 

algorithms carry a number of different names and acronyms typically 

involving “weighted least squares” and “quasi”- or “pseudo-likelihood”.

Estimation in model (3.2) by numerical approximation most commonly 

employs the Gauss-Hermite quadrature procedure. Adaptive quadrature 

[27] is preferable for normally distributed random effects. In adaptive 

quadrature, the quadrature points are rescaled and shifted to the shape 

of the log likelihood function. In model (3.2), however, the added random 

effects at the cluster level pose some challenges for the direct maximiza­

tion of the log likelihood (ML) and the integration becomes difficult [7] 

and may substantially increase computation time.

Estimation by Markov chain Monte Carlo (MCMC) techniques in a 

Bayesian framework, may be viewed as a numerical approach to  avoid 

the computational difficulties of the log likelihood. In this study MCMC 

techniques are used as an estim ation algorithm for the frequentist model 

rather than for exploring the genuine Bayesian models with informative
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prior distributions. The MCMC approach has been shown to perform 

well across a range of settings [4, 20].

Breslow and Clayton [2] presented two estimation procedures based 

on quasi-likelihood function called penalized quasi-likelihood (PQL) and 

marginal quasi-likelihood (MQL). The MQL estimates are derived under 

random effects model assumptions [12]. Both procedures iteratively em­

ploy linear mixed model estimation to an “adjusted” variate obtained by 

Taylor approximation of the outcome around its current estimated mean, 

until convergence, using either maximum likelihood (ML) or restricted 

maximum likelihood (REML), thus results in IGLS iterative general­

ized least squares (IGLS) or restricted iterative generalized least squares 

(RIGLS), respectively. One major difference between the two algorithms 

is tha t MQL does not incorporate the random effects Ui in the lineariza­

tion of the mean [23, Chapter 9] whereas the PQL does. It has been also 

suggested to refine the approximations by the including a second-order 

term in the Taylor expansions, usually denoted as second order PQL and 

MQL procedures [13, 28]. It is well-known tha t caution should be ex­

ercised in using these algorithms because under certain conditions they 

are prone to bias towards the null (e.g., [28, 29]).

In addition, Wolffnger and O ’Connell [36] suggested a similar proce­

dure to PQL, called pseudo-likelihood (PL) procedure. It differs from

131



the quasi-likelihood approach by using a true joint likelihood function in 

its estimation process. Using either ML or REML in the estimation pro­

cess results in PL or restricted pseudo-likelihood (REPL), respectively. 

The REPL procedure allows for both random effects in the linear predic­

tor and correlation structure in the observation scale errors conditional 

(on the mean) [36]. Intuitively, one would expect this procedure to be 

suitable for models such as model (3.1). Modelling by correlation struc­

ture only yields marginal estimates [23, Chapter 22]; adding random 

effects effectively yields a random effects model with serial correlation 

[23, Chapter 22].

3.3.3 Marginal estim ation procedures

The most commonly used procedure to obtain marginal estimates is 

GEE, generalized estimating equations, which from the onset was de­

vised to deal with repeated measures obtained from multiple subjects 

[19]. The terms population-averaged and subject-specific inference orig­

inate from this context [38]. However, the idea th a t subjects might be 

part of a hierarchical structure themselves was not part of the scenario 

studied. Despite a plethora of extensions of the originally proposed gen­

eralized estimating equations [39], to our knowledge no set of estimating 

equations has been proposed to deal specifically with additional hier­
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archical structure. Several options can be explored within the classical 

GEE framework for dealing with one level of clustering of the subjects in 

addition to the within-subject correlation structure. The simplest idea is 

perhaps to model clusters by fixed effects (denoted here GEEf) while re­

taining the usual modelling of within-subject correlation structure. Mod­

elling hierarchical structure by fixed effects has multiple drawbacks, the 

most im portant being th a t it does not allow for inclusion of cluster- 

level predictors [8 , Ghapter 20]. An even more crude approach (denoted 

GEEs), to ignore the additional clustering, would not be expected to 

yield acceptable cluster-level inference. To achieve correct inference at 

the cluster level, the GEE handling of correlation structure must be 

shifted from the subject to the cluster level. This might at first seem to 

give up on achieving a valid and efficient within-subject inference, but 

the robustness of GEE procedures to misspecification of working corre­

lation structure should ensure consistency of estimates. The standard 

choices of GEE working correlation structure do not allow to distinguish 

between within-cluster and within-subject correlations. In our view the 

most promising choices of cluster-level correlation structures would be 

independence (GEEci) and exchangeable (GEEce). Independence corre­

lation structures, effectively corresponding to ordinary logistic regression 

(OLR) with robust (“sandwich”) variance estimates, has been reported 

to work well for data comprising at least 30 subjects [39].
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An alternative variant of the GEE procedure is alternating logistic 

regression (ALR). It uses the same estimating equation for the fixed ef­

fects as GEE, but differs from GEE by modeling the association among 

responses (e.g., within subjects) in terms of odds ratios. ALR is numeri­

cally more efficient than GEE for large clusters [5]. The ALR procedure 

has the advantage of providing standard errors for the association param ­

eters. Furthermore, ALR allows one to distinguish between odds-ratios 

within clusters and within subclusters (in the current case subjects); 

however, the within-subject correlation must be modelled as exchange­

able. For two-level binary repeated measures data, both GEE with an 

exchangeable correlation structure and ALR yield asymptotically unbi­

ased estimates, which can be nearly efficient relative to GEE with a 

correctly specified working correlation structure [20] and to maximum- 

likelihood estimates in a fully and correctly specified model [7, Ghapter 

8],

3.3.4 Marginal vs. subject-specific estim ation

The relation between random effects and marginal estimates has been 

discussed and described (see e.g., [38, 24] and [7, Ghapter 7]) see also 

Ghapter 1. Zeger et al. [38] provided the conversion formula for logistic
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regression with normally distributed random effects:

% (cf(7̂  +  , where c =  16V3/(157r) =  0.588. (3.3)

For a probit model, the above conversion formula becomes an exact 

formula (e.g., [21 , Chapter 8]):

=  +  (3.4)

Both formulas can be used to relate subject specific to population average 

models/ estimates under the assumption tha t random effects are normally 

distributed. W ithout any distributional assumptions on the random ef­

fects it holds tha t the marginal regression param eters are attenuated or 

diluted (towards zero) relative to the random effects parameters, unless 

the variance is zero [21, Chapter 8].

3.4 Simulation study

The settings for the simulation study were motivated by the scc40 dataset 

of Dohoo et a l  [8 , Chapter 27] for repeated measures of somatic cell 

counts in milk samples from cows housed in multiple herds. In this 

observational dataset, up to 11 approximately monthly measures were 

taken on each cow, but missing values of different types occurred. The
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impact of missing values will be addressed in a forthcoming study. In 

order to create settings more akin to experimental studies, we consider 

here balanced and complete series of either t  — 4 o r  t  =  8 measurements 

per subject. Thirty clusters were included, with 20 subjects per cluster. 

In the scc40 context, factors of interest existed at both the herd and 

cow levels; thus, the simulation design included binary covariates at the 

cluster and subject levels. Including also (for simplicity) a linear time 

effect but no interactions with time, the linear predictor included the 

following parameters set at the indicated true values:

/3q =  — 1 (intercept centered at first time point),

/?i =  0.15 (slope for time =  0 , — 1),

(32 =  —I (coefficient for subject level covariate),

/5s = 1  (coefficient for cluster level covariate).

The random part of the model included normally distributed subject 

and cluster level random effects with standard deviations set at <J2 =  1.5 

and (J3 =  0.75, respectively. These values approximated the estimates 

in a random intercept model for a binary outcome in the ssc40 dataset 

obtained by dichotomizing the somatic cell counts at 200000  cells/ml. 

High somatic cell counts are considered an indicator of subclinical mas­

titis. By the latent variable approximation to the variance partition
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coefficient [14], this corresponds to 37% and 9% of the unexplained vari­

ance residing at the subject and cluster levels, respectively. Simulated 

datasets were generated for highly and moderately autocorrelated sub­

ject random effects [p =  0.9 and p =  0.5) as well as for a random inter­

cept model (p =  1). Note tha t the correlation between binary outcomes 

is different than the correlation between the random effects. In particu­

lar, the latent variable approximation with an observation-level variance 

component of tt^/S [31, Chapter 14] yields an intra-class correlation of 

cr^/(cr^ +  7t^ /3 ) =  0.46, where cr̂  =  cr̂  +  crf, and a first-order correla­

tion of po^/icP' +  7t^ /3 ), and the values 0.42 and 0.23 for p =  0.9, 0.5, 

respectively.

The autocorrelated random effects of each subject were generated by 

multiplying a vector of t  independent variables by the upper triangu­

lar factor of the Cholesky decomposition of the correlation m atrix (as 

described in Congdon [6]). Generation of the binary outcomes then fol­

lowed the usual scheme for random effects logistic regression models [32].

3.4.1 Software and settings for estim ation procedures

The GEE estimation procedure used the implementation of p roc  genmod 

in SAS software version 9.1, with two working correlation structures: au­

toregressive, and exchangeable. The ALR estimation procedure used the
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implementation in SAS with two pairwise odds ratios: within subcluster 

(subject) odds ratio and within cluster odds ratio. The random effects 

procedures used the first order MQL, MQLx and second order PQL, 

PQLx procedures, with REML option and implemented in the MLwiN 

software (version 2 .02), the REPL procedure of SAS (proc glimmix), 

as well as the adaptive quadrature algorithms for ML estimation im­

plemented in S tata version 10 software (x tm e lo g it command with 7 

quadrature points at both the subject and cluster level). The REPL 

procedure was set up with cluster and subject random effects and a first 

order autoregressive correlation structure, and the REML option [36]. 

MQLx, PQLx and REPL estimation procedures included an additional 

overdispersion parameter. The Bayesian estimation procedures were im­

plemented in WinBUGS version 1.4 called from the R software using 

the R2WinBUGS package [33]. Vague (“non-informative”) prior distri­

butions (i.e. N (0 ,10®)) were used for all fixed effects parameters. The 

recently recommended uniform distribution for inverse variances, or pre­

cisions ( r  ~  uniform(0,100)) was used [18, 11]. The Markov chains were 

run with 500 burn-in samples [4], and the subsequent estimates (poste­

rior distribution medians) were based on 2000 samples. These burn-in 

and estimation sample sizes were arrived at after inspecting MGMG di­

agnostics for selected datasets.
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3.4.2 Analysis of results for simulated data

The estimates of marginal estimation procedures can be compared either 

to true subject-specific param eter values obtained from the conversion 

formula (3.3) with -h (J3. Inserting the known true variance pa­

rameters, yields % 0.712 x Although the marginal param eters 

are “theoretical” in the sense tha t they can only be constructed from the 

(unknown) variance parameters, they were used to  assess the marginal 

estimation procedures against their expected values. Unless all variances 

are small, there is little prospect in using marginal estimation procedures 

to reconstruct the true parameters of random effects models (see [20] for 

discussion of the choice between random effects and marginal estimation 

procedures). As the fixed effects parameters are on different scales, the 

results were presented in terms of the relative bias defined as the differ­

ence between the average estim ate among simulations (/6) and the true 

value (marginal or subject-specific) (/?) divided by the true value,

relative bias =  ^  x 100% (3.5)

The presence of statistically significant bias in the estimates (of both 

fixed effects and variance parameters) was assessed by a z-test based 

on the true value and the standard deviation among simulations. The 

statistical significance of bias in the standard errors was assessed by
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comparing the mean standard error to a 95% confidence interval for the 

standard deviation based on the simulations. This simple procedure was 

considered acceptable because the statistical variation in the estimated 

standard deviation was generally much larger than  th a t of the mean 

standard error. Confidence intervals (CIs) were computed by the large- 

sample normal approximation based on the standard error; for the GEE 

procedures, the robust standard error was used. The coverage of 95% 

CIs was computed as the proportion of simulated datasets for which the 

confidence interval (in the Bayesian analysis: the credibility interval) 

contained the true parameter.

3.5 Results

Presentation of results is separated by the type of estimation procedure: 

based on either marginal or random effects models. Relative biases of 

estimates and standard errors are shown in Tables 3.1-3.2, coverages of 

confidence intervals are shown in Figures 3.1-3.2. Table 3.3 gives relative 

biases of estimates and standard errors for datasets and analyses based 

on the probit link function.
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3.5.1 Random effects estim ation procedures

As all random effects estimation procedures except REPL are based on a 

random intercept model, the performance of the procedures in datasets 

corresponding to this true model (p =  1) is reviewed first, and subse­

quently we turn  to the results for autoregressive datasets (p < 1).

3.5.1.1 Variance param eters

The two likelihood-based procedures (ML and MCMC) produced fairly 

accurate variance estimates and standard errors (Table 3.1). ML esti­

mates of the level 3 variances were slightly attenuated (biased towards 

zero) and the MCMC standard errors for the same param eter were some­

what inflated (biased away from zero). PQL variance estimates were less 

accurate, but the direction of the bias depended on whether binomial or 

extra-binomial dispersion was assumed. In agreement with previous find­

ings in Chapter 2, PQL showed attenuated estimates, whereas PQLx 

showed both downward and upward biases ((jf for t  =  8 , and cr̂  for 

t =  4, respectively). The extra-binomial param eter estimates were cen­

tered around 0.80 with strongly inflated standard errors. Consequently, 

PQLx variance estimates were generally higher than  PQL estimates. All 

variance estimates of the REPL procedure were strongly attenuated.

Due to the scaling by the variance param eters inherent in random ef-
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fects estimation procedures, any bias in estimated variances is likely to 

affect the fixed effects as well (and in the same direction), in particular 

for moderate to large variance components. For example, all fixed ef­

fects estimates for REPL indeed showed substantial bias (range 6-16%) 

towards zero. Also, the attenuation of both fixed effects and variance 

parameters for PQL estimation was more pronounced for shorter time 

series, corresponding to less replication at the subject level [20].

3.5.1.2 Level 3 param eters

A similar qualitative behaviour was expected for the intercept and the 

predictor at the highest (cluster) level, and generally the results con­

firmed this. Likelihood-based procedures gave unbiased estimates but in 

some cases slightly underestimated the standard error. PQL procedures 

showed the same bias in the standard error, and some instances of mi­

nor negative (PQL) or positive (PQLx) bias in the estimates. As noted 

above, REPL estimates were clearly biased towards zero. Cl coverage 

(Figure 3.1) was close to or slightly below nominal for all procedures 

except REPL.
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3.5.1.3 Level 1 and 2 param eters

The subject-level parameter was estimated without any biases for ML, 

MCMC and PQLx; a small negative bias (3-5%) was present in PQL 

estimates. The regression coefficient for time (level 1) was estimated 

without bias by ML, MCMC and PQL (except for t =  4), whereas the 

PQLx estimates were moderately inflated, had too small standard errors 

and showed undercoverage of CIs.

3 .5 .1 .4  A utocorrelated data (p <  1)

For all random effects procedures, estimates of both fixed effects and 

variance param eters were attenuated in autoregressive datasets (Table 

3.1). In the vast majority of settings, the biases were statistically sig­

nificant. The relative bias was strongest for the variance parameters, 

increased markedly from p — 0.9 to p =  0.5, and was also somewhat 

larger for the long time series [t =  8). Standard errors were also clearly 

underestimated (up to 18%) in several cases, including the variance pa­

rameters and in the long series also the time effect. The bias in standard 

errors was less severe for the short series {t =  A). Contrary to the other 

procedures, MCMC estimation produced inflated (up to 19%) estimates 

for (J3. Generally, the setting least affected was (p, t) =  (0.9,4) where 

biases for fixed param eter estimates of ML, MCMC and PQL were below
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10%, and CI coverage was above 90%. In other settings, the biases for 

these procedures ranged up to 24% for fixed effects and 88% for variance 

parameters, and Cl coverage could go below 50% (for (p, i) — (0.5,8)).

Adding the extra-binomial dispersion parameter to  the PQL procedure 

did not alleviate the attenuation of PQL estimates substantially. For low 

autocorrelation (p =  0.5), both PQL procedures and the likelihood-based 

procedures showed downward biases and undercoverages of similar mag­

nitudes. However, the extra-dispersion param eter tended to increase in 

value (show less bias) for decreasing p. Although the only random ef­

fects procedure examined which incorporated an autoregressive param ­

eter, the REPL procedure was equally affected by the autocorrelation 

as the other procedures. Moreover, for both values of p the REPL esti­

mates had stronger bias and lower Cl coverage than those of the other 

procedures.

3.5.2 Marginal estim ation procedures

Generally, estimates from OLR, ALR, MQL, and the GEE procedures 

except GEEf agreed closely (Table 3.2), and all showed a small negative 

relative bias in the range 3-6%. For estimation of a marginal param eter, 

all the methods are asympotically consistent, and it is plausible tha t this 

bias is due to approximation error in the calculation of the marginal true
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value; see Section 3.5.2.3 below. As the asymptotic consistency does not 

rely on assumptions about the true correlation structure, the presence 

of autocorrelation {p <  1) in the data was expected to have less of an 

impact for marginal than random effects procedures.

3.5.2.1 Level 3 param eters

The fixed cluster effects included in the linear predictor for GEEf pre­

cluded estimation of effects at the cluster level. For the other procedures, 

the relative bias remained relatively constant in the 3-6% range irrespec­

tive of the autocorrelation (p); thus, the differences in performance were 

essentially in the standard errors. As expected, OLR grossly underesti­

mated the standard errors at the cluster level. Strongly underestimated 

standard errors were also seen for the GEEs procedure, a consequence 

of the lack of cluster level effects in the (variance) estim ating equations. 

The other procedures generally showed a minor (up to 7.5%) downward 

relative bias in the standard errors, and Cl coverage at or moderately 

below the nominal level (Figure 3.2), irrespective of the value of p.

3.5.2.2 Level 1 and 2 param eters

Estimates from GEEf showed a small upwards bias (less than 5%), in 

the opposite direction of the downwards bias displayed by all other pro­

145



cedures. Standard errors were generally, except for some settings for the 

time param eter, unbiased for ALR and all GEE procedures excluding 

GEEs, which had substantial upwards bias for the level 2 coefficient. 

Both the MQL and MQLx procedures showed biases in either direction 

for the time parameter. Stronger biases were noted for OLR, also in 

both directions. GI coverages varied around the nominal level for all 

procedures except OLR.

3.5.2.3 Overall marginal bias

We examined the small negative bias experienced by almost all marginal 

estimation procedures by rerunning the simulation study using a probit 

model both to generate the data and fit the models involved in the es­

tim ation procedures. For a probit model, the conversion formula (3.3) 

becomes an exact formula (3.4) [21, Ghapter 8]. Table 3.3 gives the rela­

tive bias for a subset of the previously considered estimation procedures. 

The OLR, GEEce, GEEci and ALR procedures gave virtually unbiased 

estimates, although some bias in the standard errors remained (similar 

to the previously discussed results in Table 3.2). As the exact conversion 

formula thus produced unbiased estimates, we consider the approxima­

tion formula as a plausible source of the general downward bias seen in 

Table 3.2. The results for the probit link also confirmed the suspected 

positive bias in GEEf estimates. As before, the autocorrelation had only
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little impact on the performance of the estimation procedures.

3.6 Discussion

3.6.1 Random effects estim ation procedures

In data generated by random intercept models {p =  1), the ML and 

MCMC procedures performed well and had fairly similar estimation er­

rors. Generally, the estimation bias in PQL is known [21, Chapter 10] 

and could be partly due to the well-known attenuation of variance pa­

rameters by PQL in certain settings [10]. However, the results (especially 

when 0 = 1 )  were in accordance with the those of Molenberghs and Ver- 

beke [23, Chapter 14], who reported tha t the performance of PQL could 

be improved by increasing the number of subjects. Venables and Ripley

[34] concluded th a t allowing for 0 in certain applications, yielded regres­

sion estimates th a t were closer to the maximum likelihood estimates, a 

finding th a t could not be reproduced in the current study settings. Our 

results showed an evidence of infiated standard errors for 0, which does 

not support the suggestion by Yang et al. [37] of using 0  as a diagnostic 

tool, and by Barbosa and Goldstein [1] to “allow for model misspecifi­

cation”. Recently, Heo and Leon [17] concluded th a t the full likelihood 

approach “appears to be preferable for the analysis of clustered binary
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observations with underlying random effects models”.

In datasets with autocorrelation [p <  1), the downward biased esti­

mates of random effects can be seen largely as a scaling effect caused 

by the underestimation of the random effect variances. Inference for 

all fixed effects parameters was strongly affected, and the biases of esti­

mates were of similar magnitude. The associated pattern of increases in 

the inflated standard errors for (f) with decreases in the correlation value, 

could be due to the increase of the variability within each subject as the 

correlation decreases. This finding may raise some concern about the 

approximation procedures to the log likelihood. However, more research 

is needed to confirm it, especially in simpler settings such as correlated 

binary data.

The REPL estimation procedure performed poorly and produced un­

satisfactory estimates regardless of autocorrelation (p =  0 .5,0.9,1). These 

findings are in support of those by Evans et a l  [10] for variance com­

ponent and by [20] for regression estimates. This could be due to the 

inclusion of both random effects and a correlation structure in the REPL 

procedure, and thus modelling parts of the variance/correlation structure 

on different scales [23, Chapter 22]. The ability of the REPL procedure 

to incorporate autocorrelation did not render the estimates less suscep­

tible to attenuation bias in datsets with autocorrelation than the other
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random effects procedures.

3.6.2 Marginal estim ation procedures

The results suggest tha t the small general bias observed for marginal es­

tim ation procedures could be due to the conversion formula (3.3). How­

ever, to our knowledge, the assessment of the accuracy of this formula 

in practice has not been reported yet. This conversion formula relies 

on the variance of normally distribute random effects to scale subject 

specific to population average models/ estimates. The avoidance of such 

scaling problems by separating fixed and random effects estimates was 

one of the key ideas behind the development of marginalized models [16]. 

The application of marginalized models to repeated measures data  with 

additional hierarchical structure has to our knowledge not been reported.

Marginal estimates were little affected by the presence of autocorre­

lation; similar performances of the different procedures were seen in all 

settings (p =  0.5,0.9,1). ALR, GEEci, and GEEce performed fairly well 

with only a few instances of minor statistically significant bias. MQL 

(apart form the fluctuation in the the standard error for time coefficient) 

performed on a par with ALR, and in agreement with previous finding 

in [20]. The results indicate th a t accounting for clustering at the highest 

hierarchical level is sufficient (GEEce, GEEci). In fact, standard errors
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for these procedures and ALR showed a larger bias at the cluster level 

than at levels below, probably an effect of of the low number of clusters 

[39]. This is an interesting result tha t we think needs more research to 

validate it in different settings and designs of binary data. Accounting 

for the additional hierarchical structure by fixed effects (GEEf) resulted 

in biased estimates. However, ignoring the hierarchical structure in the 

data in (OLR and GEEs) resulted in inflated and biased standard error 

of the cluster level fixed effects, this is in agreement with those reported 

by Diggle et al [7, Chapter 7] and Dohoo et a/[9|. Allowing for (j) in MQL 

had almost no impact on the regression estimates of fixed effects. An 

explanation could be th a t MQL do not incorporate the random effects 

Ui in the linearization of the mean [23, Chapter 14].

3.6.3 Recommendations

We conclude with a discussion of the implications of the current findings 

for the choice of procedure. For the choice between marginal and random 

effects approaches, this study adds only little to existing knowledge [20]. 

The bias seen in marginal estimates should be of no concern for the use of 

marginal procedures if the interpretation in this study is correct th a t it is 

caused by the conversion formula. For autoregressive data, the random 

effects procedures performed poorly (as was found also in Chapter 2),
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therefore marginal procedures may seem more attractive, unless the time 

series is very short (less than 4 tim e points).

Generally, the likelihood-based random effects procedures (ML, MCMC) 

performed better than methods based on quasi-or pseudo-likelihood. The 

inclusion of an overdispersion param eter in the la tter methods did not 

clearly improve their performance. As is well-documented, biases of these 

methods in the absence of an overdispersion param eter are towards the 

null [28, 29], whereas in the presence of overdispersion biases tended to 

be less predictable (in either direction). Moreover, we are not convinced 

about the usefulness of 0  as a diagnostic tool. The REPL procedure 

performed poorly in our settings, substantiating the finding reported in 

by Masaoud and Stryhn [20] th a t REPL performs mostly as a marginal 

estimation procedure with no promise for estimation of the variance or 

an autoregressive parameter. Further research may be needed to assess 

its accuracy and validity for binary repeated measures data.

Among the marginal procedures, ALR and GEE with either indepen­

dence or exchangeable correlation at the cluster-level performed simi­

larly and generally well across the range of settings covered. All other 

attem pts to incorporate the additional hierarchical level into the GEE 

framework produced estimates with serious deficiencies for some of the 

fixed effects parameters. In situations where the affected param eters are
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of no interest (or absent), such other schemes may be acceptable but on 

the other hand show no advantages over the above-mentioned generally 

acceptable schemes.
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Table 3.1: Relative bias of estimates and associated standard errors of fixed effects and variance 
parameters obtained by five random effects estimation procedures, based on analysis of 1000 sim­
ulated datasets per setting (t — number of time points, p =  autocorrelation, parameters:/),) (inter­
cept), 01 (time coefficient), 02 (subject level factor), /% (cluster level factor),erf (variance at subject 
level), erf (variance at cluster level), (j) (extra binomial dispersion)). Coding for estimation proce­
dures: PQL (2nd order penalized quasi-likelihood), PQLx (2nd order penalized quasi-likelihood 
with extra binomial dispersion), REPL (restricted pseudo-likelihood), ML (maximum likelihood), 
MCMC (Bayesian Markov chain Monte Carlo).

Estim ation procedures
PQL PQLx REPL ML MCMC

t P Par. Est. SE Est. SE Est. SE Est. SE Est. SE
8 1 Po 0.0 -5 .3 * 2.7* -5 .9 * -8 .5 * - 2 .6 0.9 -4 .9 0.6 -5 .5 *

P i 0.9t -2 .4 * 2.7* -11 .8* -6 .4 * -8 .6 * 0.7* - 0 .2 0.9* - 0 .6
P2 -3 .0 *  1.1 -0 .6 1.3 -11 .4* 0.2 0.0 1.0 0.2 0.7
P3 - 1 .9  -5 .8 * 0.6 -5 .8 * -11 .0* -2 .3 1.0 -5 .7 * 1.0 -4 .8 *
rrf -8 .6 *  -8 .9 * 2.7* -1 4 .7 * -18 .8* -6 .4 * -0 .1 0.3 1.0* 0.0

-1 1 .5 *  -2 .1 -7 .0 * -2 .2 -19.6* 2.1 -6 .2 * - 0 .8 3.4* 12.7*
4> -16 .2* 44.9* -21.4* 20.9*

.9 Po -9 .4 *  -5 .8 * -7 .6 * -6 .3 * -18.6* - 2 .6 -9 .5 * -5 .2 * -9 .2 * -4 .7 *
P i -8 .6 *  -14 .2* -6 .7 * -2 0 .2 * -17.3* -1 1 .4 * -9 .1 * -1 1 .7 * -8 .9 * -1 2 .1 *
P2 -1 0 .4 *  -2 .2 -8 .7 * - 1 .8 -19.7* -1 .1 -9 .4 * - 0 .5 -9 .3 * -0 .3
Pa -9 .7 *  -6 .0 * -7 .9 * -6 .0 * -19 .3* - 2 .8 -8 .8 * -5 .6 * -8 .4 * -4 .0 *
rrf -43 .1*  -10 .9* -36 .2* -1 5 .4 * -54 .6* - 2 .8 -39 .6* 2.5 -39 .0* 2.9
rrl -26 .1*  -1 .2 -23 .1* -1 .1 -35.7* 4.6 -24 .7* 1.4 -16 .9* 16.2*
4> -12 .1* 108.8* -15.8* 60.3

.5 Po -2 2 .6 *  -8 .6 * -21 .9* -9 .0 * -28.3* -4 .6 * -22 .9* -7 .8 * -23 .1* -6 .2 *
P i -2 2 .6 *  -15 .0* -22 .0* -1 7 .8 * -27.3* -9 .0 * -22 .9* -1 2 .9 * -23 .0* -1 3 .5 *
P2 -2 3 .6 *  -3 .0 -23 .0* -3 .1 -28.4* - 0 .5 -23 .9* -0 .4 -23 .8* -0 .6
Pa -2 2 .9 *  -7 .8 * -22 .2* -7 .9 * -27 .8* - 4 .0 -23 .1* -7 .4 * -23 .1* -5 .4 *
rrf -8 8 .3 *  -11 .6* -86 .4* -1 7 .1 * -93 .9* -7 .6 * -87 .4* - 1 .7 -87 .6* -5 .6 *

-4 5 .5 *  0.3 -44 .6* 0.1 -47 .6* 5.0* -45 .9* 3.2 -40 .4* 19.3*
4> -5 .4 * 187.3* -4 .4 * 61.9*

4 1 Po -4 .5 *  -5 .1 * 2.1* -6 .0 * -14 .8* -4 .2 * - 1 .0 - 3 .6 - 0 .8 - 2 .8
P i -2 .5 *  0.5 5.8* -1 4 .9 * -10.9* -8 .2 * - 0 .5 2.7 - 0 .2 2.3
P2 -4 .7 *  -0 .3 1.1* 1.6 -15.5* -1 .1 - 0 .2 1.1 0.2 1.2
Pa -5 .4 *  -5 .6 * 0.4 -5 .2 * -16.3* -3 .1 - 1 .2 -4 .6 * - 0 .9 - 2 .5

-1 4 .2 *  -13 .8* 17.9* -23 .3* -22 .2* -1 2 .2 * 1.2* 2.7 3.1* 2.7
-1 3 .8 *  -1 .6 -2 .5 * -1 .1 -25.9* 1.9 -5 .9 * 0.9 3.9* 14.1*

4> -23 .0* 19.4* -27.7* 11.8*
.9 Po -8 .8 *  -5 .1 * -3 .2 * -6 .3 * -20.0* - 3 .2 -6 .8 * - 3 .5 -6 .6 * - 1 .4

P i -6 .7 *  -6 .9 * -0 .1 -1 8 .9 * -16.4* -1 0 .1 * —5.6* - 4 .2 -5 .1 * -4 .8 *
P2 -8 .7 *  -1 .7 -3 .5 * - 0 .4 -20 .0* - 0 .6 —6.0* 1.3 -5 .7 * 1.3
Pa -9 .3 *  -6 .2 * -4 .1 * -6 .2 * -21.0* - 2 .9 -6 .8 * -5 .3 * -6 .4 * - 2 .9
rrf -3 5 .5 *  -18 .0* -10 .7* -2 8 .4 * -45 .3* -1 1 .7 * -25 .4* 1.7 -24 .1* 0.5

-2 1 .9 *  -4 .7 * -12 .6* -4 .8 * -34.6* 0.0 -17 .6* - 1 .1 -9 .2 * 13.1*
4> -19 .5* 37.3* -22.7* 20.9*

.5 Po -2 1 .7 *  -5 .9 * -18 .8* -7 .2 * -27.8* - 1 .8 -21 .4* -4 .3 * -21 .5* - 1 .4
P i -2 0 .5 *  -7 .5 * -17 .5* -1 4 .4 * -26.4* -4 .6 * -20 .3* -5 .0 * -20 .1* - 5 .2
P2 -2 0 .3 *  -1 .8 -17 .4* - 2 .6 -26.9* 1.6 -19 .8* 3.7 -19 .7* 3.0
Pa -2 1 .6 *  -5 .6 * -18 .7* -6 .0 * -28.1* - 0 .9 -21 .2* -4 .6 * -21 .3* - 0 .6
rrf -8 0 .8 *  -15 .7* -71 .6* -31 .0* -85 .7* - 2 .7 -77 .1* 0.7 -77 .4* -6 .1 *

-4 1 .3 *  -5 .5 * -36 .9* -6 .7 * -45 .8* 3.6 -40 .6* - 0 .6 -34 .5* 13.8*
4> -10 .4* 87.4* -9 .7* 25.9*

t significant bias in estimate at P  < 0.05;  ̂ significant bias in estimate at P  < 0.01; 
* significant bias in standard error at P  < 0.05
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T able  3.2: Relative bias of fixed effects parameter estimates (against marginal true values) and their standard errors obtained by eight marginal
estimation procedures, based on analysis of 1000 simulated datasets per setting (t =  number of time points, p =  autocorrelation, parameters:( 
Po (intercept), /?i (time coefficient), p 2 (subject level factor), /3s (cluster level factor) )). Coding for estimation procedures: OLR (ordinary logistic 
regression), GEEci (generalized estimating equations (GEE) with independence correlation at cluster level), GEEce (GEE with exchangeable correlation 
at cluster level), GEEf (GEE with fixed effects for cluster level and autoregressive correlation at subject level), GEEs (GEE with autoregressive 
correlation at subject level), ALR (alternating logistic regression), MQL (marginal quasi-likelihood), MQLx (marginal quasi-likelihood with extra 
binomial dispersion).

Marginal estim ation procedures
OLR GEEci GEEce GEEf GEEs ALR MQL MQLx

t P Par. Est. SE SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

8 1 A -3 .5 * -58 .5* -6 .4 * -4 .0 * -6 .5 * n /a n /a -3 .7* - 3 8 .8 ' -3 .6 * -6 .3 * -3 .5* -5 .5 * -3 .5 * -4 .3 *
/3i -3 .9 * 18.8* - 2 .7 -3 .9 * - 2 .8 4.2* - 3 .3 -3 .5 * - 3 .3 -3 .9 * - 2 .8 -3 .9 * - 1 .7 -3 .9 * 18.8*
A -4 .7 * -38 .7* 0.0 -4 .7 * 0.0 3.1* 1.6 -4 .5 * 12.0* -4 .8 * 0.0 -4 .7 * 1.8 -4 .7 * 1.8*
A -3 .6 * -72 .3* -5 .5 * -3 .9 * -5 .3 * n /a n /a -3 .0 * -5 0 .6 * -3 .6 * -5 .7 * -3 .5* -5 .8 * -3 .5 * -5 .8 *

.9 A -4 .2 * -57 .0* -5 .5 * -4 .5 * -4 .9 * n /a n /a -4 .2 * -4 0 .3 * -4 .2 * -5 .4 * -4 .2* -5 .1 * -4 .2 * -i-4.1
/3i -3 .8 * 1.2 - 2 .8 -3 .8 * - 2 .8 3.4* 1.4 -3 .9 * - 2 .0 -3 .8 * - 2 .8 -3 .8* -1 2 .0 * -3 .8 * 1.2
/32 -4 .5 * -34 .1* - 2 .4 -4 .5 * - 2 .4 2.8* 3.2 -4 .5 * 8.5* -4 .5 * - 2 .5 -4 .5* -1 .1 -4 .5 * - 1 .1
A -3 .8 * -71 .4* -7 .0 * -4 .0 * -5 .2 * n /a n /a -3 .7 * -5 3 .0 * -3 .9 * -5 .5 * -3 .8* -5 .6 * -3 .8 * -5 .6 *

.5 A -3 .7 * -56 .1* -7 .5 * -5 .0 * -7 .7 * n /a n /a -4 .6 * -4 6 .9 * -3 .7 * -7 .5 * -3 .7* -7 .7 * -4 .3 * -7 .2 *
/3i -3 .7 * -8 .9 * -6 .3 * -4 .0 * -8 .3 * 3.0* - 3 .0 -3 .9 * -6 .3 * -3 .7 * -6 .3 * -3 .7* -14 .0* -3 .7 * -8 .9 *
/32 -4 .9 * -14 .0* -3 .5 —5.3* - 3 .1 1.7* - 2 .8 -5 .3 * 14.4* -4 .9 * - 3 .6 -4 .9* - 1 .6 -4 .9 * - 1 .6
/3s -4 .1 * -70 .6* -5 .6 * -4 .4 * -6 .8 * n /a n /a -4 .1 * -6 1 .3 * -4 .1 * -7 .0 * -4 .1* -7 .1 * -4 .1 * -7 .1 *

4 1 A -5 .6 * -46 .4* -5 .1 * -5 .9 * -5 .3 * n /a n /a -5 .7 * -3 5 .0 * —5.6* -5 .1 * —5.6* -4 .5 * —5.6* - 2 .8
/3i -5 .4 * 23.9* -0 .1 -5 .0 * - 0 .1 3.1* 2.1 -5 .0 * 2.3 -5 .0 * - 0 .2 -5 .0* 2.4 -5 .0 * 23.9*
A -4 .8 * -22 .9* - 1 .0 -4 .8 * - 1 .0 3.3* - 1 .7 -4 .7 * 7.3* -4 .8 * - 1 .0 -4 .7* 1.2 -4 .8 * 1.2
A -5 .8 * -61 .6* -5 .5 * -6 .0 * -5 .5 * n /a n /a —5.8* -4 6 .2 * -5 .8 * -5 .7 * -5 .7* -5 .7 * -5 .7 * -5 .7 *

.9 /3o -5 .2 * -45 .3* -4 .2 * -5 .6 * - 4 .0 n /a n /a -5 .4 * -3 4 .9 * -5 .2 * -4 .1 * -5 .2* - 4 .0 -5 .2 * -2 .4
/3i -3 .7 * 11.5* -4 .3 * -3 .7 * -4 .3 * 4.1* - 2 .5 -3 .9 * - 2 .7 -3 .7 * -4 .3 * -3 .7 * -4 .8 * -3 .7 * 11.5*
/32 -4 .3 * -20 .0* -1 .0 -4 .3 * - 1 .0 3.7* - 1 .8 -4 .2* 7.5* -4 .3 * -0 .9 -4 .2 * 0.8 -4 .2 * 0.8
/3s -5 .3 * -61 .0* -4 .9 * —5.6* -5 .4 * n /a n /a -5 .3 * -4 7 .3 * -5 .3 * -5 .5 * -5 .2 * 5.6* -5 .2 * 5.6*

.5 /3o -5 .8 * -44 .0* -4 .6 * -6 .2 * -4 .4 * n /a n /a -5 .8 * -3 7 .4 * -5 .8 * -4 .6 * -5 .8 * -4 .7 * -5 .8 * - 3 .8
/3i -4 .3 * 2.9 - 3 .4 -4 .3 * - 3 .4 3.1* - 0 .4 -4 .3 * - 0 .4 -4 .3 * - 3 .4 -4 .3 * -4 .7 * -4 .3 * 2.9
/32 -3 .8 * -6 .6 * 1.1 -3 .9 * 1.1 3.6* 0.3 -3 .8 * 11.4* -3 .8 * 1.1 -3 .8 * 2.6 -3 .8 * 2.7
/3s —5.6* -59 .4* -4 .7 * -5 .9 * -4 .7 * n /a n /a -5 .6 * -5 1 .5 * —5.6* -4 .9 * —5.5* -4 .9 * —5.5* -4 .9 *

significant bias in estim ate at P  <  0.05;  ̂ significant bias in estim ate at P  <  0.01; * significant bias in standard error at P  <  0.05



T able  3.3: Relative bias of fixed effects param eter estim ates (against marginal true  values) and their standard  errors obtained by eight 
m arginal estimation procedures, baaed on analysis of 1000 sim ulated datasets per setting {t =  num ber of time points, p =  autocorrelation, 
param eters:( /3o (intercept), /3i (tim e coefficient), (32 (subject level factor), (3̂  (cluster level factor))). Coding for estim ation procedures with 
probit link: OLR (ordinary logistic regression), GEEci (generalized estim ating equations (GEE) with independence correlation a t cluster 
level), GEEce (GEE w ith exchangeable correlation a t cluster level), G EEf (GEE w ith fixed effects for cluster level and autoregressive 
correlation at subject level), GEEs (GEE with autoregressive correlation at subject level), ALR (alternating logistic regression).

OLR GEEci
Marginal estim ation procedure (probit link)

GEEce GEEf GEEs ALR
t P par. Est. SE E st. SE Est. SE Est. SE Est. SE Est. SE

8 1 00 1.7+ -6 4 .8 ’ 1.7+ - 2 .0 1.7 - 2 .7 n /a n /a 1.7+ - 3 8 .8 ’ 1.8+ -1 .9
01 1.4+ 30.6’ 1.4+ - 3 .2 1.2+ - 3 .2 11.6+ - 1 .7 1.3+ -3 .0 1.2+ - 3 .4
02 0.8 -4 6 .8 ’ 0.8 2.2 0.7 2.4 11.2+ 1.3 0.8 12.2’ 0.8 2.4
0s 2.4+ -7 7 .6 ’ 2.4+ - 8 .1 ’ 2.4+ - 8 .4 ’ n /a n /a 2.3+ - 5 2 .0 ’ 2.4+ - 8 .2 ’

.9 00 - 0 .6  - 6 4 .3 ’ - 0 .6  -6 .8 * - 0 .3 - 7 .5 ’ n /a n /a - 0 .6 - 4 4 .2 ’ - 0 .5  - 7 .0 ’
01 0.6 1.3 0.6 - 0 .8 0.6 - 0 .6 10.3+ 1.8 0.6 - 0 .5 0.6 -0 .8
02 1.4+ - 4 4 .0 ’ 1.4+ - 3 .5 1.4+ - 3 .5 11.2+ - 5 .7 ’ 1.4+ 6.6* 1.4+ -3 .6
03 - 0 .5  - 7 5 .3 ’ - 0 .5  - 1 .8 - 0 .2 - 2 .3 n /a n /a - 0 .5 - 5 3 .1 ’ —0.5 —2.0

.5 00 0.3 - 6 1 .1 ’ 0.3 - 3 .4 0.2 - 3 .0 n /a n /a 0.3 - 4 8 .9 ’ 0.4 -3 .6
01 - 0 .5  - 9 .7 ’ - 0 .5  - 4 .0 - 0 .5 - 3 .9 8.2+ - 0 .5 - 0 .5 - 1 .4 - 0 .5  -4 .0
02 0.3 -2 0 .3 ’ 0.3 - 3 .1 0.3 - 3 .0 9.0+ - 3 .0 0.3 16.5’ 0.3 -3 .2
03 1.9+ -7 5 .0 ’ 1.9+ - 5 .0 ’ 1.8 -5 .2 * n /a n /a 1.9+ - 6 3 .5 ’ 1.9+ - 5 .1 ’

4 1 00 - 0 .7  -5 4 .0 ’ - 0 .7  - 5 .9 ’ - 0 .7 - 6 .3 ’ n /a n /a - 0 .7 -3 8 .8 * - 0 .7  - 5 .9 ’
01 -0 .1  45.4’ —0.1 —0.6 -0 .1+ - 0 .6 10.9+ 2.2 -0 .1+ 2.1 - 0 .1  -0 .9
02 0.5 -3 2 .3 ’ 0.5 - 1 .5 0.5 - 1 .4 11.4+ - 1 .8 0.7 7.7’ 0.5 -1 .4
03 - 0 .6  -6 7 .9 ’ - 0 .6  - 5 .8 ’ - 0 .6 -5 .7 * n /a n /a - 0 .6 -4 8 .6 * - 0 .6  - 5 .9 ’

.9 00 - 0 .4  -5 1 .8 ’ - 0 .4  - 2 .7 - 0 .4 - 2 .7 n /a n /a - 0 .6 - 3 7 .7 ’ - 0 .4  - 2 .8
01 0.9 24.7’ 0.9 - 1 .9 0.9 - 1 .9 11.2+ 0.5 0.7 0.2 0.9 -1 .9
02 0.9+ -2 5 .2 ’ 0.9+ 2.5 0.9+ 2.6 11.3+ 3.1 1.0+ 13.3’ 0.9+ 2.6
03 - 1 .0  -6 7 .6 ’ - 1 .0  - 6 .8 ’ - 0 .9 -6 .4 * n /a n /a - 1 .0 -5 0 .8 ’ - 1 .0  - 6 .9 ’

.5 00 0.7 -51 .5* 0.7 -5 .7 * 0.8 - 5 .6 ’ n /a n /a 0.6 - 4 3 .1 ’ 0.7 -5 .7 *
01 1.1 6.7’ 1.1 - 0 .4 1.1 - 0 .4 10.6+ 2.4 0.9 2.5 1.1 - 0 .3
02 0.5 -1 3 .6 ’ 0.5 - 1 .9 0.5 - 1 .9 10.0+ - 2 .1 0.6 10.8’ 0.5 -1 .9
03 0.8 -6 6 .3 ’ 0.8 - 6 .6 ’ 0.9 - 6 .6 ’ n /a n /a 0.9 - 5 6 .8 ’ 0.9 - 6 .7 ’

significant biaa in estim ate at P  <  0.05;  ̂ significant bias in estim ate at P  <  0.01; * significant bias in standard error at P  <  0.05
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F igure  3.1: Confidence interval coverage for estim ates of fixed effects param eters of dif­
ferent estim ation procedures, based on 1000 sim ulated datasets per setting  {t =  num ber 
of tim e points, (p =  (1,.9, .5) ~  (□, A , o ) ) ) .  Coding for estim ation procedures: PQL (2nd 
order penalized quasi-likelihood), PQ Lx (2nd order penalized quasi-likelihood with ex tra  
binomial dispersion), REPL (restricted pseudo-likelihood), M CM C (Bayesian Markov chain 
Monte Carlo), ML (maximum likelihood).
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Figure 3.2: Confidence interval coverage for estimates of fixed effects parameters of seven 
marginal estimation procedures, based on 1000 simulated datasets per setting {t =  num­
ber of time points, (p =  (1, .9, .5) ~  (□, A , o ) ) ) .  Coding for estimation procedures: OLR 
(ordinary logistic regression) ,GEEf (generalized estimating equations (GEE) with fixed 
effects for cluster level and autoregressive correlation at subject level), GEEce (GEE with 
exchangeable correlation at cluster level), GEEci ( GEE with independence correlation at 
cluster level), GEEs (GEE with autoregressive correlation at subject level), ALR (alternat­
ing logistic regression), MQL (marginal quasi-likelihood).
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A simulation study to assess the 

impact of missing values on the 

performance of different statistical 

methods for analysis of binary 

repeated measures data with an 

additional hierarchical structure

4.1 Abstract

The primary objective of the study was to assess the impact of miss­

ing values on analysis of binary repeated measures data with an addi­

tional hierarchical structure. Such data are commonly encountered in 

veterinary epidemiological research, and one motivating example for the 

present study was records of high somatic cell counts in milk samples
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obtained by approximately monthly sampling throughout the lactations 

of cows in dairy herds. As the basis of a simulation study, random effects 

models with autocorrelated (p =  1, 0.9 or 0.5) subject-level random ef­

fects were used. In general, the settings of the simulation were chosen to 

reflect a real somatic cell count dataset (scc40), except th a t the within- 

cow time series length was set to 8 time points for each cow. The estima­

tion procedures considered were: Ordinary Logistic Regression (OLR), 

A lternating Logistic Regression (ALR), Weighted Generalized Estim at­

ing Equations (WGEE), Penalized Quasi Likelihood (PQL), Maximum 

likelihood via numerical integration (ML) and Bayesian Markov chain 

Monte Carlo (MCMC).

Five different scenarios of simulated incomplete datasets were consid­

ered. The first scenario corresponded to a combination of three types of 

missingness patterns present in the scc40 dataset (scc40 scenario): de­

layed entry and drop-outs (where subjects enter or leave the study at 

some point in time, respectively), as well as interm ittent missing values. 

The remaining scenarios involved only drop-outs, and corresponded to 

either moderate or high percentages of values either missing at random 

(MAR) or not missing at random (NMAR), respectively. Diggle and 

Kenward’s logistic model [5] was adapted to simulate the missing values.

In the scc40 scenario, all estimation procedures except OLR performed
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well and produced estimates with small relative bias (generally less than 

5%) for levels of missingness tha t roughly corresponded to the scc40 

data. In MAR missingness scenarios, some biases were found for ALR, 

WGEE and PQL procedures, whereas the likelihood-based procedures 

were largely unaffected by the missing values. In NMAR scenarios, all 

procedures experienced similar and strong biases in the time coefficient; 

however, fixed effects estimates at the subject and cluster level were 

relatively unaffected. The presence of autocorrelation in the data did not 

substantially alter the impact of missing values although the shrinkage 

of random effects estimates was marginally less pronounced than in the 

full datasets.

4.2 Introduction

Missing values in binary repeated measures data with an additional hi­

erarchical structure refers to data with incomplete records over time on 

the same subjects (e.g., animals or farms), which in addition are nested 

within some (physical) clusters (e.g., hospitals, herds, provinces). Miss­

ing data usually arise when some subjects are not available for certain 

measurements. Subjects may leave the study at some point in tim e be­

fore completing their measurements (drop-outs), subjects may miss some 

measurements and reappear again for later measurements (interm ittent
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missing values), or subjects may join the study at different times. Our 

motivating example was incomplete records of presence or absence of 

high somatic cell counts in milk samples from cows housed in multi­

ple herds. Thus, the hierarchical structure is the clustering of cows in 

herds, the repeated measures are the monthly test records based on the 

milk samples, and the missing values are the incomplete records on each 

subject.

Generally, missingness in longitudinal data  presents a potential source 

of bias. In part, the bias could be due to the change in data  structure 

from being balanced to unbalanced, which in turn  may raise technical 

difficulties, especially for those statistical methods th a t can only cope 

with balanced data. If the process of the observations being missing (the 

missingness mechanism) varies from subject to subject, the distribution 

of the observed outcome values may not be the same as for the full 

dataset.

Despite the large body of literature on missing data [19, 16, 5, 12, 20, 

9, 10] (listed in order of relevance to the present study), most authors 

agree tha t handling missing values is not a trivial task and tha t in many 

instances there is a need for sensitivity analysis [14]. Thus, additional 

information about the missingness mechanism is required. Missing data 

mechanisms have been classified into different categories [19] according to
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their randomness process. They include, missing completely at random 

where the probability of an observation being missing does not depend 

on the prior observed nor the future unobserved values of the outcome; 

missing at random where the probability of an observation being missing 

depends only on the prior observed outcome; and not missing at random 

where the probability of an observation being missing depends directly 

on the unobserved outcome(s).

Several procedures (models) have been proposed for the analysis of 

binary repeated measures data; a basic distinction is between marginal 

(population-averaged, or PA) and random effects (subject-specific, or 

88) models ([25] and [6, Chapters: 8-9]). Many articles have discussed 

the choice between the two models (PA vs. 88) (e.g., [6, Chapters 8-9] 

or more recently for balanced data  [21] and Chapter 3 in this thesis). 

However, the presence of missing values poses problems for procedures 

of both types, and to our knowledge the performance of statistical proce­

dures for the analysis of binary repeated measures data  with additional 

hierarchical structure in the presence of missing values has not yet been 

described.

Previous studies on missing values include assessments of the impact 

of drop-out missing data on different statistical methods [1, 32]. To our 

knowledge no studies reported a delayed entry missing values pattern
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nor its impact. Fitzmaurice [11] recommends performing analysis of 

incomplete data using methods to handle various types of missing data 

mechanisms, in order to obtain insight into the actual type of missing 

data present. This approach may be difficult to employ and justify if 

there is a combination of different types of missing values within the 

same dataset. The analytical approach taken for the present study was 

simulation. Simulation studies can be targeted towards a specific data 

structure by incorporating as much of tha t structure as possible in the 

simulated datasets [31]. This idea can be extended to incomplete data 

by matching also the missing data patterns.

In order to realistically reflect the choice an applied researcher faces 

when it comes to data analysis, only estimation procedures implemented 

in broadly accessible statistical software were considered for the study. 

Specifically, the following procedures previously studied for hierarchically 

structured binary repeated measures data (Chapter 3) were included: 

maximum likelihood via numerical integration (ML), Bayesian Markov 

chain Monte Carlo (MCMC), penalized quasi-likelihood with binomial 

dispersion (PQL) and extra-binomial dispersion (PQLx), ordinary logis­

tic regression (OLR), alternating logistic regression (ALR), and weighted 

generalized estimating equations (WGEE).

The primary objective of this study was to assess the impact of missing
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values on the performance of different statistical estimation procedures 

for the analysis of binary repeated measures data with an additional 

hierarchical structure. A secondary goal of this study was to dem onstrate 

a simple simulation approach to assess the impact of missing values in 

an actual dataset.

4.3 Missing values

W ithin the context of binary repeated measures data, let yij refer to 

complete binary records on each of n subjects (i =  1 , . . . ,  n) a t t time 

points [ j  =  1 , . . .  , t ) .  Furthermore, let be the indicator of yij being 

missing. In this notation, a subject i drops out from the study at time 

d, if rid -i  =  0 and =  1 for all j  >  d. Little and Rubin [19] (for a lon­

gitudinal data  context, see e.g., [16]) classified missingness mechanisms 

in terms of the conditional distribution of (r^) given {yij).  Note tha t 

in the following we also use as an indicator for a missing value of a 

particular type, which should be evident from the context.

4.3.1 Classification of missing data

Missing completely at random (MCAR) [19, 16] refers to a missingness 

mechanism (or missing data process) th a t does not depend on prior ob­
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served outcome values or an intended measurement values of the out­

come (unobserved outcome values), but may depend on covariates such 

as time. Little and Rubin [19] showed that in the presence of a MCAR 

process, the estimated parameters are not biased by the absence of data, 

thus the missing data can be ignored. Diggle and Kenward [5] introduced 

a completely random drop-out (CRD) process th a t assumes MCAR. One 

implication of the MCAR assumption is tha t the distribution of the prior 

observed outcome values at time j  is the same regardless of whether a 

subject drops out or remains in the study after tha t particular time point. 

Also, the distribution of the unobserved outcome values is unaffected by 

the drop-out. Missing at random (MAR) [19, 16] and random drop­

out (RD) [5] refer to a missing data (drop-out) process tha t depends on 

the prior observed values of the outcome only. Not missing a t random 

(NMAR) [19, 16] and informative drop-out (ID) [5] refers to a missing­

ness mechanism that depends on the unobserved outcome (current or 

future unobserved values).

4.3.2 Approaches to handle missing data

Several approaches have been proposed to assess and account for miss­

ing values [12], including the complete case method (also termed “listwise 

deletion” [22, Chapter 5]). By this method, subjects with at least one
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missing value are dropped from the analysis. Fitzmaurice [12] and Little 

and Rubin [19] showed that this method is valid only under the MCAR 

missing data  process. Another approach is based on the observed data 

and called the available case method (also termed “pairwise deletion” 

([22, Chapter 5] and [19, 12])). Fitzmaurice [12] argued tha t WGEE 

falls under this approach. Kim and Curry [15] showed th a t for an MCAR 

process, methods based on the available cases are considered more effi­

cient than complete case methods, as one would expect because all the 

available data  is used. Little [18] and Little and Rubin [19] explained 

tha t these methods assume the strong MCAR assumption. Little and 

Rubin [19] argued tha t neither complete case method nor the available 

case method is generally satisfactory.

Little and Rubin [19] showed tha t a MAR process can be ignored 

when using likelihood-based inference. Robins et a l  [27] showed that 

ordinary GEE does not allow a MAR process to be ignored, and outlined 

a weighting scheme (WGEE) to achieve valid inference under the MAR 

assumption. Its implementation for drop-out missing data  is detailed by 

Janson et a l  [13]. Hogan et a l  [10] defined ignorability as the situation 

where “the missing data model can be left unspecified or ignored”. For 

NMAR processes, both likelihood and GEE approaches can be extended 

to model the missing data [24, Chapter 27]. However, these approaches

[28] fall beyond the present scope of this Chapter.
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4.3.3 Assessing the impact of missing data by simulation

A theoretical knowledge of which procedures under certain assumptions 

would provide biased or unbiased estimates is valuable, but does not give 

the analyst a quantitative sense of the impact of missing data  in an actual 

dataset. The question posed is what biases might arise from the missing 

data under different assumptions about the missingness mechanisms. 

Here the impact of missing data means the difference between results 

for the incomplete dataset and those for the corresponding full dataset. 

Given an actual (incomplete) dataset this approach is counterfactual 

because the full dataset is not available. However, it lends itself to 

simulation if realistic models for the full dataset as well as the missingness 

mechanism can be established. We outline briefly how the MCAR and 

the MAR processes may be adapted to an actual dataset.

A first step is to discriminate between drop-outs, interm ittent missing 

data and any other types of missing data. For each type of missing data, 

a binary m atrix of indicators of missing values (termed a “shadow m atrix”

[4]) with rows corresponding to subjects and columns corresponding to 

possible instances of “events” of missing values is created. For example, 

each row in the shadow m atrix for drop-outs consists of a series of zeros 

until either the occurrence of a drop-out (represented by a 1 and followed 

by missing values) or the last time point in the series. This structure is
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similar to tha t of discrete time single event data  [30]. For interm ittent 

missing values, each subject could have multiple events corresponding to 

a standard two-level (repeated measures) data structure.

Under an MCAR assumption, shadow m atrix data  would most nat­

urally be analyzed by logistic regression models th a t may incorporate 

covariates such as subject characteristics or time. Param eter estimates 

from the actual dataset are then used to generate missing data patterns 

for the simulation. Under an MAR assumption, the logistic regression 

models may be extended to include outcomes at one or several previous 

time points, for example the model proposed by Diggle and Kenward [5]:

logit (P r(n j =  1)) =  /?o +  +  (32yij-\. (4.1)

Thus, the probability th a t subject i drops out at tim e j  given th a t it 

was observed at tim e j  — l i s  modelled as a function of the tim e and the 

previous measurement through the logit link function.

4.3.4 Hierarchically structured data

The presence of missing values in multilevel data structures has been 

discussed in the literature [8]. In multilevel datasets, it is possible to have 

data missing at more than one level [8]. However, it is more problematic 

for data analysis, when a unit is missing at a higher level, because it
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implies th a t the data at lower level is also missing. Snijders and Bosker

[29] argued th a t even a small proportion of missing values at a higher 

level may lead to a loss of a lot of information on individuals at the lower 

level.

Gibson and Olejnik [8] added th a t methods for treating these missing 

data  could alleviate the problem. Although the focus here is on miss­

ing values for the repeated measures data structure and less on missing 

data at higher levels, the basic definitions are unaffected by subjects 

being attributed to clusters. Models for missing data such as (4.1) can 

be extended to clustered data by adding random effects to represent 

heterogeneity between clusters.

4.4 Example: Somatic cell count data

The scc40 dataset [7, Chapter 27] is a small subset of a large mastitis 

dataset collected by Jens Agger and the Danish Cattle Organization in 

1993-94. It contains 13,487 non-missing observations at the first 9 time 

points (of the lactation) for 2,172 cows from 40 herds. Milk samples 

from each lactating cow were collected approximately monthly within 

the regular milk control scheme. Only records from a single lactation 

for each cow were included, and when the study period spanned parts 

of two lactations for a cow, the longer period of the two was selected.
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A binary indicator of intra-mammary infection or m astitis was obtained 

by dichotomizing the somatic cell counts at 200000 cells/ml.

The scc40 dataset contains three types of missingness pattern: delayed 

entry, drop-outs and interm ittent missing values. In general, a delayed 

entry occurs if a subject enters the study or becomes under observation 

after the start time of the study. For example, if time is measured relative 

to a fixed time point, subjects physically arriving after tha t point to an 

open study cohort [7, Chapter 8] are delayed in their entry. For the scc40 

data, each cow’s time refers to the days since calving (“days in risk”). In 

this situation, a delayed entry occurs if the calving event took place out­

side (before) the study period, and the time points within a cow prior to 

study onset were considered as missing values. A drop-out occurs when 

a cow exited from the study before ending its intended measurements, 

whereas, interm ittent missing values are occasions where a cow missed 

some measurements but reappeared again for later measurements in the 

study.

4.4.1 Analysis of the missing data in the scc40 dataset

In the context of the scc40 dataset, let ijijk refer to complete binary 

records on each of n  cows {i =  1 , . . . ,  n) distributed on m  herds (k — 

1 , . . . , m) at t  time points ( j  =  1 , . . .  , t ) .  Furthermore, let rijk be the
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indicator of yijk being missing. A shadow m atrix was constructed for 

the corresponding full dataset, and the distribution of the missing values 

was explored. The total percentage of missing values in the constructed 

shadow m atrix was about 31%, distributed as 17% delayed entry, 14% 

drop-out and 0.3% interm ittent missing values. We will now detail the 

modelling for each type of missing values.

4.4.1.1 M issing values caused by drop-outs

A m atrix of binary indicators of drop-outs was constructed according 

to the approach described earlier (Section 4.3.3). Subjects with delayed 

entry were included only from their point of entry. Conditional on herd 

random effects, the probability th a t cow i in herd k drops out at tim e 

j  was modelled by the random effects extension of Equation (4.1) based 

on an MAR process:

logit(Pr(rjjfc =  l\vk)) =  /?o +  (4.2)

where (ui , . . . ,  v^)  are normally distributed independent random vari­

ables, say Vk ~  # (0 , a l)  where cr̂  represents the heterogeneity (vari­

ance) between herds. Inclusion of a second order time lag {yij^2k) as 

well as a quadratic term for the effect of time were explored, but not 

considered of significance for the modelling.
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4.4.1.2 M issing values caused by delayed entry

A m atrix of binary indicators of missing values prior to entry was con­

structed from the shadow matrix. Each row consists of a series of I ’s 

until the subject is observed (represented by a 0) for the first tim e in the 

study. Subsequent observations for the subject are not included. This 

data structure is similar to the structure for drop-outs, except th a t O’s 

and I ’s are reversed.

This type of missing values is most likely a result of issues not related 

to the observed (or unobserved) values. Therefore was modelled by an 

MCAR process. Then, the conditional probabilities were modelled by a 

random effects logistic regression model incorporating only tim e effects 

(by linear and quadratic terms):

logit(Pr(rÿfc =  Ijufc)) =  /?o +  Atime^ +  /?i2tim e| +  %, (4.3)

with similar random effects assumptions as above. Note th a t the fixed 

and random terms in model (4.3) are different from those in model (4.2) 

as well as the forthcoming model (4.4); for simplicity of notation we 

retain the same symbols.
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4.4.1.3 Interm ittent m issing values

The times of the first and last observation for each subject were excluded 

in the data for interm ittent missing values. Each subject could have 

multiple missing values, either following each other or at isolated time 

points. Therefore, the MAR process model in Equation (4.2) was fur­

ther extended to include cow random effects. In addition, the observed 

value at the previous time point could legitimately be missing, leading 

to the inclusion of an extra param eter in the model. In summary, the 

conditional probability tha t cow i in herd k has an interm ittent missing 

value at time j  given the cow and herd random effects [uik) and (u&), 

respectively, was modeled by a random effects logistic regression model 

of the form:

logit(Pr(rÿfe =  l\uik,Vk)) =  /?o +  A tim cj -b

(4.4)

for independent random variables Uik ~  -/V(0, (7̂ ) and Vk ~  -^(0, <7̂ ) 

with the variances cr̂  and cr̂  representing the heterogeneity (variance) 

between cows and herds, respectively.
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4.5 Statistical methods

4.5.1 Estimation procedures

Random effects and marginal estimation procedures were selected based 

on their performance in the full simulated datasets (Chapter 3). For 

all procedures except GEE the author refers to the detailed description 

given therein.

For missing data scenarios involving drop-outs by an MAR process, a 

weighted generalized estimating equation (WGEE) procedure was em­

ployed to account for the bias induced by the MAR mechanism. The 

GEE procedure was set up with either an independence or exchange­

able working correlation structure a t the cluster (herd) level; results 

from Chapter 3 showed th a t GEE with these correlations at the cluster 

level performed well for balanced repeated measures data with an addi­

tional hierarchical structure. The calculations involved in the weighting 

scheme have been detailed elsewhere ([13] and [24, chapter 27]). In brief, 

the weight for each subject was calculated by fitting a marginal logistic 

regression for the binary indicators of drop-outs similar to (4.2). The 

differences were; time being modelled as a categorical predictor instead 

of a linear term, all fixed effects predictors being included, and the ran­

dom effects being replaced by an exchangeable GEE working correlation
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structure. The predicted values from this model were used to compute 

weights for each subject and time point for the actual W GEE analy­

sis, as the inverse probabilities of not dropping out up to the current 

time point. The weighting procedure and analysis were implemented 

using SAS software, by modifying the SAS code of janson et al. [13] to 

facilitate looping across the simulated datasets.

4.5.2 Simulation procedures

In this simulation approach, the full datasets were generated first. Then 

the desired missing data patterns were generated from a specified model, 

and the actual outcome values were replaced by their counterpart miss­

ing values. The whole process was repeated N  =  1000 times. The same 

full datasets were used as in Chapter 3 to which the reader is referred for 

the details. All full datasets were balanced with 8 tim e points, 20 sub­

jects per cluster and 30 clusters. A total of five scenarios of missingness 

datasets were included. The scc40 scenario included all types of missing 

values present in the scc40 dataset. As described previously, about half 

of the missing values were due to delayed entry which could be argued 

to be assumed missing completely at random.

In order to study the impact of scenarios with higher proportions of 

values missing tha t were not as a result of an MCAR process, missing
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value patterns consisting exclusively of drop-outs were constructed. The 

drop-out patterns were modelled by either MAR or NMAR processes 

were adjusted to either low (L) (approx. 31%) or high (H) (approx. 52%) 

proportions of missing values (designated as MARL/MARH and NMAR- 

L/NMARH).

4.5.2.1 M issing values: scc40 scenario

The three types of missing values were simulated in the following order: 

delayed entry based on model (4.3), drop-outs based on model (4.2), 

and interm ittent missing values based on model (4.4). The param eter 

estimates of these models for the scc40 data (Table 4.1) were taken as 

true values for the simulations of the missing value patterns.

4.5.2.2 M issing at random scenarios: M ARL and M A R H

The scc40 regression estimates (Table 4.1) for the drop-out coefficients 

in model (4.2) were retained except th a t a stronger dependence on the 

previous value was imposed. Specifically, we used /?o =  —4.7, /?i =  0.35 

and (Jh =  0.068, and the coefficient for the previous value was set at 

either /?2 =  2 (MARL) or == 4 (MARH). Overall, this produced 

expected percentages of missing values of approximately 31% (about 

the same overall level as the scc40 data) and 52%, respectively. The
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expected percentages of missing values ranged from 6% and 19% at the 

second time point to 70% and 85% at the last time point, for MARL and 

MARH respectively.

4.5.2.3 N ot m issing at random  scenarios: N M A RL and N M A R H

Although this study does not include methods to  estimate NMAR mod­

els, data  could generate from a NMAR scenario by directly allowing the 

probability of a missing value to depend on the actual value from the full 

dataset. For simplicity, we used model (4.2) with the previous outcome 

replaced by the current outcome and the same param eters as for the 

MAR scenarios. This resulted in overall percentages of missing values of 

31% and 52% and similar ranges of percentages at individual time points 

as for MAR.

4.5.3 Analysis of results for simulated data

The estimates of marginal or random effects estimation procedures under 

different scenarios were compared both to the true values of the simu­

lation and to the estimates obtained from the full simulated datasets. 

The latter comparison was of interest for studying the impact of miss­

ing data on the performance of the estimation procedures, whereas the 

former comparison would be used for an overall assessment of each pro-
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cedure under specific scenarios. The comparison of estimates to the true 

values used the same formulae and methods as the analysis of the full 

data  (see Chapter 3). In brief, the relative bias was defined as difference 

between the average estimate among simulations {(3) and the, marginal 

or subject-specific, true value (/)), divided by the true value,

relative bias to true value (RBT) =  ^  x 100% (4.5)

Note th a t (3m  refers to the estimate based on the incomplete data. The 

scaling by the true value was useful because the parameters were not 

standardized to a uniform scale. In a similar fashion, the relative bias 

to the average estimate based on the full da ta  [I3f ) was defined as,

relative bias to full data (RBF) =  x 100% (4.6)

One could also use Pf  in the dominator of (4.6); one advantage of our

simpler form is th a t the RBF is obtained as the difference of the RBTs 

for the full and incomplete data.

Only datasets where valid estimates were obtained by both full and 

incomplete data were included. For any of the estimates (of both fixed 

effects and variance parameters), the presence of statistically signifi­

cant bias compared with the full data was assessed by a t-test based 

on the differences between estimates obtained from the full and incom-
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plete datasets among the simulations.

4.6 Results

After a brief review of the param eter estimates (Table 4.1) obtained 

for the different missingness patterns in the scc40 data, the results are 

presented subdivided by the true model data (random intercept or auto­

correlated random effects model) and the missing value scenarios. As the 

main interest is in the impact of the missing values, the focus here is on 

the relative bias to the full data  (RBF) in Tables 4.2- 4.5, and defer rela­

tive biases and standard errors to the true values (RBT) to an appendix 

(Appendix B, Tables B.1-B.5). The coverages of confidence intervals 

are shown in Figures 4.1-4.3; these must necessarily refer to the true 

values. The performance of estimation procedures for the corresponding 

full datasets was discussed previously (Chapter 3) and includes, briefly, 

minor attenuation of variance estimates at the cluster level for random 

effects procedures in random intercept model data  and strong downwards 

biases for all random effects procedures in autocorrelated data, as well 

as a small negative relative bias by marginal estimation procedures in 

both data settings.
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4.6.1 Missingness types for scc40 data

The strongest effects on patterns of missingness in the scc40 data  were 

found for drop-outs (Table 4.1). The likelihood of a subject dropping 

out increased significantly both with time (OR =  1.42 per month) and 

with the previous value being an event (OR =  1.25). The estimated 

probabilities of a subject with no events dropping out increase from 

1.5% at the second time point to 15% at the last time point [t =  9). 

There was little between-herd variation in the occurrence of drop-outs.

The probability of a delayed entry also depended strongly on time, 

but in a non-linear fashion (Table 4.1). The negative quadratic term 

ensures the likelihood of a delayed entry missing value decreases as tim e 

progresses; in the data, all missing value series eventually stop because 

otherwise the subject would not be part of the dataset. The estimated 

proportion of non-delayed subjects (with rnk =  0) was 46.6%, slightly 

above the 42.4% in the scc40 data. The herd-level variation in delayed 

entries was very small, but statistically significant.

The probability of interm ittent values declined with tim e (OR =  0.82 

per month) and depended on the previous observation being an event 

(OR =  0.50); both of these associations were quite uncertain (Table 

4.1), in consequence of the small number (0.3%) of interm ittent values 

in the scc40 dataset. Variances at the cow and herd levels were estimated
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at moderate values but were however not statistically significant.

4.6.2 Random intercept model data {p =1)

4.6.2.1 M issing values: scc40 scenario

All estimation procedures gave estimates in fairly close agreement with 

those of the full datasets (Table 4.2). Small but significant negative 

biases for the time coefficient (/3i) were found for OLR and PQL. The 

variance estimates from PQL, PQLx and MCMC showed some minor 

negative and positive biases th a t in all cases were in the same direction 

as the bias in the estimates of the full data (Tables B .l and 3.1 in Chapter 

3).

4.6.2.2 M issing values: M A R  scenarios

The positive dependence of the drop-out probability on a preceding event 

resulted in datasets with fewer events at the end of the time series than  in 

the full dataset. For example, at t — 8 the full and MARH datasets had 

a proportion of events of 53% and 11%, respectively. Consequently, the 

strongest impact of the missing values for the simple OLR analysis was a 

negative bias for /3i, ranging down below -100%, and thus amounting to 

a sign switch in the coefficient (Table 4.2). The other coefficients showed 

a negative bias as well, and the confidence interval (Cl) coverage was far
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below nominal (Figure 4.1).

The two likelihood-based procedures (ML, MCMC) were only a little 

affected by the missing values, the only consistent significant changes be­

ing some increased estimates for g \  (Table 4.2). Overall, the proportion 

of missing values had no impact, except tha t the MARH scenario pro­

duced an additional small positive bias for (3i for MCMC. Cl coverages 

were close to but mostly below nominal (Figure 4.1).

The PQL procedure showed some negative biases, in particular for the 

time coefficient and variances parameters, and increasing with the sever­

ity of missing values. The bias of the time coefficient was substantial 

(% 20%) and in the same direction as for OLR but less pronounced. 

Addition of an extra-binomial dispersion param eter (PQLx) altered the 

performance of the procedure dramatically. Biases for all parameters (ex­

cept the dispersion parameter) were positive and of a larger magnitude 

(up to approx. 90% for (3\) than for PQL (Table 4.2). The extra-binomial 

param eter estimates of PQLx were centered at 0.72. However, except for 

/?!, the coverage of fixed effects CIs was fairly close to nominal for both 

PQL procedures (Figure 4.1).

The ALR procedure performed well in the MARL scenario, but pro­

duced a substantially inflated estimate of (5\ for MARH. The two weighted 

GEE (WGEE) procedures showed minor biases for MARL and substan­
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tial biases for MARH, in particular in the estimates of (5\ (Table 4.5). 

The direction of the biases varied across the two W GEE versions and the 

two data  settings. The exchangeable correlation structure produced bi­

ases away from zero for MARL and towards zero for MARH. For MARH, 

all estimates from both versions of W GEE were associated with too small 

standard errors relative to the true values (Table B.5), leading to sub­

stantial to strong undercoverage of CIs (Figure 4.1).

4.6.2.3 M issing values: N M A R  scenarios

All estimation procedures included in the NMAR scenarios showed strong, 

negative relative biases (RBF range 53-320%) for the time coefficient 

(Table 4.2). Estimation of subject- and cluster-level fixed effects was 

relatively unaffected, with only minor biases (up to 6.4%) of which only 

few were significant for NMARL, but all except ALR were significant for 

NMARH. All significant biases were negative, except for PQLx. Subject- 

and cluster level variances showed similar patterns, with RBF values up 

to 14.4% (except for 50.4% for and PQLx). Confidence intervals were 

strongly affected for (3\ and OLR but otherwise had coverages fairly close 

to nominal (Figure 4.1).
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4.6.3 Autocorrelated data ( p  <  1)

Generally, the impact of the missing values was more affected by the 

amount of autocorrelation present in the data for random effects than 

marginal procedures. This finding is plausibly linked to the strong di­

rect impact of the autocorrelation on the random effects estimates in the 

full data (Chapter 3). Specifically, when autocorrelation was present, 

estimates from random effects procedures tended to be less shrunk to­

wards zero (i.e., inflated) in datasets with missing values than in the 

full data. Thus, the missing values to some extent counteracted the 

shrinkage caused by the autocorrelation (Chapter 3).

4.6.3.1 M issing values: scc40 scenario

All random effects estimation procedures showed inflated estimates across 

almost all parameters relative to the estimates from the full data  (Ta­

bles 4.3-4.4). The extra-binomial dispersion param eter for PQLx was 

downwards biased away from nominal dispersion (0 =  1). The inflation 

was in most cases more pronounced at p =  0.5 than p =  0.9, except for 

the subject-level variance. Despite the inflation, the estimates were still 

clearly attenuated towards zero, although less so than  in the full data 

(Tables B.2-B.3 and 3.1), and the CIs suffered from strong undercov­

erage for some parameters, in particular for p  =  0.5 (Figures 4.2-4.3).
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For the marginal procedures (OLR and ALR), the impact of the missing 

values was still minor and almost unchanged from the random intercept 

model data.

4.6.3.2 M issing values: M A R  and N M A R  scenarios

For random effects procedures, the impacts of missing data were similar 

to those described above for the scc40 scenario. Some notable exceptions 

were th a t the overdispersion param eter for PQLx moved towards 1 in the 

MARH scenario, and some fixed effects estimates for ML and MCMC 

were similar at p =  0.9 and p =  0.5, or even closer to zero at the latter.

The marginal procedures showed different bias patterns with decreas­

ing values of p (Table 4.5). For example, OLR biases generally decreased, 

whereas ALR biases were stable around zero for MARL, but for MARH 

the previously observed positive bias for j3i increased in magnitude. In 

MARL data, the two weighted GEE procedures performed roughly on 

par with the random intercept data. Some bias reduction could be seen 

for MARH with decreasing p, but the bias in standard errors and result­

ing poor coverage of CIs remained (Table B.4 and Figures 4.2-4.3).

In NMAR scenarios, the introduction of autocorrelation had similar 

impacts on the biases of the different estimation procedures as in the 

MAR scenarios. However, from a practical point of view it did not al-
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ter the magnitude and severity of the biases described for the random 

intercept model data substantially (Tables 4.3-4.5). The Cl coverages 

for random effects procedures dropped substantially below nominal with 

decreasing p  (Figures 4.2-4.3), but this was attributable to the autocor­

relation itself and not a result of the missing values (compare Figure 3.1 

in Chapter 3).

4.7 Discussion

4.7.1 M odelling of missing values in a dataset

When an (applied) researcher is confronted with a dataset containing 

missing values, they face a crucial decision (among many others) re­

garding the analysis: whether to ignore or model the missing values. A 

quick glance through scientific journals publishing studies involving sta­

tistical analyses will show th a t in most cases the missingness is ignored, 

despite the by now well advanced statistical understanding of proce­

dures to model missing data  (e.g., [19] and [22, Chapter 5]). Among 

the reasons for this apparent negligence in the statistical analysis would 

be beliefs tha t (i) the statistical methods actually used were robust to 

missing values, and (ii) statistical methods to deal with missing values 

would be difficult to employ and assess. While focusing on the quantifi-
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cation of assumption (i), the present paper also puts forward the idea of 

modelling the occurrence of missing values by simple models, in order to 

gain insight into the types of missing values in a dataset before deciding 

whether the missing values should be modelled or not.

Our example dataset (scc40) contained a total of 31% missing values 

relative to a dataset with complete series on all subjects, intuitively 

a relatively large proportion. However, more than half of the missing 

values were due to a type of missing values (delayed entry) tha t could 

reasonably be assumed to have arisen by the least serious missing value 

process (MCAR). Delayed entry can be thought of as a left truncation 

of the time series on a subject, whereas a drop-out can be thought of as 

a right truncation of the series. Little attention seems to have been paid 

in the literature to delayed entry as a source of missing values, but in 

our view it may occur commonly for data collected retrospectively from 

databases.

It is critically im portant to model missing values in a single dataset 

appropriately. We modelled the different types of missing values by 

variants of the logistic regression model proposed by Diggle and Kenward

[5]. Possible extensions of the approach can easily be suggested. For 

data  including treatm ent factors of key interest, it would be natural to 

include these as fixed effects in the models. Also, if NMAR processes are
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suspected for some of the missingness types, one could consider specific 

NMAR models, such as pattern-m ixture models [23], even though they 

may be more difficult to fit to the missingness patterns. We considered 

interm ittent missing values as the type most likely to involve NMAR 

missingness, and by the very low proportion of such missing values in 

the data, NMAR modelling was considered unnecessary in our example.

The simulation results for the scc40 scenario showed almost no impact 

of the combination of missing patterns on the estimation procedures. 

Obvious reasons for this perhaps somewhat surprising finding, given the 

relatively large proportion of missing values, are th a t delayed entry ac­

counted for a substantial part of the missing values, and th a t the missing 

value mechanisms studied did not include NMAR.

4.7.2 Impact of missing values

Evidently the impact of missing values in a dataset depends on the 

types and probabilistic mechanisms of the missing values as well as their 

proportions. Our simulation studies gave a sense of the required level 

of missingness needed to substantially affect results (of different proce­

dures), and the extent to which individual param eters were affected. As 

discussed above, estimation in the scc40 data seemed hardly affected at 

all despite a sizeable proportion of missing values. W ith the most severe
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missingness mechanism (NMAR) at the same level of missing values, the 

picture changed completely. The strong biases for time coefficient across 

all procedures agrees with findings reported by Little and Rubin [19] 

and Laird [16] th a t ignoring the NMAR missing process leads to biased 

estimates, even when only a small proportion of the sample is missing 

[3]. It is notable tha t subject- and cluster-level param eters could be 

relatively little affected even in the most extreme scenarios, indicating 

tha t without a direct link to the missingness mechanism results could be 

relatively robust. Specific comments for some of the procedures follow.

4.7.2.1 W eighted generalized estim ating equations (W GEE)

A GEE procedure may allow an MAR process to be ignored if the work­

ing correlation structure is specified correctly [17,13]; see however [26] for 

examples where this does not hold. The GEE procedures of interest for 

the present 3-level structure involved either independent or exchangeable 

correlations at the cluster level. As these structures ignore the within- 

subject correlations, they seem unlikely to capture the true correlation 

structure. The strong biases for OLR in MAR scenarios, whose esti­

mates may be interpreted as of an unweighted GEE with independent 

correlation structure, confirmed our suspicion.

The W GEE procedures performed fairly well relative to the full data

195



for MARL regardless of the correlation structure in the data, in agree­

ment with findings reported by Janson et a l  [13] and Molenberghs and 

Verbeke [24, Chapter 27]. Also small biases have been reported [26], 

which could substantiate the small bias we found for the tim e coefficient. 

For MARH, the same param eter exhibited substantial biases which seem 

to contradict its theoretical (asymptotic) properties [27], but has also 

been reported previously for two-level data [26]. One possible source 

of the bias is fluctuations in estimating the weights as the number of 

measurements per subject becomes small, if not very small.

4.7.2.2 A lternating logistic regression (ALR)

One might expect ALR to be affected by missing values in a similar way 

as GEE although to our knowledge this has not been discussed in the 

literature. Overall, we found ALR estimates to be in close agreement 

with those of the full data (except for the time coefficient in MARH and 

NMAR scenarios) regardless of the correlation structure in the data. 

The bias in the MARH data was somewhat surprisingly in the opposite 

direction of biases for OLR and WGEE. As ALR is based on similar 

estimating equations as GEE, one may speculate th a t a weighting scheme 

akin to W GEE could be developed for ALR processes; in any case, the 

properties of ALR under MAR processes warrant further study.
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4.7.2.3 Penalized quasi-likelihood procedures (PQL, PQLx)

Drawbacks and caveats of iterative reweighting algorithms such as PQL 

for estimation in random effects models have been discussed extensively 

in the literature [2]. However, we are not aware of published work dis­

cussing any inferior performance of quasi-likelihood procedures under 

MAR processes. Our results for PQL demonstrated a bias i n  the tim e 

coefficient tha t we think is not attributable to the well-known atten­

uation of variance parameters in certain settings, because it does not 

affect all fixed effects param eters equally and has the same direction 

as for OLR. As for ALR, a suitable weighting scheme for PQL under 

MAR processes could be hypothesized. Allowing for extra-binomial dis­

persion (PQLx) produced stronger biases and in the opposite direction, 

adding to the evidence from previous work (Chapter 3) th a t inclusion of 

the extra-binomial param eter has more profound impacts on the perfor­

mance of the procedure than one might intuitively expect. Based on our 

findings, the inclusion of the extra-binomial param eter in the presence 

of substantial missing data  is not to be recommended.

4.7.2.4 Likelihood-based procedures (ML, M CM C)

Strictly speaking, both ML and MCMC are based on likelihood approx­

imations, either by quadrature or MCMC sampling. From this perspec­
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tive, our results for these procedures demonstrated th a t the accuracy of 

the approximations were sufficient to, by and large, ensure the ignorabil- 

ity of MCAR and MAR processes predicted from theory [18]. However, 

slight increases in MCMC estimates for the tim e coefficient and clus­

ter level variance remained unexplained. On the other hand, NMAR 

processes affected the likelihood-based procedures to roughly the same 

extent as the other procedures, so their advantage in this context is 

essentially linked to the MAR assumption.
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Table 4.1: Random effects logistic regression estimates of fixed effects and variances, with 
standard errors, from analyses for three different types of missing values in the scc40 dataset; 
interpretation of parameters: — intercept, [3i =  time coefficient, f3\2 =  quadratic term
for time coefficient, = previous outcome, = previous outcome missing, — herd-level 
variance, cr̂  =  cow-level variance.

Param­
eter

Type of missing values 
Delayed entry Drop-out Intermittent

Estimate SE Estimate SE Estimate SE

A -0.444 0.083 -4.850 0.143 -4.582 0.604

Pi 0.666 0.055 0.350 0.019 -0.196 0.075

Pl2 -0.084 0.007

P2 0.224 0.072 -0.698 0.347

A 1.421 0.999
0.017 0.011 0.068 0.026 0.295 0.257

0.938 1.008
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T able  4.2: Relative bias of estimates to the full data (RBF) with a significance indication and 
standard error in parenthesis, based on analyses of 1000 simulated datasets generated by random 
intercept model (p =  1) in five simulated scenarios of missing values: scc40 (missing values as 
in scc40 dataset), MARL, MARK (low (31%) and high (52%) proportion of missing values at 
random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion of missing 
values not at random). Parameters: j3o (intercept), jii (time coefficient), /I2 (subject level factor), 
/?3 (cluster level factor), (variance at subject level), <73 (variance at cluster level), (j) (extra­
binomial dispersion). Estimation procedures: OLR (ordinary logistic regression), ALR (alternating 
logistic regression), PQL (2nd order penalized quasi-likelihood), PQLx (2nd order penalized quasi­
likelihood with extra-binomial dispersion), ML (maximum likelihood), MCMC (Bayesian Markov 
chain Monte Carlo).

Scen- Param- Statistical M ethods
ario eter OLR ALR PQL PQLx ML MCMC
scc40 Po - 1 .7  (1.2) - 0 .9  (1.2) - 1 .4  (1.2) 0.0 (1.3) - 0 .8  (1.3) - 0 .6  (1.3)

4i -2.9* (0.4) - 0 .6  (0.4) -1 .7 *  (0.6) 0.0 (0.6) - 0 .8  (0.6) - 0 .8  (0.6)
Ü2 - 0 .6  (0.7) - 0 .6  (0.6) - 1 .1  (0.6) - 0 .2  (0.7) - 0 .5  (0.7) - 0 .4  (0.7)
A 0.1 (1.4) 0.3 (1.3) -0 .2  (1.4) 0.9 (1.4) 0.5 (1.4) 0.7 (1.4)
(^2 -2 .2 *  (0.4) 4.8*(0.5) 1.0 (0.5) 1.5*(0.5)

-3 .8* (1 .4 ) - 2 .2  (1.5) - 2 .9  (1.5) - 3 .3  (1.7)
-2 .9 *  (0.1)

MARL /?o -8 .0* (1 .3 ) - 0 .3  (1.3) - 1 .0  (1.3) 1.9 (1.3) 0.2 (1.3) 2.5 (1.7)
/3i -52 .1*(0 .5) 0.1 (0.4) -2 .9 *  (0.6) 10.1*(0.7) 0.1 (0.6) 1.2 (0.7)
A -3 .4 *  (0.7) - 0 .7  (0.7) -1 .4 t(0 .7 ) 0.6 (0.7) - 1 .0  (0.7) - 0 .4  (0.8)
A -3 .6* (1 .4 ) - 0 .9  (1.4) - 1 .3  (1.4) 0.8 (1.5) - 0 .8  (1.4) 1.2 (1.7)

'"I -3 .5 *  (0.4) 8.0*(0.5) 0.8 (0.5) 2.6*(0.6)
<̂3 -2 .4  (1.4) 1.5 (1.5) - 1 .4  (1.5) - 1 .4  (2.0)

-5 .0* (0 .1 )
M ARK A - 1 .5  (1.2) -5 .3 * (1 .3 ) -3 .3 *  (1.3) 10.9*(1.5) 0.4 (1.4) 1.0 (1.4)

P i -140.1*(0 .6) 23.0* (0.5) -22 .6*  (0.8) 89.2*(1.2) 0.5 (0.9) 3.5*(0.9)
A -11 .6*(0 .7 ) 0.0 (0.7) -4 .1* (0 .7 ) 11.6*(0.8) - 1 .0  (0.7) - 0 .4  (0.8)
A -11 .4*(1 .3 ) 0.0 (1.4) -3 .6 *  (1.4) 12.4*(1.6) - 0 .6  (1.5) 0.3 (1.5)
(^2 -17 .4*  (0.5) 64.0*(1.0) 1.5*(0.7) 4.0*(0.7)

-7 .5* (1 .4 ) 22.8* (1.8) - 1 .9  (1.6) - 1 .6  (1.7)
-20.4* (0.2)

NMARL A -7 .7* (1 .3 ) - 0 .5  (1.3) -2.6*(1.3) - 0 .1  (1.3) - 0 .7  (1.3) - 0 .1  (1.4)
P i -8 8 .2 *  (0.5) -53 .0*  (0.4) -79 .6*  (0.6) -75 .0*  (0.6) -78.4* (0.6) -78.2* (0.6)
A -2 .0 *  (0.7) - 0 .4  (0.7) -1 .8 *  (0.7) 0.0 (0.7) -1 .5 * (0 .7 ) - 1 .4  (0.7)
A - 2 .1  (1.4) - 0 .5  (1.4) - 1 .4  (1.4) 0.5 (1.5) - 1 .2  (1.5) - 0 .6  (1.5)

'"I -2 .6 *  (0.4) 8.5*(0.5) 0.3 (0.5) 0.9 (0.5)
- 2 .4  (1.4) 1.0 (1.5) - 2 .2  (1.5) - 2 .5  (1.7)

<t> -6 .5 * (0 .1 )
NMARH A 11.0*(1.3) 16.1*(1.3) 11.5*(1.3) 23.5* (1.5) 13.8* (1.4) 14.5*(1.4)

P i -317.8*(0 .9) -223.5* (0.9) -318.3*(1 .1) -300 .2*(1 .2 ) -318 .6*(1 .1) -319 .0*(1 .1 )
A -4.3* (0.8) 0.9 (0.8) -5 .6* (0 .7 ) 5.0*(0.8) -6 .2 * (0 .8 ) -5 .7 * (0 .8 )
A -4 .9* (1 .4 ) 0.4 (1.5) -5.4*(1.4) 5.7* (1.6) —6.4*b-h) -5 .7 *  (1.5)

<^2 -14 .4*  (0.6) 50.4*(1.0) -11 .2* (0 .7 ) -9 .6 *  (0.7)
- I -8 .3* (1 .4 ) 12.5*(1.7) -10 .1*(1 .5) -1 1 .1* (1 .7 )

-21 .5*(0 .3)

significant bias at P  <  0.05;  ̂ significant bias at P  <  0.01
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Table 4.3: Relative bias of estimates to the full data (RBF) with a significance indication and 
standard error in parenthesis, based on analyses of 1000 simulated datasets generated by autore­
gressive random effects model with {p —0.9) in five simulated scenarios of missing values; scc40 
(missing values as in scc40 dataset), MARL, MARK (low (31%) and high (52%) proportion of miss­
ing values at random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion 
of missing values not at random). Parameters: (3o (intercept), f3i (time coefficient), (subject 
level factor), /Js (cluster level factor), erf (variance at subject level), erf (variance at cluster level), 
0 (extra-binomial dispersion). See Table 4.2 for coding of estimation procedures.

Scen­ Param­ Statistical M ethods
ario eter OLR ALR PQL PQLx ML MCMC
scc40 % -2 .2 t(1 .2 ) - 1 .5  (1.2) 3.3*(1.2) 4.9*(1.2) 4.2*(1.2) 4.1*(1.2)

-3.2* (0.5) -1 .0 *  (0.4) 3.5*(0.6) 5.5*(0.6) 4.3*(0.6) 4.4*(0.6)
h 0.0 (0.7) - 0 .1  (0.6) 4.0*(0.6) -3 .0 *  (0.6) 5.5*(0.6) 5.7* (0.6)
Pz - 0 .9  (1.3) - 1 .0  (1.4) 3.2*(1.3) 4.5*(1.3) 4.6*(1.3) 4.5*(1.3)
<̂2 17.8*(0.3) 25.9* (0.4) 22.8*(0.4) 23.4* (0.4)

5.4*(1.3) 7.8*(1.3) 8.0*(1.3) 8.6* (1.5)
-6.9* (0.1)

MARL Pa -8 .6 t(1 .2 ) - 1 .4  (1.2) 2.9*(1.2) 5.9*(1.2) 4.3*(1.2) 4.0*(1.2)
P i -47 .5*  (0.5) 0.0 (0.4) 2.5*(0.6) 14.4*(0.7) 5.2*(0.6) 5.7*(0.6)
P 2 -2.2* (0.6) 0.0 (0.6) 3.9*(0.6) -2 .2 *  (0.6) 5.3*(0.6) 5.6*(0.6)
Ps -4 .0* (1 .3 ) - 1 .7  (1.4) 2.3 (1.3) 4.6*(1.3) 3.8*(1.3) 3.5*(1.3)
<^2 16.4*(0.4) 28.2* (0.4) 22.4*(0.4) 23.1*(0.4)

6.1*(1.2) 10.3*(1.3) 8.8*(1.3) 9.4*(1.4)
<t> -8.8* (0.1)

MARK Pa - 0 .4  (1.2) -3 .3 * (1 .2 ) 1.0 (1.2) 11.6*(1.3) 3.8*(1.2) 3.8*(1.2)
P i -113 .1*(0 .6 ) 32.8* (0.6) -6 .4 *  (0.9) 84.8*(1.3) 13.9*(1.0) 16.6*(1.0)
P 2 -8 .8 *  (0.6) 1.7*(0.6) 0.0 (0.6) 6.0*(0.7) 3.4*(0.6) 3.9*(0.6)
Pz -10.3*(1.3) 0.0 (1.4) - 1 .5  (1.3) 12.7*(1.4) 1.8 (1.3) 1.8 (1.3)

-3 .4 *  (0.4) 54.0* (0.9) 11.6*(0.6) 13.4*(0.6)
- 1 .5  (1.2) 24.1*(1.5) 4.2*(1.3) 4.8*(1.4)

-18 .1* (0 .2 )
NMARL Pa -7 .0* (1 .2 ) - 2 .1  (1.2) - 2 .1  (1.1) - 0 .2  (1.2) - 1 .2  (1.1) - 1 .3  (1.2)

P i -80 .6*  (0.5) -56.0* (0.5) -75.2* (0.6) -72 .4* (0 .7 ) -74 .1* (0 .6 ) -74 .0* (0 .6 )
P 2 - 0 .6  (0.6) 0.5 (0.6) 0.4 (0.6) —6.4* (0.6) 0.7 (0.6) 0.9 (0.6)
Pz - 2 .4  (1.3) - 1 .3  (1.3) - 1 .1  (1.3) 0.5 (1.3) - 0 .9  (1.3) -1 .1  (1.3)
<^2 2.1*(0.3) 9.9*(0.4) 4.6*(0.4) 4.9*(0.4)
- I 0.5 (1.2) 3.1+(1.2) 0.9 (1.2) 0.9 (1.3)
4> -6 .1 * (0 .1 )

NMARH Pa 13.0*(1.3) 16.0*(1.3) 14.9*(1.2) 25.7*(1.3) 16.3*(1.2) 16.4*(1.2)
P i -299.6* (0.9) -232.1* (0.9) -301.1*(1 .0) -291 .2*  (1.1) -300 .7*  (1.0) -301 .0*(1 .0)
P 2 -3 .3 * (0 .7 ) 1.0 (0.7) -2 .5* (0 .6 ) - 1 .3  (0.7) -2.0* (0.6) -1.6* (0.6)
Pz -4 .4 *  (1.4) - 0 .3  (1.4) -3.2* (1.3) 6.6*(1.4) -3.1*(1.3) -3.2*(1.3)
<̂2 -1 .4 *  (0.5) 46.1*(0.8) 3.0* (0.5) 3.9* (0.5)

- 1 .9  (1.2) 15.6*(1.5) - 1 .6  (1.2) - 1 .9  (1.4)
-19 .6* (0 .3 )

significant bias a t P  <  0.05;  ̂ significant bias at P  <  0.01
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Table 4.4: Relative bias of estimates to the full data (RBF) with a significance indication and 
standard error in parenthesis, based on analyses of 1000 simulated datasets generated by autore­
gressive random effects model with (p =0.5) in five simulated scenarios of missing values: scc40 
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of miss­
ing values at random due to drop-outs), NMARL, NMARH (low (31%) and high (52%) proportion 
of missing values not at random). Parameters: Pq (intercept), Pi (time coefficient), P2 (subject 
level factor), ^3 (cluster level factor), (variance at subject level), cr| (variance at cluster level), 
(j) (extra-binomial dispersion). See Table 4.2 for coding of estimation procedures.

Scen­ Param­ Statistical Methods
ario eter OLR ALR PQL PQLx ML MCMC
scc40 A - 1 .3  (1.2) - 0 .8  (1.2) 5.9* (1.0) 7.2 1.0) 6.0*(1.0) 6.1*(1.0)

/3i -1.9* (0.5) -0 .5  (0.5) 6.1*(0.5) 7.5 0.5) 6.2*(0.5) 6.4*(0.5)
A 0.6 (0.5) 0.7 (0.5) 7.0*(0.4) 8.1 0.4) 7.4*(0.4) 7.5* (0.4)
A - 0 .5  (1.4) -0 .4  (1.3) 6.0*(1.1) 7.2 1.1) 6.4*(1.1) 6.4*(1.1)
<^2 19.9*(0.2) 24.5 0.2) 21.9*(0.2) 22.2*(0.2)

9.2*(0.9) 11.0 0.9) 9.6*(0.9) 10.8*(1.0)
- 8 .5 0.1)

MARL Po -6 .0 t(1 .2 ) -1 .0  (1.2) 5.8*(1.0) 7.7 1.0) 6.1*(1.0) 6.2*(1.0)
/3i -3 1 .6 t(0 .5 ) - 0 .5  (0.5) 5.3*(0.6) 11.1 0.6) 5.7*(0.6) 6.0* (0.6)
A - 1 .0  (0.5) 0.6 (0.5) 7.1*(0.4) 8.5 0.4) 7.3* (0.4) 7.4* (0.4)
A - 1 .0  (1.3) 0.6 (1.3) 7.2*(1.1) 8.6 1.1) 7.3*(1.1) 7.4*(1.1)

<̂2 23.0* (0.2) 25.6 0.2) 22.1*(0.2) 22.5*(0.2)
10.5* (0.9) 13.0 0.9) 10.8*(0.9) 12.1*(1.0)

- 9 .7 0.1)
MARH A 1.5 (1.2) 2.2 (1.2) 4.2*(1.0) 9.4 1.0) 5.4*(1.0) 5.4*(1.0)

A -56 .9*  (0.7) 40.1*(0.7) 4.1*(0.8) 42.9 1.2) 14.0*(0.9) 12.8* (0.9)
A -4.5* (0.5) 2.8*(0.6) 1.6*(0.4) 8.1 0.5) 3.2*(0.5) 3.0*(0.5)
A -4.3* (1.3) 2.9t(1.3) 1.7 (1.1) 8.3 1.1) 3.2*(1.1) 3.2*(1.1)

2.8*(0.2) 17.4 0.4) 6.9*(0.3) 6.2*(0.3)
2.2*(0.8) 12.4 1.0) 4.6*(0.9) 4.9*(1.0)

-1 0 .3 0.2)
NM ARL Po -2.8+(1.2) - 1 .0  (1.2) -0 .1  (0.9) 0.7 1.0) 0.1 (1.0) 0.1 (0.9)

P i -65 .7*  (0.5) -55 .4*  (0.5) -62 .6*  (0.6) -6 2 .2 0.6) -62 .1*  (0.6) -62.0* (0.6)
P 2 0.4 , 0.5 0.8 (0.5) 1.2*(0.4) 1.9 0.4) 1.3*(0.4) 1.4*(0.4)
Pz 0.6 , 1.3 1.0 (1.3) 1.3 (1.0) 2.1 1.1) 1.4 (1.1) 1.5 (1.1)
(̂ 2 2.2*(0.1) 4.4 0.2) 2.9* (0.2) 2.8* (0.2)

1.7*(0.8) 2.8 0.8) 1.9*(0.8) 2.2*(0.9)
P -3 .4 0.1)

NMARH Po 18.7*(1.2) 19.8*(1.2) 17.8*(1.0) 23.3 1.0) 18.0* (1.0) 18.0*(1.0)
p i -254.2* (0.9) -225.5* (0.9) -251.9* (1.0) -2 5 3 .8 1.0) -251.3* (1.0) -251.5* (1.0)
P2 -1 .2+ (0 .6) 0.7 (0.6) 0.1 (0.5) 4.2 0.5) 0.6 (0.5) 0.5 (0.5)
Pz - 1 .4  (1.3) 1.0 (1.3) 0.3 (1.1) 4.7 1.1) 0.7 (1.1) 0.7 (1.1)

(̂ 2 4.2*(0.2) 17.8 0.4) 5.6*(0.3) 4.4* (0.3)
0.9 (0.9) 7.4 1.0) 1.5 (0.9) 1.7 (1.0)

-1 1 .4 0.2)

significant bias in estimate at P  < 0.05;  ̂ significant bias in estimate at P  < 0.01
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Table 4.5: Relative bias of estimates to the full data (RBF) with a significance indication and standard error in parenthesis, based on analyses of 
1000 simulated datasets generated by autoregressive random effects model with {p =  1,0.9,0.5) in five simulated scenarios of missing values: scc40 
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), NMARL, 
NMARH (low (31%) and high (52%) proportion of missing values not at random). Parameters: Po (intercept), Pi (time coefficient), P2 (subject level 
factor), /?3 (cluster level factor). Estimation procedures: WGEEci (weighted generalized estimating equations (WGEE) with independence correlation 
at cluster level), WGEEce (WGEE with exchangeable correlation at cluster level).

Scen­ Param- correlation P — 1 P = 0.9 P = 0.5
ario eter procedure WGEEci WGEEce WGEEci WGEEce WGEEci WGEEce

MARL Po 0.1 (1.3) 7.1*(1.5) -1 .5  (1.3) 6.4*(1.5) -0 .8  (1.3) 14.4* (1.4)
Pi 1.7î(0.6) 3.8*(0.5) 1.4* (0.6) 3.0*(0.6) 0.3 (0.6) 1.5*(0.6)
P2 -0 .1  (0.8) 0.4 (0.8) 0.9 (0.7) 1.4*(0.7) 1.0 (0.6) 2.1*(0.6)
A -0 .6  (1.4) 1.3 (1.8) -1 .3  (1.4) 0.0 (1.7) 0.8 (1.4) 1.0 (1.6)

MARH Po 13.5*(2.7) -6.8* (3.3) 7.8* (2.9) -3 .4  (3.3) 7.7*(2.4) 8.5*(2.7)
Pi -24.0* (2.2) -20.3*(2.1) -22.9*(2.4) -18.2*(2.3) -13.7*(2.3) -7.6* (2.3)
P2 -0 .3  (2.4) -3.9*(1.7) 1.7 (2.3) -3 .0  (1.7) 2.9 (1.8) 1.5 (1.4)
Pa -1 .7  (2.7) -4 .6  (3.9) -1 .6  (2.6) -1 .5  (3.5) 2.5 (2.2) 2.6 (3.0)

significant bias in estimate at P  < 0.05; * significant bias in estimate at P  < 0.01
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Statistical modelling of neighbour 

vaccine effects in aquaculture clinical 

trials

5.1 Abstract

In the design of clinical trials involving fish observed over time in tanks, 

there may be advantages in housing several treatm ent groups within the 

same tank. In particular, such “within-tank” designs will be more efficient 

than  designs with treatm ent groups in separate tanks when substantial 

between-tank variability is expected. One potential problem with within- 

tank designs is th a t it may not be possible to include all treatm ents in 

one tank; in statistical term s this means th a t the blocks (tanks) are 

incomplete. In incomplete block designs, there may be a concern tha t 

the treatm ents present in the same tank (denoted here as “neighbours”) 

affect each other in their performance. Thus the need for an assessment
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of neighbour effects. Two statistical approaches to assess and account for 

neighbour effects were proposed. The first approach was based on a non­

linear mixed model and the second involved cross-classified and multiple 

membership models. Both approaches were illustrated on simulated data 

as well as a clinical ISAV (Infectious Salmon Anaemia Virus) trial carried 

out at the Atlantic Veterinary College. The objective of the fish trial was 

to investigate the effect of 14 vaccine formulations under disease challenge 

conditions. The outcome of interest was the m ortality during a 6 week 

follow-up period after challenge.

The objective of the study is to explore two statistical approaches to 

assess and account for neighbour treatm ent effects in an incomplete block 

design setting.

The simulation studies demonstrated tha t both proposed models show 

promise in capturing neighbour treatm ent effects of the type assumed 

for the models, whenever such neighbour effects are of a t least moder­

ate magnitude. In the absence of or with low magnitudes of neighbour 

effects, the non-linear mixed model faced numerical challenges and pro­

duced noisy results. One version of cross-classified and multiple mem­

bership model was shown to depend strongly on prior information about 

variance-covariance param eters for datasets similar to the ISAV data. 

Analyses of the ISAV trial data by both models did not provide any
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evidence of substantial neighbour effects.

5.2 Introduction

In order to explain the meaning of “neighbour treatm ent effects”, consider 

our motivating example: an experimental study on vaccination of fish 

against Infectious Salmon Anaemia Virus (ISAV). In this vaccine trial, 

fish were held in multiple tanks th a t each contained several but not all 

treatm ent groups. It is common in fish trials to explore and/or adjust 

for tank effects derived from fish sharing the same environment [25, 18]. 

A different effect of sharing the same environment might occur if spe­

cific treatm ent groups affected each other; th a t is, effects occur because 

of the co-habitation with specific treatments instead of the generally 

shared environment. An extreme example would be th a t the presence of 

an ineffective (or control) group in a tank caused the other treatm ents 

groups in the tank to perform poorly due to infection spread. In order to 

consider such an effect, it must be biologically plausible tha t a transfer 

of treatm ent characteristics can take place within the same tank. An 

alternative interpretation could be as a competition effect, if fish within 

different treatm ent groups compete for limited resources. Competition 

effects have been studied in different contexts such as plant production 

[14, 9]; insects [20] and fish [21, 19].
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However, the present work is not based on specific designs in competi­

tion experiments and does not aim to explore the degree to which species 

or varieties compete, so we abstain from the using the term  competition 

and denote simply this type of effect as a “neighbour treatm ent effect”.

A common usage of the term  “neighbour effects” can refer to datasets 

or experimental designs in which there is a (strong) correlation between 

adjacent experimental units (neighbours). Such designs have been stud­

ied for use e.g., in agriculture and forestry [1], and the analysis typically 

involves methods of spatial statistics. In education studies, neighbour 

effects can refer to the effect of the neighbourhood social interaction [17].

A necessary condition to study neighbour treatm ent effects, as de­

scribed above, in designs with subjects in different treatm ent groups 

within clusters, is tha t the clusters do not contain all treatm ents (to the 

same degree) because then it will not be possible to separate neighbour 

treatm ent effects from the usual treatm ent and cluster effects. In terms 

of statistical experimental design, this means th a t the clusters form in­

complete blocks for the treatm ents; we elaborate on the experimental 

design below. For the ISAV trial, and similar aquaculture clinical trials, 

this condition is met and a neighbour treatm ent effect seems possible 

or perhaps plausible; thus there is a need for statistical methodology to 

handle neighbour treatm ent effects in data analysis.
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The objective of the study is to explore two statistical approaches to 

assess and account for neighbour treatm ent effects in an incomplete block 

design setting. The first approach is based on a non-linear model, and the 

second involves cross-classified and multiple membership models. Both 

approaches will be applied to the ISAV trial data and supplemented by 

simulation studies targeted at comparable param eter values.

5.3 Statistical design, modelling and analysis

In this section, we briefly review the concepts of an incomplete block 

design, thereafter introduce the two statistical models or approaches for 

estimation of neighbour treatm ent effects, and in a final section discuss 

the issue of model identiflability.

5.3.1 Incomplete block designs

Generally, one of the basic principles in experimental design is the reduc­

tion of variation between the treated units (experimental error). This is 

the primary motivation for introducing blocks, groups of similar experi­

mental units, in randomized complete block designs [7] where the trea t­

ments are allocated randomly among the units within each block. In the 

ISAV clinical trial context, the tanks may be considered as blocks. If a
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blocking scheme induces a within-block variation substantially smaller 

than the between-block variation, there may be large gains in efficiency 

of the block design compared to a completely randomized design (where 

each block/tank covers only a single treatm ent). When designing an ex­

periment, e.g., a clinical trial, the block size may however be determined 

or limited on physical/logistical grounds so th a t the blocks cannot com­

prise all treatm ents. The resulting design is called an incomplete block 

design [7], of which the ISAV trial is an example.

Designs for incomplete blocks range from balanced to unbalanced block 

designs. Multiple types of balanced and partially incomplete designs 

exists. The classical balanced incomplete block design (BIBD) exists 

for certain combinations of the number of treatm ents, blocks, and block 

sizes. This design requires th a t every pair of treatm ents occurs together 

within the same block an equal number of times [7, Chapter 11].

According to classical statistical theory for incomplete block designs 

with fixed eifects of treatm ents and blocks [12], the analysis of incomplete 

block designs include both intra- and inter-block information. The intra­

block analysis refers to a situation when the contrasts in the treatm ent 

effects are estimated as linear combinations of comparisons of observa­

tions in the same block. The inter-block analysis refers to the informa­

tion contained in the comparison of block totals and called “recovery of
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inter-block information”.

An alternative view of (incomplete) block designs is as a simple hierar­

chical structure where the experimental units are clustered within blocks 

[8, Chapter 20]. From this perspective it follows th a t block effects should 

be modelled as random effects; they may also be viewed as nuisance pa­

rameters (of no intrinsic interest), and their modelling by random effects 

may increase the precision on treatm ent estimates in incomplete block 

designs [11]. Random block effects induce a correlation between units in 

the same block whereas units in different blocks remain independent.

5.3.2 N otation and model framework

Throughout we use the following general (single index) notation. Let 

yi denote a continuous measurement on the ith  experimental unit (i =  

1 , . . . ,  n) located in block b l( i)  and subjected to treatm ent tx ( i) , where 

b l( i)  and tx ( i)  give the block and treatm ent number of unit i. Blocks are 

labeled 1 , . . . ,  6 and treatm ents labeled 1 , . . . ,  a; thus, a is the number 

of treatm ents and b is the number of blocks. For simplicity of notation, 

we will formulate our models in the context of blocks of size three, as 

in the ISAV trial data. Therefore, each experimental unit will be joined 

by two other treatm ents in its block; we call these neighbour treatm ents 

and denote their treatm ent numbers as n l( i)  and n2(i). Both models
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can be applied to other block sizes in a straightforward manner.

5.3.3 Non-linear mixed model (NLM)

The idea of this model is to capture a simple, possibly the simplest, way 

in which a treatm ent may affect its neighbour treatm ents in the same 

block: by an additive effect determined by scaling of the treatm ent ef­

fect itself. As an illustration, it might be conceivable th a t a treatm ent 

in addition to its effect on the treated unit contributes 20% of this effect 

to the neighbour units as well. In the context of competition for lim­

ited resources one might expect the neighbour effect to be negative (say 

-20%), so th a t a high-performing treatm ent reduces the neighbour trea t­

ments by 20% of its own effect. In a model equation including also the 

previously discussed random block effects, this idea takes the following 

form:

M +  Ptx{i)  +  0 { P n l { i )  +  P n2{i))  +  +  6%, (5.1)

where // is the overall mean; /3 i,...,/3 a  are fixed treatm ent parame­

ters normalized by the restriction ~  0 where { j  — l , . . . , a ) ;  ô

is a fixed neighbour treatm ent parameter; t q , . . . , u& are random block 

effects assumed to follow the Gaussian (normal) distribution N { 0 ,a l ) ;  

and 6 i , . . . ,  e„ are error terms assumed ~  N (0, (7̂ ). The equation shows 

how the neighbour treatm ent effects enter as additive terms formed by
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multiplying the respective treatm ent effects by the scaling param eter Ô. 

Obviously, Ô — 0 corresponds to no neighbour treatm ent effects, and Ô 

may take both positive and negative values. As Ô and the /? /s enter into 

the equation in a non-linear manner (by the multiplication), the model 

is non-linear in its param eters and therefore a non-linear mixed model 

[27j.

The fixed part of the model takes a non-standard form, but the ran­

dom part of the model is very simple and allowed the model to be fit 

using the (nlm ixed) procedure in SAS software [27, 23]. The procedure 

employed adaptive Gaussian quadrature to approximate the likelihood 

function and a quasi-Newton search algorithm to locate the maximum of 

the (approximate) log-likelihood function. The restriction on the trea t­

ment parameters th a t their sum be zero is equivalent to setting a baseline 

treatm ent, but avoided choosing an arbitrary baseline treatm ent and im­

proved the performance of the search algorithm. Sensible starting values 

were given for all parameters (for S a range of values were offered), and Ô 

was restricted in range to values within (—3,3) to prevent the algorithm 

from diverging into nonsensical domains of the param eter values. Vari­

ances were bounded below at (0.001)^ to avoid problems for the search 

algorithm resulting from zero variances.

A change of the model (5.1) to incorporate random instead of fixed
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treatm ent effects, in the spirit of the models to be described in the next 

section, was not possible within the estimation framework of the SAS 

procedure (or any other software), and was therefore not investigated 

further.

5.3.4 Cross-classified and multiple membership models (CC, 

MMI and MMCP)

Cross-classified and multiple membership models extend multilevel mixed 

models to non-hierarchical data structures, in two different ways. A 

cross-classified data structure exists if each experimental unit is a mem­

ber of two separate hiercharchies instead of a single hierarchy with mul­

tiple levels. Models for randomized block designs with random effects of 

both treatm ent and block factors can be viewed as the simplest example 

of a cross-classified data structure [7, 24]. The models in this section 

represent the treatm ent effects by random effects instead of fixed effects 

in order to model neighbour treatm ent effects in terms of correlation 

structure instead of fixed effects. For reference, we formulate first the 

cross-classified model (CC) without neighbour treatm ent effects,

Vi — 11 +  +  Vtx{i) +  (5.2)
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where fi is the overall mean, and where ( t t i , . ..  ,%&), Va) and

( e i , . . . ,  Cn) are sets of independent random variables representing the 

random block, treatm ent and error terms, respectively, and assumed to 

follow zero-mean Gaussian distributions with variances and

Multiple membership (MM) models allow a lowest level unit to be a 

member of more than one higher classification unit [15, 6]. Examples of 

the use of this model are; students (pupils) changing schools during a 

term which therefore have contributions from two schools; patients in a 

hospital attended by more than one doctor or nurse; and populations of 

production animals (fish, chicken) tha t originate from several different 

sources (hatcheries). The multiple membership model has also been 

proposed as a model for spatial dependence as an alternative to  e.g., 

the commonly used CAR models [3]; the idea is th a t the neighbours 

of a given unit (e.g., region) has its neighbouring regions included in a 

multiple membership classification. This is the closest analogy to our use 

of multiple membership here; the neighbour treatm ents within a block 

are treated as (spatial) neighbours in a (spatial) MM model. Adding 

these terms to the CC model yields our MMCP (multiple membership 

with correlated pairs) model,

Vi =  fi +  Ubi{i) +  ^tx{i) +  +  0.5u*2(i) +  (5.3)
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where the variables u î , . . . , u *  represent the neighbour effects of each of 

the treatm ents. The assumptions for the Uj and e, are unchanged from 

above, and the pairs (ui, u*) are independent and assumed

to follow a two-dimensional normal distribution A^(0,0, cr ,̂ cr ,̂ p). The 

variances represent the heterogeneity between treatm ents and neighbours 

respectively, whereas the correlation is between the treatm ents effects 

and its associated neighbour effects. A simpler version of model (5.3) 

assumes independence between treatm ent and neighbour effects, i.e. p  =  

0 (MMI model).

The MMI model corresponds to the MM model previously used in the 

literature, but the assumption th a t treatm ent and neighbour effects are 

unrelated may seem unnatural in the present context. The MMCP ex­

tension is designed to quantify a correlation between the treatm ent and 

neighbour effects, and is similar to an extension of the multiple member­

ship model for spatial applications proposed by Langford et al. [16]. If 

the MM variance component is substantial, one could furthermore plot 

the estimated random effects for treatm ents and neighbour effects to 

study their dependence pattern. A positive correlation would mean tha t 

being together with a “good” treatm ent tends to produce a “good” perfor­

mance, a negative correlation produces the converse. In Equation (5.3), 

the neighbour effects enter with weights of 0.5; generally the weights are 

assumed to sum to 1 for each lowest level unit. Criteria for choosing

222



appropriate weights may depend on the information available, however 

we have followed a simple approach and assigned equal weights [6].

MM models are generally fit in a Bayesian setting using MCMC esti­

mation, but if the model is specified with vague (“non-informative”) prior 

distributions the approach effectively uses the Bayesian framework as an 

estimation algorithm for an otherwise untractable model. The CC and 

MMI models can be fit using the MLwiN software [3], but the MMCP 

extension was programmed in the WinBUGS software; for convenience, 

WinBUGS version 1.4 was used for all analyses. Prior distributions 

were generally vague: N { 0 , 10®) for //; the classical gamma distribution 

(10"®, 10"®) for the inverse variances and [4]; and a W ishart dis­

tribution with a diagonal variance covariance m atrix of 0.1 and degrees of 

freedom of 2 for the inverse covariance m atrix of two-dimensional normal 

distribution. Browne and Draper [5] reported in a simulation study th a t 

using W ishart priors may result in biases especially in small datasets 

(see also the discussion on W ishart priors by Browne [2]). Thus a sen­

sitivity analysis based on a range of values (0.01, 0.25) for the diagonal 

variance covariance m atrix was carried out. Given the range of the trea t­

ment and neighbour effects standard deviations (0.1-0.5), the choice of 

0.1 in the diagonal variance covariance m atrix seemed a reasonable over­

all choice. For the simulated data, Markov chains were run with 10 000 

burn-in samples, and the subsequent estimates (posterior distribution
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medians) were based on 100 000 samples, whereas for the ISAV dataset 

the posterior distribution medians were based on 1000 000 samples.

5.3.5 M odel identiflability

A model is defined as identifiable in a situation where the model pa­

rameters are uniquely determined from the distribution of the observed 

random variables [22]. For estimation procedures based on maximization 

of a target function (e.g., the log-likelihood function), non-identifiability 

of parameters usually manifests itself as non-convergence of the search al­

gorithm or extreme sensitivity of the final estimates to initial values pro­

vided to the algorithm. Such deficiencies will often appear more clearly 

in data with low residual (error) variation, and the identiflability of a 

model may therefore be determined from simulated data  with low resid­

ual variation [10]. Preliminary analyses of the NLM model established 

th a t the model could be non-identifiable in some designs with small num­

ber of treatm ents and block sizes (e.g., in the smallest possible BIBD), 

and th a t its non-linear model counterpart with fixed block effects could 

be non-identifiable even for larger designs.

Non-identifiability of Bayesian models estimated by MCMC often man­

ifests itself by poor convergence of the Markov chains to a stationary 

distribution, although a nicely converged chain may still contain non-
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identifiable parameters or combinations of param eters [26]. We used the 

BGR diagnostic based on multiple chains [13] to  assess convergence from 

different starting values and examined the correlations of model param ­

eters to ascertain tha t converged chains did not mask non-identifiable 

parameters.

5.4 Infectious Salmon Anaemia Virus (ISAV) trial

The objective of the ISAV clinical trial was to  evaluate the immune re­

sponse to Infectious Salmon Anaemia Virus in Atlantic Salmon after 

vaccination with different vaccine formulations. Fourteen vaccine formu­

lations were investigated. Fourteen tanks were used in the trial, each 

containing three different randomly allocated vaccinated groups com­

posed of 50 fish each. Each vaccine formulation was replicated three 

times among the study tanks, and each tank held a unique combina­

tion of three applied vaccination formulations, for a total of 42 vaccine 

groups. The fish were tagged with a unique colour-coded tag to identify 

the vaccine group. The outcome of interest here is the mortality during a 

6-week follow-up period after challenge with the virus. The trial was car­

ried out during M arch-August 2000 by Dr. Shona W hite at the Atlantic 

Veterinary College, University of Prince Edward Island, Canada.

The design of the ISAV trial is shown in Table 1, with mortality rates
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for each treatm ent-tank combination. The incomplete nature of the 

blocks is evident from the table. It is also clear th a t all pairs of trea t­

ments do not occur equally often in the same tank; e.g., treatm ents 6 

and 9 meet once in tank 14, whereas treatm ents 1 and 2 do not meet at 

all. Therefore, the design is not balanced in the sense of a BIBD, and 

nor does it correspond to any other specialized incomplete block design 

[7, Chapter 11].

The ISAV data was modelled by the models of Section 5.3 by defin­

ing a continuous outcome yi for Models (5.1)-(5.3) for the fish group i 

as the m ortality rate at 6 weeks. This approach involved two data  re­

ductions and approximations. First, the proportions were really scaled 

binomial outcomes with denominator 50 and not truly continuous out­

comes. W ith equal and large denominators as well as proportions well 

away from the extremes of the unit interval, the normal distribution 

model should provide a fair approximation to the binomial distribution 

with fairly homoscedastic variances. A constant variance may be a bet­

ter approximation than the binomial variance (Var(yj) oc p%(l — Pi ) )  if 

there is clustering at the fish group level (i.e., the 50 identically treated 

fish are more alike than expected from a binomial distribution). Models 

(5.1)-(5.3) can easily be extended to logistic regression models but this 

was considered an unnecessary complication for the purpose of studying 

the models. Second, a substantial data reduction was implied by ignor­
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ing the survival curve up till 6 weeks and focusing only on the resulting 

mortality. We believe the models have the potential to be extended to 

survival data, but this was considered beyond the scope of the present 

study. It could also be argued th a t from a practical perspective, the over­

all mortality at the end of the study is a more direct measure of vaccine 

efficacy than e.g., hazard rates based on the entire follow-up period.

5.5 Simulation study

A targeted simulation study based around the ISAV clinical trial dataset 

was carried out. All simulated data were generated within the experi­

mental design of the ISAV data (Table 5.1); in particular, a =  14, 6 =  14 

and n  =  42. Both the NLM model (5.1) and the MMCP model (5.3) were 

used as true models for the simulated datasets. A to tal of six scenarios of 

simulated datasets were included: three scenarios (A.1-A.3, Table 5.2) 

corresponding to model (5.1), and three scenarios (B.1-B.3, Table 5.3) 

corresponding to model (5.3). The first NLM scenario (A .l, Table 5.2) 

and the second MMCP scenario (B.2, Table 5.3) were linked to the ISAV 

dataset by having true parameters close to those obtained for the ISAV 

data (Table 5.4). The first MMCP scenario (B .l, Table 5.3) had p =  0 

to yield the simpler MMI model. The correlated pair of random effects 

(uj,Uj) was generated from uncorrelated, standard normally distributed
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random variables {vj^xj) by defining v*̂  as v* — pvj +  — p^)xj,

where Xj ~  N (0 ,1), and scaling with respective standard deviations.

5.5.1 Analysis of results for simulated data

For the analyses by the NLM model, the means and standard devia­

tions of estimates across simulations, as well as the mean standard errors 

were reported (Table 5.2). The treatm ent estimates were converted to  a 

standard deviation at between treatm ents (without associated standard 

error), and the individual treatm ent estimates were omitted. For the 

multiple membership models analyzed within a Bayesian framework, the 

means and standard deviations of the estim ate’s posterior medians across 

simulations, as well as the mean posterior standard deviations were re­

ported. In addition, the difference in the deviance information criterion 

(D ie) between the MMCP and MMI models were calculated for each 

simulated dataset and reported (Table 5.3). For the ISAV dataset, both 

the actual treatm ent estimates and DIG values were presented (Table 

5.4).
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5.6 Results

The results of the simulation studies are presented according to the true 

model behind the data (NLM: Table 5.2; MMCP: Table 5.3), then fol­

lowed by the analysis of the ISAV trial dataset (Table 5.4). Our main 

focus will be on the neighbour effects Ô and (&%, p) . The mean estimates 

across simulations will be compared to the true values, and the mean 

standard errors (SE), or posterior standard deviations for the Bayesian 

models, will be compared to the standard deviations across simulations 

(SD).

5.6.1 Non-linear mixed (NLM) model data

Across all scenarios and estimation procedures, the overall mean (p) and 

error standard deviation (cje) were estimated consistently close to the 

true values (Table 5.2). The performance for the other param eters varied 

across both the data  scenarios and estimation procedures. A general 

pattern observed for the NLM estimates was th a t the SD was always, 

and at times much, larger than the corresponding SE. NLM searches for 

the ML estimates frequently lead to the block variance reaching its lower 

boundary; this could indeed lead to underestimated standard errors when 

calculated from the observed Hessian m atrix at the param eter estimates.
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In scenario A .l with low variances and neighbour effect, the mean NLM 

estimates for cr̂ , crj, and 6 were far from their true values. The SD for 

Ô was large, with a wide 95% range across simulations of (—.467, 1.24), 

and about 2.5 times the size of the SE. This signals th a t NLM estimates 

in this scenario were very noisy and associated with grossly incorrect in­

ference. In scenarios A.2-3, all estimates were closer to their true value 

and associated with smaller SD; these scenarios may be considered to 

show an acceptable performance of the procedure although some biases 

still exist. For example, the 95% range for Ô across simulations for sce­

nario A.3 was (.084,.788), which seems quite reasonable. Simulations 

of additional scenarios with large between-block variances also showed 

large SDs and wide ranges in the estimates of Ô (results not shown).

As the MMCP models do not match the true models, a close agreement 

of the estimates with the true values cannot be expected. For scenario 

A .l, the MMI model with independent (and fairly small) neighbour ef­

fects performed better than the MMCP model in terms of param eter 

estimates. This could be due the sensitivity of the W ishart prior in the 

MMCP model [2]. Using a value of 0.01 in the diagonal variance co- 

variance m atrix resulted in a better agreement between the estimates 

and their corresponds true values, for example the mean estimates of af, 

cr̂  and their associated SD and SF were equal to .092 (.023, .032) and 

.089 (.017, .042), respectively. In scenarios A .2-3 (Table 5.2), the MMI
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model showed some discrepancy in estimating its parameters, resulting 

in estimates of at and cr̂  much smaller than their true values, and for cr̂  

a pronounced difference between the SD and SE. However, the MMCP 

model seemed to gain some improvement over the MMI model in those 

scenarios and resulted in closer estimates of at and cr„ to their true values 

especially in scenario A.3 (Table 5.2). Note tha t the linear relationship 

between treatm ent and neighbour effects in the NLM true model of the 

data should correspond to a perfect correlation p (irrespective of the 

value of S). This explains why p  increases in the stronger scenarios, 

although the values are still far from 1.

5.6.2 Cross-classified and multiple membership (M M CP) model 

data

Similarly to the NLM model data, the overall mean [p) and error stan­

dard deviation (ag) were estimated consistently close to the true values 

(Table 5.3). A general pattern  observed for the MMI and MMCP esti­

mates was tha t the SD was almost always, and at times substantially, 

smaller than the corresponding SE.

In scenario B .l with p — 0, low variances and neighbour effect, the 

MMI estimates were close to their true values, with a reasonable agree­

ment between SD and SE. On the other hand, the MMCP estimates
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were further from their true values and associated with a pronounced 

disagreement between SD and SE, especially for treatm ent and neigh­

bour effect standard deviations (Table 5.3). The NLM estimates showed 

similar patterns as the MMCP model estimates. The mean estim ate of 

Ô was small (0.11) with a wide 95% range across simulations of (-2.409, 

2.822), as indicated by the large SD. Allowing for a weak dependence 

between treatm ent and neighbour effects in scenario B.2 produced only 

minor changes in the MMI and MMCP estimates. The sensitivity anal­

ysis for the MMCP model showed a strong impact of the W ishart prior. 

For example, in scenario B.2 and with a value of .01 in the diagonal, the 

estimates with (SD, SE) for at and an were: .093 (.022, .032) and .096 

(.020, .046), respectively.

W ith stronger dependence between treatm ent and neighbour effects 

and larger variation between treatm ents and neighbours (scenarios B.3), 

the MMCP param eter estimates improved further, and were closer to 

their true values than those from the MMI model. The sensitivity anal­

ysis showed tha t a larger value (.25) in the diagonal variance covariance 

m atrix of the W hishart prior gave estimates very close to the true values 

(.482 and .505 for at and an, respectively). On the other hand, a value 

of .01 in the diagonal resulted in shrunk estimates. The main problem 

for the MMI model was a far too low estimate of cr„.
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5.6.3 Infectious Salmon Anaemia Virus (ISAV) data

The mortality rates of the ISAV trial were in the range of 0.2-0.7 (Table 

5.1). The data were modelled by four different models (NLM, CC, MMI, 

MMCP) all assuming normally distributed random effects and errors. 

Two additional approaches were briefly explored, one based on binomial 

data and rephrasing equations (5.1) and (5.3) on logistic scale, and one 

based on restricting the variance of normally distributed proportions 

to follow the binomial distribution. Both approaches faced numerical 

challenges.

The results (Table 5.4) showed close agreement between the four mod­

els in estimates of // and <7g; however, the standard errors from NLM were 

of smaller magnitude than those from the other models. The estimated 

neighbour effect of the NLM model was moderate in magnitude and sta­

tistically significant, as assessed by a z-test. The MMCP model showed 

a bit larger estimates (with small posterior standard deviation) for the 

treatm ent and neighbour effect variances than those from the MMI and 

CC models. The correlation estim ate was reasonably low (p =.22) how­

ever with a large standard error (Table 5.4). All models MMCP, CC 

and MMI models showed almost identical DIC, probably leading one to 

choose the simpler CC model. Even the MMI model indicated only minor 

variance in neighbour treatm ent effects, and these two models showed
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good agreement on all other parameter estimates, contrasting the values 

of the MMCP model for the treatm ent and neighbour effect variances.

5.7 Discussion

In this study, we explored two statistical approaches to assess and ac­

count for the neighbour treatm ent effects in an incomplete block design, 

while accounting for block effects. Despite the relatively small dataset 

relative to the number of model effects/ parameters, the simulation stud­

ies demonstrated a potential utility of these models in the investigated 

settings. As mentioned in Section 5.4, the models can easily be extended 

to other block sizes. They can also easily be programmed as logistic mod­

els for proportion data, although some numerical issues were experienced 

in fitting such models.

5.7.1 Non-linear mixed model

Results from the NLM model data indicate th a t the specific non-linear 

relationship between the outcome and the treatm ents and neighbours 

could be captured well enough by the neighbour treatm ent effect. How­

ever, some restrictions on the variation between treatm ents and tanks 

seemed to apply. Our results showed noisiness in NLM estimates espe-
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dally  in scenarios A .l and B.1-2. These finding probably signal identih- 

ability problems for such data. In the absence of treatm ent effects (i.e., 

if all (5j =  0 in (5.1)), the param eter Ô is clearly not identifiable. Thus 

it is suggested tha t there should be a minimum variation between the 

treatm ents in order to be able to see and estim ate the neighbour effect.

5.7.2 Cross-classified and multiple membership models

The MMI model performed fairly well in scenarios A .l and B.1-2 with 

a weak link (or low correlation) between treatm ent and neighbour ef­

fects. In datasets with stronger dependence, the estimates of between- 

treatm ent and between-neighbour variances were substantially shrunk 

towards zero. It was also noted th a t the estimates were less variable 

than  expected from the posterior standard devations for the NLM true 

model data, but this may be a result of the model misspecihcation. For 

MMI data  (scenario B .l), the discrepancy was less marked and may be 

attributable to the fairly low sample size or sensitivity to prior distribu­

tions.

The apparent better performance of the MMI model in scenarios A .l 

and B.1-2 over the MMCP model was shown to be caused by a sensi­

tivity to the W ishart prior distribution (matrix) of the MMCP model. 

W ith a suitable prior, the MMCP model could reproduce the true val­
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ues well in all scenarios. However, as the scenarios covered a range of 

variances, the same prior could not reproduce the true values exactly 

across all scenarios. This observed sensitivity to the W ishart prior is in 

agreement with previous work [5, 2] tha t biases in the estimates may 

arise from the prior especially in small datasets. The dependence on 

prior information raises the question how one should choose the prior in 

a practical application. The best answer we can offer is th a t one should 

always carry out a sensitivity analysis, and tha t it is often useful to try  

to center the prior distribution on values close to the estimates (possibly 

in an iterative fashion).

We also noted th a t the MMCP model requires a substantial correlation 

between treatm ent and neighbour effects to present an improvement over 

the MMI model. Given the fairly small dataset, this is not surprising. 

In conclusion, our results seem to demonstrate the utility of the MMCP 

extension of the standard multiple membership model.

5.7.3 ISAV data

The finding of an apparent significant neighbour effect in the NLM model 

was compromised by the results of the simulation studies at low levels of 

between-treatment and between-tank variation, in two ways. First, the 

NLM estimate of the neighbour effect tended to be very variable and on
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the average inflated (too large); second, its standard error tended to be 

substantially underestimated. These two findings cast so much doubt on 

the significant neighbour effect th a t it should probably be disregarded 

as a spurious effect. Moreover, the results showed only minor treatm ent 

effects and a between-tank variation tha t was wholly consumed by the 

neighbour effect. Even without any neighbour effect all variances were 

fairly small. The natural conclusion seems to be th a t the actual data did 

not exhibit values within a range where the NLM model could provide 

evidence of neighbour treatm ent effect.

This conclusion is supported by the results of analysis by the cross­

classified and multiple membership models. The DIC model selection 

criterion pointed towards the cross-classified model with no neighbour 

treatm ent effect, and there was absolutely no evidence of the existence 

of a neighbour treatm ent correlated to the treatm ent effect itself. When 

faced with a negative (non-significant) finding, the question arises whether 

there was sufficient power in the data to detect any neighbour effect. The 

simulations from scenarios including moderate neighbour effects indicate 

th a t a m oderate neighbour effect could have been detected from the data. 

Apparently, such an effect was just not present.
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Table 5.1: Study design and Mortality proportions (based on 50 fish per group) at the 
end of the follow-up period in a vaccine (ISAV) trial on Atlantic salmon carried out at the 
Atlantic Veterinary College.

Treatment
Tank

6 7 8 9 10 11 12 13 14 15 16 18 19 22

1 .44 .34 .56
2 .56 .60 .60
3 .54 .46 .58
4 .48 .48 .42
5 .34 .52 .32
6 .30 .42 .20
7 .40 .34 .52
8 .46 .30 .48
9 .50 .36 .42
10 .52 .42 .62
11 .62 .66 .56
12 .66 .50 .50
13 .64 .48 .60
14 .72 .72 .70
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Table 5.2; Mean parameter estimates followed in parenthesis by standard deviation (SD) 
among simulations and mean standard error/posterior standard deviation (SE) of non-linear 
mixed model (NLM) and two cross-classified and multiple membership models (MMI and 
MMCP the former with p = 0), based on analyses of 1000 simulated datasets generated by 
non-linear mixed model (NLM ). Parameters: p (overall mean), Ug, <Jt, cr» (standard 
deviation between blocks, observations, treatments, neighbour treatments), <5 (neighbour 
treatment effect), p (correlation between treatment and neighbour effects), ADIC (DIC 
from MMCP model - DIC from MMI model).

Scen­ Param­ True NLM model MMI model MMCP model
ario eter Values Mean (SD, SE) Mean (SD, SE) Mean SD, SE)
A.l M .50 .500 (.029, .017) .500 (.029, .048) .499 .029, .079)

CTb .10 .021 (.042, .026) .106 (.032, .037) .071 .021, .037)

CTe .10 .082 (.015, .009) .097 (.016, .017) .094 .016, .016)
.10 .229 (.029, - a  ) .076 (.023, .030) .145 .016, .036)

Ô .30 .513 (.400, .161)
(.06) .065 (.014, .038) .166 .018, .049)

P 0 .367 .125, .280)
ADIC .466 2.481)

A.2 M .50 .502 (.131, .111) .506 (.131, .193) .502 .131, .266)

CTb .50 .399 (.163, .087) .546 (.122, .138) .411 .142, .162)

CTe .10 .087 (.050, .011) .100 (.018, .020) .101 .019, .020)

crt .50 .527 (.126, ) .350 (.082, .091) .463 .127, .137)
Ô .30 .296 (.239, .145)
O-ri (.30) .126 (.046, .130) .401 .143, .195)

P 0 .643 .254, .360)
ADIC .188 .559)

A.3 M .50 .502 (.131, .109) .508 (.131, .200) .506 ( .132, .301)
.50 .400 (.164, .092) .651 (.140, .156) .394 .171, .185)

O-e .10 .080 (.030, .012) .100 (.018, .020) .100 .018, .020)
0-t .50 .527 (.129, _a ) .246 (.061, .070) .448 .143, .146)
5 .50 .480 (.180, .112)

O-fi (.50) .106 (.020, .108) .517 .209, .236)

p 0 .804 .166, .283)
ADIC -.830 1.020)

Not estimated because treatments modelled by fixed effects
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Table 5.3: Mean parameter estimates followed in parenthesis by standard deviation (SD) 
among simulations and mean standard error/posterior standard deviation (SE) of non-linear 
mixed model (NLM) and two cross-classified and multiple membership models (MMI and 
MMCP the former with p = 0), based on analyses of 1000 simulated datasets generated by 
cross-classified and multiple membership models (MMCP, MMI). Parameters: p 
(overall mean), ai,, (Tg, at, an (standard deviation between blocks, observations, treatments, 
neighbour treatments), 6 (neighbour treatment effect), p  (correlation between treatment 
and neighbour effects), ADIC (DIC from MMCP model - DIC from MMI model).

Scen­ Param­ True NLM model MMI model MMCP model
ario eter Values Mean (SD, SE) Mean (SD, SE) Mean (SD, SE)
B.l P .50 .496 (.049, .024) .497 (.049, .055) .496 ( .049, .078)

at .10 .060 (.058, .026) .095 (.031, .038) .073 ( .022, .038)

ae .10 .086 (.023, .010) .102 (.018, .020) .097 ( .016, .017)

at .10 .221 (.032, -=  ) .093 (.029, .034) .148 ( .017, .036)
S .106 (.968, .326)

.10 .101 (.037, .053) .177 ( .021, .052)

P .00 0 .193 ( .155, .302)
ADIC -1.462 (1.766)

B.2 P .50 .496 (.052, .023) .497 (.052, .054) .495 ( .052, .079)

CTb .10 .053 (.059, .026) .102 (.033, .039) .074 ( .022, .038)

ae .10 .016 (.087, .010) .101 (.018, .019) .096 ( .016, .017)

at .10 .223 (.034, ) .087 (.027, .033) .147 ( .016, .036)
Ô .201 (.903, .282)

an .10 .093 (.032, .051) .176 ( .021, .052)

p .25 0 .255 ( .148, .296)
ADIC -1.077 (1.900)

B.3 P .50 .481 (.263, .135) .486 (.263, .227) .488 ( .263, .257)

ab .50 .475 (.240, .109) .584 (.155, .168) .538 ( .156, .192)

ae .10 .074 (.128, .013) .101 (.019, .020) .101 ( .019, .021)

at .50 .495 (.161, ) .410 (.106, .115) .436 ( .111, .137)
S .004 (.688, .332)

an .50 .262 (.162, .208) .375 ( .113, .214)

P .50 0 .193 ( .400, .470)
ADIC .360 ( .298)

Not estimated because treatments modelled by fixed effects
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Table 5.4: Parameter estimates and associated standard errors (SE) or posterior distribu­
tion standard deviation (SD) for non-linear mixed model (NLM) and three cross-classified 
and multiple membership models (CC, MMI, M M CP with increasing level of neighbour­
ing effects), from analysis of the ISAV dataset. Parameters: p (overall mean), cr̂ , Cg, at, 
an (standard deviation between blocks, observations, treatments, neighbour treatments), ô 
(neighbour treatment effect), p (correlation between treatment and neighbour effects) and 
/3’s

Param­ NLM model CC model MMI model MMCP model
eter Est. SE) Est. (SD) Est. (SD) Est. (SD)
M .497 .010) .497 (.033) .497 (.036) .498 (.062)

.001 ) .064 (.020) .058 (.021) .055 (.024)

ae .061 .007) .063 (.012) .060 (.011) .060 (.011)

at .071 ) .095 (.025) .091 (.026) .140 (.032)

Pi -.006 .042)

P 2 .117 .037)

P3 .012 .036)
A -.016 .038)
P5 -.136 .038)

Pe -.197 .035)

P7 -.128 .039)

Ps -.086 .035)

P9 -.037 .037)
PlO -.013 .040)
Pn .091 .036)

Pl2 .084 .036)

Pl3 .109 .039)
Pu .206 .037)

6 .280 .110)

^ 7 1 0 .049 (.025) .134 (.033)

P 0 0 .223 (.286)
DIC -92.603 -92.584 -92.281

“ No standard error available because estimate is on the boundary. 
* Not estimated because treatments modelled by fixed effects
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Conclusion

6.1 Introduction

The objective of this research project was to assess the performance of 

statistical procedures for the analysis of binary longitudinal data in vet­

erinary science, specifically, to describe and quantify their performance 

in term s of statistical properties such as unbiasedness, confidence interval 

coverage and efficiency. We identified procedures belonging to two model 

types for the assessment: marginal and random effects models. These 

models handle the within-subject dependence differently, and they offer 

different interpretations of regression estimates for binary longitudinal 

data. In order to achieve the objective, we set up a general structure for 

studies to examine the characteristics of these procedures. A statistical 

simulation approach was used as the tool for the assessment.

The objective of the first study was to give a detailed description of 

the choice between marginal and random effects models and procedures
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in a full binary repeated measures data setting (Chapter 2). The second 

study objective was to compare statistical procedures in a full binary re­

peated measures data setting with additional hierarchical data structure 

(Chapter 3). The objective of the third study was to assess the impact 

of a combination of different missing data patterns on selected statisti­

cal procedures described in the second study (Chapter 4). Finally, the 

objective of the last study was to develop two statistical approaches to 

model neighbour effects in an aquaculture clinical trials setting (Chapter 

5).

In this final chapter, we summarize the current knowledge in modelling 

of binary longitudinal data. Specifically, to provide some general guide­

lines for the choice between marginal and random effects models. We 

also highlight some innovation and limitations of this research project, 

and finally, identify areas of potential future research and some possible 

directions in this area.

6.2 State of knowledge in modelling binary longitu­

dinal data

The following discussion reflects the knowledge and experience of mod­

elling binary longitudinal data, based on the findings extracted from
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the simulation studies carried out in this project. Both marginal and 

random effects estimation procedures were assessed, and among the pro­

cedures included were: ordinary logistic regression (OLR), generalized 

estimating equations (GEE), Weighted Generalized Estimating Equa­

tions (WGEE), alternating logistic regression (ALR), procedures based 

on pseudo- or quasi-likelihood (REPL, MQL and PQL respectively), 

Markov chain Monte Carlo (MCMC) and maximum likelihood estima­

tion (ML). These procedures were examined in a fairly wide range of 

correlated binary data settings including a two-level balanced longitu­

dinal design, a three-level balanced setting of binary repeated measures 

data, and repeated measures data with missing values. Three types of 

missing values patterns were considered; missing completely at random 

(MCAR); missing at random (MAR); not missing at random (NMAR).

The following sections will discuss some issues for the choice between 

models and procedures. The issues will be converted into a set of prac­

tical guidelines, based, in part, on the literature but primarily on the 

findings of the thesis.
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6.2.1 Guidelines for the choice between marginal and random  

effects models

The random effects model was used to create the simulated datasets 

(Chapters: 2, 3, 4), additionally, a marginal model was used to cre­

ate some of the simulated datasets in the first study (Chapter 2). A 

between-subjects design was considered throughout the simulation stud­

ies, additionally in Chapter 2 the dichotomous treatm ent was modelled 

either within subjects, or by a tim e interaction. All random effects pro­

cedures under study here, excluding REPL procedure, make the concep­

tually unreasonable assumption th a t residual correlations are constant 

over time, the question for application of such random effects procedures 

is the sensitivity of the results to th a t assumption.

1: For the marginal model data with either the within-subject design 

or interaction design (Chapter 2), the random effects procedures dis­

played severe deficiencies in term s of both efficiency and Cl coverage, 

which increased with the size of the dataset and the true autocor­

relation. For the between-subject design with a small data size, all 

marginal estimation procedures experienced problems with Cl un­

dercoverage and biased estimates, whereas the random effects pro­

cedures showed a minor loss of efficiency.
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2; For the random effects model data with additional hierarchical struc­

ture (Chapter 3), the quasi-likelihood random effects procedures 

showed some attenuation of regression and variance parameters, the 

inclusion of an extra-binomial param eter in these methods did not 

clearly improve their performance. For autoregressive data, the ran­

dom effects procedures performed poorly, therefore marginal proce­

dures may seem more attractive.

3: For the random effects model data with additional hierarchical struc­

ture and missing values (Chapter 4), although the focus of this study 

was the impact on missing values, we concluded here with some find­

ings th a t could be of help in the choice between marginal and random 

effects models. For autoregressive data with drop-outs missing at 

random, marginal estimation procedures performed well, with up to 

moderate percentages of missing values. The likelihood-based pro­

cedures performed well only for the random intercept models data, 

whereas, the quasi-likelihood method resulted in substantially biased 

estimates (Chapter 4).

4: The size of the data is controlled by the length of the time series 

and the number of replicated subjects. Results dem onstrated th a t 

a small number of subjects with a short tim e series proved to  be a 

challenge for both marginal and random effects methods. However, 

random effects procedures may be acceptable for some small datasets
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tha t do not guarantee asymptotic properties for marginal methods 

(Chapter 2).

5: The relationship between random effects and marginal estimates has 

been discussed and described previously [8, 5]; see also the summary 

by Diggle et al. [2]. For logistic regression, it has resulted in an ap­

proximate conversion formula proposed by Zeger et al. [8]. A simula­

tion study (Chapter 3) carried out in this thesis showed th a t this for­

mula is the possible source of a small general bias. Therefore, based 

on the findings of the thesis, for a marginal (population-averaged) 

estim ates/ interpretation, the marginal procedures may seem more 

attractive, especially in a situation with decaying correlation over 

time. However, for a random effects (subject-specific) estim ate/in­

terpretation, the marginal estimation procedures are of little use 

(between-subjects variance is not known).

6.2.2 Guidelines for the choice among marginal procedures

Generally, the semi-parametric marginal estimation procedures have to 

their credit the robustness implicit in making no specific assumptions 

about random effects and correlation structure. However, the choice be­

tween the procedures included in the current study could be highlighted 

in the view of the results.
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1: For the classical two-level settings in repeated measures data (Chap­

ter 2), the autoregressive GEE remained highly efficient in all set­

tings. The estimates of GEE with either exchangeable or inde­

pendence correlation structures, ALR and MQL procedures agreed 

closely; however, in the within-subject design, their relative efficiency 

dropped down dramatically for the longer series with high correla­

tion. Additionally, the MQL procedure suffered from substantial 

undercoverage for longer series with moderate to high correlation.

2: For repeated measures data with additional hierarchical structure 

(Chapter 3), a version of GEE with either independence or exchange­

able correlation at the cluster-level was evaluated and showed to per­

form similarly to ALR procedure and generally well across the range 

of settings covered. All other attem pts to incorporate the additional 

hierarchical level into the GEE framework produced estimates with 

serious deficiencies for some of the fixed effects parameters. The 

MQL method showed some fluctuation in the standard error for the 

time coefficient, but generally performed on par with ALR method.

3: For repeated measures incomplete data with additional hierarchical 

structure (Chapter 4), both ALR and W GEE with either indepen­

dent or exchangeable correlation at the cluster-level, performed well 

at a low (31%) proportion of missing values at random regardless 

of the correlation structure in the data. Additionally, ALR showed
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some robustness against the combination of patterns of the missing 

values and for missing values not at random (except for the time 

coefficient) regardless of the correlation structure in the data.

6.2.3 Guidelines for the choice among random effects proce­

dures

Generally, one advantage of using random effects procedures is the abil­

ity to model and predict effects at the individual level. However, in 

situations with decaying correlation over time, the random effects pro­

cedures failed to reproduce the subject-specific value. For this situation 

we cannot point to any procedures among those covered in the study to 

obtain subject-specific estimates with acceptable performance. Here the 

focus is on and highlights some issues tha t might help with the choice 

between random effects procedures in view of the results.

1: For the classical two-level settings in repeated measures (Chapter 

2), all the random effects procedures (except REPL) performed well 

in the data generated from random intercept models. The REPL 

method performed mostly as a marginal estimation procedure, and 

showed no promise for estimation of the variance and autoregressive 

param eter in the autoregressive random effects data.
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2: For random intercept models data with additional hierarchical struc­

ture (Chapter 3), the likelihood-based random effects procedures per­

formed better than methods based on quasi- or pseudo-likelihood.

3: The REPL procedure dem onstrated poor performance for repeated 

measures with additional hierarchical structure data  performed poorly 

in such settings.

4: The additional hierarchical structure challenges some statistical pro­

cedures, for example, one procedure (ML) may involve an extensive 

and time consuming com putation for estimating the model parame­

ters.

5: For repeated measures incomplete data with additional hierarchical 

structure (Chapter 4), both likelihood-based approximations m eth­

ods (ML, MCMC) dem onstrated th a t the accuracy of the approxi­

mations were sufficient to, by and large, ensure the ignorability of 

missing completely at random and drop-out missing values at ran­

dom. The penalized quasi-likelihood procedures dem onstrated a bias 

in the estimates for drop-out missing values either a t random or not 

at random.
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6.3 Simulation as a tool for modelling repeated mea­

sures and hierarchical data

Statistical simulation showed itself to be an effective approach for study­

ing repeated measures and hierarchical data. By this approach we were 

able to explore the properties of different models/procedures and their 

ability to hold these properties under the study settings. Here we point 

to the additional hierarchical structure and the missing data  th a t com­

monly arise in longitudinal data.

1: By the simulation approach we dem onstrated the ability of the au­

toregressive random effects model to simulate binary repeated mea­

sures data  with additional hierarchical structure. A marginal model 

for the same data structure was complicated and not easy to set up.

2: Similarly, by simulation we illustrated the repeated measures random 

effects model to simulate different patterns of missing data. The 

finding from this thesis showed the ability of this model to study the 

impact of missing values, especially for combination of missing data 

patterns within the same dataset (Chapter 4).

3: Through a targeted simulation study to a specific dataset, we were 

able to explore the two proposed statistical approaches for modelling 

neighbour treatm ent effects in aquaculture clinical trials (Chapter 5).
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6.4 Study innovation

Statistical simulation was known to provide solid evidence for the sta­

tistical assessment of the properties of statistical models. In the current 

thesis, the simulation approach was used to highlight and assess some 

properties of marginal and random effects models for analysis of binary 

longitudinal data. The approach of matching the simulated data  struc­

ture to the data  at hand, as closely as possible can be helpful to provide 

much insight into which procedures provide the accurate answers. By 

simulation studies, we illustrated the use of autoregressive random effects 

model (Chapters: 2, 3, 4, 5) for simulating binary autocorrelated data  

in a wide range of settings including balanced and incomplete binary 

longitudinal data.

By simulation, two approaches based on random effects model, were 

explored and showed to be sufficient for modelling and estimating the 

neighbour treatm ents effects(Chapter 5). In this thesis we dem onstrated 

a simple simulation approach to study the impact of combination of dif­

ferent types of missing values within the same dataset. By this approach 

we were able to show some of the limitations of marginal and random ef­

fects estimation procedures for analysis of incomplete binary longitudinal 

data.

Among the specific findings of the current thesis are:
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1; Throughout the thesis we demonstrated th a t for autocorrelated data, 

the random effects procedures performed poorly and failed to repro­

duce the subject-specific value (Chapters: 2, 3, 4).

2: MQL method performed as a marginal procedure but tended to un­

derestimate the standard errors of fixed effects (Chapter 2).

3: In the classical two-level repeated measures data with within-subject 

design, the relative efficiency of ALR and MQL procedures decreased 

dramatically for the longer series with high correlation (Chapter 2).

4: The REPL procedure for repeated measures with additional hierar­

chical structure data demonstrated a bias for the estimates of both 

the regression and the variance param eters (Chapter 3).

5: The logistic conversion formula from subject-specific param eters may 

be a possible source of a small general bias (Chapter 3).

6: Two simulation studies showed tha t the extra-binomial param eter 

estimates in quasi- or pseudo-likelihood were associated with inflated 

standard errors (Chapters 3, 4)

7: In a 3-level data  structure, the GEE handling of correlation structure 

must be shifted from the subject to the cluster to achieve correct 

inference at the cluster level (Chapter 3).

8: The ALR procedure was shown to be robust against the combina­

tions of patterns of missing values, moderate proportion of missing 

at random and missing values not at random (except for the time co-
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efficient) regardless of the correlation structure in the data (Chapter

4).

9: The weighted GEE procedure with either independence or exchange­

able correlation at the cluster level was shown to be robust for a 

moderate proportion of missing values at random (Chapter 4).

10: One study demonstrated a potential bias in using penalized quasi­

likelihood procedures for the analysis of an incomplete dataset with 

drop-out missing values at random (Chapter 4).

11: A targeted simulation study dem onstrated a potential usage of the 

non-linear mixed model and the cross-classified and multiple mem­

bership models in modelling neighbour treatm ent effects (Chapter

5).

6.5 Study limitations

One limitation of the study was the absence of a real dataset, especially 

for the classical two-level settings in repeated measures. However, the 

simulation study settings (Chapter 2) covered a wide range of binary 

longitudinal data settings in veterinary science. These limitations might 

give the impression th a t the statistical procedures were not matched 

closely enough to data arising from veterinary science. However, this can 

also be seen as an advantage, because longitudinal binary data occur in
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many fields. Another lim itation may be th a t the simulation studies were 

mainly set up for experimental data, whereas in practice observational 

studies are common.

The limitation of the study to only include procedures implemented in 

broadly accessible statistical software, could be taken as a disadvantage 

as some statistical models/ methods were excluded, such as the pattern- 

mixture models for incomplete data [6]; the marginalized models [3]; the 

transition model [2]; the multivariate approach [7]; the approach pro­

posed by Barbosa and Goldstein [1] to model correlations between lowest 

level residuals, conditional upon the random effects, by an autoregressive 

function of time. However, the argument was made in Chapter 1 tha t 

the range of procedures included should reflect the choice an applied 

researcher faces when it comes to data analysis.

Another lim itation was the lack of a reference estimates for the au­

toregressive model. We tried to  fit the model by MCMC estimation but 

could not achieve acceptable trajectories of the resulting Markov chains. 

This had two consequences; First, we could not point to any acceptable 

random effects estimation procedure in the presence of autocorrelation. 

Second, we were unable to compute efficiencies (relative to reference es­

timates) for the random effects data (Chapters 2,3,4).
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6.6 Future directions for additional research

6.6.1 Confirmation/expansion of findings

Based on Finding 5 (Section 6.4) we suggest th a t future research should 

include ways to assess and improve the relationship between marginal 

and random effects models. One idea is through theoretical research 

to confirm and improve the logistic conversion formula. Another idea 

is through new statistical modelling, where the marginalized models [3] 

showed to be a promising approach to overcome some of the limitations 

experienced by marginal and random effects models.

Finding 4 indicates tha t further research may be needed to assess the 

accuracy and validity of the REPL procedure. Regarding Finding 6, we 

recommend more research to  confirm and justify the usefulness of the 

extra-binomial param eter as a diagnostic tool.

6.6.2 New ideas or suggestions

Based on Finding 2, we propose to add robust (“sandwich”) variance 

estimation to the MQL procedure (Chapter 2). Based on Finding 10, 

we suggest th a t theoretical research could be needed to explain the poor 

performance of the penalized quasi-likelihood procedures in data  with 

values missing at random. One idea could be based on the similarity
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of the PQL procedure to GEE and may indicate a potential weighting 

scheme for missingness at random. However, this step requires additional 

theoretical and applied research.

Research into methods to account for a combination of missing data 

patterns within the same dataset is proposed, because this situation is a 

challenge for many of the simple approaches. Some statistical approaches 

such as the available case method and imputations may be limited to  a 

strong MCAR missingness assumption. Other approaches (WGEE) are 

in their current implementation available to only the MAR missingness 

mechanism, whereas likelihood inference based on the available data may 

accommodate MCAR and MAR but not the NMAR missingness mech­

anism.

6.6.3 Research into limitations

We recommend the implementation of the autoregressive repeated mea­

sures random effects model through the Bayesian framework using MCMC 

methods. We, also recommend further exploration of the following mod­

els for binary longitudinal data: the marginalized model [3] and the 

transition model [2].

262



6.7 References 

References

[1] Barbosa, B., Goldstein, H., 2000. Discrete multilevel response mod­

els. Quality and Quantity 34, 323-330.

[2] Diggle, P. J., Heagerty, P., Liang, K. Y., Zeger, S. L., 2002. Analysis  

of Longitudinal Data, 2nd ed., Oxford University Press, Oxford.

[3] Griswold, M. E., Zeger, S. L., 2004. On marginalized multilevel 

models and their computation. Johns Hopkins University, Dept, of  

Bio statistics, Working Papers No. 99.

[4] Heagerty, P. J., Zeger, S. L., 2000. Marginalized multilevel models 

and likelihood inference. Statistical Science 15, 1-19.

[5] Neuhaus, J. M., 1992. Statistical methods for longitudinal and clus­

tered design with binary responses. Statistical Methods in Medical 

Research 1, 249-273.

[6] Roderick, J. A., Little., 1993. Pattern-m ixture models for multivari­

ate incomplete data. Journal of the Am erican Statistical Association  

88, 125-134.

263



[7] Yang, M., Goldstein, H., Heath, A., 2000. Multilevel models for 

repeated binary outcomes: attitudes and voting over the electoral 

cycle. Journal of the Royal Statistical Society, Series A  163, 49-62.

[8] Zeger, S. L., Liang, K. Y., Albert, P. S., 1988. Models for longitudi­

nal data - a generalized estimating equation approach. Biom etrics  

44, 1049-1060.

264



Appendix A

Additional tables of Chapter 2

265



Table A.l: Mean estimate of between-subjects (BS) treatment effect (true value — 0.35), followed in parenthesis by standard 
deviation among simulations, mean standard error, confidence interval coverage and relative efficiency, based on analyses of 
1000 simulated marginal (PA) datasets per setting (n =  number of subjects, t  =  number of time points, p  =  autocorrela­
tion). Analysis by procedure B of type A  is designated by where A  =  P A  (population-averaged) or S S  (subject-specific), 
and B =  IND (generalized estimating equations (GEE) with independence correlation), EXCH (GEE with exchangeable cor­
relation), REPL (marginal restricted pseudo-likelihood) MLa (maximum likelihood based on Gauss Hermite-quadrature in R), 
MLb (maximum likelihood based on adaptive quadrature in Stata).

Statistical Methods^

to
Oi
Oi

n t P /^IND
ÔPA
% E P L

ass
-^MLa

ass
/'M Lb

100 16 .7 .360 .23,.23) .95 .95 .360 .24,.24 .96 .87 .359 .22,.23) .96 1.00 .379 .24,.24) .95 .83 .381 .24,-24) .95 .83
.5 .360 .17,.18) .96 .98 .359 .18,.18 .96 .96 .359 .17,.18) .96 1.00 .370 .18,.18) .95 .91 .370 .18,-18) .95 .91
.2 .352 .13,.13) .95 1.00 .352 .13,.13 .95 1.00 .352 .13,.13) .96 1.00 .355 ,13,.28) .95 .98 .355 -13,.13) .95 .98

8 .7 .342 .28,.28) .96 .93 .341 .28,.28 .96 .92 .344 .27,.28) .96 1.00 .376 .31,.30) .94 .75 .378 .31,-30) .94 .76
.5 .348 .23,.23) .95 .96 .348 .23,.23 .95 .95 .307 .21,.23) .96 1.00 .366 .24,.24) .95 .87 .366 .24,-24) .95 .87
.2 .349 .17,.17) .95 .96 .349 .17,.17 .95 .95 .337 ■ 17,.17) .96 1.00 .355 .17,.18) .95 .96 .355 .17,-17) .95 .96

4 .7 .341 .35,.33) .94 .95 .341 .35,.33 .94 .94 .348 .34,.33) .95 1.00 .381 .41,.37) .93 .69 .380 -40,-36) .93 .71
.5 .343 .30,.29) .94 .95 .344 .30,.29 .94 .95 .340 .30,.29) .94 1.00 .366 .32,.31) .95 .85 .366 .32,-31) .95 .85
.2 .340 .24,.23) .95 .99 .340 .24,.23 .95 .99 .339 .24,.24) .95 1.00 .350 .25,-24) .95 .94 .350 .25,-24) .95 .94

20 16 .7 .351 .55,.51) .92 .94 .351 .58,.53 .92 .85 .351 .54,.52) .94 1.00 .351 .57,-49) .89 .87 .371 .58,-53) .92 .86
.5 .348 .41,.38) .92 .97 .347 .41,.38 .92 .95 .347 .40,.40) .95 1.00 .357 .42,-39) .92 .93 .357 .42,-39) .92 .93
.2 .347 .29,-27) .92 .99 .347 .29,.27 .92 .99 .347 -29,-29) .95 1.00 .349 .30,-30) .93 .98 .349 .30,-28) .93 .98

8 .7 .381 .66,-63) .93 .91 .381 .68,.64 .93 .88 .378 .63,-65) .96 1.00 .341 .72,-54) .82 .78 .408 .70,-60) .90 .82
.5 .373 .53,.50) .92 .94 .374 .53,.50 .93 .93 .372 .51,.52) .95 1.00 .387 -55,-52) .93 .87 .387 .55,-52) .93 .87
.2 .364 .40,.37) .92 .99 .365 .40,.37 .92 .98 .364 .39,.40) .95 1.00 .369 .40,-38) .93 .96 .369 .40,-38) .93 .96

4 .7 .406 .83,.76) .94 .98 .401 .81,.77 .95 .98 .412 .80,.80) .96 1.00 .369 .87,.97) .84 .88 .401 .86,-73) .90 .92
.5 .394 .71,.66) .93 .98 .395 .71,.66 .93 .97 .402 .71,.69) .95 1.00 .409 .76,-85) .94 .85 .409 .74,-70) .94 .91
.2 .379 .57,.52) .91 .99 .379 .57,.52 .91 .99 .381 .57,.55) .94 1.00 .388 .58,-55) .93 .95 .388 .58,-55) .93 .95

T Note

that SS estimates were converted to PA value (see text).



Table A.2: Mean estimate of within-subjects (W S) treatment effect (true value =  0.35), followed in parenthesis by standard 
deviation among simulations, mean standard error, confidence interval coverage and relative efficiency, based on analyses of 1 0 0 0  

simulated marginal (PA) datasets per setting (n =  number of subjects, t  =  number of time points, p  =  autocorrelation). See 
Table A .l for coding of statistical methods.

Statistical Methods

InD
0 5
- 4

n t P
âPA
% XCH

âPA
^REPL ^MLb

100 16 .7 .355 .18,.18) .95 .55 .356 .18,.18) .95 .55 .352 .14,.14) .95 1.00 .368 .19,.10) .66 .51 .369 .19,.10) .66 .51
.5 .359 .16,.16) .95 .79 .359 .16,.16) .95 .79 .358 .14,.14) .96 1.00 .368 .16,.10) .77 .74 .368 .16,.10) .77 .74
.2 .355 .13,.12) .94 .96 .355 .13,.12) .94 .96 .355 .12,.12) .95 1.00 .357 .13,.ll) .89 .94 .357 .13,.ll) .89 .94

8 .7 .349 .19,.18) .94 .63 .349 .19,.18) .94 .63 .350 .15,.15) .95 1.00 .371 .20,.12) .76 .56 .371 .20,.12) .76 .56
.5 .353 .19,.18) .94 .81 .353 .19,.18) .94 .81 .326 .17,.16) .95 1.00 .370 .20,.13) .80 .73 .370 .20,.13) .80 .73
.2 .355 .16,.16) .95 .97 .355 .16,.16) .95 .96 .339 .15,.16) .97 1.00 .361 .17,. 14) .93 .93 .361 .17,.14) .93 .93

4 .7 .352 .17,.17) .95 .86 .352 .17,.17) .95 .86 .358 .15,.15) .95 1.00 .379 .18,.15) .90 .74 .379 .18,.15) .90 .74
.5 .355 .20,.19) .95 .92 .355 .20,.19) .95 .92 .359 .19,.19) .95 1.00 .378 .21,.18) .90 .81 .378 .21,.18) .90 .81
.2 .355 .20,.21) .96 .98 .355 .20,.21) .96 .98 .356 .20,.21) .97 1.00 .365 .21,.20) .94 .92 .365 .21,.20) .94 .92

20 16 .7 .388 .43,.40) .93 .53 .387 .43,.40) .93 .53 .373 .32,.32) .96 1.00 .396 .44,.22) .68 .50 .401 .44,.22) .68 .50
.5 .383 .36,.35) .92 .81 .383 .36,.35) .92 .81 .382 .33,.33) .95 1.00 .392 .37,.23) .78 .78 .392 .37,.23) .78 .78
.2 .372 .28,.27) .94 .97 .372 .28,.27) .94 .98 .373 .28,.28) .96 1.00 .374 .28,.24) .91 .96 .374 .28,.24) .91 .96

8 .7 .358 .42,.40) .93 .62 .358 .42,.40) .92 .62 .356 .33,.33) .95 .99 .370 .44,.27) .78 .57 .375 .44,.27) .78 .57
.5 .355 .42,.40) .93 .81 .355 .42,.40) .93 .81 .347 .38,.38) .96 .99 .371 .44,.31) .83 .74 .371 .44,.31) .83 .74
.2 .350 .37,.35) .92 .97 .350 .37,.35) .92 .97 .351 .36,.36) .95 1.00 .356 .37,.32) .91 .94 .356 .37,.32) .91 .94

4 .7 .358 .38,.37) .93 .82 .357 .38,.37) .93 .82 .354 .34,.35) .95 1.00 .386 .44,.61) .91 .62 .360 .40,.35) .94 .77
.5 .362 .45,.43) .94 .94 .362 .45,.43) .94 .94 .365 .43,.43) .95 1.01 .379 .47,.41) .93 .84 .379 .47,.40) .93 .85
.2 .356 .47,.46) .94 .98 .356 •47,.46) .94 .98 .354 .46,.47) .95 1.01 .366 .48,.45) .94 .93 .366 .48,.45) .94 .93

T Note

that SS estimates were converted to PA value (see text).



Table A.3: Mean estimate of between-subjects (BS) treatment effect (true value — 0.35, marginal true value =  0.302), followed in 
parenthesis by standard deviation among simulations, mean standard error and confidence interval coverage, based on analyses of 
1000 simulated random effects (SS) datasets per setting {n =  number of subjects, t  =  number of time points, p =  autocorrelation). 
See Table A .l for coding of statistical methods.

Statistical Methods

NPCi00

sPA
UNO APA 

EXCH AP A  
REPL ^MLa ^MLb

100 16 1 .286 .20,.19 .94 .286 .20,.19 .93 .287 .20,.12 .75 .343 -24,-23 .94 .343 -24,-23) .94
.7 .287 .14,.13 .93 .287 .14,.13 .92 .287 .14,.12 .90 .298 -14,-14 .91 .299 .14,-14) .91
.5 .291 .12,. 12 .93 .291 .12,.12 .93 .291 .1 2 ,.ll .93 .295 .12,-12 .91 .296 .12,-12) .90
.2 .291 .11,.11 .91 .291 .11,.11 .91 .291 . l l , . l l .95 .292 .11,-11 .92 .292 .11,-11) .91

8 1 .300 .22,.21 .94 .300 .22,.21 .94 .297 .21,.17 .88 .361 -26,-25 .95 .361 -26,-25) .95
.7 .292 .18,.17 .95 .292 .18,.17 .95 .306 .17,.16 .93 .313 .19,-19 .94 .313 .19,-19) .94
.5 .293 .16,.16 .94 .293 .16,.16 .94 .305 .16,.15 .94 .304 .17,-17 .94 .303 .17,-16) .94
.2 .296 .15,.15 .94 .296 .15,.15 .94 .306 .15,.15 .95 .300 .15,-16 .93 .299 .15,-15) .93

4 1 .306 .26,.25 .95 .306 .26,.25 .95 .306 .26,.23 .92 .369 .31,-30 .95 .369 .31,-30) .95
.7 .302 .24,.23 .94 .302 .24,.23 .94 .303 .24,.22 .93 .335 -26,-26 .94 .335 -26,-26) .94
.5 .296 .23,.22 .94 .296 .23,.22 .94 .296 .23,.22 .94 .315 -24,-24 .94 .315 -24,-23) .94
.2 .299 .22,.21 .94 .299 .22,.21 .94 .300 .22,.21 .94 .307 -22,-23 .94 .307 -22,-22) -94

20 16 1 .303 .43,.42 .94 .305 .43,.42 .94 .302 .43,.28 .78 .358 .51,-49 .93 .357 -51,-49) -93
.7 .292 .30,.28 .92 .292 .30,.28 .92 .292 .30,-26 .91 .301 -31,-29 .92 .301 -31,-29) .92
.5 .284 .27,.25 .93 .284 .27,.25 .93 .284 .27,.25 .94 .289 -27,-27 .93 .288 .27,-26) .93
.2 .278 .25,.23 .91 .278 .25,.23 .92 .278 .25,.24 .94 .280 -25,-25 .93 .280 -25,-25) -93

8 1 .282 .48,.46 .94 .282 .48,.46 .94 .280 .48,.38 .89 .333 .57,-55 .93 .333 -57,-55) -93
.7 .291 .41,.37 .90 .291 .41,.37 .90 .290 .41,.36 .91 .308 .44,-40 .92 .308 -44,-40) .92
.5 .292 .36,.34 .93 .292 .36,.34 .93 .291 .36,.35 .94 .304 .38,-37 .94 .304 -38,-37) .94
.2 .291 33,.32 .93 .291 .33,.32 .93 .290 .33,34 .95 .296 .34,-35 .95 .296 .34,-34) .95

4 1 .290 .59,.55 .93 .289 .59,.55 .93 .290 .59,-53 .91 .345 -71,-68 .94 .345 -71,-67) -94
.7 .314 .51,.50 .93 .314 .51,.50 .93 .316 .52,-51 .95 .348 -57,-58 .96 .348 -57,-57) .96
.5 .320 .50,.48 .93 .320 .50,.48] .93 .320 .51,.50 .94 -346 .54,-54 .95 .346 .54,-54) .95
.2 .319 .47,.45 .93 .319 .47,.45 .93 .320 -47,-48 .96 -334 .49,-51 .96 .334 49,-51) -96



Table A.4: Mean estimate of between-subjects (BS) treatment effect (true value =  0.35, marginal true value — 0.302), followed in 
parenthesis by standard deviation among simulations, mean standard error and confidence interval coverage, based on analyses of 
1000 simulated random effects (SS) datasets per setting (n =  number of subjects, t  =  number of time points, p =  autocorrelation). 
See Table A .l for coding of statistical methods.

Statistical M ethods

100

toOlto

20

t P qPA
MND

àPA
^EXCH

qPA
^REPL ^MLb

16 1 .294 .10,.10 .94 .294 (.10,.10 .94 .290 (.10,.12 .99 .351 .12,.12 .95 .351 .12,.12 .95
.7 .293 .12,.12 .94 .293 (.12,.12 .94 .292 ( .1 2 ,.l l .93 .305 .13,.11 .88 .305 .1 3 ,.ll .88
.5 .295 .11,.11 .96 .295 ( . l l , . l l .96 .295 ( . l l , . l l .95 .301 .1 2 ,. l l .90 .301 .12,.12 .90
.2 .294 . l l , . l l .95 .294 (.11,.11 .95 .294 ( . l l , . l l .95 .296 .11,.11 .91 .296 . l l , . l l .91

8 1 .285 .14,.13 .92 .285 (.14,.13 .92 .288 (.14,.16 .97 .344 .16,.16 .93 .344 .16,.16 .93
.7 .284 .15,.15 .95 .284 (.15,.15 .95 .293 (.15,.15 .97 .305 .16,.15 .91 .305 .16,.15 .91
.5 .284 .15,.15 .94 .284 (.15,.15 .94 .294 (.15,.15 .95 .294 .15,.16 .91 .294 .15,.15 .91
.2 .290 .15,.15 .95 .290 (.15,.15 .95 .296 (.15,.15 .95 .293 .15,.19 .93 .293 .15,.14 .93

4 1 .291 .18,.18 .95 .291 (.18,.18 .95 .291 (.18,.21 .98 .354 .22,.22 .96 .354 ,22,.22 .96
.7 .287 .19,.20 .95 .287 (.19,.20 .95 .287 (.19,.21 .96 .319 .22,.21 .94 .319 .22,.21 .94
.5 .280 .20,.20 .94 .280 (.20,.20 .95 .280 (.20,.21 .95 .300 .21,.21 .94 .300 .21,.21 .94
.2 .284 .20,.20 .94 .284 (.20,.20 .94 .283 (.20,.20 .95 .292 .21,.21 .93 .292 .21,.21 .93

16 1 .282 .23,.21 .91 .282 (.23,.21 .91 .283 (.23,.27 .94 .336 .27,.26 .94 .336 .27,.26 .94
.7 .301 .27,.26 .93 .301 (.27,.26 .93 .301 (.27,.26 .94 .312 .28,.24 .91 .312 .28,.24 .91
.5 .297 .26,.25 .92 .297 (.26,.25 .92 .297 (.26,.25 .94 .303 .27,.24 .91 .303 .27,.24 .91
.2 .295 25,.23 .92 .295 (.25,.23 .92 .294 (.25,.24 .95 .298 .26,.24 .93 .298 .26,.24 .93

8 1 .288 .31,.28 .92 .288 (.31,.28 .93 .291 (.32,.36 .97 .344 .37,.36 .94 .344 .37,.36 .94
.7 .289 .35,.32 .92 .289 (.35,.32 .92 .288 (.35,.35 .95 .310 .37,.34 .92 .310 .37,.34 .92
.5 .304 •34,.32 .93 .304 (.34,.32 .93 .303 (.34,.34 .95 .317 .36,.33 .94 .317 .36,.33 .94
.2 .308 .33,.32 .93 .308 (.33,.32 .93 .307 (.33,.33 .95 .314 34,.33 .95 .314 .34,.33 .95

4 1 .318 .42,.40 .93 .318 (.42,.40 .93 .318 (.42,.47 .97 .390 .53,.52 .96 .390 .53,.52 .96
.7 .329 .47,.44 .94 .329 (.47,.44 .94 .326 (.47,.47 .96 .372 .54,.49 .95 .371 .54,.49 .95
.5 .319 .49,.45 .92 .319 (.49,.45 .92 .319 (.49,.47 .94 .347 .53,.48 .94 .347 .53,.48 .94
.2 .319 .48,.45 .93 .319 (.48,.45 .93 .318 (.48,.47 .95 .337 .50,.48 .95 .337 .50,.48 .93



Table A.5; Mean estimate of interaction effect in ( in te ra c tio n  m odel) (true value 
=  - 0.15), followed in parenthesis by standard deviation among simulations, mean 
standard error and confidence interval coverage, based on analyses of 1 0 0 0  simulated 
marginal (PA) datasets per setting (n =  number of subjects, t  =  number of time 
points, p  =  autocorrelation). Analysis by procedure B of type A  is designated by 
/3g, where A  =  PA  (population-averaged) or S S  (subject-specific), and B =  AR 
(GEE with autoregressive correlation), ALR (alternating logistic regression), ML 
(maximum likelihood), MCMC (Bayesian Markov chain Monte Carlo).

Statistical Methods^
n t P % ^MT, âss

P-MCMC
100 16 .7 -.152 .04,.04) -95 --151 -04,-04) -96 -.156 .04,.02) .67 -.156 .04,-02) .65

.5 -.151 .03,.03) -94 -.151 -04,-04) -94 -.155 .04,-02) .77 -.155 .04,-02) .75

.2 -.151 .03,.03) -95 -.151 -03,-03) -95 -.152 -03,-02) .90 -.153 .03,-02) .87

8 .7 -.154 .08,.08) -94 --154 -09,-08) -94 -.160 -09,-05) .73 -.159 .09,-05) .70
.5 -.154 .08,.08) -94 -.153 -09,-08) -94 -.160 -09,-06) .80 -.161 .09,-06) .78
.2 -.152 .07,-07) -94 -.152 -07,-07) -95 -.154 -08,-06) -90 -.162 .08,-06) -86

4 .7 -.162 .16,.16) -95 --160 -16,-16) -94 -.168 -17,-13) -86 -.176 -18,-13) -85
.5 -.159 .19,.18) -94 --157 -19,-18) -94 -.166 -20,-16) .88 -.166 -20,-15) -85
.2 -.158 .20,-19) -93 --157 -20,-19) -93 -.161 -20,-18) .91 -.179 -21,-17) -87

20 16 .7 -.161 .09,-09) -92 -.160 -10,-10) -92 -.163 -10,-05) .69 -.163 -10,-05) .65
.5 -.156 -08,-07) -93 -.155 -08,-08) -93 -.158 -08,-05) .79 -.159 .08,-05) -76
.2 -.152 -06,-06) -93 -.152 -06,-06) -93 -.153 -06,-05) .91 -.156 -06,-05) -87

8 .7 -.175 -18,-18) -95 -.174 -19,-19) -93 -.176 -20,-12) .77 -.180 -20,-12) -72
.5 -.169 -18,-18) -95 -.167 -19,-18) -94 -.173 .19,.14) .85 -.178 -20,-13) -76
.2 -.166 -16,-16) -94 -.165 .16,-16) -94 -.167 .16,-14) .92 -.174 -17,-14) .89

T Note that SS estimates were converted to PA value (see text).
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Table A.6: Mean estimate of treatment main effect in (interaction m odel) (true 
value =  0.35), followed in parenthesis by standard deviation among simulations, 
mean standard error and confidence interval coverage, based on analyses of 1000 
simulated marginal (PA) datasets per setting (n =  number of subjects, t  =  number 
of time points, p =  autocorrelation). See Table A.5 for coding of statistical methods.

Statistical Methods T

n t P âPA
^MT.

100 16 .7 .358 .37, .38) .96 .356 .40, .40) .95 .338 .42,.30) .83 .342 .42,.29) .79
.5 .356 .32, .32) .95 .356 .33, .33) .95 .360 .34,.26) .86 .358 .40,.25) .82
.2 .349 .25, .25) .95 .350 .25, .25) .96 .352 .26,.23) .92 .357 .26,.22) .89

8 .7 .352 .45, .45) .96 .353 .47, .47) .96 .349 .49,.38) .86 .352 .50,.37) .84
.5 .353 .42, .42) .95 .353 .43, .43) .95 .366 .45,.36) .88 .372 .46,.35) .85
.2 .348 .35, .36) .95 .348 .36, .36) .96 .353 36,.33) .93 .391 .37,.31) .90

4 .7 .364 .52, .51) .94 .360 .53, .52) .95 .374 .57,.47) .89 .399 .59,.47) .87
.5 .357 .55, .53) .94 .354 .56, .54) .94 .375 .59,.50) .90 .378 .58,.48) .87
.2 .355 .54, .53) .94 .354 .54, .53) .94 .364 .55,.50) .93 .412 .57,.49) .90

20 16 .7 .354 .91, .84) .94 .358 .96, .89) .93 .334 1.00,.63) .78 .332 1.00,.67) .80
.5 .338 .74, .70) .93 .339 .76, .73) .94 .342 .78,.57) .85 .337 .80,.56) .84
.2 .338 .57, .55) .93 .337 .57, .55) .93 .338 .58,.51) .92 .348 .60,.51) .89

8 .7 .433 1.08,1 .03) .95 .437 1.14,1.07) .90 .440 1.15,.80) .84 .434 1.21,.87) .81
.5 .413 .99, .94) .95 .414 1.02, .97) .94 .424 1.06,.81) .87 .443 1.09,.81) .85
.2 .409 .82, .79) .94 .409 .82, .79) .94 .413 .83,.75) .93 .434 .88,.76) .90

Note that SS estimates were converted to PA value (see text).
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Table A.7: Mean estimate of interaction effect in (interaction m odel) (true value 
— — 0.15, true marginal value =  — 0.129), followed in parenthesis by standard 
deviation among simulations, mean standard error and confidence interval coverage, 
based on analyses of 1000 simulated random effects (SS) datasets per setting (n =  
number of subjects, t  =  number of time points, p  =  autocorrelation). See Table A.5 
for coding of statistical methods.

Statistical Methods
t P âss/̂ MT, ^MCMC
16 1 -.126 .02,.02) .96 -.126 .02,.02) .96 -.151 .02,.03) .96 -.152 .02,.03) .95

.7 -.126 .03,.03) .95 -.125 .03,.03) .96 -.131 .03,.02) .80 —.131 .03,.02) .78

.5 -.125 .02,.03) .94 -.125 .03,.03) .94 -.127 .03,.02) .80 -.130 .03,.02) .79

.2 -.125 .02,.02) .94 -.125 .02,.02) .94 -.125 .02,.02) .79 -.131 .02,.02) .80

8 1 -.126 .06,.06) .93 -.126 .06,.06) .94 -.152 .07,.07) .94 -.153 .07,.07) .92
.7 -.128 .07,.07) .94 -.128 .07,.07) .94 -.137 .07,.07) .92 -.143 .07,.06) .89
.5 -.128 .07,.07) .94 -.128 .07,.07) .95 -.133 .07,.06) .92 -.144 .07,.06) .90
.2 -.127 .07,.06) .94 -.127 .07,.06) .94 -.128 .07,.06) .93 -.144 .07,.06) .91

4 1 -.125 .17,.17) .95 -.125 .17,.16) .95 -.152 .20,.20) .96 -.160 .20,.19) .92
.7 -.126 .18,.18) .95 -.126 .18,.18) .95 -.140 .20,.19) .94 -.159 .20,.18) .91
.5 -.130 .18,.18) .95 -.131 .18,.18) .95 -.139 .19,.19) .94 -.163 .20,.18) .91
.2 -.128 .18,.18) .95 -.129 .18,.18) .95 -.132 .19,.18) .94 -.162 .20,.18) .92

16 1 -.129 .05,.05) .92 -.129 .05,.05) .92 -.152 .06,.06) .95 -.154 .06,.06) .93
.7 -.126 .06,.06) .92 -.126 .06,.06) .92 -.130 .06,.05) .88 -.127 .06,.06) .92
.5 -.127 .06,.05) .92 -.126 .06,.05) .92 -.128 .06,.05) .90 -.126 .06,.06) .94
.2 -.126 .05,.05) .91 -.126 .05,.05) .91 -.127 .06,.05) .90 -.124 .06,.06) .96

8 1 -.131 .14,.13) .93 -.131 .14,.13) .93 -.154 .16,.16) .95 -.154 .17,.16) .91
.7 -.127 .15,.15) .94 -.126 .15,.15) .94 -.134 .16,.15) .93 -.123 .17,.15) .91
.5 -.130 .15,.15) .94 -.131 .15,.15) .93 -.135 .16,.15) .95 -.123 .16,.15) .92
.2 -.131 .15,.14) .92 -.131 .15,.14) .92 -.133 .15,.14) .94 -.120 .16,.15) .92
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Table A.8: Mean estimate of treatment main effect in (interaction m odel) (true 
value =  — 0.15, true marginal value =  — 0.129), followed in parenthesis by standard 
deviation among simulations, mean standard error and confidence interval coverage, 
based on analyses of 1000 simulated random effects (SS) datasets per setting (n — 
number of subjects, t  =  number of time points, p  =  autocorrelation). See Table A.5 
for coding of statistical methods.

Statistical Methods
n t P
100 16 1 .289 .25,.26) .96 .289 .25,.26) .96 .345 .30,.31) .96 .349 31,.30 .93

.7 .293 .26,.25) .94 .292 .26,.25) .94 .304 .27,.23) .92 .311 .27,.23 .89

.5 .292 .24,.23) .95 .292 .24,.23) .95 .297 .24,.22) .93 .322 .25,.21 .90

.2 .290 .22,.22) .95 .290 .22,.22) .95 .291 .22,.22) .95 .340 .23,.20 .91

8 1 .300 .34,.33) .94 .301 .34,.33) .94 .362 .41,.40) .95 .373 .42,.39 .92
.7 .305 .36,.34) .93 .305 .36,.34) .93 .327 .38,.35) .92 .360 .39,.33 .89
.5 .308 .34,.33) .94 .309 .34,.34) .94 .319 .35,.33) .94 .375 .36,.31 .90
.2 .302 .33,.32) .94 .302 .33,.32) .94 .305 .33,.32) .94 .383 .34,.30 .91

4 1 .307 .50,.48) .94 .307 .50,.48) .95 .372 .60,.59) .95 .398 .60,.56 .92
.7 .303 .51,.50) .95 .303 .51,.50) .95 .336 .57,.54) .95 .393 .57,.51 .91
.5 .309 .51,.50) .94 .310 .51,.50) .95 .331 .54,.52) .94 .398 .57,.50 .90
.2 .309 .51,.50) .95 .309 .51,.50) .96 .318 .52,.51) .96 .402 .56,.49 .91

20 16 1 .317 .60,.56) .92 .318 .60,.56) .93 .373 .71,.68) .94 .380 .74,.70 .92
.7 .289 .59,.54) .91 .288 .59,.54) .91 .297 .61,.52) .91 .265 .62,.56 .94
.5 .296 .55,.50) .92 .295 .54,.50) .92 .300 .55,.50) .93 .267 .56,.55 .95
.2 .295 .51,.46) .91 .295 .51,.46) .92 .297 .52,.49) .94 .264 .52,.54 .96

8 1 .300 .81,.73) .93 .297 .80,.73) .93 .350 .96,.90) .94 .337 1.02,.93 .92
.7 .301 .80,.76) .94 .300 .79,.76) .94 .317 .85,.78) .94 .262 .87,.80 .94
.5 .315 .78,.74) .94 .317 .78,.74) .94 .329 .81,.75) .94 .272 .83,.78 .94
.2 .317 .76,.71) .92 .317 .76,.71) .92 .323 .77,.73) .94 .260 .79,.77 .94
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Table B.l: Relative bias of estimates and standard errors to the true values (RBT) with a sig­
nificance indication, based on analyses of 1000 simulated datasets generated by random intercept 
model {p =  1) in five simulated scenarios of missing values: scc40 (missing values as in scc40 
dataset), MARL, MARK (low (31%) a n d  high (52%) proportion of missing values at random due 
to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing values not 
at random). Parameters: /?o (intercept), j3i (time coefficient), /?2 (subject level factor), /?3 (clus­
ter level factor), cr| (variance at subject level), a |  (variance at cluster level), (f> (extra-binomial 
dispersion). Estimation procedures: PQL (2nd order penalized quasi-likelihood), PQLx (2nd or­
der penalized quasi-likelihood with extra-binomial dispersion), ML (maximum likelihood), MCMC 
(Bayesian Markov chain Monte Carlo).

Scen­
ario

parm-
eter.

Statistical Methods
PQL PQLX ML MCMC

Est. SE Est. SE Est. SE Est. SE
scc40 Po -1 .3 -4.9* 2 .7I -5.9* 0.1 -4.3* 0.0 -3 .1

Pi -0 .7Î -8.7* 4 .0 I -16.7* 0.0 -4 .3 0.0 -4 .3
P2 - 4 .2I -0 .6 -4 .2 -0 .6 -0 .5 0.0 -0 .1 0.0
Pa -2 .0 -4.3* 1.5 -4.1 1.5 -4 .1 1.7 -1 .3

-10.81 --15.1* 7 .5I -23.2* 0.8l -2 .8 2 .5I -2 .0
(̂ 3 - I 5 .4 I -5.1* - 9 .2I -5.2* - 9 .2 I -3 .1 0.1 8.8*
P -17.81 37.5*

MARL Po -1 .0 -2 .4 4.6l -3 .4 1.1 -1 .1 3.2t -5.2*
Pi - 2 . i l -5.0* 13.81 -17.0* 0.8 0.1 2 .II -1 .7
P2 - 4 .5 I -2 .0 0.0 -1 .2 -1 .0 0.1 -0 .1 -1 .0
P3 - 3 .2 I -5.2* 1.4 -5.3* 0.2 -4.4* 2.2 -3 .4

-1 2 .il  --12.4* IO.7I -23.2* 0.7 2.4 3 .5I -0 .7
(̂ 3 -14.01 -6.4* —5 .5I -6.2* -7 .6 l -3.8* 2.0 11.0*
4> -19.01 25.6*

MARK Po - 3 .2 I -5.3* 13.61 -6.3* 1.3 -2 .1 1.6 -0 .4
Pi - 21.71 --15.7* 92.91 -45.6* 1.2 2.0 4 .4 I -0 .3
P2 - 7 .II -7.7* 11.01 -3.1 -1 .0 -0 .6 -0 .2 -0 .7
Pa —5 .5I -8.0* 12.91 -7.3* 0.5 -5.4* 1.3 -3 .5
(^2 -26.01 --26.7* 66.71 -49.3* 1.4t 3.6 5 .0 I 1.3

-19.01 -9.5* 15.81 -6.0* - 8.1I -3 .4 1.7 8.4*
4> -27.61 -26.7*

NMARL Po -2 .6 l -1 .6 2 .7I -2 .5 0.2 -0 .7 0.6 -1 .8
Pi -78.81 -3 .8 - 71.31 -14.7* - 77 .7I -1 .8 - 77.4 I -2 .4
P2 -4 .8 l -0 .4 -0 .6 0.4 —I.5I 0.7 - l . l l -0 .4
Pa - 3 .3 I -4.6* 1.1 -4.6* -0 .2 -4 .1 0.4 -3 .2
0^2 - I I . 2I --11.9* I I .2I -22.0* 0.2 1.3 I.9I 1.1
- I - I 3 .9 I -6.5* —6 .0 I -6.5* - 8 .4 I -4.8* 0.8 7.8*
<t> -19.81 16.4*

NMARH Po I I .5 I -6.3* 26.21 -5.7* I4 .7 I -3 .1 15.ll -1 .0
Pi - 317.4 I -5.7* -296.51 -22.8* -318.01 _-10.3* -318.11 -10.9*
P2 - 8 .7 I -4 .0 4 .4 I 1.4 - 6 .2 I -2 .2 —5.5I -2 .2
Pa - 7 .3 I -7.7* 6 .3 I -6.2* - 5 .3 I -6.5* - 4 .7I -4.3*
cr2 -23.01 --24.8* 53.ll -40.9* - I I . 3 I 0.8 - 8.7I 0.3
0-3 -19.81 -7.9* 5 .5I -3 .6 - I 6 .3 I -4.3* -7 .8 l 7.0*
<t> - 28.3I -47.3*

 ̂ significant bias in estim ate at P  <  0.05;  ̂ significant bias in estim ate at P  <  0.01;
significant bias in standard error at P  <  0.05
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T able  B.2: Relative bias of estimates and standard errors to the true values (RBT) with a 
significance indication, based on analyses of 1000 simulated datasets generated by autoregressive 
random effects model with {p =  0.9) in five simulated scenarios of missing values; scc40 (missing 
values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values 
at random due to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing 
values not at random). Parameters: /3q (intercept). Pi (time coefficient), /?2 (subject level factor), p3 
(cluster level factor), (variance at subject level), a f  (variance at cluster level), (p (extra-binomial 
dispersion), see Table B .l for coding of estimation procedures.

Statistical Methods
Scen­ Parm- PQL PQLx ML MCMC
ario eter Est. SE Est. SE Est. SE Est. SE
scc40 /3o - 6 . l t —1.3 -2 .7 t -2 .1 -5.3* -0 .9 -5.1* —1.3

/3i —6.5t -9.1* -1 .3 t -13.6* -4.7* -4.5* -4.7* -4.5*
P2 -6 .4 t -1 .4 -3 .4 t -0 .7 -3.9* 0.7 -3.7* 0.0
A —6.5t —3.8 -3 .5 t -3 .7 -4.2* -3 .4 -3.9* -2 .0
(Tg -25.2t -16.6* -10.3t -24.7* -16.8* -2 .9 —15.6* -2 .8
4 -20.7t -12.5* -15.4t

- le .o t
-12.2*
46.7*

—16.6* -9.7* -8.3* 2.4

MARL /3o —6.5t -5.7* -1 .7 -6.5* -5.2* -4 .1 -5.2* -3 .7
/3i —6.it -11.1* 7.7t -21.6* -3.8* -5.9* -3.2* -6.2*
P2 -6 .5 t -0 .4 -2 .5 t -0 .5 -4.1* 2.3 -3.8* 2.2
p3 -7 .4 t -5.4* -3 .4 t -5.4* -5.1* -4 .1 -5.0* -2 .6

-26.7t -20.2* -8.0* -29.8* -17.2* -4.7* -15.9* -4.6*
4 -20.Qt -5.7* -12.8*

-17.1*
-6.0*
40.7*

-15.9* -2 .7 -7.4* 10.8*

MARH /3o -8 .4 t -8.4* 4.0* -9.7* -5.7* -4.9* -5.4* -3 .5
Pi -15.Qt -25.8* 78.1* -50.7* 4.9* -9.0* 7.7* -10.6*
A -10.4t -4 .1 5.6* -3 .2 -6.1* 2.8 —5.5* 2.8
A -11.2t -6.0* 4.7* -6.2* -7.1* -3 .3 —6.6* -1 .6
(Tg —46.5t -35.0* 17.8* -57.7* -27.9* -8.7* -25.6* -10.0*
(̂ 3 -27.0t -9.3* 1.0

-22.3*
-9.2*
-8.6*

-20.4* -2 .5 -12.0* 10.1*

NMARL Po -11.5t -4.9* -7.8* -5.8* -10.7* -3 .5 -10.5* -2 .4
Pi -83.8t -12.2* -79.1* -20.3* -83.2* -9.8* -82.9* -10.3*
A -lO.Qt 0.0 -6.7* 0.5 -8.7* 3.0 -8.4* 2.0
A -10.8t -3 .5 -7.5* -3 .6 -9.7* -2 .9 -9.5* -1 .0
<̂2 -4o.gt -20.4* -26.3* -29.3* -35.0* -5 .0 -34.1* -5.0*
4
4>

-25.7t -6.6* -20.0*
—15.6*

-7.0*
49.5*

-23.8* —3.3 -15.9* 10.0*

NMARH A 5.5t -6.8* 18.1* -7.9* 6.8* -3 .5 7.2* —0.8
/3i -309.6t -6.9* -297.9* -20.9* -309.8* --10.6* -309.9* -10.9
/?2 - i2 .g t -2 .4 —1.6* -1.0 -11.5* 0.4 -11.0* 0.2
Pi - i2 .g t -3 .5 -1 .4 -3.1* -12.0* -2 .3 -11.6* 0.8
(̂ 2 -44.5t -26.8* 10.0* -48.0* -36.5* 3.7 -35.1* -5.4*
4
P

-28.Qt -6.4* -7.5*
-23.1*

-5.4*
-39.6*

-26.3* -1 .8 -18.8* 10.4*

significant bias in estimate at P  < 0.05; * significant bias in estimate at P  < 0.01; 
significant bias in standard error at P  < 0.05
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Table B.3: Relative bias of estimates and standard errors to the true values (RBT) with a 
significance indication, based on analyses of 1000 simulated datasets generated by autoregressive 
random effects model with (p =  0.5) in five simulated scenarios of missing values: scc40 (missing 
values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values 
at random due to drop-outs), MNARL, MNARH (low (31%) and high (52%) proportion of missing 
values not at random). Parameters: Po (intercept). Pi (time coefficient), P2 (subject level factor), Po 
(cluster level factor), uf (variance at subject level), uf (variance at cluster level), (p (extra-binomial 
dispersion), see Table B .l for coding of estimation procedures.

Statistical Methods
Scen­ Parm- PQL PQLx ML MCMC
ario eter Est. SE Est. SE Est. SE Est. SE
scc40 Po -16.7* -2 .5 -14.7* -3 .5 -16.8* -1 .0 -17.1* 0.0

Pi -16.7* 0.0 -14.7* -5.3* -16.7* 0.0 -16.7* 0.0
P2 -16.7* -2 .7 -14.9* -3 .5 —16.5* 0.9 -16.3* 0.0
P3 -16.8* -2 .4 -15.0* -2 .4 -16.7* -1 .6 -16.7* 1.6
(̂ 2 -68.4* -14.2* -61.9* -21.6* —65.5* -1 .6 -65.2* 0.0
<̂3 -36.4* -10.2* -33.5* -11.1* -36.2* -7.0* -29.6* 6.3*
</> -10.2* 140.0*

MARL Po -16.9* -5.5* -14.2* -6.4* -16.8* -3 .9 -16.9* -0 .9
Pi -18.5* -8.9* -10.8* -15.8* -17.3* -2 .7 -17.0* -3 .6
P2 -16.9* -4.9* -14.5* -4.8* —16.6* 0.9 —16.4* -1 .0
P3 -16.0* -7.2* -13.6* -7.5* -15.7* -6.3* -15.7* -2 .7
°2 -68.7* -16.1* -60.8* -26.0* -65.3* 1.2 —65.0* -0 .2

-35.4* -7.6* -31.6* -8.1* -35.0* -3 .4 -28.3* 10.4*
</> -10.9* 111.7*

MARH Po -18.4* -5.6* -12.6* -8.2* -17.5* -3 .4 -17.7* -0.1
Pi -18.5* -24.5* 20.9* -47.8* -8.9* -7.0* -10.1* -12.4*
P2 -22.0* -8.0* -14.9* -13.1* -20.6* -1 .9 -20.8* -3.1
P3 -21.2* -7.6* -13.9* -10.2* -19.8* -6.0* -19.9* -1.3
(T# -85.5* -28.1* -69.1* -57.3* -80.6* -7.0* -81.3* -19.8*
(Zg -43.3* -11.5* -32.2* -16.1* -41.3* -5.3* -35.5* 8.0*
</> -11.2* 9.9*

NMARL Po -22.7* -5.7* -21.2* -6.5* -22.8* -4.5* -23.0* -1 .7
Pi -85.2* -12.8* -84.1* -16.6* -85.0* -10.9* -85.0* -11.1*
P2 -22.4* -3 .6 -21.1* -4 .0 -22.5* -0 .1 -22.5* -0 .4
P3 -21.5* -7.1* -20.1* -7.3* -21.6* -6.3* -21.7* -2 .4
(Z2 -86.1* -13.3* -82.0* -24.6* -84.5* -1 .2 -84.7* -6.3*
<Z3 -43.8* -7.0* -41.8* -7.6* -44.0* -3 .2 -38.2* 10.8*
</> -7.3* 107.1*

NMARH Po -4.8* -6.7* 1.4* -9.9* -4.9* -4.3* -5.1* -1 .4
Pi -274.6* -12.5* -275.7* -18.2* -274.3* -13.4* -274.4* -13.6*
P2 -23.5* 0.4 -18.8* -2 .2 -23.2* 3.5 -23.3* 2.6
P3 -22.5* -7.2* -17.5* -8.2* -22.4* -6.1* -22.4* -2 .4
(Z2 -84.1* -14.8* -68.6* -46.9* -81.8* -1 .5 -83.2* -16.8*
<zl -44.6* -10.0* -37.2* -12.4* -44.3* -5.1* -38.7* 7.4*

-11.8* -21.4*

1 significant bias in estim ate a t P  <  0.05;  ̂ significant bias in estim ate a t P  <  0.01; 
significant bias in standard  error a t P  <  0.05
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Table B.4: Relative bias of estimates and standard errors to the marginal true values (RBT) with a significance indication, based on analyses of 
1000 simulated datasets generated by autoregressive random effects model with {p =  1, 0.9, 0.5) in five simulated scenarios of missing values: scc40 
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values at random due to drop-outs), MNARL, 
MNARH (low (31%) and high (52%) proportion of missing values not at random). Parameters: /3q (intercept), /?i (time coefficient), /?2 (subject level 
factor), /?3 (cluster level factor). Estimation procedures: OLR (ordinary logistic regression), ALR (alternating logistic regression).

to
3̂

Scen­
ario

Parm-
eter

correlation P = 1 P = 0.9 P = 0.5
procedure OLR ALR OLR ALR OLR ALR

Est. SE Est. SE Est. SB Est. SE Est. SE Est. SE

scc40 /3o —5.3* -50 .8* -4 .5* -4 .7 * -6 .4 * -48 .2* -5 .8 * - 1 .2 -5 .0 * -47 .0* -4 .5 * - 3 .7
/3i -8 .2 * 0.0 -4 .5* 12.5* -8 .2 * 0.0 -5 .4 * 0.0 -6 .4 * 6.3* -4 .5 * - 6 .3
A -5 .3 * -36 .3* -5 .3* -1 .9 -4 .5 * -34 .5* -4 .6 * - 2 .9 -4 .4 * -22 .6* -4 .4 * - 2 .2
/3s -3 .5 * -66 .7* -3 .4* - 3 .3 -4 .6 * -66 .7* -4 .8 * - 2 .9 -4 .6 * -64 .7* -4 .5 * - 2 .0

MARL A -1 1 .5 * -51 .0* -3 .8* -1 .8 -12 .8* -52 .7* -5 .7 * -5 .7 * -9 .7 * -50 .8* -4 .7 * -5 .1 *
/3i -7 7 .0 * - 6 .0 -3 .7* -3 .3 -70 .6* - 9 .7 -3 .8 * -8 .2 * -48 .1* -6 .9 * -4 .4 * -5 .7 *
A -8 .2 * -34 .4* —5.5* -2 .9 -6 .7 * -31 .2* -4 .5 * - 0 .3 -5 .9 * -21 .6* -4 .4 * - 3 .2
A -7 .2 * -65 .3* -4 .6* - 3 .7 -7 .8 * -65 .3* —5.6* -4 .2 * -5 .1 * -65 .1* -3 .5 * -6 .0 *

MARH /3o -5 .0 * -42 .4* -8 .8* - 1 .1 -4 .6 * -44 .2* -7 .5 * -5 .8 * -2 .2 * -42 .4* -1 .5 * - 3 .6
/3i -200 .7* -10 .0* 28.4* -4 .9 * -162.7* -13 .1* 42.2* -9 .6 * -83 .7* -10 .7* 52.6* -16.8*
A -1 6 .3 * -19 .3* -4 .7* -1 .6 -13 .3* 11.8* -2 .8 * 2.9 -9 .4 * -6 .8 * -2 .1 * - 1 .7
A -1 5 .0 * -54 .2* -3 .6* - 1 .8 -14 .1* -53 .9* -3 .9 * -0 .7 -8 .4 * -55 .2* -1 .2 * - 4 .0

NMARL A -1 1 .2 * -50 .8* -4 .1* -1 .9 -11 .2* -51 .7* -6 .4 * -4 .8 * -6 .5 * -49 .6* -4 .7 * -4 .7 *
/3i -127 .7* -5 .9 * -78.3* -6 .5 * -117.1* -11 .4* -82 .5* -6 .2 * -96 .0* -11 .7* -8 1 .6 * -6 .5 *
/32 -6 .7 * -34 .2* -5 .2* -4 .0 -5 .1 * -27 .6* -4 .0 * - 1 .5 -4 .5 * -12 .3* -4 .1 * - 3 .7
A -5 .7 * -65 .2* -4 .1* -4 .7 * -6 .2 * -64 .1* -5 .1 * - 3 .3 -3 .5 * -64 .1* -3 .1 * -6 .3 *

NMARH A) 7.5* -41 .2* -12.6* -5 .9 * -41.7* 11.8* -6 .9 * -1 5 .0 * -40 .0* 16.1* -5 .8 *
/3i -450 .2* -13 .7* -317.7* -38.3* -424 .6* -12 .7* -329 .7*  --27.9* -360.7* -13 .9* -320 .4* -15.9*
A -9 .1 * -20 .7* -3 .9* -8 .7 * -7 .8 * -14 .1* —3.5* -5 .8 * -6 .2 * - 3 .4 -4 .2 * - 1 .7
A -8 .5 * -53 .1* -3 .2* -9 .6 * -8 .3 * -51 .0* -4 .1 * -5 .7 * —5.5* 51.9* -3 .1 * -8 .0 *

significant bias in estimate at F  < 0.05;  ̂ significant bias in estimate at F  < 0.01; * significant bias in standard error at F  < 0.05



Table B.5: Relative bias of estimates and standard errors to the marginal true values (RBT) with a significance indication, based on analyses of 
1000 simulated datasets generated by autoregressive random effects model with (p =  1, 0.9, 0.5) in five simulated scenarios of missing values: scc40 
(missing values as in scc40 dataset), MARL, MARH (low (31%) and high (52%) proportion of missing values a t random due to drop-outs), MNARL, 
MNARH (low (31%) and high (52%) proportion of missing values not at random). Parameters: /Jo (intercept), (time coefficient), 02 (subject level 
factor), 03 (cluster level factor). Estimation procedures: WGEEci (weighted generalized estimating equations (WGEE) with independence correlation 
at cluster level), WGEEce (WGEE with exchangeable correlation at cluster level).

Scen­
ario

Parm-
eter

correlation P = 1 P = 0.9 P = 0.5
procedure WGEEci WGEEce WGEEci WGEEce WGEEci WGEEce

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

MARL 00 -3.4* 1.9 3.2* 1.3 -5.7* -2 .8 1.9 -2 .8 -4.5* -4.2* 9.4* -6.1*
01 -1.5* 2.3 1.4 3.3 -1.9* -3 .5 0.4 -2.0* -3.2* -1 .4 -1.9* 1.3
02 -4.9* 3.8 -4.3* 4.2 -3.6* 5.1* -3.1* 4.2 -4.0* 3.0 -3.1* 2.9
03 -4.2* -0 .6 -2.5 -3 .4 -5.2* -1 .6 -4.0* -3 .6 -3.3* -4.4* -3.5* -3 .9

MARH 00 10.0* -32.9* -10.8* -38.2* 3.6* -38.2* -7.9* -39.2* 4.0* -31.5* 3.5 -34.7*
01 -37.6* -39.1* -32.4* -34.6* -36.0* -36.6* -29.4* -33.4* -22.9* -32.3* -14.7* -29.3*
02 -5.0* -39.3* -8.7* -26.0* -2.8* -40.4* -7.6* -25.7* -2.1* -35.6* -3.7* -27.2*
03 -5.2* -35.5* -8.4* -43.1* -5.4* -34.6* -5 .6 -41.1* -1.6* -32.9* -1 .8 -41.2*

significant bias in estimate at P  < 0.05;  ̂ significant bias in estimate at P  < 0.01; * significant bias in standard error at P  < 0.05


