

**SEROPREVALENCE, PRODUCTION IMPACTS,
ECONOMICS AND RISK FACTORS OF
Mycobacterium avium subspecies *paratuberculosis*
IN CANADIAN DAIRY CATTLE**

A Thesis

Submitted to the Graduate Faculty

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in the Department of Health Management

Atlantic Veterinary College

University of Prince Edward Island

Dr. Ashwani Tiwari

Charlottetown, P. E. I.

September, 2005

© 2005. A. Tiwari

Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file *Votre référence*

ISBN: 978-0-494-22842-5

Our file *Notre référence*

ISBN: 978-0-494-22842-5

NOTICE:

The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

**
Canada

CONDITION OF USE

The author has agreed that the Library, University of Prince Edward Island, may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purposes may be granted by the professor or professors who supervised the thesis work recorded herein or, in their absence, by the Chairman of the Department or the Dean of the Faculty in which the thesis work was done. It is understood that due recognition will be given to the author of this thesis and to the University of Prince Edward Island in any use of the material in this thesis. Copying or publication or any other use of the thesis for financial gain without approval by the University of Prince Edward Island and the author's written permission is prohibited.

Requests for permission to copy or to make any other use of material in this thesis in whole or in part should be addressed to:

Chairman of the Department of Health Management

Atlantic Veterinary College

University of Prince Edward Island

Charlottetown, P. E. I.

Canada C1A 4P3

SIGNATURE

PAGE(S)

iii

REMOVED

SIGNATURE

PAGE(S)

14

REMOVED

Abstract

The purpose of this thesis was to determine the seroprevalence, production impacts, economics and risk factors associated with *Mycobacterium avium* subspecies *paratuberculosis* (MAP) in Canadian dairy herds. Seroprevalence of bovine leukemia virus (BLV) and bovine viral diarrhoea virus (BVDV), and production impacts of BLV, BVDV and *Neospora caninum* (NC) were also estimated. Within 373 randomly selected Canadian herds (from New Brunswick, Nova Scotia, Prince Edward Island, Quebec, Ontario, Manitoba, Saskatchewan and Alberta), a serum sample was obtained from approximately 30 randomly selected lactating animals for ELISA testing for exposure to BLV, MAP and NC, while 5 unvaccinated cattle over 6 months of age were selected for virus neutralization testing for exposure to BVDV.

Seroprevalence at the cow level was 30.3% and 3.1% for BLV and MAP, respectively. At the herd level, 76.6% had at least one seropositive cow for BLV, 31.2% had at least one animal with a titer $\geq 1:64$ for BVDV, and 18.9% had at least two seropositive cows for MAP. The Global Moran's I statistic for BLV and MAP indicated significant positive spatial autocorrelation of 0.16 and 0.15. The K-function for BVDV did not indicate any significant spatial autocorrelation. Using the spatial scan statistic, 4 and 1 significant clusters were detected for BLV and MAP-seroprevalence, respectively. No significant clusters were detected for BVD.

Regarding 305 day milk production (305 d milk), MAP-seropositivity was significantly associated with a lower 305 d milk of 212 kg in 4-plus lactation cows. NC-seropositivity was associated with a lower 305 d milk of 158 kg in primiparous cows compared to NC-seronegative primiparous cows. Cows in BVDV-seropositive herds (at least one unvaccinated animal with a titer $\geq 1:64$) had significantly lower 305 d milk (by 368 kg) compared to cows in BVDV-seronegative herds. Among 1st lactation animals, NC-seropositivity was associated with a significant reduction of 5.5 kg and 3.3 kg of 305 d fat and 305 d protein yields, respectively. However, there were no statistically significant effects of MAP-seropositivity on 305 d fat or 305 d protein yields. BVDV-seropositivity (at the herd level) was associated with reductions in 305 d fat and 305 d protein yields of 10.20 kg/cow and 9.46 kg/cow, respectively. Regarding somatic cell counts, NC- (4+ lactation) and MAP-seropositivity were associated with a 0.094 decrease and 0.098 increase in the lactational mean of the \log_{10} somatic cell count. The cows in BVDV-seropositive herds had a significant increase in the mean \log_{10} somatic cell count of 0.096. BLV-seropositivity was not associated with 305 d milk, 305 d fat, 305 d protein or mean \log_{10} somatic cell count. There was no significant effect modification of any of the outcomes examined from interaction between seropositivity for any of the pathogens.

For all reasons of culling, MAP-seropositive cows had a 1.38 (95% C.I., 1.05 – 1.81) times increased hazard of culling compared to MAP-seronegative cows. Seropositivity for the other pathogens was not associated with an increased risk of overall culling. Among cows that were culled because of either decreased reproductive efficiency or decreased milk production or mastitis, MAP-seropositive cows were associated with 1.55 (95% C.I., 1.12 – 2.15) times increased hazard compared to MAP-seronegative

cows. Among cows that were culled because of reproductive inefficiency, NC-seropositive cows had a 1.43 (95% C.I., 1.15 – 1.79) times greater hazard than NC-seronegative cows. Among cows that were culled because of decreased milk production, cows in BVDV-seropositive herds had a 1.86 (95% C.I., 1.28 – 2.70) times increased hazard compared to cows in BVDV-seronegative herds. BLV-seropositive cows did not have an increased risk of reason-specific culling as compared to BLV-seronegative cows. No significant interaction on culling among seropositivity for the pathogens was detected, but only a limited number of cows tested seropositive for multiple pathogens. Results from our research will help in better understanding the economic impacts of these pathogens and justification for their control.

For the MAP-seropositive Canadian dairy herds, the mean loss per 61-cow herd was CD \$2,992 (95% C.I., \$143 – \$9741) annually, or CD \$49 per cow per year. Herd additional culling losses were responsible for 46% (CD \$1374) of the total losses from MAP. Decreased milk production, mortality and reproductive losses accounted for 9% (CD \$254), 16% (CD \$488) and 29% (CD \$875) of the losses, respectively.

The following factors were significantly associated with the number of MAP-seropositive cows: “more than one cow in the maternity pen”, “group housing in pre-weaned calves in winter”, “purchasing open heifers”, “direct contact with beef cattle”, “BVDV-seropositive herds” and “not having proper BVD vaccination in calves (i.e. animals were not boosted 2-4 weeks after their first killed inoculation)” with count ratios of 1.69, 2.03, 2.34, 1.27, 1.41 and 1.77, respectively. The variable “herds having BVDV modified live vaccination in calves” was associated with 0.44 times fewer MAP-seropositive cows. There were significant regional differences in the number of positive cows per herd that were not explained by the management factors included in the final multivariable model. In the logistic portion of the final Zero Inflated Negative Binomial model, a one unit increase in the mean lactation number of cows tested in a herd was associated with an increase of 1.44 times the odds of being herds having at least one MAP-seropositive cow. Herds having “feeding total mixed ration” and “bedding that was not added frequently to calving areas (for each calving)” were associated with 3.1 and 2.7 times greater odds of being MAP-seropositive herds, respectively. The variables “NC-seropositivity” and “area of pasture (more than 200 acres)” were marginally significant ($P < 0.010$), while “BLV-seropositivity” was not significantly associated ($P > 0.10$) with MAP-seropositivity.

The results from this study will improve the knowledge of seroprevalence, production impacts, economical losses and risk factors of MAP in Canadian dairy industry and will assist management recommendations in national Johne’s control programs.

ACKNOWLEDGEMENTS

Just as no man is an island, it would have been impossible for me to complete my PhD without the help of such a supportive network. My appreciation must be extended foremost to my co-supervisors, Dr. John VanLeeuwen and Dr. Ian Dohoo. John provided the attentive and patient guidance necessary to navigate the turbulent waters of daily project issues and communication with the provincial representatives. Ian, through sharing his wealth of epidemiological knowledge, gave me the foresight to conduct a high level of research. Together, both were inspirational through their dedication to student based teaching, continual learning of new epidemiological methods and most of all, for their faith in my capabilities.

Extending from these two masts are the sails of the ship, the other members of my supervisory committee: Drs. Greg Keefe, Rob Tremblay, and Fred Markham. All provided invaluable comments stemming from their particular areas of expertise. In addition, Dr. Henryk Stryhn's extensive knowledge helped sound the statistical depths of this study.

This journey should not have been complete without the comradeship of other graduate students and the dedicated hard work of the technicians. I would like to express my thanks to my fellow graduate students: Shawn Mckenna, Carol McClure, Javier Sanchez, Pipat Arunvipas, Aboubakar Mounchili, Joao Paulo Haddad, Fortune Sithole, Carolyn Sanford, Neil LeBlanc, Jillian Westcott, Wendela Wapenaar, Vicky Benson,

Andre Drapeau, Fabienne Uehlinger, Elmabrok Masaound, Pascale Nerette and Richard Olde Riekerink, whose continuing, successful journeys have been very encouraging. I also gratefully acknowledge those whose efforts helped chart the waters: Ricky Milton, Theresa Andrews, and Lloyd Dalziel.

Sincere thanks must also be given to the following agencies for having the vision to fund this study: Dairy Farmers of Canada, Canadian Food Inspection Agency, and Production Limiting Diseases Committee, Atlantic Veterinary College, Dairy Farmers of PEI, PEI Agricultural Research Investment Fund, Dairy Farmers of Ontario, Manitoba Agriculture, Dairy Farmers of Manitoba, Saskatchewan Agriculture, Western Economic Partnership Agreement, and the Food Safety Division of Alberta Agriculture, Food and Rural Development. Without their financial support this study would have been dead in the water!

My endless gratitude goes to my family, Sunita, Abhay, Brahm Tiwari, Sudesh, Mool Raj Dogra and to Donya, for their boundless patience and sustained concern for ship maintenance. I would also like to thank my grandmother, Durga Devi, whose dearest wish it was that I should continue in the footsteps of her son, Dr. Sneh Dogra, and complete a PhD in Canada.

Finally, I dedicate this thesis to all those whose efforts and lives have affected me and helped, in their own way, to steer this course.

Dedicated To:

To my family and professors

TABLE OF CONTENTS

TABLE OF CONTENTS.....	x
LIST OF ABBREVIATIONS.....	xvii
LIST OF TABLES.....	xviii
LIST OF FIGURES.....	xx
LIST OF MAPS.....	xxi
CHAPTER 1: Introduction.....	1
1.1. Background to the initiation of this research project.....	1
1.2. Introduction to Johne's disease.....	2
1.2.1 The organism.....	2
1.2.2 Johne's disease and Crohn's disease.....	3
1.2.3 Prevalence.....	3
1.2.4 Impact on productivity.....	4
1.2.5 Economic impact.....	5
1.2.6 Risk factors.....	6
1.3. Thesis objectives.....	7
1.4. Outline of the thesis.....	8
1.5 References.....	11
CHAPTER 2: Johne's Disease in Canada Part I: Clinical symptoms, Pathophysiology, Diagnosis and Prevalence in Dairy Herds.....	15
2.1 Abstract.....	16
2.2 Introduction.....	17
2.3 Methods.....	19
2.4 Pathophysiology.....	20

2.5 Clinical effects and stages of paratuberculosis.....	22
2.5.1 Silent infection.....	22
2.5.2 Sub-clinical infection.....	22
2.5.3 Clinical infection.....	23
2.5.4 Advanced clinical infection.....	24
2.6 Diagnosis.....	25
2.6.1 Identification methods.....	26
2.6.1.1. Culture on tissue or feces (individual and pooled samples).....	27
2.6.1.2. Polymerase chain reaction on feces.....	29
2.6.2 Immunological methods.....	29
2.6.2.1. Enzyme linked immunosorbant assays on serum and milk.....	29
2.6.2.2. Agar gel immunodiffusion.....	32
2.7 Prevalence.....	33
2.8 References.....	36

CHAPTER 3: Seroprevalence and spatial distribution of bovine leukemia virus, bovine viral diarrhea virus and *Mycobacterium avium* subspecies *paratuberculosis* in Canadian dairy cattle.....50

3.1 Abstract.....	50
3.2 Introduction.....	52
3.3 Materials and methods.....	56
3.3.1 Serum sample collection.....	56
3.3.2 Laboratory analysis.....	57
3.3.3 Statistical analysis.....	59
3.3.4 Spatial analysis.....	60
3.4 Results.....	62
3.4.1 Descriptive statistics.....	62
3.4.2 Spatial analyses	64
3.5 Discussion.....	66
3.6 Acknowledgements.....	71
3.7 References.....	72

CHAPTER 4: Effects of bovine leukemia virus, bovine viral diarrhea virus, <i>Mycobacterium avium</i> subspecies <i>paratuberculosis</i>, and <i>Neospora caninum</i> on milk, fat and protein production and somatic cell count	83
4.1 Abstract.....	83
4.2 Introduction.....	86
4.3 Materials and methods.....	92
4.3.1 Serum sample collection.....	92
4.3.2 Laboratory analysis.....	95
4.3.3 Data collection.....	97
4.3.4 Statistical analysis.....	97
4.4 Results.....	100
4.4.1 Descriptive statistics.....	100
4.4.2 Analytical statistics.....	100
4.4.3 305 d milk volume modeling.....	101
4.4.4 305 d fat volume modeling.....	101
4.4.5 305 d protein volume modeling.....	102
4.4.6 Mean log ₁₀ somatic cell count modeling.....	102
4.4.7 Fit of the final models, and proportion of Variance.....	103
4.5 Discussion.....	104
4.5.1 Multilevel models.....	104
4.5.2 BLV.....	107
4.5.3 BVDV.....	108
4.5.4 MAP.....	109
4.5.5 NC.....	111
4.6 Conclusions.....	115
4.7 Acknowledgement.....	116
4.8 Reference List.....	117

CHAPTER 5: Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, *Mycobacterium avium* subspecies *paratuberculosis*, and *Neospora caninum* on culling in dairy cattle in four Canadian provinces128

5.1 Abstract.....	128
5.2. Introduction.....	130
5.3. Materials and Methods.....	134
5.3.1. Serum sample collection.....	134
5.3.2. Laboratory analyses.....	135
5.3.3. Culling data collection and statistical analyses.....	137
5.4. Results.....	139
5.4.1. Overall risk of culling.....	139
5.4.2. Reason-specific risk of culling.....	141
5.5. Discussion.....	143
5.6 Conclusions.....	151
5.7 Acknowledgements.....	152
5.8 References.....	153

CHAPTER 6: Direct production losses from subclinical *Mycobacterium avium* subspecies *paratuberculosis* infection in Canadian dairy herds164

6.1 Abstract.....	164
6.2 Introduction.....	166
6.3. Materials and methods.....	168
6.3.1. Partial-budget model.....	168
6.3.2 Input parameters.....	168
6.3.2.1. Farm characteristics and prices.....	168
6.3.2.2. Seroprevalence of MAP.....	169
6.3.2.3. Impact of MAP on milk yield.....	170
6.3.2.4. Mortality.....	172
6.3.2.5. Reproductive losses.....	173
6.3.2.6. Stochastic simulation of the partial budget model.....	173

6.4 Results.....	175
6.5 Discussion.....	177
6.6 Conclusions.....	182
6.7 Reference list.....	183
CHAPTER 7: Management risk factors associated with <i>Mycobacterium avium</i> subspecies <i>paratuberculosis</i> infection in Canadian dairy herds	193
7.1 Abstract.....	193
7.2 Introduction.....	195
7.3. Materials and methods.....	199
7.3.1 Serum sample collection.....	199
7.3.2 Laboratory analysis.....	201
7.3.3 Cow-level predictor data collection.....	203
7.3.4 Herd-level predictor data collection.....	203
7.3.5 Statistical analysis.....	205
7.3.6 Outcome variable.....	206
7.4. Results.....	207
7.4.1 Descriptive statistics.....	207
7.4.2 Management factor analyses.....	208
7.5. Discussion.....	211
7.6 Conclusions.....	219
7.7 Acknowledgements.....	220
7.8 Reference List.....	221
CHAPTER 8: General discussion and conclusion.....	233
8.1 Prevalence of MAP-infection.....	233
8.1.1. Spatial distribution.....	234
8.1.2 Co-infection prevalence.....	236
8.2 Production impacts of MAP-infection.....	236

8.3 Culling impacts of MAP-infection.....	240
8.4 Economic losses with MAP-infection.....	242
8.5 Risk Factors of MAP infection.....	244
8.6 Examination of co-infections.....	247
8.7 Future research.....	249
8.8 Reference List.....	254
APPENDIX-A: Johne's Disease in Canada, Part II: Disease Impacts, Risk Factors and Control Programs for Dairy Producers.....	257
APPENDIX-B: Risk factor questionnaire.....	305
APPENDIX-C: Publication status of thesis chapters.....	328

LIST OF ABBREVIATIONS

- BLV – Bovine leukemia virus
- BVDV - Bovine viral diarrhoea virus
- MAP – *Mycobacterium avium* subspecies *paratuberculosis*
- NC - *Neospora caninum*
- LAM – Lipoarabinomanan
- ELISA – Enzyme Linked ImmunoSorbent Assay
- WTO – World Trade Organisation
- NAHMS – National Animal Health Monitoring System
- LISA – Local indicators of spatial autocorrelation
- PLDC – Production limiting disease committee
- ZINB – Zero inflated negative binomial model
- PEI – Prince Edward Island
- NS - Nova Scotia
- NB - New Brunswick
- QUE - Quebec
- ONT - Ontario
- MAN - Manitoba
- SASK - Saskatchewan
- ALTA – Alberta
- Se – Sensitivity
- Sp - Specificity

LIST OF TABLES

Table 2.1 Characteristics of currently available diagnostic tests for Johne's disease in Canada.....	44
Table 2.2 Seroprevalence estimates of bovine paratuberculosis in Canadian dairy herds (from East to West).....	45
Table 2.3 Seroprevalence estimates of bovine paratuberculosis in dairy herds from major dairy producing countries and states outside of Canada (from high prevalence to low prevalence at the animal level).....	47
Table 3.1 Year of sample collection, test and laboratory utilized for BLV, BVDV and MAP testing in a seroprevalence survey of eight Canadian provinces.....	75
Table 3.2 Demographies and productivity of 10768 sample cows from 398 Canadian dairy herds versus national industry averages.....	76
Table 3.3 Animal and herd level seroprevalence results for Bovine Leukemia Virus for 10768 dairy cows from 398 Canadian farms.....	77
Table 3.4 Animal and herd level seroprevalence results for Bovine Viral Diarrhea Virus for 323 Canadian dairy farms.....	78
Table 3.5 Animal and herd level seroprevalence results for <i>Mycobacterium avium</i> subspecies <i>paratuberculosis</i> for 10578 dairy cows from 373 Canadian farms....	79
Table 4.1 Comparison of the sampled 9,834 cows and 342 herds with national industry averages.....	124
Table 4.2 The final model of associations between 305 d milk volume (kilograms) and BLV-, BVDV-, MAP- and NC-seropositivity (by lactation number) from multilevel linear regression analyses of 22665 lactations in 9,834 dairy cows in 342 Canadian dairy herds.....	125
Table 4.3. The final models of associations between 305 d fat (kilograms), 305 d protein (kilograms) and mean Log ₁₀ Somatic Cell Count outcomes, and BLV-, BVDV-, MAP- and NC-seropositivity and lactation number from multilevel linear regression analyses of 22,665 lactations in 9,834 dairy cows in 342 Canadian dairy herds.....	126

Table 4.4 Summary of the percent of the variance explained at each level of the hierarchy for 305 d milk, 305 d fat, 305 d protein and Mean Log10 SCC (no fixed effects in model) in 342 dairy herds with 9,834 cows from 8 provinces in Canada.....	127
Table 5.1 Hazard ratios associated with BLV-, BVDV-, MAP- and NC-seropositivity, test lactation number and province from Cox- proportional hazard models for all reasons of culling in dairy cows in Canadian herds.....	158
Table 5.2 Hazard ratios associated with BLV-, BVDV- and NC-seropositivity, test lactation number and province from Cox- proportional hazard models for specific reasons and shared frailty at herd level in dairy cows in Canadian herds.....	159
Table 6.1 Distribution, parameters and source of data for the model variables.....	186
Table 6.2 Economic losses with MAP for the entire Canadian dairy industry per 100 cow herd.....	190
Table 6.3 Economic losses in a MAP-seropositive, 61 cow dairy herd in Canada.....	191
Table 6.4 The possible range of annual losses due to JD, with a 10% change in seroprevalence, or losses associated with milk production, mortality, additional culling and reproductive losses.....	192
Table 7.1 Comparison of the sample of 8129 cows in 257 Canadian dairy herds to national industry averages.....	227
Table 7.2 Variables associated ($P \leq 0.15$) with the count of MAP-seropositive cows in each herd, after adjusting for confounding variables (province, herd size and mean lactation herd) in 257 Canadian dairy herds.....	228
Table 7.3 Final model of management and other risk factors associated with the number of MAP-seropositive dairy cows in a herd and odds of herds having no MAP-seropositive as compared to having at least one MAP-seropositive cow	230
Table 7.4 Final logistic model of management and other risk factors associated with the herds having at least 2 MAP-seropositive dairy cows as compared herds having zero or one MAP-seropositive cow.....	231

LIST OF FIGURES

Fig. 5.1. Kaplan-Meier survival curves for BLV-seropositive and seronegative cows in 3531 dairy cows in 134 Canadian herds.....	160
Fig. 5.2. Kaplan-Meier survival curves for MAP-seropositive and seronegative cows in 3531 dairy cows in 134 Canadian herds.....	161
Fig. 5.3. Kaplan-Meier survival curves for NC-seropositive and seronegative cows in 3531 dairy cows in 134 Canadian herds.....	162
Fig. 5.4. Kaplan-Meier survival curves for 3531 cows in BVDV-seropositive and seronegative Canadian dairy herds (n=134)	163
Fig. 6.1. Distribution of annual economic losses from MAP for the entire Canadian dairy industry, per 100 cow herd.....	188
Fig. 6.2. Distribution of annual economic losses in a MAP-seropositive, 61 cow dairy herd in Canada.....	189
Fig. 7.1. The observed and predicted probabilities of each count of MAP-seropositive cows.....	232

LIST OF MAPS

Map 3.1: The percentage of dairy farms with higher “within herd BLV-seroprevalence” than the Canadian median, by region, based on 398 tested farms. Embedded Graph: Moran’s I statistic results of spatial autocorrelation of seroprevalence for BLV in Canadian dairy farms. Embedded circles: show the position and size of significant clusters.....	80
Map 3.2: The percentage of dairy farms containing unvaccinated cattle ≥ 6 mo of age with BVDV titers $\geq 1:64$, by region, based on 323 tested Canadian farms.....	81
Map 3.3: The percentage of farms in each region that had at least 1 seropositive animal, by region, based on 373 tested farms. Embedded Graph: Moran’s I statistic results of spatial autocorrelation of seroprevalence for MAP in Canadian dairy farms. Embedded circle: shows the position and size of the significant cluster.....	82

1

CHAPTER 1: Introduction

2

3 **1.1 Background to the initiation of this research project**

4 In 2003, the dairy industry in Canada generated CD \$4.5 billion in total farm cash
5 receipts. Sales from dairy processors was CD \$11 billion (http://www.cdc-ccl.gc.ca/cdc/main_e.asp?catid=87). Infectious diseases negatively affect the net return to
6 farmers through lower production levels (e.g. milk production), low reproductive
7 efficiency, higher additional culling, loss of market opportunities (eg. international and/or
8 local sales), and reduced demand for its products when there is relationship (real or
9 perceived) with human diseases (eg. Crohn's disease). In 1997, all of these concerns led
10 to the formation of the Production Limiting Disease Committee (PLDC) in Canada. The
11 main objectives of this committee were to determine the prevalence, impacts, risk factors
12 and economic losses associated with infectious diseases in Canadian cattle, beginning
13 with four diseases: bovine leukosis, bovine viral diarrhea (BVD), Johne' disease (JD),
14 and neosporosis.

16

17 These four diseases were selected because they were thought to cost the industry
18 substantially, and were insidious in nature, in that they could exist and spread within
19 farms through the presence of persistently infected animals that could only be detected
20 through laboratory tests. Furthermore, there has been very little research on how the
21 agents that cause these diseases might interact if co-infecting the same farms and the
22 same animals. This thesis will concentrate on JD, although the effects of co-infections
23 will also be addressed.

1 **1.2. Introduction to Johne's disease**

2

3 1.2.1 The Organism

4

5 Paratuberculosis, or Johne's disease (JD), is a chronic infectious enteritis found in
6 domestic and wild ruminants. It is caused by *Mycobacterium avium* subspecies
7 *paratuberculosis* (MAP), a slow growing, Gram-positive and acid-fast bacterium
8 (Barrow and Feltham (ed), 1993; Krieg, 1986). Johne and Frothingham (1895) first
9 described this fecal-orally transmitted disease as an atypical case of bovine tuberculosis
10 in 1895, although the causative agent was not isolated until 1912 by Twort and Ingram
11 (1912). MAP belongs to the *M. avium* complex in the genus *Mycobacterium*, which is
12 the only genus in the family *Mycobacteriaceae*. The original name given to the causative
13 bacteria was *Mycobacterium enteritidis chronicae pseudotuberculosis bovis* Johne. The
14 name was then shortened to *Mycobacterium paratuberculosis*, but further studies found
15 that it was closely related to *Mycobacterium avium*. The two bacteria have a DNA
16 homology of more than 99% (van der Giessen et al., 1992), and therefore are currently
17 regarded as one species and given the names *Mycobacterium avium* subspecies
18 *paratuberculosis* and *Mycobacterium avium* subspecies *avium*. MAP can be
19 differentiated phenotypically from *M. avium* subspecies *avium* by its dependence on
20 mycobactin (Thorel et al., 1990) and genotypically by the presence of multiple copies of
21 an insertion element, IS900 (Collins and de Lisle, 1986; Green et al., 1989).

22

1 The natural hosts for MAP are wild and domesticated ruminants, including: dairy and
2 beef cattle, sheep, goats, red deer, cervids, and camelids (Kennedy and Benedictus,
3 2001). MAP is considered more tolerant than most other pathogenic bacteria to
4 temperature, pH variations and exposure to ultraviolet light (Larsen et al., 1956; Sung and
5 Collins, 1998). The bacteria are obligate pathogens of animals and cannot multiply
6 outside the animal host (Thorel et al., 1990).

7

8 1.2.2 Johne's disease and Crohn's disease

9

10 In the last few years, there has been increased concern about paratuberculosis in the dairy
11 industry because of mounting evidence about the possible role of MAP in Crohn's
12 disease in humans (Baksh et al., 2004; Romero et al., 2005). The scientific committee on
13 Animal Health and Animal Welfare (from European Union member states) concluded
14 that the currently available evidence is insufficient to confirm or to disprove that MAP is
15 a causative agent of at least some cases of Crohn's disease in humans. However, the
16 perception that these two diseases are linked may deter consumer confidence in milk
17 products.

18

19 1.2.3 Prevalence

20

21 Consumer confidence is also a function of the likelihood of the bacteria being found in
22 consumer products, which is related to the prevalence of infection in the dairy industry.

1 While the bacteria is found world-wide, there is a wide variation in the herd-level
2 prevalence of MAP between countries, from 7% in Austria (Gasteiner et al., 1999) to
3 54% in the Netherlands (Musken et al., 2000). These differences may represent real
4 differences in the distribution of the organism, due to variations in the distribution of risk
5 factors for transmission, or due to differences in testing protocols and the challenges of
6 detecting infected cattle with the variety of tests available.

7

8 In Canada, seroprevalence at the animal level in dairy cattle ranged from 1.3% (Prince
9 Edward Island) (Vanleeuwen et al., 2001) to 7.0% (Alberta) (Sorensen et al., 2003). At
10 the herd level, 9.8% (Ontario) (Vanleeuwen et al., 2000) to 40.0% (Alberta) (Sorensen et
11 al., 2003) of herds had at least 2 seropositive cows. These animal level estimates are
12 substantially lower than the 16.1% of tissue culture-positive cows found in culled dairy
13 cows in the Maritime provinces in 2001 (McKenna et al., 2004), or the 15.2% of culled
14 dairy cows testing seropositive in Ontario in 1986 (McNab et al., 1988). The differences
15 between these estimates may be partly due to different sampling strategies, location of
16 animals, and tests utilized, and therefore it is not clear whether there are provincial
17 differences in MAP prevalence. It is clear that there are a substantial number of cows and
18 herds with MAP-infection in Canada.

19

20 1.2.4 Impact on Productivity

21

22 Another reason for the recently increasing concern over paratuberculosis in the dairy
23 industry is the impact that infection has on productivity and culling. Clinical effects of

1 paratuberculosis are well documented (Benedictus et al., 1987). These include thickened
2 intestinal mucosa resulting in malabsorptive diarrhea, and severe negative energy balance
3 leading to emaciation and reduced milk production. Paratuberculosis has no known cure
4 (Chiodini et al., 1984).

5

6 Losses associated with subclinical infection with MAP have been more difficult to
7 quantify because of the difficulty of accurately detecting subclinically infected cattle with
8 the currently available diagnostic tests (McKenna et al., 2005; Sockett et al., 1992).
9 Dairy cattle subclinically infected with MAP (either seropositive or fecal culture positive
10 for MAP) have been associated with premature culling (Benedictus et al., 1987; Goodle
11 et al., 2000), decreased milk production (Abbas et al., 1983; Benedictus et al., 1987),
12 increased mortality (Kreeger, 1991), and decreased reproductive efficiency (Abbas et al.,
13 1983; Johnson-Ifearulundu et al., 2000). However, there is still a need to do further
14 research to better quantify these impacts in order to determine better estimates of the
15 economic costs of paratuberculosis to dairy farms with the infection, and to the industry
16 as a whole. Accurate estimates will better demonstrate the need for vigilant control
17 efforts.

18

19 1.2.5 Economic Impact

20

21 Based on an Atlantic Canadian MAP-seroprevalence survey and literature estimates of
22 costs associated with MAP infection, average annual direct farm costs were \$2472 per
23 infected herd using an average herd size of 50 cows and an average within-herd MAP-

1 seroprevalence of 7% (Chi et al., 2002). While the costs due to clinical paratuberculosis
2 (US\$ 401 to 959 per infected cow per year) (Ott et al., 1999) are significant and can be
3 observed by the farmer, the costs due to subclinical paratuberculosis (US\$123 to 696 per
4 infected cows per year) (Ott et al., 1999) can be more devastating due to the effects
5 occurring on a larger proportion of cattle.

6

7 1.2.6 Risk factors

8

9 Most often, MAP-infections arise through fecal-oral transmission, due to the ingestion of
10 feed or water contaminated with infected fecal matter. Level of exposure (dose of
11 organisms) and age at the time of exposure are major factors in determining whether an
12 animal eventually becomes infected and how severe that infection becomes (Chiodini,
13 1996; Hagan, 1938). There have been a number of studies investigating important risk
14 factors for the transmission of MAP between and within farms (Collins et al., 1994;
15 Jakobsen et al., 2000; Obasanjo et al., 1997; Wells and Wagner, 2000). Putative risk
16 factors include: breed, herd size, region, purchasing cattle, nutrition, calving and calf
17 management. However, it is unclear how relevant these risk factors are to the Canadian
18 dairy industry.

1 **1.3. Thesis objectives**

2

3 The specific objectives of this thesis were:

- 4 a) to determine the seroprevalence and spatial distribution of MAP at the animal,
5 herd, regional and national level in Canada;
- 6 b) to determine associations between MAP-seroprevalence and risk of culling, 305
7 day milk, fat and protein production, and somatic cell count in Canadian dairy
8 cattle (associations with reproductive parameters were examined by a co-
9 researcher);
- 10 c) to determine the economic losses associated with MAP-seroprevalence in
11 Canadian dairy cattle, based on national estimates of MAP-seroprevalence and
12 impacts associated with MAP-seroprevalence (objectives a and b); and
- 13 d) to determine the management factors associated with MAP-seroprevalence in
14 Canadian dairy herds.

15 The results from this thesis will help in refining the Canadian national Johne's
16 control program and help Canadian farmers in making decisions related to
17 paratuberculosis.

18

1 **1.4. Outline of the thesis**

2

3 In order to address the listed objectives, the thesis has been divided into the following
4 chapters. Chapter 2 critically examines the literature regarding the stages of infection, the
5 advantages and limitations of commonly used diagnostic tests, and the regional
6 distribution of MAP prevalence in dairy cattle, focusing on literature relevant to
7 Canadian dairy practitioners and producers. This paper is the first of a two-part literature
8 review of Johnes Disease (JD) in dairy cattle in Canada. The second paper examines the
9 impacts, economics, risk factors and control of MAP. The two papers were a
10 collaborative effort, and therefore Dr. Shawn McKenna was listed as the first author of
11 this second paper (included in the appendices).

12

13 Chapter 3 presents the seroprevalence and spatial distribution of MAP in 373 herds from
14 8 of 10 provinces in Canada. A choropleth map was created to demonstrate the
15 proportion of herds within each region of each province having at least two MAP-
16 seropositive cows. In order to identify whether there was significant spatial clustering of
17 seroprevalence estimates, the Moran's I statistic was calculated. Local indicators of
18 spatial autocorrelation were determined to identify specific locations of spatial clustering.

19

20 In Chapter 4, for the sampled herds on monthly milk recording (the majority of tested
21 farms), associations between MAP-seropositivity and 305 day milk, 305 day protein, 305
22 day fat and somatic cell count were determined. These analyses adjusted for herd
23 clustering and controlled for the effects of seropositivity for three other pathogens (BLV,

1 BVDV and NC) because most participating farms were tested for exposure to all 4
2 pathogens.

3

4 In Chapter 5, a subset of the sampled dairy cattle was followed from their test dates to
5 their culling dates in four provinces where laboratory testing was conducted early in the
6 project. Using these data, associations between MAP-seropositivity and risk of culling
7 were determined, while controlling for the possible effects of seropositivity for the other
8 three pathogens and adjusting for herd clustering.

9

10 In Chapter 6, the economic losses associated with subclinical MAP-infection were
11 estimated, incorporating estimated productivity, mortality, reproductive and culling
12 impacts from earlier chapters of this thesis, along with estimates from the scientific
13 literature. The losses were calculated by utilizing a stochastic partial budget model.

14

15 Chapter 7 determines the management factors associated with the number of MAP-
16 seropositive cows in the study herds where a management questionnaire was completed.
17 Those factors associated with a herd having at least two MAP-seropositive cows were
18 also determined. The second analysis was intended to determine risk factors associated
19 with a farm having JD, regardless of the prevalence, utilizing a conservative definition of
20 an infected farm to minimize misclassification of infected and non-infected farms.

21

- 1 Chapter 8, a general discussion chapter, summarizes the main findings of the thesis in the
- 2 context of the scientific literature, discusses how the results can be applied to the
- 3 Canadian dairy industry, and identifies potential future areas of research.

1 1.5 Reference List

- 2 Abbas, B., Riemann, H.P., Hird, D.W., 1983a. Diagnosis of Johne's disease
3 (paratuberculosis) in Northern California cattle and a note of its economic
4 significance. Calif. Vet. 37, 20-24.

5 Baksh, F.K., Finkelstein, S.D., Ariyanayagam-Baksh, S.M., Swalsky, P.A., Klein,
6 E.C., Dunn, J.C., 2004. Absence of *Mycobacterium avium* subsp.
7 *paratuberculosis* in the microdissected granulomas of Crohn's disease. Mod.
8 Pathol. 17, 1289-1294.

9 Barrow and Feltham (ed), 1993. Cowan and Steel's manual for the identification of
10 medical bacteria. In: Cambridge University Press., pp. 92-93.

11 Benedictus, G., Dijkhuizen, A.A., Stelwagen, J., 1987. Economic losses due to
12 paratuberculosis in dairy cattle. Vet Rec 121, 142-146.

13 Bergey's manual of systemic bacteriology. Vol 2.1986. Williams and Wilkins. Baltimore.

14 Chi, J., VanLeeuwen, J., Weersink, A., Keefe, G., 2002. Direct production losses
15 and treatment costs from bovine viral diarrhoea virus, bovine leukosis virus,
16 *Mycobacterium avium* subspecies *paratuberculosis*, and *Neospora caninum*. Prev.
17 Vet. Med. 55, 137.

18 Chiodini, R.J., 1996. Immunology: resistance to paratuberculosis. Vet Clin. North Am.
19 Food Anim Pract. 12, 313-343.

20 Chiodini, R.J., Van Kruiningen, H.J., Merkal, R.S., 1984. Ruminant paratuberculosis
21 (Johne's disease): the current status and future prospects. Cornell Vet 74, 218-262.

22 Collins, D.M., de Lisle, G.W., 1986. Restriction endonuclease analysis of various strains
23 of *Mycobacterium paratuberculosis* isolated from cattle. Am. J Vet Res. 47,
24 2226-2229.

25 Collins, M.T., Sockett, D.C., Goodger, W.J., Conrad, T.A., Thomas, C.B., Carr, D.J.,
26 1994. Herd prevalence and geographic distribution of, and risk factors for, bovine
27 paratuberculosis in Wisconsin. J Am. Vet Med. Assoc. 204, 636-641.

28 Gasteiner, J., Wenzl, H., Fuchs, K., Jark, U., Baumgartner, W., 1999. Serological
29 cross-sectional study of paratuberculosis in cattle in Austria. Zentralbl.
30 Veterinarmed. B 46, 457-466.

31 Goodle, G.M., Hirst, H., Garry, F., Dinsmore, P., 2000. Comparison of cull rates and
32 milk production of clinically normal dairy cows grouped by ELISA
33 *Mycobacterium avium paratuberculosis* serum antibody results. Proc. Intern Symp
34 Vet Epidemiol Econ, Breckenridge, CO, USA.

- 1 Green, E.P., Tizard, M.L., Moss, M.T., et al, 1989. Sequence and characteristics of
2 IS900, an insertion element identified in a human Crohn's disease isolate of
3 *Mycobacterium paratuberculosis*. Nucleic Acids Res. 17, 9063-9073.
- 4 Hagan, W.A., 1938. Age as a factor in susceptibility to Johne's disease. Cornell Vet. 28,
5 34-40.
- 6 Jakobsen, M.B., Alban, L., Nielsen, S.S., 2000. A cross-sectional study of
7 paratuberculosis in 1155 Danish dairy cows. Prev. Vet Med. 46, 15-27.
- 8 Johne, H.A., Frothingham, L., 1895. Ein eigenthümlicher Fall von Tuberkulose beim
9 Rind. Deutsch Zeitschr Teirmed Vergl Path. 21, 438-454.
- 10 Johnson-Ifearulundu, Y.J., Kaneene, J.B., Sprecher, D.J., Gardiner, J.C., Lloyd, J.W.,
11 2000. The effect of subclinical *Mycobacterium paratuberculosis* infection on days
12 open in Michigan, USA, dairy cows. Prev. Vet Med. 46, 171-181.
- 13 Kennedy, D.J., Benedictus, G., 2001. Control of *Mycobacterium avium* subsp.
14 *paratuberculosis* infection in agricultural species. Rev. Sci. Tech. 20, 151-179.
- 15 Kreeger, J.M., 1991. Ruminant paratuberculosis--a century of progress and frustration. J
16 Vet Diagn. Invest 3, 373-382.
- 17 Larsen, A.B., Merkal, R.S., Vardaman, T.H., 1956. Survival time of *Mycobacterium*
18 *paratuberculosis*. Am. J Vet Res. 17, 549-551.
- 19 McKenna, S.L., Keefe, G.P., Barkema, H.W., McClure, J., Vanleeuwen, J.A., Hanna,
20 P., Sockett, D.C., 2004. Cow-level prevalence of paratuberculosis in culled dairy
21 cows in Atlantic Canada and Maine. J. Dairy. Sci. 87, 3770-3777.
- 22 McKenna, S.L.B., Keefe, G.P., Barkema, H.W., Sockett, D.C., 2005. Evaluation of
23 three ELISAs for *Mycobacterium avium* subsp. *paratuberculosis* using tissue and
24 fecal culture as comparison standards. Accepted in Vet. Microbiology.
- 25 McNab, W.B., Meek, A.H., Martin, S.W., 1988. An epidemiological study of
26 paratuberculosis in Ontario dairy cattle: study design and lipoarabinomannan
27 antigen ELISA test results. Acta Vet Scand. Suppl 84, 206-208.
- 28 Muskens, J., Barkema, H.W., Russchen, E., Van Maanen, K., Schukken, Y.H.,
29 Bakker, D., 2000. Prevalence and regional distribution of paratuberculosis in
30 dairy herds in The Netherlands. Vet Microbiol. 77, 253-261.
- 31 Obasanjo, I.O., Grohn, Y.T., Mohammed, H.O., 1997. Farm factors associated with the
32 presence of *Mycobacterium paratuberculosis* infection in dairy herds on the New
33 York State Paratuberculosis Control Program. Prev. Vet Med. 32, 243-251.
- 34 Ott, S.L., Wells, S.J., Wagner, B.A., 1999. Herd-level economic losses associated with
35 Johne's disease on US dairy operations. Prev. Vet. Med. 40, 179-192.

- 1 Romero, C., Hamdi, A., Valentine, J.F., Naser, S.A., 2005. Evaluation of Surgical
2 Tissue From Patients with Crohn's Disease for the Presence of *Mycobacterium*
3 *avium* Subspecies *paratuberculosis* DNA by In Situ Hybridization and Nested
4 Polymerase Chain Reaction. Inflamm. Bowel. Dis. 11, 116-125.
- 5 Sockett, D.C., Conrad, T.A., Thomas, C.B., Collins, M.T., 1992. Evaluation of four
6 serological tests for bovine paratuberculosis. J Clin. Microbiol. 30, 1134-1139.
- 7 Sorensen, O., Rawluk, S., Wu, J., Manninen, K., Ollis, G., 2003. *Mycobacterium*
8 *paratuberculosis* in dairy herds in Alberta. Can Vet J 44, 221-226.
- 9 Sung, N., Collins, M.T., 1998. Thermal tolerance of *Mycobacterium paratuberculosis*.
10 Appl. Environ. Microbiol. 64, 999-1005.
- 11 Thorel, M.F., Krichevsky, M., Levy-Frebault, V.V., 1990a. Numerical taxonomy of
12 mycobactin-dependent mycobacteria, emended description of *Mycobacterium*
13 *avium*, and description of *Mycobacterium avium* subsp. *avium* subsp. *nov.*,
14 *Mycobacterium avium* subsp. *paratuberculosis* subsp. *nov.*, and *Mycobacterium*
15 *avium* subsp. *silvaticum* subsp. *nov.* Int. J Syst. Bacteriol. 40, 254-260.
- 16 Twort, F.C., Ingram, G.L.Y., 1912. A method of isolating and cultivating the
17 *Mycobacterium enteritidis chronicae pseudotuberculosis bovis* Johne and some
18 experiments on the preparation of a diagnostic vaccine for pseudotuberculous
19 enteritis of bovines. Vet J 68, 353-365.
- 20 van der Giessen, J.W., Eger, A., Haagsma, J., Haring, R.M., Gaastra, W., van der
21 Zeijst, B.A., 1992. Amplification of 16S rRNA sequences to detect
22 *Mycobacterium paratuberculosis*. J Med. Microbiol. 36, 255-263.
- 23 Vanleeuwen, J.A., Tremblay, R., Keefe, G.P., Wichtel, J., 2000. Seroprevalence of
24 Production Limiting Diseases in Ontario and Maritime Dairy Cattle. Proceedings
25 of the Canadian Veterinary Medical Association Annual Convention, St. John,
26 Canada.
- 27 Vanleeuwen, J.A., Keefe, G.P., Tremblay, R., Power, C., Wichtel, J.J., 2001.
28 Seroprevalence of infection with *Mycobacterium avium* subspecies
29 *paratuberculosis*, bovine leukemia virus, and bovine viral diarrhea virus in
30 maritime Canada dairy cattle. Can Vet J 42, 193-198.

1 Wells, S.J., Wagner, B.A., 2000. Herd-level risk factors for infection with
2 *Mycobacterium paratuberculosis* in US dairies and association between
3 familiarity of the herd manager with the disease or prior diagnosis of the disease
4 in that herd and use of preventive measures. J Am. Vet Med. Assoc. 216, 1450-
5 1457.
6

1 **CHAPTER 2: Johne's disease in Canada Part I: Clinical symptoms,**
2 **pathophysiology, diagnosis and prevalence in dairy herds**

3 **(Review Article)**

4

5 Ashwani Tiwari, John A. VanLeeuwen, Shawn L.B. McKenna,

6 Greg P. Keefe, Herman W. Barkema

7

8 Department of Health Management

9 Atlantic Veterinary College, Prince Edward Island, 550 University Avenue,

10 Charlottetown, Prince Edward Island, C1A 4P3 Canada

11

1 **2.1 Abstract**

2 Recent international developments in the area of infectious disease control and
3 nontariff trade barriers, along with possible zoonotic concerns, have provoked a revival
4 of interest in Johne's disease in Canada and elsewhere. The bacterium causing Johne's
5 disease, *Mycobacterium avium* subspecies *paratuberculosis*, is distributed worldwide and
6 causes chronic granulomatous enteritis, also known as paratuberculosis, in domestic and
7 exotic ruminants, including cattle. The subclinical form of this disease results in
8 progressive weight loss, reduced milk production, lower slaughter value, and premature
9 culling, with possible impacts on fertility and udder health. Eventually, infection can lead
10 to the clinical form that manifests as chronic diarrhea, emaciation, debilitation, and
11 eventual death. Currently, available tests to detect infected animals produce many false-
12 negative results and some false-positives, particularly in subclinically infected animals,
13 thus making their interpretation and utilization challenging in control programs.

14 The objective of this two-part review is to critically review the literature about
15 Johne's disease in dairy cattle for bovine practitioners in Canada. Part I covers the
16 clinical stages, pathophysiology, diagnosis, and prevalence of infection in Canada, while
17 Part II discusses impacts, risk factors, and control programs relevant to Canadian dairy
18 farms. By reviewing the scientific literature about Johne's disease, control of the disease
19 could be pursued through informed implementation of rational biosecurity efforts and the
20 strategic use of testing and culling.

1 **2.2 Introduction**

2 Paratuberculosis, or Johne's disease (JD), is a chronic infectious enteritis of domestic
3 and wild ruminants. It is caused by *Mycobacterium avium* subspecies *paratuberculosis*
4 (MAP), a hardy, slow growing, gram-positive, and acid-fast bacterium (1,2). Despite
5 having 99% DNA homology (3), MAP can be differentiated phenotypically from *M.*
6 *avium* subspecies *avium* and *M. avium* subspecies *sylvaticum* by its dependence on
7 mycobactin (4), and genotypically by the presence of multiple copies of an insertion
8 element, IS900 (5,6).

9 Restriction endonuclease analysis has identified variations in 2 principal types of
10 MAP, a cattle type (C) and a sheep type (S), that were first identified by Collins et al. (7).
11 Other variations have also been identified, although their importance is unclear (8-10).
12 Paratuberculosis in cattle, goats, deer, and camelids is caused mainly by type C, whereas
13 sheep are usually infected by type S. However, the cattle type can infect sheep and vice
14 versa (11).

15 The natural hosts for MAP are wild and domesticated ruminants, including dairy
16 and beef cattle, sheep, goats, red deer, cervids, and camelids (12). However, other
17 nonruminant wildlife, such as the fox, weasel, crow, rat, wood mouse, rabbit, hare and
18 badger, have also been found to harbor MAP (13). Calves inoculated with MAP from a
19 free living rabbit developed typical histological lesions consistent with Johne's disease,
20 demonstrating that wild animals other than ruminants may also contribute to the spread of
21 the disease (14). However, calves are more likely to be exposed to manure from other
22 mature cattle than from wildlife; therefore, the major sources of infection on most farms
23 are likely to be infected domesticated ruminants that shed the bacterium in their feces.

1 The route of infection is usually through ingestion, be it contaminated water, milk, or
2 feed. The purpose of this first part of a two-part series of review articles is to critically
3 review the literature on clinical stages of JD, pathophysiology, diagnostic and screening
4 tests, and prevalence estimates of infection in Canada to enable bovine practitioners in
5 Canada to successfully implement control strategies.

1 **2.3 Methods**

2 Due to substantial differences in management and production between dairy and beef
3 cattle, and the extensive literature on JD for both dairy and beef cattle, this paper focuses
4 on dairy cattle. Also, because the intended audience for this paper is primarily
5 veterinarians in Canada, we have emphasized Canadian references as much as possible.

6 Medline (accessed via PubMed from 1950 to present), The Commonwealth
7 Animal Bureaux (CAB) (accessed via VetCD and ParasiteCD from 1973 to present), and
8 Agricola, produced by the National Agricultural Library of the U.S. Department of
9 Agriculture (accessed via the National Agricultural Library from 1970 to present) were
10 used to collect the majority of the references that were used in this paper. The keywords
11 used in the search of the databases were Johne's disease or paratuberculosis, Canada or
12 Canadian, dairy and cattle. In addition, a number of papers were included from the
13 reference lists of other papers, or personal knowledge of reports or conference
14 proceedings, where the literature search did not identify papers with salient information
15 for this review.

16 All relevant material collected from the above process was included in the review,
17 provided that it was pertinent to the methods of production within the Canadian dairy
18 industry. Exclusion of material was only done if information was redundant or outdated
19 and had been directly refuted. Otherwise, all available information was included.

1 **2.4 Pathophysiology**

2 Ingested MAP bacteria enter the intestinal wall through the small intestinal mucosa,
3 primarily in the region of the ileum, via M cells (specialized absorptive mucosal cells)
4 residing in the Peyer's patches (15). Where they are resistant to intracellular degradation.
5 They are eventually phagocytosed by sub-epithelial macrophages (16). While the bacteria
6 are in the mucosal tissue and submucosal macrophages, there is little or no detectable
7 reaction to the infection. This delayed detectable humoral immune response is one reason
8 for the poor Se of serological diagnostic tests for MAP, as explained in detail later.

9 Eventually, the infected macrophages migrate into local lymphatics (17,18),
10 spreading the infection to regional lymph nodes. In the regional lymph nodes, the
11 organisms are capable of stimulating inflammatory and immunological responses (19).
12 The immune response towards MAP resembles that of other mycobacterial infections.
13 Most animals mount a cellular immune response involving a variety of cells, most
14 importantly T lymphocytes (20). Cytokines produced by T helper cells also contribute to
15 the protective response against mycobacterial infections, especially the cytokine gamma
16 interferon (IFN- γ). Production of IFN- γ has been recognized as a key step in resistance
17 against mycobacterial diseases in general, and it may provide a means to help monitor
18 early infection in some animals (21). In some cows, the cellular immune response has
19 been shown to be able to control the infection, with the cows never developing clinical
20 signs, but remaining subclinically infected for life (22). In those animals in which the
21 cellular immunity is unable to control the disease, a detectable humoral immune response
22 will develop, along with increased shedding of bacteria (22).

1 Typically, the organism proliferates slowly in the ileal mucosa and regional
2 lymph nodes. However, poor nutrition, stress related to transport, lactation, parturition,
3 and immunosuppression by agents like bovine viral diarrhea virus have been proposed as
4 accelerating or precipitating the onset of the clinical phase of infection (23).

5 The physiological mechanism for development of diarrhea in clinically affected
6 animals is thought to be related to antigen-antibody reactions in infected tissue, with
7 subsequent release of histamine (24-26). However, the effect on villi of the mucosal
8 epithelium of the ileum is the major component of the pathogenesis resulting in a
9 malabsorption syndrome. Macroscopic lesions, if present, are seen primarily in the
10 intestine and it's draining mesenteric lymph nodes, more specifically in the region of the
11 ileum, although they can occur throughout the whole length of the intestinal tract. The
12 intestinal wall is thickened and edematous, and the mucosa has exaggerated transverse
13 folds, mimicking the appearance of corrugated cardboard. The serosal and mesenteric
14 lymphatic vessels can be dilated and thickened. Subsequent muscle atrophy, emaciation,
15 alopecia, renal infarcts, anemia, and leukopenia are thought to be mediated by cytokines
16 (23,27). There is no evidence to suggest that the pathophysiology or progression of
17 disease differ between infected cattle in Canada and elsewhere.

18

1 **2.5 Clinical effects and stages of paratuberculosis**
2 Infection with MAP can be divided into 4 stages as described by Whitlock & Buergelt
3 (28), depending on the severity of clinical signs, potential for shedding organisms into the
4 environment, and the ease with which the disease may be detected by using current
5 laboratory methods.

6

7 **2.5.1 Silent infection**

8 This stage generally includes young stock up to 2 y of age; it is called “silent” because 1)
9 there are no clinical signs of infection 2) there are no measurable subclinical effects of
10 infection, and 3) there are no cost-effective diagnostic tests that can detect infection. The
11 only means of detecting infected cattle at this early stage is by demonstration of the
12 established bacteria in the intestinal tract, either by culture or by histologic demonstration
13 of microgranulomas in the intestine or regional lymph nodes, a cost-prohibitive procedure
14 if multiple animals require testing. Other diagnostic tests, such as johnin (sterile solution
15 of growth products of Johne’s bacillus) skin testing and gamma-interferon tests, that
16 utilize the cell mediated response (CMI), have also been used to detect this stage of the
17 disease. However, there are common antigens between MAP and other environmental
18 *Mycobacteria* spp., resulting in low Sp for these tests (29,30), making them ineffective as
19 a routine screening test. Infected animals in this stage may shed infectious organisms into
20 the farm environment at levels below the threshold of detection (31).

21

1 2.5.2 Sub-clinical infection

2 Animals with subclinical MAP infection do not yet have clinical signs of infection, but
3 may be detected as infected by using cost-effective diagnostic tests and may begin to
4 have measurable effects of infection (as discussed in part 2) (32,33). Some of these
5 infected cattle may be detected by fecal culture and subsequently removed from the herd.
6 However, focal lesions, variable rates of disease progression and shedding, and dilution
7 of organisms in large volumes of intestinal content result in intermittent detection of fecal
8 shedding (34). Therefore, these infected animals test negative by using current fecal
9 culture techniques, yet they may be shedding low numbers of organisms in the manure,
10 which contaminate the environment and pose a threat to other animals on the farm. Some
11 animals may have detectable antibodies to MAP, an altered cellular immune response, or
12 both, particularly if they are getting close to entering the next stage of the disease
13 (clinical phase) (12). However, the MAP fecal shedding usually occurs before a
14 detectable antibody response (35).

15

16 2.5.3 Clinical infection

17 Initial clinical signs follow a prolonged incubation period of 2 to 10 y, depending on the
18 exposure level and the capacity of an animal to fight the infection (36,37). The first
19 apparent sign is gradual weight loss, despite a normal or, occasionally, an increased
20 appetite. During a period of 3-6 mo, concurrent with the weight loss, the manure
21 consistency becomes more fluid. The diarrhea may be persistent, or intermittent, at first,

1 with periods of normal manure consistency. Thirst is usually increased and milk
2 production is decreased. However, appetite and vital signs (heart rate, respiratory rate,
3 and temperature) remain normal (28).

4 Most animals at this stage have a positive fecal culture and have increased serum
5 antibody levels detectable by the commercial enzyme linked immunosorbant assay
6 (ELISA) and agar gel immunodiffusion (AGID) test. It is estimated that only 10 to 15%
7 of infected animals survive to this stage of infection, because they are often culled due to
8 reduced productivity earlier in the subclinical stage (38). One study showed that out of
9 113 herds that did not have a clinical case of JD in the previous 5 y, only 32 herds were
10 completely test-negative during 9 pooled fecal-culture tests done every 6 mo (39).

11

12 2.5.4 Advanced clinical infection

13 Clinically affected animals, if not culled, become increasingly lethargic, weak, and
14 emaciated. “Water-hose”or “pipestream” diarrhea, hypoproteinemia, and intermandibular
15 edema (bottle jaw) characterize the advanced stage of the disease. In the last stage of JD,
16 cows become cachectic, anemic and too weak to rise (40). Most animals are culled from
17 the herd before this time due to the chronic or intermittent diarrhea, decreased milk
18 production and or weight loss in the earlier stages of disease (28).

19

1 **2.6 Diagnosis**

2 The diagnostic tests to detect infection with MAP can be categorized into those that
3 identify the organism, and those that identify an immunological reaction to the organism.
4 Evaluation of the performance of diagnostic tests is typically done by comparing
5 estimates of sensitivity (Se – ability of the test to detect infected cattle) and specificity
6 (Sp – ability of the test to identify healthy cattle) based on a “gold standard” that has
7 identified animals as truly infected and truly noninfected. However, comparisons of the
8 Se and Sp of diagnostic tests for MAP should be interpreted with great caution, because
9 there are a number of factors that have a major impact on these estimates, including 1)
10 the type of gold standard used 2) the stage of infection of the study animals and 3) the
11 type of farms utilized to source animals for testing. Each of these will be discussed in
12 turn.

13 Due to delays of 2 to 10 y between time of infection and development of
14 measurable immune system reactions and shedding, various “gold standards” have been
15 utilized for MAP-infection status in the past. Tissue culture of MAP is considered the
16 ideal gold standard test, because, even before fecal shedding or an immune response is
17 present, it can detect growth of MAP in multiple organs, including the intestinal mucosa
18 and submucosa, and regional lymph nodes (41). However, fecal culture has been used as
19 the gold standard in many studies (42-48) in the past, due to the high cost and logistical
20 difficulties of sampling for tissue culture. The methods for fecal and tissue culture are
21 identical and are described below.

22 The delays in immune response or shedding also mean that tests performed on
23 animals with clinical JD will have a better Se than when they are used on animals for

1 subclinical JD (43,49), because the clinically affected animals are much more likely to be
2 shedding bacteria or have developed a detectable immune response (19). False-negative
3 test results are common, particularly in calves, heifers, and even 1st lactation cows (cattle
4 in silent and subclinical stages) (50). Test results from animals with subclinical
5 paratuberculosis can be a challenge to interpret, because clinical signs are not present to
6 assist in their interpretation (42,49,51).

7 Regarding farm type, on farms with a known history of clinical JD, there will
8 likely be more bacteria in the environment and higher exposure to MAP of the
9 youngstock than on farms without history of clinical JD. If youngstock undergo higher
10 exposure to MAP bacteria on a particular farm, they are more likely to develop a
11 detectable immunological reaction or begin shedding bacteria earlier in life (24,25,52),
12 leading to higher detectable prevalence of infection on that farm and increased shedding
13 of bacteria in those infected cattle on those farms compared with farms where there is
14 lower exposure to MAP. Therefore, evaluation of test performance using cattle on these
15 farms will lead to higher estimates of Se and Sp than on farms without history of clinical
16 JD.

17 As a result, in Table 2.1, the test Se of the most widely used diagnostic tests for
18 MAP infection are categorized with respect to testing for clinical versus subclinical
19 infection and, for subclinical infections, testing in farms with high prevalence ($\geq 25\%$) of
20 MAP infection versus those with low prevalence ($< 25\%$).

21

22 2.6.1 Identification methods

1 *2.6.1.1. Culture on tissue or feces (individual and pooled samples)*

2 A number of different media have been used to culture MAP. The standard culture

3 procedure utilized in Canada is Herrold's egg yolk medium (HEYM); however, culture

4 time is 16 wk before observable growth is seen for this slow growing bacterium (28). A

5 radiometric system has been developed that reduces the culture time by half, because

6 detection of growth is not visual but through the detection of metabolized radioisotopes

7 in the media (53). However, because the system requires expensive safety equipment to

8 handle the radioisotopes, at the time of publication, only laboratories in British Columbia

9 (Animal Health Monitoring Laboratory, Abbotsford) and Ontario (Animal Health

10 Laboratory, Guelph) are offering this system on a commercial basis, with the Manitoba

11 provincial laboratory (Veterinary Services Branch, Winnipeg) conducting research and

12 development with the system. Recently, a specialized broth media system has been

13 developed that has reduced the detection time to 6 wk, without loss in test Se, through the

14 detection of alterations in oxygen, CO₂, or pressure within a sealed bottle (54). At the

15 time of publication, the only Canadian laboratory currently offering broth culture testing

16 is the Atlantic Veterinary College in Charlottetown, Prince Edward Island (PEI). The

17 Agri-Food Laboratories Branch laboratory in Edmonton, Alberta, does MAP cultures,

18 using the standard HEYM method, but only for research purposes and for some of the

19 samples submitted under the Alberta Johne's Control Program.

20 If bacterial growth is detected, the bacterium is isolated and its identity is

21 confirmed through the morphologic characteristics and mycobactin dependency of the

22 bacterial colonies, acid fast staining, and, sometimes, through the detection of the

23 insertion sequence IS900 by polymerase chain reaction (PCR) (see description below).

1 With identification of MAP, the animal is considered infected. However, laboratory error
2 can occasionally lead to cross-contamination and false-positive test results (55). Also, the
3 phenomenon of “pass-through” of bacteria through the gastrointestinal tract could lead to
4 other false-positives, but this remains a hypothesis and has not been fully substantiated.
5 Therefore, Sp of fecal culture is described as being virtually 100% (49) and fecal culture
6 is considered an excellent confirmatory diagnostic test of paratuberculosis for animals
7 that test positive to immunological tests (Table 1).

8 Due to the lengthy duration of testing and the specialized equipment and media
9 required for culturing MAP, the cost per sample tested is high (CD\$35 to \$60/sample).
10 Therefore, pooling fecal samples has been utilized to test large numbers of animals for
11 less cost per animal (60), while still maintaining reasonable Se to detect infected animals
12 (61). In comparing conventional culture to pooled culture on a herd level basis, 94% of
13 pooled samples with moderate to high numbers of MAP yielded positive culture results
14 (62). Pooled fecal culturing has been shown to have a herd level Se of 73% (60), meaning
15 that 73% of infected herds were detected with a single set of strategically (by age
16 cohorts) pooled samples. However, the maximum number of negative animals that can be
17 mixed in with a sample from a positive animal (while still getting a positive pooled test)
18 needs to be determined, and this number will need to be appropriate to infection
19 prevalence, severities, and shedding levels seen in Canada. Based on initial results from
20 outside Canada, 3 to 5 fecal samples in a pool may be the optimal number (60,62,63).
21 Any Canadian laboratory that is equipped to conduct MAP cultures should also be able to
22 conduct pooled fecal cultures.

23

1 2.6.2.2 *Polymerase chain reaction on feces*

2 Since the discovery of the IS900 insertion sequence, attempts have been made to perform

3 PCR techniques directly on clinical samples (64,65). Through amplification of this piece

4 of genetic material, the PCR is able to provide a much faster result compared with culture

5 techniques, with a turnaround time of a 4 d for most laboratories (55). However, PCR is

6 less sensitive than culture due to the presence of inhibitory substances in fecal specimens

7 (66). Another concern is that IS900 may not be as specific for MAP as once believed.

8 The IS900 element has been detected in other mycobacterial strains isolated from the

9 feces of ruminants (67). At the time of publication, PCR testing is being offered

10 commercially in Canada only at BIOVET Inc. in St. Hyacinthe, Québec, and at the

11 Faculté de Médecine Vétérinaire in Montréal, Québec. It is being used as a confirmation

12 of positive cultures where culturing is being done. If PCR were to be done on a large

13 scale, laboratory error could lead to false-positive test results if very strict adherence to

14 preventing even minute cross-contamination was not implemented.

15

16 2.6.2 Immunological methods

17 2.6.2.1. *Enzyme linked immunosorbant assays on serum and milk*

18 The main type of immunological test that is widely available and commonly used is the

19 enzyme linked immunosorbant assay (ELISA), which detects an optical density in serum

20 (68) or milk (69,70) that correlates with an antibody response to MAP. The ELISAs have

21 been desirable tests to use because of their ease of sample collection (blood or milk),

22 rapid test results (within a week), and relatively low cost (approximately \$10 per sample).

1 However, for several reasons, results from ELISAs need to be interpreted with caution.
2 Due to the long delay between infection and presentation of bacteria to the immune
3 system in sufficient numbers to develop a detectable immune response, the reported Se of
4 the serum ELISAs for detecting subclinically infected cattle are much lower than the Se
5 of fecal cultures, leading to many false-negative results (42,45,46,69). In fact, many
6 studies have estimated the Se of the serum ELISA on the basis of the proportion of fecal
7 shedders that were seropositive, with these estimates ranging from 15% to 75%
8 (42,43,49).

9 Milk ELISA testing has recently been introduced as another immunological test
10 for detecting subclinically infected cattle, with the obvious practical advantage of ease of
11 sample collection. However, independent, peer-reviewed evaluation of the operating
12 characteristics of the ELISA of milk is still limited. A recent study in Ontario (58)
13 reported only moderate agreement between serum and milk ELISAs, and the milk ELISA
14 detected 12% fewer infected cows than the serum ELISA. These findings make
15 biological sense considering that antibody concentrations in milk depend not only on
16 levels in serum, but also on milk production (58), parity, and days in milk (71). The
17 added variability in antibody levels in milk (72) makes interpretation of milk ELISA
18 results even more challenging than that of serum ELISA results at the animal level, which
19 have inherent laboratory variability (73). Further research may identify a role for the milk
20 ELISA as a practical method of monitoring MAP infection at the herd level or instigating
21 interest in controlling JD.

22 Another caution regarding the use of ELISAs in low prevalence herds is that
23 false-positive test results can also be a problem when a large number of cattle are tested

1 with a test that has a Sp that is not very close to 100% (42). While some studies have
2 reported Sp estimates of 99% (43,49,74), another study (42) likely provides a more
3 realistic estimate of Sp (96.8%), because it utilized multiple sources of samples (more
4 representative of the North American dairy cattle industry as a whole), providing more
5 possibility of cross reactivity with other micro-organisms to give false-positive test
6 results. Therefore if an ELISA was used on 100 uninfected cattle, it would likely produce
7 1 (Sp of 99%) to 3 (Sp = 97%) false-positive test results, which could erroneously
8 categorize an uninfected herd as infected if confirmatory tests were not utilized on the
9 ELISA-positive cattle. In a low prevalence herd of 100 cows with 5 truly infected
10 animals, the low sensitivity of ELISAs would lead to only 1 of the 5 infected animals
11 likely testing seropositive and 1 to 3 false-positive test results. Therefore, with only 1 of 2
12 to 4 test positives being truly infected, the predictive values of a positive test result would
13 vary between 25% and 50%, making it difficult to know how to interpret and act on
14 positive test results. Therefore, apparently healthy cows that are ELISA-positive should
15 be fecal cultured to confirm infection status, particularly in herds suspected of having a
16 low prevalence of infection. If the fecal culture is negative, these ELISA-positive cows
17 should be retested in 6-12 mo because the owner does not know if these nonshedding
18 ELISA-positive cows are truly uninfected or just not shedding in detectable numbers at
19 the time of sampling.

20 One additional caution regarding the interpretation of ELISA results relates to the
21 form in which they are reported. Interpretation of results has generally been made on a
22 single cut-off value that allows for dichotomous test results, positive or negative.
23 Although this would appear to make results easier to interpret and allow for Se and Sp

1 calculations, valuable information is lost, because the likelihood of true infection is much
2 higher in cattle with a high optical density, particularly in herds that have a history of
3 clinical JD infection (57). As a result, some laboratories are appropriately utilizing a 3-
4 level result system - negative, suspect, and positive (75), or 4-level result system –
5 negative, suspect, weak positive, and strong positive, based on categorizations of
6 likelihood ratios generated from the optical densities (55).

7 At the time of publication, there are only 2 serum ELISAs currently offered on a
8 commercial basis in Canada, with different provinces using different ELISAs. It is
9 unlikely that there is a large and significant difference in the test performance of the 2
10 ELISAs; both tests have difficulty detecting, subclinically infected cattle.

11

12 *2.6.2.2 Agar gel immunodiffusion*

13 There is one other immunological test that is available in Canada, the agar gel
14 immunodiffusion (AGID) test. It was developed as a quick test for animals that were
15 showing clinical signs of JD. Some reports estimate that when AGID results are positive,
16 there is a 95% chance of actual MAP infection in a clinically affected cow (28).

17 However, the Se of the AGID for subclinical cows is poor, with one report of an Se of
18 18.9% (76). Therefore, use of the AGID is restricted to animals showing clinical signs of
19 JD. The ELISAs are equally sensitive at detecting MAP in clinically affected cattle; and
20 therefore, it is unlikely that the AGID offers any advantage over the ELISA.

21

1 **2.7 Prevalence**

2 The results of seroprevalence studies done recently in dairy cattle in Canada are shown in
3 table 2.2. Seroprevalence at the animal level in dairy cattle ranged from 1.3% (PEI) (77)
4 to 7.0% (Alberta) (81). At the herd level, 9.8% (Ontario) to 40.0% (Alberta) (81) of herds
5 had at least 2 seropositive cows. The provincial differences in seroprevalence may
6 represent real differences in the distribution of the organism due to variations in
7 management or other risk factors for transmission. Conversely, these seroprevalence
8 differences may be due to variations in sampling and testing protocols. Normally,
9 estimated true prevalences of infection can be calculated to adjust for differences in
10 testing protocols; however, for JD, there is little consensus on the adjustments test Se and
11 Sp required to calculate true prevalence estimates. Therefore, even comparisons of
12 estimated true prevalences should be interpreted with caution.

13 All of the above provincial studies were conducted by using the same number of
14 animals per herd and the same IDEXX ELISA test (except for Alberta), with the same
15 cut-off value for interpretation of test-positives. However, comparisons between these
16 seroprevalence estimates should be interpreted with caution for a number of reasons. Sera
17 from Manitoba were tested at a separate laboratory from the other provinces, possibly
18 impacting on the survey results. Even the sera that were tested at the same laboratory
19 were tested at different times with different lots of test kits, also possibly impacting on
20 survey results. Furthermore, the Ontario study consisted of herds that were purposely
21 chosen to monitor disease (mastitis) incidence, and likely an underestimate of the true
22 prevalence of paratuberculosis in dairy herds in Ontario. A 1986-89 survey of 14,932
23 cows in 304 dairy herds in Ontario, using a lipoarabinomannan antigen enzyme-linked

1 immunosorbent assay (LAM-ELISA), found 15.2% of the animals tested seropositive
2 (82). All of the differences between these 2 estimates are unlikely to be due to differences
3 in test performance, because of the similarities in the two tests used (IDEXX-ELISA and
4 LAM-ELISA). A control program for JD did not exist in Ontario during the time
5 between the 2 studies, so that the prevalence of MAP infection is unlikely to have
6 declined between 1989 and 1998.

7 While it is possible to compare seroprevalences between provinces with the above
8 studies, they are likely underestimate the true prevalences of infection at the animal level
9 due to the low sensitivities of ELISAs for MAP. Very few Canadian studies have been
10 conducted to determine the prevalence of MAP infection in dairy cattle based on fecal
11 culture. In the study in Alberta (81), fecal samples were collected from cows in 50 dairy
12 herds and cultured in pools of 3 samples. Three point four percent of pools were found to
13 be culture-positive, meaning that from 3.4% to 10.2% of cattle were test-positive
14 (individual cattle results were not reported), leading to the conclusion that the estimated
15 true herd-level prevalence ranged from 28% to 57%, depending on whether 1, 2, or all 3
16 individual fecal samples in the positive fecal pools were culture-positive.

17 While fecal culture testing has a better Se than ELISAs for MAP, it still produces
18 many false-negatives, particularly in young infected cattle that have not yet started to
19 shed MAP bacterium. A recent prevalence estimate based on tissue culture testing of
20 ileocecal lymph nodes and ileum from culled dairy cows at a slaughterhouse in New
21 Brunswick was that 16.1% of dairy cows were culture-positive for MAP (41). This
22 prevalence estimate is likely to be a close approximation of the true infection prevalence,
23 because culturing the ileum and ileocecal lymph node of the selected animals is better

1 than fecal culturing at detecting cows that are infected but not yet shedding bacteria in
2 their feces.

3 Many other prevalence surveys have been carried out around the world, A brief
4 summary of recent international seroprevalence estimates from representative samples is
5 provided in Table 2.3. While comparisons between countries should be conducted with
6 caution, there does appear to be a large variation in the reported seroprevalences between
7 countries and even within countries. Seroprevalences at the animal level in Canada are
8 similar to those in other countries, ranging from 0.8% in Belgium (89) to 17.1% in
9 Florida, USA (83). At the herd level, the proportion of herds with 2 or more seropositive
10 cows in Canada (77) was also similar to that in other studies, ranging from 17% for the
11 20 tested states in the USA (90) to 44% in Michigan, USA (85). Some Scandinavian
12 countries have very low seroprevalence for MAP, leading those countries to seriously
13 consider eradication efforts (91,92).

14 The significant advances in the quality of the diagnostic tests used to detect MAP
15 make it difficult to determine if the prevalence of MAP infection is increasing. There are
16 very few, if any, data from random samples of the same area over time, using similar
17 diagnostic tests. Before the evolution of ELISAs in the late 80s, most of the initial reports
18 of JD prevalence were limited to slaughterhouse data. Perhaps future studies will address
19 this paucity of data and clarify whether MAP is becoming more prevalent or not.

1 **2.8 References**

- 2
- 3 1. Krieg NR ed. Bergey's Manual of Systemic Bacteriology. Vol 2. London:
4 Williams and Wilkins, 1986.
- 5 2. Barrow and Feltham (ed). Cowan and Steel's Manual for the Identification of
6 Medical bacteria. Cambridge University Press., 1993: 92-93.
- 7 3. van der Giessen JW, Eger A, Haagsma J, Haring RM, Gaastra W, van der Zeijst
8 BA. Amplification of 16S rRNA sequences to detect *Mycobacterium*
9 *paratuberculosis*. J Med Microbiol 1992;36:255-263.
- 10 4. Thorel MF, Krichevsky M, Levy-Frebault VV. Numerical taxonomy of
11 mycobactin-dependent mycobacteria, emended description of *Mycobacterium*
12 *avium*, and description of *Mycobacterium avium* subsp. *avium* subsp. *nov.*,
13 *Mycobacterium avium* subsp. *paratuberculosis* subsp. *nov.*, and *Mycobacterium*
14 *avium* subsp. *silvaticum* subsp. *nov.* Int J Syst Bacteriol 1990;40:254-260.
- 15 5. Collins DM, de Lisle GW. Restriction endonuclease analysis of various strains
16 of *Mycobacterium paratuberculosis* isolated from cattle. Am J Vet Res
17 1986;47:2226-2229.
- 18 6. Green EP, Tizard ML, Moss MT, et al. Sequence and characteristics of IS900,
19 an insertion element identified in a human Crohn's disease isolate of
20 *Mycobacterium paratuberculosis*. Nucleic Acids Res 1989;17:9063-9073.
- 21 7. Collins DM, Gabric DM, de Lisle GW. Identification of two groups of
22 *Mycobacterium paratuberculosis* strains by restriction endonuclease analysis
23 and DNA hybridization. J Clin Microbiol 1990;28:1591-1596.
- 24 8. Cousins DV, Williams SN, Hope A, Eamens GJ. DNA fingerprinting of
25 Australian isolates of *Mycobacterium avium* subsp *paratuberculosis* using
26 IS900 RFLP. Aust Vet J 2000;78:184-190.
- 27 9. Moreira AR, Paolicchi F, Morsella C et al. Distribution of IS900 restriction
28 fragment length polymorphism types among animal *Mycobacterium avium*
29 subsp. *paratuberculosis* isolates from Argentina and Europe. Vet Microbiol
30 1999;70:251-259.
- 31 10. Pavlik I, Bejckova L, Pavlas M, Rozsypalova Z, Koskova S. Characterization
32 by restriction endonuclease analysis and DNA hybridization using IS900 of
33 bovine, ovine, caprine and human dependent strains of *Mycobacterium*
34 *paratuberculosis* isolated in various localities. Vet Microbiol 1995;45:311-318.
- 35 11. Ris DR, Hamel KL, Ayling JM. Can sheep become infected by grazing pasture
36 contaminated by cattle with Johne's disease? N Z Vet J 1987;35:137.

- 1 12. Kennedy DJ, Benedictus G. Control of *Mycobacterium avium* subsp.
2 *paratuberculosis* infection in agricultural species. Rev Sci Tech 2001;20:151-
3 179.
- 4 13. Beard PM, Daniels MJ, Henderson D, et al. Paratuberculosis infection of
5 nonruminant wildlife in Scotland. J Clin Microbiol 2001;39:1517-1521.
- 6 14. Beard PM, Rhind SM, Buxton D, et al. Natural paratuberculosis infection in
7 rabbits in Scotland. J Comp Pathol 2001;124:290-299.
- 8 15. Momotani E, Whipple DL, Thiermann AB, Cheville NF. Role of M cells and
9 macrophages in the entrance of *Mycobacterium paratuberculosis* into domes of
10 ileal Peyer's patches in calves. Vet Pathol 1988;25:131-137.
- 11 16. Tessema MZ, Koets AP, Rutten VP, Gruys E. How does *Mycobacterium avium*
12 subsp. *paratuberculosis* resist intracellular degradation? Vet Q 2001;23:153-
13 162.
- 14 17. Kim JC, Sanger VL, Whitemark DL. Ultrastructural studies of bovine
15 paratuberculosis. Agri Pract 1976;12:78.
- 16 18. Jorgensen JB. Pathogenicity and immunogenicity of atypical mycobacteria for
17 calves: A short summary. Rev Infect Dis 1981;3:979.
- 18 19. Chiodini RJ, Van Kruiningen HJ, Merkal RS. Ruminant paratuberculosis
19 (Johne's disease): the current status and future prospects. Cornell Vet
20 1984;74:218-262.
- 21 20. Stabel JR. Transitions in immune responses to *Mycobacterium*
22 *paratuberculosis*. Vet Microbiol 2000;77:465-473.
- 23 21. Wood PR, Corner LA, Rothel JS, et al. Field comparison of the interferon-
24 gamma assay and the intradermal tuberculin test for the diagnosis of bovine
25 tuberculosis. Aust Vet J 1991;68:286-290.
- 26 22. Zurbrick BG, Czuprynski CJ. Ingestion and intracellular growth of
27 *Mycobacterium paratuberculosis* within bovine blood monocytes and
28 monocyte-derived macrophages. Infect Immun 1987;55:1588-1593.
- 29 23. Rice CE, Annau E, Duhamel L. Studies of Johne's disease in Canada. VI. An
30 attempt to passively transfer sensitivity to johnin by means of plasma fractions.
31 Can J Comp Med 1959;23:59-64.
- 32 24. Bendixen PH. Immunological reactions caused by infection with
33 *Mycobacterium paratuberculosis*. A review. Nord Vet Med 1978;30:163-168.

- 1 25. Merkal RS, Richard JL, Thurston JR, Ness RD. Effect of methotrexate on
2 rabbits infected with *Mycobacterium paratuberculosis* or *Dermatophilus*
3 *congolensis*. Am J Vet Res 1972;33:401-407.
- 4 26. Merkal RS, Kopecky KE, Larsen AB. Immunologic mechanisms in bovine
5 paratuberculosis. Am J Vet Res 1970;31:475-485.
- 6 27. Merkal RS, Witzel DA. Passive transfer of Johnin hypersensitivity with
7 reactivity resembling clinical paratuberculosis in calves. Infect Immun
8 1973;7:196-198.
- 9 28. Whitlock RH, Buergelt C. Preclinical and clinical manifestations of
10 paratuberculosis (including pathology). Vet Clin North Am Food Anim Pract
11 1996;12:345-356.
- 12 29. Kalis CH, Collins MT, Hesselink JW, Barkema HW. Specificity of two tests for
13 the early diagnosis of bovine paratuberculosis based on cell-mediated immunity:
14 the Johnin skin test and the gamma interferon assay. Vet Microbiol 2003;97:73-
15 86.
- 16 30. McDonald WL, Ridge SE, Hope AF, Condron RJ. Evaluation of diagnostic tests
17 for Johne's disease in young cattle. Aust Vet J 1999;77:113-119.
- 18 31. de Lisle GW, Duncan JR. Bovine paratuberculosis III. An evaluation of a whole
19 blood lymphocyte transformation test. Can J Comp Med 1981;45:304-309.
- 20 32. Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Keefe GP, Haddad JP. Effects
21 of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus,
22 *Mycobacterium avium* subspecies paratuberculosis, and *Neospora caninum* on
23 culling in dairy cattle in four Canadian provinces. Vet Microbiol 2005;109:147-
24 158.
- 25 33. Tiwari A, Vanleeuwen JA, Dohoo IR, Stryhn H, Keefe GP. Effects of
26 seropositivity for bovine Leukemia virus, *Mycobacterium avium* subspecies
27 *paratuberculosis*, and *Neospora caninum* on calving to conception interval in
28 maritime Canadian dairy cattle. Proc Soc Vet Epidemiol Prev Med, Warwick,
29 England 2003: 243-252.
- 30 34. Merkal RS, Thurston JR. Comparison of *Mycobacterium paratuberculosis* and
31 other mycobacteria, using standard cytochemical tests. Am J Vet Res
32 1966;27:519-521.
- 33 35. Lepper AW, Wilks CR, Kotiw M, Whitehead JT, Swart KS. Sequential
34 bacteriological observations in relation to cell-mediated and humoral antibody
35 responses of cattle infected with *Mycobacterium paratuberculosis* and
36 maintained on normal or high iron intake. Aust Vet J 1989;66:50-55.

- 1 36. Kopecky KE, Larsen AB. Intravenous johnin and tuberculin tests in cattle
2 vaccinated with *Mycobacterium paratuberculosis* cells and subsequently
3 inoculated with *Mycobacterium bovis*. Am J Vet Res 1975;36:1727-1729.
- 4 37. Mathews HT. On Johne's disease. Vet Rec 1947;59:397-401.
- 5 38. Abbas B, Riemann HP, Hird DW. Diagnosis of Johne's disease
6 (paratuberculosis) in Northern California cattle and a note of it's economic
7 significance. Calif Vet 1983;37:20-24.
- 8 39. Kalis CH, Collins MT, Barkema HW, Hesselink JW. Certification of herds as
9 free of *Mycobacterium paratuberculosis* infection: actual pooled faecal results
10 versus certification model predictions. Prev Vet Med 2004;65:189-204.
- 11 40. Manning EJ, Collins MT. *Mycobacterium avium* subsp. *paratuberculosis*:
12 pathogen, pathogenesis and diagnosis. Rev Sci Tech 2001;20:133-150.
- 13 41. McKenna SL, Keefe GP, Barkema HW, McClure J, Vanleeuwen JA, Hanna P et
14 al. Cow-level prevalence of paratuberculosis in culled dairy cows in Atlantic
15 Canada and Maine. J Dairy Sci 2004;87:3770-3777.
- 16 42. Dargatz DA, Byrum BA, Barber LK, Sweeney RW, Whitlock RH, Shulaw WP
17 et al. Evaluation of a commercial ELISA for diagnosis of paratuberculosis in
18 cattle. J Am Vet Med Assoc 2001;218:1163-1166.
- 19 43. Sweeney RW, Whitlock RH, Buckley CL, Spencer PA. Evaluation of a
20 commercial enzyme-linked immunosorbent assay for the diagnosis of
21 paratuberculosis in dairy cattle. J Vet Diagn Invest 1995;7:488-493.
- 22 44. Collins MT, Sockett DC. Accuracy and economics of the USDA-licensed
23 enzyme-linked immunosorbent assay for bovine paratuberculosis. J Am Vet
24 Med Assoc 1993;203:1456-1463.
- 25 45. Sockett DC, Conrad TA, Thomas CB, Collins MT. Evaluation of four
26 serological tests for bovine paratuberculosis. J Clin Microbiol 1992;30:1134-
27 1139.
- 28 46. Collins MT, Sockett DC, Ridge S, Cox JC. Evaluation of a commercial enzyme-
29 linked immunosorbent assay for Johne's disease. J Clin Microbiol 1991;29:272-
30 276.
- 31 47. Cox JC, Drane DP, Jones SL, Ridge S, Milner AR. Development and evaluation
32 of a rapid absorbed enzyme immunoassay test for the diagnosis of Johne's
33 disease in cattle. Aust Vet J 1991;68:157-160.
- 34 48. Milner AR, Mack WN, Coates KJ, Hill J, Gill I, Sheldrick P. The sensitivity and
35 specificity of a modified ELISA for the diagnosis of Johne's disease from a field
36 trial in cattle. Vet Microbiol 1990;25:193-198.

- 1 49. Whitlock RH, Wells SJ, Sweeney RW, Van Tiem J. ELISA and fecal culture for
2 paratuberculosis (Johne's disease): sensitivity and specificity of each method.
3 Vet Microbiol 2000;77:387-398.
- 4 50. Sweeney RW. Transmission of paratuberculosis. Vet Clin North Am Food
5 Anim Pract 1996;12:305-312.
- 6 51. Bech-Nielsen S, Jorgensen JB, Ahrens P, Feld NC. Diagnostic accuracy of a
7 *Mycobacterium phlei*-absorbed serum enzyme-linked immunosorbent assay for
8 diagnosis of bovine paratuberculosis in dairy cows. J Clin Microbiol
9 1992;30:613-618.
- 10 52. Nielsen SS, Gronbaek C, Agger JF, Houe H. Maximum-likelihood estimation of
11 sensitivity and specificity of ELISAs and faecal culture for diagnosis of
12 paratuberculosis. Prev Vet Med 2002;53:191-204.
- 13 53. Collins MT, Kenefick KB, Sockett DC, Lambrecht RS, McDonald J, Jorgensen
14 JB. Enhanced radiometric detection of *Mycobacterium paratuberculosis* by
15 using filter-concentrated bovine fecal specimens. J Clin Microbiol
16 1990;28:2514-2519.
- 17 54. Stich RW, Byrum B, Love B, Theus N, Barber L, Shulaw WP. Evaluation of an
18 automated system for non-radiometric detection of *Mycobacterium avium*
19 *paratuberculosis* in bovine feces. J Microbiol Methods 2004;56:267-275.
- 20 55. Collins MT. Diagnosis of paratuberculosis. Vet Clin North Am Food Anim
21 Pract 1996;12:357-371.
- 22 56. Sockett DC, Carr DJ, Collins MT. Evaluation of conventional and radiometric
23 fecal culture and a commercial DNA probe for diagnosis of *Mycobacterium*
24 *paratuberculosis* infections in cattle. Can J Vet Res 1992;56:148-153.
- 25 57. Kalis CH, Barkema HW, Hesselink JW, van Maanen C, Collins MT. Evaluation
26 of two absorbed enzyme-linked immunosorbent assays and a complement
27 fixation test as replacements for fecal culture in the detection of cows shedding
28 *Mycobacterium avium* subspecies *paratuberculosis*. J Vet Diagn Invest
29 2002;14:219-224.
- 30 58. Hendrick SH, Duffield TE, Kelton DE, Leslie KE, Lissemore KD, Archambault
31 M. Evaluation of enzyme-linked immunosorbent assays performed on milk and
32 serum samples for detection of paratuberculosis in lactating dairy cows. J Am
33 Vet Med Assoc 2005;226:424-428.
- 34 59. Klausen J, Huda A, Ekereth L, Ahrens P. Evaluation of serum and milk ELISAs
35 for paratuberculosis in Danish dairy cattle. Prev Vet Med 2003;58:171-178.

- 1 60. Kalis CH, Hesselink JW, Barkema HW, Collins MT. Culture of strategically
2 pooled bovine fecal samples as a method to screen herds for paratuberculosis. *J
3 Vet Diagn Invest* 2000;12:547-551.
- 4 61. Wells SJ, Godden SM, Lindeman CJ, Collins JE. Evaluation of bacteriologic
5 culture of individual and pooled fecal samples for detection of *Mycobacterium
6 paratuberculosis* in dairy cattle herds. *J Am Vet Med Assoc* 2003;223:1022-
7 1025.
- 8 62. Wells SJ, Whitlock RH, Lindeman CJ, Fyock T. Evaluation of bacteriologic
9 culture of pooled fecal samples for detection of *Mycobacterium
10 paratuberculosis*. *Am J Vet Res* 2002;63:1207-1211.
- 11 63. van Schaik G, Stehman SM, Schukken YH, Rossiter CR, Shin SJ. Pooled fecal
12 culture sampling for *Mycobacterium avium* subsp. *paratuberculosis* at different
13 herd sizes and prevalence. *J Vet Diagn Invest* 2003;15:233-241.
- 14 64. Collins DM, Stephens DM, de Lisle GW. Comparison of polymerase chain
15 reaction tests and faecal culture for detecting *Mycobacterium paratuberculosis*
16 in bovine faeces. *Vet Microbiol* 1993;36:289-299.
- 17 65. Gwozdz JM, Reichel MP, Murray A, Manktelow W, West DM, Thompson KG.
18 Detection of *Mycobacterium avium* subsp. *paratuberculosis* in ovine tissues and
19 blood by the polymerase chain reaction. *Vet Microbiol* 1997;57:233-244.
- 20 66. Englund S, Bolske G, Johansson KE. An IS900-like sequence found in a
21 *Mycobacterium* sp. other than *Mycobacterium avium* subsp. *paratuberculosis*.
22 FEMS Microbiol Lett 2002;209:267-271.
- 23 67. Cousins DV, Whittington R, Marsh I, Masters A, Evans RJ, Kluver P.
24 Mycobacteria distinct from *Mycobacterium avium* subsp. *paratuberculosis*
25 isolated from the faeces of ruminants possess IS900-like sequences detectable
26 by IS900 polymerase chain reaction: implications for diagnosis. *Mol Cell Probes*
27 1999;13:431-442.
- 28 68. Yokomizo Y, Merkal RS, Lyle PA. Enzyme-linked immunosorbent assay for
29 detection of bovine immunoglobulin G1 antibody to a protoplasmic antigen of
30 *Mycobacterium paratuberculosis*. *Am J Vet Res* 1983;44:2205-2207.
- 31 69. Hardin LE, Thorne JG. Comparison of milk with serum ELISA for the detection
32 of paratuberculosis in dairy cows. *J Am Vet Med Assoc* 1996;209:120-122.
- 33 70. Sweeney RW, Whitlock RH, Buckley CL, Spencer P, Rosenberger AE,
34 Hutchinson LJ. Diagnosis of paratuberculosis in dairy cattle, using enzyme-
35 linked immunosorbent assay for detection of antibodies against *Mycobacterium
36 paratuberculosis* in milk. *Am J Vet Res* 1994;55:905-909.

- 1 71. Nielsen SS, Enevoldsen C, Grohn YT. The *Mycobacterium avium* subsp.
2 *paratuberculosis* ELISA response by parity and stage of lactation. *Prev Vet*
3 *Med* 2002;54:1-10.
- 4 72. Kudahl A, Nielsen SS, Sorensen JT. Relationship between antibodies against
5 *Mycobacterium avium* subsp. *paratuberculosis* in milk and shape of lactation
6 curves. *Prev Vet Med* 2004;62:119-134.
- 7 73. Nielsen SS. Variance components of an enzyme-linked immunosorbent assay
8 for detection of IgG antibodies in milk samples to *Mycobacterium avium*
9 subspecies *paratuberculosis* in dairy cattle. *J Vet Med B Infect Dis Vet Public*
10 *Health* 2002;49:384-387.
- 11 74. Collins MT, Sockett DC, Ridge S, Cox JC. Evaluation of a commercial enzyme-
12 linked immunosorbent assay for Johne's disease. *J Clin Microbiol* 1991;29:272-
13 276.
- 14 75. Adaska JM, Munoz-Zanzi CA, Hietala SK. Evaluation of result variability with
15 a commercial Johne's disease enzyme-linked immunosorbent assay kit and
16 repeat testing of samples. *J Vet Diagn Invest* 2002;14:423-426.
- 17 76. Sherman DM, Gay JM, Bouley DS, Nelson GH. Comparison of the
18 complement-fixation and agar gel immunodiffusion tests for diagnosis of
19 subclinical bovine paratuberculosis. *Am J Vet Res* 1990;51:461-465.
- 20 77. VanLeeuwen JA, Keefe GP, Tremblay R, Power C, Wichtel JJ. Seroprevalence
21 of infection with *Mycobacterium avium* subspecies *paratuberculosis*, bovine
22 leukemia virus, and bovine viral diarrhea virus in maritime Canada dairy cattle.
23 *Can Vet J* 2001;42:193-198.
- 24 78. VanLeeuwen JA, Tremblay R, Keefe GP, Wichtel J. Seroprevalence of
25 production limiting diseases in Ontario and Maritime dairy cattle. *Proc 52nd*
26 Annu Conv Can Vet Med Assoc, St John, 2000.
- 27 79. VanLeeuwen JA, Whiting T, Tiwari A. Seroprevalence of antibodies against
28 bovine leukemia virus, bovine viral diarrhea virus, *Mycobacterium avium*
29 subspecies *paratuberculosis* and *Neospora caninum* in Manitoba dairy and beef
30 cattle. Submitted to *Can Vet J* 2005.
- 31 80. VanLeeuwen JA, Forsythe L, Tiwari A, Chartier R. Seroprevalence of
32 antibodies against bovine leukemia virus, bovine viral diarrhea virus,
33 *Mycobacterium avium* subspecies *paratuberculosis*, and *Neospora caninum* in
34 dairy cattle in Saskatchewan. *Can Vet J* 2005;46:56-58.
- 35 81. Sorensen O, Rawluk S, Wu J, Manninen K, Ollis G. *Mycobacterium*
36 *paratuberculosis* in dairy herds in Alberta. *Can Vet J* 2003;44:221-226.

- 1 82. McNab WB, Meek AH, Duncan JR, Martin SW, Van Dreumel AA. An
2 epidemiological study of paratuberculosis in dairy cattle in Ontario: study
3 design and prevalence estimates. Can J Vet Res 1991;55:246-251.
- 4 83. Braun RK, Buergelt CD, Littell RC, Linda SB, Simpson JR. Use of an enzyme-
5 linked immunosorbent assay to estimate prevalence of paratuberculosis in cattle
6 of Florida. J Am Vet Med Assoc 1990;196:1251-1254.
- 7 84. Collins MT, Sockett DC, Goodger WJ, Conrad TA, Thomas CB, Carr DJ. Herd
8 prevalence and geographic distribution of, and risk factors for, bovine
9 paratuberculosis in Wisconsin. J Am Vet Med Assoc 1994;204:636-641.
- 10 85. Johnson-Ifearulundu Y, Kaneene JB. Distribution and environmental risk
11 factors for paratuberculosis in dairy cattle herds in Michigan. Am J Vet Res
12 1999;60:589-596.
- 13 86. US Department of Agriculture, Animal and Plant Health Inspection Service.
14 Johnes's Disease on US Dairy Operations, NAHMS Dairy '96, Center for
15 Animal Health Monitoring, Report N245, 1997.
- 16 87. Muskens J, Barkema HW, Russchen E, Van Maanen K, Schukken YH, Bakker
17 D. Prevalence and regional distribution of paratuberculosis in dairy herds in The
18 Netherlands. Vet Microbiol 2000;77:253-261.
- 19 88. Gasteiner J, Wenzl H, Fuchs K, Jark U, Baumgartner W. Serological cross-
20 sectional study of paratuberculosis in cattle in Austria. Zentralbl Veterinarmed
21 B 1999;46:457-466.
- 22 89. Boelaert F, Walravens K, Biront P, Vermeersch JP, Berkvens D, Godfroid J.
23 Prevalence of paratuberculosis (Johnes's disease) in the Belgian cattle
24 population. Vet Microbiol 2000;77:269-281.
- 25 90. Wells SJ, Wagner BA. Herd-level risk factors for infection with *Mycobacterium*
26 *paratuberculosis* in US dairies and association between familiarity of the herd
27 manager with the disease or prior diagnosis of the disease in that herd and use of
28 preventive measures. J Am Vet Med Assoc 2000;216:1450-1457.
- 29 91. Paisley LG, Tharaldsen J, Jarp J. A simulated surveillance program for bovine
30 paratuberculosis in dairy herds in Norway. Prev Vet Med 2000;44:141-151.
- 31 92. Bolske G, Sternberg S, Viske D, Larsson B. Use of culture and serology in
32 tracing and screening for paratuberculosis in Sweden. Proc 6th Int Coll
33 Paratuberculosis 1999;349-352.
- 34

1 Table 2.1. Characteristics of currently available diagnostic tests for Johne's disease in Canada
 2

		Sensitivity		Specificity	
		Sub-clinical cow		Clinical cow	
		Low prevalence herds and/or low shedders ^a	High prevalence herds and/or high shedders ^b		
Fecal culture	Estimate	19% ^c	53% ^d	>90% ^e	Approaching 100% ^e
	Reference	(56)	(56)	(49)	(49)
Serum ELISA ⁿ	Estimate	12% ^f - 15% ^f	40% ^g - 75% ^g - 95% ^h	87% ⁱ - 88% ⁱ	96.8% ^j - 99% ⁱ
	Reference	(57) - (42,43)	(57) - (42,43) - (58)	(43) - (42)	(42) - (56)
Cow milk ELISA ⁿ	Estimate	- ^k	51% ^l - 84% ^h	- ^k	92% ⁱ - 96% ⁱ
	Reference		(58) - (58)		(59) - (59)

3 ^aLow prevalence herds (<25%) and/or low shedders (<10CFU^m)

4 ^bHigh prevalence herds ($\geq 25\%$) and/or high shedders ($\geq 10\text{CFU}$)

5 ^cTissue culture was gold standard in low prevalence herds

6 ^dTissue culture was gold standard in high prevalence herds

8 ^eTissue culture was gold standard

9 ^fFecal culture was gold standard in low shedders

10 ^gFecal culture was gold standard in high shedders

11 ^hFecal culture was gold standard in high shedders in high prevalence herds

12 ⁱFecal culture was gold standard

13 ^jTissue culture or fecal culture or history of herd was gold standard

14 ^kNo published reports found

15 ^lFecal culture was gold standard in low shedders in high prevalence herds

16 ^mColony forming unit

17 ⁿEnzyme linked immunosorbant assays

18 Table 2.2 Seroprevalence estimates of bovine paratuberculosis at the animal and herd level in Canadian dairy herds (from East to West)

Province (Reference #)	Number of herds	Number of animals	Animals test +ve ^a (%)	Herds with 1 test +ve ^b (%)	Herds with 2 test +ve ^c (%)	Animals test + in herds with 1 test +ve ^d (%)	Animals test + in herds with 2 test +ve ^e (%)
Nova Scotia (77)	30	814	3.3	53.3	16.7	5.3	8.1
Prince Edward Island (77)	30	816	1.3	33.3	16.7	5.0	6.3
New Brunswick (77)	30	804	2.9	43.3	16.7	6.4	11.0
Ontario (78)	60	-	2.2	37.0	9.8	4.6	8.4
Manitoba (79)	40	1204	4.5	68.4	43.1	6.6	8.7
Saskatchewan (80)	51	1530	2.7	43.6	24.2	6.3	8.6
Alberta (81)	50	1500	7.0	74.0	40.0	- ^f	- ^f

- 19 ^aAnimals testing positive
- 20 ^bHerds with at least 1 animal testing positive
- 21 ^cHerds with at least 2 animals testing positive
- 22 ^dAnimals testing positive in herds with at least 1 animal testing positive
- 23 ^eAnimals testing positive in herds with at least 2 animals testing positive
- 24 ^fPublished report did not include these figures

25 Table 2.3. Seroprevalence estimates of bovine paratuberculosis in dairy herds from major dairy producing countries and states
 26 outside of Canada (from high prevalence to low prevalence at the animal level)

27

Country (Reference #)	Areas	Number of Herds	Number of animals	Animals test +ve ^a (%)	Herds with 1 test +ve ^b (%)	Herds with 2 test +ve ^c (%)	Animals test + in herds with 1 test +ve ^d (%)	Animals test + in herds with 2 test +ve ^e (%)
U.S.A. (83)	Florida	452	4491	17.1	-	-	-	-
U.S.A. (84)	Wisconsin	158	4990	7.3	50	-	20	
U.S.A. (85)	Michigan	121	3886	6.9	66	44	8	12
U.S.A. (86)	20 states	967	31,745	2.5	41	17		
Netherlands (87)	National	378	15,822	2.5	54	28	-	-
Austria (88)	National	2757	11,028	1.9	7	-	-	-
Sweden (12)	National	-	4000	1.2	-	-	-	-
Belgium (89)	National	556	13,317	0.8	18	-	3	-

28

- 29 ^aAnimals testing positive
- 30 ^bHerds with at least 1 animal testing positive
- 31 ^cHerds with at least 2 animals testing positive
- 32 ^dAnimals testing positive in herds with at least 1 animal testing positive
- 33 ^eAnimals testing positive in herds with at least 2 animals testing positive
- 34

5 3.1 Abstract

7 The purpose of this research was to determine the seroprevalence and spatial distribution
8 of exposure to bovine leukemia virus (BLV), bovine viral diarrhea virus (BVDV) and
9 Mycobacterium avium subspecies paratuberculosis (MAP) in Canadian dairy herds.
10 Within each randomly selected herd, a serum sample was obtained from approximately
11 30 randomly selected lactating animals for BLV and MAP ELISA testing, while 5
12 unvaccinated cattle over 6 months of age were selected for BVDV virus neutralization
13 testing. After visual exploration using choropleth maps, the spatial-scan statistic and
14 Moran's I were utilized for detection of significant clusters and spatial autocorrelation.
15 Seroprevalence at the cow level was 30.3 and 3.1% for BLV and MAP, respectively. At
16 the herd level, 76.6% had at least one seropositive cow for BLV, 31.2% had at least one
17 animal with a titer $\geq 1:64$ for BVDV, and 18.9% had at least two seropositive cows for
18 MAP. For the spatial scan statistic, 4 and 1 significant clusters were detected for BLV
19 and MAP, respectively. No significant clusters were detected for BVDV. The Global
20 Moran's I statistic for BLV and MAP indicated significant positive spatial
21 autocorrelation of 0.16 and 0.15. The K-function for BVDV did not indicate any
22 significant spatial autocorrelation. Exposure to BLV is high in Canadian dairy cattle, with
23 significant clustering in certain parts of the country, while exposure to MAP is lower and

1 somewhat spatially clustered. There is evidence that a third of Canadian dairy farms have
2 been exposed to BVDV in the recent past, without any significant regional differences.
3 Given the prevalence and the potential undetected spread of these 3 pathogens, dairy
4 farmers and veterinarians should consider utilizing herd screening tests and then control
5 programs for those herds testing positive.

1 **3.2 Introduction**

2

3 Infections with bovine leukemia virus (BLV), bovine viral diarrhea virus (BVDV) and
4 *Mycobacterium avium* subspecies *paratuberculosis* (MAP), the causative agents of
5 Enzootic Bovine Leukosis, Bovine Viral Diarrhea and Johne's disease, respectively, have
6 significant health and economic impacts on the cattle industry. These effects may include
7 the loss of international market opportunities, lower domestic productivity and
8 production efficiency, and the potential for reduced consumer confidence in dairy
9 products (1). The World Trade Organisation's (WTO) new trading rules state that health
10 certification standards for imported cattle, semen and embryos cannot exceed those
11 required under domestic regulatory programs (WTO, Act 1994). As a result, there is
12 renewed interest in these diseases in many countries, including Canada. There have been
13 historical or isolated studies of the seroprevalence of exposure to these pathogens in parts
14 of Canada in the past, as described below, but whether these reflects the
15 representativeness for the entire country has been questionable.

16 BLV is a retrovirus that can cause a fatal malignant lymphosarcoma in up to 5% of
17 infected cattle. In addition to tumour development, other signs of lymphosarcoma can
18 include decreased milk production, weight loss, fever and loss of appetite (2). However,
19 most BLV infections are asymptomatic. There is no curative treatment for BLV-
20 infection. In a recent survey (1995) done by the National Animal Health Monitoring
21 System (NAHMS), 79% of herds in the United States had at least one BLV-seropositive
22 cow (3). This estimate was similar to some recent surveys done in the Canadian Maritime
23 provinces and in the province of Saskatchewan where 70% and 89% of herds had at least

1 one BLV-seropositive cow, respectively (1,11). A national survey of BLV was conducted
2 in Canada in 1980, reporting animal and herd level seroprevalence levels of 3.6% and
3 19.7%, respectively. However, substantial changes in seroprevalence could have occurred
4 between since then (4).

5 BVDV is a pestivirus that has a wide range of clinical manifestations, including
6 pneumonia, abortion, birth defects and immunosuppression, and mucosal disease in
7 persistently infected cattle that were originally infected with a non-cytopathogenic strain
8 of BVDV between 45 and 125 days of gestation (5). BVDV prevalence can be reported in
9 two different ways: proportion of cattle transiently infected with BVDV (i.e. having
10 antibodies indicating previous exposure to BVDV); or proportion of persistently infected
11 cattle (that typically do not produce antibodies). The prevalence of transiently and
12 persistently infected cattle can range from 0% to 89% and 0% to 2% (5). In recent
13 surveys of dairy cattle in the Canadian Maritime Provinces and in Saskatchewan, the
14 proportion of randomly sampled herds testing positive for recent exposure to BVDV
15 (having at least one tested animal with a titer $\geq 1:64$) was reported to be 46.1% and
16 29.2%, respectively (1,11).

17 MAP is distributed worldwide but there appears to be a wide variation in the
18 prevalence between countries and even within countries. MAP prevalence estimates
19 using the culture of ileocecal lymph nodes and ileum of apparently healthy dairy cattle at
20 slaughter range from 2.9% (United States) (6) to 16.1% (Maritime provinces, Canada)
21 (7). Seroprevalence estimates among on-farm dairy cattle range from 17.1% (Florida,
22 US) (8) to 0.8% (Belgium) (9) at the cow level, and 74% (Missouri, US) (10) to 18%
23 (Belgium) (9) at the herd level. In recent surveys of dairy cattle in Saskatchewan and the

1 maritime provinces of Canada, the animal level seroprevalences were 2.7% (11) and
2 2.6% (1), respectively, and herd level seroprevalences (≥ 2 seropositive cattle) were
3 24.2% (11) and 16.7% (1), respectively. However in 1991, using a LAM-ELISA, a
4 survey of 14,932 cows in 304 dairy herds in Ontario found 15.2% of the animals tested
5 seropositive (12).

6 To assist efforts toward control of pathogens, knowing the spatial distribution of the
7 seroprevalence estimates can focus where control efforts could be concentrated. Spatial
8 visualisation methods (such as choropleth maps) can provide powerful tools for
9 understanding the epidemiology of the disease process. Statistical tests have been
10 developed to describe and quantitatively interpret apparent disease clusters. Global
11 methods (such as the Moran's I statistic) (13) determine the presence of spatial clustering
12 in a study population, while local methods (such as the Scan statistic) (14) point out the
13 location of these clusters.

14 In 1997, individuals and organizations involved in the cattle industry (veterinarians,
15 livestock genetics companies, livestock exporters and national dairy breed associations)
16 formed the Production Limiting Diseases Committee (PLDC). The committee is
17 interested in maintaining and enhancing the ability of Canadian cattle producers to sell
18 products domestically and internationally in the future. To achieve this mission, the
19 PLDC initiated research to estimate the prevalence, spatial distribution, risk factors and
20 economic impact of BLV, BVDV, MAP and Neospora caninum (NC). Estimated
21 seroprevalence levels for antibodies against these four pathogens were determined and
22 published for the Maritime provinces and Saskatchewan (1; 11). However, since the
23 majority of dairy farms in Canada are located in other provinces, and with possible

1 regional differences in management and ecological conditions between the tested and
2 untested provinces, there remained a need to determine the seroprevalence of these
3 pathogens in other provinces of Canada. The purpose of this study was to determine the
4 seroprevalence levels and spatial distribution for exposure to BLV, BVDV and MAP in a
5 nationally representative sample of Canadian dairy cattle. Seroprevalence and spatial
6 distribution of exposure to NC is reported elsewhere (15). Results of these studies will
7 also be used to determine the effects of these diseases and the risk factors for their spread.

1 **3.3 Materials and methods**

2

3 **3.3.1 Serum sample collection**

4 A stratified two-stage random sampling procedure was employed. During the summer
5 of 1998 in Atlantic Canada, participating Dairy Herd Improvement herds were randomly
6 selected (using computer generated random numbers) until ninety herds were recruited,
7 thirty each from Prince Edward Island (PEI), New Brunswick (NB), and Nova Scotia
8 (NS). Similar recruitment procedures (that included non Dairy Herd Improvement herds)
9 were utilized to recruit one hundred four, forty, fifty-one, and seventy-nine herds from
10 the provinces of Quebec (QUE), Manitoba (MAN), Saskatchewan (SASK), and Alberta
11 (ALTA) in 2002, 2002, 2001, and 2002/03, respectively. Sampling of herds in ALTA was
12 first stratified by veterinary practices servicing dairy herds in the provinces, and then
13 within these practices, herds were randomly selected. For the province of Ontario (ONT),
14 a different sampling protocol was utilized to select herds with extensive records on
15 clinical disease occurrences in order to determine relationships between seroprevalence
16 for these 4 agents and recorded clinical disease (not reported here).

17 Using computer generated random numbers: 1) approximately 30 (on all cows if the
18 total number of cows in herd was less than 30 cows) lactating animals were randomly
19 selected for blood collection in each participating herd. For BVDV, five unvaccinated
20 (for BVDV) cattle >6 months old were selected for blood collection. In unvaccinated
21 herds, five animals of the 30 cows tested for the other three diseases were selected. In
22 vaccinated herds, five unvaccinated heifers >6 months old were selected. The sampling
23 technique was based upon Houe's study (16). Within 24 hours, the blood samples were

1 centrifuged, and the serum was harvested and stored at -20°C until all the samples were
2 collected and ready for testing.

3 The sample size formula used to determine the number of required herds for the
4 original prevalence surveys assumed a herd level seroprevalence of 10%, an allowable
5 error of 10%, and a confidence level of 95%. The lowest expected seroprevalence of any
6 of the investigated diseases was 10% (17); therefore this seroprevalence was used to
7 calculate herd sample size. This calculation lead to a total of approximately 30 herds
8 being needed to be tested in each province. The sample size formula used to determine
9 the number of required cows in each herd for the original prevalence surveys assumed an
10 average herd size of 45 cows, an average within-herd prevalence estimate of 10%,
11 confidence of 90%, and sensitivity of the enzyme linked immunosorbent assay (ELISA)
12 test for MAP of 43.0%, the test with the a lowest sensitivity among the four diseases (18).
13 This calculation lead to a total of approximately 30 cattle being needed to be tested in
14 each herd to detect at least 1 infected animal in a herd.

15

16 3.3.2 Laboratory analysis

17 The test utilized by all provinces for BLV antibodies was an Enzyme Linked
18 Immunosorbant Assay (ELISA)¹ (19). A cow was considered to be infected with BLV if
19 the serum-to-positive ratio on the ELISA was ≥ 0.50 , as recommended by the
20 manufacturer of the test kit. The BLV ELISA test kit also requires a confirmation of
21 positive tests, using a sample-to-negative host-cell ratio of ≥ 1.8 . The BLV testing for NS,
22 NB, PEI, ONT, MAN, SASK, and ALTA was conducted at the national BLV testing

¹ IDEXX ELISA - IDEXX Corporation - Idexx Laboratories, Westbrook, Maine, USA

1 laboratory in Prince Edward Island (now in Quebec), which is certified to conduct BLV
2 testing for international trade purposes. BIOVET Inc. laboratory in Quebec was utilized
3 for the dairy farms in QUE (table 3.1).

4 The test utilized by all provinces for MAP antibodies was also an ELISA, with ALTA
5 farms being tested with one brand of ELISA, according to the wishes of the directors of
6 the study in that province² (18). The farms in the rest of the participating provinces were
7 tested with a different ELISA³ (20). For the first ELISA, an animal was considered to be
8 seropositive for MAP if the optical density value was greater than the mean of the
9 negative control plus 0.100 for bovine sera, as recommended by the manufacturer of the
10 test kit. For the second ELISA, an animal was considered to be seropositive for MAP if
11 the serum-to-positive ratio on the ELISA was ≥ 0.25 , as recommended by the
12 manufacturer of the test kit. The MAP-testing for NS, NB, PEI, ONT, and SASK was
13 conducted at Prairie Diagnostic Services in SASK, which is accredited for MAP-ELISA
14 testing by the United States Dept of Agriculture. The BIOVET Inc. laboratory in QUE,
15 the Manitoba Agricultural Laboratory in MAN, and the Alberta Agriculture, Food and
16 Rural Development Food Safety Division Laboratory in ALTA were utilized for their
17 respective provincial testing. The serum samples were tested in duplicate at all locations
18 (table 3.1).

19 For all provinces, 5 serum samples per farm were tested for antibody against type 1
20 genotype BVDV, using virus neutralization to the cytopathic Singer strain (21). A herd
21 was considered to be infected with BVDV if at least one of the animals tested had a titer
22 of $\geq 1:64$ for BVDV. Testing for BVDV was conducted at Animal Diseases Research

² BIOCOR-CSL ELISA - BIOCOR Animal Health, Inc., Omaha, Nebraska, USA

³ IDEXX ELISA - IDEXX Corporation - Idexx Laboratories, Westbrook, Maine, USA

1 Institute in Alberta for dairy herds in NS, NB, PEI, ONT, MAN, SASK, ALTA, and at
2 the Armand Frappier Laboratory in Quebec for dairy herds in QUE (table 3.1).

3

4 3.3.3 Statistical analysis

5 For BLV and MAP, the seroprevalence estimates and 95% confidence intervals were
6 determined for the proportion of cattle and herds that were seropositive by utilizing
7 survey commands in STATA (Statistical package, v.8; Stata Press, College Station,
8 Texas, USA) which adjusted for within herd clustering, sampling weights and
9 stratification at the provincial level. Herd level seroprevalence was calculated using 2
10 definitions: 1) positive herds had at least one test positive animal; and 2) positive herds
11 had at least two test positive animals. Furthermore, estimated true prevalences at the
12 animal and herd levels were calculated (17), correcting for test sensitivity and specificity
13 (22).

14 Herd level estimates of BVDV prevalence were calculated using 2 definitions: 1) a
15 positive herd had at least one animal with antibodies against BVDV, and 2) a positive
16 herd had at least one animal with a titer of $\geq 1:64$ for BVDV. The latter definition is
17 based on Houe's study (23), where titers in this range in unvaccinated cattle over six
18 months of age were likely to represent recent exposure to BVDV, either from the
19 presence of a persistently infected animal on the farm, or an acutely infected animal
20 recently introduced to the farm. An analysis of the distribution of titers in the current
21 study showed that most herds with cattle having titers of $\geq 1:64$ also had cattle with titers
22 of 1:256 (the highest dilution tested). Conversely, most herds with cattle having titers of

1 1:32 did not have cattle with titers greater than 1:32. Therefore, a titer of $\geq 1:64$ was
2 determined to be a natural cut point for this population.

3

4 3.3.4 Spatial analysis

5 For confidentiality reasons, regions within provinces were identified for geographical
6 representation of seroprevalence data at a subprovincial level without revealing the
7 specific location of farms. The regions were aggregations of contiguous census divisions
8 that were large enough to contain at least four study herds, ensuring confidentiality of
9 results and reasonable stability and representative of region estimates. An exception to
10 this aggregation process was in northern, sparsely inhabited, parts of provinces where
11 regions without study herds were identified and indicated as such.

12 A choropleth map for herd level BVDV seroprevalence was created, showing the
13 percentage of farms in each region that had at least 1 seropositive ($\geq 1:64$ titer) animal.
14 For MAP, due to the low animal level seroprevalence, a choropleth map for herd level
15 seroprevalence was also created, showing the percentage of farms in each region that had
16 at least two seropositive animals. Because more than 75% of farms had at least one test
17 positive animal for BLV, and there was a wide, right-skewed, distribution in animal level
18 seroprevalences on positive farms (3-100%), a choropleth map showing simple herd level
19 seroprevalence would be less informative than a map that somehow combines both
20 animal and herd level seroprevalence information. Therefore, in preparation for the BLV
21 map, the median within herd animal level seroprevalence for all farms was first
22 determined. It was then determined whether each farm had a seroprevalence that was
23 above or below this median. Finally, a choropleth map for BLV exposure was created

1 showing, by region, the percentage of farms with higher “within herd seroprevalence”
2 than the median seroprevalence. All mapping utilized the software package ArcView GIS
3 (version 3.3).

4 In order to identify whether there was significant spatial clustering of seroprevalence
5 levels, the Moran’s I statistic for BLV- and MAP-seroprevalence and the K-function
6 statistic for BVDV-seropositivity were calculated using GeODa 0.9.5⁴ and R⁵. Local
7 indicators of spatial autocorrelation (LISA) were determined using SaTScan⁶ to identify
8 specific locations of spatial clustering. The distribution of BLV and MAP cases was
9 assumed to be Poisson and the distribution of herds having at least one seropositive
10 ($\geq 1:64$ titer) animal was assumed to be binomial. Scanning windows of up to 50% of the
11 study population were used to identify clusters and a likelihood-ratio test statistic was
12 calculated for each cluster identified. The position of these significant clusters (>100 km
13 radius) are shown in choropleth maps (3.1-3.3).

⁴ Luc Anselin and The Regents of the University of Illinois

⁵ R Development Core Team (2003). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3, URL <http://www.R-project.org>.

⁶ M Kulldorff and Information Management Services Inc. SaTScan version 3.03 (<http://srab.cancer.gov/satscan/>)

1 **3.4 Results**

2

3 **3.4.1 Descriptive statistics**

4 The final dataset for BLV and MAP contained 398 and 373 herds with 10768 and
5 10578 cows. Logistical problems (eg. errors in animal or vial identifications on the farms
6 or at the different labs) lead to the small differences in the number of cows tested. Of the
7 398 herds, BVDV testing was done for 323 herds because 75 herds had aggressive
8 BVDV vaccination protocols, and therefore did not have unvaccinated cattle > 6 months
9 of age.

10 Overall, the production records were obtained from 346 herds. Comparison of the
11 sampled cows and herds to national industry averages for farms utilizing monthly milk
12 testing (Table 3.2) did not identify any significant differences. Therefore, the random
13 selection of study herds and cows produced a sample population that was representative
14 of the Canadian dairy industry as a whole.

15 In total, 30.3% and 3.1% of the cattle were positive for the antibodies to BLV and
16 MAP, respectively. At the herd level, 76.6% of herds had at least one seropositive cow
17 for BLV, 31.2% had at least one animal with a titer $\geq 1:64$ for BVDV, and 18.9% had at
18 least two seropositive cows for MAP. Tables 3.3-3.5 provide detailed results of BLV,
19 BVDV and MAP seroprevalences, by province, and overall.

20 Table 3.3 shows the proportion (and 95% confidence interval) of cows seropositive for
21 BLV, the proportion of herds with at least 1 BLV-seropositive cow, and the average
22 within-herd BLV-seroprevalence (in herds having at least 1 BLV-seropositive cow). The
23 dairy herds in MAN had a significantly higher proportion of BLV-seropositive cows and

1 seropositive herds compared to dairy herds in all other provinces, with only a few
2 exceptions; the proportion of herds having at least one BLV-seropositive cow in MAN
3 was not significantly different from ONT and SASK ($P > 0.05$), and the average within
4 herd seroprevalence for BLV in MAN was not significantly different from herds in NB.
5 The estimated true prevalence of exposure to BLV, adjusting for test sensitivity and
6 specificity, were determined to be 30.7% and 75.9% at the animal and herd levels,
7 respectively.

8 Table 3.4 shows the proportion (and 95% CI) of BVDV-seropositive cattle, the
9 proportion of cattle with a titer $\geq 1:64$, the proportion of BVDV-seropositive herds, and
10 the proportion of herds with at least one animal with a BVDV titer $\geq 1:64$. In PEI, more
11 cattle were seropositive and had significantly more number of cattle with titers $\geq 1:64$
12 compared other provinces. However, at the herd level, no significant differences between
13 provinces were observed when comparing the proportions of herds with at least one
14 animal with a titer $\geq 1:64$. In ALTA, there were significantly fewer herds with at least
15 one animal with a BVDV titer compared to herds in PEI and NB. The estimated true
16 prevalence of exposure to BVDV, adjusting for test sensitivity and specificity, was
17 determined to be 28.17% at the herd level.

18 Table 3.5 shows the proportion (and 95% confidence interval) of cows seropositive for
19 MAP, the proportion of herds with at least 1 and 2 MAP-seropositive cows, and the
20 within herd MAP-seroprevalence in herds having at least 1 and 2 MAP-seropositive
21 cows. The dairy herds in ALTA had significantly more MAP-seropositive cows and a
22 significantly higher within-herd seroprevalence (in herds with at least 1 seropositive cow)
23 compared to dairy herds in other provinces. ALTA also had more herds with at least 2

1 seropositive cows than all other provinces except the MAN. Among herds with at least 2
2 seropositive cows, the average within-herd seroprevalence among herds in ALTA was
3 significantly higher than PEI, MAN and SASK. There were significantly fewer
4 seropositive dairy herds (herds with at least 1 seropositive cow) in PEI compared to
5 MAN and ALTA. The estimated true prevalence of exposure to MAP, adjusting for test
6 sensitivity and specificity, were determined to be 21% and 40% at the animal and herd
7 levels, respectively.

8

9 3.4.2 Spatial analyses

10 For BLV, Map 3.1 shows the percentage of farms in each region with higher “within
11 herd prevalence” than the median seroprevalence (22%) at the animal level. The regions
12 in MAN show higher percentage of farms having BLV than other parts of Canada. For
13 the BVDV, Map 3.2 shows the percentage of farms in each region that had at least one
14 seropositive ($\geq 1:64$ titer) animal. The choropleth map did not identify any areas with high
15 percentage of farms having recent BVDV infection. For MAP, Map 3.3 shows the
16 percentage of farms in each region that had at least 1 seropositive animal. Certain regions
17 in the western Canadian provinces of ALTA and MAN showed higher percentages of
18 farms with high seroprevalence of MAP as compared to regions in the eastern provinces.

19 The Global Moran’s I statistic for BLV and MAP indicated significant ($P < 0.05$)
20 positive spatial autocorrelation of 0.16 and 0.15 (see Maps 3.2 and 3.3). The K-function
21 for BVDV did not find significant spatial autocorrelation. The SaTScan statistical
22 analyses detected 4 and 1 significant clusters for BLV and MAP, respectively. The radius
23 of the clusters were 303, 77, 35 and 104 km for BLV, and 165 km for MAP. No

- 1 significant clusters were detected for BVDV. The position and size of the clusters (radius
- 2 > 100 km) for BLV and MAP are shown in Maps 3.1-3.3.

1 **3.5 Discussion**

2

3 This study was part of a national project designed to determine the seroprevalence,
4 spatial distribution, effects and risk factors of BLV-, BVDV-, MAP- and NC-
5 seropositivity in Canadian dairy cattle. Farmers in eight out of ten Canadian provinces
6 (which comprised 95% of dairy herds in Canada)⁷ participated in this study. Similar
7 random selection procedures at the herd (except in ONT) and cow level were utilized to
8 ensure that the study population was representative of the target population. Summary
9 statistics (see Table 3.1) from the study herds were compared to national parameters and
10 indicated good representativeness. The summary statistics from ONT herds compared
11 well to the other provinces, and the herd level residual normal probability plots in the
12 model diagnostic tests indicated that the representative assumption was not violated for
13 the ONT herds (data not shown).

14 Survey statistics were utilized to estimate the apparent animal and herd level
15 seroprevalence, which allowed prevalence estimates to be adjusted for probability
16 weights of each sampled cow and herd, and stratification at the provincial level. Spatial
17 data analyses included two steps: 1) visualization (descriptive interpretation); and 2)
18 exploration (identification of pathogen exposure clusters through global and local
19 statistic). The Satscan statistic was particularly useful for the identification of the
20 presence and location of clusters because it utilized the full cow-level prevalence data
21 rather than just herd-level seroprevalence of the randomly selected herds. The global
22 statistics (eg. Moran's-I) for BLV and MAP-seropositivity were significantly correlated
23 with the Satscan statistic, providing corroboration of the findings of the Satscan statistic.

⁷ Canadian Diary Herd Improvement, Dairy Section, AAFC.

1 BLV, BVDV and MAP are mostly transmitted between regions and herds through
2 introduction of infected cattle. Clusters of BLV- and MAP-seropositivity may indicate
3 where some herds share common risk factors (management practices like grazing,
4 vaccination, testing or buying/exchanging cattle with neighbours). Herd and cow level
5 risk factors have been determined and described elsewhere (24,25). Areas having clusters
6 can be targeted in the initial phase of control programs to prevent the spread of disease to
7 less affected areas.

8 In the past (1980, 1986, 1989), surveys done in Canada, ONT and PEI reported that
9 19.7%, 47% and 49.2% of herds had at least one BLV-seropositive cow (BLV-
10 seropositive herd) and 3.6%, 24.2% and 5.5% of the cattle were BLV-seropositive
11 (4,26,27). The lack of a widely adopted control program for BLV is likely partially
12 responsible for the apparent increase in herd and cow level prevalence since the 1970s
13 and 1980s. A recent survey (1996) in the United States reported herd and animal level
14 seroprevalence estimates of 89% and 43% (3). The European Economic Community has
15 been able to reduce the animal level seroprevalence for BLV to 0.5% - 1.5% by utilizing
16 a “test and cull” control program. However, with higher herd and animal level BLV-
17 seroprevalence in North American dairy herds, testing and implementation of corrective
18 management may be a better option, especially in herds with a high BLV-seroprevalence.
19 Reasons for clusters of elevated seroprevalences in some parts of Canada will be
20 examined and reported elsewhere.

21 Houe et al. (1992) (23) showed that when 5 cattle (unvaccinated for BVDV and at
22 least 6 month old) were sampled per herd, the probability of finding at least 1
23 seropositive animal was 98% if there was a Persistently Infected animal in the herd, and

1 the probability of having at least 1 seropositive animal if there was no PI in the herd was
2 5%(16). However, introduction of a transiently infected and shedding animal into a herd
3 could also produce antibody titers in unvaccinated animals. Therefore, our results
4 indicate that 31% of herds were recently exposed to either a persistently or transiently
5 infected animal with BVDV. There were an additional 14% of tested herds which had
6 BVDV-seropositive animals but without any titers $\geq 1:64$, and some of these herds could
7 be harbouring a persistently infected animal that has not had recent exposure to the 5
8 tested cattle.

9 Similar sampling strategies have been utilized efficiently in detecting herds with
10 carriers in European BVDV eradication programs. Our study identifies a similar
11 Canadian estimate of BVDV exposure to Denmark before that country embarked on its
12 eradication program (28) and lower than in Sweden (29). Persistently infected cattle are
13 important sources of infection to other cattle and their identification and elimination is an
14 important feature of an effective BVDV control program, along with a proper vaccination
15 protocol.

16 MAP-seroprevalence is difficult to estimate because of the chronic nature of the
17 infection and the lack of accurate diagnostic tests for subclinically infected cattle (20).
18 The estimated true prevalence, adjusting for test sensitivity and specificity, is particularly
19 important to examine for MAP due to the poor sensitivity and specificity of ELISA tests
20 for MAP exposure.

21 Although all of the provincial studies were conducted on the same number of animals
22 per herd with the same IDEXX ELISA test for MAP exposure, using the same cut-off
23 value for interpretation of test positives, interprovincial comparisons between these

1 seroprevalence estimates should be interpreted with caution for a number of reasons.
2 First, the Ontario study was not a randomly selected population of herds and therefore,
3 may have produced biased prevalence estimates. The study in Ontario primarily consisted
4 of herds that were purposely chosen to monitor disease incidence through accurate record
5 keeping, and therefore could have lead to an underestimate of the true prevalence in
6 Ontario (this may also be applicable to the BVDV- and BLV-seroprevalence estimates).
7 Support of this likely underestimation comes from an earlier large MAP study in Ontario
8 conducted in 1986-89. This survey of 14,932 cows in 304 dairy herds in Ontario found
9 15.2% of the animals tested seropositive using a LAM-ELISA (12), much higher than the
10 current study of 2.4% test positive cows. It is unlikely that the difference in these
11 estimates is entirely due to differences in test performance of these two ELISA tests. A
12 control program for JD did not exist in Ontario during the time between the two studies,
13 therefore it is highly unlikely that the MAP-seroprevalence would have declined between
14 1989 and 1998.

15 Furthermore, sensitivity estimates for MAP-ELISAs differ widely with stage of
16 disease, and therefore differences in age distribution and other factors related to stage of
17 disease would also be important in seroprevalence interpretations. Adjustments to the
18 apparent seroprevalences to calculate estimated true prevalences are unlikely to
19 completely clarify prevalence comparisons between provinces or within a province over
20 time.

21 Finally, while the vast majority of the testing was done in the same laboratory,
22 directors of sampling for some provinces elected to have laboratory testing done at a
23 laboratory in their own province, occasionally even utilizing a different test. Funding was

1 not available to test a subsample of sera at all participating laboratories to confirm
2 agreement of results between laboratories. Even when the same test was utilized at the
3 same laboratory, differences in technical staff or protocols over time may have also
4 affected some of the results due to the study being conducted over a period of 5 years.
5 Funding for the project was obtained incrementally, with directors from each province in
6 charge of obtaining the funding necessary for the dairy herds in that province to be tested.
7 The large size and scope of this project, with multiple jurisdictions and coordinators
8 made avoidance of these possible biases impossible.

9 In conclusion, exposure to BLV is high in Canadian dairy cattle, with significant
10 clustering in certain parts of the country, while exposure to MAP is lower and somewhat
11 spatially clustered. There is evidence that a third of Canadian dairy farms have been
12 exposed to BVDV in the recent past, without any significant regional differences. Given
13 these prevalences and the potential undetected spread of these pathogens, dairy farmers
14 and veterinarians should consider herd screening tests and control programs for herds
15 testing positive.

1 **3.6 Acknowledgements**

2

3 The authors wish to acknowledge Dr. LeeAnn Forsythe and Ms. Renee Chartier of the
4 Saskatchewan Department of Agriculture (Food and Rural Revitalization, Inspection and
5 Regulatory Management Branch, Animal Health Unit), Karen Kemp of Manitoba
6 Agriculture, the accredited Johne's veterinarians of Alberta, and laboratory scientists and
7 staff of Alberta Agriculture, Food and Rural Development for their technical and
8 logistical support in the collection of samples and data from the participating farmers in
9 Saskatchewan, Manitoba and Alberta, respectively.

10 The authors wish to acknowledge the following funding sources. Dairy Farmers of
11 Canada, Canadian Food Inspection Agency, and Production Limiting Diseases
12 Committee, Atlantic Veterinary College, Dairy Farmers of PEI, PEI Agricultural
13 Research Investment Fund, Dairy Farmers of Ontario, Manitoba Agriculture, Dairy
14 farmers of Manitoba, Saskatchewan Agriculture, Western Economic Partnership
15 Agreement, and Food Safety Division of Alberta Agriculture, Food and Rural
16 Development.

1 **3.7 References**

- 2
- 3 1. Vanleeuwen JA, Keefe GP, Tremblay R, Power C, Wichtel JJ. Seroprevalence of
4 infection with *Mycobacterium avium* subspecies *paratuberculosis*, bovine
5 leukemia virus, and bovine viral diarrhea virus in maritime Canada dairy cattle.
6 *Can Vet J* 2001;42(3):193-198.
- 7 2. Pelzer KD. Economics of bovine leukemia virus infection. *Vet Clin North Am*
8 *Food Anim Pract* 1997;13(1):129-141.
- 9 3. Ott SL, Johnson R, Wells SJ. Association between bovine-leukosis virus
10 seroprevalence and herd-level productivity on US dairy farms. *Prev Vet Med*
11 2003;61(4):249-262.
- 12 4. Samagh BS, Kellar JA. Seroepidemiological survey of bovine leukaemia virus
13 infection in canadian cattle. *Fourth International Symposium on Bovine Leukosis*
14 1982.
- 15 5. Houe H. Epidemiology of bovine viral diarrhea virus. *Vet Clin North Am Food*
16 *Anim Pract* 1995;11(3):521-547.
- 17 6. Merkal RS, Whipple DL, Sacks JM, Snyder GR. Prevalence of *Mycobacterium*
18 *paratuberculosis* in ileocecal lymph nodes of cattle culled in the United States. *J*
19 *Am Vet Med Assoc* 1987;190(6):676-680.
- 20 7. McKenna SL, Keefe GP, Barkema HW, McClure J, Vanleeuwen JA, Hanna P et
21 al. Cow-level prevalence of *paratuberculosis* in culled dairy cows in Atlantic
22 Canada and Maine. *J Dairy Sci* 2004;87(11):3770-3777.
- 23 8. Braun RK, Buergelt CD, Littell RC, Linda SB, Simpson JR. Use of an enzyme-
24 linked immunosorbent assay to estimate prevalence of *paratuberculosis* in cattle
25 of Florida. *J Am Vet Med Assoc* 1990;196(8):1251-1254.
- 26 9. Boelaert F, Walravens K, Biront P, Vermeersch JP, Berkvens D, Godfroid J.
27 Prevalence of *paratuberculosis* (Johne's disease) in the Belgian cattle population.
28 *Vet Microbiol* 2000;77(3-4):269-281.
- 29 10. Thorne JG, Hardin LE. Estimated prevalence of *paratuberculosis* in Missouri,
30 USA cattle. *Prev Vet Med* 1997;31(1-2):51-57.
- 31 11. VanLeeuwen JA, Forsythe L, Tiwari A, Chartier R. Seroprevalence of antibodies
32 against bovine leukemia virus, bovine viral diarrhea virus, *Mycobacterium avium*
33 subspecies *paratuberculosis*, and *Neospora caninum* in dairy cattle in
34 Saskatchewan. *Can Vet J* 2005;46(1):56-58.

- 1 12. McNab WB, Meek AH, Martin SW, Duncan JR. Associations between dairy
2 production indices and lipoarabinomannan enzyme-immunoassay results for
3 paratuberculosis. *Can J Vet Res* 1991;55(4):356-361.
- 4 13. Moran PAP. Notes on continuous stochastic phenomena. *Biometrika* 1950;37:17-
5 23.
- 6 14. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. *Stat
7 Med* 1995;14(8):799-810.
- 8 15. Haddad JP, Dohoo IR, VanLeeuwen JA, Keefe GP, Tiwari A. Seroprevalence and
9 spatial distribution of neospora caninum in canadian dairy herds. Planned to be
10 submiited to *Can Vet Journal* 2005.
- 11 16. Houe H. Serological analysis of a small herd sample to predict presence or
12 absence of animals persistently infected with bovine viral diarrhoea virus
13 (BVDV) in dairy herds. *Res Vet Sci* 1992;53(3):320-323.
- 14 17. Martin SW, Meek AH, Willeberg P. *Veterinary Epidemiology - Principles and
15 Methods*. Ames, Iowa: Iowa State Univ Pr, 1987.
- 16 18. Sockett DC, Conrad TA, Thomas CB, Collins MT. Evaluation of four serological
17 tests for bovine paratuberculosis. *J Clin Microbiol* 1992;30(5):1134-1139.
- 18 19. Johnson RJ, Kaneene JB. Bovine Leukemia Virus. Part I. Descriptive
19 Epidemiology, Clinical Manifestations, and Diagnostic tests. *Compendium on
20 Continuing Education* 1991;13:328.
- 21 20. Dargatz DA, Byrum BA, Barber LK, Sweeney RW, Whitlock RH, Shulaw WP et
22 al. Evaluation of a commercial ELISA for diagnosis of paratuberculosis in cattle.
23 *J Am Vet Med Assoc* 2001;218(7):1163-1166.
- 24 21. Deregt D, Smithson S, Kozub GC. A short incubation serum neutralization test
25 for bovine viral diarrhea virus. *Can J Vet Res* 1992;56(2):161-164.
- 26 22. McKenna SLB, Keefe GP, Barkema HW, Sockett DC. Evaluation of three
27 ELISAs for *Mycobacterium avium* subsp. *paratuberculosis* using tissue and fecal
28 culture as comparison standards. Accepted in *Veterinary Microbiology* 2005.
- 29 23. Houe H. Serological analysis of a small herd sample to predict the presence of
30 animals persistently infected with bovine viral diarrhoea virus (BVDV) in dairy
31 herds. *Res Vet Sci* 1992;53:320-323.
- 32 24. Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Haddad JP, Keefe GP.
33 Prevalence, spatial distribution and management factors associated with
34 seroprevalence for *Mycobacterium avium* subspecies *paratuberculosis* in
35 Canadian dairy cattle. *Proceedings of tenth International Symposium of
36 Veterinary Epidemiology and Economics* 2003.

- 1 25. Tiwari A, VanLeeuwen JA, Dohoo IR, Haddad JP, Keefe GP. Prevalence, spatial
2 distribution and management factors associated with seroprevalence for Bovine
3 leukemia virus in Canadian dairy cattle. Proceedings of tenth International
4 Symposium of Veterinary Epidemiology and Economics 2003.
- 5 26. Herald MTS, Waltner-Toews D, Jacobs RM. The prevalence of anti-bovine
6 leukemia virus antibodies in dairy cows and association with farm management
7 practices, production and culling in Ontario. Prev Vet Med 1992;14:45-55.
- 8 27. Richardson GF, MacAulay EB. The prevalence of bovine leukemia virus infection
9 in dairy cows on Prince Edward Island. Can Vet J 1992;33:188-189.
- 10 28. Houe H, Baker JC, Maes RK, Lloyd JW, Enevoldsen C. Comparison of the
11 prevalence and incidence of infection with bovine virus diarrhoea virus (BVDV)
12 in Denmark and Michigan and association with possible risk factors. Acta Vet
13 Scand 1995;36(4):521-531.
- 14 29. Niskanen R. Relationship between the levels of antibodies to bovine viral
15 diarrhoea virus in bulk tank milk and the prevalence of cows exposed to the virus.
16 Vet Rec 1993;133(14):341-344.
- 17

18 Table 3.1: Year of sample collection, test and laboratory utilized for BLV, BVDV and MAP testing in a seroprevalence survey of
 19 eight Canadian provinces.

Province	Year	BLV		BVDV		MAP	
		Diag test	Diag lab	Diag test	Diag lab	Diag test	Diag lab
ALTA	2002-03	IDEXX-E	Nat BLV lab ^a	VN - Singer	ADR Insti	BIOCOR-E	Alta Agri Lab
MAN	2002	IDEXX-E	Nat BLV lab ^a	VN - Singer	ADR Insti	IDEXX-E	Man Agri Lab
NB	1998	IDEXX-E	Nat BLV lab ^a	VN - Singer	ADR Insti	IDEXX-E	Prairie Diag
NS	1998	IDEXX-E	Nat BLV lab ^a	VN - Singer	ADR Insti	IDEXX-E	Prairie Diag
ONT	1998	IDEXX-E	Nat BLV lab ^a	VN - Singer	ADR Insti	IDEXX-E	Prairie Diag
PEI	1998	IDEXX-E	Nat BLV lab ^a	VN - Singer	ADR Insti	IDEXX-E	Prairie Diag
QUE	2002	IDEXX-E	BIOVET Inc ^b	VN - Singer	ARM FRAPP	IDEXX-E	BIOVET Inc ^b
SASK	2001	IDEXX-E	Nat BLV lab ^a	VN - Singer	ADR Insti	IDEXX-E	Prairie Diag

20 ALTA = Alberta, MAN = Manitoba, NB = New Brunswick, NS = Nova Scotia, ONT = Ontario, PEI = Prince Edward Island, QUE =
 21 Quebec and SASK = Saskatchewan, Year- Year of sample collection, Diag test- Diagnostic test, Diag lab- Diagnostic laboratory, E-
 22 ELISA, a- National BLV testing laboratory in Prince Edward Island (now in Quebec), b- BIOVET Inc. laboratory in Quebec, VN -
 23 Virus Neutralizing antibody test, ADR Insti- Animal Diseases Research Institute in Alberta, ARM FRAPP – Armand Frappier
 24 Institute in Quebec; SEMI-COLONS BETWEEN ALL; Prairie Diag- Prairie Diagnostic Services in Saskatchewan, Man Agri Lab-
 25 Manitoba Agricultural Laboratory in Manitoba, Alta Agri lab- Alberta Agriculture, Food and Rural Development Food Safety
 26 Division Laboratory.

27 Table 3.2 Demographies and productivity of 10768 sample cows from 398 Canadian
28 dairy herds versus national industry averages.

	Study Population estimates (95% Confidence interval)	Canadian Dairy Industry estimates (from 1999-2003) ⁸
Mean 305 d milk	8637-9363 kg	8960-9519 kg
Mean 305 d fat	317-337 kg	331-351 kg
Mean 305 d protein	276-300 kg	290-306 kg
Mean herd size of milking cows	58-76	50-62

29

⁸http://www.dairyinfo.gc.ca/pdf_files/statsbook2005.pdf.

30 Table 3.3 Animal and herd level seroprevalence results for Bovine Leukemia Virus for
 31 10768 dairy cows from 398 Canadian farms.

	Cows + ^a	Herds 1+ ^b	+ in Herds 1+ ^c
	p (95% CI)	p (95% CI)	p (95% CI)
Canada	30.3 (25-36)	76.6 (69-84)	40.5 (35-46)
ALTA	29.2 (23-35)	85.0 (76-93)	34.3 (28-41)
MAN	59.8 (51-69)	97.4 (93-100)	61.4 (52-70)
NB	28.7 (18-41)	76.7 (61-93)	39.0 (25-53)
NS	16.1 (10-25)	70.0 (52-87)	21.7 (13-30)
ONT	35.1 (25-45)	85.3 (73-98)	41.0 (31-51)
PEI	16.6 (9-29)	63.3 (45-82)	27.3 (12-42)
QUE	f	f	f
SASK	37.4 (29-46)	89.1 (81-97)	42.0 (33-51)

32 ^aCows testing positive

33 ^bHerds with at least 1 cow testing positive

34 ^cCows testing positive in herds with at least 1 cow testing positive

35 ^fResults for Quebec have not been publicly released at the time of publication

36 p = Proportion

37 CI = Confidence Interval

38 ALTA = Alberta, MAN = Manitoba, NB = New Brunswick, NS = Nova Scotia, ONT =

39 Ontario, PEI = Prince Edward Island, QUE = Quebec and SASK = Saskatchewan.

40 Table 3.4 Animal and herd level seroprevalence results for Bovine Viral Diarrhea Virus
 41 for 323 Canadian dairy farms.

	Cows + ^a	Cows $\geq 1:64$ ^b	Herds + ^c	Herds $\geq 1:64$ ^d
	p (95% CI)	p (95% CI)	p (95% CI)	p (95% CI)
Canada	19.9 (17-23)	12.3 (10-15)	44.7 (41-48)	31.2 (28-34)
ALTA	17.6 (7-28)	17.1 (7-27)	27.6 (13-42)	27.6 (13-42)
MAN	16.4 (4-29)	15.6 (3-28)	32.0 (12-51)	28.1 (9-47)
NB	37.5 (30-45)	23.7 (17-30)	66.7 (49-85)	46.7 (28-66)
NS	22.0 (15-29)	16.0 (10-22)	51.7 (32-71)	37.9 (19-57)
ONT	22.0 (10-34)	18.7 (7-30)	43.3 (24-62)	36.7 (18-55)
PEI	53.4 (45-61)	44.6 (36-53)	80.0 (65-95)	53.3 (34-72)
QUE	e	e	e	e
SASK	28.1 (16-40)	16.8 (6-27)	48.7 (31-66)	29.2 (13-45)

42 ^aCows testing positive with BVDV titers $\geq 1:2$

43 ^bCows testing positive with BVDV titers $\geq 1:64$

44 ^cHerds with at least 1 cow testing positive with BVDV titers $\geq 1:2$

45 ^dHerds with at least 1 cow with a BVDV titer $\geq 1:64$

46 ^eResults for Quebec have not been publicly released at the time of publication

47 p = Proportion

48 CI = Confidence Interval

49 ALTA = Alberta, MAN = Manitoba, NB = New Brunswick, NS = Nova Scotia, ONT =

50 Ontario, PEI = Prince Edward Island, QUE = Quebec and SASK = Saskatchewan.

51 Table 3.5: Animal and herd level seroprevalence results for Mycobacterium avium
 52 subspecies paratuberculosis for 10578 dairy cows from 373 Canadian farms.

	Cows + ^a	Herds 1+ ^b	Herds 2+ ^c	+ in Herds 1+ ^d	+ in Herds 2+ ^e
	p (95% CI)	p (95% CI)	p (95% CI)	p (95% CI)	p (95% CI)
Canada	3.1 (2.3-3.8)	39.1 (30-48)	18.9 (13-25)	7.8 (6.7-8.8)	11.8 (10.1-13.5)
ALTA	9.1 (6.3-12)	73.2 (59-87)	56.4 (42-71)	12.4 (9.2-16)	15.1 (11.3-19)
MAN	4.5 (2.8-6.2)	68.4 (52-84)	43.1 (25-61)	6.6 (4.6-8.6)	8.7 (6.7-10.6)
NB	2.9 (1.6-5.2)	43.3 (24-62)	16.7 (2-31)	6.4 (3.8-9.1)	11.0 (6.3-15.8)
NS	3.3 (1.7-6.0)	53.3 (34-72)	16.7 (2-31)	5.3 (3.7-7.0)	8.1 (4.5-11.7)
ONT	2.4 (1.3-3.4)	52.9 (35-71)	11.8 (1-23)	4.4 (3.2-5.7)	8.3 (3.0-13.6)
PEI	1.3 (0.7-2.6)	33.3 (15-51)	16.7 (2-31)	5.0 (3.8-6.2)	6.3 (4.7-7.9)
QUE	f	f	f	f	f
SASK	2.7 (1.6-3.9)	43.3 (27-59)	24.3 (10-39)	6.3 (4.8-7.7)	8.6 (6.7-10.6)

53 ^aCows testing positive

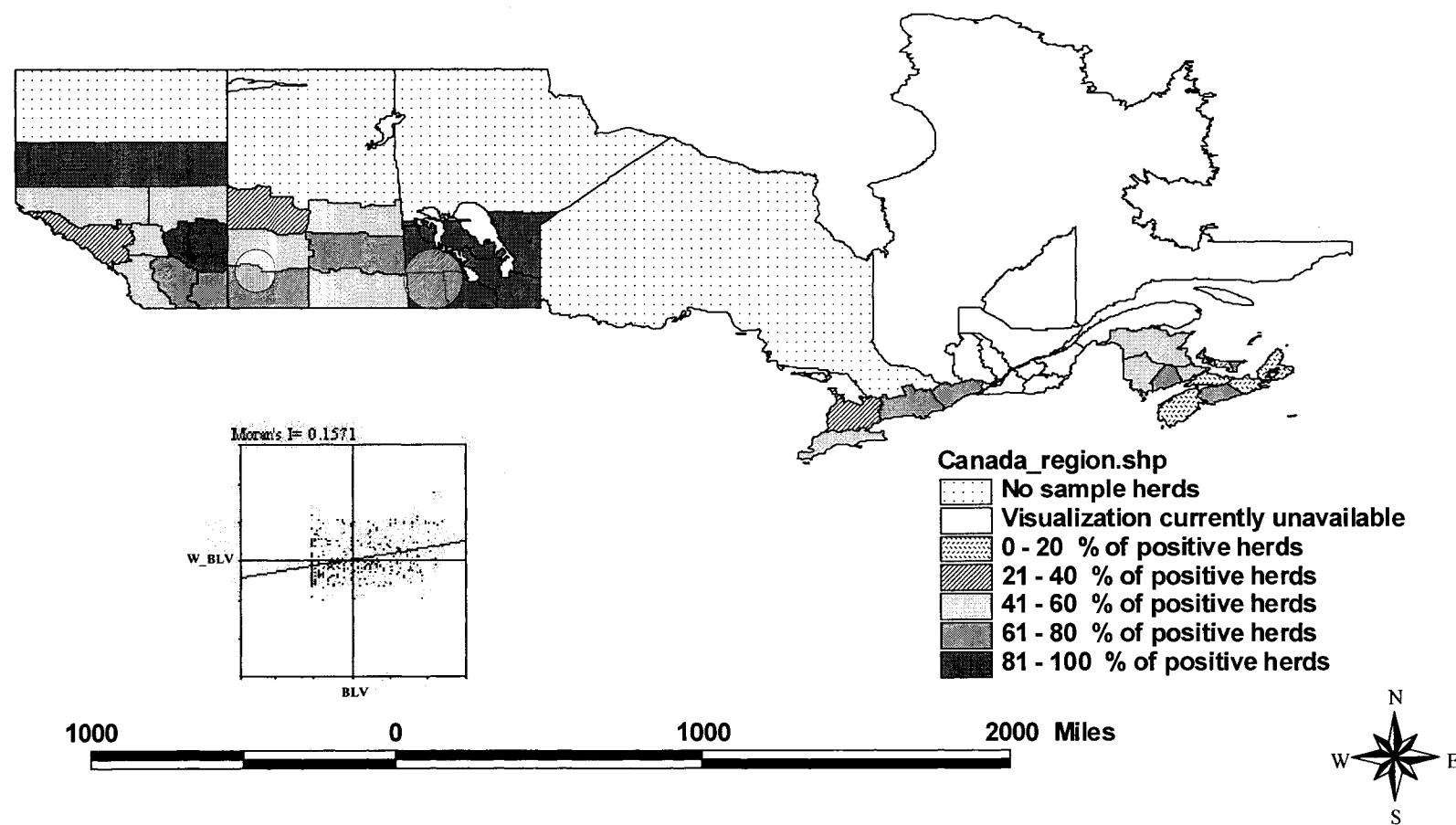
54 ^bHerds with at least 1 cow testing positive

55 ^cHerds with at least 2 cows testing positive

56 ^dCows testing positive in herds with at least 1 cow testing positive

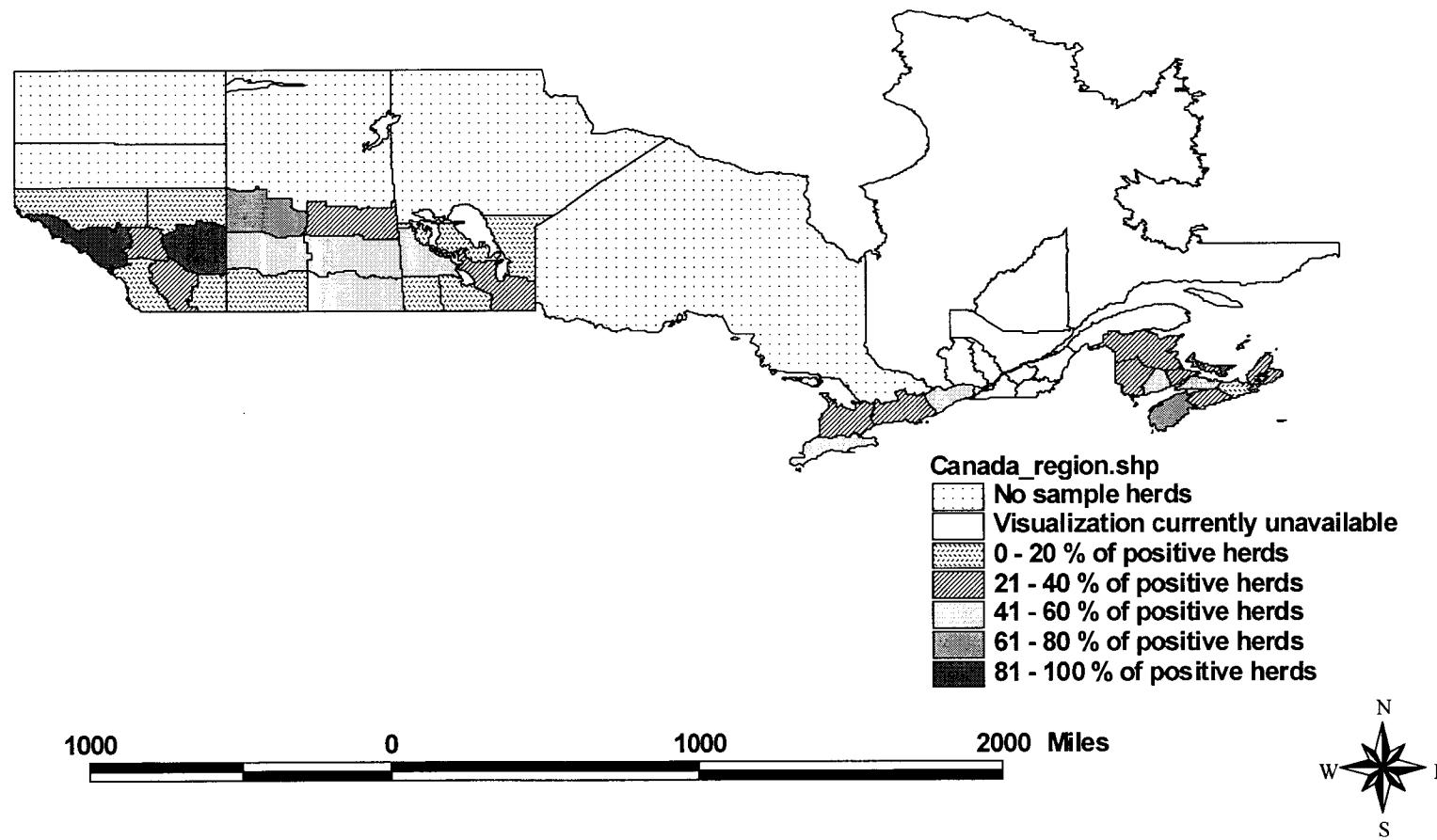
57 ^eCows testing positive in herds with at least 2 cows testing positive

58 ^fResults for Quebec have not been publicly released at the time of publication

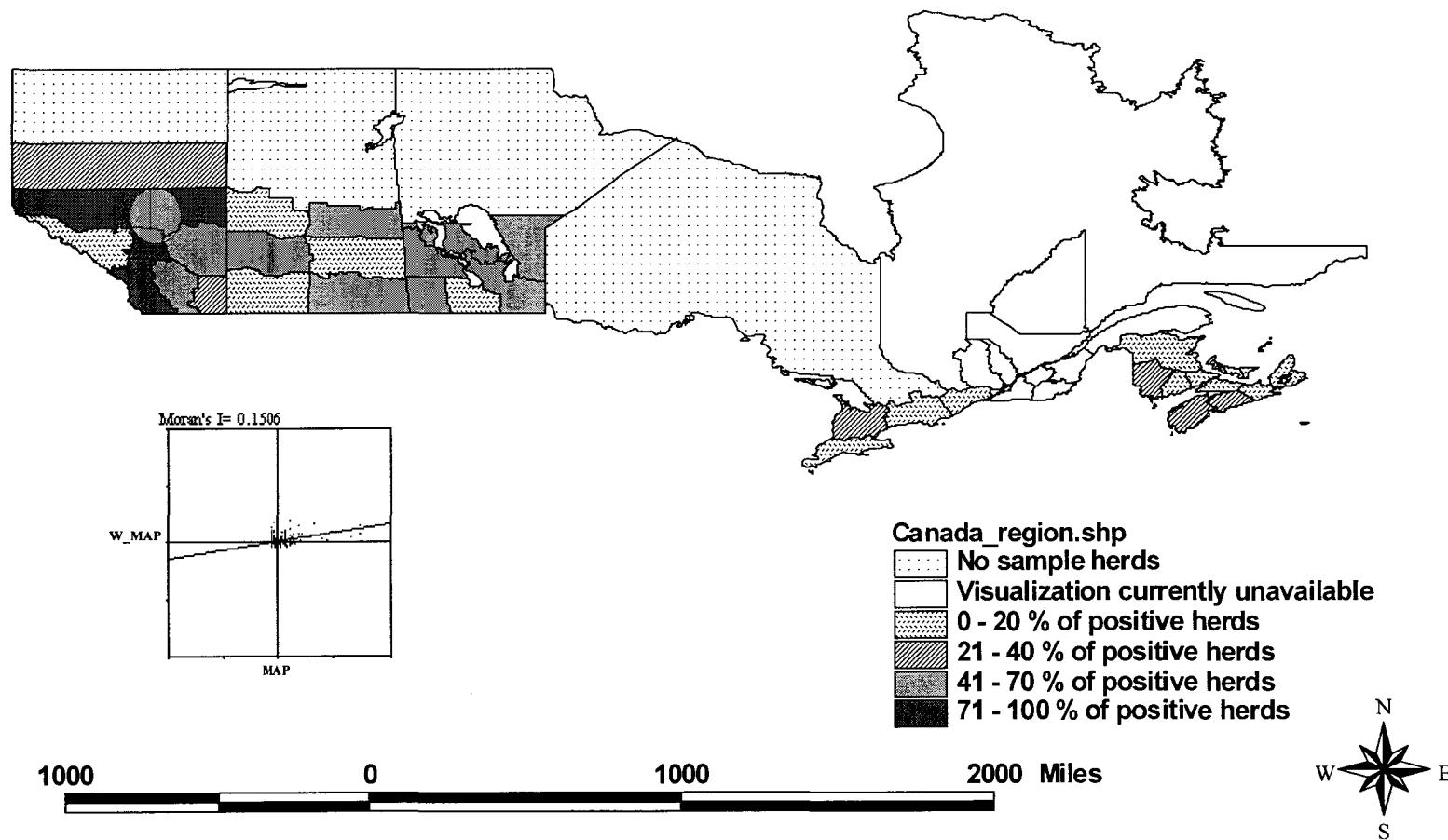

59 p = Proportion

60 CI = Confidence Interval

61 ALTA = Alberta, MAN = Manitoba, NB = New Brunswick, NS = Nova Scotia, ONT =


62 Ontario, PEI = Prince Edward Island, QUE = Quebec and SASK = Saskatchewan.

- 63 Map 3.1: Choropleth map showing the percentage of dairy farms with higher “within herd BLV-seroprevalence” than the Canadian
64 median, by region, based on 398 tested farms. Embedded Graph: Moran’s I statistic results of spatial autocorrelation of
65 seroprevalence for BLV in Canadian dairy farms⁹. Embedded circles: show the position and size of significant clusters.


⁹ Due to the fact that the results from the province of Quebec are not publicly released at the time of publication, the seroprevalence, and existence and location of clusters in Quebec cannot be reported

66 Map 3.2: Choropleth map showing the percentage of dairy farms containing unvaccinated cattle \geq 6 mo of age with BVDV titers \geq
67 1:64, by region, based on 323 tested Canadian farms¹⁰.

¹⁰ Due to the fact that the results from the province of Quebec are not publicly released at the time of publication, the seroprevalence, and existence and location of clusters in Quebec cannot be reported

68 Map 3.3: Choropleth map showing the percentage of farms in each region that had at least 1 seropositive animal, by region, based on
69 373 tested farms. Embedded Graph: Moran's I statistic results of spatial autocorrelation of seroprevalence for MAP in Canadian dairy
70 farms¹¹. Embedded circle: shows the position and size of the significant cluster.
71

¹¹ Due to the fact that the results from the province of Quebec are not publicly released at the time of publication, the seroprevalence, and existence and location of clusters in Quebec cannot be reported

1 **CHAPTER 4: Effects of bovine leukemia virus, bovine viral diarrhea virus,**
2 ***Mycobacterium avium* subspecies *paratuberculosis*, and *Neospora caninum* on milk,**
3 **fat and protein production and somatic cell count**

4

5 **4.1 Abstract**

6

7 The purpose of this research was to determine associations among seropositivity for
8 bovine leukemia virus (BLV), bovine viral diarrhea virus (BVDV), *Mycobacterium*
9 *avium* subspecies *paratuberculosis* (MAP) and *Neospora caninum* (NC) and each of 4
10 outcome variables (305 day milk, fat and protein production, and somatic cell count) in
11 Canadian dairy cattle. Serum samples from approximately 30 randomly selected cows
12 from each of 342 herds were tested for antibodies against BLV, MAP and NC using
13 commercially available ELISA test kits, while 5 unvaccinated cattle over 6 months of age
14 from each herd were tested for virus neutralizing antibodies to BVDV. Linear mixed
15 models with province, herd and cow as random variables were fitted with restricted
16 maximum likelihood estimates of outcome effects being obtained, while controlling for
17 potential confounding variables.

18 Regarding 305 day milk production (305 d milk), NC-seropositivity was associated
19 with a 158 kg decrease in 305 d milk in primiparous cows compared to NC-seronegative
20 primiparous cows. MAP-seropositivity was significantly associated with a 212 kg
21 decrease in 305 d milk in 4-plus lactation cows. Cows in BVDV-seropositive herds (at
22 least one unvaccinated animal with a titer $\geq 1:64$) had significantly lower 305 d milk (by
23 368 kg) compared to cows in BVDV-seronegative herds.

1 Among 1st lactation animals, NC-seropositivity was associated with a significant
2 reduction of 5.54 kg and 3.3 kg of 305 d fat and 305 d protein yields, respectively. There
3 were no statistically significant effects of MAP-seropositivity on 305 d fat or 305 d
4 protein yields. BVDV-seropositivity (at the herd level) was associated with reductions in
5 305 d fat and 305 d protein yields of 10.20 kg/cow and 9.46 kg/cow, respectively.
6 Regarding somatic cell counts, NC- (4+ lactation) and MAP-seropositivity were
7 associated with a 0.094 decrease and 0.098 increase in the lactation mean of the \log_{10}
8 somatic cell count. Cows in BVDV-seropositive herds had a significant increase in the
9 mean \log_{10} somatic cell count of 0.096. BLV-seropositivity was not associated with 305 d
10 milk, 305 d fat, 305 d protein or mean \log_{10} somatic cell count. There was no significant
11 effect modification of any of the outcomes examined from interaction between
12 seropositivity for any of the pathogens.

13 Approximately, 34.16%, 21.58% and 44.26% of average variations in 305 d milk
14 volume, 305 d fat and protein volumes were at the herd, cow and lactation levels.
15 However, 12.27%, 32.25% and 55.48% of the variation in mean \log_{10} somatic cell count
16 was at the herd, cow and lactation levels. Results from our research will assist better
17 understanding of the economic impacts of these pathogens and justification for their
18 control.

19
20 **(Key words:** Enzootic bovine leukosis; bovine viral diarrhea; paratuberculosis;
21 neosporosis; milk production; fat production; protein production; somatic cell count;
22 multilevel modeling.)

23

- 1 **Abbreviation key:** **BLV** = bovine leukemia virus, **BVDV** = bovine viral diarrhea virus,
- 2 **MAP** = *Mycobacterium avium* subspecies *paratuberculosis*, **NC** = *Neospora caninum*.

1 **4.2 Introduction**

2

3 Infectious disease agents, such as bovine leukemia virus (BLV), bovine viral diarrhea
4 virus (BVDV), *Mycobacterium avium* subspecies *paratuberculosis* (MAP) and *Neospora*
5 *caninum* (NC), that can be harbored in apparently healthy animals, are undergoing
6 increased scrutiny and research as a result of new World Trade Organization (WTO)
7 regulations concerning animal health and animal movement between countries (WTO,
8 Act 1994). In addition to the trade concerns, each of these organisms can lead to
9 substantial economic losses on infected farms. Based on an Maritime Canada (New
10 Brunswick - NB, Nova Scotia – NS, and Prince Edward Island - PEI) prevalence survey
11 of the above four pathogens, and literature estimates of associated costs, average direct
12 farm costs associated with infection with these organisms were estimated for infected
13 Atlantic Canadian dairy herds (Chi et al., 2002). The annual costs for BLV, BVDV,
14 MAP and NC were reported to be \$806, \$2421, \$2472 and \$2304 per infected herd,
15 respectively, assuming an average herd size of 50 cows and an average within herd
16 seroprevalence of BLV, MAP and NC in infected herds of 31%, 7% and 24%,
17 respectively (Keefe and VanLeeuwen, 2000; Vanleeuwen et al., 2001). However, there
18 were limited and/or inconsistent reports regarding the effects of subclinical infection with
19 these pathogens on milk production parameters and somatic cell counts that were
20 applicable to Canadian dairy herds and therefore, very conservative estimates of these
21 effects were included in these cost estimates (Chi et al., 2002). Salient published reports
22 of the effects on production, by pathogen, are summarized below.

1 The estimated effects of BLV infection on milk volume vary considerably in the
2 published literature, from a negative relationship (Brenner et al., 1989; D'Angelino et al.,
3 1998; Ott et al., 2003; Sargeant et al., 1997) to either no relationship or even a positive
4 relationship (Huber et al., 1981; Pollari et al., 1992; Wu et al., 1989). Seropositive cows
5 produced 3.5% less milk in a case-control study of 102 seropositive and seronegative
6 cattle pairs, matched on age and herd (Brenner et al., 1989). In another study, BLV-
7 seropositive cows produced more milk volume, protein and somatic cell count compared
8 to BLV-seronegative cows, but no significant associations were present after adjusting
9 for possible confounding variables such as age (Jacobs et al., 1991). Milk volume in
10 BLV-infected herds has been reported to be 3% less than BLV-negative herds (Ott et al.,
11 2003). However, these herd differences in milk volume could simply be due to difference
12 in management practices or herd characteristics (e.g. distribution of parity), factors that
13 were not controlled in the analyses in this study. There are no published reports of effects
14 of BLV-seropositivity on milk fat or somatic cell count.

15 David et al., (1994) reported 23% lower milk volume in affected cows among herds
16 having BVDV outbreaks in the United Kingdom over a 2-week period. Another study
17 conducted in 13,971 Norwegian dairy herds, reported a 7% increase in the incidence of
18 clinical mastitis in the year of apparent BVDV exposure (Waage, 2000). While it is
19 understandable that herds with clinically affected animals would likely have a low milk
20 volume, fat, protein and increased incidence of clinical mastitis, it is still unclear whether
21 herds with primarily subclinically infected animals have lower milk, fat or protein
22 volume, or increased somatic cell count compared to uninfected herds.

1 For MAP, Benedictus et al., (1987) reported a 6% reduction in milk volume in the
2 second to last lactation and a 16% reduction in the final lactation prior to culling in
3 histopathologically positive, subclinically infected cows compared to culled cows without
4 histopathological evidence of MAP infection. Similarly, a 15% (835 kg) reduction in
5 mean annual milk yield in fecal culture positive subclinically infected cows has been
6 reported, compared to fecal culture negative cows (Abbas et al., 1983). A 4% (376 kg)
7 reduction in mature equivalent milk production in ELISA-positive cows has been
8 reported, compared to ELISA-negative cows (Nordlund et al., 1996). In contrast, others
9 have reported no significant decrease in milk volume in culled, asymptomatic, fecal
10 culture-positive or histopathologically positive cows compared to test-negative culled
11 cows (Buergelt and Duncan, 1978), or ELISA seropositive and fecal culture positive
12 cows (Johnson et al., 2001), compared to test-negative cows. Some of these studies
13 (Johnson et al., 2001; Wilson et al., 1993) have suggested that the observed reduction in
14 milk volume may not occur across all lactations. However, there is still a wide variation
15 in the estimates of reduced milk volume between studies, which may be due to
16 differences in study design, diagnostic tests used, biological differences between the
17 study populations or productivity differences over time.

18 The effects of MAP-seropositivity on 305 d fat, 305 d protein production and somatic
19 cell count are less well documented and less consistent in the published literature than
20 effects on 305 d milk production. The relationship between MAP-seropositivity and 305
21 d fat and 305 d protein production was not significant in one study (Johnson et al., 2001).
22 However, in another study, the daily milk fat and protein were significantly lower for
23 fecal culture positive cows compared to test-negative cows (Merkal et al., 1975; Sweeney

1 et al., 1994). McNab et al., (1991) reported a significant increase in somatic cell count in
2 LAM-ELISA seropositive cows compared to seronegative cows and a higher risk of
3 culling due to mastitis in culture positive cows compared to culture negative cows
4 (Merkal et al., 1975). However, deLisle and Milestone, (1989) and Wilson et al., (1993)
5 failed to find an increased risk of mastitis in cows testing positive for MAP compared to
6 test-negative cows, based on results from serum ELISA and fecal culture tests,
7 respectively.

8 Published reports on the effects of NC-seropositivity on milk volume are not
9 consistent. NC-seropositive first lactation heifers (Thurmond and Hietala, 1997b) and
10 multiparous cows (Hernandez et al., 2001) produced 384 kg and 385 kg less milk than
11 NC-seronegative first lactation heifers and multiparous cows in 2000 and 700 cow herds,
12 respectively. In contrast, NC-seropositivity in a 600 cow dairy herd was associated with
13 an increase of 0.4 litres/cow/day of milk when compared to NC-seronegative cows
14 (Pfeiffer et al., 2002). In a case-control study including dairy herds in Ontario, NC-
15 seropositive cows in herds with abortion attributable to NC produced significantly less
16 305 d milk (276 kg) compared to NC-seronegative cows (Hobson et al., 2002). However,
17 in the same project, the NC-seropositive cows from 57 non-randomly selected herds did
18 not have a decrease in milk volume when compared to NC-seronegative cows (Hobson et
19 al., 2002). Therefore, it is still unclear whether NC-seropositivity has an impact on milk
20 production, and whether this putative impact depends upon factors such as age of the cow
21 or whether the herd is experiencing abortion problems.

22 There is only one published study investigating the relationship between NC-
23 seropositivity and milk protein production. In this study, NC-seropositivity was

1 associated with higher milk protein production in a 600-cow New Zealand dairy herd
2 compared to NC-seronegative cows (Pfeiffer et al., 2002). Some studies suggest an
3 increased (Hassig and Gottstein, 2002) or decreased (Ould-Amrouche et al., 1999;
4 Peregrine et al., 2004) risk of mastitis with NC-seropositivity in herds with and without
5 abortion problem due to NC. However, whether this relationship is valid in randomly
6 selected herds in other countries is unclear. There are no published studies reporting on
7 the effects of NC-seropositivity on milk fat.

8 The results from the above studies on associations between these milk production
9 parameters and seropositivity for the four pathogens might not be representative of the
10 true state of nature in the dairy industry in general (or Canadian dairy herds in particular)
11 due to one or more of the following reasons. 1) Many studies used a single large herd,
12 which may not be representative of other large herds or small herds due to differences in
13 management or seroprevalence. 2) If multiple herds were used, these herds were often not
14 randomly selected, leading to possible herd selection bias. 3) Confounding variables,
15 such as parity, were often not controlled in the design or analyses. 4) Associations
16 between the milk production parameters and seropositivity for one pathogen may vary
17 with co-infection with other pathogens (e.g. BLV and BVDV impair cellular immunity)
18 and the effects of these co-infections have been rarely studied in past.

19 The primary objective of this study was to determine the relationships among
20 seropositivity for BLV, BVDV, MAP and NC and each of 4 outcome variables (305 d
21 milk, 305 d fat, and 305 d protein production and milk somatic cell count) in Canadian
22 dairy cattle while controlling for possible confounding variables, such as lactation
23 number and seropositivity for the other pathogens, and adjusting for clustering at the

1 lactation, cow, herd and provincial levels. A secondary objective was to determine the
2 contribution of each level of the hierarchical structure (province, herd, cow, lactation) to
3 the total variation in the various outcome variables.

4 While most investigations in this area of research have been conducted with testing for
5 exposure to 1 of the 4 agents, this investigation is unique in that testing for exposure to all
6 4 of the agents was conducted on the sampled farms at the same time, allowing for the
7 control of other agent exposures when determining the association between one agent and
8 each outcome variable. Separate analyses were conducted for each of the 4 outcome
9 variables, and therefore the results and tables are presented according to the significant
10 variables associated with each of the 4 outcome variables.

1 **4.3 Materials and methods**

2

3 The data utilized for this study were from recent prevalence surveys of Canadian dairy
4 herds in Prince Edward Island (PEI), New Brunswick (NB), and Nova Scotia (NS)
5 (Keefe and VanLeeuwen, 2000; Vanleeuwen et al., 2001), Saskatchewan (Vanleeuwen et
6 al., 2005), Ontario (Vanleeuwen et al., 2000), Quebec (CQIASA, 2003), Manitoba
7 (VanLeeuwen et al., 2003) and Alberta (Scott et al., 2005). Briefly summarized,
8 nationally, 30.3, 3.1, and 11.4% of cows were seropositive for exposure to BLV, MAP,
9 and NC (Haddad et al., 2005; Tiwari et al., 2005a), respectively. At the herd level, 76.6%
10 of herds had at least one cow seropositive for BLV and, 18.9% and 64.8% of herds had at
11 least two cows seropositive for MAP and NC, respectively. For BVDV, 31.5% of the
12 herds had at least one unvaccinated heifer/cow with a BVDV titer $\geq 1:64$. The sampling
13 for these surveys is briefly described below.

14

15 **4.3.1 Serum sample collection**

16 A stratified two-stage random sampling procedure was employed. The following
17 criteria were utilized to select participating herds; willingness to participate and provide
18 cows and calves for blood sampling; willingness to allow the blood samples to be tested
19 for antibodies to the 4 pathogens, and willingness to release the results of those blood
20 tests to the research team. In MAN, PEI, NS and NB, eligible herds were also required to
21 be on a monthly milk testing program through their local dairy herd improvement (DHI)
22 organization. The directors from the remaining provinces preferred to include herds not
23 on DHI for their provincial seroprevalence estimates, and therefore, of all the sampled

1 herds in QUE, ONT, SASK and ALTA, only the herds that were on DHI were eligible for
2 this study.

3 During the summer of 1998 in Atlantic Canada, dairy herds were randomly selected
4 (using computer generated random numbers) from eligible farms until ninety herds were
5 recruited, thirty from PEI, NB, and NS. Similar recruitment procedures were utilized to
6 select seventy-five, twenty-seven, forty, forty-four, and sixty-six herds from the
7 provinces of Quebec (QUE), Ontario (ONT) Manitoba (MAN), Saskatchewan (SASK),
8 and Alberta (ALTA) in 2002, 1998, 2002, 2001, and 2002/03, respectively. Sampling in
9 ALTA first involved recruiting veterinary practices who serviced dairy herds in the
10 province, and then within these practices, herds were randomly selected. For the ONT, a
11 different sampling protocol was utilized to select 60 herds with extensive records on
12 clinical disease occurrences in order to determine relationships between seroprevalence
13 for these four agents and recorded clinical disease (not reported here). Of these herds, 27
14 herds met the inclusion criteria and were included in the sample population for this study.

15 Approximately 30 (less if the total number of cows in the herd was less than 30 cows)
16 lactating animals were randomly selected for blood collection and BLV, MAP and NC
17 testing in each participating herd. For BVDV testing, five unvaccinated (for BVDV)
18 cattle >6 months old were selected for blood collection. In unvaccinated herds, five
19 animals of the 30 cows tested for the other three pathogens were selected. In vaccinated
20 herds, five unvaccinated heifers >6 months old were selected, if available. The BVDV
21 sampling technique was based upon Houe's study (Houe, 1992). Within 24 hours after
22 collection, the blood samples were centrifuged, and the sera were harvested and stored at
23 -20°C until all the samples were collected and ready for testing.

1 Sample size calculations to determine significant differences in milk production
2 parameters or SCC between seropositive and seronegative cows were not conducted
3 because the primary purpose of the original study was to obtain a reasonably accurate
4 seroprevalence estimate for each province at a reasonable cost. The sample size
5 calculations used to determine the number of required herds for the original prevalence
6 surveys assumed a herd level seroprevalence of 10%, an allowable error of 10%, and a
7 confidence level of 95%. The lowest expected herd seroprevalence of any of the
8 investigated diseases was 10%; therefore this value was used to calculate herd sample
9 size. This calculation lead to a minimum of 30 herds being needed to be tested in each
10 province. The sample size formula used to determine the number of required cows in
11 each herd for the original prevalence surveys assumed an average herd size of 45
12 lactating cows, an average within-herd prevalence estimate of 10%, confidence of 90%,
13 and sensitivity of the enzyme linked immunosorbent assay (ELISA) test for MAP of
14 43.0%, the test with the a lowest sensitivity among the four diseases (Sockett et al.,
15 1992). This calculation lead to a total of 30 cattle being needed to be tested in each herd
16 to detect at least 1 infected animal in a herd.

17

18 4.3.2 Laboratory analysis

19 The test utilized by all provinces for BLV antibodies was an enzyme linked
20 immunosorbant assay (ELISA)¹ (sensitivity 98.5%, specificity 99.9%) (Johnson and
21 Kaneene, 1991). A cow was considered to be seropositive for BLV if the serum-to-
22 positive ratio on the ELISA was ≥ 0.50 , as recommended by the manufacturer of the test

¹ IDEXX ELISA - IDEXX Corporation, Westbrook, Maine, USA

1 kit. The BLV ELISA test kit also required a confirmation of positive tests, using a
2 sample-to-negative host-cell ratio of ≥ 1.8 . The BLV testing for all provinces except QUE
3 was conducted at the national BLV testing laboratory of the Canadian Food Inspection
4 Agency in PEI (now in QUE), which is certified to conduct BLV testing for international
5 trade purposes. The BIOVET Inc. laboratory in QUE was utilized for the dairy farms in
6 QUE.

7 The test utilized by all provinces for MAP antibodies was also an ELISA, with ALTA
8 farms being tested with one brand of ELISA, according to the wishes of the directors of
9 the study in that province² (Sockett et al., 1992). The farms in the rest of the participating
10 provinces were tested with a different ELISA¹ (Dargatz et al., 2001). For the first ELISA,
11 an animal was considered to be seropositive for MAP if the optical density value was
12 greater than the mean of the negative control plus 0.100 for bovine sera, as recommended
13 by the manufacturer of the test kit. For the second ELISA, an animal was considered to
14 be seropositive for MAP if the serum-to-positive ratio on the ELISA was ≥ 0.25 , as
15 recommended by the manufacturer of the test kit. The MAP testing for NS, NB, PEI,
16 ONT, and SASK was conducted at Prairie Diagnostic Services in SASK, which is
17 accredited for MAP-ELISA testing by the United States Dept of Agriculture. The
18 BIOVET Inc. laboratory in QUE, the Manitoba Agricultural Laboratory in MAN, and the
19 Alberta Agriculture, Food and Rural Development Food Safety Division Laboratory in
20 ALTA were utilized for their respective provincial testing. The serum samples were
21 tested in duplicate at all locations.

² BIOCOR-CSL ELISA - BIOCOR Animal Health, Inc., Omaha, Nebraska, USA

1 The test utilized by all provinces for NC antibodies was also an ELISA, with ALTA
2 farms being tested with one brand of ELISA, again according to the wishes of the
3 directors of the study in that province¹ (sensitivity 97.6%, specificity 99.5%) (Wu et al.,
4 2002). The farms in the rest of the participating provinces were tested with a different
5 ELISA³ (sensitivity 99.0%, specificity 98.4%) (Bergeron et al., 2000). A cow was
6 considered to be seropositive for NC if the serum-to-positive ratio for the first and second
7 ELISAs were ≥ 0.60 and ≥ 0.40 , respectively. The NC testing was conducted at the
8 BIOVET Inc. laboratory in Quebec for dairy farms from NS, NB, PEI, ONT, MAN,
9 SASK, and the Food Safety Division Laboratory of Alberta Agriculture, Food and Rural
10 Development in ALTA for dairy farms in ALTA. The serum samples were tested in
11 duplicate at both locations. Serum samples from dairy farms in QUE were not tested for
12 antibodies to NC according to the wishes of the directors of the study in that province.

13 For all provinces, up to five serum samples per farm were tested for antibody against
14 type 1 genotype BVD virus, using virus neutralization to the cytopathic Singer strain
15 (sensitivity 99.6% and specificity 100%;) (Deregt et al., 1992). A herd was considered to
16 be seropositive for BVDV if at least one of the animals tested had a titer above $\geq 1:64$ for
17 BVD virus. Testing for BVDV was conducted at the Animal Diseases Research Institute
18 in ALTA for dairy herds in NS, NB, PEI, ONT, MAN, SASK, ALTA, and at the Armand
19 Frappier Laboratory in QUE for dairy herds in QUE.

³ BIOVET ELISA - BIOVET Inc. - St. Hyacinthe, Quebec, Canada

1

2 4.3.3 Data collection

3 For each tested animal, demographic data, the actual and predicted (if more than 200
4 days in milk) 305-day milk, fat, and protein volumes, somatic cell count data and culling
5 data from January 1, 1999 to December 31st, 2003 were gathered electronically from a
6 central milk-recording database. Somatic cell count was transformed using a logarithm to
7 the base 10 in order to give the variable a normal distribution (base 2 did not produce a
8 normal distribution). Then, the mean was calculated for all of the \log_{10} somatic cell
9 counts for every lactation of each cow. With this transformation and calculation, there
10 was one record for each lactation of each cow during this time period, with each record
11 containing four continuous outcome variables: 305 d milk, 305 d fat, 305 d protein and
12 mean \log_{10} somatic cell count (ML₁₀SCC). Cow records with lactation numbers greater
13 than 4 were reclassified as lactation 4 (allowing cows in lactation 3 to be analysed
14 separately from older cows) due to the small number of cows in lactations of 4 or more.

15

16 4.3.4 Statistical analysis

17 Standard descriptive statistics were calculated, and unconditional associations between
18 the independent variables and each of the four outcome variables were computed in Stata,
19 Release 8⁴. Data for independent variables with unconditional associations significant at

⁴ Stata - Statistical package, Release.8; Stata Press, College Station, Texas, USA

1 the $P < 0.15$ were transferred to MLwiN version 1.2⁵ to fit the multilevel multivariable
2 models.

3 In MLwiN, initially, restricted maximum likelihood estimates of parameters were
4 obtained for each of the 4 outcome variables for a simple random intercept model
5 containing only a constant (i.e. no other independent variables) to determine the
6 distribution of variation among the 4 levels (province, herd, animal, lactation) of data and
7 guide the model-building process. Due to non-significant variation at the province level,
8 only 3 levels were utilized with the addition of province as fixed effect. Study design,
9 statistical significance, and biological knowledge of the four pathogens were also utilized
10 to construct the hierarchical causal diagrams and models for each outcome variable.

11 A three-step approach was utilized for modelling the effects of seropositivity for BLV,
12 BVDV, MAP and NC on each of the 4 outcome variables. First, the effect of
13 seropositivity for BLV, BVDV, MAP and NC on 305 d milk, 305 d fat, 305 d protein and
14 $ML_{10}SCC$ count was estimated while controlling for possible confounding variables, such
15 as lactation number, province and seropositivity for the other three pathogens, and
16 adjusting for clustering at the lactation, cow and herd levels. All independent variables
17 previously identified as having unconditional associations with the dependent variable
18 were added to the models as fixed effects. Variables that were not significant at $P \leq 0.05$
19 were removed from each outcome model, starting with the variable with the highest P-
20 value.

21 Second, effect modification among model variables on 305 d milk, 305 d fat, 305 d
22 protein and $ML_{10}SCC$, were examined by creating first-order interaction variables among
23 the model variables. In particular, first-order interaction terms between seropositivity for

⁵ MLwiN - Centre for Multilevel Modelling, Institute of Education, London, UK

1 each of the 4 pathogens and lactation number (1, 2, 3 and 4plus) were examined to
2 determine if the production effects may be occurring within specific lactations. The
3 interaction term between BVDV-seropositivity and lactation number was a mixed level
4 term, with BVDV-seropositivity being a herd level variable while the lactation number
5 was a cow level variable. Also, in order to examine the possible effect of some tests being
6 conducted in different laboratories, first-order interaction terms between the different
7 laboratories and BLV-, BVDV-, MAP- and NC-serostatus were also added to the final
8 models. Again, interaction variables that were not significant at $P \leq 0.05$ were removed
9 from the final models, starting with the variable with the highest P-value.

10 Finally, the effects of seropositivity for BLV, BVDV, MAP and NC on 305 d milk,
11 305 d fat, 305 d protein and $ML_{10}SCC$ were allowed to vary at the herd level by using
12 random slope models. If there was significant variation in the effects across herds, the
13 random slopes were retained in the final model.

14 The diagnostics of the models were evaluated by examining normal probability plots
15 of residuals and plots of residuals vs. predicted values to check on the assumptions of
16 normality and homogeneity of variance.

1 **4.4 Results**

2

3 **4.4.1 Descriptive statistics**

4 The final dataset contained 342 herds with 9,834 cows and 22,665 lactations. There
5 were, on average, 2.3 (maximum 4) lactations per cow. Of the 342 herds, 70 herds had
6 aggressive BVDV vaccination protocols and therefore did not have BVDV results due to
7 the unavailability of unvaccinated heifers > 6 months of age. Comparison of production
8 data from the sampled cows to national industry averages (Table 4.1) did not identify any
9 substantial differences. Therefore, the random selection of herds and cows appeared to
10 have produced a sample population that was representative of the Canadian dairy industry
11 as a whole.

12

13 **4.4.2 Analytical statistics**

14 There was no significant effect modification of seropositivity for any of the pathogens
15 by other pathogens in any of the 305 d milk, fat, protein and ML10SCC models.
16 Similarly, the first-order interaction terms between the different laboratories and BLV-,
17 BVDV-, MAP- and NC-seropositivity were not significant at the p-value of 0.10 for any
18 of the outcome variables. Therefore, none of these interaction variables was included in
19 the following final models.

20

1 4.4.3 305 d milk volume modeling

2 The results from multilevel linear regression analyses for BLV-, BVDV-, MAP- and NC-
3 seropositivity (by lactation) on 305 d milk volume are shown in Table 4.2. When all
4 lactations were pooled together, the cows in BVDV-seropositive herds had a lower 305 d
5 milk volume of 368 kg/cow ($P = 0.014$) compared to cows in BVDV-seronegative herds,
6 and this decrease in 305 d milk was not substantially different among lactations. MAP-
7 seropositivity in lactation 4+ was associated with a lower 305 d milk volume of 212 kg (P
8 = 0.048). NC-seropositivity in first lactation heifers was significantly associated with a
9 lower 305 d milk volume of 158 kg ($P = 0.012$). BLV-seropositive, 4+ lactation cows had
10 a lower 305 d milk volume of 21 kg (data not shown) but this association was not
11 statistically significant ($P > 0.10$).
12

13 4.4.4 305 d fat volume modeling

14 The results from multilevel linear regression analyses for BLV-, BVDV-, MAP- and NC-
15 seropositivity (by lactation) on 305 d fat are shown in Table 4.3. Cows in BVDV-
16 seropositive herds had a marginally lower 305 d fat volume of 10.2 kg ($P = 0.052$)
17 compared to cows in BVDV-seronegative herds. NC-seropositivity in first lactation
18 heifers was significantly associated with a lower 305 d fat of 5.54 kg ($P = 0.027$). There
19 was no significant relationship between BLV- and MAP-seropositivity and 305 d fat
20 volume.
21

1 4.4.5 305 d protein volume modeling
2 The results from multilevel linear regression analyses for BLV-, BVDV-, MAP- and NC-
3 seropositivity (by lactation) on 305 d protein are shown in Table 4.3. The cows in
4 BVDV-seropositive herds had a significantly lower 305 d protein of 9.46 kg (P = 0.036)
5 compared to cows in BVDV-seronegative herds. NC-seropositivity in first lactation
6 heifers was associated with a marginally lower 305 d protein of 3.30 kg (P = 0.080).
7 BLV- and MAP-seropositive cows were not significantly associated with 305 d protein
8 volume.
9

10 4.4.6 Mean log₁₀ somatic cell count modeling
11 The results from multilevel linear regression analyses for BLV-, BVDV-, MAP- and NC-
12 seropositivity (by lactation) on ML₁₀SCC are shown in Table 4.3. As expected, mean
13 log₁₀ somatic cell count increased as lactation number increased. The cows in BVDV-
14 seropositive herds had a significantly higher ML₁₀SCC of 0.096 (P = 0.032) compared to
15 cows in BVDV-seronegative herds. MAP-seropositivity was significantly associated with
16 increased ML₁₀SCC of 0.098 (P = 0.022) compared to MAP-seronegative cows. NC-
17 seropositivity in lactation 4+ heifers was associated with a significantly lower ML₁₀SCC
18 of 0.094 (P = 0.018). BLV-seropositivity was not significantly associated with the
19 ML₁₀SCC.

20 The normal probability plots of residuals, and plots of residuals vs. predicted values
21 for all of the final models indicated that the basic assumptions of normality and
22 homogeneity of variance were not violated for any of the models fit.

23

1 4.4.7 Fit of the final models, and proportion of variance
2 With no fixed effects in the models, the proportions of variance for 305 d milk, 305 d
3 fat, 305 d protein and somatic cell count explained at the province, herd, cow and
4 lactation levels are shown in Table 4.4. Approximately, 34.16%, 21.58% and 44.26% of
5 average variations in 305 d milk volume, 305 d fat and protein volumes were at the herd,
6 cow and lactation levels. However, 12.27%, 32.25% and 55.48% of the variation in mean
7 \log_{10} somatic cell count was at the herd, cow and lactation levels. When the significant
8 fixed effects were in the final models (305 d milk, 305 d fat, 305 d protein and
9 $ML_{10}SCC$), the proportion of variance estimates at the cow and herd levels were
10 increased, while the proportion of variance estimates at the lactation level were
11 decreased.

1 **4.5 Discussion**

2

3 This study is the first published report of the relationships among seropositivity for
4 four pathogens (BLV, BVDV, MAP and NC) and each of four outcome variables (305 d
5 milk, 305 d fat, and 305 d protein production and milk somatic cell count) in dairy cattle,
6 while controlling for possible confounding variables, such as lactation number and
7 seropositivity for the other pathogens. This study was part of a national study designed to
8 determine the seroprevalence of BLV, BVDV, MAP and NC in Canadian dairy cattle.
9 Eight out of ten Canadian provinces (which comprised 95% of dairy herds in Canada)
10 (DFC, 2002) participated in this study. Similar random selection procedures at the herd
11 (except in ONT) and cow level were utilized to ensure that the study population was
12 representative of the target population. The summary statistics from ONT herds
13 compared to the other provinces, and the herd level residual normal probability plots in
14 the model diagnostic tests indicated that the assumption of representativeness was not
15 violated for the ONT herds (data not shown).

16 There was no significant effect modification on 305 d milk, fat, protein and
17 $ML_{10}SCCs$ from interactions between seropositivity for any of the pathogens. While it is
18 possible that there truly are no interactive effects from seropositivity for more than one of
19 the pathogens tested in our study, there are other possible explanations for not detecting
20 any interactions in our study. First, there were limited numbers of cattle that were
21 seropositive for multiple pathogens in our study, providing somewhat limited power to
22 detect interactions between seropositivity (Tiwari et al., 2005a). Due to the low
23 sensitivity of ELISAs to detect MAP-infected cattle (Dargatz et al., 2001), the power to

1 detect interactions was particularly problematic. For BVDV, only five unvaccinated cattle
2 over 6 mo of age were tested per herd, which were calves on farms where cows were
3 vaccinated for BVDV (70 farms). Therefore, the serostatus of cows for BVDV exposure
4 was unknown on 19.3% of farms in our study.

5 Another possible reason for no observed interactions on milk production or SCC
6 between seropositivity for the four pathogens tested in this study could be that the timing
7 of the effects of infection did not coincide frequently enough to be detected. It is known
8 that the clinical manifestations of infections with BLV and NC generally occur at
9 differing times relative to the time of infection. Cattle infected with BLV usually do not
10 develop lymphosarcoma until later in life (Detilleux et al., 1991). Conversely, abortion
11 due to NC often occurs during the pregnancy immediately after infection. For animals
12 infected through vertical transmission, abortion often occurs during their first pregnancy
13 as a heifer, or second pregnancy as a first-calf heifer (Pfeiffer et al., 2002; Thurmond and
14 Hietala, 1997a). For animals infected through horizontal transmission, abortion is often
15 during the pregnancy at or immediately after the time of infection (Dubey et al., 1992). If
16 clinical manifestations do not frequently coincide in time, then it is reasonable to believe
17 that any subclinical impacts on milk production or SCC may not frequently coincide in
18 time either. For BVDV, any cows that were seropositive due to exposure to circulating
19 virus on the farm were likely to be only transiently infected, and at some unknown point
20 in time prior to blood sampling. Impacts on production and SCC may no longer be
21 occurring in these cows at the time of blood sampling, and these impacts also may not be
22 coinciding with impacts from infection of the other pathogens. Furthermore, depending

1 on the protection afforded by BVDV vaccination of the cows on a farm, transiently
2 infected cows may not undergo any detectable impacts on production or SCC.

3

4 4.5.1 Multilevel models

5 The use of multilevel models has grown recently due to an increase in computational
6 power and the recognition of biased results produced by regular regression analyses when
7 they are applied to clustered animal study populations. Clustered study populations
8 violate the assumption of independence of observations in ordinary regression models.

9 Multilevel models involve two or more levels of relationships among variables that are
10 arranged in a hierarchy (e.g. lactations in a cow, cows in a herd, etc.). Restricted
11 maximum likelihood estimates were utilized because they are less prone to bias than the
12 full maximum-likelihood estimates (Kreft and De Leeuw, 1998). Although lactations
13 within cows are repeated measures, the correlations among all lactations within a cow in
14 our study were assumed to be equal due to the small number of lactations within each
15 cow (mean = 2.3). The multilevel models were also utilized to identify the level, which
16 accounts for the greatest amount of variability in the dependent variable, so that
17 interventions can be targeted at this level in order to have the greatest impact on the
18 variable.

19 In our study, data from all available lactations for the sampled cattle were included in
20 the final dataset for 2 reasons. Most cattle infected with BVDV (Houe, 1995), MAP
21 (Hagan, 1938; Larsen et al., 1975) and NC (Davison et al., 1999a; Pare et al., 1996) are
22 likely infected in utero or early in life. Furthermore, utilizing all lactations would provide
23 more statistical power to detect significant differences between seropositive and

1 seronegative cows and herds. However, a subset analysis was conducted utilizing only
2 the lactations in which the blood testing occurred, producing very similar but less
3 statistically significant results (results not shown). Therefore, all lactations were utilized.

4

5 4.5.2 BLV

6 Relationships between BLV-seropositivity and milk volume, fat and mastitis have
7 been reported (Emanuelson et al., 1992; Jacobs et al., 1991; Pollari et al., 1993; Wu et al.,
8 1989), but these studies were either in small numbers of herds with high seroprevalence,
9 or had inappropriate control of confounding variables or adjustments for clustering. After
10 controlling for herd size and age, no significant relationships between BLV-seropositivity
11 and milk volume and mastitis were found (Jacobs et al., 1991). In a study involving 150
12 herds (Jacobs et al., 1995), BLV-seropositive cows older than 5 yrs had higher somatic
13 cell counts than BLV-seronegative cows. However, this association was not adjusted for
14 within-herd clustering, and for effects of other infectious agents, such as BVDV. In our
15 study of randomly selected cows and herds with a wide variety of seroprevalences, after
16 controlling for age and other infective agents effects, seropositivity for BLV was not
17 associated with 305 d milk, 305 d fat, 305 d protein or $ML_{10}SCC$. However, there was a
18 trend seen, where BLV-seropositive cows in 4-plus lactations had a slightly lower milk
19 volume than BLV-seronegative cows in 4-plus lactations.

20 BLV can cause alterations in cell-mediated immunity; with up to 30% of BLV-
21 seropositive cattle eventually developing persistent lymphocytosis, while less than 5% of
22 BLV-seropositive cows develop lymphosarcoma during their normal lifetime in
23 commercial dairy herds (Detilleux et al., 1991). Lymphosarcoma usually develops in

1 cattle between 4 and 8 years of age (Muller et al., 1987), perhaps explaining the trend
2 toward reduced 305 d milk volume seen in BLV-seropositive, 4-plus lactation cows in
3 our study. However, with a low proportion of seropositive cows surviving normal culling
4 pressures and developing lymphosarcoma in higher parities, significant associations
5 between BLV-seropositivity and milk volume, fat and protein or mastitis are unlikely to
6 be detected, except perhaps in high prevalence herds where the herd burden of virus is
7 large, potentially leading to a higher likelihood of negative impacts. In our study the
8 BLV-seroprevalence was 31.7%. It remains unclear whether persistent lymphocytosis
9 leads to low milk volume and high somatic cell count either directly or through another
10 ailment.

11

12 4.5.3 BVDV

13 In our randomly selected population of cattle and herds, cows in BVDV-seropositive
14 herds were significantly associated with a lower milk volume, fat, protein and increased
15 somatic cell count compared to cows in BVDV-seronegative herds. The pathogenesis
16 underlying this relationship is unclear, but a number of hypotheses are possible, including
17 clinical disease related to pneumonia, mastitis, abortion or immunosuppression. Each is
18 discussed in turn.

19 Another study (Waage, 2000), based upon acute clinical BVDV infection, have found
20 impaired milk production parameters among the affected cattle relative to non-affected
21 cattle. It is unknown whether the BVDV-seropositive herds in our study were undergoing
22 clinical manifestations of BVDV infection, leading to the observed associations. In a
23 related study, we found that cows in BVDV-seropositive herds had a 1.86 and 1.43 times

1 higher hazard of culling for low milk volume and mastitis, respectively, than cows in
2 BVDV-seronegative herds (Tiwari et al., 2005b).

3 David et al., (1994) reported a 23% loss in milk following an abortion. The risk of
4 abortion among susceptible cattle that become infected with BVDV has been reported to
5 vary from 4.8% in Denmark (Meyling et al., 1990) to 26% in England (Murray, 1990).
6 Therefore abortions due to BVDV-seropositivity may have also contributed to a loss of
7 milk volume, fat and protein.

8 During BVDV infection, neutrophil (Roth et al., 1981) and lymphocyte (Lamontagne
9 et al., 1989) suppression result in impaired resistance and act as an important
10 predisposing factor for intra-mammary or other infections in the cow (Cai et al., 1994;
11 Houe et al., 1995). However, in our study, there was no significant effect modification on
12 305 d milk, fat, protein and $ML_{10}SCCs$ from interactions between seropositivity for any
13 of the pathogens.

14

15 4.5.4 MAP

16 In our study, after adjusting for province, herd and cow clustering and controlling for
17 possible confounding variables, MAP-seropositivity in 4+ lactation cows was
18 significantly associated with a lower 305 d milk of 219 kg ($P = 0.028$). These results
19 support conclusions made in previous studies (Johnson et al., 2001; Kudahl et al., 2004;
20 Sockett et al., 1992; Wilson et al., 1993) that the effect of MAP-seropositivity on milk
21 volume largely depends upon the parity of the cow. This effect modification of lactation
22 assists in understanding the results from previous studies, which range from no effect

1 (Johnson et al., 2001) to 19.5% lower milk production in fecal culture positive cows
2 compared to fecal culture negative cows (Benedictus et al., 1987).

3 Our results for 305 d fat and 305 d protein volumes support results from previous
4 studies by Johnson et al., (2001). However, the opposite result was found by Sweeney et
5 al., (1994) and Collins and Nordlund, (1991). These differences could be due to either
6 study design (non random selection of 14, 23 and 7 herds in Sweeney et al., 1994; Collins
7 et al., 1991 and Johnson et al., 2001, respectively), diagnostic test utilized (fecal culture
8 in Sweeney et al., 1994; serum ELISA in Collins et al., 1991 and fecal culture and ELISA
9 in Johnson et al., 2001), or statistical analyses (effect of MAP-seropositivity in each
10 lactation was not estimated due to small sample sizes).

11 McNab et al., (1991) found an increased somatic cell count in LAM-ELISA-positive
12 cows compared to negative cows, which was confirmed by our study results. However, it
13 is unclear whether there is also an increased risk of clinical mastitis in MAP-seropositive
14 cows compared to seronegative cows, as this would require data that were not collected
15 in our study.

16 The results of our study likely represent very conservative estimates of the MAP-
17 seropositivity on 305 d milk, 305 d fat, 305 d protein and increased $ML_{10}SCC$ because of
18 the misclassification bias associated with ELISA test results for MAP (Whitlock et al.,
19 2000). Due to the very poor sensitivity of ELISA tests for MAP exposure, ranging from
20 8% to 80% (McKenna et al., 2004; Sockett et al., 1992), depending on the stage of
21 infection of the test population, numerous infected animals likely gave false negative test
22 results. Specificity of ELISAs for MAP exposure are also not ideal, ranging from 90-99%
23 (Dargatz et al., 2001), particularly when utilized on a large number of animals in a low

1 prevalence population, leading to numerous false positive test results (low positive
2 predictive values). The impact of these misclassifications, assuming they are not
3 differential in nature (other than with respect to age), would bias these model estimates
4 toward the null.

5 It is certainly biologically plausible for MAP infection to lead to reduced milk volume
6 in higher parities. MAP infection typically occurs early in life and then causes changes in
7 cell-mediated immunity and progressive, localized granulomatous lesions in lymph nodes
8 and the lamina propria of the terminal ileum. Granulomatous lesions can also be
9 disseminated throughout the entire gastrointestinal (GI) tract, leading to reduced nutrient
10 absorption (Chiodini et al., 1984). However the bacteria are very slow growing, typically
11 leading to clinical gastroenteritis in higher parity cows. Reduced GI absorption might
12 worsen a negative energy balance in early lactation, while alterations in cell-mediated
13 immunity may decrease the resistance of cows towards other infectious diseases, possibly
14 resulting in a reduced milk volume (Kudahl et al., 2004; Wilson et al., 1993) and
15 increased somatic cell count (McNab et al., 1991).

16

17 4.5.5 NC

18 After adjusting for clustering effects and controlling for potential confounding
19 variables, NC-seropositive first lactation heifers had a 161 kg lower 305 d milk volume
20 compared to NC-seronegative first lactation heifers. This finding confirms that this
21 relationship is applicable to a variety of herd sizes and management levels of dairy farms
22 and not just on a single 2000 cow Holstein herd in California with a history of abortion
23 problems associated with NC (Thurmond and Hietala, 1997b). Similarly, in a case-

1 control study involving 83 dairy herds in Ontario (with 28 herds having abortions
2 attributable to NC), NC-seropositivity was significantly associated with a decrease of 276
3 kg of 305 d milk volume ($P \leq 0.05$). Much of this difference was due to the discovery
4 that there was a trend toward first lactation NC-seropositive heifers having 295 kg lower
5 305 d milk volume ($P = 0.11$) (Hobson et al., 2002). Our lower estimate of impact on 305
6 d milk production may be due to the mixing of NC-infected herds with and without active
7 abortion problems (data on abortions were not available).

8 We also found that seropositivity for NC in first lactation heifers was associated with
9 lower 305 d milk fat and protein volumes compared to NC-seronegative first lactation
10 heifers. Conversely, in one New Zealand herd, NC-seropositivity was associated with
11 higher milk protein (Pfeiffer et al., 2002). However, the effect of NC on different
12 lactations was not determined in that study. We found that, over all lactations, NC-
13 seropositivity was not significantly associated with milk fat and protein. NC-seropositive
14 cows that are high milk producers are less likely to be culled from a herd due to their
15 superior milk production compared to NC-seropositive low milk producers, which may
16 explain the lack of association when all lactations were considered.

17 The biological rationale of reduced milk volume due to NC-seropositivity in first
18 lactation heifers is still not clear but may be related to reduced milk volume after an
19 abortion in first lactation heifers. The major clinical effect of NC in cattle is abortion and
20 the percentage of abortions among dairy cattle attributed to NC has been estimated to be
21 from 12.5% (Davison et al., 1999b) to 38.7% (Mainar-Jaime et al., 1999), making it one
22 of the most common causes of abortion in cattle. In one abortion epidemic due to NC in
23 New Zealand, where 33% of the breeding herd aborted, abortions were most common in

1 cows 4 yrs old or younger (Thornton et al., 1994). In another study, conducted in one 600
2 cows herd in New Zealand, the abortion risk was highest in heifers and decreased with
3 the age of the cow (Pfeiffer et al., 2002). This increased abortion risk in young cattle may
4 be due to transplacental transmission of NC from cow to calf being the major route of
5 infection in cattle. On the basis of precolostral antibodies in calves, this transmission
6 varies from 95% (Pare et al., 1996) to 81% (Davison et al., 1999a), and perhaps even
7 lower, depending on the age-structure of the herd, with older cows being less likely to
8 abort than first lactation cows (Dijkstra et al., 2003) showed that cattle produce less milk
9 following an abortion, perhaps related to abortion sequel, such as retained placenta after
10 birth and metritis.

11 In 57 Ontario herds without abortion problem (Peregrine et al., 2004), the NC-
12 seropositive cows were less likely to have high linear score of somatic cell count
13 compared to NC-seronegative cows. To a certain extent, this study corroborates our
14 results that suggest that high lactation NC-seropositive cows were associated with
15 improved udder health (low $ML_{10}SCC$). In the study in Ontario, however, the interaction
16 between lactation and NC-positivity was not examined. The reason that mature NC-
17 seropositive cows had improved udder health is not clear but may be because the younger
18 NC-seropositive cattle were in an active phase of immunological response to the NC
19 infection, while older NC-seropositive cattle were no longer actively responding to the
20 NC infection, allowing the older cattle to more effectively fight other udder pathogens.
21 This speculation is based on the premise that the majority of NC infection are vertically
22 transmitted (Davison et al., 1999a; Pare et al., 1996).

1 Our results suggested that the 44.65%, 21.95% and 33.40% of average variation in
2 305 d milk volume, 305 d fat and protein volumes was at the lactation, cow and herd
3 levels. We also found that the 55.62%, 32.51% and 11.87% of the variation in $ML_{10}SCC$
4 was at the lactation, cow and herd levels, showing that even more of the variation for
5 SCC is at the lactation level compared to the milk production parameters. Conversely, in
6 calving to conception interval, 86% of the variation resided at the lactation level with
7 only 7%, 6% and 2% at the cow, herd and regional level (Dohoo et al., 2001).

8 A higher percentage of variation in milk production indices at the herd level as
9 compare to inter-calving interval shows the importance of herd level factors (like cattle
10 feed) in targeting interventions to have desired impact. MAP, BLV and NC were tested
11 and interpretable at the cow level, while BVDV was tested at the animal level, but
12 interpreted at the herd level. Significant associations were detected for MAP- and NC-
13 seropositivity, but only for certain lactations. Therefore, efforts to reduce transmission of
14 MAP and NC should be made at the animal and herd levels, but efforts to reduce impacts
15 on milk production parameters and SCC should be focused at the lactation level. For
16 BVDV, there was not a substantial difference in the associations between milk
17 production and BVDV-seropositivity at the herd level, and therefore efforts to reduce
18 impacts of BVD infection on milk production should not differ among lactations.

1 **4.6 Conclusions**

2

3 In contrast to the abstract and body of this paper, this conclusion will summarize the
4 results by pathogen rather than outcome. NC-seropositivity in first lactation heifers was
5 significantly associated with a lower 305 d milk and 305 d fat volume of 158 kg and 5.54
6 kg. However, NC-seropositivity in 4+ lactation cows were significantly associated with a
7 lower $ML_{10}SCC$ of 0.094. MAP-seropositivity in 4+ lactation cows was significantly
8 associated with a lower 305 d milk of 212 kg. When all lactations were pooled together,
9 the MAP-seropositivity was also significantly associated with increased $ML_{10}SCC$ of
10 0.098. When all lactations were pooled together, the cows in BVDV-seropositive herds
11 had a lower 305 d milk, 305 d fat and 305 d protein volume of 368 kg, 10.2 kg and 9.46
12 kg, respectively. The cows in BVDV-seropositive herds had an increased $ML_{10}SCC$ of
13 0.096. The BLV-seropositivity was not associated with volume of 305 d milk, fat, or
14 protein or $ML_{10}SCC$. There were no interactions between seropositivity for the 4
15 pathogens with respect to the 4 outcome variables investigated. Based on the final
16 models, approximately, 34.16%, 21.58% and 44.26% of average variations in 305 d milk
17 volume, 305 d fat and protein volumes were at the herd, cow and lactation levels.
18 However, 12.27%, 32.25% and 55.48% of the variation in mean \log_{10} somatic cell count
19 was at the herd, cow and lactation levels. Results from our research will help in better
20 understanding the economic impacts of these pathogens and justification for their control.

1 **4.7 Acknowledgement**

2

3 The authors wish to acknowledge Dr. LeeAnn Forsythe and Ms. Renee Chartier of the
4 Saskatchewan Department of Agriculture, Food and Rural Revitalization (Inspection and
5 Regulatory Management Branch, Animal Health Unit), Karen Kemp of Manitoba
6 Agriculture and Food, the accredited Johne's veterinarians of Alberta, and laboratory
7 scientists and staff of Alberta Agriculture, Food and Rural Development for their
8 technical and logistical support in the collection of samples and data from the
9 participating farmers in Saskatchewan, Manitoba and Alberta, respectively.

10 The authors also wish to acknowledge the following funding sources. Dairy Farmers
11 of Canada, Dairy Herd Improvement companies, Canadian Food Inspection Agency, and
12 Production Limiting Diseases Committee, Atlantic Veterinary College, Dairy Farmers of
13 PEI, PEI Agricultural Research Investment Fund, Dairy Farmers of Ontario, Manitoba
14 Agriculture, Saskatchewan Agriculture, Western Economic Partnership Agreement, and
15 Food Safety Division of Alberta Agriculture, Food and Rural Development.

1 4.8 Reference List

- 3 Abbas, B., Riemann, H.P., Hird, D.W., 1983. Diagnosis of Johne's disease
4 (paratuberculosis) in Northern California cattle and a note of it's economic
5 significance. Calif. Vet. 37, 20-24.

6 Benedictus, G., Dijkhuizen, A.A., Stelwagen, J., 1987. Economic losses due to
7 paratuberculosis in dairy cattle. Vet Rec 121, 142-146.

8 Bergeron, N., Fecteau, G., Pare, J., Martineau, R., Villeneuve, A., 2000. Vertical and
9 horizontal transmission of *Neospora caninum* in dairy herds in Quebec. Can. Vet J
10 41, 464-467.

11 Brenner, J., Van Haam, M., Savir, D., Trainin, Z., 1989. The implication of BLV
12 infection in the productivity, reproductive capacity and survival rate of a dairy
13 cow. Vet Immunol. Immunopathol. 22, 299-305.

14 Buergelt, C.D., Duncan, J.R., 1978. Age and milk production data of cattle culled from
15 a dairy herd with paratuberculosis. J Am. Vet Med. Assoc. 173, 478-480.

16 Cai, T.Q., Weston, P.G., Lund, L.A., Brodie, B., McKenna, D.J., Wagner, W.C.,
17 1994. Association between neutrophil functions and periparturient disorders in
18 cows. Am. J Vet Res 55, 934-943.

19 Chi, J., Vanleeuwen, J.A., Weersink, A., Keefe, G.P., 2002. Direct production losses
20 and treatment costs from bovine viral diarrhoea virus, bovine leukosis virus,
21 *Mycobacterium avium* subspecies paratuberculosis, and *Neospora caninum*. Prev.
22 Vet Med. 55, 137-153.

23 Chiodini, R.J., Van Kruiningen, H.J., Merkal, R.S., 1984. Ruminant paratuberculosis
24 (Johne's disease): the current status and future prospects. Cornell Vet 74, 218-262.

25 Collins, M.T., Nordlund, K., 1991. Milk production levels in cow ELISA positive for
26 serum antibodies to *M. paratuberculosis*. Proceedings of the Third International
27 Colloquim on Paratuberculosis. Orlando, Florida, USA. 401-409.

28 CQIASA 2003. Centre Québécois d'inspection des aliments et de santé animale. Rapport
29 final: Enquête de prévalence de la paratuberculose, de la leucose bovine
30 enzootique et des immunotolérants à la diarrhée virale bovine dans les
31 troupeaux laitiers du Québec.

32 D'Angelino, J.L., Garcia, M., Birgel, E.H., 1998. Productive and reproductive
33 performance in cattle infected with bovine leukosis virus. J Dairy Res 65, 693-
34 695.

- 1 Dargatz, D.A., Byrum, B.A., Barber, L.K., Sweeney, R.W., Whitlock, R.H., Shulaw,
2 W.P., Jacobson, R.H., Stabel, J.R., 2001. Evaluation of a commercial ELISA for
3 diagnosis of paratuberculosis in cattle. *J Am. Vet Med. Assoc.* 218, 1163-1166.
- 4 David, G.P., Crawshaw, T.R., Gunning, R.F., Hibberd, R.C., Lloyd, G.M., Marsh,
5 P.R., 1994. Severe disease in adult dairy cattle in three UK dairy herds associated
6 with BVD virus infection. *Vet Rec* 134, 468-472.
- 7 Davison, H.C., Otter, A., Trees, A.J., 1999a. Estimation of vertical and horizontal
8 transmission parameters of *Neospora caninum* infections in dairy cattle. *Int. J
9 Parasitol.* 29, 1683-1689.
- 10 Davison, H.C., Otter, A., Trees, A.J., 1999b. Significance of *Neospora caninum* in
11 British dairy cattle determined by estimation of seroprevalence in normally
12 calving cattle and aborting cattle. *Int. J Parasitol.* 29, 1189-1194.
- 13 deLisle, G.W., B.A. Milestone, 1989. The economic impact of johne's disease in New
14 Zealand. In: Milner, A., Wood, P. (Eds) *Johne's disease*. East Melbourne, CSIRO,
15 pp. 41-45.
- 16 Deregt, D., Smithson, S., Kozub, G.C., 1992. A short incubation serum neutralization
17 test for bovine viral diarrhea virus. *Can J Vet Res* 56, 161-164.
- 18 Detilleux, J.C., Freeman, A.E., Miller, L.D., 1991. Comparison of natural transmission
19 of bovine leukemia virus in Holstein cows of two genetic lines selected for high
20 and average milk production. *Am. J Vet Res* 52, 1551-1555.
- 21 Dijkstra, T., Barkema, H.W., Eysker, M., Beiboer, M.L., Wouda, W., 2003.
22 Evaluation of a single serological screening of dairy herds for *Neospora caninum*
23 antibodies. *Vet Parasitol.* 110, 161-169.
- 24 Dohoo, I.R., Tillard, E., Stryhn, H., Faye, B., 2001. The use of multilevel models to
25 evaluate sources of variation in reproductive performance in dairy cattle in
26 Reunion Island. *Prev. Vet Med.* 50, 127-144.
- 27 Dubey, J.P., Lindsay, D.S., Anderson, M.L., Davis, S.W., Shen, S.K., 1992. Induced
28 transplacental transmission of *Neospora caninum* in cattle. *J Am. Vet Med.
29 Assoc.* 201, 709-713.
- 30 Emanuelson, U., Scherling, K., Pettersson, H., 1992. Relationships Between herd bovin
31 leukemia virus infection status and reproduction, disease incidence, and
32 productivity in Swedish dairy herds. *Prev. Vet. Med.* 12, 121-131.
- 33 Haddad, J.P., Dohoo, I.R., VanLeeuwen, J.A., Tiwari, A., Keefe, G.P., Scott, M.,
34 Whiting, T., 2005. Seroprevalence and spatial distribution of *Neospora caninum*
35 in Canadian dairy cattle. Submitted to *Can Vet J.*

- 1 Hagan, W.A., 1938. Age as a factor in susceptibility to Johne's disease. Cornell
2 Veterinarian 28, 34-40.
- 3 Hassig, M., Gottstein, B., 2002. Epidemiological investigations of abortions due to
4 *Neospora caninum* on Swiss dairy farms. Vet Rec. 150, 538-542.
- 5 Hernandez, J., Risco, C., Donovan, A., 2001. Association between exposure to
6 *Neospora caninum* and milk production in dairy cows. J Am. Vet Med. Assoc.
7 219, 632-635.
- 8 Hobson, J.C., Duffield, T.F., Kelton, D., Lissemore, K., Hietala, S.K., Leslie, K.E.,
9 McEwen, B., Cramer, G., Peregrine, A.S., 2002. *Neospora caninum* serostatus
10 and milk production of Holstein cattle. J Am. Vet Med. Assoc. 221, 1160-1164.
- 11 Houe, H., 1992. Serological analysis of a small herd sample to predict presence or
12 absence of animals persistently infected with bovine viral diarrhoea virus
13 (BVDV) in dairy herds. Res Vet Sci 53, 320-323.
- 14 Houe, H., 1995. Epidemiology of bovine viral diarrhea virus. Vet Clin. North Am. Food
15 Anim Pract. 11, 521-547.
- 16 Houe, H., Baker, J.C., Maes, R.K., Lloyd, J.W., Enevoldsen, C., 1995. Comparison of
17 the prevalence and incidence of infection with bovine virus diarrhoea virus
18 (BVDV) in Denmark and Michigan and association with possible risk factors.
19 Acta Vet Scand. 36, 521-531.
- 20 Huber, N.L., DiGiacomo, R.F., Evermann, J.F., Studer, E., 1981. Bovine leukemia
21 virus infection in a large Holstein herd: prospective comparison of production and
22 reproductive performance in antibody-negative and antibody-positive cows. Am. J
23 Vet Res 42, 1477-1481.
- 24 Jacobs, R.M., Heeney, J.L., Godkin, M.A., Leslie, K.E., Taylor, J.A., Davies, C.,
25 Valli, V.E., 1991. Production and related variables in bovine leukaemia virus-
26 infected cows. Vet Res Commun. 15, 463-474.
- 27 Jacobs, R.M., Pollari, F.L., McNab, W.B., Jefferson, B., 1995. A serological survey of
28 bovine syncytial virus in Ontario: associations with bovine leukemia and
29 immunodeficiency-like viruses, production records, and management practices.
30 Can J Vet Res 59, 271-278.
- 31 Johnson, R.J., Kaneene, J.B., 1991. Bovine Leukemia Virus. Part I. Descriptive
32 Epidemiology, Clinical Manifestations, and Diagnostic tests. Compendium on
33 Continuing Education 13, 328.
- 34 Johnson, Y.J., Kaneene, J.B., Gardiner, J.C., Lloyd, J.W., Sprecher, D.J., Coe, P.H.,
35 2001. The effect of subclinical *Mycobacterium paratuberculosis* infection on milk
36 production in Michigan dairy cows. J Dairy Sci 84, 2188-2194.

- 1 Keefe, G.P., VanLeeuwen, J.A., 2000. *Neospora then and now: prevalence of Neospora*
2 *caninum in Maritime Canada in 1979, 1989, and 1998.* Can. Vet J 41, 864-866.
- 3 Introducing Multilevel Modeling 1998, Sage, London.
- 4 Kudahl, A., Nielsen, S.S., Sorensen, J.T., 2004. Relationship between antibodies
5 against *Mycobacterium avium* subsp. *paratuberculosis* in milk and shape of
6 lactation curves. Prev. Vet Med. 62, 119-134.
- 7 Lamontagne, L., Lafourture, P., Fournel, M., 1989. Modulation of the cellular immune
8 responses to T-cell-dependent and T cell-independent antigens in lambs with
9 induced bovine viral diarrhea virus infection. Am. J Vet Res 50, 1604-1608.
- 10 Larsen, A.B., Merkal, R.S., Cutlip, R.C., 1975. Age of cattle as related to resistance to
11 infection with *Mycobacterium paratuberculosis*. Am. J Vet Res 36, 255-257.
- 12 Mainar-Jaime, R.C., Thurmond, M.C., Berzal-Herranz, B., Hietala, S.K., 1999.
13 Seroprevalence of *Neospora caninum* and abortion in dairy cows in northern
14 Spain. Vet Rec. 145, 72-75.
- 15 McKenna, S.L., Keefe, G.P., Barkema, H.W., McClure, J., Vanleeuwen, J.A., Hanna,
16 P., Sockett, D.C., 2004. Cow-level prevalence of paratuberculosis in culled dairy
17 cows in Atlantic Canada and Maine. J Dairy Sci 87, 3770-3777.
- 18 McNab, W.B., Meek, A.H., Martin, S.W., Duncan, J.R., 1991. Associations between
19 dairy production indices and lipoarabinomannan enzyme-immunoassay results for
20 paratuberculosis. Can J Vet Res 55, 356-361.
- 21 Merkal, R.S., Larsen, A.B., Booth, G.D., 1975. Analysis of the effects of inapparent
22 bovine paratuberculosis. Am. J Dig. Dis. 20, 597-598.
- 23 Meyling, A., Houe, H., Jensen, A.M., 1990. Epidemiology of bovine virus diarrhoea
24 virus. Rev. Sci Tech. 9, 75-93.
- 25 Muller, M., Wittmann, W., Liebermann, H., 1987. [The effect of the selection of calves
26 having antibodies against the bovine leukosis virus at the time of birth--progress
27 and results of leukosis prevention in young cattle breeding facilities]. Arch. Exp.
28 Veterinarmed. 41, 738-742.
- 29 Murray, R.D., 1990. A field investigation of causes of abortion in dairy cattle. Vet Rec
30 127, 543-547.
- 31 Nordlund, K.V., Goodger, W.J., Pelletier, J., Collins, M.T., 1996. Associations
32 between subclinical paratuberculosis and milk production, milk components, and
33 somatic cell counts in dairy herds. J Am. Vet Med. Assoc. 208, 1872-1876.

- 1 Ott, S.L., Johnson, R., Wells, S.J., 2003. Association between bovine-leukosis virus
2 seroprevalence and herd-level productivity on US dairy farms. *Prev. Vet Med.* 61,
3 249-262.
- 4 Ould-Amrouche, A., Klein, F., Osdoit, C., Mohammed, H.O., Touratier, A., Sanaa,
5 Mialot, J.P., 1999. Estimation of *Neospora caninum* seroprevalence in dairy
6 cattle from Normandy, France. *Vet Res.* 30, 531-538.
- 7 Pare, J., Thurmond, M.C., Hietala, S.K., 1996. Congenital *Neospora caninum* infection
8 in dairy cattle and associated calfhood mortality. *Can. J Vet Res.* 60, 133-139.
- 9 Peregrine, A.S., Duffield, T.F., Wideman, G., Kelton, D., Hobson, J., Cramer, G.,
10 Hietala, S.K., 2004. Udder health in dairy cattle infected with *Neospora caninum*.
11 *Prev. Vet Med.* 64, 101-112.
- 12 Pfeiffer, D.U., Williamson, N.B., Reichel, M.P., Wichtel, J.J., Teague, W.R., 2002. A
13 longitudinal study of *Neospora caninum* infection on a dairy farm in New
14 Zealand. *Prev. Vet Med.* 54, 11-24.
- 15 Pollari, F.L., DiGiacomo, R.F., Evermann, J.F., 1993. Use of survival analysis to
16 compare cull rates between bovine leukemia virus seropositive and seronegative
17 dairy cows. *Am. J Vet Res* 54, 1400-1403.
- 18 Pollari, F.L., Wangsuphachart, V.L., DiGiacomo, R.F., Evermann, J.F., 1992. Effects
19 of bovine leukemia virus infection on production and reproduction in dairy cattle.
20 *Can J Vet Res* 56, 289-295.
- 21 Roth, J.A., Kaeberle, M.L., Griffith, R.W., 1981. Effects of bovine viral diarrhea virus
22 infection on bovine polymorphonuclear leukocyte function. *Am. J Vet Res* 42,
23 244-250.
- 24 Sargeant, J.M., Kelton, D.F., Martin, S.W., Mann, E.D., 1997. Associations between
25 farm management practices, productivity, and bovine leukemia virus infection in
26 Ontario dairy herds. *Prev. Vet Med.* 31, 211-221.
- 27 Scott, H.M., Sorenson, O., Chow, E., Manninen, K., VanLeeuwen, J.A., 2005.
28 Seroprevalence of *Mycobacterium avium* subspecies paratuberculosis, *Neospora*
29 *caninum*, bovine leukemia virus, and bovine viral diarrhea virus infection in
30 Alberta dairy cattle and agro-ecological risk factors associated with seropositivity.
31 Submitted to *Can Vet J* .
- 32 Sockett, D.C., Conrad, T.A., Thomas, C.B., Collins, M.T., 1992. Evaluation of four
33 serological tests for bovine paratuberculosis. *J Clin. Microbiol.* 30, 1134-1139.
- 34 Sweeney, R.W., Whitlock, R.H., Buckley, C.L., Spencer, P., Rosenberger, A.E.,
35 Hutchinson, L.J., 1994. Diagnosis of paratuberculosis in dairy cattle, using
36 enzyme-linked immunosorbent assay for detection of antibodies against
37 *Mycobacterium paratuberculosis* in milk. *Am. J Vet Res* 55, 905-909.

- 1 Sweeney, R.W., Hutchinson, L.J., Whitlock, R.H., 1994. Effects of *Mycobacterium*
2 paratuberculosis infection on milk production in dairy cattle. Proceedings of the
3 Fourth International Colloquim on Paratuberculosis. 133-139.
- 4 Thornton, R.N., Gajadhar, A., Evans, J., 1994. *Neospora* abortion epidemic in a dairy
5 herd. NZ Vet. J. 42, 190-191.
- 6 Thurmond, M.C., Hietala, S.K., 1997a. Effect of congenitally acquired *Neospora*
7 caninum infection on risk of abortion and subsequent abortions in dairy cattle.
8 Am. J Vet Res. 58, 1381-1385.
- 9 Thurmond, M.C., Hietala, S.K., 1997b. Effect of *Neospora caninum* infection on milk
10 production in first-lactation dairy cows. J Am. Vet Med. Assoc. 210, 672-674.
- 11 Tiwari, A., VanLeeuwen, J.A., Dohoo, I.R., Keefe, G.P., Haddad, J.P., 2005a.
12 Seroprevalence and spatial distribution of bovine leukemia virus, bovine viral
13 diarrhea virus and *Mycobacterium avium* subspecies paratuberculosis in Canadian
14 dairy cattle. Submitted to Can Vet J.
- 15 Tiwari, A., VanLeeuwen, J.A., Dohoo, I.R., Stryhn, H., Keefe, G.P., Haddad, J.P.,
16 2005b. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea
17 virus, *Mycobacterium avium* subspecies paratuberculosis, and *Neospora caninum*
18 on culling in Canadian dairy cattle. Accepted in J. Vet. Micro.
- 19 VanLeeuwen, J.A., Keefe, G.P., Tremblay, R., Power, C., Wichtel, J.J., 2001.
20 Seroprevalence of infection with *Mycobacterium avium* subspecies
21 paratuberculosis, bovine leukemia virus, and bovine viral diarrhea virus in
22 maritime Canada dairy cattle. Can Vet J 42, 193-198.
- 23 VanLeeuwen, J.A., Tiwari, A., Dohoo, I.R., Keefe, G.P., 2003. Prevalence of Johne's
24 Disease Infection in Canada - National Production Limiting Diseases Study. Proc.
25 Annual Meeting of Atlantic Bovine Practitioners' Association, Moncton, Canada.
26
- 27 VanLeeuwen, J.A., Tiwari, A., Forsythe, L., Chartier, R., 2005. Seroprevalence of
28 antibodies against bovine leukemia virus, bovine viral diarrhea virus,
29 *Mycobacterium avium* subspecies *paratuberculosis* and *Neospora caninum* in
30 Saskatchewan dairy cattle. Can Vet J.
- 31 VanLeeuwen, J.A., Tremblay, R., Keefe, G.P., Wichtel, J., 2000. Seroprevalence of
32 Production Limiting Diseases in Ontario and Maritime Dairy Cattle. Proceedings
33 of the Canadian Veterinary Medical Association Annual Convention, St. John,
34 Canada.
- 35 Waage, S., 2000. Influence of new infection with bovine virus diarrhoea virus on udder
36 health in Norwegian dairy cows. Prev. Vet Med. 43, 123-135.

- 1 Whitlock, R.H., Wells, S.J., Sweeney, R.W., Van Tiem, J., 2000. ELISA and fecal
2 culture for paratuberculosis (Johne's disease): sensitivity and specificity of each
3 method. *Vet Microbiol.* 77, 387-398.
- 4 Wilson, D.J., Rossiter, C., Han, H.R., Sears, P.M., 1993. Association of
5 *Mycobacterium paratuberculosis* infection with reduced mastitis, but with
6 decreased milk production and increased cull rate in clinically normal dairy cows.
7 *Am. J Vet Res* 54, 1851-1857.
- 8 Wu, J.T., Dreger, S., Chow, E.Y., Bowlby, E.E., 2002. Validation of 2 commercial
9 *Neospora caninum* antibody enzyme linked immunosorbent assays. *Can. J Vet
10 Res.* 66, 264-271.
- 11 Wu, M.C., Shanks, R.D., Lewin, H.A., 1989. Milk and fat production in dairy cattle
12 influenced by advanced subclinical bovine leukemia virus infection. *Proc Natl.
13 Acad. Sci U. S. A* 86, 993-996.
- 14
- 15 World Trade Organisation. (1994) Final Act of the 1986-1994 Uruguay Round of trade
16 negotiations.http://www.wto.org/english/docs_e/legal_e/ursum_e.html

- 1 Table 4.1 Comparison of the study 9,834 cows (342 herds) with national industry
 2 averages.

	Study Population estimates (95% Confidence interval)	Canadian Dairy estimates ⁶ (From 1999-2003)
Mean 305 d milk	8906-9174 kg	8960-9519 kg
Mean 305 d fat	324-333 kg	331-351 kg
Mean 305 d protein	286-294 kg	290-306 kg
Mean herd size of milking cows	58-76	50-62

⁶ Canadian Dairy Herd Improvement, Dairy Section, AAFC.
 (http://www.dairyinfo.gc.ca/pdf_files/statsbook2005.pdf)

3 Table 4.2 The final model of associations between 305 d milk volume (kilograms) and
 4 BLV-, BVDV-, MAP- and NC-seropositivity (by lactation number) from multilevel
 5 linear regression analyses of 22665 lactations in 9,834 dairy cows in 342 Canadian dairy
 6 herds.

Variables	305 d milk		
	Variance	S.E. ⁷	P-value ⁷
Random Effects			
Herd	1357807	108252	0.000
Cow	986178	23682	0.000
Lactation	1189563	14674	0.000
Fixed Effects			
	Estimate	S.E.	P-value
Constant	7033.07	233.16	0.000
BLV	36.07	34.79	0.300
BVDV			0.000
- Lac 1	-348.05	155.01	
- Lac 2	-427.61	154.71	
- Lac 3	-410.24	155.88	
- Lac 4plus	-302.28	155.60	
BVDV not tested ⁸			
- Lac 1	155.30	193.76	
- Lac 2	201.99	193.98	
- Lac 3	76.86	195.48	
- Lac 4plus	101.62	195.98	
MAP			0.004
- Lac 1	-125.57	99.59	
- Lac 2	45.81	98.09	
- Lac 3	-135.79	102.88	
- Lac 4plus	-212.12	107.36	
NC			0.000
- Lac 1	-158.13	63.11	
- Lac 2	-58.52	61.91	
- Lac 3	91.01	65.24	
- Lac 4plus	45.61	64.39	
Lactation			0.000
1	1	-	-
2	1306.19	29.75	
3	1845.01	33.80	
≥4 plus	2000.78	35.68	
Province			0.000
PE	1	-	-
NB	-255.47	308.90	
NS	741.18	307.96	
QUE	707.75	259.27	
ONT	1438.08	317.89	
MAN	1423.26	298.81	
SASK	1058.60	290.50	
ALTA	1327.57	282.56	

7 ⁷Standard error and P-value of variance component.

8 ⁸These herds did not had the BVDV unvaccinated calves less than 6 months.

9 Table 4.3. The final models of associations between 305 d fat (kilograms), 305 d protein (kilograms) and mean Log_{10} Somatic Cell Count
 10 outcomes, and BLV-, BVDV-, MAP- and NC-seropositivity and lactation number from multilevel linear regression analyses of 22,665
 11 lactations in 9,834 dairy cows in 342 Canadian dairy herds.

	305 d fat			305 d protein			Mean Log_{10} SCC		
Random Effects	Variance	S.E. ⁷	P-value ⁷	Variance	S.E. ⁷	P-value ⁷	Variance	S.E. ⁷	P-value ⁷
Herd	1592.61	129.06	0.000	1297.36	102.99	0.000	0.102	0.010	0.000
Cow	1478.51	36.76	0.000	836.04	20.84	0.000	0.318	0.009	0.000
Lactation	1945.19	23.95	0.000	1109.80	13.68	0.000	0.549	0.007	0.000
Fixed Effects	Estimate	S.E.	P-value	Estimate	S.E.	P-value	Estimate	S.E.	P-value
Constant	258.35	8.03	0.000	227.84	7.18	0.000	4.146	0.070	0.000
BLV	-0.04	1.36	0.972	1.02	1.03	0.322	0.016	0.021	0.446
BVDV			0.002			0.002			0.003
-BVDV neg	1	-	-	1	-	-	1	-	-
-BVDV pos	-10.20	5.21		-9.46	4.67		0.096	0.045	
-BVDV nt ⁸	6.85	6.50		5.49	5.90		-0.032	0.056	
MAP	-3.81	2.79	0.154	-2.06	2.11	0.328	0.098	0.043	0.022
NC			0.005			0.038			0.024
- Lac 1	-5.54	2.51		-3.30	1.89		0.009	0.041	
- Lac 2	-3.07	2.46		-1.46	1.86		0.010	0.040	
- Lac 3	1.27	2.60		0.86	1.96		-0.041	0.042	
- Lac 4plus	0.71	2.55		0.76	1.93		-0.094	0.040	
Lactation			0.000			0.000			0.000
- Lac 1	1	-	-	1	-	-	1	-	-
- Lac 2	45.08	0.92		40.48	0.70		0.229	0.016	
- Lac 3	65.70	1.04		53.67	0.80		0.485	0.018	
- Lac 4plus	72.83	1.10		56.93	0.83		0.732	0.018	
Province			0.000			0.000			0.001
PE	1	-	-	1	-	-	1	-	-
NB	-8.11	10.65		-8.41	9.53		0.028	0.092	
NS	25.13	10.62		20.50	9.50		-0.044	0.092	
QUE	37.05	8.94		24.20	7.99		-0.092	0.077	
ONT	45.13	10.96		45.10	9.81		0.076	0.094	
MAN	43.61	10.31		49.69	9.22		-0.038	0.089	
SASK	27.57	10.01		34.39	8.96		0.031	0.086	
ALTA	38.05	9.74		40.24	8.72		-0.243	0.084	

12 ⁷Standard error of estimate of variance component. ⁸These herds did not have the BVDV unvaccinated calves less than 6 months.

13 Table 4.4. Summary of the percent of the variance explained at each level of the
14 hierarchy for 305 d milk, 305 d fat, 305 d protein and Mean Log10 SCC (no fixed effects
15 in model) in 342 dairy herds with 9,834 cows from 8 provinces in Canada.

Source of variation	Proportion of variance			
	305 d milk	305 d fat	305 d protein	Mean Log10 SCC
Herd	35.83	28.72	37.93	12.27
Cow	21.33	24.10	19.32	32.25
Lactation	42.84	47.18	42.75	55.48

16

1 **CHAPTER 5: Effects of seropositivity for bovine leukemia virus, bovine viral**
2 **diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora**
3 **caninum on culling in dairy cattle in four Canadian provinces**

4

5 **5.1 Abstract**

6

7 The purpose of this research was to determine the effects of seropositivity for exposure to
8 bovine leukemia virus (BLV), bovine viral diarrhoea virus (BVDV), Mycobacterium
9 avium subspecies paratuberculosis (MAP) and Neospora caninum (NC) on overall and
10 reason-specific culling in Canadian dairy cattle. Serum samples from approximately 30
11 randomly selected cows from 134 herds were tested for antibodies against BLV, MAP
12 and NC using commercially available ELISA test kits, while 5 unvaccinated cattle over 6
13 months of age were tested for antibodies to bovine viral diarrhoea virus (BVDV). For
14 analyzing the time (in days) to culling of cows after the blood testing, a two-step
15 approach was utilized, non-parametric (Kaplan-Meier survival graphs) visualization and
16 then semi-parametric survival modelling (Cox proportional hazards model), while
17 controlling for confounding variables and adjusting for within herd clustering.

18

19 For all reasons of culling, MAP-seropositive cows had a 1.38 (1.05 – 1.81, 95% C.I.)
20 times increased hazard of culling compared to MAP-seronegative cows. Seropositivity
21 for the other pathogens was not associated with an increased risk of overall culling.
22 Among cows that were culled because of either decreased reproductive efficiency or
23 decreased milk production or mastitis, MAP-seropositive cows were associated with 1.55

1 (1.12 – 2.15, 95% C.I.) times increased hazard compared to MAP-seronegative cows.
2 Among cows that were culled because of reproductive inefficiency, NC-seropositive
3 cows had a 1.43 (95% C.I., 1.15 – 1.79) times greater hazard than NC-seronegative cows.
4 Among cows that were culled because of decreased milk production, cows in BVDV-
5 seropositive herds had a 1.86 (1.28 – 2.70 95% C.I.) times increased hazard compared to
6 cows in BVDV-seronegative herds. BLV-seropositive cows did not have an increased
7 risk of reason-specific culling as compared to BLV-seronegative cows. No significant
8 interaction on culling among seropositivity for the pathogens was detected, but only a
9 limited number of cows tested seropositive for multiple pathogens. Results from our
10 research will help in better understanding the economic impacts of these pathogens and
11 justification for their control.

12

13 *Keywords:* Enzootic bovine leukosis; bovine viral diarrhoea; Johne's disease;
14 Neosporosis; culling; survival analysis.

1 **5.2. Introduction**

2

3 Infectious disease agents that can be harboured in apparently healthy animals, such as
4 bovine leukemia virus (BLV), bovine viral diarrhoea virus (BVDV), Mycobacterium
5 avium subspecies paratuberculosis (MAP) and Neospora caninum (NC), are undergoing
6 increasing scrutiny and research as a result of new World Trade Organization (WTO)
7 regulations concerning animal health and animal movement between countries (WTO,
8 Act 1994). These regulations state that health certification standards for imported cattle,
9 semen and embryos cannot exceed those required under domestic regulatory programs.

10 Development and implementation of such programs would require research on the
11 current prevalence of these diseases and the feasibility of implementing domestic health
12 assurance programs for them, based on the costs of import/export restrictions and losses
13 in productivity. While these organisms lead to clinical diseases and their associated costs,
14 there are still questions regarding the impacts of subclinical infections with these agents.

15

16 Based on an Atlantic Canadian (New Brunswick -NB, Nova Scotia – NS, and Prince
17 Edward Island - PEI) prevalence survey of the above four pathogens, and literature
18 estimates of associated costs, average direct farm costs associated with infection with
19 these organisms were estimated for infected Atlantic Canadian dairy herds. The annual
20 costs for BLV, BVDV, MAP and NC, respectively, were reported to be \$806, \$2421,
21 \$2472 and \$2304 per infected herd using an average herd size of 50 cows (Chi et al.,
22 2002). However, there were limited and/or inconsistent reports regarding the effects of

1 the diseases on premature culling costs applicable to Canadian dairy herds and
2 consequently these were not included in the economic impact assessment.

3

4 The published effects of BLV on culling rates are very inconsistent. In a single large herd
5 in Maryland demonstrated no effect of BLV infection status on culling was observed
6 (Rhodes et al., 2003). No effect was also found in an Ontario study, (Herald et al., 1992).

7 Conversely, greater culling rates were seen in BLV-seropositive versus seronegative
8 cows in one large, high prevalence dairy farm in Washington State, USA (Pollari et al.,
9 1993). Similarly, culling rates for all reasons were reported to be higher for BLV infected
10 herds compared to cows in BLV non-infected herds in Sweden (Emanuelson et al., 1992).
11 However, other unmeasured herd factors correlated with BLV status may be responsible
12 for this difference in culling.

13

14 The effect of seropositivity for NC on culling rates also varies, from no effect in 56 dairy
15 herds in Ontario (Cramer et al., 2002) to higher culling rates (1.7 times) in NC-
16 seropositive versus seronegative cows (Thurmond and Hietala, 1996). However, this
17 increased culling rate was estimated from an unconditional comparison of percentage of
18 seropositive and seronegative cows culled after 3 years of follow up in a single dairy herd
19 of 442 cows with abortion problems due to NC (Thurmond and Hietala, 1996). There
20 was no information on abortions in the Ontario study and therefore, it is unclear whether
21 NC infection may have an impact on overall culling or culling due to reproductive
22 inefficiency.

23

1 David et al. (1994) found that 11% of cows were culled prematurely (due to chronic
2 illness) because of BVDV in three dairy herds in England. Similarly, another study
3 (Pritchard et al., 1989) reported that 15 (8%) cows died and 20 (11%) were culled
4 (mainly because of acute infection) because of BVDV in a 183 cow dairy herd in
5 Norfolk, England. In endemically infected herds, a 2% increased culling risk associated
6 with BVDV infection has been reported (Meyling et al., 1990). While it is understandable
7 that herds with outbreaks of clinically affected animals would likely undergo increased
8 involuntary culling, it is still unclear whether endemic herds with subclinically infected
9 animals have increased culling compared to uninfected herds.

10

11 For MAP, a higher cull rate has been reported in MAP culture-positive cows as compared
12 to MAP negative cows in a 210-cow Holstein herd in New York (Wilson et al., 1993). In
13 another 900-cow Guernsey herd with subclinically infected cows, 22.6% of fecal culture
14 positive cows and 3.6% of fecal culture negative cows were reported culled due to
15 mastitis, and 68.8% versus 60.2% were culled due to infertility, respectively (Merkal et
16 al., 1975). Similarly, in a study in Colorado dairy herd 48.9% of seropositive cows (based
17 on ELISA test) were culled over one year as compared to 33% of seronegative cows
18 (Goodell et al., 2000), although misclassification of serology results may have affected
19 these results. MAP is the only one of the above four diseases for which there appear to be
20 consistent evidence of increased culling risk associated with animals that test positive.
21 However, there is still a wide variation in the estimates of culling risk between studies,
22 which may be due to differences in study design and analyses, or biological differences
23 between the study populations.

1

2 The results from the above studies on risk of culling associated with BLV, BVDV, MAP
3 or NC-seropositivity might not be representative of the true state of nature in the dairy
4 industry in general (or Canadian dairy herds in particular) due to one or more of the
5 following reasons. 1) Many studies used a single large herd which may not be
6 representative of other large herds or small herds due to differences in management or
7 seroprevalence. 2) If multiple herds were used, these herds were not randomly selected,
8 leading to possible herd selection bias. 3) Confounding variables were not controlled in
9 the design or analyses. 4) Time to culling was not appropriately examined in the analyses.
10 Furthermore, the culling impact of seropositivity for one pathogen may also vary with co-
11 infection with other pathogens (e.g. BLV and BVDV impair cellular immunity).

12

13 Our study objective was to determine the effect of seropositivity for infection with bovine
14 leukemia virus (BLV), bovine viral diarrhoea (BVDV), Mycobacterium avium
15 subspecies paratuberculosis (MAP) and Neospora caninum (NC) on hazard ratios for
16 culling (overall and reason-specific) in a large population of randomly selected dairy
17 cows and herds, after controlling for possible confounding effects of other important
18 predictor variables, and adjusting for herd clustering effects and time to culling.

1 **5.3. Materials and Methods**

2

3 The data utilized for this study were from recent prevalence surveys of Canadian dairy
4 herds in NB, NS, PEI (Keefe and VanLeeuwen, 2000; VanLeeuwen et al., 2001) and
5 Saskatchewan (VanLeeuwen et al., 2005). The methodologies of the two studies were
6 very similar, making the merging of their datasets feasible. Briefly summarized, 89.1%
7 and 70.0% of herds had at least one seropositive animal for BLV in Atlantic Canada and
8 Saskatchewan (SASK), respectively. For BVDV, 46.1% and 16.8% of the herds had at
9 least one unvaccinated heifer/cow with a BVDV titre above 1:32 in Atlantic Canada and
10 Saskatchewan (SASK), respectively. For MAP, 16.7% and 24.1% of the herds had at
11 least two seropositive animals for MAP in the two regions, respectively. For NC, 78.9%
12 and 43.8% of herds had at least two seropositive animals in the two regions, respectively.

13

14 **5.3.1. Serum sample collection**

15

16 A stratified two-stage random sampling procedure was employed. During the summer of
17 1998 in Atlantic Canada, participating dairy herds were randomly selected (using
18 computer generated random numbers) until ninety herds were recruited, thirty from
19 Prince Edward Island (PEI), New Brunswick (NB), and Nova Scotia (NS). Only herds
20 that were enrolled in a monthly, individual cow milk-testing program through the
21 Atlantic Dairy Livestock Improvement Corporation (ADLIC) were eligible for
22 participation. Approximately 60-70% of dairy herds in Atlantic Canada are enrolled with
23 ADLIC. During the winter of 2000-01, similar herd level exclusion criteria and sampling

1 procedures were utilized to recruit forty-four herds from the province of Saskatchewan.
2 The sample size formula used to determine the number of required herds as 30 per
3 province for the original prevalence surveys assumed 300 herds per province on DHI, a
4 herd level seroprevalence of 10%, an allowable error of 10%, and a confidence level of
5 95%.

6

7 Using computer generated random numbers, up to thirty lactating animals were randomly
8 selected for blood collection in each herd. In the original prevalence survey
9 (VanLeeuwen et al., 2001), with an average herd size of 45 cows, 30 cattle were needed
10 to be tested in each herd to detect at least 1 infected animal in a herd, based on an average
11 within-herd prevalence estimate of 10%, confidence of 90%, and sensitivity of the
12 enzyme linked immunosorbent assay (ELISA) test for MAP of 43.0%, the test with the
13 lowest sensitivity among the four diseases (Sockett et al., 1992).

14

15 For BVDV, five unvaccinated (for BVDV) cattle >6 months old were selected for blood
16 collection. In unvaccinated herds, five animals of the 30 cows tested for the other three
17 diseases were selected. In vaccinated herds, five unvaccinated heifers >6 months old were
18 selected. The sampling technique was based upon Houe's study (Houe, 1992).

19

20 5.3.2. Laboratory analyses

21

22 Within 24 hours, the blood samples were centrifuged, and the serum was harvested and
23 stored at -20°C until all the samples were collected. The serum samples were

1 subsequently assessed for antibody against: BLV using an ELISA¹ (sensitivity 98.5%,
2 specificity 99.9%) (Johnson and Kaneene., 1991); MAP using an ELISA¹ (sensitivity
3 43.0%, specificity 99.0%) (Sockett et al., 1992), tested in duplicate; and NC using an
4 ELISA² (sensitivity 99.0%, specificity 98.4%) (Bergeron et al., 2000), tested in duplicate.
5 An animal was considered to be infected with BLV, MAP or NC if the serum-to-positive
6 ratio on the ELISA was ≥ 0.50 , ≥ 0.25 , and ≥ 0.60 , respectively, as recommended by the
7 manufacturers of the various test kits. The BLV ELISA test kit requires a confirmation of
8 positive tests, using a sample-to-negative host-cell ratio of ≥ 1.8 .

9

10 Up to 5 serum samples per farm were tested for antibody against type 1 genotype BVD
11 virus, using virus neutralization to the cytopathic Singer strain (Animal Diseases
12 Research Institute, Lethbridge, Alberta – sensitivity 99.6% and specificity 100%; Deregt
13 et al., 1992). A herd was considered to be infected with BVDV if at least one of the
14 animals tested had a titer of $\geq 1:64$ for BVD virus.

15

16 BLV testing was conducted at the national BLV testing laboratory in Prince Edward
17 Island (now in Quebec), which is certified to conduct BLV testing for international trade
18 purposes. Testing for BVDV was conducted at Animal Diseases Research Institute in
19 Alberta. MAP testing was conducted at Prairie Diagnostic Services in Saskatchewan,
20 which is accredited for MAP ELISA testing by the United States Dept of Agriculture.
21 NC testing was conducted at the BIOVET Inc. laboratory in Quebec.

22

¹ IDEXX ELISA - IDEXX Corporation - Idexx Laboratories, Westbrook, Maine, USA

² BIOVET ELISA - BIOVET Inc. - St. Hyacinthe, Quebec, Canada

1 5.3.3. Culling data collection and statistical analyses

2

3 For each tested animal, the culling and production data were gathered electronically from

4 a central milk recording database for the follow-up period that extended from June, 1998

5 to Feb, 2002 for Atlantic herds, and from April, 2001 to Sept, 2002 for Saskatchewan

6 herds because Atlantic and Saskatchewan herds were sampled in June-August, 1998 and

7 April-May, 2001, respectively.

8

9 Cows that left herds for dairy purposes (sold to another herd) were excluded from the

10 analyses because they could not be considered to be culled for reasons biologically

11 related to the infections. All other cows were either culled for non-dairy purposes during

12 the follow-up period, or remained in the herd to the end date of the study (censored data).

13 Days at risk for culling were calculated by subtracting the date of serum sampling from

14 the date of culling or censoring.

15

16 For analyzing the time (days) to event (culling of cows), a two-step approach was

17 utilized: non-parametric Kaplan-Meier survival graphs were evaluated visually; and then

18 semi-parametric survival models (Cox proportional hazards model) were carried out. The

19 non-parametric analyses produced graphical representations that assisted in interpretation

20 of the data. Cox proportional hazards models were fit for overall culling, regardless of

21 reason, and for reason-specific culling, based on owner reporting of culling reasons. Main

22 effects of seropositivity for BLV, BVDV, MAP and NC on hazard ratios for culling were

23 estimated after controlling for lactation number (at the time of blood sampling), province

1 and seropositivity for the other three infectious agents. In addition, first order interactions
2 between all predictors except province were examined. Stratified proportional hazard
3 (which allows for herd specific baseline hazards) and shared frailty models were utilized
4 to adjust the estimates of BLV-, MAP- and NC-seropositivity for within herd clustering.
5 The shared frailty model used multiplicative gamma-distributed random effects on the
6 hazard scale, and estimation was based on maximizing the profile likelihood function
7 (Therneau and Grambsch, 2000). This modelling was based on the assumption that the
8 ratio of the hazards for the exposed and non-exposed individuals was an exponential
9 function of a set of explanatory variables and that the ratio was constant over time (i.e.
10 hazards were proportional).

11

12 Diagnostics for the Cox model were based on Cox-Snell and scaled Schoenfeld residuals
13 as well as interaction terms between time and each of the predictor variables, as described
14 in Therneau and Grambsch (2000). All of the above analyses were done in the software
15 Stata, version 8³. Results were considered statistically significant at p<0.05.

³ Stata (Statistical package, v.8; Stata Press, College Station, Texas, USA)

1 **5.4. Results**

2

3 Demographic examination of sampled herds compared to regional industry averages did
4 not identify any significant differences, confirming that the random selection of herds and
5 cows were representative of the dairy industry as a whole. The mean number of cows in
6 participating herds was 55. The mean 305-day milk production and calving to conception
7 interval were 8838.5 kg and 138.7 Days, respectively.

8

9 Overall, 26.9%, 2.4% and 12.7% of cattle were test-positive for exposure to BLV, MAP
10 and NC and, 38.1% of herds were test-positive for exposure to BVDV, respectively.

11

12 The final dataset for culling analyses contained 134 herds with 3531 cows, which had
13 serological results for exposure to all three agents and production and culling data. A
14 total of 1981 (56.1%) cows were culled for all reasons out of 3531 tested cows. The
15 follow-up period was 3 years and 7 months for the Atlantic herds and 1 year and 4
16 months for Saskatchewan herds, therefore, the average time at risk from testing until
17 culling for cows in NB, NS, PEI and SASK were 837.4, 706.5, 728.1 and 376.9 days,
18 respectively. Of the 134 herds, 17 herds had aggressive BVDV vaccination protocols and
19 therefore did not have BVDV results due to unavailability of unvaccinated heifers > 6
20 months of age.

21

22 **5.4.1. Overall risk of culling**

23

1 Survival curves, which estimate the probability for a cow to survive (not be culled) up to
2 any given day after testing, were generated for cows testing positive and negative for
3 BLV, MAP and NC (Fig 5.1 – 5.3) and for cows in herds testing positive and negative for
4 BVDV (Fig 5.4). In general, seropositive cows had lower survival than seronegative
5 cows for each of the pathogens. However, the differences were small for BLV, BVDV
6 and NC and the graphical estimation method does not determine if the differences are
7 statistically significant. Furthermore, unlike the following results from the modelling, the
8 graphical method does not account for confounding or clustering within herds, which
9 could alter final interpretations of significant relationships between culling and
10 seropositivity for the pathogens.

11

12 The results from semiparametric survival analyses (Cox proportional hazard model), with
13 and without multiplicative gamma frailty and stratified baseline hazards to adjust for
14 within herd clustering, are presented in Table 5.1.

15

16 Estimates from the survival analyses with multiplicative gamma frailty showed that the
17 hazard of culling of MAP-seropositive cows was 1.38 (1.05 – 1.81, 95% C.I.) times that
18 of MAP-seronegative cows. Higher lactation number cows were significantly associated
19 with higher hazards of culling. The hazard of culling in Nova Scotia, Prince Edward
20 Island and Saskatchewan were 1.53, 1.38 and 1.43 times that of New Brunswick. The
21 significant frailty variance in the gamma shared frailty model suggested heterogeneity
22 among culling decisions in different herds. The other models produced approximately
23 similar fixed effect estimates. The stratified model could not produce BVDV and

1 province estimates because the stratification by herd eliminated the variation of these two
2 variables.

3

4 Graphical assessment and non-significant P-values ($P > 0.05$) for the inclusions of time-
5 varying interaction covariates with BLV, BVDV, MAP, NC and lactation number
6 indicated that the basic assumption of proportional hazards was not violated. Cox-Snell
7 and scaled Schoenfeld residuals indicated a good overall fit of the final model. The
8 estimated random herd effects showed a good fit to the gamma distribution.

9

10 5.4.2. Reason-specific risk of culling

11

12 Overall, 572, 179 and 373 cows were culled because of poor reproduction, low milk
13 production and mastitis, respectively. Table 5.2 shows the hazard ratios for reason-
14 specific culling associated with seropositivity for BLV, BVDV and NC from semi-
15 parametric survival analyses with multiplicative gamma frailty. Among cows that were
16 culled because of reproductive inefficiency, NC-seropositive cows had a 1.43 (95% C.I.,
17 1.15 – 1.79) times greater hazard of culling than NC-seronegative cows. Among cows
18 that were culled because of low milk production, cows in BVDV-seropositive herds had a
19 1.86 (95% C.I., 1.28 – 2.70) times greater hazard of culling than cows in BVDV-
20 seronegative herds. For cows culled for poor reproduction or low milk production, higher
21 lactation cows were significantly associated with greater hazards. However, for cows
22 culled for mastitis, lactation number was not significantly associated with hazard of
23 culling, although the hazard was highest in the two oldest age groups (lactations 5 and 6

1 plus). Significant frailty variance suggests heterogeneity among herds for specific reasons
2 of culling, confirming the need for adjustment due to within herd clustering. As with the
3 model for overall culling, model diagnostics did not identify any problems with the fit or
4 structure of the models.

5

6 The effect of MAP-seropositivity could not be estimated for reason-specific models due
7 to the small numbers of MAP-seropositive cows that were culled for each of the three
8 main reasons (n = 41). However, in a model for the three reasons combined (results not
9 shown in Table), MAP-seropositive cows had a 1.55 (95% C.I., 1.11 – 2.15,) times
10 greater hazard of culling as compared to MAP-seronegative cows, while controlling for
11 other confounders and adjusting for random within herd clustering.

1 **5.5. Discussion**

2

3 This study was part of a national study designed to determine the seroprevalence of BLV,
4 BVDV, MAP and NC in Canadian dairy cattle. While other provinces have been included
5 in the overall prevalence survey, only herds from these four provinces were included in
6 these analyses for two reasons. They used similar random selection procedures at the cow
7 and herd level to ensure that the study population was representative of the target
8 population. Also, there was sufficient time between sampling and statistical analyses to
9 generate a large sample of culled cows for analyses. Other provinces either used a
10 different selection protocol or were sampled and tested later, leading to insufficient
11 follow up time to conduct culling analyses.

12

13 With regard to the methodology used in this study, multivariable hazard models (risk of
14 culling at a particular time) were chosen to estimate the risk of culling instead of a
15 comparison of percentages of culled seropositive and seronegative cows because it takes
16 into account the actual time at risk for culling and allows for controlling of possible
17 confounding variables. The inclusion or exclusion of potential confounding variables in
18 the final model did not significantly change the hazard estimates for pathogen
19 seropositivity. For example, the inclusion of province in the final model minimized any
20 bias that may have resulted from the differences in follow-up time or culling for dairy
21 purposes between the Saskatchewan and Atlantic herds. The proportion of total culled
22 cows that left the herd for dairy purposes was 16.6% and 16.4% in Saskatchewan and
23 Atlantic herds, respectively.

1

2 In survival analysis, stratified and shared frailty models are two approaches to take into
3 account significant correlations among observations derived from a hierarchical structure
4 (in our data, multiple cows within a herd). Stratification by herd allows baseline hazards
5 to vary between herds and thereby accounts for herd differences without explicitly
6 modelling them. The approach is robust but has the disadvantage of precluding the
7 inclusion of group level predictors in the model (such as BVDV herd-status), because
8 stratification by herd eliminates the variation of these herd level variables. Shared frailty
9 models assume that random herd effects follow a specific (in our case, gamma)
10 distribution and that these effects act multiplicatively on the hazard. In shared frailty
11 models, the variability in the data is split into individual variability in time to event and
12 variability common to individuals in the group (herd). The magnitude of the latter is
13 described by the frailty variance. This approach requires more explicit assumptions (eg.
14 distribution of the random herd effects) but gives more information (eg. frailty variance)
15 and allows for herd-level predictors. In frailty models, the hazard ratio represents the
16 effect of the factor at time = 0, but over the time this effect will diminish in favour of the
17 frailty effect (Stata ref manual 8., 2003).

18

19 The stratified and shared frailty models produced similar fixed effect estimates. The
20 standard errors of the fixed effects were largest (marginally compared to shared frailty
21 models) in the stratified models and smallest in the initial models that did not take into
22 account the hierarchical structure. We choose the shared frailty models because they
23 showed no sign of poor fit, were more efficient (by estimating less parameters than

1 stratified models) and did not have the disadvantage of precluding the inclusion of group
2 level predictors in the model (such as BVDV herd-status). Significant frailty variance (as
3 seen by the significant p value in tables 5.1 and 5.2) suggests clustering within herds and
4 heterogeneity among herds for overall and specific reasons of culling, confirming the
5 need for adjustment due to within herd clustering.

6

7 Without adjusting for herd effects, cows in BVDV-seropositive herds had a slightly (p-
8 value < 0.10) increased hazard of overall culling compared to cows in BVDV-
9 seronegative herds but this effect was not significant once herd effects were accounted
10 for. Other studies (Meyling et al., 1990; Pritchard et al., 1989) found similar relationships
11 but their studies included only three and one herd, respectively. We also found that
12 among cows that were culled because of decreased milk production, cows in BVDV-
13 seropositive herds were significantly associated with greater hazard of culling than cows
14 in BVDV-seronegative herds. These results support the findings of a companion study in
15 which we found that cows in BVDV-seropositive herds had a decrease of 393.7 (95%
16 C.I., 106 – 681.4) kg in 305-day milk production (Tiwari et al., 2004). It is unclear
17 whether this impact on milk production and its associated culling is due to direct physical
18 effects of the virus on feed consumption and/or milk production, or due to the indirect
19 effects of other pathogens that are allowed to impart their effects due to the
20 immunosuppression caused by BVD virus. In our study, there were no interactive effects
21 on culling between seropositivity for pathogens examined. However, studies in the past
22 have suggested that BVDV can cause increased susceptibility to other diseases (Houe,

1 1995), although, there are no reports of concurrent infections exacerbating the effects of
2 BVDV.

3

4 Among cows that were culled because of either decreased milk production or mastitis,
5 cows in herds with no BVDV test results had a slightly increased risk of culling
6 compared to cows in BVDV-seronegative herds. The unavailability of unvaccinated
7 heifers in these herds may suggest a more vigorous approach to vaccinate heifers in
8 response to health problems in the herd as a result of BVD virus, potentially leading to
9 enhanced culling.

10

11 In our study, after adjusting for within herd clustering effects, seropositivity for MAP for
12 all reasons for culling was significantly associated with an increased hazard of culling,
13 confirming that this impact on culling is applicable to a variety of sizes and management
14 levels of dairy farms, even after controlling for confounding variables. Wilson et al.,
15 (1993) found similar results utilizing fecal culture to identify MAP infected cows in one
16 large herd in New York with high MAP prevalence. We also found that seropositivity for
17 MAP was significantly associated with reason-specific (decreased reproductive
18 efficiency, decreased milk production and/or mastitis) risk of culling, confirming that the
19 culling was not simply due to the procedure being aware of the positive MAP ELISA test
20 results.

21

22 It is biologically plausible for MAP to lead to increased hazard of culling. MAP infection
23 typically causes localized granulomatous lesions in lymph nodes and the lamina propria

1 of the terminal ileum but granulomatous lesions can also be disseminated throughout the
2 entire gastrointestinal (GI) tract (Chiodini et al., 1984). The gastroenteritis produces
3 mucosal thickening that results in reduced absorption of nutrients from the intestine and
4 alterations in cell-mediated immunity. Reduced GI absorption might cause or worsen a
5 negative energy balance in early lactation, while alterations in cell-mediated immunity
6 may decrease the resistance of cows towards other infectious diseases, possibly resulting
7 in culling of MAP-seropositive cows due to decreased reproductive efficiency (Johnson
8 et al., 2001) or decreased milk production (Goodell et al., 2000) or mastitis (McNab et
9 al., 1991).

10

11 In our randomly selected population of cattle and herds, after adjusting for herd effects,
12 seropositivity for NC for all reasons of culling was not significantly associated with an
13 increased hazard of culling. These results agree with those from a previous study in
14 which reason-specific culling was not examined (Cramer et al., 2002). However, we also
15 found that NC-seropositive cows were significantly associated with an increased risk of
16 culling for reproductive reasons, which supports a previous study looking at culling in a
17 single large dairy herd in California with a history of abortion storms (Thurmond and
18 Hietala, 1996). Cows infected with NC can have a two- to three-fold increase in risk of
19 fetal loss (Thurmond and Hietala, 1996). However, NC-seropositivity does not
20 necessarily lead to abortion (Anderson et al., 1997), which may explain the inability of
21 some previous studies (Cramer et al., 2002) to find an increased risk of culling, if there
22 were insufficient herds in the study with a recent history of abortion problems to lead to
23 detectable increased culling risk.

1
2 Significant relationships between BLV-seropositivity and decreased reproductive
3 efficiency, decreased milk production or mastitis have been reported (Pelzer, 1997;
4 Pollari et al., 1993), often in large herds with high seroprevalence. Conversely, Herald et
5 al. (1992) found no relationship among a group of herds of varying seroprevalence in
6 Ontario, Canada, but these cows were selected from non-randomly selected herds. In our
7 study of randomly selected cows and herds with a wide variety of seroprevalences, after
8 adjusting for herd effects, seropositivity for BLV was not associated with an increased
9 hazard of overall culling or culling for any specific reason.

10
11 BLV can cause alterations in cell-mediated immunity; with up to 30% of BLV-
12 seropositive cattle eventually developing persistent lymphocytosis, while less than 5 % of
13 BLV-seropositive cows develop lymphosarcoma (Bradford ., 2002).
14
15 With the low proportion of seropositive cows developing lymphosarcoma, significant
16 associations between seropositivity and culling due to clinical disease is unlikely except
17 perhaps in high prevalence herds where the herd burden of virus is large, potentially
18 leading to a higher likelihood of negative impacts and subsequent culling. However, in
19 our study with a seroprevalence of 26.9%, seropositivity for BLV for all reasons of
20 culling was slightly associated ($p\text{-value}<0.30$) with an increased hazard of culling after
21 adjusting for herd effects. If only 5% of these animals develop lymphosarcoma, only
22 1.4% or 27 culled animals in the study may have developed this abnormality, a limited
23 number to be able to detect a significant association between culling and BLV-

1 seropositivity. It is unclear whether persistent lymphocytosis leads to increased culling
2 either directly or through another ailment.

3

4 Maritime and Saskatchewan farmers received the diagnostic tests results for BLV,
5 BVDV, MAP and NC after 16-18 and 6 months, respectively. The effect of knowing the
6 test results on overall and reason-specific culling was estimated by two approaches. First,
7 the data set was divided into two (before and after getting the test results), and then the
8 hazards of culling for BLV, BVDV, MAP and NC seropositivity were compared. Second,
9 the effects of variables were allowed to vary with time (as a time varying co-variates).

10 There was no difference in the hazard of culling before and after getting the test results
11 for any of the pathogens, and none of the time varying co-variates remains significant in
12 the final model. It was therefore concluded that knowing the test results did not
13 significantly affect the hazard of culling for BLV, BVDV, MAP and NC seropositivity.

14

15 Due to a small number of cows being seropositive for more than one pathogen, this study
16 had limited power to detect a relationship between culling and co-infections, and a type II
17 error is possible (stating that there is no relationship when in fact there is one). At the
18 cow level, there were 18, 100 and 13 cows that were seropositive with BLV and MAP,
19 BLV and NC, and MAP and NC, respectively, with 5 cows seropositive for all 3
20 pathogens. Misclassification of test results from the NC-ELISA (Bergeron et al., 2000)
21 and MAP-ELISA (Sockett et al., 1992) would also have reduced the likelihood of
22 detecting an interaction for co-infections. It can be concluded that a strong relationship
23 between culling and seropositivity for more than one pathogen was not detected, although

- 1 future research with a larger number of co-infected (co-exposed) animals, preferably with
- 2 tests with less misclassification than the ELISAs utilized in this study, are warranted.
- 3

1 **5.6 Conclusions**

2

3 In conclusion, for all reasons of culling, MAP-seropositive cows were associated with
4 1.38 (1.05 – 1.81, 95% C.I.) times increased hazard of culling compared to MAP-
5 seronegative cows. Among cows that were culled because of either decreased
6 reproductive efficiency or decreased milk production or mastitis, MAP-seropositive cows
7 were associated with 1.55 (1.12 – 2.15, 95% C.I.) times increased hazard compared to
8 MAP-seronegative cows. Among cows that were culled because of reproductive
9 inefficiency, NC-seropositive cows were associated with 1.43 (95% C.I., 1.15 – 1.79)
10 times greater hazard than NC-seronegative cows. Among cows that were culled because
11 of decreased milk production, cows in BVDV-seropositive herds were associated with
12 1.86 (1.28 – 2.70 95% C.I.) times increased hazard compared to BVDV-seronegative
13 herds. BLV-seropositive cows did not have an increased risk of culling as compared to
14 BLV-seronegative cows. Results from our research will help in better understanding the
15 economic impacts of these pathogens and justification for their control.

1 **5.7 Acknowledgements**

2

3 The authors wish to acknowledge Dr. LeeAnn Forsyth and Ms. Renee Chartier of the
4 Saskatchewan Department of Agriculture (Food and Rural Revitalization, Inspection and
5 Regulatory Management Branch, Animal Health Unit) for their technical and logistical
6 support in the collection of samples and data from the participating farmers in
7 Saskatchewan. Authors acknowledge the following funding sources: Dairy Farmers of
8 Canada, Atlantic Veterinary College, Production Limiting Diseases Committee, and PEI
9 Agricultural Research Investment Fund.

1 5.8 References

- 3 Anderson, M.L., Reynolds, J.P., Rowe, J.D., Sverlow, K.W., Packham, A.E., Barr,
4 B.C., Conrad, P.A., 1997. Evidence of vertical transmission of Neospora sp
5 infection in dairy cattle. *J. Am. Vet. Med. Assoc.* 210, 1169-1172.

6 Bergeron, N., Fecteau, G., Pare, J., Martineau, R., Villeneuve, A., 2000. Vertical and
7 horizontal transmission of Neospora caninum in dairy herds in Quebec. *Can. Vet. J.* 41, 464-467.

8 Bradford, P.S., 2002. Large animal internal medicine. Third Edition ed. St. Louis, MO:
9 Mosby.

10 Chi, J., VanLeeuwen, J., Weersink, A., Keefe, G., 2002. Direct production losses and
11 treatment costs from bovine viral diarrhoea virus, bovine leukosis virus,
12 Mycobacterium avium subspecies paratuberculosis, and Neospora caninum. *Prev.
13 Vet. Med.* 55, 137.

14 Chiodini, R.J., Van Kruiningen, H.J., Merkal, R.S., 1984. Ruminant paratuberculosis
15 (Johne's disease): the current status and future prospects. *Cornell Vet.* 74, 218-
16 262.

17 Cramer, G., Kelton, D., Duffield, T.F., Hobson, J.C., Lissemore, K., Hietala, S.K.,
18 Peregrine, A.S., 2002. Neospora caninum serostatus and culling of Holstein
19 cattle. *J. Am. Vet. Med. Assoc.* 221, 1165-1168.

20 David, G.P., Crawshaw, T.R., Gunning, R.F., Hibberd, R.C., Lloyd, G.M., Marsh,
21 P.R., 1994. Severe disease in adult dairy cattle in three UK dairy herds associated
22 with BVD virus infection. *Vet. Rec.* 134, 468-472.

23

- 1 Deregt, D., Smithson, S., Kozub, G.C., 1992. A short incubation serum neutralization
2 test for bovine viral diarrhoea virus. Can. J. Vet. Res. 56, 161-164.
- 3 Emanuelson, U., Scherling, K., Pettersson, H., 1992. Relationships Between herd bovin
4 leukemia virus infection status and reproduction, disease incidence, and
5 productivity in Swedish dairy herds. Prev. Vet. Med. 12, 121-131.
- 6 Goodell, G.M., Hirst, H., Garry, F., Dinsmore, P., 2000. Comparison of cull rates and
7 milk production of clinically normal dairy cows grouped by ELISA
8 Mycobacterium avium paratuberculosis serum antibody results. Proceedings of
9 The International Symposium of Veterinary Epidemiology and Economics,
10 Breckenridge, CO, USA.
- 11 Herald, M.T.S., Waltner-Toews, D., Jacobs, R.M., 1992. The prevalence of anti-bovine
12 leukemia virus antibodies in dairy cows and association with farm management
13 practices, production and culling in Ontario. Prev. Vet. Med. 14, 45-55.
- 14 Houe, H., 1992. Serological analysis of a small herd sample to predict the presence of
15 animals persistently infected with bovine viral diarrhoea virus (BVDV) in dairy
16 herds. Res. Vet. Sci. 53, 320-323.
- 17 Houe, H., 1995. Epidemiology of bovine viral diarrhoea virus. Vet. Clin. North Am.
18 Food Anim Pract. 11, 521-547.
- 19 Johnson, R.J., Kaneene, J.B., 1991. Bovine Leukemia Virus. Part I. Descriptive
20 Epidemiology, Clinical Manifestations, and Diagnostic tests. Compendium on
21 Continuing Education 13, 328.
- 22 Johnson, Y.J., Kaneene, J.B., Gardiner, J.C., Lloyd, J.W., Sprecher, D.J., Coe, P.H.,
23 2001. The effect of subclinical Mycobacterium paratuberculosis infection on milk

- 1 production in Michigan dairy cows. *J. Dairy Sci.* 84, 2188-2194.
- 2 Keefe, G.P., VanLeeuwen, J.A., 2000. *Neospora then and now: prevalence of Neospora*
3 *caninum in Maritime Canada in 1979, 1989, and 1998.* *Can. Vet. J.* 41, 864-866.
- 4 McNab, W.B., Meek, A.H., Martin, S.W., Duncan, J.R., 1991. *Associations between*
5 *dairy production indices and lipoarabinomannan enzyme-immunoassay results for*
6 *paratuberculosis.* *Can. J. Vet. Res.* 55, 356-361.
- 7 Merkal, R.S., Larsen, A.B., Booth, G.D., 1975. *Analysis of the effect of inapparent*
8 *bovine paratuberculosis.* *Am. J. Vet. Res.* 36, 837-838.
- 9 Meyling, A., Houe, H., Jensen, A.M., 1990. *Epidemiology of bovine virus diarrhoea*
10 *virus.* *Rev. Sci. Tech. Off. Int. Epiz* 9, 75-93.
- 11 Pelzer, K.D., 1997. *Economics of bovine leukemia virus infection.* *Vet. Clin. North Am.*
12 *Food Anim Pract.* 13, 129-141.
- 13 Pollari, F.L., DiGiacomo, R.F., Evermann, J.F., 1993. *Use of survival analysis to*
14 *compare cull rates between bovine leukemia virus seropositive and seronegative*
15 *dairy cows.* *Am. J. Vet. Res.* 54, 1400-1403.
- 16 Pritchard, G.C., Borland, E.D., Wood, L., Pritchard, D.G., 1989. *Severe disease in*
17 *dairy herd associated with acute infection with bovine viral diarrhoea virus,*
18 *Leptospira hardjo and Coxiella burnetii.* *Vet. Rec.* 124, 625-629.
- 19 Rhodes, J.K., Pelzer, K.D., Johnson, Y.J., Russek-Cohen, E., 2003. *Comparison of*
20 *culling rates among dairy cows grouped on the basis of serologic status for bovine*
21 *leukemia virus.* *J Am. Vet Med. Assoc.* 223, 229-231.
- 22 Sockett, D.C., Conrad, T.A., Thomas, C.B., Collins, M.T., 1992. *Evaluation of four*
23 *serological tests for bovine paratuberculosis.* *J. Clin. Microbiol.* 30, 1134-1139.

- 1 Stata Reference Manual 8, 2003. Cox proportional hazards model. Stata Survival analysis
2 and epidemiological tables. Stata Corporation, College Station, Texas, pp.108-
3 155.
- 4 Therneau, T.M. and Grambsch, P.M., 2000. Modeling Survival Data, Extending the Cox
5 Model, Springer: New York.
- 6 Thurmond, M.C., Hietala, S.K., 1996. Culling associated with Neospora caninum
7 infection in dairy cows. Am. J. Vet. Res. 57, 1559-1562.
- 8 Tiwari, A., VanLeeuwen, J.A., Dohoo, I.R., Stryhn, H., Keefe, G., Haddad, J.P.,
9 2004. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea,
10 Mycobacterium avium subspecies paratuberculosis, and Neospora caninum
11 on milk production in Canadian dairy cattle. Accepted to World Buiatrics
12 Congress, Quebec, Canada.
- 13 VanLeeuwen, J.A., Keefe, G.P., Tremblay, R., Power, C., Wichtel, J.J., 2001.
14 Seroprevalence of infection with Mycobacterium avium subspecies
15 paratuberculosis, bovine leukemia virus, and bovine viral diarrhoea virus in
16 maritime Canada dairy cattle. Can. Vet. J. 42, 193-198.
- 17 VanLeeuwen, J.A., Forsythe, L., Tiwari, A., Chartier, R., 2005. Seroprevalence of
18 antibodies against bovine leukemia virus, bovine viral diarrhea virus,
19 Mycobacterium avium subspecies paratuberculosis, and Neospora caninum in
20 dairy cattle in Saskatchewan. Can Vet J 46, 56-58.
- 21 Wilson, D.J., Rossiter, C., Han, H.R., Sears, P.M., 1993. Association of
22 Mycobacterium paratuberculosis infection with reduced mastitis, but with
23 decreased milk production and increased cull rate in clinically normal dairy cows.

1 Am. J. Vet. Res. 54, 1851-1857.

2 World Trade Organisation. (1994) Final Act of the 1986-1994 Uruguay Round of trade

3 negotiations.http://www.wto.org/english/docs_e/legal_e/ursum_e.html

4

Table 5.1. Hazard ratios associated with BLV-, BVDV-, MAP- and NC-seropositivity, test lactation number and province from Cox-proportional hazard models for all reasons of culling in dairy cows in Canadian herds.

	Cox model (no herd effect)			Stratified Cox model			Shared frailty Cox model		
	Estimate	P-value	95% C.I.	Estimate	P-value	95% C.I.	Estimate	P-value	95% C.I.
Effects / Parameter									
BLV	1.060	0.272	0.955 – 1.176	1.021	0.768	0.890 – 1.170	1.032	0.615	0.913 – 1.166
BVDV									
herd negative	1	-	-				1	-	-
herd positive	1.140	0.007	1.035 – 1.254		-		1.171	0.076	0.983 – 1.394
herds having no test	1.104	0.224	0.941 – 1.294		-		1.141	0.356	0.861 – 1.511
MAP	1.354	0.024	1.040 – 1.761	1.442	0.010	1.092 – 1.904	1.382	0.019	1.054 – 1.811
NC	1.041	0.520	0.920 – 1.179	1.062	0.399	0.922 – 1.223	1.053	0.450	0.920 – 1.204
Lactation		0.000			0.000			0.000	
1	1	-	-	1	-	-	1	-	-
2	1.174	-	1.033 – 1.333	1.234	-	1.082 – 1.407	1.212	-	1.065 – 1.379
3	1.582	-	1.384 – 1.806	1.723	-	1.498 – 1.980	1.696	-	1.480 – 1.943
4	1.722	-	1.482 – 1.999	1.826	-	1.557 – 2.140	1.860	-	1.594 – 2.168
5	2.066	-	1.726 – 2.472	2.223	-	1.837 – 2.689	2.177	-	1.809 – 2.618
>6	2.550	-	21.43 – 3.032	3.207	-	2.653 – 3.876	3.097	-	2.582 – 3.714
Province		0.000						0.003	
New Brunswick	1	-	-		-		1	-	-
Nova Scotia	1.527	-	1.343 – 1.736		-		1.547	-	1.222 – 1.957
Prince Edward Island	1.381	-	1.210 – 1.575		-		1.365	-	1.076 – 1.729
Saskatchewan	1.426	-	1.219 – 1.668		-		1.462	-	1.131 – 1.888
Frailty variance		-			-		0.133	0.000	

Table 5.2: Hazard ratios associated with BLV-, BVDV- and NC-seropositivity, test lactation number and province from Cox-proportional hazard models for specific reasons and shared frailty at herd level in dairy cows in Canadian herds.

Effects / Parameter	Culling reason								
	Poor Reproduction			Low Milk			Mastitis		
	Estimate	P-value	95% C.I.	Estimate	P-value	95% C.I.	Estimate	P-value	95% C.I.
BLV	0.894	0.327	0.714 – 1.118	1.135	0.369	0.861 – 1.494	1.044	0.826	0.711 – 1.531
BVDV									
Herd negative	1	-	-	1	-	-	1	-	-
Herd positive	0.839	0.196	0.642 – 1.094	1.863	0.001	1.283 – 2.704	1.427	0.094	0.941 – 2.164
herds having no test	1.091	0.686	0.714 – 1.665	2.050	0.023	1.103 – 3.811	2.388	0.009	1.244 – 4.582
NC	1.435	0.001	1.148 – 1.793	0.811	0.225	0.579 – 1.137	1.005	0.981	0.656 – 1.538
Lactation		0.000			0.000			0.638	
1	1	-	-	1	-	-	1	-	-
2	1.461	-	1.153 – 1.852	1.138	-	0.834 – 1.553	0.886	-	0.594 – 1.320
3	1.718	-	1.329 – 2.219	2.079	-	1.533 – 2.817	1.099	-	0.714 – 1.691
4	1.996	-	1.499 – 2.655	2.350	-	1.669 – 3.308	0.906	-	0.523 – 1.569
5	2.137	-	1.512 – 3.018	2.093	-	1.345 – 3.254	1.327	-	0.720 – 2.446
>6	2.600	-	1.830 – 3.693	3.345	-	2.189 – 5.110	1.485	-	0.764 – 2.885
Province		0.281			0.134			0.014	
New Brunswick	1	-	-	1	-	-	1	-	-
Nova Scotia	1.290	-	0.901 – 1.846	1.749	-	1.064 – 2.874	2.016	-	1.176 – 3.454
Prince Edward Island	1.418	-	0.993 – 2.025	1.430	-	0.866 – 2.360	1.059	-	0.590 – 1.901
Saskatchewan	1.277	-	0.857 – 1.899	1.116	-	0.626 – 1.988	0.897	-	0.463 – 1.734
Frailty variance	0.235	0.000		0.551	0.000		0.406	0.000	

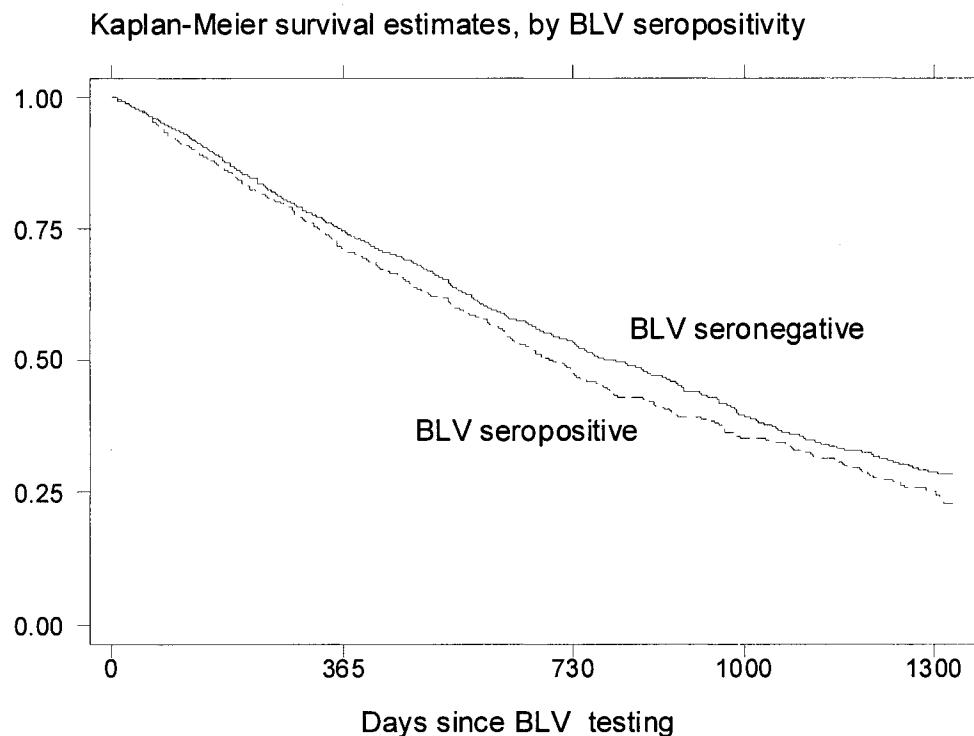


Fig. 5.1. Kaplan-Meier survival curves¹ for BLV-seropositive and seronegative cows in 3531 dairy cows in 134 Canadian herds.

BLV-seronegative cows _____
 BLV-seropositive cows -----

¹ Survival curves, which estimate the probability for a cow to survive (not be culled) up to any given day after testing (100% survival on day 0 - top-left corner of the curve).

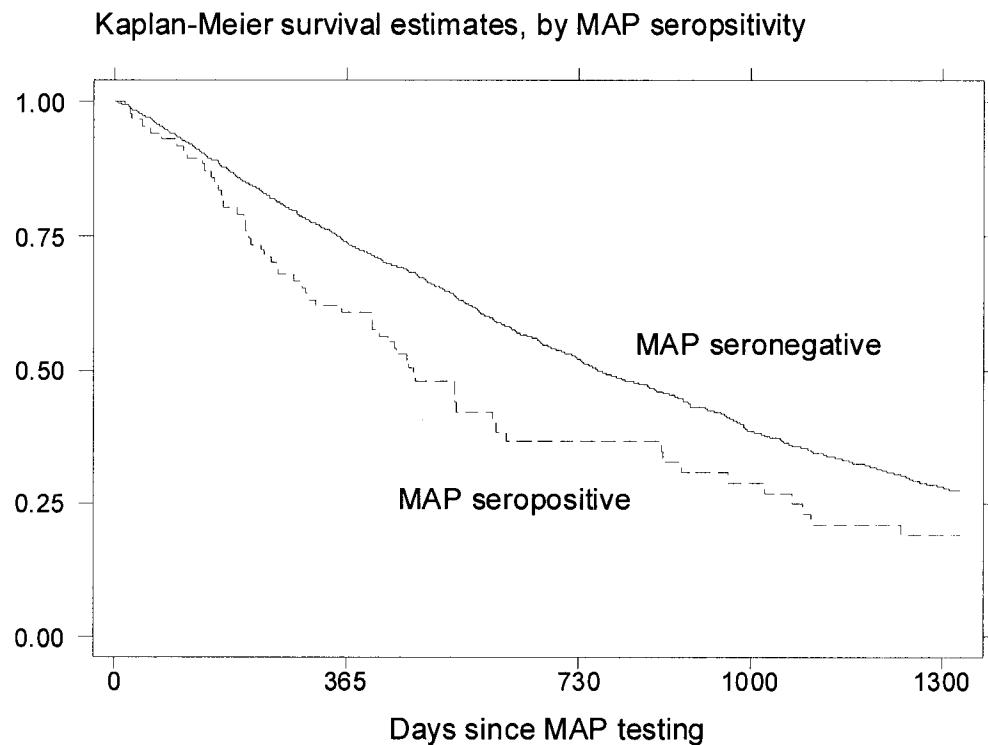


Fig. 5.2. Kaplan-Meier survival curves¹ for MAP-seropositive and seronegative cows in 3531 dairy cows in 134 Canadian herds.

MAP-seronegative cows _____
 MAP-seropositive cows -----

¹ Survival curves, which estimate the probability for a cow to survive (not be culled) up to any given day after testing (100% survival on day 0 - top-left corner of the curve).

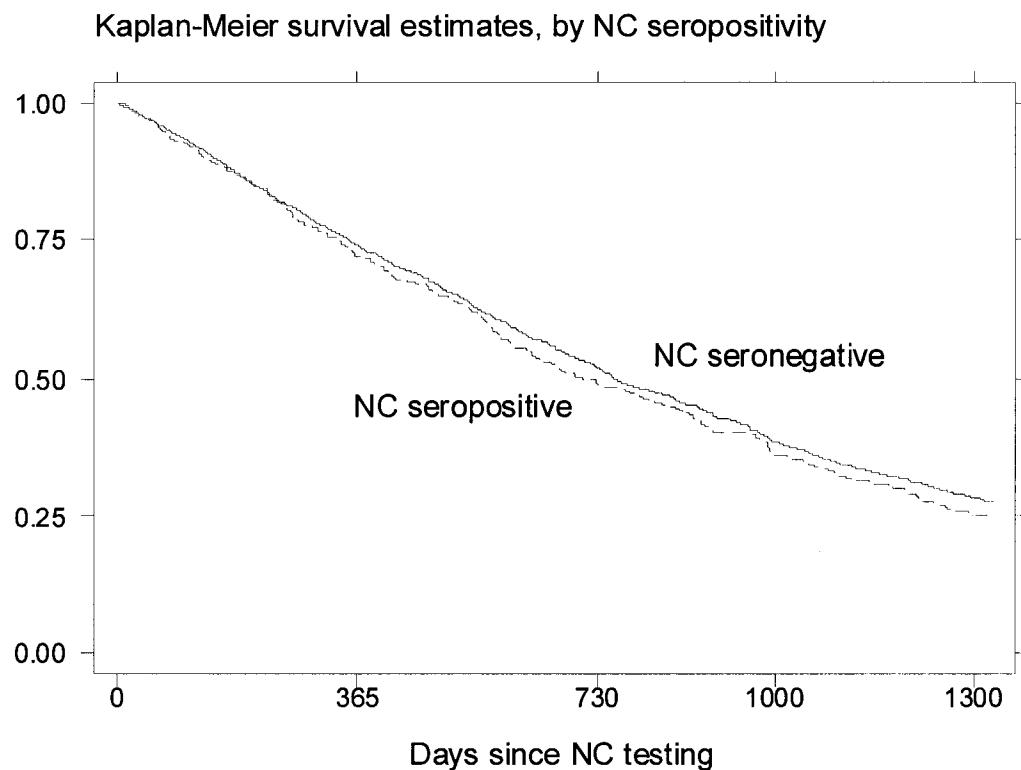


Fig. 5.3. Kaplan-Meier survival curves¹ for NC-seropositive and seronegative cows in 3531 dairy cows in 134 Canadian herds.

NC-seronegative cows _____
 NC-seropositive cows _____

¹Survival curves, which estimate the probability for a cow to survive (not be culled) up to any given day after testing (100% survival on day 0 - top-left corner of the curve).

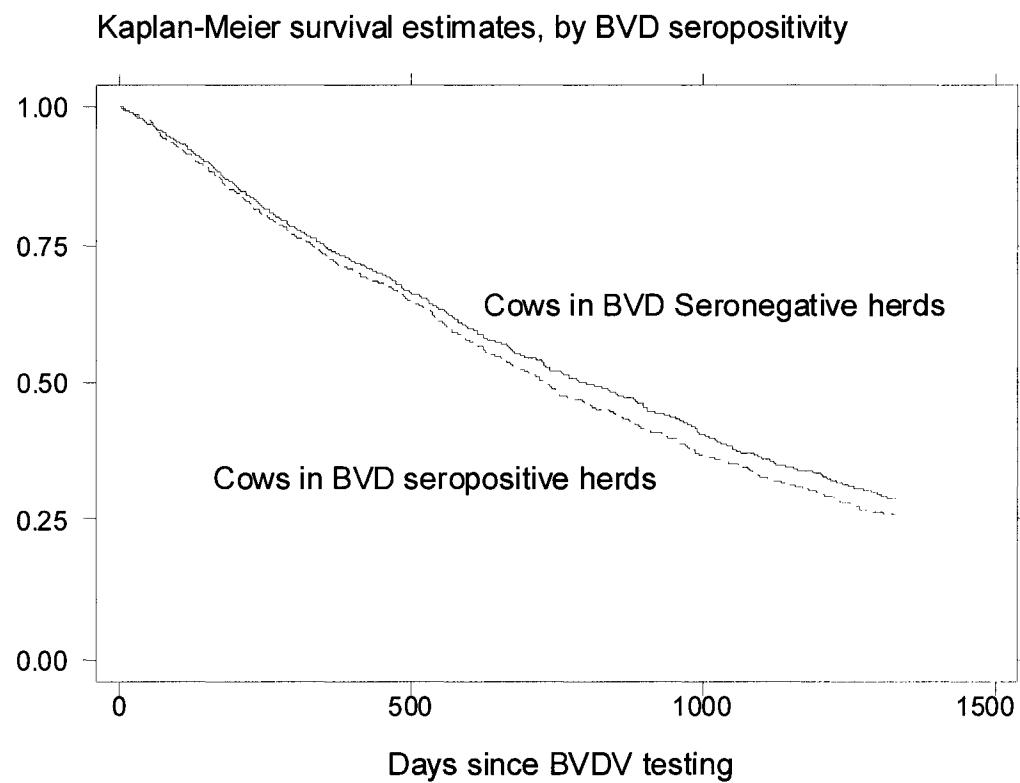


Fig. 5.4. Kaplan-Meier survival curves¹ for 3531 cows in BVDV-seropositive and seronegative Canadian dairy herds (n=134)

Cows in BVDV-seronegative herds _____

Cows in BVDV-seropositive herds -----

¹Survival curves, which estimate the probability for a cow to survive (not be culled) up to any given day after testing (100% survival on day 0 - top-left corner of the curve).

1 **CHAPTER 6: Direct production losses from subclinical Mycobacterium**
2 **avium subspecies paratuberculosis infection in Canadian dairy herds**

3

4

5 **6.1 Abstract**

6

7 The objective of this study was to determine the estimate and range of annual direct
8 production losses from Mycobacterium avium subspecies paratuberculosis (MAP) for an
9 average MAP-seropositive Canadian dairy herd with 61 milking cows and a
10 seroprevalence of 12%. A stochastic, partial budget, simulation model with four
11 components of direct production losses (decreased milk production, premature voluntary
12 culling, mortality and reproductive losses) was developed using @RISK software with
13 Latin hypercube sampling and 10,000 iterations for each analysis. Input values were
14 obtained primarily from a national study of 373 Canadian dairy farms in 8 of 10
15 provinces, with a few values coming from peer-reviewed literature. The model took into
16 account the variability and uncertainty of the required input values and consequently
17 produced probability distributions of the estimated losses.

18

19 For the MAP-seropositive Canadian dairy herds, the mean loss per 61 cow herd was CD
20 \$2,992 (95% C.I., \$143 – \$9741) annually, or CD \$49 per cow per year. Herd additional
21 culling losses were responsible for 46% (CD \$1374) of the total losses from MAP.
22 Decreased milk production, mortality and reproductive losses accounted for 9% (CD
23 \$254), 16% (CD \$488) and 29% (CD \$875) of the losses, respectively. MAP-seropositive

- 1 dairy farms sustain substantial, although somewhat variable, economic costs associated
- 2 with these production losses, and dairy producers should use best management practices
- 3 to reduce these annual losses.

1 **6.2 Introduction**

2

3 Recent international developments in the area of infectious disease control and non-tariff
4 trade barriers, along with possible zoonotic concerns, have provoked a revival of interest
5 in Johne's disease (JD) in Canada and elsewhere. The slow-growing, acid-fast bacterium
6 causing Johne's disease (JD), Mycobacterium avium subspecies paratuberculosis (MAP),
7 is distributed worldwide (Anon., 1997; Boelaert et al., 2000; Gasteiner et al., 1999;
8 Muskens et al., 2000; Tiwari et al., 2005b) and causes chronic, progressive,
9 granulomatous enteritis in domestic and exotic ruminants. Dairy cattle infected with
10 MAP have been associated with premature culling (Benedictus et al., 1987; Tiwari et al.,
11 2005e), decreased milk production (Abbas et al., 1983; Benedictus et al., 1987; Tiwari et
12 al., 2005a), increased mortality (Kreeger, 1991), decreased reproductive efficiency
13 (Abbas et al., 1983; Johnson-Ifearulundu et al., 2000) and possible increased
14 susceptibility to other diseases (Tiwari et al., 2005d). Also known as paratuberculosis, JD
15 has no known cure (Chiodini et al., 1984).

16

17 There have been studies done in the past to determine the economic losses from MAP,
18 but the validity of these estimates in the Canadian dairy industry is questionable for the
19 following reasons. 1) Some studies were based on research on a small number of herds
20 that may not have been representative of the wide diversity of herds in the Canadian dairy
21 industry and their differences in management or seroprevalence (Abbas et al., 1983;
22 Benedictus et al., 1987; Chi et al., 2002). 2) Some studies utilized estimation methods,
23 such as regression, or directly multiplied the estimated prevalence with costs of effects

1 associated with MAP (such as decreased milk yield) so that the interpretation of these
2 estimates is limited to individual herds (Benedictus et al., 1987; Ott et al., 1999). 3) In a
3 economic study done in Canadian maritime dairy herds (Chi et al., 2002), the utilized
4 effects of MAP-seropositivity were estimated primarily from the scientific literature, in
5 non-Canadian dairy herds. None of the studies done in the past utilized either the national
6 Canadian MAP prevalence estimates or the effects of MAP on dairy cattle that have been
7 estimated in Canadian dairy industry.

8

9 The objective of this study was to determine the economic losses from subclinical
10 Mycobacterium avium subspecies paratuberculosis infection in Canadian dairy herds by
11 utilizing Canadian estimates of MAP prevalence and impacts of subclinical MAP
12 infection.

1 **6.3. Materials and methods**

2 6.3.1. Partial-budget model

3 A partial budget model is one which deals only with those aspects of an enterprise which
4 are affected by a factor being investigated. The model used in this study was adapted
5 from Bennett et al. (1999) and Chi et al. (2002), and included the impacts of MAP on
6 milk yield, additional mortality, additional culling and reproductive losses
7 . Considerations such as possible effects of MAP on human health, the ability of the farm
8 to market livestock or other products, and other potential indirect costs were not included
9 in the model.

10

11 6.3.2 Input parameters

12 Table 6.1 lists all of the input parameters used in the partial budget model, the
13 distribution that was assumed to represent the range of possible values that each
14 parameter might have, the characteristics which defined that distribution, and the source
15 of the information about the parameter and its distribution. Each is discussed in more
16 detail below.

17

18 *6.3.2.1. Farm characteristics and prices*

19 Two herd sizes were used in the analyses. To estimate the average losses for the
20 Canadian dairy industry, a herd size of 100 cows was used and losses were expressed as
21 being “per 100 cows” or “per cow”. For estimating the range of possible losses at the
22 individual infected herd level, the average size of a Canadian dairy herd, as reported by
23 Dairy Farmers of Canada in 2002 (n=61 cows) was used. The average milk production

1 per cow per 305-day lactation (9,519 litres) was obtained from the Canadian Dairy Herd
2 Improvement (DHI) (http://www.dairyinfo.gc.ca/pdf_files/statsbook2005.pdf). The
3 average milk price (\$0.59/liter) was obtained from the Canadian Dairy Information
4 Centre web site (http://www.dairyinfo.gc.ca/pdf_files/pcan0304.pdf). Herd sizes,
5 production levels and milk price were all treated as fixed values so that all estimates of
6 MAP-associated losses were independent of differences in those parameters across herds.

7

8 Replacement cost of a cow (triangular distribution, min.= \$1,500, max. = \$2,500, most
9 likely = \$2,000 per head), average slaughter value (triangular distribution, min. = \$300.
10 max. = \$700, most likely = \$500 per head), and newborn calf value (triangular
11 distribution, min. = \$200, max. = \$600, most likely = \$400 per head) are representative
12 values assigned by the authors following consultation with dairy clinicians familiar with
13 the normal characteristics of these costs in Canada.

14

15 *6.3.2.2. Seroprevalence of MAP*

16 Data about the seroprevalence of MAP were obtained from a stratified two-stage random
17 sample of 373 herds in eight Canadian Provinces (Tiwari et al., 2005b). During the
18 summer of 1998 in Atlantic Canada, participating dairy herds were randomly selected
19 (using computer generated random numbers) from all herds on monthly milk testing
20 through the regional Dairy Herd Improvement (DHI) company until ninety herds were
21 recruited, thirty from Prince Edward Island (PEI), New Brunswick (NB), and Nova
22 Scotia (NS). Similar recruitment procedures were utilized to recruit thirty-one, seventy-
23 nine, forty, fifty-one, and seventy-nine herds from the provinces of Ontario (ONT),

1 Quebec (QUE), Manitoba (MAN), Saskatchewan (SASK), and Alberta (ALTA) in 1998,
2 2002, 2002, 2001, and 2002/03, respectively. Within each herd, approximately 30
3 animals were randomly selected from the herd list and blood sampled. An ELISA test
4 was utilized to determine whether cows were seropositive for MAP (details provided in
5 Chapter 3). Overall 3.1% (2.3-3.8, 95% C.I.) of dairy cattle had positive tests for
6 antibodies against MAP. For the model estimating overall losses for the Canadian dairy
7 industry, the overall seroprevalence of MAP was assumed to fall within a normal
8 distribution with a mean of 0.031 and S.D. of 0.004.

9

10 A much wider distribution for the within-herd seroprevalence was utilized for the
11 estimate of the range of possible losses that individual infected Canadian herds might
12 encounter. The mode of within-herd seroprevalence in herds having at least two MAP-
13 seropositive cows was 6%, and 95% of the values were less than 33.3%. Consequently, a
14 beta distribution ($\alpha=1.5488$, $\beta=9.5973$) was utilized for estimating the range of infected
15 herd losses.

16

17 *6.3.2.3. Impact of MAP on milk yield.*

18 For MAP, Benedictus et al., (1987) reported a 6% reduction in milk volume in the second
19 to last lactation and a 16% reduction in the final lactation prior to culling in
20 histopathologically positive, subclinically infected cows compared to culled cows without
21 histopathological evidence of MAP-infection. Similar results have been reported
22 elsewhere, with a 15% (835 kg) reduction in mean annual milk yield in fecal culture
23 positive subclinically infected cows compared to fecal culture negative cows (Abbas et

1 al., 1983), and a 4% (376 kg) reduction in mature equivalent milk production in ELISA-
2 positive cows compared to ELISA-negative cows (Nordlund et al., 1996) has been
3 reported. In contrast, others have reported no significant decrease in milk volume in
4 culled, asymptomatic, fecal culture-positive or histopathologically positive cows
5 compared to test-negative culled cows (Buergelt and Duncan, 1978), or ELISA
6 seropositive and fecal culture positive cows (Johnson et al., 2001), compared to test-
7 negative cows. Some of these studies (Johnson et al., 2001; Wilson et al., 1993) have
8 suggested that the observed reduction in milk volume may not occur across all lactations.
9 In the largest evaluation of the effect of MAP-seroprevalence on milk production (22,665
10 lactations from 9,834 cows in 342 Canadian dairy herds), an interaction was found
11 between MAP-seropositivity and lactation number (Table 6.2) (Tiwari et al., 2005a), with
12 a statistically significant reduction in milk yield being observed only in 4th or higher
13 lactation animals. This effect (loss of 212 kg (S.E. 106) in a 305 day lactation) would
14 represent 2.34% of the average yield used in this study. The losses associated with 4 plus
15 lactation animals was estimated by multiplying together the average milk yield
16 (9519liters/per cow per year), milk price (\$0.59/lit) and reduced milk yield (2.34%).
17 Assuming a triangular distribution (minimum=0.20, most likely=0.25 and
18 maximum=0.30) (Tiwari et al., 2005c) for the proportion of 4 plus lactation animals in a
19 herd, the herd milk losses would be estimated by multiplying together the herd size,
20 within herd seroprevalence of infection, losses associated with 4 plus lactation animals
21 and the proportion of animals in this parity group.
22

1 6.3.2.4. *Mortality.*
2 Cow value at death was set equal to the cost of replacement because no carcass value was
3 assumed for dead animals (Nix, 1996). There has been limited investigation of the
4 mortality associated with MAP infection. In one study of 121 dairy herds in Michigan,
5 USA (Johnson-Ifearulundu et al., 1999), mortality risk among herds positive for
6 paratuberculosis was 3.15% higher than among negative herds. Consequently, this
7 parameter was added to the model as a normal distribution with $\mu = 0.0315$ and $\sigma =$
8 0.015.

9

10 6.3.2.4. *Premature culling and reduced slaughter value.*
11 Internationally, a higher cull rate has been reported in MAP culture-positive cows as
12 compared to MAP negative cows in a 210-cow Holstein herd in New York (Wilson et al.,
13 1993). In another 900-cow Guernsey herd with subclinically infected cows, 22.6% of
14 fecal culture positive cows and 3.6% of fecal culture negative cows were reported culled
15 due to mastitis, and 68.8% versus 60.2% were culled due to infertility, respectively
16 (Merkal et al., 1975). Similarly, in a study in a Colorado dairy herd, 48.9% of
17 seropositive cows (based on an ELISA test) were culled over one year as compared to
18 33% of seronegative cows (Goodell et al., 2000).

19

20 Similar results were reported in 134 Canadian dairy herds (from NB, NS, PEI and SASK)
21 with a follow-up period that ranged from 1.3 to 4 years. A total of 1981 of the 3531 cows
22 were culled. The hazard of culling of MAP-seropositive cows was 1.38 (1.05 – 1.81, 95%
23 C.I.) times that of MAP-seronegative cows. Interpreting the hazard ratio as a risk ratio,

1 assuming an average follow-up period of 2 years and using a within herd prevalence of
2 MAP of 2.4%, the risk difference associated with MAP seropositivity was estimated to be
3 0.109 (SE = 0.04). Consequently, this parameter was added to the model as a normal
4 distribution with $\mu = 0.109$ and $\sigma = 0.04$.

5

6 *6.3.2.5. Reproductive losses.*

7 In a sample of 533 animals from 7 dairy herds in Michigan, USA, ELISA-positive cows
8 had a 28-day increase in calving conception interval compared to ELISA-negative cows
9 (18). Kirk (1999) stated that a cost of increased days open is at least US\$ 2.00-5.00 per
10 day, which was converted to CD\$ 2.5-6.25 per day by using an exchange rate of 1.25.
11 Consequently, this cost of a day open was added to the model as a triangular distribution
12 with minimum = 2.5, most likely = 4.375 and maximum = 6.25. The reproductive loss
13 was added to the model as a normal distribution with $\mu = 27.9$ and $\sigma = 11.4$

14

15 *6.3.2.6. Stochastic simulation of the partial budget model*

16 A stochastic simulation model which combined the values presented in Table 6.1 into an
17 overall estimate of the MAP-associated losses was developed using @RISK (2002)
18 (Version 4.5.2, Palisade Corporation) with Latin hypercube sampling and 10,000
19 iterations for each analysis. The estimated distributions of total losses for the overall
20 Canadian dairy industry and for infected individual dairy herds were determined and
21 graphed. Mean and median values were determined along with the range of values that
22 encompassed 95% of the estimates. The losses for each of the four main components of
23 the model were determined. All calculations in the partial budget were carried out on an

1 annual basis except reproductive losses where it was estimated on a lactation basis. To
2 convert this to an annual loss, an average calving interval of 13 months was assumed
3 (based on consultation with dairy clinicians familiar with the normal calving interval in
4 Canada) and the losses per lactation were multiplied by 0.923 (12/13).

5

6 A sensitivity analysis of key parameters was carried out as follows. For each of the
7 following parameters, analyses were repeated, assuming expected values that were either
8 10% lower or 10% higher than estimated for: prevalence, reduction in milk yield, risk
9 difference for mortality, risk difference for culling, and risk difference for infertility. For
10 example, in the model evaluating overall effects in the Canadian dairy population, the
11 increased culling was changed from 10.9% to 9.81% and 11.99% (the standard deviation
12 of each of these distributions was left unchanged at 4%). The impacts of each of these
13 10% changes on the overall estimates of loss were compared to determine which factors
14 were most influential in the model.

1 **6.4 Results**

2

3 For the Canadian dairy industry as a whole, the mean loss per 100 cows was \$1196
4 annually (\$385 per infected cow per year), regardless of their infection status, assuming a
5 seroprevalence of 3.1% for this group of 100 cows. Additional culling costs, and
6 reproductive, mortality and milk losses associated with seroprevalence for MAP were
7 responsible for 45.8%, 29.2%, 16.2% and 8.8%, respectively (Table 6.2 and Figure 6.1).

8 Figure 6.1 shows the potential variability around the estimate could be as low as \$610
9 and as high as \$1901 (not including the upper and lower 2.5% of estimates), based on the
10 variability of the input estimates into the model and the stochastic nature of the model.

11

12 In MAP-seropositive dairy herds, the mean loss per 61 cows was \$2992 annually, or \$49
13 per cow per year, assuming a within herd seroprevalence of 12%. Additional culling
14 losses were responsible for 46% (CD \$1374) of the total herd losses from MAP.

15 Decreased milk production, mortality and reproductive losses accounted for 9% (CD
16 \$254), 16% (CD \$488) and 29% (CD \$875) of the total herd losses, respectively (Table
17 6.3 and Figure 6.2). Figure 6.2 demonstrates that the mean loss could be as low as \$143
18 and as high as \$9741 (again, not including the upper and lower 2.5% of estimates), based
19 on the variability of the input estimates into the model and the stochastic nature of the
20 model.

21

22 Table 6.4 shows the results from the sensitivity analyses with the 10% changes in input
23 estimates. The changes in MAP-seroprevalence lead to the largest difference (9.7%) in

1 the overall estimate of economic impact, from CD \$1196 to CD \$1076 and CD \$1315 for
2 minus and plus 10%, respectively, in the Canadian dairy industry, and from CD \$2992 to
3 CD \$2691 and CD \$3289, respectively, for a MAP-infected herd. A 10% change in
4 additional culling, reproductive, mortality and milk losses resulted in a 4.6%, 2.9%, 1.6%
5 and 1.2% change in annual losses due to MAP, respectively.

1 **6.5 Discussion**

2

3 Calculation of costs due to MAP-infection in the Canadian dairy industry requires
4 estimating the MAP-prevalence and quantifying the losses that can be attributed to MAP
5 infection. Clinical effects of paratuberculosis are well documented (Benedictus et al.,
6 1987). However, due to the long incubation period of MAP, very few cattle show the
7 signs of paratuberculosis before being culled (Merkal et al., 1975). Estimates suggest that
8 for each animal with clinical signs of paratuberculosis in dairy herds, twenty-five
9 subclinically infected cows are present (Whitlock et al., 1991). While the productivity
10 costs due to clinical paratuberculosis are significant for that animal and can be observed
11 by the farmer, the costs due to subclinical paratuberculosis can be more devastating due
12 to the effects occurring on a larger number of cattle. Therefore, the costs due to
13 subclinical paratuberculosis may be far more damaging at the herd and industry levels.

14

15 This paper updates a previous paper on the estimates of the effects of subclinical MAP-
16 infection in maritime Canadian dairy herds, based on a spreadsheet model (Bennett et al.,
17 1999) developed from data from the Maritime provinces of Canada (Chi et al., 2002).
18 Major updates included in the current study were: national prevalence estimates; national
19 estimates of milk losses and risk of culling associated with subclinical MAP infections;
20 and making the model almost fully stochastic in nature. The prevalence estimates utilized
21 in this study were based upon representative data of randomly sampled herds and cows
22 from eight of the ten provinces in Canada. Actual milk losses and risk of culling
23 associated with MAP infections in the Canadian dairy industry were included in this

1 economic study. Both of these aspects of the research make the economic results highly
2 representative. Furthermore, the stochastic nature of the partial budget model allowed us
3 to incorporate the variability of the input estimates into the model.

4

5 In MAP infected herds, our results suggested a range (95% C.I.) of CD\$ 2 to 160 per cow
6 per year (mean was CD\$ 49 per cow per year). Ott et al., (1999) reported a similar range
7 (90% C.I.) of US\$ 2 to 120 per cow per year in MAP infected herds (in which less than
8 10% of culled cows were culled due to clinical signs similar to Johne's disease). These
9 estimates (Ott et al., 1999) were considered similar to our results because more than 90%
10 of positive herds in our study had herds where less than 10% of culled cows were culled
11 due to clinical signs representative of Johne's disease.

12

13 Our results also suggested that the cost estimates due to subclinical MAP-infection
14 ranged (95% C.I.) from CD\$ 197 to 613 per infected cow (mean was CD\$ 385 per
15 infected cow per year). In a similar American study, by utilizing a same milk and
16 replacement costs, MAP-infection costs ranged from US\$ 123 to 696 per subclinically
17 infected cow (Ott et al., 1999). Overlapping ranges of cost estimates suggest very similar
18 economic losses due to MAP-infection in both the Canadian and American dairy
19 industries.

20

21 The cost estimates due to subclinical MAP-infection from this study should be considered
22 conservative estimates. The poor sensitivity (McKenna et al., 2005) of the current ELISA
23 tests to correctly identify subclinically infected cattle (Dargatz et al., 2001; Sockett et al.,

1 1992) leads to substantial underestimation of the prevalence. However, the impacts of
2 MAP-infection were also based upon the ELISA results and were considered appropriate
3 because the sensitivity of ELISA is better (Sweeney et al., 1995) in later stages of MAP
4 infection. The impact of MAP-infection in animals that were in early stages of MAP-
5 infection (and ELISA negative) was assumed to be small or null. The effects of
6 subclinical MAP-infection on the susceptibility of dairy cattle to other diseases such as
7 BVDV and mastitis (which have large impacts on production) has not been determined
8 but is suspected (Tiwari et al., 2005a).

9

10 Another reason why the cost estimates due to subclinical MAP-infection from this study
11 should be considered conservative estimates is because the estimates do not include
12 indirect costs. Additional indirect costs to society may be incurred due to the possible
13 relationship between MAP in cattle and human Crohn's disease (Hermon-Taylor et al.,
14 1998; Hermon-Taylor et al., 2000; Hermon-Taylor, 2000; Hermon-Taylor and Bull,
15 2002). However, due to the current absence of causal evidence, and the focus of this
16 study being on direct costs to dairy producers and the dairy industry, this factor was not
17 included in this study.

18

19 Mitigating this conservative estimate somewhat was the utilization of "normal"
20 replacement cost and slaughter value of a healthy cow from the year before the discovery
21 of Bovine Spongiform Encephalopathy in Canada. The period during which the border
22 was closed to live cattle crossing the Canada-US border produced prices that were an
23 aberration from normal prices.

1

2 While this study has numerous improvements over the economic study of MAP-infection
3 in Maritime Canadian dairy herds, additional research is still needed to develop more
4 precise estimates of the impacts of MAP-infection on dairy farms across Canada. For
5 example, our estimates of milk production impact were conservative in nature for a
6 number of reasons, including: inaccuracy of the ELISA leading to substantial
7 misclassification bias, and the small number of test positive cows, leading to reduced
8 power to detect impacts within different lactations. A study utilizing fecal cultures would
9 likely produce less misclassification bias and therefore more accurate estimates of
10 impacts on milk production relevant to the Canadian dairy industry. With regard to
11 impacts on culling it would be desirable to analyse culling impacts of seropositivity for
12 MAP, with this cohort of tested cows over a long time period, and the other pathogens.
13 This additional analysis with a larger number of cows could provide more accurate and
14 representative estimates of the impact of MAP-seropositivity on culling, particularly for
15 specific reasons of culling. The current study had limited power to detect an association
16 between MAP-seropositivity and specific reasons for culling due to the limited number of
17 culled MAP-seropositive cows within each of the categories for reasons of culling.
18 Misclassification bias of the ELISA may have also lead to a biasing of the result toward
19 the null.

20

21 The mortality risk among herds positive for MAP-infection was assumed to be 3% higher
22 than negative herds. Most of the MAP-infected cows are culled before they develop
23 clinical signs (Tiwari et al., 2005e), therefore, the results from this study may be

1 overestimating the estimates of costs due to MAP-infection in our study. But, due to the
2 lack of any other published estimate of impact of MAP-infection on mortality risk, the
3 author was not able to adjust for this possible overestimation.

4

5 With more detailed estimates of impacts on productivity and culling, more precise
6 estimates of direct losses could be estimated. Furthermore, monitoring farms enrolled in a
7 national Johne's disease control program could provide additional data on which to
8 monitor prevalence estimates across Canada and estimates of impacts on productivity and
9 culling, and improve the precision of the estimates of economic losses associated with
10 MAP-infection in Canadian dairy herds.

1 **6.6 Conclusions**

2

3 For the MAP-seropositive Canadian dairy herds, the mean loss per 61 cow herd was CD
4 \$2,992 (95% C.I., \$143 – \$9741) annually, or CD \$49 per cow per year. Herd additional
5 culling losses were responsible for 46% (CD \$1374) of the total losses from MAP.
6 Decreased milk production, mortality and reproductive losses accounted for 9% (CD
7 \$254), 16% (CD \$488) and 29% (CD \$875) of the losses, respectively. MAP-seropositive
8 dairy farms sustain substantial, although somewhat variable, economic costs associated
9 with these production losses, and dairy producers should use best management practices
10 to reduce these annual losses.

11 **6.7 Reference List**
12

- 13 1997. US Department of Agriculture, Animal and Plant Health Inspection Service, 1997.
14 Johnes's Disease on US Dairy Operations, NAHMS Dairy '96, Center for Animal
15 Health Monitoring, Report N245, 797.
- 16 Abbas, B., Riemann, H.P., Hird, D.W., 1983. Diagnosis of Johne's disease
17 (paratuberculosis) in Northern California cattle and a note of it's economic
18 significance. Calif. Vet. 37, 20-24.
- 19 Benedictus, G., Dijkhuizen, A.A., Stelwagen, J., 1987. Economic losses due to
20 paratuberculosis in dairy cattle. Vet Rec 121, 142-146.
- 21 Bennett, R., Christiansen, K., Clifton-Hadley, R., 1999. Preliminary estimates of the
22 direct costs associated with endemic diseases of livestock in Great Britain. Prev. Vet
23 Med. 39, 155-171.
- 24 Boelaert, F., Walravens, K., Biront, P., Vermeersch, J.P., Berkvens, D., Godfroid, J.,
25 2000. Prevalence of paratuberculosis (Johne's disease) in the Belgian cattle
26 population. Vet Microbiol. 77, 269-281.
- 27 Buergelt, C.D., Duncan, J.R., 1978. Age and milk production data of cattle culled from
28 a dairy herd with paratuberculosis. J Am. Vet Med. Assoc. 173, 478-480.
- 29 Chi, J., Vanleeuwen, J.A., Weersink, A., Keefe, G.P., 2002. Direct production losses
30 and treatment costs from bovine viral diarrhoea virus, bovine leukosis virus,
31 *Mycobacterium avium* subspecies paratuberculosis, and *Neospora caninum*. Prev.
32 Vet Med. 55, 137-153.
- 33 Chiodini, R.J., Van Kruiningen, H.J., Merkal, R.S., 1984. Ruminant paratuberculosis
34 (Johne's disease): the current status and future prospects. Cornell Vet 74, 218-262.
- 35 Dargatz, D.A., Byrum, B.A., Barber, L.K., Sweeney, R.W., Whitlock, R.H., Shulaw,
36 W.P., Jacobson, R.H., Stabel, J.R., 2001. Evaluation of a commercial ELISA for
37 diagnosis of paratuberculosis in cattle. J Am. Vet Med. Assoc. 218, 1163-1166.
- 38 Gasteiner, J., Wenzl, H., Fuchs, K., Jark, U., Baumgartner, W., 1999. Serological
39 cross-sectional study of paratuberculosis in cattle in Austria. Zentralbl.
40 Veterinarmed. B 46, 457-466.
- 41 Hermon-Taylor, J., 2000. *Mycobacterium avium* subspecies paratuberculosis in the
42 causation of Crohn's disease. World J Gastroenterol. 6, 630-632.
- 43 Hermon-Taylor, J., Barnes, N., Clarke, C., Finlayson, C., 1998. *Mycobacterium*
44 paratuberculosis cervical lymphadenitis, followed five years later by terminal
45 ileitis similar to Crohn's disease. BMJ 316, 449-453.

- 46 Hermon-Taylor, J., Bull, T., 2002. Crohn's disease caused by *Mycobacterium avium*
47 subspecies *paratuberculosis*: a public health tragedy whose resolution is long
48 overdue. *J Med. Microbiol.* 51, 3-6.
- 49 Hermon-Taylor, J., Bull, T.J., Sheridan, J.M., Cheng, J., Stellakis, M.L., Sumar, N.,
50 2000. Causation of Crohn's disease by *Mycobacterium avium* subspecies
51 *paratuberculosis*. *Can J Gastroenterol.* 14, 521-539.
- 52 Johnson, Y.J., Kaneene, J.B., Gardiner, J.C., Lloyd, J.W., Sprecher, D.J., Coe, P.H.,
53 2001. The effect of subclinical *Mycobacterium paratuberculosis* infection on milk
54 production in Michigan dairy cows. *J Dairy Sci* 84, 2188-2194.
- 55 Johnson-Ifearulundu, Y., Kaneene, J.B., Lloyd, J.W., 1999. Herd-level economic
56 analysis of the impact of *paratuberculosis* on dairy herds. *J Am. Vet Med. Assoc.*
57 214, 822-825.
- 58 Johnson-Ifearulundu, Y.J., Kaneene, J.B., Sprecher, D.J., Gardiner, J.C., Lloyd, J.W.,
59 2000. The effect of subclinical *Mycobacterium paratuberculosis* infection on days
60 open in Michigan, USA, dairy cows. *Prev. Vet Med.* 46, 171-181.
- 61 Kirk, J.H., 1999. Infectious abortions in dairy cows. On-Line Electronic Publications of
62 the Veterinary Medical Extension, Veterinary Medicine Teaching and Research
63 Center, University of California. [Www. Vetmed. Ucdavis. Edu/Vetext/INF-DA_InfexAbortions. Html](http://www.vetmed.ucdavis.edu/Vetext/INF-DA_InfexAbortions.Html).
- 65 Kreeger, J.M., 1991. Ruminant *paratuberculosis*--a century of progress and frustration. *J*
66 *Vet Diagn. Invest* 3, 373-382.
- 67 McKenna, S.L.B., Keefe, G.P., Barkema, H.W., Sockett, D.C., 2005. Evaluation of
68 three ELISAs for *Mycobacterium avium* subsp. *paratuberculosis* using tissue and
69 fecal culture as comparison standards. Accepted in *Veterinary Microbiology*.
- 70 Merkal, R.S., Larsen, A.B., Booth, G.D., 1975. Analysis of the effect of inapparent
71 bovine *paratuberculosis*. *Am. J Vet Res* 36, 837-838.
- 72 Muskens, J., Barkema, H.W., Russchen, E., Van Maanen, K., Schukken, Y.H.,
73 Bakker, D., 2000. Prevalence and regional distribution of *paratuberculosis* in
74 dairy herds in The Netherlands. *Vet Microbiol.* 77, 253-261.
- 75 Farm Management Pocketbook. 1996. Wye College, University of London, England.
- 76 Nordlund, K.V., Goodger, W.J., Pelletier, J., Collins, M.T., 1996. Associations
77 between subclinical *paratuberculosis* and milk production, milk components, and
78 somatic cell counts in dairy herds. *J Am. Vet Med. Assoc.* 208, 1872-1876.
- 79 Ott, S.L., Wells, S.J., Wagner, B.A., 1999. Herd-level economic losses associated with
80 Johne's disease on US dairy operations. *Prev. Vet Med.* 40, 179-192.

- 81 Sockett, D.C., Carr, D.J., Collins, M.T., 1992. Evaluation of conventional and
82 radiometric fecal culture and a commercial DNA probe for diagnosis of
83 *Mycobacterium paratuberculosis* infections in cattle. Can J Vet Res 56, 148-153.
- 84 Sweeney, R.W., Whitlock, R.H., Buckley, C.L., Spencer, P.A., 1995. Evaluation of a
85 commercial enzyme-linked immunosorbent assay for the diagnosis of
86 paratuberculosis in dairy cattle. J Vet Diagn. Invest 7, 488-493.
- 87 Tiwari, A., VanLeeuwen , J.A., Dohoo, I.R., Keefe, G.P., Haddad, J.P., 2005a. Effects
88 of seropositivity for bovine leukemia virus, bovine viral diarrhea virus,
89 *Mycobacterium avium* subspecies *paratuberculosis*, and *Neospora caninum* and
90 milk, fat and protein production and somatic cell count in Canadian dairy cattle.
91 Submitted to J. Dairy Sci.
- 92 Tiwari, A., VanLeeuwen , J.A., Dohoo, I.R., Keefe, G.P., Haddad, J.P., 2005b.
93 Seroprevalence and spatial distribution of bovine leukemia virus, bovine viral
94 diarrhea virus and *Mycobacterium avium* subspecies *paratuberculosis* in Canadian
95 dairy cattle. Submitted to Can Vet J .
- 96 Tiwari, A., VanLeeuwen, J.A., Dohoo, I.R., Keefe, G.P., Haddad, J.P., Tremblay, R.,
97 Scott, H.M., Whiting, T., 2005c. Effects of seropositivity for bovine leukemia
98 virus, bovine viral diarrhoea, *Mycobacterium avium* subspecies *paratuberculosis*,
99 and *Neospora caninum* on milk production in Canadian dairy cattle. Submitted to
100 J Dairy Sci .
- 101 Tiwari, A., Vanleeuwen, J.A., Dohoo, I.R., Keefe, G.P., Haddad, J.P., Tremblay, R.,
102 Scott, H.M., Whiting, T., 2005d. Management risk factors associated with
103 *Mycobacterium avium* subspecies *paratuberculosis* in Canadian dairy herds.
104 Submitted to Prev. Vet. Med.
- 105 Tiwari, A., Vanleeuwen, J.A., Dohoo, I.R., Stryhn, H., Keefe, G.P., Haddad, J.P.,
106 2005e. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea
107 virus, *Mycobacterium avium* subspecies *paratuberculosis*, and *Neospora caninum*
108 on culling in dairy cattle in four Canadian provinces. Vet Microbiol. 109, 147-
109 158.
- 110 Whitlock, R.H., Rosenberger, A.E., Siebert, M., Sweeny, R., 1991. Environmental
111 survey of *Mycobacterium paratuberculosis* on dairy farms with a known history
112 of Johne's disease. Proc. Annu. Meet. U. S. Anim. Hlth Assoc. 95, 280.
- 113 Wilson, D.J., Rossiter, C., Han, H.R., Sears, P.M., 1993. Association of
114 *Mycobacterium paratuberculosis* infection with reduced mastitis, but with
115 decreased milk production and increased cull rate in clinically normal dairy cows.
116 Am. J Vet Res 54, 1851-1857.
- 117
- 118

1 Table 6.1 – Distribution, parameters and source of data for the model variables.

	Variable	Distribution/Formula	Parameters	Source of data
1	Average cattle population in herd	Fixed	61 or 100	Dairy Farmers of Canada (2002)
2	Seroprevalence of infection in the Canadian dairy population	Normal	$\mu = 0.031, \sigma = 0.004$	Tiwari et al., 2005
2	Seroprevalence of infection in seropositive dairy herds	Beta	$\alpha = 1.758, \beta = 21.317, \text{minimum}=0.06$	Tiwari et al., 2005
3	Milk yield (L per cow per year)	Fixed value	9519	CDHI
4	Milk price (\$/L)	Fixed value	0.59	CDHI
5	Reduced milk yield	Normal distribution	$\mu = 2.34, \sigma = 1.18$	Tiwari et al., 2005
6	Losses associated with each low producing animal	$(3)*(4)*(5)$		
7	Percentage of infected animals affected	Triangular distribution	min=0.20, most likely=0.25, max=0.30	Assigned by author
ML	Herd milk losses (\$)		$(1)*(2)*(6)*(7)$	
8	Replacement cost of cow (\$ per head)	Triangular distribution	min=1500, most likely=2000, max=2500	Assigned by author
9	Percentage increased mortality risk in affected cattle	Normal distribution	$\mu = 0.0315, \sigma = 0.015$	Johnson-Ifearulundu et al., 1999
MO	Herd mortality losses (\$)		$(1)*(2)*(8)*(9)$	

3 Table 1 continued

4

	Variable	Distribution	Parameters	Source of data
10	Slaughter value of healthy cattle (\$ per head)	Triangular distribution	min=300, most likely=500, max=700	Assigned by author
11	Percentage of affected cattle with reduced slaughter value	Triangular distribution	min=0.2, most likely=0.25, max=0.3	Assigned by author
12	Losses associated with each culled animal (\$)	$[(8)-\{10-(11)*(10)\}]$		
13	Excess culling risk for infected cattle	Normal distribution	$\mu= 0.109, \sigma= 0.04$	Tiwari et al., 2005
CC	Herd additional premature culling losses (\$)	$(1)*(2)*(12)*(13)$		
14	Increased calving interval (days)	Normal distribution	$\mu= 27.9, \sigma= 11.4$	Johnson-Ifearulundu et al, 2000
15	Cost of increased calving interval (\$/day)	Triangular distribution	Min=2.5, most likely=4.37, max=6.25	Kirk et al, 1999
RL	Herd reproductive losses (\$)	$\{(1)*(2)*(14)*(15)\}*12/13$		
AL	Herd annual Losses (\$)	ML+MO+CC+RL		

5

6 Figure 6.1 - Distribution of annual economic losses from MAP for the entire Canadian dairy industry, per 100 cows herd.
7

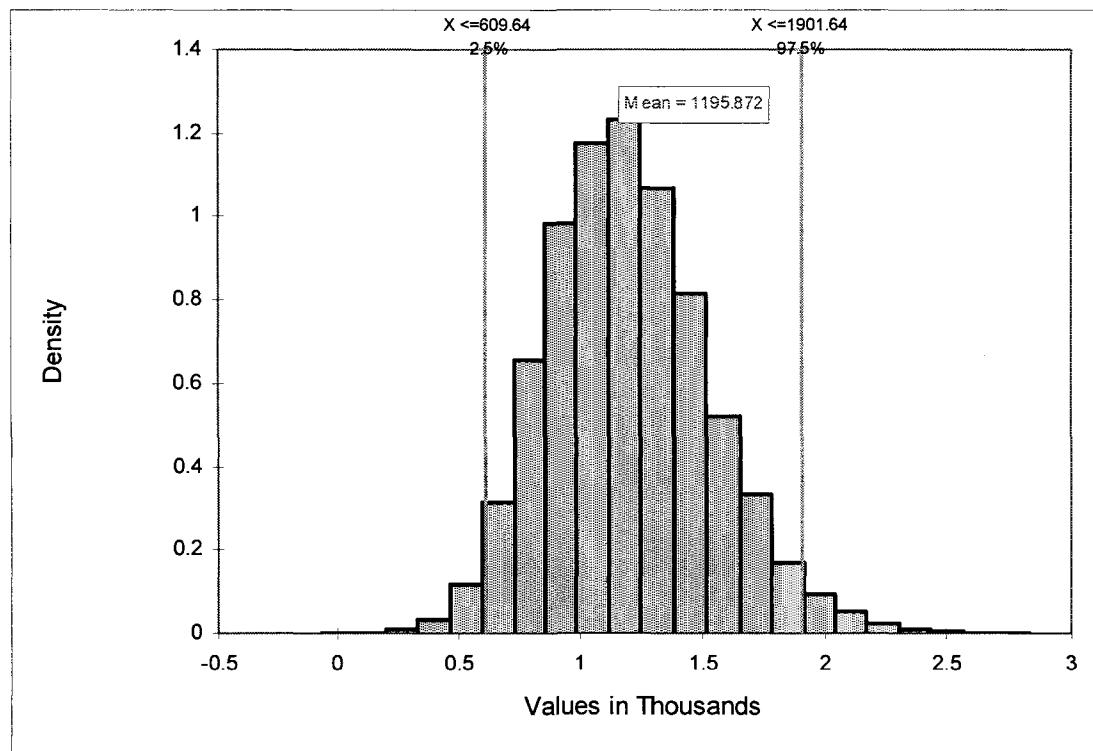
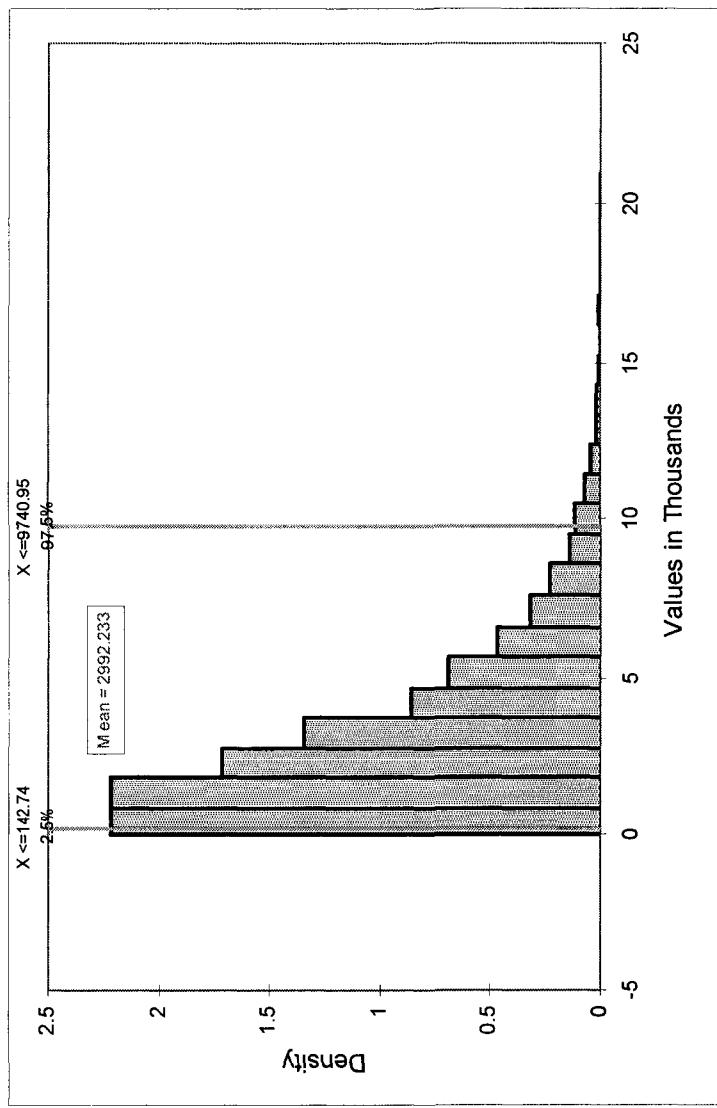



Figure 6.2 - Distribution of annual economic losses in a MAP-seropositive, 61 cow dairy herd in Canada.

15 Table 6.2. Economic losses with MAP for the entire Canadian dairy industry per 100 cow herd.

Var. #	Variable	Distribution	Mean	95% C.I.	
				Lower Limit	Upper Limit
1	Average cattle population in herd	Fixed	100	-	-
2	Prevalence of infection in the Canadian dairy population	Normal	0.031	0.023	0.038
3	Milk yield (l per cow per year)	Fixed	9519	-	-
4	Milk price (\$/l)	Fixed	0.59	-	-
5	Reduced milk yield	Normal	0.023	0.0012	0.0472
6	Losses associated with each low producing animal	(3)*(4)*(5)	132	1.5	262
7	Percentage of infected animals affected	Triangular	0.25	-	-
ML	Herd milk losses (\$)	(1)*(2)*(6)*(7)	102	1	216
8	Replacement cost of cow (\$ per head)	Triangular	2000	-	-
9	Increased mortality risk in affected cattle (%)/year	Normal	3.15	0.21	6.09
MO	Herd mortality losses (\$)	(1)*(2)*(8)*(9)	195	12	404
10	Slaughter value of healthy cattle (\$ per head)	Triangular	500	-	-
11	Percent of affected cattle with reduced slaughter value (%)	Triangular	25	-	-
12	Losses associated with each culled animal	[8]-{10-(11)*(10)}	1625	1215	2034
13	Excess culling risk for infected cattle (%)	Normal	10.9	3.1	18.7
CC	Herd additional culling losses (\$)	(1)*(2)*(12)*(13)	549	143	1035
14	Increased calving interval (days)	Normal	28	6	50
15	Cost of increased calving interval (\$/day)	Triangular	4	-	-
RL	Herd reproductive losses	{(1)*(2)*(14)*(15)}*12/13	350	64	718
AL	Herd annual Losses	ML+MO+CC+RL	1196	610	1901

16 Table 6.3. Economic losses in a MAP-seropositive, 61 cow dairy herd in Canada.

Var. #	Variable	Distribution	Mean	95% C.I.	
				Lower Limit	Upper Limit
1	Average cattle population in herd	Fixed	61	-	-
2	Prevalence of infection in individual dairy herds	Beta	12.7	0.65	38.47
3	Milk yield (l per cow per year)	Fixed	9519	-	-
4	Milk price (\$/l)	Fixed	0.59	-	-
5	Reduced milk yield	Normal	0.023	0.0012	0.0472
6	Losses associated with each low producing animal	(3)*(4)*(5)	102	1	215
7	Percentage of infected animals affected	Triangular	0.25	-	-
ML	Herd milk losses (\$)	(1)*(2)*(6)*(7)	254	0.5	975
8	Replacement cost of cow (\$ per head)	Triangular	2000	-	-
9	Increased mortality risk in affected cattle (%)/year	Normal	3.15	0.21	6.09
MO	Herd mortality losses (\$)	(1)*(2)*(8)*(9)	488	5	1828
10	Slaughter value of healthy cattle (\$ per head)	Triangular	500	-	-
11	Percent of affected cattle with reduced slaughter value (%)	Triangular	25	-	-
12	Losses associated with each culled animal	(8)-{10-(11)*(10)}	1625	1215	2034
13	Excess culling risk for infected cattle (%)	Normal	10.9	3.1	18.7
CC	Herd additional culling losses (\$)	(1)*(2)*(12)*(13)	1374	46	4833
14	Increased calving interval (days)	Normal	28	6	50
15	Cost of increased calving interval (\$/day)	Triangular	4	-	-
RL	Herd reproductive losses (\$)	{(1)*(2)*(14)*(15})*12/13	875	23	3259
AL	Herd annual Losses (\$)	ML+MO+CC+RL	2992	143	9741

Table 6.4. The possible range of annual losses due to JD, with a 10% change in seroprevalence, or losses associated with milk production, mortality, additional culling and reproductive losses.

Variables	Annual Losses with MAP			
	In entire Canadian Industry		In infected herds	
	Less 10%	More 10%	Less 10%	More 10%
Prevalence (\$)	1076	1315	2691	3289
Milk loss (\$)	1188	1209	2675	2722
Mortality loss (\$)	1176	1215	2647	2735
Additional culling cost (\$)	1141	1251	2568	2815
Reproductive losses (\$)	1161	1231	2612	2770

1 **CHAPTER 7: Management risk factors associated with Mycobacterium avium**
2 **subspecies paratuberculosis infection in Canadian dairy herds**

3

4 **7.1 Abstract**

5

6 The objective of this study was to determine the management factors associated with the
7 seropresence and seroprevalence of Mycobacterium avium subspecies paratuberculosis in
8 a large number of randomly selected Canadian dairy herds, controlling for important
9 confounding variables and co-infections with bovine leukemia virus (BLV), bovine viral
10 diarrhea virus (BVDV) and Neospora caninum (NC). Serum samples from approximately
11 30 randomly selected cows from 315 herds from 7 provinces were tested for antibodies
12 against BLV, MAP and NC using commercially available ELISA test kits, while 5
13 unvaccinated cattle over 6 months of age were tested for antibodies to bovine viral
14 diarrhoea virus (BVDV). A zero-inflated negative binomial (ZINB) model was utilized to
15 simultaneously determine the management factors associated with the number of MAP-
16 seropositive cows in a herd and the odds of herds having at least one MAP-seropositive
17 cow as compared to having no MAP seropositive cows in a herd.

18

19 The following factors were significantly associated with the number of MAP-seropositive
20 cows: “more than one cow in the maternity pen”, “group housing in pre-weaned calves in
21 winter”, “purchasing open heifers”, “direct contact with beef cattle”, “BVDV-
22 seropositive herds” and “not having proper BVD vaccination in calves (i.e. animals were
23 not boosted 2-4 weeks after their first killed inoculation after 6 months of age)” with

1 count ratios of 1.69, 2.03, 2.34, 1.27, 1.41 and 1.77, respectively. The variable “herds
2 having BVDV modified live vaccination in calves” was associated with 0.44 times fewer
3 MAP-seropositive cows. There were also significant regional differences in the number
4 of positive cows per herd. In the logistic portion of the final ZINB model, a one unit
5 increase in the mean lactation number of cows tested in a herd was associated with 1.44
6 times greater odds of having at least one MAP-seropositive cow. The herds having “total
7 mixed ration feeding” and “bedding that was not added frequently to calving areas (for
8 each calving)” were associated with 3.1 and 2.7 times greater odds of being MAP-
9 seropositive herds, respectively. The variables “NC-seropositivity” and “area of pasture
10 (more than 200 acres)” were marginally significant ($P < 0.010$), while “BLV-
11 seropositivity” was not significantly associated ($P > 0.10$) with MAP-seropositivity. The
12 results from this study will assist management recommendations in national Johne’s
13 control programs.

1 **7.2. Introduction**

2

3 Paratuberculosis (Johne's disease) is caused by Mycobacterium avium subspecies
4 paratuberculosis (MAP). It is a chronic infectious enteritis found in domestic and wild
5 ruminants (Chiodini et al., 1984) and perhaps other species (Raizman et al., 2004).
6 Reported productivity losses have included reduced milk production (Abbas et al., 1983;
7 Nordlund et al., 1996; Tiwari et al., 2005a), increased culling (Benedictus et al., 1987;
8 Tiwari et al., 2005c; Wilson et al., 1995), increased inter-calving period (Johnson-
9 Ifearulundu et al., 2000; Tiwari et al., 2003) and mastitis (McNab et al., 1991; Merkal et
10 al., 1975; Tiwari et al., 2005a). Costs due to reduced productivity have been estimated to
11 be as high as US\$200 per cow per year in herds where the prevalence of clinical cases
12 among culled cows was $\geq 10\%$ (Ott et al., 1999). In a Canadian study, the annual costs for
13 MAP were estimated at CD\$2472 per infected herd (having at least two seropositive
14 cows) using an average herd size of 50 cows (Chi et al., 2002).

15

16 MAP is distributed worldwide but there does appear to be a wide variation in the
17 prevalence between countries and even within countries. The seroprevalence estimates
18 for dairy cattle at the animal level range from 17.1% (Florida, US) (Braun et al., 1990) to
19 0.8% (Belgium) (Boelaert et al., 2000), while herd level seroprevalences range from 74%
20 in Missouri, US (Thorne and Hardin, 1997) to 18% in Belgium (Boelaert et al., 2000). A
21 recent prevalence estimate from tissue culture testing of ileocecal lymph nodes and ileum
22 from dairy cows at a slaughterhouse in New Brunswick found that 16.1% of dairy cows
23 were culture-positive for MAP (McKenna et al., 2004). This prevalence estimate is likely

1 to be a close approximation of the true infection prevalence because culturing the ileum
2 and ileocecal lymph node of the selected animals is a more sensitive test than fecal
3 culturing for detecting cows that are infected but not yet shedding bacteria in their feces.

4

5 MAP is mainly transmitted from the feces of infected shedding cattle to susceptible
6 youngstock through ingestion of fecally contaminated milk, water or feed. Other possible
7 but less frequent routes of transmission are transplacental and colostral (Streeter et al.,
8 1995; Sweeney et al., 1992a; Sweeney et al., 1992b). Johne's disease control programs
9 have the following general objectives: 1) in non-infected herds, to prevent the entry of
10 MAP into the herd; and 2) in infected herds, to detect and cull infected cattle, and to
11 prevent the transmission of MAP to young livestock within the infected herd. In order to
12 effectively accomplish these objectives, it is necessary to know what factors are
13 associated with transmission of MAP within and between herds.

14

15 The following published factors have been associated with farm-to-farm transmission
16 (presence of MAP infection on a farm):

17 a) regional differences, with certain regions having a higher prevalence (Wells and
18 Wagner, 2000); (Collins et al., 1994);
19 b) herd size, with large herds being more likely to be infected with MAP (Collins et al.,
20 1994; Wells and Wagner, 2000), perhaps related to large herds purchasing animals more
21 frequently;
22 c) frequency of purchasing cattle, with percentage of cows born in other herds being
23 related to the presence of MAP (Wells and Wagner, 2000); and

1 d) presence of farmed deer on the farm (Cetinkaya et al., 1997);
2
3 The following published factors have been associated with within-farm transmission
4 (higher prevalence of MAP-infection):
5 a) higher lactation number (Jakobsen et al., 2000);
6 b) breed of cows in a herd, specifically, Channel Island breeds (Cetinkaya et al., 1997)
7 (Jakobsen et al., 2000) have high prevalences;
8 c) housing management of preweaned calves, specifically, exposure of calves of ≤ 6
9 weeks of age to feces of adult cows (Obasanjo et al., 1997), and housing of pre-weaned
10 calves and peri-parturient cows together for ≥ 24 hours (Wells and Wagner, 2000);
11 d) nutritional management, specifically, spreading of manure on fields from which forage
12 is later harvested and fed to animals of any age group (Obasanjo et al., 1997), feeding
13 whole milk containing antibiotic residues, or providing water for calves from birth (Ridge
14 et al., 2005);
15 e) immunosuppression, due to poor nutrition or stress (with speculation of the latter being
16 related to infections with pathogens such as bovine leukemia virus (BLV)) (Guilfoil et
17 al., 1997);
18 f) use of exercise lot for lactating cows (Johnson-Ifearulundu and Kaneene, 1998);
19
20 Reported preventative factors reducing prevalence of infection include: application of
21 lime to pasture areas, and cleaning of maternity pen after each use (Johnson-Ifearulundu
22 and Kaneene, 1998), familiarity of farm manager with Johne's disease, and prior
23 diagnosis of Johne's disease on farm (Wells and Wagner, 2000).

1
2 However, additional research into risk factors for MAP infection is needed for a number
3 of reasons. 1) Some studies were based on a small number of herds that may not have
4 been representative of the wide diversity of herds in the dairy industry and their
5 differences in management or seroprevalence (Goodger et al., 1996; Ridge et al., 2005).
6 2) Herds were not randomly selected (were chosen either to assess the progress of control
7 programs or to prove the absence of MAP) in many previous studies, leading to possible
8 herd selection bias (Goodger et al., 1996; Obasanjo et al., 1997; Ridge et al., 2005) 3)
9 Confounding variables (such as region or lactation number) were often not assessed and
10 controlled in the design or analyses (Goodger et al., 1996; Johnson-Ifearulundu and
11 Kaneene, 1998), an important consideration with certain regions and older cattle being
12 known to have a higher risk of being seropositive. 4) Co-infections with other pathogens
13 (e.g. bovine leukemia virus - BLV - and bovine viral diarrhea virus - BVDV – can impair
14 cellular immunity) were usually not examined, co-infections which may be risk factors or
15 which may interact with other risk factors. Furthermore, a national Johne's disease
16 control program in Canada would also benefit greatly from a determination of important
17 management risk factors for MAP in Canadian dairy cattle.
18
19 The objective of this study was to determine the management factors associated with the
20 seropresence and seroprevalence of MAP in a large number of randomly selected
21 Canadian dairy herds, controlling for important confounding variables and co-infections
22 with BLV, BVDV and NC.

1 **7.3. Materials and methods**

2

3 The data utilized for this study were from recent prevalence surveys of Canadian dairy
4 herds in Prince Edward Island (PEI), New Brunswick (NB), and Nova Scotia (NS)
5 (Keefe and VanLeeuwen, 2000; VanLeeuwen et al., 2001), Saskatchewan (VanLeeuwen
6 et al., 2005), Quebec (CQIASA, 2003), Manitoba (VanLeeuwen et al., 2003) and Alberta
7 (Scott et al., 2005). The following sections provide a summary of the sampling protocol.

8

9 **7.3.1 Serum Sample Collection**

10

11 A stratified two-stage random sampling procedure was employed in all provinces. During
12 the summer of 1998 in Atlantic Canada, participating dairy herds were randomly selected
13 (using computer generated random numbers) from all herds on monthly milk testing
14 through the regional Dairy Herd Improvement (DHI) company until ninety herds were
15 recruited, thirty from Prince Edward Island (PEI), New Brunswick (NB), and Nova
16 Scotia (NS). These herds met the herd level inclusion criteria which included willingness
17 to: provide cattle for blood samplings; allow the blood to be tested for antibodies
18 indicating exposure to the four pathogens (BLV, BVDV, MAP and NC); and release DHI
19 data to the research team. Subsequently, similar (although not identical - see below) herd
20 level inclusion criteria and sampling procedures were utilized to recruit seventy-five,
21 forty, forty-four, and sixty-six herds from the provinces of Quebec (QUE), Manitoba
22 (MAN), Saskatchewan (SASK), and Alberta (ALTA) in 2002, 2002, 2001, and 2002/03,
23 respectively. Sampling of herds in ALTA was first stratified by veterinary practices

1 servicing dairy herds in the provinces, and then within these practices, herds were
2 randomly selected.

3

4 Using computer generated random numbers; approximately 30 (less if the total number of
5 cows in the herd was less than 30 cows) lactating animals were randomly selected for
6 blood collection in each participating herd. Sample sizes for herd sampling within each
7 province were based on calculations first determined and reported in detail for the
8 Maritime provinces (VanLeeuwen et al., 2001), but adapted to the estimated herd
9 prevalence for each province. The number of sampled herds per province was also
10 dependent on available funds from the participating provinces. The sample size
11 calculation for cow sampling was also based on calculations first determined and reported
12 in detail for the Maritime provinces (VanLeeuwen et al., 2001). This sample size of 30
13 cows was adopted in the other provinces because a standard number of sampled cows per
14 sampled herd was desirable for comparison purposes across provinces.

15

16 For BVDV, five unvaccinated (for BVDV) cattle > 6 months old were selected for blood
17 collection. In unvaccinated herds, five animals of the 30 cows tested for the other three
18 diseases were selected. In vaccinated herds, five unvaccinated heifers > 6 months old
19 were selected to ensure that maternal antibodies would no longer be present. The BVDV
20 sampling protocol was based upon Houe's study (Houe, 1992). Within 24 hours, the
21 blood samples were centrifuged, and the serum was harvested and stored at -20°C until
22 all the samples were collected and ready for testing for that province.

23

1 7.3.2 Laboratory Analysis

2

3 The test utilized by all provinces for BLV antibodies was an Enzyme Linked
4 Immunosorbant Assay (ELISA) (sensitivity 98.5%, specificity 99.9%) (Johnson and
5 Kaneene, 1991). A cow was considered to be infected with BLV if the serum-to-positive
6 ratio on the ELISA was ≥ 0.50 , as recommended by the manufacturer of the test kit. The
7 BLV ELISA test kit also requires a confirmation of positive tests, using a sample-to-
8 negative host-cell ratio of ≥ 1.8 . The BLV testing for NS, NB, PEI, MAN, SASK, and
9 ALTA was conducted at the national BLV testing laboratory in Prince Edward Island
10 (now in Quebec), which is certified to conduct BLV testing for international trade
11 purposes. The BIOVET Inc. laboratory in Quebec was utilized for the dairy farms in
12 QUE for financial reasons.

13

14 The test utilized by all provinces for MAP antibodies was also an ELISA. Farms in all
15 provinces except ALTA were tested with the same ELISA¹ (Dargatz et al., 2001). Alberta
16 farms were tested with a different ELISA² (Sockett et al., 1992). For the first ELISA, an
17 animal was considered to be seropositive for MAP if the serum-to-positive ratio on the
18 ELISA was ≥ 0.25 . For the second ELISA, if the optical density value was greater than
19 the mean of the negative control for bovine sera plus 0.100, an animal was considered to
20 be seropositive for MAP, as recommended by the manufacturer of the test kit. The MAP
21 testing for NS, NB, PEI, and SASK was conducted at Prairie Diagnostic Services in
22 SASK, which is accredited for MAP-ELISA testing by the United States Dept of

¹ IDEXX ELISA - IDEXX Corporation - Idexx Laboratories, Westbrook, Maine, USA

² BIOCOR-CSL ELISA - BIOCOR Animal Health, Inc., Omaha, Nebraska, USA

1 Agriculture. The BIOVET Inc. laboratory in QUE, the Manitoba Agricultural Laboratory
2 in MAN, and the Alberta Agriculture, Food and Rural Development Food Safety
3 Division Laboratory in ALTA were utilized for their respective provincial testing for
4 financial reasons. The serum samples were tested in duplicate at all locations.

5

6 The test utilized by all provinces for NC antibodies was also an ELISA, with ALTA
7 farms being tested with one brand of ELISA, again according to the wishes of the
8 directors of the study in that province¹ (sensitivity 97.6%, specificity 99.5%) (Wu et al.,
9 2002). The farms in the rest of the participating provinces were tested with a different
10 ELISA³ (sensitivity 99.0%, specificity 98.4%) (Bergeron et al., 2000). A cow was
11 considered to be seropositive for NC if the serum-to-positive ratio for the first and second
12 ELISAs were ≥ 0.60 and ≥ 0.40 , respectively. The NC testing was conducted at the
13 BIOVET Inc. laboratory in Quebec for dairy farms from NS, NB, PEI, ONT, MAN,
14 SASK, and the Food Safety Division Laboratory of Alberta Agriculture, Food and Rural
15 Development in ALTA for dairy farms in ALTA. The serum samples were tested in
16 duplicate at both locations. Serum samples from dairy farms in QUE were not tested for
17 antibodies to NC according to the wishes of the directors of the study in that province.

18

19 For all provinces, up to 5 serum samples per farm were tested for antibody against type 1
20 genotype BVD virus, using virus neutralization to the cytopathic Singer strain (sensitivity
21 99.6% and specificity 100%) (Deregt et al., 1992). A herd was considered to have been
22 infected with BVDV if at least one of the animals tested had a titre of $\geq 1:64$ for BVD
23 virus, based on an observed natural division in the titres within farms, as reported

³ BIOVET ELISA - BIOVET Inc. - St. Hyacinthe, Quebec, Canada

1 elsewhere (VanLeeuwen et al., 2001). Testing for BVDV was conducted at the Animal
2 Diseases Research Institute in Alberta for dairy herds in NS, NB, PEI, MAN, SASK,
3 ALTA, and at the Armand Frappier Laboratory in Quebec for dairy herds in QUE, for
4 financial reasons.

5

6 **7.3.3 Cow-level predictor data collection**

7

8 Production and reproduction data of the sampled cows were obtained from the monthly
9 milk test nearest the date of blood collection. The data for these cows were obtained
10 electronically from Canadian Dairy Herd Management Services which processes DHI
11 records for all of Canada. The cow-level predictors of interest included: lactation number
12 (categorical – 1st, 2nd, 3plus), days in milk, 24-hour milk yield, 24-hour fat percent and
13 24-hour protein percent. These cow level variables were aggregated at the herd level to
14 be utilized in the herd level statistical analyses described below.

15

16 The serostatus of NC and BLV were other cow-level predictors investigated. BLV and
17 NC were defined as dichotomous variables (positive and negative based on the
18 manufacturers' cutpoints of the diagnostic tests).

19

20 **7.3.4 Herd-level predictor data collection**

21

22 A number of herd-level predictors were determined through serological testing. A herd
23 was considered positive for BVDV infection when at least one animal with a titer $\geq 1:64$

1 was present. A herd was also considered positive for NC infection when at least two
2 animals were seropositive for NC. Also, a dichotomous variable was created from the
3 BLV within herd prevalence - whether or not the herd had a seroprevalence of $\geq 50\%$,
4 based on the maximum-likelihood of the cut-off value that dichotomized the herd-level
5 seroprevalence data best.

6

7 The majority of the herd-level predictors were obtained through personal interviews with
8 questionnaires administrated to managers at each farm visited. The questionnaire was
9 comprised of 11 sections with 21 pages and 423 variables, and was pre-tested on 5 farm
10 owners/employees for clarity and ease of administration. The questionnaires were
11 completed in an average of 45 minutes.

12

13 The questionnaire was divided into 11 sections. Section A covered the location and
14 identification of the farm and farmer. Section B covered the basic and demographic
15 information about the farm and farmer, including: age of the farmer, physical size of the
16 farm, cow breed, and number of employees. The herd population section (C) included the
17 number of dairy cattle currently present on the farm, and the number sold, culled, died
18 and purchased in the last 12-month period. These data were subdivided into the following
19 categories: pre-weaned calves, open heifers, bred heifers, milking cows, dry cows, and
20 bulls. The housing and pasture section (D) covered the type of housing utilized by each
21 category of animal in the winter and summer, and management practices for pasture.
22 Biosecurity was examined under various sections: purchase practices (E) and
23 requirements for the introduction of purchased animal; cattle contact (F) with domestic or

1 wild animals, either directly or through cattle water and food, and cattle contact with
2 other people and their vehicles or equipment; transmission of disease through blood (G);
3 and prophylactic use of medications and vaccines (H). The calving and calf management
4 section covered colostrum and milk feeding of newborn calves, management of calves
5 and calving area, and management of placentas and aborted fetuses (I). Another section
6 (J) covered the type, origin and storage of food and water given to the dairy cattle, by
7 age-sex categories of cattle, and general management of manure. The final section (K)
8 looked at possible concurrent diseases, previous disease events and diagnostic tests
9 carried out on the farm. The complete questionnaire is available from the corresponding
10 author (Tiwari) on request.

11

12 7.3.5 Statistical analysis

13 The management factors were analysed in four steps using Stata, Release 8⁴. First,
14 descriptive statistics (eg. means, proportions, correlations) were calculated for all cow
15 and herd level predictors to assist in the subsequent modelling process. Zero-inflated
16 negative binomial regression (ZINB) was utilized to determine the unconditional
17 associations between the count of MAP-seropositive cattle on each farm, while adjusting
18 for province, herd size and average lactation number in the herd as likely confounders.
19 The number of cows tested in each farm was utilized as an offset. Those variables for
20 which the P-value was ≤ 0.15 advanced to the second step – multivariable modeling.
21 Guided by biological plausibility and statistical significance, a forward stepwise process
22 was utilized to build the final multivariable model. Variables were considered significant
23 with a P-value ≤ 0.05 , and marginally significant with a P-value ≤ 0.10 . BLV-, BVDV-

⁴ Stata (Statistical package, Release.8; Stata Press, College Station, Texas, USA)

1 and NC-seropositivity, herd size, average lactation number in the herd, and province
2 were forced in to all models as likely confounding factors. The third step was to identify
3 significant interactions between significant main effects using a backward elimination
4 process, allowing only significant ($P\text{-value} \leq 0.05$) interaction variables to remain in the
5 final model. Finally, regression diagnostics (including an evaluation of outliers) were
6 carried out, and graphs of the observed versus predicted counts of MAP in a herd were
7 generated. The likelihood ratio test was utilized for comparing poisson regression versus
8 negative binomial regression and the Vuong test was utilized for comparing the ZINB
9 model versus negative binomial regression model.

10

11 Logistic regression was also utilized to determine the cow and herd-level variables
12 associated with herds having at least two MAP-seropositive cows compared to one or no
13 MAP-seropositive cow in a herd, while adjusting for BLV-, BVDV- and NC-
14 seropositivity province, average lactation number of cows in the herd, and herd size as
15 possible confounders. A similar four-step approach to model building was utilized. The
16 final model of the logistic regression was evaluated with the Hosmer-Lemeshow
17 goodness-of-fit test, and plotting standardised residuals, leverage points and delta-beta
18 values against observations.

19

20 7.3.6 Outcome variable

21 The number of cows seropositive for MAP was the outcome variable in the ZINB model,
22 and a herd having at least 2 MAP seropositive cows was defined to be infected with MAP
23 in the logistic model.

1 **7.4. Results**

2

3 **7.4.1 Descriptive statistics**

4

5 Of the 315 herds tested for exposure to the 4 pathogens, from 7 of the 10 Canadian
6 provinces, questionnaires were completed for 285 farms. Due to missing data for certain
7 questions in the questionnaire for some farms, only 257 herds within the 7 provinces
8 were included in the dataset utilized for the final multivariable ZINB model. Comparison
9 of the sampled cows and herds in the final dataset to national industry averages (Table 1)
10 did not identify any significant differences (the range of industry averages are contained
11 within the 95% confidence intervals of the sample population). Therefore, the random
12 selection of herds and cows produced a sample population that was likely representative
13 of the Canadian dairy industry as a whole.

14

15 Seroprevalence data are reported elsewhere. Briefly, for all Canadian dairy herds tested,
16 30.3% (Tiwari et al., 2005b), 3.1% (Tiwari et al., 2005b) and 11.4% (Haddad et al., 2005)
17 of the cattle were positive for antibodies to BLV, MAP and NC, respectively, while
18 31.2% (Tiwari et al., 2005b) of the herds had at least one cow with a titer of $\geq 1:64$ for
19 BVDV. The averages for these four agents in the sample population for this study were
20 not significantly different from the national estimates, indicating minimal response bias
21 with respect to BLV, BVDV, MAP and NC seroprevalences.

22

1 7.4.2 Management factor analyses

2

3 Table 2 reports the variables within each of the sections of the questionnaire that were
4 associated ($P \leq 0.15$) with the count of MAP-seropositive cows in herds, after adjusting
5 for province, herd size and average lactation number. These variables were eligible for
6 subsequent steps of the modelling processes.

7

8 Table 3 reports the final model of the ZINB analyses after checking for interaction
9 variables and model fit. In the negative binomial part of the model, the variables “more
10 than one cow in maternity pen”, “group housing in pre-weaned calves in winter”,
11 “purchasing open heifers”, “direct contact with beef cattle”, and “BVDV-seropositive
12 herds” were associated with 1.69, 2.03, 2.34, 1.27, and 1.41 times more MAP-
13 seropositive cows, respectively. “Purchasing bulls” was associated with 0.64 times fewer
14 MAP-seropositive cows. Province was significantly associated with the number of MAP-
15 seropositive cows, with the herds in ALTA being significantly associated with 5.82 times
16 more MAP-seropositive cows compared to herds in PEI (referent category). There was
17 also a trend towards herds in NB and MAN having 2.07 and 1.87 times more MAP-
18 seropositive cows compared to herds in PEI, respectively.

19

20 BVDV vaccination in calves was associated with the number of MAP-seropositive cows.
21 Specifically, “herds receiving modified live BVDV vaccination in calves” had 0.44 fewer
22 MAP-seropositive cows, while “herds not having proper BVDV vaccination in calves”
23 (after 6 months of age, calves not boosted 2-4 weeks after their first inoculation if a

1 killed vaccine was used) had 1.77 times more MAP-seropositive cows, compared to
2 farms that did not use BVDV vaccine at all.
3
4 In the logistic part of the final ZINB model, a one unit increase in the mean lactation
5 number of cows tested in the herd was associated with an increase of 1.44 times the odds
6 of having at least one MAP-seropositive cow. “NC-seropositivity” and “area of pasture
7 (more than 200 acres)” were marginally significant ($P < 0.010$), while “BLV-
8 seropositivity” was not significantly associated ($P > 0.10$) with MAP-seropositivity. No
9 interaction variables remained significant in the final model. The likelihood ratio test
10 comparing poisson regression versus negative binomial regression was significant at the
11 P-value of 0.001, indicating that the negative binomial distribution was preferred to the
12 poisson distribution. The Vuong test was significant at the P-value of 0.005, indicating
13 that the zero-inflated negative binomial model was preferred over the non-inflated model.
14 The observed and predicted probabilities of each count (Graph 1) indicated that the
15 model fit the data very well.
16
17 The following variables were significant in the final logistic regression model but not in
18 the final ZINB model (whole model shown in table 4). Herds using a total mixed ration
19 (TMR) were associated with 3.1 times greater odds of being MAP-seropositive (having at
20 least 2 seropositive cows). Herds where bedding was not added to calving areas for each
21 calving were associated with 2.7 times greater odds of being MAP-seropositive compared
22 to herds where bedding was added to calving areas for each calving. The Hosmer-
23 Lemeshow goodness-of-fit test was not significant, and plotting the standardised

- 1 residuals, and leverage and delta-beta values against the observations also indicated a
- 2 good overall fit of the final model.

1 **7.5. Discussion**

2

3 This study was part of a national project designed to determine the seroprevalence, spatial
4 distribution, effects and risk factors of BLV-, BVDV-, MAP- and NC-seropositivity in
5 Canadian dairy cattle. Eight out of ten Canadian provinces (which comprises 94.95 % of
6 dairy herds in Canada)⁵ participated in the national study. Similar random selection
7 procedures at the herd and cow level were utilized to ensure that the large study
8 population was representative of the Canadian dairy industry.

9

10 The management questionnaire was completed on 285 farms (90%) out of the 315 farms
11 in 7 provinces that participated in the study. Due to missing data for certain questions for
12 some farms, responses from 28 farms were not included in the modelling process, leaving
13 a final response rate for the final model of 82%, still indicating good representativeness.

14 This response rate was comparable to the response rate reported in other studies
15 (Johnson-Ifearulundu and Kaneene, 1998; Wells and Wagner, 2000). The summary
16 statistics in Table 1 indicated that the farms in the 7 participating Canadian provinces
17 were broadly representativeness of the national industry parameters.

18

19 One unique feature of this study was the investigation of seropositivity for other
20 pathogens as risk factors for seropositivity for MAP. BVDV-seropositive herds were
21 associated with MAP seroprevalence, and this may have been due to impaired immunity
22 from the BVD virus. The immunosuppressive effects of BVDV include a decrease in
23 percentage of circulating lymphocytes (Lamontagne et al., 1989) and an impairment of

⁵ http://www.dairyinfo.gc.ca/pdf_files/statsbook2005.pdf

1 the normal protective function of neutrophils (Roth et al., 1981) and macrophages (Bolin
2 et al., 1985; Reggiardo and Kaeberle, 1981). Infections with *Pasteurella multocida* or
3 infectious bovine rhinotracheitis virus were severely aggravated by a concomitant acute
4 BVDV infection (Potgieter et al., 1984a; Potgieter et al., 1984b). BVDV has also been
5 associated with increased incidence of clinical mastitis (Waage, 2000) and somatic cell
6 count (Tiwari et al., 2005a).

7

8 In this observational dataset, BVDV vaccination with modified live virus vaccine was
9 also a significant protective factor for BVDV infection in a separate analysis
10 (unpublished results), corroborating with results from clinical trials elsewhere (Cortese et
11 al., 1998; Ellis et al., 2001). Therefore, it is biologically plausible that BVDV live virus
12 vaccine would act as a preventive factor for the number of MAP-seropositive cows in a
13 herd, as found in our results.

14

15 The marginal association between NC-seropositivity and MAP-seropositivity was
16 unexpected and hard to explain. One explanation for this association could be a common
17 unmeasured factor (confounder) in our study that was related to the introduction of both
18 MAP and NC into the herds. Another explanation could be misclassification bias of the
19 diagnostic tests for MAP and NC. The low-test sensitivity with the MAP ELISAs, and
20 subsequent production of substantial numbers of false negatives in large populations has
21 been documented (Dargatz et al., 2001; Sockett et al., 1992; Whitlock et al., 2000).
22 Similarly, recent studies on various NC ELISAs have reported concerns regarding test
23 sensitivity and specificity (Waldner et al., 2004). At the time of initiation of this study,

1 there was no study that independently evaluated test sensitivity and specificity of NC
2 ELISAs. There have been studies since that time reporting on the accuracy of various NC
3 ELISAs, but to date, no study has reported on the ELISA utilized in this study.
4 Preliminary analyses by another researcher at UPEI have indicated that there are a
5 substantial number of false positives with the ELISA utilized in this study, although
6 recent changes in the ELISA appear to have eliminated most of these false positives
7 (unpublished data). Seropositivity for BLV was not significantly associated with MAP-
8 seropositivity but was forced into the final ZINB model in order to control for any
9 potential confounding that it may have.

10

11 Herds purchasing open heifers were significantly associated with MAP-seroprevalence.
12 Other studies have found that a similar risk factor “percentage of cows born on other
13 dairy farms” was significantly associated with MAP-seropositivity (Wells and Wagner,
14 2000). In our study, the variable “herds purchasing any cattle” was also univariately
15 associated with MAP-seroprevalence but that variable was highly collinear with
16 purchasing open heifers. Therefore, only one of the two variables was allowed to remain
17 as a significant variable in the final model. “Herds purchasing open heifers” was a
18 stronger predictor for MAP-seropositivity than “herds purchasing any cattle”, making the
19 former variable a better fit for the final model.

20

21 “More than one cow in a maternity pen”, “bedding not being added in calving areas
22 between every calving”, and “group housing for pre-weaned calves” were significantly
23 associated with MAP-seropositivity. Similar factors and their directions were also

1 reported by Wells et al. (2000) and Johnson-Ifearulundu and Kaneene (1998). The effects
2 of these risk factors depend upon the number of MAP organisms shed in feces and the
3 organism's survival characteristics in the environment (Jorgensen, 1977). The primary
4 method of MAP transmission is through a direct fecal-oral route, with calves being the
5 most susceptible to infection (Chiodini et al., 1984). The specific number of organisms
6 required for establishing infection for specific age groups has not been determined.
7 Infection can occur in calves with a dose of 1.6×10^7 organisms, which would easily be
8 surpassed in a 2-gram sample of heavily infected feces (Sweeney et al., 1992b).

9

10 Farms with large areas of pasture (grazing) were marginally negatively associated with
11 MAP-seropositivity. MAP is an obligate bacterium, and therefore, the survival of MAP
12 on pasture is finite (Whittington et al., 2004). Larger pasture area provides the farmer the
13 opportunity to increase the number of days between the spreading of feces on forage
14 fields and the harvesting of those forages (Obasanjo et al., 1997).

15

16 Contact with beef cattle was significantly associated with number of MAP-seropositive
17 cattle, suggesting that beef cattle could be a source of MAP to dairy cattle. MAP can also
18 infect sheep, goats, farmed deer (Fawcett et al., 1995), alpacas (Cocito et al., 1994) and
19 rabbits (Greig et al., 1997). The presence of farmed deer on dairy farms increased the risk
20 of reporting paratuberculosis in 3772 dairy farmers in England and Wales (odds ratios
21 ranged from 15.2 to 209) (Cetinkaya et al., 1997). Due to the low number of dairy farms
22 which had other species of animals, our study was unable to confirm or reject the
23 hypothesis that other species of animals pose as risk factors for MAP-seroprevalence.

1 Purchasing bulls was significantly associated with a lower number of MAP-seropositive
2 cows, while other factors (such as use of artificial insemination or embryo collection)
3 related to potential transmission of MAP through bull semen were not significantly
4 associated with MAP-seroprevalence. None of the studies published in the scientific
5 literature have reported a similar association. Inclusion or exclusion of this variable did
6 not change the interpretation of other variables in the final model, and therefore it was
7 left in the final model as a surrogate measure of some unmeasured preventive factor.

8

9 The association between an increase in mean lactation number of cows tested in a herd
10 and an increase of 1.44 times the odds of having at least one MAP-seropositive cow can
11 be explained by the chronic nature of the paratuberculosis (Chiodini et al., 1984). Many
12 other studies have reported that older cattle are more likely to be test positive for MAP
13 (Jakobsen et al., 2000). Most of the test-positive cattle had likely been infected in the first
14 few months of their life but only become test positive later in life. Therefore, lactation
15 number acts as a risk factor only because of the poor ability of the present diagnostic tests
16 to detect young sub-clinically infected animals (Dargatz et al., 2001; Sockett et al., 1992;
17 Whitlock et al., 2000).

18

19 Use of a total mixed ration (TMR) was associated with MAP-seropositivity in the logistic
20 regression model. With herd size already forced in the model, the reason for TMR being
21 in the model cannot be due to herd size. TMR is not being fed to calves and therefore is
22 not likely to be a source of infection to calves. TMR may be a proxy for something else,
23 such as a desire for saving on labour costs. The tractors /loaders that are used with TMRs

1 may also bring adult feces to calves. There is a need for future study on this possible
2 association.

3

4 MAP-seropositivity was not significantly associated with herd size in either the ZINB or
5 logistic model. However, herd size may act as a possible confounder, and therefore, was
6 left in the final model. An American study found large herds (> 300 cows) having 4.6
7 higher odds of MAP infection (Wells and Wagner, 2000). The mean number of cows in
8 herds in our study was 66, and 95% of the herds had less than 158 cows per herd. If herd
9 size was split into 3 categories, < 50 cows, 50-299 cows, and ≥ 300 cows, the 95%
10 confidence interval of the odds ratio for herds having ≥ 300 cows was statistically
11 significant compared to herds having < 50 cows (referent category). However, the small
12 number of herds having more than 300 cows in our study may explain the inability of our
13 study to find a significant relationship between herd size and MAP-seropositivity.

14

15 Overall, region was significantly associated with MAP-seropositivity, an observation also
16 reported in previous studies (Collins et al., 1994; Jakobsen et al., 2000; Wells and
17 Wagner, 2000). However, “region” should be treated as a proxy for some other herd
18 factors that may differ between these regions, with herd management practices within a
19 region likely being similar as compared to herd management practices in different
20 regions. Significant clusters of MAP-seropositivity in space were detected in a spatial
21 analysis of these data, reported elsewhere (Tiwari et al., 2005b).

22

1 The zero-inflated negative binomial regression model (ZINB) was utilized to determine
2 simultaneously the management factors associated with the number of MAP-seropositive
3 cows in a herd, and odds of herds having no MAP-seropositive cows compared to having
4 at least one MAP-seropositive cow in a herd (ie. included negative binomial and logistic
5 components, respectively). The decision to utilize the ZINB model over a poisson
6 regression model (PRM) or negative binomial regression model (NBRM) was based on
7 the following two reasons. First, PRM and NBRM models assume that every herd in the
8 study population has a positive probability of having MAP-seropositive cows (although it
9 would not be necessary for all herds to have non-zero counts observed). However, some
10 of the herds were likely to be truly negative, violating this assumption. In the ZINB
11 model, the zero counts in the study population can be explained better by the logistic part
12 of the model, while the non-zero counts can be explained by the negative binomial part of
13 the model. Second, two statistical tests indicated that the ZINB model fit the data well. A
14 likelihood ratio test for overdispersion showed that the negative binomial regression
15 model (NBRM) was better than the poisson regression model (PRM). The Vuong test
16 (Vuong, 1989) also showed that the ZINB regression model was better than the NBRM.
17
18 One limitation of this study has been the use of different test brands and different
19 laboratories for some tests of pathogen exposure in some provinces. While these
20 differences in laboratory testing may have an impact on comparisons between
21 seroprevalences among provinces, they should have minimal impact on this study of risk
22 factors for MAP-seropositive herds. The possible misclassification bias, if it exists, would
23 likely be non-differential between positive and negative herds within provinces, biasing

1 toward the null, if at all. Therefore, the significant factors discovered to be associated
2 with MAP-seropositivity were not likely to be due to differences in test brands or
3 laboratories.

4

1 **7.6. Conclusions**

2

3 “More than one cow in the maternity pen”, “group housing in pre-weaned calves in
4 winter”, “purchasing open heifers”, “direct contact with beef cattle”, “BVDV-
5 seropositive herds” and “not having proper BVD vaccination in calves (i.e. animals were
6 not boosted 2-4 weeks after their first shot after 6 months of age)” were associated with
7 higher MAP-seroprevalence. The variable “herds having BVDV modified live
8 vaccination in calves” was associated with lower MAP-seroprevalence. In the logistic
9 part of the final ZINB model, an increase in the mean lactation number of cows tested in
10 a herd was associated with an increased odds of having at least one MAP-seropositive
11 cow. The variables “NC-seropositivity” and “area of pasture (more than 200 acres)” were
12 marginally significant, while “BLV-seropositivity” was not significantly associated with
13 MAP-seroprevalence. The herds having “total mixed ration feeding” and “bedding that
14 was not added frequently to calving areas (for each calving)” were associated with
15 greater odds of being MAP-seropositive herds. The results from this study will assist in
16 the creation of management recommendations in national Johne’s control programs.

1 **7.7 Acknowledgements**

2 The authors wish to acknowledge Dr. Lee Ann Forsythe and Ms. Renee Chartier of
3 the Saskatchewan Department of Agriculture, Food and Rural Revitalization (Inspection
4 and Regulatory Management Branch, Animal Health Unit), Terri Garner of the
5 Department of Animal Science, University of Manitoba, the accredited Johne's
6 veterinarians of Alberta, and laboratory scientists and staff of Alberta Agriculture, Food
7 and Rural Development for their technical and logistical support in the collection of
8 samples and data from the participating farmers in Saskatchewan, Manitoba and Alberta,
9 respectively.

10 The authors also wish to acknowledge the following funding sources (monetary or in-
11 kind contributions): the Food Safety Division of Alberta Agriculture, Food and Rural
12 Development, Atlantic Veterinary College, Canadian Food Inspection Agency, Canadian
13 Dairy Herd Management Services, Dairy Farmers of Canada, Dairy Farmers of PEI,
14 Dairy Herd Improvement companies, Fédération des Producteurs de Lait du Québec,
15 Dairy Farmers of Manitoba, Manitoba Agriculture and Food, PEI Agricultural Research
16 Investment Fund, Production Limiting Diseases Committee, Saskatchewan Agriculture,
17 Food and Rural Revitalization, and the Western Economic Partnership Agreement.

7.8 Reference List

- 3 Abbas, B., Riemann, H.P., Hird, D.W., 1983. Diagnosis of Johne's disease
4 (paratuberculosis) in Northern California cattle and a note of it's economic
5 significance. Calif. Vet. 37, 20-24.

6 Benedictus, G., Dijkhuizen, A.A., Stelwagen, J., 1987. Economic losses due to
7 paratuberculosis in dairy cattle. Vet. Rec. 121, 142-146.

8 Bergeron, N., Fecteau, G., Pare, J., Martineau, R., Villeneuve, A., 2000. Vertical and
9 horizontal transmission of *Neospora caninum* in dairy herds in Quebec. Can. Vet
10 J. 41, 464-467.

11 Boelaert, F., Walravens, K., Biront, P., Vermeersch, J.P., Berkvens, D., Godfroid, J.,
12 2000. Prevalence of paratuberculosis (Johne's disease) in the Belgian cattle
13 population. Vet. Microbiol. 77, 269-281.

14 Bolin, S.R., McClurkin, A.W., Cutlip, R.C., Coria, M.F., 1985. Severe clinical disease
15 induced in cattle persistently infected with noncytopathic bovine viral diarrhea
16 virus by superinfection with cytopathic bovine viral diarrhea virus. Am. J. Vet.
17 Res. 46, 573-576.

18 Braun, R.K., Buergelt, C.D., Littell, R.C., Linda, S.B., Simpson, J.R., 1990. Use of an
19 enzyme-linked immunosorbent assay to estimate prevalence of paratuberculosis in
20 cattle of Florida. J. Am. Vet. Med. Assoc. 196, 1251-1254.

21 Cetinkaya, B., Erdogan, H.M., Morgan, K.L., 1997. Relationships between the presence
22 of Johne's disease and farm and management factors in dairy cattle in England.
23 Prev. Vet. Med. 32, 253-266.

24 Chi, J., VanLeeuwen, J.A., Weersink, A., Keefe, G.P., 2002. Direct production losses
25 and treatment costs from bovine viral diarrhoea virus, bovine leukosis virus,
26 Mycobacterium avium subspecies paratuberculosis, and Neospora caninum. Prev.
27 Vet. Med. 55, 137-153.

28 Chiodini, R.J., Van Kruiningen, H.J., Merkal, R.S., 1984. Ruminant paratuberculosis
29 (Johne's disease): the current status and future prospects. Cornell. Vet. 74, 218-
30 262.

31 Cocito, C., Gilot, P., Coene, M., de Kesel, M., Poupart, P., Vannuffel, P., 1994.
32 Paratuberculosis. Clin. Microbiol. Rev. 7, 328-345.

33 Collins, M.T., Sockett, D.C., Goodger, W.J., Conrad, T.A., Thomas, C.B., Carr, D.J.,
34 1994. Herd prevalence and geographic distribution of, and risk factors for, bovine
35 paratuberculosis in Wisconsin. J. Am. Vet. Med. Assoc. 204, 636-641.

- 1 Cortese, V.S., Grooms, D.L., Ellis, J., Bolin, S.R., Ridpath, J.F., Brock, K.V., 1998.
2 Protection of pregnant cattle and their fetuses against infection with bovine viral
3 diarrhea virus type 1 by use of a modified-live virus vaccine. Am. J. Vet. Res. 59,
4 1409-1413.
- 5 CQIASA 2003. Centre Québécois d'inspection des aliments et de santé animale. Rapport
6 final: Enquête de prévalence de la paratuberculose, de la leucose bovine
7 enzootique et des immunotolérants à la diarrhée virale bovine dans les
8 troupeaux laitiers du Québec.
- 9 Dargatz, D.A., Byrum, B.A., Barber, L.K., Sweeney, R.W., Whitlock, R.H., Shulaw,
10 W.P., Jacobson, R.H., Stabel, J.R., 2001. Evaluation of a commercial ELISA for
11 diagnosis of paratuberculosis in cattle. J. Am. Vet. Med. Assoc. 218, 1163-1166.
- 12 Deregt, D., Smithson, S., Kozub, G.C., 1992. A short incubation serum neutralization
13 test for bovine viral diarrhea virus. Can. J. Vet. Res. 56, 161-164.
- 14 Dohoo, I.R., Martin, W., Stryhn, H., 2004. Veterinary Epidemiological Research. AVC
15 Inc. Charlottetown, Canada .
- 16 Ellis, J., West, K., Cortese, V., Konoby, C., Weigel, D., 2001. Effect of maternal
17 antibodies on induction and persistence of vaccine-induced immune responses
18 against bovine viral diarrhea virus type II in young calves. J. Am. Vet. Med.
19 Assoc. 219, 351-356.
- 20 Fawcett, A.R., Goddard, P.J., McKelvey, W.A., Buxton, D., Reid, H.W., Greig, A.,
21 Macdonald, A.J., 1995. Johne's disease in a herd of farmed red deer. Vet. Rec.
22 136, 165-169.
- 23 Goodger, W.J., Collins, M.T., Nordlund, K.V., Eisele, C., Pelletier, J., Thomas, C.B.,
24 Sockett, D.C., 1996. Epidemiologic study of on-farm management practices
25 associated with prevalence of Mycobacterium paratuberculosis infections in dairy
26 cattle. J. Am. Vet. Med. Assoc. 208, 1877-1881.
- 27 Greig, A., Stevenson, K., Perez, V., Pirie, A.A., Grant, J.M., Sharp, J.M., 1997.
28 Paratuberculosis in wild rabbits (*Oryctolagus cuniculus*). Vet. Rec. 140, 141-143.
- 29 Guilfoil, V.Y., Roberts, N.J., Rodgers, S., McBridge, D., 1997. Regional and Country
30 Seroprevalence of Bovine Leukosis Virus and Mycobacterium paratuberculosis
31 (Johne's Disease) in Oklahoma Beef Cattle. Procc. Epidemiology and Economics
32 Symposium, Fort Collins, Colorado.
- 33 Haddad, J.P., Dohoo, I.R., VanLeeuwen , J.A., Tiwari, A., Keefe, G.P., Scott, H.M.,
34 Whiting, T., 2005. Seroprevalence and spatial distribution of Neospora caninum
35 in Canadian dairy cattle. Submitted to Can. Vet. J.
- 36 Houe, H., 1992. Serological analysis of a small herd sample to predict the presence of
37 animals persistently infected with bovine viral diarrhoea virus (BVDV) in dairy

- 1 herds. Res. Vet. Sci. 53, 320-323.

2 Jakobsen, M.B., Alban, L., Nielsen, S.S., 2000. A cross-sectional study of
3 paratuberculosis in 1155 Danish dairy cows. Prev. Vet. Med. 46, 15-27.

4 Johnson, R.J., Kaneene, J.B., 1991. Bovine Leukemia Virus. Part I. Descriptive
5 Epidemiology, Clinical Manifestations, and Diagnostic tests. Compendium on
6 Continuing Education 13, 328.

7 Johnson-Ifearulundu, Y.J., Kaneene, J.B., 1998. Management-related risk factors for M.
8 paratuberculosis infection in Michigan, USA, dairy herds. Prev. Vet. Med. 37, 41-
9 54.

10 Johnson-Ifearulundu, Y.J., Kaneene, J.B., Sprecher, D.J., Gardiner, J.C., Lloyd, J.W.,
11 2000. The effect of subclinical Mycobacterium paratuberculosis infection on days
12 open in Michigan, USA, dairy cows. Prev. Vet. Med. 46, 171-181.

13 Jorgensen, J.B., 1977. Survival of Mycobacterium paratuberculosis in slurry. Nord. Vet.
14 Med. 29, 267-270.

15 Keefe, G.P., VanLeeuwen, J.A., 2000. Neospora then and now: prevalence of Neospora
16 caninum in Maritime Canada in 1979, 1989, and 1998. Can. Vet. J. 41, 864-866.

17 Lamontagne, L., Lafourture, P., Fournel, M., 1989. Modulation of the cellular immune
18 responses to T-cell-dependent and T cell-independent antigens in lambs with
19 induced bovine viral diarrhea virus infection. Am. J. Vet. Res. 50, 1604-1608.

20 McKenna, S.L., Keefe, G.P., Barkema, H.W., McClure, J., VanLeeuwen, J.A., Hanna,
21 P., Sockett, D.C., 2004. Cow-level prevalence of paratuberculosis in culled dairy
22 cows in Atlantic Canada and Maine. J. Dairy. Sci. 87, 3770-3777.

23 McNab, W.B., Meek, A.H., Martin, S.W., Duncan, J.R., 1991. Associations between
24 dairy production indices and lipoarabinomannan enzyme-immunoassay results for
25 paratuberculosis. Can. J. Vet. Res. 55, 356-361.

26 Merkal, R.S., Larsen, A.B., Booth, G.D., 1975. Analysis of the effect of inapparent
27 bovine paratuberculosis. Am. J. Vet. Res. 36, 837-838.

28 Nordlund, K.V., Goodger, W.J., Pelletier, J., Collins, M.T., 1996. Associations
29 between subclinical paratuberculosis and milk production, milk components, and
30 somatic cell counts in dairy herds. J. Am. Vet. Med. Assoc. 208, 1872-1876.

31 Obasanjo, I.O., Grohn, Y.T., Mohammed, H.O., 1997. Farm factors associated with the
32 presence of Mycobacterium paratuberculosis infection in dairy herds on the New
33 York State Paratuberculosis Control Program. Prev. Vet. Med. 32, 243-251.

34 Ott, S.L., Wells, S.J., Wagner, B.A., 1999. Herd-level economic losses associated with
35 Johne's disease on US dairy operations. Prev. Vet. Med. 40, 179-192.

- 1 Potgieter, L.N., McCracken, M.D., Hopkins, F.M., Walker, R.D., 1984a. Effect of
2 bovine viral diarrhea virus infection on the distribution of infectious bovine
3 rhinotracheitis virus in calves. Am. J. Vet. Res. 45, 687-690.
- 4 Potgieter, L.N., McCracken, M.D., Hopkins, F.M., Walker, R.D., Guy, J.S., 1984b.
5 Experimental production of bovine respiratory tract disease with bovine viral
6 diarrhea virus. Am. J. Vet. Res. 45, 1582-1585.
- 7 Raizman, E.A., Wells, S.J., Godden, S.M., Bey, R.F., Oakes, M.J., Bentley, D.C.,
8 Olsen, K.E., 2004. The distribution of Mycobacterium avium sp. paratuberculosis
9 in the environment surrounding Minnesota dairy farms. J. Dairy. Sci. 87, 2959-
10 2966.
- 11 Reggiardo, C., Kaeberle, M.L., 1981. Detection of bacteremia in cattle inoculated with
12 bovine viral diarrhea virus. Am. J. Vet. Res. 42, 218-221.
- 13 Ridge, S.E., Baker, I.M., Hannah, M., 2005. Effect of compliance with recommended
14 calf-rearing practices on control of bovine Johne's disease. Aust. Vet. J. 83, 85-90.
- 15 Roth, J.A., Kaeberle, M.L., Griffith, R.W., 1981. Effects of bovine viral diarrhea virus
16 infection on bovine polymorphonuclear leukocyte function. Am. J. Vet. Res. 42,
17 244-250.
- 18 Scott, H.M., Sorenson, O., Chow, E., Manninen, K., VanLeeuwen, J.A., 2005.
19 Seroprevalence of Mycobacterium avium subspecies paratuberculosis, Neospora
20 caninum, bovine leukemia virus, and bovine viral diarrhea virus infection in
21 Alberta dairy cattle and agro-ecological risk factors associated with seropositivity.
22 Submitted to Can. Vet. J.
- 23 Sockett, D.C., Conrad, T.A., Thomas, C.B., Collins, M.T., 1992. Evaluation of four
24 serological tests for bovine paratuberculosis. J. Clin. Microbiol. 30, 1134-1139.
- 25 Streeter, R.N., Hoffsis, G.F., Bech-Nielsen, S., Shulaw, W.P., Rings, D.M., 1995.
26 Isolation of Mycobacterium paratuberculosis from colostrum and milk of
27 subclinically infected cows. Am. J. Vet. Res. 56, 1322-1324.
- 28 Sweeney, R.W., Whitlock, R.H., Rosenberger, A.E., 1992a. Mycobacterium
29 paratuberculosis cultured from milk and supramammary lymph nodes of infected
30 asymptomatic cows. J. Clin. Microbiol. 30, 166-171.
- 31 Sweeney, R.W., Whitlock, R.H., Rosenberger, A.E., 1992b. Mycobacterium
32 paratuberculosis isolated from fetuses of infected cows not manifesting signs of
33 the disease. Am. J. Vet. Res. 53, 477-480.
- 34 Thorne, J.G., Hardin, L.E., 1997. Estimated prevalence of paratuberculosis in Missouri,
35 USA cattle. Prev. Vet. Med. 31, 51-57.

- 1 Tiwari, A., VanLeeuwen , J.A., Dohoo, I.R., Keefe, G.P., Haddad, J.P., 2005a. Effects
2 of seropositivity for bovine leukemia virus, bovine viral diarrhea virus,
3 Mycobacterium avium subspecies paratuberculosis, and Neospora caninum and
4 milk, fat and protein production and somatic cell count in Canadian dairy cattle.
5 Submitted to J. Dairy. Sci.
- 6 Tiwari, A., VanLeeuwen , J.A., Dohoo, I.R., Keefe, G.P., Haddad, J.P., 2005b.
7 Seroprevalence and spatial distribution of bovine leukemia virus, bovine viral
8 diarrhea virus and Mycobacterium avium subspecies paratuberculosis in Canadian
9 dairy cattle. Submitted to Vet. Res.
- 10 Tiwari, A., Vanleeuwen, J.A., Dohoo, I.R., Stryhn, H., Keefe, G.P., Haddad, J.P.,
11 2005. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea
12 virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum
13 on culling in dairy cattle in four Canadian provinces. Vet. Microbiol. 109, 147-
14 158.
- 15 Tiwari, A., VanLeeuwen, J.A., Dohoo, I.R., Stryhn, H., Keefe, G.P., 2003. Effects of
16 seropositivity for bovine Leukemia virus, Mycobacterium avium subspecies
17 paratuberculosis, and Neospora caninum on calving to conception interval in
18 maritime Canadian dairy cattle. Proceedings of SVEPM, Warwick, England. 243-
19 252.
- 20 VanLeeuwen, J.A., Keefe, G.P., Tremblay, R., Power, C., Wichtel, J.J., 2001.
21 Seroprevalence of infection with Mycobacterium avium subspecies
22 paratuberculosis, bovine leukemia virus, and bovine viral diarrhea virus in
23 maritime Canada dairy cattle. Can. Vet. J. 42, 193-198.
- 24 VanLeeuwen, J.A., Tiwari, A., Dohoo, I.R., Keefe, G.P., 2003. Prevalence of Johne's
25 Disease Infection in Canada - National Production Limiting Diseases Study. Proc.
26 Annual Meeting of Atlantic Bovine Practitioners' Association, Moncton, Canada.
- 27 VanLeeuwen, J.A., Tiwari, A., Forsythe, L., Chartier, R., 2005. Seroprevalence of
28 antibodies against bovine leukemia virus, bovine viral diarrhea virus,
29 Mycobacterium avium subspecies paratuberculosis and Neospora caninum in
30 Saskatchewan dairy cattle. Can. Vet. J.
- 31 Vuong, Q.H., 1989. Likelihood ratio tests for model selection and non-nested
32 hypotheses. Econometrica 57, 307-333.
- 33 Waage, S., 2000. Influence of new infection with bovine virus diarrhoea virus on udder
34 health in Norwegian dairy cows. Prev. Vet. Med. 43, 123-135.
- 35 Waldner, C.L., Cunningham, G., Campbell, J.R., 2004. Agreement between three
36 serological tests for Neospora caninum in beef cattle. J. Vet. Diagn. Invest. 16,
37 313-315.

- 1 Wells, S.J., Wagner, B.A., 2000. Herd-level risk factors for infection with
2 Mycobacterium paratuberculosis in US dairies and association between
3 familiarity of the herd manager with the disease or prior diagnosis of the disease
4 in that herd and use of preventive measures. J. Am. Vet. Med. Assoc. 216, 1450-
5 1457.
- 6 Whitlock, R.H., Wells, S.J., Sweeney, R.W., Van Tiem, J., 2000. ELISA and fecal
7 culture for paratuberculosis (Johne's disease): sensitivity and specificity of each
8 method. Vet. Microbiol. 77, 387-398.
- 9 Whittington, R.J., Marshall, D.J., Nicholls, P.J., Marsh, I.B., Reddacliff, L.A., 2004.
10 Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the
11 environment. Appl. Environ. Microbiol. 70, 2989-3004.
- 12 Wilson, D.J., Rossiter, C., han, H.R., Sears, P.M., 1995. Financial effects of
13 Mycobacterium paratuberculosis on mastitis, milk production, and cull rate in
14 clinically normal cows. Agri. Prac. 16, 12-18.
- 15
- 16 Wu, J.T., Dreger, S., Chow, E.Y., Bowlby, E.E., 2002. Validation of 2 commercial
17 *Neospora caninum* antibody enzyme linked immunosorbent assays. Can. J. Vet.
18 Res. 66, 264-271.

- 1 Table 7.1. Comparison of the sample of 8129 cows in 257 Canadian dairy herds to
 2 national industry averages.

	Study Population estimates (95% Confidence interval)	Canadian Dairy estimates (From 1999-2003) (range of means)
Mean 305 day milk	8602-9390 kg	8960-9519 kg
Mean 305 day fat	315-337 kg	331-351 kg
Mean 305 day protein	275-301 kg	290-306 kg
Mean herd size of milking cows	59-73	50-62

3

4 Table 7.2. Variables associated ($P \leq 0.15$) with the count of MAP-seropositive cows in a
 5 herd, after adjusting for confounding variables province, herd size and mean lactation
 6 number in Canadian dairy herds.

Variables	Sec	Herds	C.R.	S.E.	P-value
Area of pasture	B				0.08
(<100 acres)		197	1	-	
(100-200 acres)		36	0.87	0.19	
(>200 acres)		21	0.52	0.15	
Percentage income from dairy (>50%)	B	208	1.65	0.43	0.05
Open heifers purchased	C	18	1.90	0.57	0.03
Group housed pre-weaned calves in winter	D	203	1.44	0.31	0.09
Tie stalls for lactating cows	D	120	1.32	0.24	0.13
Bulls access to a small field for exercise	D	23	1.57	0.46	0.13
Dry cow grazing	D	163	0.76	0.13	0.11
Bulls grazing	D	36	0.69	0.17	0.12
Bull purchased	E	39	0.55	0.12	0.01
Beef cattle direct contact with dairy cattle	F	65	1.81	0.49	0.03
Beef cattle in contact with dairy cattle water	F	62	1.78	0.47	0.03
Lending cows to other farms	F	32	0.64	0.16	0.07
Often see other dogs on farm	F	157	1.40	0.25	0.06
Often see skunk on farm	F	155	0.64	0.13	0.02
Farmers lending equipment to other farmers that could have manure contact	F	101	0.78	0.13	0.14
Use of cutting equipment for dehorning	G	170	1.87	0.52	0.02
Disinfect instruments for extra teat removal	G	118	0.67	0.13	0.05
More than one cow in maternity pen	I	69	1.45	0.26	0.04
Outdoor feed bunk or manger for dry cows	J	155	0.72	0.16	0.13
Heifers less than 12 months old share water trough with adult cattle	J	52	0.70	0.15	0.10
Distance from manure storage to farm well (>2000 feet)	J	33	0.59	0.15	0.03

7 Sec – Sections in Questionnaire

8 Herds - Number of herds in each category

9 C.R. - Count ratio

10 S.E. – Standard Error

11 Table 7.2. continued

Variables	Sec	Herds	C.R.	S.E.	P-value
BLV (> 50% within herd prevalence)	K	73	1.13	0.22	0.54
NC (herds having \geq 2 NC seropositive)	K	150	1.20	0.24	0.35
BVDV	K				0.31
BVDV negative herd		122	1	-	
BVDV positive herd		70	1.37	0.28	0.12
BVDV not tested (vaccinated)		65	1.11	0.23	0.61
BVDV vaccine in calves (< 6 months old)	H				0.05
No vac		41	1	-	
No BVDV VAC		18	1.08	0.37	
BVDV VAC not done properly		37	1.44	0.40	
BVDV VAC killed done properly		22	1.48	0.43	
BVDV VAC M Live done properly		12	0.47	0.19	
BVDV vaccine in heifers	H				0.05
No vac		41	1	-	
No BVDV VAC		18	1.08	0.37	
BVDV VAC not done properly		45	1.41	0.36	
BVDV VAC killed done properly		62	1.03	0.25	
BVDV VAC M Live done properly		19	0.58	0.20	
BVDV vaccine in cows	H				0.15
No vac		41	1	-	
No BVDV VAC		18	1.08	0.38	
BVDV VAC not done properly		51	1.36	0.35	
BVDV VAC killed done properly		73	0.96	0.22	
BVDV VAC M Live done properly		14	0.58	0.23	

12 Sec – Sections in Questionnaire

13 Herds - Number of herds in each category

14 C.R. - Count ratio

15 S.E. – Standard Error

16 VAC – Vaccine

17 M Live – Modified live

18 Table 7.3: Final model of management and other risk factors associated with the number
 19 of MAP-seropositive cows in a herd, and odds of herds having no MAP-seropositive as
 20 compared to having at least one MAP-seropositive cow in a herd (n = 257 herds).

Variables	Herds	C.R.	S.E.	P-value
<u>Negative binomial part of ZINB model</u>				
Open heifer purchase	17	2.338	0.596	0.001
Bulls purchase	39	0.638	0.119	0.017
Beef cattle direct contact	64	1.938	0.458	0.005
No beef cattle	137	1.272	0.300	0.307
Area of pasture (100-200 acres)	36	0.787	0.154	0.224
(>200 acres)	21	0.611	0.157	0.056
More than one cow in maternity pen	66	1.692	0.271	0.001
Group housed pre-weaned calves in winter	189	2.032	0.380	<0.001
NC	146	1.355	0.238	0.084
BLV	64	0.916	0.150	0.598
BVDV				0.013
BVDV negative	106	1	-	-
BVDV positive	66	1.414	0.246	0.046
BVDV not tested	63	1.656	0.285	0.003
BVDV vaccine in calves				0.007
No VAC	40	1	-	-
No BVDV VAC	18	0.976	0.287	0.935
BVDV VAC not done properly	34	1.775	0.395	0.010
BVDV VAC (killed) done properly	21	1.107	0.249	0.649
BVDV VAC (M Live) done properly	11	0.440	0.166	0.030
Farmers not replied to VAC question	111	1.003	0.194	0.987
Province				<0.001
PEI	28	1	-	-
NS	24	1.641	0.653	0.213
NB	27	2.066	0.809	0.064
QUE	23	1.444	0.658	0.844
MAN	28	1.875	0.729	0.106
SASK	41	1.013	0.382	0.971
ALTA	64	5.821	1.935	<0.001
<u>Logistic part of ZINB model</u>				
Mean lactation number for herd	herds	O.R.	S.E.	P-value
	235	-1.442	0.613	0.019

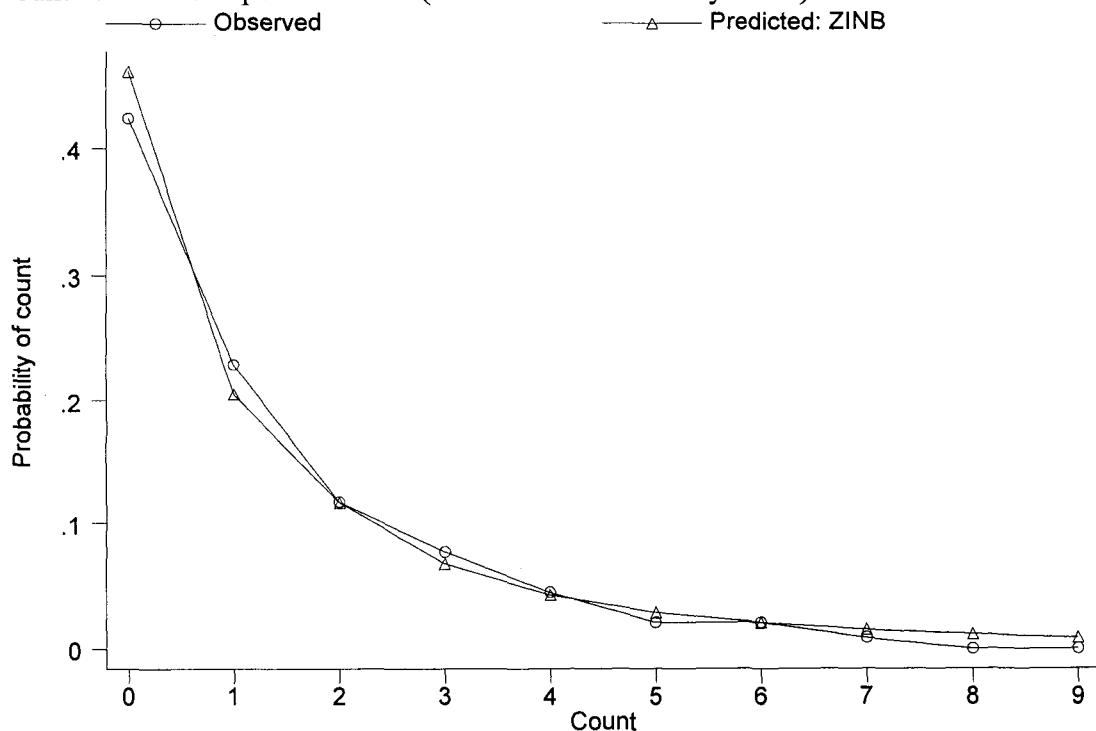
21
 22 Herds - Number of herds in each category

23 C.R. - Count ratio

24 S.E. – Standard Error

25 VAC – Vaccine

26 M Live – Modified live


27

28 Table 7.4: Final logistic model of management and other risk factors associated with
 29 herds having at least 2 MAP-seropositive cows as compared to herds having zero or one
 30 MAP-seropositive cow (n = 257 herds).

Variables	Herds	O.R.	S.E.	P-value
TMR	136	3.096	1.220	0.004
				0.031
Bedding that was not added frequently to calving areas (for each calving)	53	2.726	1.151	0.018
Open heifers purchase	17	4.043	2.362	0.017
Mean lactation number for herd	243	1.401	0.463	0.308
Herd size	243	1.055	0.107	0.598
NC	146	2.904	1.229	0.012
BLV	64	1.191	0.464	0.654
BVDV				0.213
BVDV negative	106	1	-	-
BVDV positive	66	0.894	0.384	0.795
BVDV not tested	63	2.904	1.229	0.088
Province				0.020
PEI	28	1	-	-
NS	24	0.950	0.753	0.949
NB	27	0.783	0.618	0.758
QUE	23	0.340	0.434	0.398
MAN	28	1.790	1.438	0.468
SASK	41	0.680	0.929	0.778
ALTA	64	3.486	3.764	0.247

31
 32 Herds - Number of herds in each category
 33 O.R. - Odds ratio
 34 S.E. – Standard Error

35 Figure 7.1: The observed and predicted (based on the final model) probabilities of each
36 count of MAP-seropositive cows ($n = 257$ Canadian dairy herds).

37

38

1

2 CHAPTER 8: General discussion and conclusion

3

4 This final chapter summarizes the main findings of the thesis in the context of the
5 scientific literature, discusses how the results can be applied to the Canadian dairy
6 industry, and identifies potential future areas of research.

7

8 8.1 Prevalence of MAP infection

9 The first objective of this thesis was to determine the prevalence and spatial
10 distribution of *Mycobacterium avium* subspecies *paratuberculosis* (MAP) infection in
11 Canadian dairy cattle and herds so that bovine practitioners and dairy farmers have a
12 better understanding of how common is exposure to MAP bacteria in various parts of the
13 Canadian dairy industry. The prevalence and spatial distribution of the other co-infections
14 (bovine leukosis virus - BLV, bovine viral diarrhea virus - BVDV and *Neospora caninum*
15 - NC) were also estimated to compare to MAP-seroprevalence.

16 A stratified two-stage random sampling procedure was employed. Herds on Dairy
17 Herd Improvement (DHI) testing were randomly selected (sometimes non-DHI herds
18 were included at the request of the provincial director) to recruit thirty, thirty, thirty, one
19 hundred and four, forty, fifty-one, and seventy-nine herds from the provinces of Prince
20 Edward Island (PEI), New Brunswick (NB), Nova Scotia (NS), Quebec (QUE), Manitoba
21 (MAN), Saskatchewan (SASK), and Alberta (ALTA) in 1998, 1998, 1998, 2002, 2002,
22 2001, and 2002/03, respectively. From each selected herd, approximately 30 lactating

1 animals (all cows if the total number of cows in the herd was less than 30 cows) were
2 randomly selected for blood collection. The serum samples were tested for MAP
3 antibodies using an ELISA.

4 The final dataset of MAP test results contained 373 herds with 10,578 cows.
5 Overall, 3.1% (2.3% - 3.8%, 95% C.I.) of the cattle were positive for antibodies to MAP,
6 and 18.9% (13% - 25%, 95% C.I.) of herds had at least two seropositive cows for MAP.
7 These seroprevalence estimates are similar to national seroprevalence estimates from the
8 United States (2.5% cows were seropositive and 17% herds had at least 2 seropositive)
9 (NAHMS, 1997) and the Netherlands (2.5% cows were seropositive and 28% herds had
10 at least 2 seropositive cows) (Muskens et al., 2000).

11 A recent evaluation of the results of the ELISAs utilized in our study with respect
12 to tissue culture indicated estimates of test sensitivity of 7% (McKenna et al., 2005) and
13 test specificity of 98% (McKenna et al., 2005). Therefore, estimated true prevalence of
14 exposure to MAP, adjusting for test sensitivity and specificity, were determined to be
15 21% (5.2 – 38.3, 95% C.I.) and 40% (27.3 – 52.1, 95% C.I.) at the animal and herd
16 levels, respectively. Our estimate (21%) of true MAP prevalence at the animal level is
17 similar to the estimate (16.1%) of a recent Canadian maritime study utilizing the culture
18 of ileocecal lymph nodes and ileum of apparently healthy dairy cattle at slaughter
19 (McKenna et al., 2004).

20

21 8.1.1. Spatial distribution

22 Regarding the spatial distribution of MAP infection, the Global Moran's I statistic
23 resulted in a significant positive spatial autocorrelation of 0.15, indicating that certain

1 parts of Canada have a higher seroprevalence than others, higher than what was expected
2 due to normal variation. Similar results have also been reported in the lone spatial study
3 of MAP infection, conducted on results from dairy farms in the state of Indiana (Ward
4 and Perez, 2004). In that study, significant spatial clustering of MAP-infection was
5 identified in the north-eastern part of the state.

6 Visual exploration of the seroprevalence data in our study showed that there were
7 significant differences between provinces, with high seroprevalence estimates at the herd
8 and animal level found in Alberta (see Table 3.5), and this observation was confirmed by
9 the presence of a statistically significant spatial cluster in an area of Alberta using the
10 scan statistic. Furthermore, the province of Alberta was a significant predictor of MAP-
11 seropositivity in the risk factor analysis.

12 Reasons for the apparent increased seroprevalence of MAP exposure in Alberta
13 remain unclear, but are unlikely to be simply from the use of a different ELISA (IDEXX-
14 ELISA and BIOCOR-ELISA produced similar sensitivity and specificity estimates
15 (McKenna et al., 2005)) and its utilization at a laboratory in Alberta (which is also USDA
16 accredited) rather than Saskatchewan where most of the other samples were tested.

17 Clusters of MAP-seropositivity may arise when some herds share common risk factors
18 (such as similar environmental conditions or housing/grazing management, or buying
19 cattle from neighbours). Areas having MAP clusters can be targeted in the initial phase of
20 Johne's disease control programs to prevent the further spread of infection to low
21 prevalence areas or to other farms within the MAP cluster areas, and to reduce
22 transmission and infection levels on infected farms.

23

1 8.1.2 Co-infection prevalence

2 In total, 30.3% and 11.9% of the cattle were positive for antibodies to BLV and
3 NC (Haddad et al., 2005), respectively. At the herd level, 76.6% of herds had at least one
4 seropositive cow for BLV, 31.2% had at least one animal with a titer $\geq 1:64$ for BVDV,
5 and 64.8% had at least two seropositive cows for NC. Tables (3.3-3.5) provide detailed
6 results of BLV, BVDV and MAP-seroprevalences. With these results, the infection status
7 for other pathogens were utilized as possible confounders to the potential impacts of
8 MAP seropositivity on productivity, or as possible risk factors for MAP infection.

9 These seroprevalence results are believed to be representative of the Canadian
10 dairy industry for a number of reasons. Samples were obtained from dairy herds in 8 of
11 the 10 Canadian provinces. Study herds and animals were selected through similar
12 random sampling procedures across all provinces to select a representative sample of
13 Canadian dairy cattle and herds. Furthermore, there were no substantial differences
14 between the production indices of sampled herds compared to indices obtained for all
15 Canadian dairy herds on monthly milk recording (see table 3.2), suggesting that the
16 sampled herds were representative of Canadian dairy industry.

17

18 **8.2 Production impacts of MAP infection**

19 A second objective of this thesis was to determine the production impacts (305
20 day milk, 305 day fat, 305 day protein and somatic cell count) of MAP infection in
21 Canadian dairy cattle and herds so that bovine practitioners and dairy farmers have a
22 better understanding of the detrimental effects that MAP infection has on production
23 indices in the Canadian dairy industry.

1 A subset of the nationally sampled herds for the prevalence study was utilized for
2 this research, those herds that were on monthly milk testing. Therefore, the sample
3 population included 30, 30, 30, 75, 27, 40, 44, and 66 herds from the provinces of NB,
4 NS, PEI, QUE, ONT, MAN, SASK, and ALTA, respectively, with their blood testing
5 having been conducted in 1998, 1998, 1998, 2002, 1998, 2002, 2001, and 2002/03,
6 respectively.

7 For each tested animal, demographic data, the actual and predicted (if more than
8 200 days in milk) 305-day milk, fat, and protein volumes, and somatic cell count (SCC)
9 data from January 1, 1999 to December 31st, 2003 were gathered electronically from a
10 central milk-recording database.

11 The final dataset contained 342 herds with 9,834 cows and 22,665 lactations.
12 There were, on average, 2.3 (maximum 4) lactations per cow. MAP-seropositivity in
13 lactation 4+ was significantly associated with a lower 305 day milk volume of 212 kg
14 (2.34% lower milk production) compared to MAP-seronegative cows in lactation 4+. A
15 significant reduction in milk production was not detected in younger cows, although a
16 trend toward lower milk production was seen. However, MAP-seropositivity was not
17 significantly associated with 305 day fat and 305 day protein volume.

18 These results support suggestions made in previous studies (Johnson et al., 2001;
19 Kudahl et al., 2004; Sockett et al., 1992; Wilson et al., 1993) that the effect of MAP-
20 seropositivity on milk volume largely depends upon the parity of the cow.

21 In our study, MAP-seropositivity was also significantly associated with a 0.098
22 increased lactational average of the log (to base 10) of SCC ($ML_{10}SCC$) compared to
23 MAP-seronegative cows. McNab et al., (1991) also found an increased somatic cell count

1 in LAM-ELISA-positive cows compared to negative cows. However, it is unclear
2 whether there is also an increased risk of clinical mastitis in MAP-seropositive cows
3 compared to seronegative cows, as this would require data that were not collected in our
4 study.

5 The results of our study likely represent very conservative estimates of the effect
6 of MAP-seropositivity on 305 d milk, 305 d fat, 305 d protein and $ML_{10}SCC$ because of
7 the misclassification bias associated with ELISA test results for MAP (Whitlock et al.,
8 2000). Due to the very poor sensitivity of ELISA tests for MAP exposure, ranging from
9 7% to 80% (McKenna et al., 2004; Sockett et al., 1992), depending on the stage of
10 infection of the test population, numerous infected animals likely gave false negative test
11 results. Specificity estimates of ELISAs for MAP exposure are also not ideal, ranging
12 from 90-99% (Dargatz et al., 2001; McKenna et al., 2005), particularly when utilized on
13 a large number of animals in a low prevalence population, leading to numerous false
14 positive test results (low positive predictive values). The impact of these
15 misclassifications, assuming they are not differential in nature (accuracy of ELISA is
16 similar in high producing cows as compared to low producing cows), would likely bias
17 these model estimates toward the null.

18 The effects of BLV, BVDV, and NC infection on production were also estimated.
19 The results from multilevel linear regression analyses for BLV-, BVDV-, and NC-
20 seropositivity (by lactation) on 305 d milk, 305 d protein, 305 d fat volume and
21 $ML_{10}SCC$ are shown in Tables 4.2-4.3.

22 When all lactations were pooled together, the cows in BVDV-seropositive herds
23 had a lower 305 d milk volume of 368 kg/cow compared to cows in BVDV-seronegative

1 herds. NC-seropositivity in first lactation heifers was significantly associated with a
2 lower 305 d milk volume of 158 kg. BLV-seropositive, 4+ lactation cows had a lower
3 305 d milk volume of 21 kg (data not shown), but this association was not statistically
4 significant.

5 Cows in BVDV-seropositive herds had a marginally lower 305 d fat volume of
6 10.2 kg compared to cows in BVDV-seronegative herds. NC-seropositivity in first
7 lactation heifers was significantly associated with a lower 305 d fat of 5.54 kg. However,
8 after controlling for 305 d milk, BVDV- and NC-seropositivity were no longer associated
9 with 305 d fat volume. There was no significant relationship between BLV-seropositivity
10 and 305 d fat volume.

11 The cows in BVDV-seropositive herds also had a significantly lower 305 d
12 protein of 9.35 kg compared to cows in BVDV-seronegative herds. NC-seropositivity in
13 first lactation heifers was associated with a marginally lower 305 d protein of 3.30 kg.
14 However, after controlling for 305 d milk, BVDV- and NC-seropositivity were no longer
15 associated with 305 d protein volume. BLV-seropositivity was not significantly
16 associated with 305 d protein volume.

17 The cows in BVDV-seropositive herds had a significantly higher $ML_{10}SCC$ of
18 0.096 compared to cows in BVDV-seronegative herds. NC-seropositivity in lactation 4+
19 cows was associated with a significantly lower $ML_{10}SCC$ of 0.094. BLV-seropositivity
20 was not significantly associated with the $ML_{10}SCC$. A discussion of these co-infection
21 results with respect to available scientific literature can be found in Chapter 4.

22

1 **8.3 Culling impacts of MAP infection**

2 The third objective of this thesis was to determine the culling impacts of MAP
3 infection in Canadian dairy cattle and herds so that bovine practitioners and dairy farmers
4 have a better understanding of the detrimental effects that MAP infection has on
5 longevity in the Canadian dairy industry.

6 A subset of the nationally sampled herds for the prevalence study were utilized
7 for this research, those herds that were on monthly milk testing and were tested early in
8 the project, thereby allowing sufficient time to examine the effect of MAP-seropositivity
9 on culling. The final dataset contained 134 herds with 3531 cows from NB, NS, PEI and
10 SASK, all having serological results and production and culling data. For each tested
11 animal, the culling and production data were gathered electronically from a central milk
12 recording database for the follow-up period that extended from June, 1998 to Feb, 2002
13 for Atlantic herds, and from April, 2001 to Sept, 2002 for Saskatchewan herds because
14 Atlantic and Saskatchewan herds were sampled in June-August, 1998 and April-May,
15 2001, respectively.

16 A total of 1981 (56.1%) cows were culled for all reasons out of 3531 tested cows.
17 For all reasons of culling, MAP-seropositive cows had a 1.38 (1.05 – 1.81, 95% C.I.)
18 times increased hazard of culling compared to MAP-seronegative cows. Among cows
19 that were culled because of either decreased reproductive efficiency or decreased milk
20 production or mastitis, MAP-seropositive cows had a 1.55 (1.12 – 2.15, 95% C.I.) times
21 increased hazard compared to MAP-seronegative cows. These results support the results
22 from chapter 4, where MAP-seropositivity was associated with a 0.098 increase in the
23 lactational mean of \log_{10} somatic cell count. MAP-seropositivity was also significantly

1 associated with 212 kg lower 305 d milk production in 4-plus lactation cows. A
2 significant reduction in milk production was not detected in younger cows, although a
3 trend toward lower milk production was seen.

4 The methods of this study, where there was an adjustment for herd clustering,
5 controlling for confounding variables, and random sampling of herds, indicate that the
6 impact of MAP-seropositivity on culling was likely a valid estimate for Canadian dairy
7 herds. Wilson et al., (1993) and others (Goodle et al., 2000; Merkal et al., 1975; Wilson
8 et al., 1993) found similar results utilizing either fecal culture or ELISA.

9 It is biologically plausible for MAP to lead to increased hazard of culling. MAP
10 infection typically causes localized granulomatous lesions in lymph nodes and the lamina
11 propria of the terminal ileum but granulomatous lesions can also be disseminated
12 throughout the entire gastrointestinal (GI) tract (Chiodini et al., 1984). The gastroenteritis
13 produces mucosal thickening that results in reduced absorption of nutrients from the
14 intestine and alterations in cell-mediated immunity. Reduced GI absorption might cause
15 or worsen a negative energy balance in early lactation, while alterations in cell-mediated
16 immunity may decrease the resistance of cows towards other infectious diseases, possibly
17 resulting in culling of MAP-seropositive cows due to decreased reproductive efficiency
18 (Johnson et al., 2001) or decreased milk production (Goodell et al., 2000) or mastitis
19 (McNab et al., 1991).

20 There was an additional interest in the effects of BLV, BVDV and NC infection
21 on culling. BLV-, BVDV-, and NC-seropositivity were not associated with an increased
22 risk of overall culling. However, among the cows that were culled because of
23 reproductive inefficiency, NC-seropositive cows had a 1.43 (95% C.I., 1.15 – 1.79) times

1 greater hazard than NC-seronegative cows. Among cows that were culled because of
2 decreased milk production, cows in BVDV-seropositive herds had a 1.86 (1.28 – 2.70
3 95% C.I.) times increased hazard compared to cows in BVDV-seronegative herds. BLV-
4 seropositive cows did not have an increased risk of reason-specific culling as compared
5 to BLV-seronegative cows. Again, a discussion of these co-infection results with respect
6 to available scientific literature can be found in Chapter 5

7

8 **8.4 Economic losses with MAP infection**

9 Translating the production and culling impacts of MAP-infection in Canadian
10 dairy cattle and herds into economic losses was the fourth objective of this thesis so that
11 bovine practitioners and dairy farmers have a better understanding of how costly MAP
12 infection is in the Canadian dairy industry.

13 The model used in this study was a stochastic, partial budget, simulation model,
14 adapted from models published by Bennett et al. (1999) and Chi et al., (2002), and
15 included the impacts of MAP-seropositivity on milk yield, mortality, culling and
16 reproductive losses. Input values were obtained primarily from analyses of the national
17 study of 373 Canadian dairy farms in 8 of 10 provinces presented in this thesis, with a
18 few values coming from peer-reviewed literature. Considerations such as possible effects
19 of MAP on human health, the ability of the farm to market livestock or other products,
20 and other potential indirect costs were not included in the model.

21 For MAP-seropositive Canadian dairy herds, the mean loss per 61 cow herd,
22 assuming a within-herd seroprevalence of 12%, was CD \$2,992 (95% C.I., \$143 – \$9741)
23 annually, or CD \$49 per cow per year. Herd additional culling losses were responsible for

1 46% (CD \$1374) of the total losses from MAP. Decreased milk production, mortality and
2 reproductive losses accounted for 9% (CD \$254), 16% (CD \$488) and 29% (CD \$875) of
3 the losses, respectively, respectively.

4 Our results suggested a range (95% C.I.) of CD\$ 18 to 123 lost per cow per year
5 in MAP-infected herds. Ott et al., (1999) reported a range (90% C.I.) of US\$ 2 to 120 per
6 cow per year in MAP-infected herds (which had less than 10% of cull cows being culled
7 due to clinical signs resembling Johne's disease). The American estimates (Ott et al.,
8 1999) were considered similar to our results because more than 90% of positive herds in
9 our study also had less than 10% of cows culled due to clinical signs resembling Johne's
10 disease.

11 When considering only those cows that tested positive for MAP exposure, the
12 cost estimates ranged (95% C.I.) from CD\$ 197 to 613 per infected cow per year. These
13 results were supported by reported cost estimates from previous studies. For example, the
14 cost in subclinically infected cows ranged from US\$ 123 to 696 per infected cow per year
15 (Ott et al., 1999). Overlapping and similar ranges of cost estimates suggest very similar
16 economics losses associated with MAP-infection in both the Canadian and American
17 dairy industries.

18 Therefore, exposure to MAP bacteria is leading to substantial production and
19 culling losses in infected Canadian dairy herds, even though the majority of infected
20 herds detected in the study were not high prevalence herds. Losses would be expected to
21 be much higher in high prevalence herds. Combined with the substantial prevalence of
22 MAP infection in the Canadian dairy industry, these annual economic losses on infected

1 farms further demonstrate the strong need for a national Johne's disease control program
2 in Canada to assist farmers to reduce MAP-prevalence.

3

4 **8.5 Risk factors of MAP-infection**

5 The final objective of this thesis was to quantify the important animal and herd
6 level risk factors of MAP-seropositivity in the Canadian dairy industry so that bovine
7 practitioners and dairy farmers have a better understanding of those factors that are most
8 strongly associated with high MAP-seropositivity within Canadian dairy cattle
9 management systems.

10 A subset of the nationally sampled herds were utilized for this research, those
11 herds which: 1) were on monthly milk testing; 2) agreed to release production data; and
12 3) completed a questionnaire regarding management practices on the farm. Results from
13 serum samples from approximately 30 randomly selected cows from 285 herds from 7
14 provinces (NB, NS, PEI, QUE, MAN, SASK and ALTA) were included in the study.

15 For each tested animal, demographic data, the actual and predicted (if more than
16 200 days in milk) 305-day milk, fat, and protein volumes, and somatic cell count (SCC)
17 data (from the lactation in which the animals were tested for the 4 pathogens) were
18 gathered electronically from a central milk-recording database.

19 The questionnaire was divided into following sections: identification and location;
20 basic demographic information of the farm and farmer, herd population, housing,
21 biosecurity (purchasing new animals; contact between domestic or wild animals and
22 cattle or their water and food; contact with other people and their vehicles or equipment;
23 transmission of disease through blood and prophylactic use of medications and vaccines),

1 calving and calf management, management of manure and possible concurrent diseases.

2 The complete questionnaire description is in Chapter 7.

3 A zero-inflated negative binomial (ZINB) model was utilized to simultaneously
4 determine the management factors associated with the number of MAP-seropositive cows
5 in a herd, and the odds of herds having at least one MAP-seropositive cow as compared
6 to having no MAP-seropositive cows in a herd. A logistic regression was also utilized to
7 determine the risk factors associated with herds having at least two MAP-seropositive
8 cows compared to one or no MAP-seropositive cow in a herd.

9 In the final ZINB model, significant risk factors included: “more than one cow in
10 the maternity pen”, “group housing in pre-weaned calves in winter”, “purchasing open
11 heifers” and “direct contact with beef cattle”, associated with 1.69, 2.03, 2.34 and 1.27
12 times more MAP-seropositive cows, respectively.

13 There were two variables that were significant in the final logistic regression
14 model but not in the final ZINB model (whole model shown in table 7.4). Herds having
15 “total mixed ration (TMR) feeding” and “bedding that was not added frequently to
16 calving areas (ie. for each calving)” were associated with 3.06 and 2.84 times greater
17 odds of being MAP-seropositive herds, respectively.

18 Some of these risk factors have also been identified by other studies (Collins et
19 al., 1994; Jakobsen et al., 2000; Obasanjo et al., 1997; Wells and Wagner, 2000) and are
20 included as important elements of risk assessments for MAP transmission utilized in
21 Johne’s disease control programs. However, TMR feeding and contact with beef cattle
22 have not previously been reported as risk factors in published literature.

1 Use of a total mixed ration (TMR) was associated with MAP-seropositivity in the
2 logistic regression model. With herd size already forced in the model, the reason for
3 TMR being in the model cannot be due to herd size. TMRs are generally not fed to calves
4 and therefore are not likely to be a source of infection to calves. TMR may be a proxy for
5 something else, such as a desire for labour-saving, which may also mean that farms with
6 TMR use tractors or loaders, which may bring adult feces in proximity to calves. There is
7 a need for future study on this possible association.

8 Contact with beef cattle was significantly associated with a higher number of
9 MAP-seropositive cattle, suggesting that beef cattle could be a source of MAP to dairy
10 cattle. MAP can also infect sheep, goats, farmed deer (Fawcett et al., 1995), alpacas
11 (Cocito et al., 1994) and rabbits (Greig et al., 1997). The presence of farmed deer on
12 dairy farms increased the risk of reporting paratuberculosis by 3772 dairy farmers in
13 England and Wales (odds ratios ranged from 15.2 to 209) (Cetinkaya et al., 1997). Due to
14 the low number of dairy farms in our study which had sheep, goats, farmed deer, alpacas
15 or rabbits, our study was unable to confirm or reject the relationships of these risk factors
16 with MAP-seroprevalence. However, there were 65 dairy farms that had contact with
17 beef cattle, and these farms had higher numbers of MAP-seropositive cows.

18 The best management practices (BMPs) (based on the pathology and risk factor
19 literature of Johne's disease) of the proposed national Johne's disease control program
20 (see appendix - A) focus on modifying management factors related to calves and heifers
21 for reducing the exposure of MAP, and our results support that this approach is
22 warranted, given that the majority of the significant risk factors were related to calf and
23 heifer management.

1 Herds that were “purchasing open heifers” were significantly associated with 4
2 times greater odds of being MAP-seropositive herds. This finding was expected because,
3 like many infectious diseases, the MAP bacterium is likely to enter a herd by purchasing
4 an infected animal. Purchasing other age groups of cattle, such as “purchasing bred
5 heifers” or “purchasing milking cows”, were highly correlated with “purchasing open
6 heifers” in our dataset. In multiple variable regression analyses, often only one of a group
7 of correlated variables will remain significant in the final model. However, the other
8 correlated variables should be considered important as well, although perhaps of lesser
9 consequence. This result confirms another of the BMPs associated with the proposed
10 national Johne’s disease control program that suggests that farmers either keep their herds
11 closed or buy animals only from herds at an equal or better level of Johne’s disease herd
12 status.

13

14 **8.6 Examination of co-infections**

15 One of the major strengths of the studies in this thesis was that exposure to co-
16 infections with other pathogens were examined simultaneously. Therefore, the impacts of
17 MAP-seropositivity on production and culling could be controlled with respect to NC-,
18 BLV- and BVDV-seropositivity. Also, interaction effects induced by co-infections with
19 more than one of the pathogens could be examined.

20 As noted in section 8.2, while controlling for exposure to other pathogens, MAP-
21 seropositivity was associated with reduced milk production in 4+ lactation cows, and
22 increased somatic cell count in all lactations. NC-seropositivity was associated with
23 reduced milk, fat and protein production in 1st lactation heifers, and lower somatic cell

1 counts in 4+ lactation cows, although this effect was diminished in younger cows. Cows
2 in BVDV-seropositive herds had reduced milk, fat and protein production in all
3 lactations, and higher somatic cell counts in all lactations. BLV-seropositive cows
4 showed no significant effects on any of the milk production outcomes. When examining
5 for interaction variables among the pathogens, there were no significant effect
6 modifications among the four pathogens for any of the outcomes.

7 As noted in section 8.3, while controlling for exposure to other pathogens, MAP-
8 seropositivity was associated with increased hazard of culling for all reasons. However,
9 cows in BVDV-seropositive herds, and NC-seropositive cows were only associated with
10 increased hazard of culling for low milk production and reproductive inefficiency,
11 respectively. When examining for interaction variables among the pathogens, there again
12 was no significant effect modification.

13 There are at least two reasons for this failure to detect interactions among the
14 pathogens. 1) There was a limited number of animals that were seropositive for more
15 than one pathogen. With the seroprevalence of MAP at only 3%, there were very few
16 animals that were seropositive for MAP and another pathogen. 2) The significant effects
17 of the 4 pathogens were only present in an age cohort of infected animals, leading to an
18 even smaller population of animals that were seropositive for more than one pathogen
19 and within those age cohorts. Therefore, there was a limited statistical power to test these
20 hypotheses comprehensively.

21 The risk factors for MAP-seropositivity included not only management factors,
22 but also exposure to the other three tested pathogens. “BVDV-seropositive herds” and
23 “not having proper BVD vaccination in calves (i.e. animals receiving a killed BVDV

1 vaccine and not boosted 2-4 weeks after their first shot)" were associated with 1.41 and
2 1.77 times more MAP-seropositive cows, respectively, in the final ZINB model. The
3 variable "herds having modified live BVDV vaccination in calves" was associated with
4 0.44 times fewer MAP-seropositive cows. In addition, the variable "NC-seropositivity"
5 was marginally significantly associated ($P < 0.10$) with 1.36 times more MAP-
6 seropositive cows in the ZINB model, and NC-seropositive herds had 2.9 times the odds
7 of being MAP-seropositive ($P = 0.01$) in the final logistic model.

8 Interpreting these results, it would appear that infection with BVDV and NC
9 appear to act as risk factors for MAP infection. The immunosuppressive effects of BVDV
10 could act as a risk factor for establishment of infection or manifestation of
11 paratuberculosis. The coexistence of NC with MAP infection could be the result of an
12 unmeasured factor that could have introduced these two pathogens to a farm independent
13 of each other (such as through the purchase of animals). Future research may prove or
14 disprove these hypothesis.

15

16 **8.7 Future research**

17 This thesis, while answering some questions, leaves other questions unanswered.
18 First, there may be value in additional MAP prevalence surveys in Canada in the future.
19 While the accuracy of ELISAs for MAP exposure are poor, the recent evaluation of both
20 ELISAs and fecal culture testing with respect to tissue culture positive cows (McKenna et
21 al., 2005) provided a representative and accurate estimate of sensitivity for these tests.
22 Therefore, the estimated true prevalence from our study is likely a valid estimate for the
23 Canadian dairy industry, particularly considering the representativeness of the random

1 herd and cow selection processes. Therefore, a survey utilizing fecal culture is unlikely to
2 produce a better estimate of true prevalence. However, in order to determine the progress
3 towards controlling MAP infection on dairy farms in Canada, it would likely be useful to
4 conduct another survey in 5-10 years.

5 Another reason for continuing to monitor the prevalence of MAP in cattle is to
6 compare changes in MAP prevalence with changes in Crohn's disease incidence.
7 Comparing these two could determine whether there are temporal and/or spatial
8 similarities in their distributions, leading to additional evidence that the two diseases may
9 both arise from exposure to MAP bacteria.

10 More accurate estimates of the impact of MAP-seropositivity on milk production
11 parameters are still needed. Our estimates of this impact were from a random sample of
12 Canadian dairy cattle and herds, but were likely very conservative in nature for a number
13 of reasons, including: inaccuracy of the ELISA leading to substantial misclassification
14 bias; and the small number of test positive cows, leading to low power to detect impacts
15 within different lactations. A study utilizing fecal cultures would likely produce less
16 misclassification bias and therefore more accurate estimates of impacts on milk
17 production relevant to the Canadian dairy industry. However, a fecal culture study would
18 still not determine if there are milk production effects in non-shedding infected cows.
19 One way of identifying whether non-shedding cows have negative milk-production
20 effects would be to conduct laparotomies and tissue cultures on springing heifers in a
21 number of infected herds. One could then compare milk production between tissue
22 culture positive and negative heifers for the rest of their lives, doing fecal cultures on
23 them every 3 months to determine when they start shedding.

1 With regard to impacts on culling, one could argue that the culling study only
2 utilized herds found in 4 out of 10 provinces, with those 4 provinces representing only a
3 small portion of the dairy industry in Canada. Therefore, in a few years time, it would be
4 desirable to analyse culling impacts of seropositivity for MAP, and the other pathogens,
5 in all of the tested herds on monthly milk testing. This additional analysis with a larger
6 number of cows could provide more accurate and representative estimates of the impact
7 of MAP-seropositivity on culling, particularly for specific reasons of culling. The current
8 study had limited power to detect an association between MAP-seropositivity and
9 specific reasons for culling due to the limited number of culled MAP-seropositive cows
10 within each of the categories for reasons of culling. Misclassification bias of the ELISA
11 may have also lead to a biasing of the result toward the null, and therefore subsequent
12 testing and assessments of culling impacts would likely be less conservative in nature if
13 infected cows were identified using fecal culture.

14 With more accurate estimates of prevalence of infection, and more detailed
15 estimates of impacts on productivity and culling, more precise estimates of direct
16 economic losses should be estimated. Furthermore, monitoring farms enrolled in a
17 national Johne's disease control program could provide additional data on which to
18 monitor prevalence estimates across Canada and estimates of impacts on productivity and
19 culling, and improve the precision of the estimates of economic losses associated with
20 MAP infection.

21 The relative importance of controlling each risk factor in the prevention of MAP
22 infections could be further elucidated. It is unclear why TMRs were associated with
23 greater odds of MAP-seropositivity. Also, it is unclear whether certain environmental or

1 ecological characteristics may enhance or reduce the survivability and transmission of
2 MAP among and between farms. For example, testing soil, water, and other
3 environmental sampling from different areas of infected farms may assist in identifying
4 specific risk factors of transmission. Monitoring the management practices of farms
5 enrolled in the Canadian Johne's disease control program, both test-positive and test-
6 negative, could provide additional data on which risk factors are more frequently
7 associated with MAP infection. More studies should also be done to understand the
8 relationship between age of exposure of the animal and the ability of MAP to infect
9 animals and progress to sub-clinically infected cows (shedding MAP) and cows with
10 clinical disease. Due to difficulties in quantifying this relationship using observational
11 studies on commercial dairy farms, an experimental design with various infectious doses
12 and ages of exposure would be preferred to answer this important question.

13 Regarding co-infections, we found that one risk factor for the count of MAP-
14 seropositive cows was BVDV-seropositivity at the herd level, even after controlling for
15 purchasing cattle. However, BVDV-seropositivity was not associated with MAP-
16 seropositivity in the logistic regression analysis (for herds with ≥ 2 MAP-seropositive
17 cows). Therefore, BVDV-seropositivity appears to be associated with an increased
18 number of cattle with MAP infection on an infected farm, but not associated with the
19 introduction of MAP into a herd. Further research would be useful to confirm this
20 speculation, by identifying and monitoring herds with BVDV and MAP infection.

21 Impacts on productivity due to interactions between seropositivity for the
22 different pathogens should also be examined further. While no interactions between
23 pathogens were statistically significantly associated with impacts on milk production or

1 culling, both misclassification bias and limited sample size of MAP-seropositive cows
2 likely limited the power to detect these interactions. Again, using the Canadian Johne's
3 control program, identifying and monitoring herds with MAP infection (preferably using
4 fecal culture testing) and other pathogens, particularly BVDV, would be useful in
5 studying bovine infections further.

1 **8.8 Reference list**

- 2
- 3 Cetinkaya, B., Erdogan, H.M., Morgan, K.L., 1997. Relationships between the presence
4 of Johne's disease and farm and management factors in dairy cattle in England.
5 Prev. Vet Med. 32, 253-266.
- 6 Chi, J., Vanleeuwen, J.A., Weersink, A., Keefe, G.P., 2002. Direct production losses
7 and treatment costs from bovine viral diarrhoea virus, bovine leukosis virus,
8 *Mycobacterium avium* subspecies paratuberculosis, and *Neospora caninum*. Prev.
9 Vet Med. 55, 137-153.
- 10 Cocito, C., Gilot, P., Coene, M., de Kesel, M., Poupart, P., Vannuffel, P., 1994.
11 Paratuberculosis. Clin. Microbiol. Rev. 7, 328-345.
- 12 Collins, M.T., Sockett, D.C., Goodger, W.J., Conrad, T.A., Thomas, C.B., Carr, D.J.,
13 1994. Herd prevalence and geographic distribution of, and risk factors for, bovine
14 paratuberculosis in Wisconsin. J Am. Vet Med. Assoc. 204, 636-641.
- 15 Dargatz, D.A., Byrum, B.A., Barber, L.K., Sweeney, R.W., Whitlock, R.H., Shulaw,
16 W.P., Jacobson, R.H., Stabel, J.R., 2001. Evaluation of a commercial ELISA for
17 diagnosis of paratuberculosis in cattle. J Am. Vet Med. Assoc. 218, 1163-1166.
- 18 Fawcett, A.R., Goddard, P.J., McKelvey, W.A., Buxton, D., Reid, H.W., Greig, A.,
19 Macdonald, A.J., 1995. Johne's disease in a herd of farmed red deer. Vet Rec
20 136, 165-169.
- 21 Goodle, G.M., Hirst, H., Garry, F., Dinsmore, P., 2000. Comparison of cull rates and
22 milk production of clinically normal dairy cows grouped by ELISA
23 *Mycobacterium avium paratuberculosis* serum antibody results. Proceedings of
24 The International Symposium of Veterinary Epidemiology and Economics,
25 Breckenridge, CO, USA.
- 26 Greig, A., Stevenson, K., Perez, V., Pirie, A.A., Grant, J.M., Sharp, J.M., 1997.
27 Paratuberculosis in wild rabbits (*Oryctolagus cuniculus*). Vet Rec 140, 141-143.
- 28 Haddad, J.P., Dohoo, I.R., VanLeeuwen, J.A., Keefe, G.P., Tiwari, A., 2005.
29 Seroprevalence and spatial distribution of *Neospora caninum* in Canadian dairy
30 herds. Planned to Be Submitted to Can. Vet. Journal .
- 31 Jakobsen, M.B., Alban, L., Nielsen, S.S., 2000. A cross-sectional study of
32 paratuberculosis in 1155 Danish dairy cows. Prev. Vet Med. 46, 15-27.
- 33 Johnson, Y.J., Kaneene, J.B., Gardiner, J.C., Lloyd, J.W., Sprecher, D.J., Coe, P.H.,
34 2001. The effect of subclinical *Mycobacterium paratuberculosis* infection on milk
35 production in Michigan dairy cows. J Dairy Sci 84, 2188-2194.

- 1 Kudahl, A., Nielsen, S.S., Sorensen, J.T., 2004. Relationship between antibodies
2 against *Mycobacterium avium* subsp. *paratuberculosis* in milk and shape of
3 lactation curves. *Prev. Vet Med.* 62, 119-134.
- 4 McKenna, S.L., Keefe, G.P., Barkema, H.W., McClure, J., Vanleeuwen, J.A., Hanna,
5 P., Sockett, D.C., 2004. Cow-level prevalence of paratuberculosis in culled dairy
6 cows in Atlantic Canada and Maine. *J Dairy Sci* 87, 3770-3777.
- 7 McKenna, S.L.B., Keefe, G.P., Barkema, H.W., Sockett, D.C., 2005. Evaluation of
8 three ELISAs for *Mycobacterium avium* subsp. *paratuberculosis* using tissue and
9 fecal culture as comparison standards. Accepted in *Veterinary Microbiology* .
- 10 McNab, W.B., Meek, A.H., Martin, S.W., Duncan, J.R., 1991. Associations between
11 dairy production indices and lipoarabinomannan enzyme-immunoassay results for
12 paratuberculosis. *Can J Vet Res* 55, 356-361.
- 13 Merkal, R.S., Larsen, A.B., Booth, G.D., 1975. Analysis of the effect of inapparent
14 bovine paratuberculosis. *Am. J Vet Res* 36, 837-838.
- 15 Muskens, J., Barkema, H.W., Russchen, E., Van Maanen, K., Schukken, Y.H.,
16 Bakker, D., 2000. Prevalence and regional distribution of paratuberculosis in
17 dairy herds in The Netherlands. *Vet Microbiol.* 77, 253-261.
- 18 NAHMS 1997. US Department of Agriculture, Animal and Plant Health Inspection
19 Service, 1997. Johnes's Disease on US Dairy Operations, NAHMS Dairy '96,
20 Center for Animal Health Monitoring, Report N245, 797.
- 21 Obasanjo, I.O., Grohn, Y.T., Mohammed, H.O., 1997. Farm factors associated with the
22 presence of *Mycobacterium paratuberculosis* infection in dairy herds on the New
23 York State Paratuberculosis Control Program. *Prev. Vet Med.* 32, 243-251.
- 24 Ott, S.L., Wells, S.J., Wagner, B.A., 1999. Herd-level economic losses associated with
25 Johnes's disease on US dairy operations. *Prev. Vet Med.* 40, 179-192.
- 26 Sockett, D.C., Conrad, T.A., Thomas, C.B., Collins, M.T., 1992. Evaluation of four
27 serological tests for bovine paratuberculosis. *J Clin. Microbiol.* 30, 1134-1139.
- 28 Ward, M.P., Perez, A.M., 2004. Association between soil type and paratuberculosis in
29 cattle herds. *Am. J Vet Res* 65, 10-14.
- 30 Wells, S.J., Wagner, B.A., 2000. Herd-level risk factors for infection with
31 *Mycobacterium paratuberculosis* in US dairies and association between
32 familiarity of the herd manager with the disease or prior diagnosis of the disease
33 in that herd and use of preventive measures. *J Am. Vet Med. Assoc.* 216, 1450-
34 1457.

- 1 Whitlock, R.H., Wells, S.J., Sweeney, R.W., Van Tiem, J., 2000. ELISA and fecal
2 culture for paratuberculosis (Johne's disease): sensitivity and specificity of each
3 method. *Vet Microbiol.* 77, 387-398.
- 4 Wilson, D.J., Rossiter, C., Han, H.R., Sears, P.M., 1993. Association of
5 *Mycobacterium paratuberculosis* infection with reduced mastitis, but with
6 decreased milk production and increased cull rate in clinically normal dairy cows.
7 *Am. J Vet Res* 54, 1851-1857.
- 8
- 9

1 APPENDIX – A (Review Article)

2

3 Johnne's Disease in Canada

4 Part II:

5 Disease Impacts, Risk Factors and Control Programs for Dairy Producers

6

7 Shawn L.B. McKenna, Greg P. Keefe, Ashwani Tiwari,

8 John VanLeeuwen, Herman W. Barkema

9 Department of Health Management

10 Atlantic Veterinary College, Prince Edward Island, 550 University Avenue,

11 Charlottetown, Prince Edward Island, C1A 4P3 Canada

12

13 Address correspondence to Shawn McKenna (slmckenna@upei.ca or address above)

1

Abstract

2

3 Part I of this two-part review examined the clinical stages, pathophysiology,
4 diagnosis and epidemiology of Johne's Disease, providing information relevant to
5 Canada, where available. In this second and final part of the series, a critical review of
6 the economic impacts of the disease, risk factors, and important control measures are
7 presented to enable Canadian bovine practitioners to successfully implement control
8 strategies and participate in control programs. In ELISA-positive cattle, there is a 2.4
9 times increase in the risk of culling, and lactational 305d milk production is decreased by
10 at least 370 kg. Reduced slaughter value and premature culling accounts for losses of
11 CD\$ 1330 per year per infected 50-cow herd. Research has failed to show a consistent
12 association between *Mycobacterium avium* subsp. *paratuberculosis* test status and
13 reduced fertility or risk of clinical/subclinical mastitis. Host level factors include age and
14 level of exposure, along with source of exposure such as manure, colostrum or milk.
15 Agent factors involve the dose of infectious agent and strains of bacteria. Environmental
16 management factors influence the persistence of the bacteria and the level of
17 contamination in the environment. Emphasizing a risk factor approach, various control
18 strategies are reviewed, including a number of national control programs currently in
19 place throughout the world, specifically Australia, The Netherlands and the United States.
20 Information about the proposed Canadian Voluntary Johne's Control Program is also
21 included. By reviewing the scientific literature about Johne's Disease, control of the
22 disease could be pursued through informed implementation of rational biosecurity efforts
23 and the strategic use of testing and culling.

Introduction

14 Canada has had success in controlling other mycobacterial diseases, specifically
15 tuberculosis. Modern disease control programs for pathogens without clear zoonotic
16 potential will have to be driven by economics of the disease at the individual and national
17 herd level.

Methods

2

3

3 Due to substantial differences in management, production, and related control
4 options between dairy and beef cattle, and the extensive literature on JD for both dairy
5 and beef cattle, this paper focuses on dairy cattle. Also, because the intended audience for
6 this paper is primarily Canadian veterinarians, we have emphasized Canadian references
7 as much as possible.

8

9 Animal Bureaux (CAB) (accessed via VetCD and ParasiteCD sets from 1973 to present)
10 and Agricola, produced by the National Agricultural Library of the U.S. Department of
11 Agriculture (from 1970 to present) were used to collect the references. The keywords
12 used in the search of the databases were *Mycobacteria*, paratuberculosis, Johne's,
13 Canada, Canadian, dairy and cattle. In addition, a small number of papers were identified
14 from the reference lists of other papers, or personal knowledge of reports or conference
15 proceedings.

16

17

18

19

per

260

Impacts on Productivity

2

3 Cattle that develop clinical JD have thickened intestinal mucosa, resulting in
4 malabsorptive diarrhea and subsequent decreased intestinal absorption of nutrients.

5 Reductions in milk production, infertility, premature culling, and lower slaughter value
6 due to poor body condition are the common causes of economic loss associated with JD
7 (1).

8 Losses associated with subclinical JD, defined as infected without overt clinical
9 signs, have been more difficult to quantify because of the difficulty of accurately
10 detecting subclinical paratuberculosis with the diagnostic tests currently available.

11 Studies on subclinical impacts, as determined by identification of the organism through
12 fecal culture, are less susceptible to misclassification bias than those using identification
13 of an immune response to the organism (eg. enzyme linked immunosorbent assays -
14 ELISAs), as explained below. However, due to the cost and long time lag between
15 submission of samples and results for fecal culture, ELISAs are frequently used in the
16 field to identify subclinically infected animals. Therefore, observational studies on
17 impacts based on positive ELISA results have been conducted and are also critically
18 evaluated in the following section. An estimate of subclinical economic losses is
19 necessary for assessing the cost-effectiveness of control strategies at the farm, region, and
20 national levels.

21 Reported economic losses attributable to subclinical JD include decreased milk
22 production (1,2), decreased milk fat and protein yield (3,4), reduced slaughter weight at
23 culling (5), and premature culling (6). Decreased fertility (6) and increased incidence of

1 clinical and/or subclinical mastitis (7) may also be associated with MAP infections. In
2 the following sections, each of these areas of loss is critically evaluated and summarized
3 in Table 1.

4 **Milk production, fat and protein yield**

5 In one of only two published Canadian studies looking at the impacts of
6 subclinical infection in dairy cattle, records from 2395 randomly selected dairy cattle in
7 90 randomly selected herds were examined (8). Overall, 305-day milk production for
8 ELISA-seropositive cows was lower than for seronegative cows. In their first and fifth
9 lactation ELISA-seropositive animals produced 573 and 1273 kg less than seronegative
10 cows, respectively. Similar milk production losses were found in ELISA-based studies in
11 Wisconsin (7) and Colorado (9). The study from Wisconsin found positive cows had a
12 4% (376 kg) decrease in 305-day mature equivalent milk production (305ME) (7), and
13 the study from Colorado found ELISA-positive cows had a 551 kg decrease in 305ME
14 (9). Only two studies have reported an association between paratuberculosis and
15 decreased milk fat and protein yield (3,4), costing approximately US\$ 205 per cow per
16 lactation (3). In a study based in Ontario (10), associations between results from an
17 experimental ELISA and milk production were inconsistent, perhaps owing to the
18 experimental nature of the test utilized.

19 When culled dairy cows were diagnosed positive by histopathology and culture of
20 tissues, cows that showed no clinical signs but were positive had a 16% decrease in milk
21 production in their last lactation compared to the lactation two years prior, and a 6%
22 decrease in milk production compared with the lactation one year prior (1). However,
23 there was no extensive look at production in uninfected cows for comparison. Assuming

1 a lactation which produces 8000 kg of milk, these estimates would equate to 1280 and
2 480 kg, respectively. Similar results of milk production losses associated with subclinical
3 paratuberculosis were determined for cattle that were positive on fecal or tissue culture
4 (1,3,6). In a dairy herd of 210 cows in the USA with a high prevalence of MAP
5 infection, fecal culture-positive cows produced 590 kg and 1270 kg less milk in their
6 third and fourth lactations, respectively, as compared to their fecal culture-negative
7 herdmates (2).

8 There is potential for bias in each of these studies. In the cull cow study it is
9 possible that cull cows would likely include older cows, which if infected, are close to
10 entering the clinical stage of infection. Using cull cows instead of a random sample of
11 cows in milking herds, potentially overestimates the overall impact on milk production
12 among the general population. Similarly, cows from a herd with a high prevalence of
13 infection (fecal culture study) would also more likely include cows entering the clinical
14 stage of infection due to increased exposure to MAP as compared to the average farm.

15 However, there is a potential that this estimate of productivity loss may be an
16 underestimation. The specificity of fecal culture is generally considered to be 100% and,
17 therefore, all culture-positive cattle are assumed to be infected (no false-positives).

18 However, because sensitivity is less than 100% (estimated at 50% (11)) there are false-
19 negatives in the culture-negative group. It is likely that these false-negatives lower the
20 average milk production of this group, bringing the mean productivity of the two groups
21 closer, leading to an underestimation of the difference between test positive and test
22 negative animals. Conversely, a herd with a high prevalence of infection may
23 overestimate the milk production effects for the industry because heavy exposure to

1 calves in this herd could lead to earlier clinical signs than would be seen for the rest of
2 the industry.

3 As shown by the above studies, the level of reduction in milk production in
4 subclinically infected cows depends on a number of factors, including: stage of
5 subclinical infection (1), parity, with infection in older cows having a larger negative
6 impact (2), sensitivity and specificity of the test utilized for identifying infected cattle,
7 which varies with the stage of infection (12), and farm management (e.g. cow comfort,
8 concurrent infections) (8). Further studies are needed to identify the onset, progression
9 and extent of milk production effects associated with JD in culture-positive animals,
10 controlling for these and other confounding variables at the cow, herd and regional level.
11 However, it is evident that current knowledge supports the fact that subclinical JD has a
12 considerable negative effect on milk production and udder-health, the only difference
13 being the magnitude of this effect.

14

15 **Premature culling and reduced slaughter value**

16 Premature culling associated with paratuberculosis is one of the major economic
17 burdens of this disease (13). In the only Canadian study estimating culling risk based on
18 serological testing, results from randomly sampled cattle among randomly selected
19 Maritime Canadian dairy herds indicated that after controlling for parity, 305-day milk
20 production and somatic cell count (SCC), the odds of being culled during the 3 years after
21 testing was 2.3 times greater in ELISA-seropositive cows as compared to seronegative
22 cows (14). While the owners in this study were informed of test results 1 year after
23 sampling, the difference in odds of culling between seropositive and seronegative cattle

1 was not significantly different before and after the results were communicated, indicating
2 that the difference was for biological reasons, not simply due to the test results. Similar
3 results were found in a study comparing fecal culture-negative and culture-positive cows
4 in one herd from New York, where the estimated loss due to premature culling for MAP
5 for that herd was US\$ 75 per cow per year (15). Age of culling in tissue culture-positive
6 cows showing clinical signs, tissue culture-positive cows not showing clinical signs, and
7 non-infected cows have been demonstrated to be 4.3, 4.9 and 7.7 years, respectively (16).

8 In addition to premature culling, slaughter value has also been shown to be
9 affected by JD. Clinical JD has resulted in a reduced slaughter value of 20 to 30% in
10 culled cattle (1). In addition, fecal culture-positive cattle without clinical signs have been
11 shown to weigh approximately 59 kg less at slaughter, a loss of US\$ 48 per head (5).
12 Using economic modeling techniques, a loss of CD\$ 1330 Canadian (CND) per 50 cow
13 herd (assuming an average apparent prevalence of 7%) due to reduced cull value and
14 premature culling associated with subclinical MAP seropositive cows was reported in
15 Maritime Canadian dairy cattle (17). Further analysis is needed to verify that this estimate
16 is appropriate for all of Canada.

17

18 **Reduced fertility**

19 Research has failed to show a consistent association between MAP test status and
20 reduced fertility (18). In a study performed in a 900-cow Guernsey herd spanning a total
21 of 10 years, data was collected on reasons for culling along with fecal, terminal ileum and
22 associated lymph node culture (6). A greater percentage of infected cows (68.8% or
23 106/155) were culled for infertility than culture-negative cows (60.2% or 797/1324). The

1 reliability of producer-reported reasons for culling have been questioned due to the
2 inability to identify more than one reason for culling in most dairy herd improvement
3 (DHI) systems when multiple parameters often contribute to a culling decision (19). In
4 the case of this 10-year study, however, they were not restricted to picking one reason for
5 culling and multiple reasons were listed.

6 In 90 dairy herds from the Canadian Maritime provinces, seropositive first
7 lactation heifers had an increase of 49 days open as compared to seronegative first
8 lactation heifers, but no association was found in other parities (20). In a study done in
9 Michigan, seropositive cows had a 28-day increase in days open; however, there was no
10 significant association when infected cows were identified with fecal culture (18).
11 Furthermore, studies done in six herds in New Zealand with fecal culture testing (21), and
12 304 herds from Ontario with ELISA testing (10) found no association between
13 subclinical paratuberculosis and calving interval.

14 Overall, four studies (2 ELISA and 2 culture based) found JD had a negative
15 effect on reproduction and three studies (1 ELISA and 2 culture based) found no negative
16 effect on reproduction. As a result, it is difficult to draw strong conclusions regarding the
17 impact of JD on fertility. From the available literature, seropositive cows appear to have
18 some degree of diminished fertility; however this impairment is not evident when the
19 classification of disease status is fecal culture. Therefore, the implications of reduced
20 fertility due to JD may not have anything to do with whether the cow is actively shedding
21 bacteria.

22 If there truly is an impact of subclinical paratuberculosis on fertility, it has been
23 hypothesized that the mechanism may be related to the impaired immunological and

1 gastrointestinal absorptive capacity and accentuated negative energy balance sustained by
2 infected cattle (18). Preliminary work has been performed looking at the effect of energy
3 on metabolic and immune status of cows with JD around the time of parturition (22). In
4 this study, fecal culture-positive cows were supplemented with a higher energy diet by
5 means of “force feeding” through rumen cannulae. This study found that although
6 supplemented cows had the same periparturient decline in neutrophil function, there was
7 an increased *in vitro* immunoglobulin production and a less protracted return to normal
8 lymphocyte proliferation activity. However, the major limitation of this study was that
9 there were no uninfected cattle included for comparison.

10

11 **Mastitis**

12 There has also been an inability to show a consistent association between MAP
13 test status and risk of clinical or subclinical mastitis. In 304 herds in Ontario, when an
14 experimental ELISA was used to identify cattle with subclinical paratuberculosis (10),
15 seropositivity was associated with higher SCC at the cow and herd level. Conversely, a
16 study done in New Zealand (NZ) of six dairy herds found that subclinical, fecal culture-
17 positive cows had significantly lower SCC compared to culture-negative cows (21). The
18 differences in testing methodologies make it difficult to make direct comparisons
19 between the two studies. However, the results from NZ may be specific to the six herds
20 that were sampled, which are unlikely to be comparable to most dairy farms in Canada
21 due to major differences in climate, management, and productivity between the two
22 countries.

1 Results from a study in Maritime Canadian dairy cattle indicated that, after
2 controlling for parity, 305-day milk production and linear score SCC, the odds of being
3 culled because of either decreased milk production, mastitis or reproductive inefficiency
4 was 2.9 times greater in MAP ELISA-positive cows as compared to ELISA-negative
5 cows (14). These findings support previous reports where cull rates due to mastitis were
6 higher for fecal culture-positive cows compared to negative cows (6). In the previously
7 mentioned culling study using a Guernsey herd, the risk of culling due to mastitis in the
8 culture-positive cows was 22.6% (45 of 199 cows) versus 3.6% (49 of 1361 cows) in the
9 culture-negative cows (6). However, due to the potential unreliable nature of producer-
10 reported reasons for culling in dairy herd improvement (DHI) data, mastitis-related
11 culling evidence should be interpreted with caution. Nevertheless, in this case where
12 there are such dramatic differences, there is likely a real association present.

13 Overall, there appears to be more evidence for than against the theory that JD
14 negatively affects udder health (Table 1). However, further research is needed to clarify
15 and quantify this impact. The pathophysiology of how subclinical paratuberculosis could
16 affect mastitis remains unclear and also requires further research. Speculation includes
17 negative energy balance and reduced cellular immunity, which have been shown to occur
18 at least in periparturient cows with JD (22).

19

20 **Total economic losses at the farm, regional and national level**

21 Studies of annual economic losses associated with clinical and subclinical JD
22 among dairy farms have indicated that there are substantial effects at the farm, regional,
23 and national levels (15,17,21,23). As part of a survey by the USDA National Animal

1 Health Monitoring System (NAHMS) conducted in 1996, it was estimated that, averaged
2 across all herds in the United States (US), JD cost the US dairy industry US\$ 200-250
3 million annually (23). Subsequently, a study was conducted in Canadian Maritime region
4 (17) which found that based on ELISA testing, the losses were CD\$ 2472 per infected
5 herd per year (average herd size of 50 cows with an average apparent prevalence of 7%)
6 and CD\$ 0.84 million per year for the Canadian Maritime provinces. Direct production
7 losses included decreased milk production, increased culling risk, reduced cull value,
8 mortality, treatment costs and reproductive loss. Assuming the prevalence of JD in the
9 Maritimes were the same as the rest of Canada, the national cost of JD could be estimated
10 at CD\$ 15 million annually. However, these calculations most likely underestimated the
11 actual losses associated with JD because of misclassification of infected cattle by the
12 ELISA and the authors' decision to not recognize other potentially relevant economic
13 effects, such as mastitis, decreased feed efficiency, and restrictions on market access.
14 Further data and improved diagnostic methods are needed in order to accurately
15 determine economic losses associated with JD for the Canadian dairy industry.

16

17

Risk Assessment

18

19 Various factors such as host susceptibility and environmental factors (mode of
20 transmission) interact to determine the prevalence and severity of MAP infection (23).

1

2 Host factors

3 Level of exposure (dose of organisms) and age at the time of exposure are major
4 factors in determining whether an animal eventually becomes infected with JD.

5 Although there is a paucity of scientific evidence on these factors, there is consensus that
6 younger animals require a lower infective dose than older animals (24-26), and it is quite
7 unlikely for an adult animal to become infected, unless there is extreme environmental
8 contamination (27). Poor nutrition, stress related to transport, lactation, parturition and
9 immunosuppression by agents like bovine viral diarrhea virus have been proposed as
10 biologically plausible factors accelerating or precipitating the onset of the clinical phase
11 of infection (28).

12 Milk or colostrum may serve as the source of MAP organisms for neonates in two

13 ways. Fecal contamination of these fluids may occur, allowing the milk or colostrum to
14 act as the vehicle for infection. Additionally, MAP has been isolated from sterile
15 collections of milk and colostrum from infected cows (29), indicating that there is
16 potential for direct transmission through colostrum and milk from an infected dam (30).

17 Infection can also occur directly across the placenta, as tissue-positive fetuses have been
18 found in culled tissue-positive cows, although this occurrence is quite infrequent (31).

19 This happens more often in cows displaying advanced clinical signs of JD, however it
20 can occur in cows that are heavy fecal shedders, yet not displaying clinical signs of
21 disease (32).

22 It is suspected that on rare occasions, certain animals that are exposed to MAP
23 can generate a protective immune response resulting in full clearance of the MAP (27). It

1 is unclear whether this capacity, if it exists, is restricted to mature animals, or whether
2 some young animals also have this capability.

3 Some studies have shown higher susceptibility of Jersey and Shorthorn cows for
4 paratuberculosis (33,34). However, these observed differences were confounded by the
5 fact that breed differences were actually linked to husbandry practices in specific regions
6 (i.e. herds with these breeds in these particular studies, had worse hygiene). Due to these
7 confounding circumstances, genetics and breed appear to be minor factors.

8

9 Agent factors

10 The specific number of organisms required to establish infection for specific age
11 groups has not been determined. Infection can occur in calves with a dose of 1.6×10^7
12 organisms, which would easily be surpassed in a 2-gram sample of heavily infected feces
13 (35). However, this number is likely to increase with increasing age, as the resistance to
14 infection of the animal increases (24).

15 Infection of animals may cause clinical disease, but this is not necessarily
16 advantageous or essential to the organism. To survive, MAP only needs to colonize,
17 replicate and be shed so that the rate of recruitment of new bacteria is equal to or greater
18 than the loss of bacteria from the population. The presence of obvious clinical disease is
19 not required for the spread of the organism in the animal population (30). It has been
20 shown that, although the risk of individual cows being infected is higher on farms with
21 clinical JD, there are still many herds that are infected, yet display no clinical signs of JD
22 (36).

1 Different strains of MAP exist depending mainly on the species infected.
2 Infections in cattle and sheep are considered to be caused by separate strains of MAP and
3 are sometimes classified as type C and type S, respectively. There has been some
4 evidence of cross-infection of animals between these species (37), but more research is
5 needed to determine the degree to which these two MAP types can actually cross the
6 species barrier. There is also evidence that wildlife species, particularly rabbits (38), may
7 play a role in dispersion of MAP throughout the environment and cause contamination of
8 feed for cattle (39).

9

10 Environmental Factors

11 The primary method of MAP transmission is believed to be a direct fecal-oral
12 cycle. The process is quite similar to the transmission of other enteric infections whereby
13 any exposure to manure from shedders can potentially lead to new infections. However,
14 there is still a possibility of indirect transmission, such as through manure contamination
15 of water bowls and machinery used for feed delivery. Therefore, any management
16 activities that directly or indirectly lead to exposure of manure from shedding animals to
17 susceptible animals could be considered risk factors of infection, and will be reviewed in
18 detail in the section on disease control strategies. The efficiency of transmission by these
19 pathways depends upon factors such as number of organisms shed in the feces and the
20 organism's survival characteristics in the environment (40).

21 Factors that influence survival of the organism include substrate (feces, water,
22 milk), temperature and pH. The MAP organism can persist in the environment for at
23 least a year (40), but does not replicate in the environment. Although hardier than most

1 other pathogens, the bacterium is susceptible to long-term desiccation, repeated freeze-
2 thaw cycles, exposure to sunlight, and soils with alkaline pH or low iron (41). MAP is
3 more thermal resistant than other *Mycobacteria*, making pasteurization of milk and milk
4 products somewhat problematic (42). Viable MAP was found in 2.1% of the pasteurized
5 milk samples in Great Britain (43), but studies done in North America, including one
6 using samples collected from retail stores and dairy plants in south-western Ontario, did
7 not find viable MAP in pasteurized milk (44). This may be due to differences in
8 pasteurization methods and temperature (45). However, recently, low numbers of viable
9 organisms were found in 2.8% of 702 samples tested in commercially pasteurized milk
10 purchased from stores in California, Minnesota and Wisconsin (46). While these data
11 have not been published in peer-reviewed journals, these occurrences have called into
12 question the validity of feeding pasteurized milk products to calves as a possible means
13 of lowering the risk of MAP infection.

14 Although relationships are not well defined among the numerous combinations of
15 host, agent, and environment factors found on different farm situations, known risk
16 factors and routes of transmission must be recognized and addressed for implementation
17 of a control program.

Herd Level Control Strategies

21 In general, every disease control program has three main objectives: decrease the
22 number of new infections; decrease the number of clinically diseased or shedding
23 animals, and decrease the duration of disease or its infective period. Understanding the

1 transmission and pathogenesis of the bacterium is crucial for achieving these objectives.
2 For JD, the prolonged pre-clinical phase of the life-long infection and subsequent poor
3 performance of diagnostic tests makes identification of subclinical shedders difficult.
4 This in turn makes exposure of sub-clinical cows to the susceptible population the main
5 risk factor for spreading infection (47). Furthermore, the ability of the bacterium to
6 survive for more than a year in the environment makes it difficult to stop transmission
7 within herds without stringent manure management control for young stock. Therefore,
8 effective JD control programs involve two main objectives: to implement best
9 management practices in order to decrease calf exposure to all manure (decrease
10 incidence of new infections), and to reduce the number of infected animals that may shed
11 bacteria in their manure (decrease prevalence of existing infections). We will review
12 each in turn.

13 As with other herd health activities, a JD control program for a farm needs to be
14 customized to the goals and resources of the farm. While all farms should have a plan for
15 implementing best management practices for reducing fecal-oral transmission due to the
16 challenges associated with the tests to identify infected animals, the intensity and focus of
17 that plan will depend on the goals and resources of the farm. Table 2 summarizes
18 recommended management practices for minimizing fecal-oral transmission of JD, and
19 they are adapted from numerous sources (33, 48-52) including the USDA Johne's
20 Disease website (www.aphis.usda.gov/vs/nahps/johnes).

21 Due to the many possible ways that calves can become exposed to MAP-infected
22 manure, and the long interval between exposure and detectable disease, it is both very
23 difficult and costly to conduct clinical trials to test and quantify the importance of

1 recommendations related to minimizing calf exposure to infected manure. However, it is
2 universally accepted that poor manure management and hygiene around calves will lead
3 to exposure and infection in herds with JD (51,52). Assessing and improving
4 management practices that minimize calf exposure to infected manure will be cost-
5 effective on most farms, not only for reducing the impacts of JD, but also for reducing the
6 impacts of other fecal-orally transmitted diseases of cattle (e.g. *Escherichia coli*,
7 *Campylobacter*, *Salmonella*, and *Cryptosporidium*).

8 The type of testing strategies utilized on a farm will depend not only on the farm
9 goals and resources, but on which of three types a dairy farmer is categorized: 1) those
10 that know they have a JD problem and want to decrease the prevalence; 2) those that have
11 confirmed or suspected that they have JD but do not think it is present at a high
12 prevalence; and 3) those that do not suspect they have JD and want it to remain that way.

13 Herds that have had at least one cow with clinical signs of JD and a positive fecal
14 culture, likely have an infection prevalence of at least 15% (47). This assumption is
15 based on the premise that the cow was not recently purchased (i.e. was born on the farm),
16 and therefore at the time this cow became infected, there was a high likelihood that others
17 were also infected. Additionally, the clinical cow has likely had heifer calves of her own
18 that are still in the herd and could have infected those calves along with other in-contact
19 heifer calves. This statement, though highly generalized and not accounting for herd size,
20 compels one to consider the true implications of one clinically infected cow. For those
21 farms with a moderate to high prevalence (>30%), regular testing of the herd is likely
22 warranted to identify cows that are shedding and dramatically increasing the
23 environmental load of MAP. On these farms, fecal culturing will identify a substantial

1 number of shedders. However, such farms should also consider using ELISA testing
2 because the number of ELISA false-positives will not outweigh the number of true-
3 positives, producing a good predictive value of a positive test.

4 The most appropriate testing strategy to use in high prevalence herds depends
5 upon the goals of the producer and the time frame during which they want to accomplish
6 those goals. If the goal is reduction of prevalence to close to zero within a few years, an
7 aggressive approach of annual fecal culture testing of all cows 2 years and older may be
8 warranted. However, if the herd size is large (>300 animals), more strategic measures
9 may be necessary due to limitations of cost, time, and lab-space for fecal culture. For
10 example, ELISA testing the whole herd and then fecal culture testing all ELISA-positives
11 plus all cows with S/P ratios higher than one standard deviation below the cut-off value
12 (cows that are more likely to be fecal culture-positive but ELISA-negative) may be an
13 alternative approach (53). However this latter, less expensive approach will miss cows
14 that are shedding MAP but have not mounted much of an immune response yet. With the
15 improvements in fecal culture techniques during the last few decades, it is unlikely that
16 fecal culture-negative cows are shedding significant numbers of bacteria in their feces.
17 Simulation studies have reported that successful and simultaneous implementation of best
18 management practices and strategic testing and culling leads to the largest and fastest
19 reductions in infection levels (49).

20 In the past, the Dutch have attempted to decrease the number of clinically
21 diseased animals on farms with high prevalence by use of a vaccination program using a
22 killed vaccine on some farms so that they would not have to rely on imperfect tests to
23 detect the subclinical animals (48). However, their observations with this program are

1 that producers often become less vigilant with other management-related control
2 measures and too reliant on the vaccine. For this reason, if vaccination is considered, it
3 should be restricted to high prevalence farms that have numerous clinical cases of JD.

4 If there has not been a confirmed clinical case of JD on a farm, and it is suspected,
5 based on herd history, husbandry practises or testing, that the herd has a low to moderate
6 prevalence (<30%), then individual fecal cultures will seem quite costly for the low
7 number of shedding cows detected. Furthermore, using an ELISA with less than optimal
8 specificity will result in interpretation difficulties of test positives. The likelihood of a
9 positive test being a true positive is low in herds with low prevalence, and therefore a
10 confirmatory test, such as a fecal culture, should always be performed. This approach can
11 become quite costly in large herds and can be viewed as unrewarding, especially if the
12 herd truly is negative and all confirmatory tests are negative. One viable strategy would
13 be to perform pooled fecal cultures of the mature cows. The major benefit of pooling is
14 the decreased testing cost, however diluting the sample with too many cows could lead to
15 false-negatives. Additionally, there is need for subsequent confirmation testing of
16 individual cows in positive pools, taking additional time before culling can be
17 implemented. The use of broth media for cultures has reduced the time required for
18 incubation from 16 to 6 weeks, which is one reason why this is becoming a viable option.
19 The ideal number of cows per pool has not been well established, but available research
20 would suggest pools of five would likely be adequate (54,55). This strategy has been
21 shown to identify 87% of positive animals where individual culture found 96% of
22 positive animals (54). However, cows with low level or intermittent shedding could be
23 missed with pooled fecal cultures, and therefore management changes should be

1 implemented as well to minimize transmission between the missed cows and susceptible
2 youngstock.

3 Another alternative for moderate to low prevalence herds would be to forego
4 testing and focus on controlling the spread of the disease within the herd, focusing on the
5 young animals. Implementing strict control measures along with a high turnover of cows
6 should lead to a lower within herd prevalence after approximately five years.

7 Considering the performance of the tests available, individual testing may be more
8 difficult and costly than the benefits from such a program. Simply implementing control
9 procedures will decrease the risk associated with a low number of cows spreading the
10 disease within the herd, and eventually lead to a decreased prevalence.

11 For herds that have never identified a cow with clinical signs of JD on the farm,
12 have had at least some of the herd tested for JD, and all tests produced negative results
13 for JD, the assumption would be that the prevalence of infection on these farms is likely
14 either zero or very low. However, with the poor sensitivity of current tests for identifying
15 MAP-infected cattle, there is no method to definitively state that a farm is free of JD.

16 With repeated negative tests over many years, producers and their health advisors may
17 assume that they have disease-free status, leading to the temptation to relax within farm
18 management practices and concentrate on keeping the disease out. However, because
19 JD-free status cannot be guaranteed, continued vigilance is needed to minimize calf
20 exposure to manure to avoid unknowingly spreading this insidious disease (52).

21 For those farms where the data suggest a high likelihood of being JD-free, along
22 with on-farm biosecurity measures, it is likely more important to focus efforts onto
23 keeping the disease out of the herd (56). This could be accomplished by implementing

1 all of the control points previously mentioned in the risk factor section (Table 2), and
2 applying methods for keeping manure from cattle from other farms away from the herd,
3 including: avoiding community or shared pasture; and restricting application of manure
4 from other farms on the farm (49-52).

5 With the currently available tests for JD, the common movement of
6 animals/equipment between herds, the difficulty of completely eliminating fecal-oral
7 exposure of youngstock on a dairy farm, and the long incubation period, it is questionable
8 whether JD can truly be eradicated from an infected farm.

National / Regional Control Programs

2 A number of countries have developed national, government-funded, animal
3 health programs to provide logistical, administrative and funding support to control JD.
4 National, government-funded, animal health programs are typically directed at exotic
5 diseases and to the control of specific diseases of widely recognized economic or public
6 health importance. Johne's Disease has emerged as a disease requiring a national control
7 program due to mounting evidence and concern over production losses, and due to the
8 possible restrictions to international movement of cattle as some countries require testing.
9

10 In addition, it has been suggested that because DNA from MAP has been found in 69%
11 of patients with Crohn's disease, that MAP may be a factor in the causation of the disease
12 (57), although MAP may just be an opportunistic organism found in the intestines of
13 Crohn's patients. If the relationship between JD and Crohn's Disease were scientifically
14 confirmed, government funding of a control program would likely be forthcoming. A
15 review into this potential relationship is beyond the scope of this paper. For further
16 information, the reader is referred to the following website: <http://www.crohns.org/>.

17 Recently, in Canada a proposal for a nation-wide Voluntary Johne's Disease
18 Control Program for dairy cattle has been developed by the authors of this review paper
19 in response to a request by the Johne's Disease Consultation Group sub-committee of the
20 Production Limiting Disease Committee. The proposal has received support in principle
21 from the Canadian Animal Health Consultative Committee, Dairy Farmers of Canada and
22 the Canadian Cattlemen's Association (58). The program builds on the strengths of
23 national JD control programs developed in other countries. The current Alberta

1 voluntary JD control program is similar to the proposed national program and can be
2 easily modified to reflect the proposed national program. The proposed program will be
3 reviewed here, following brief reviews of the most recent editions of other established
4 national control programs in Australia, The Netherlands, and the United States. The
5 proposed Canadian program is described in some detail to demonstrate its strengths and
6 weaknesses for Canadian veterinary practitioners and others.

7

8 **Australian National Voluntary JD Control Program**

9

10 Australia was among the first countries to implement a national JD control
11 program, although many countries have a long history in JD education and extension. In
12 1996, the Australians launched the National Johne's Disease Market Assurance Program
13 for Cattle (59,60). In this program, herds progress through levels of assurance on the
14 basis of annual negative herd tests from Monitored Negative 1 (MN1) to Monitored
15 Negative 3 (MN3), the highest level. The actual method of testing (ELISA, fecal culture,
16 etc.) is not specified but is assessed for validity by the Chief Veterinary Officer (CVO).
17 Annually, the supervising approved veterinarian also uses auditing procedures to monitor
18 critical herd management aspects to control the spread of JD. Herds can opt to stay at a
19 level by carrying out a maintenance test every two years where the entire herd, up to a
20 maximum of 100 animals, is tested. Herds not participating in testing can be classified as
21 a Non-Assessed Herd (NA), which is a herd with no history of JD or where any suspicion
22 of infection has been resolved to the satisfaction of the CVO. A herd may be classified as
23 a Suspect herd (SU) for numerous reasons including violations of the annual management

1 audit; however, no diagnostic confirmation of positive animals has occurred in these
2 herds. Infected herds (IN) are herds with a confirmed infected animal. Restricted herds
3 (RD) are herds that were previously IN herds, but are currently undertaking an approved
4 test and control program under supervision of the CVO. In addition, RD herds have
5 achieved one or more negative herd tests commencing at least 12 months after the last
6 known infected animal was removed from the herd.

7 There has been a linear increase in herds participating in Australian JD control
8 program from approximately 180 at the end of 1996, to around 1000 herds in 2000 (60),
9 and by December 2003, 1623 herds were participating (61). There are some desirable
10 components of this program which have been included in the proposed Canadian
11 program, including maintenance testing every two years. However, the numerous
12 different categories of herds were felt to be too confusing, and therefore, simplification of
13 the categories was sought.

14

15 The Dutch National Voluntary JD Control Program

16

17 The original JD control program in The Netherlands began in 1991. It evolved
18 into a pilot program in 1997 based on fecal culture of 125 herds that were tested every six
19 months. After five rounds of testing (24 months), only 58 herds (46%) remained clear of
20 infection (62). The lessons gained from this experiment were that although these herds
21 had no clinical signs in the last 5 years, more than half were infected. Secondly, fecal
22 culture, regarded as the “gold standard” was not sensitive enough to detect all infected
23 animals. Finally, producers were disappointed to find out their herds were truly positive

1 and labelled as such. As a result, highly motivated producers felt they were penalized for
2 participating.

3 The current Dutch JD control program, initiated in 1998, has an extensive
4 program based on management assessment only and an intensive program based on
5 pooled fecal cultures and management assessment. The extensive program was
6 developed for the dairy industry, but has not yet been accepted by the industry as a whole
7 (63). The rules of the management assessment are aimed at reducing the spread of
8 infection to young calves. For example, pooled colostrum must not be used, milk
9 replacer is required, and cows should calve separately in clean calving areas. There are
10 also strict rules governing the purchase of animals and grazing practices, along with
11 contact of animals of different species that may carry MAP.

12 In the intensive program, there are 10 levels of classification of herd status. The
13 program is categorized to certify herds as free (level 10) or unsuspected (level 6-9) and
14 provides a control program for infected herds. The program employs annual testing of
15 adult cattle. Fecal samples are pooled in batches of five for status advancement and the
16 ELISA is used at various levels individually for maintenance of levels. Positive ELISA
17 results confirmed by positive fecal culture results lead to a decrease of a status level.
18 There is a well-defined program to assist farms that have been identified as infected,
19 which encourages farmers to participate. Additionally, there are funds provided to assist
20 with the high cost of repetitive testing for farmers to re-enter the certification program
21 (62).

22 From the original 350 infected herds, half are now unsuspected-free herds. There
23 are now 1000 herds in the certification program for unsuspected-free herds and 250 are

1 classified as infected herds (63). Again, there are some specific desirable components of
2 this program which have been included in the proposed Canadian program, including the
3 pooled fecal culturing. However, due to limited funds currently available for the program
4 in Canada, no financial assistance for testing costs will be provided.

5

6 United States National Voluntary JD Control Program

7

8 In order to address disparities between existing programs among states, and
9 encourage non-participating states to participate, in April 2002, the USDA Veterinary
10 Services section published the Uniform Program Standards for the Voluntary Bovine
11 Johne's Disease Control Program (64). This program recommended an advisory
12 committee in each State to assist the State veterinarian in establishing and operating a JD
13 program. By the end of 2002, 40 states had established advisory committees for JD with
14 federal representation on each committee (65).

15 The structure of the program has three parts. Part 1 is education of the producers
16 using a means that is at the discretion of the state advisory committee. Part 2 is an
17 assessment of on-farm risk and herd management plans. Part 3 of the program involves
18 herd testing and classification into four levels. Under normal circumstances 10 months
19 must pass before a herd can advance to the next level. If a herd does not test after 14
20 months, it reverts to a herd of unknown status or in some states a maximum risk herd.
21 Testing in the initial stage is done on 30 randomly selected animals 36 months of age or
22 older. The test used is specified as a screening test and is determined by the state
23 administrator. At a recent US Animal Health Association-Johne's Committee meeting, a

1 resolution was passed to use environmental sampling as a potential screening test
2 available to state administrators (66). The idea behind this is to decrease the cost of
3 identifying positive herds without loss of herd sensitivity (67). However, if a herd is
4 found positive, all animals must then be tested with an individual screening test. If an
5 animal is found positive on the screening test, an appeal can be made to have that animal
6 tested with an official Johne's test (either PCR or fecal culture, upon the discretion of the
7 state administrator). If the official test is negative, the herd regains its test-negative
8 status, but the animal that was retested must be submitted for testing at the next
9 assessment if the animal still resides in the herd. If the appeal test is positive, the owner
10 can request another appeal in which the animal must be either necropsied for further
11 testing or undergo surgical biopsy of the ileum and lymph nodes. At the end of the
12 testing and appeals process, if it is found that the animal is positive, the herd is assigned a
13 positive status.

14 There is a Fast Track option in part 3 of the program that allows a herd to reach
15 level 4 in two years with three tests, which was added at the insistence of the livestock
16 industry. With this option, Level 1 is skipped with a signed declaration that no cows
17 were seen or diagnosed with JD in the last five years (65).

18 At the end of 2002, approximately 2,675 herds were enrolled in JD control
19 programs with herd management plans and/or risk assessments filed with State programs
20 (65). As of the end of 2003, there were 4722 herds enrolled in JD control programs (68).
21 Approximately 543 herds were enrolled in State-specific herd status programs in 2003,
22 herds that test negative and are considered less likely to have JD than untested herds.

1 Again, there are some specific desirable components of this program that have
2 been included in the proposed Canadian program, primarily the simple four-level system.
3 However, the fast-track system was not included due to the experience of a Dutch study
4 showing that more than half of herds that have never reported seeing clinical JD, in fact
5 end up being infected. Additionally, due to the performance of ELISAs, particularly in
6 low prevalence herds, the U.S. program's reliance on ELISA testing is less likely to be
7 applicable to the majority of low prevalence herds in Canada (69) due to low herd level
8 specificity. Herd-level specificity (HSp) is the probability that an uninfected herd yields
9 a negative herd-test result, while herd-level sensitivity (HSe) is the probability that an
10 infected herd yields a positive herd-test result. With 30 cows tested in a herd, HSe will be
11 66% and HSp will be 49% using the ELISA (assuming test Se and Sp of 45% and 98%,
12 respectively). However, for fecal culture, the HSe will be 66% but the HSp will be 100%
13 (assuming test Se and Sp of 45% and 100%, respectively). In 11 Dutch dairy herds, the
14 reported HSe for fecal culture and pooled fecal-culture were 64 and 73% (54).

15

16 Alberta JD Control Program

17 In September 2001, Alberta Agriculture Food and Rural Development
18 implemented a Voluntary Johne's Disease Herd Status Program. The testing protocol
19 used in Alberta's program is similar to the American program, but is more specific about
20 what test can be used at each level (70). There are also strong similarities between
21 Alberta's program and the proposed Canadian program, and therefore Alberta's program
22 is not described here. This congruence was done intentionally so that the Alberta program
23 could seamlessly be modified to fit within the Canadian program. However, some

1 additional modifications have been made based on recent scientific information, such as,
2 to not include ELISA testing for level advancement beyond level 1 due to the recent
3 clearer understanding of the inaccuracies of the ELISA.

4

5 Proposed Canadian National Voluntary JD Control Program

6 The proposed Canadian National Voluntary Johne's Disease Control Program
7 contains two major components (58). The first aspect of the program is a Best
8 Management Practices (BMP) Assessment based upon a herd risk analysis of critical
9 control points in the avoidance of transmission of MAP. The questions included in the
10 assessment are a detailed evaluation of a herd's level of management with respect to the
11 recommendations for decreasing the risk of new MAP infections. Table 2 summarizes
12 BMPs for dairy herds, and recommendations and a BMP Assessment will be developed
13 in the future that is specific to cow-calf operations. Herds may participate in this aspect of
14 the program without taking part in the second component, the Voluntary Johne's Disease
15 Herd Status Program.

16 The proposed Herd Status Program will have a total of five levels, zero through
17 four (Figure 1). All herds entering the status program begin at level 0. In order to
18 advance to level 1, a herd must have completed a recent BMP assessment and ELISA
19 testing of 30 animals in their second or higher lactation. If all animals are ELISA-
20 negative, the herd then advances to level 1. If some animals are ELISA-positive, the
21 producer may elect to perform fecal cultures on those animals. If all fecal cultures are
22 negative, the herd can advance to level 1. However, if any fecal cultures are positive or

1 the producer does not elect to do fecal culturing following positive ELISA results, the
2 herd remains as Status Level 0.

3 There is a waiting period of a minimum 10 months before a producer can re-apply

4 for Status Advancement. For a herd to advance from Level 1 to Level 2, a recent BMP

5 assessment must be completed and pooled fecal cultures (currently pools of up to five

6 animals will be accepted) are performed on all cows in their second or higher lactation.

7 If all pools are negative, the herd advances to the next level. However, if at least one

8 pool is positive, the producer can elect to: 1) do individual cow fecal cultures on animals

9 contributing to the positive pool(s), and cull the infected cow(s) and remain at level one,

10 or 2) allow the cow(s) in the positive pool(s) to remain in the herd and drop to level zero.

11 A producer that is at level one may opt to follow the Status Maintenance strategy

12 rather than attempt to progress through the Status Advancement strategy. In order to

13 maintain a herd status (i.e. not drop down to the next lower level), a producer must have a

14 BMP assessment performed and have 30 cows in their second lactation or higher ELISA

15 tested once during the two-year period subsequent to their previous test and BMP

16 assessment. If all cows are negative, the herd maintains its status. If any cows are

17 ELISA-positive, the producer can fecal culture those cows. If the fecal cultures are

18 negative, the herd maintains its status. If a fecal culture is positive, the cow(s) must be

19 culled in order to maintain status, otherwise the herd drops to level zero.

20 Advancement from Levels 2 to 3 and 3 to 4 follow the same protocol of a recent

21 BMP assessment and pooled fecal culture. However, even if all positive cows are culled,

22 the herd drops to Status Level 1. If the individual cows are not tested and positives

23 culled, the herd drops to level zero.

1 For Status Maintenance at levels 2, 3 and 4, the same process applies, as
2 described above for maintenance of level 1. The difference for maintaining these three
3 levels versus level 1 is that if the culture is positive and the producer culls the infected
4 cow(s), the herd still drops to level 1. If the producer does not do a fecal culture
5 confirmation, or does not cull the test-positive cow, the herd is assumed to be infected
6 and drops to level zero.

7 One strength of the proposed Canadian control program will be its ability to aid in
8 the future research of JD. The program will provide data to monitor the proportion of
9 enrolled herds with the disease, and the impacts of implementation of control measures in
10 infected herds, enabling modifications as needed. It will also provide some indication on
11 the prevalence of the disease in various regions of the country, which will be a vital
12 aspect in understanding the epidemiology of the disease. The data will also allow on-
13 going evaluation of the JD program and identification of strengths and weaknesses of the
14 program and recommend modifications for maximum cost-benefit.

15 One weakness of the proposed program is that there are currently no funding
16 mechanisms in place to subsidize testing and indemnification of fecal culture-positive
17 cattle. Also, there is a need for market-based incentives to engage producers (i.e. higher
18 prices for heifers from JD-negative certified herds) to participate in the program.

19 Increased involvement of the producers and their governing organizations is going to be
20 critical to any control program success.

21 Another possible incentive could be the incorporation within the program of specified
22 best management practices for a wider range of fecal pathogens, to illustrate how a
23 control program for JD will also have a positive impact on general calf health. These

1 incentives are being examined with respect to the proposed national JD control program
2 for Canada. For a JD control program to be feasible and effective, it needs strong support
3 from producers and governing agencies and the system must evolve with the needs of the
4 program to continuously improve its effectiveness.

5 **Conclusions**

6 Johne's Disease continues to cause economic losses for dairy producers in Canada
7 and worldwide, particularly with respect to lost milk production, premature culling,
8 reduced slaughter value, and perhaps increased infertility and mastitis. The cost of JD to
9 the Canadian dairy industry is estimated at CD\$ 15 million annually. The control of JD
10 nationally will be an immense task because of the insidious nature of the disease and the
11 relatively poor performance of tests currently available. The industry must utilize
12 knowledge of the biology of the disease and known risk factors in an attempt to control
13 the spread of this disease through best management practices. Strategic testing can
14 overcome the challenges with identifying infected cattle and herds. JD control programs
15 initiated now will lead to lower control costs in the future, and will be seen as proactive
16 steps for quality milk production if the link between Crohn's disease and JD is confirmed
17 in the future.

1 **References**

- 2
- 3 1. Benedictus G, Dijkhuizen AA, Stelwagen J. Economic losses due to
4 paratuberculosis in dairy cattle. *Vet Rec* 1987;121:142-146.
- 5 2. Wilson DJ, Rossiter C, Han HR, Sears PM. Association of *Mycobacterium*
6 *paratuberculosis* infection with reduced mastitis, but with decreased milk
7 production and increased cull rate in clinically normal dairy cows. *Am J Vet Res*
8 1993;54:1851-1857.
- 9 3. Collins MT, Nordlund K. Milk production levels in cows ELISA positive for
10 serum antibodies to *M. paratuberculosis*. *Proc. 3rd Int Colloq on Paratuberculosis*,
11 Orlando:1991;401-409.
- 12 4. Sweeny RW, Hutchinson LJ, Whitlock RH. Effects of *Mycobacterium*
13 *paratuberculosis* infection on milk production in dairy cattle. *Proc. 4th Int Colloq*
14 on Paratuberculosis 1994;133-139.
- 15 5. Whitlock RH, Hutchinson LT, Merkal RS, Glickman LT, Rossiter C, Harmon S et
16 al. Prevalence and economic consideration of Johne's disease in the northeastern
17 U.S. *Proc of the US Anim Hlth Assoc* 1985;89:484-490.
- 18 6. Merkal RS, Larsen AB, Booth GD. Analysis of the effect of inapparent bovine
19 paratuberculosis. *Am J Vet Res* 1975;36:837-838.
- 20 7. Nordlund KV, Goodger WJ, Pelletier J, Collins MT. Associations between
21 subclinical paratuberculosis and milk production, milk components, and somatic
22 cell counts in dairy herds. *J Am Vet Med Assoc* 1996;208:1872-1876.

- 1 8. Vanleeuwen JA, Keefe GP, Tiwari A. Seroprevalence and Productivity effects of
2 infection with Bovine Leukemia Virus, *Mycobacterium avium subspecies*
3 *paratuberculosis*, and *Neospora caninum* in maritime Canadian dairy cattle. *Bov*
4 *Pract* 2002;86-91.
- 5 9. Goodle GM, Hirst H, Garry F, Dinsmore P. Comparison of cull rates and milk
6 production of clinically normal dairy cows grouped by ELISA *Mycobacterium*
7 *avium paratuberculosis* serum antibody results. *Proc. IX Int Symp of Vet*
8 *Epidemiol and Econ*, Breckenridge, 2000;897-899.
- 9 10. McNab WB, Meek AH, Martin SW, Duncan JR. Associations between dairy
10 production indices and lipoarabinomannan enzyme-immunoassay results for
11 paratuberculosis. *Can J Vet Res* 1991;55:356-361.
- 12 11. Sockett DC, Conrad TA, Thomas CB, and Collins MT. Evaluation of four
13 serological tests for bovine paratuberculosis. *J Clin Microbiol* 1992;30:1134-
14 1139.
- 15 12. Dargatz DA, Byrum BA, Barber LK, Sweeney RW, Whitlock RH, Shulaw WP,
16 Jacobson RH, Stabel JR. Evaluation of a commercial ELISA for diagnosis of
17 paratuberculosis in cattle. *J Am Vet Med Assoc* 2001;218:1163-1166.
- 18 13. Hutchinson LJ. Economic impact of paratuberculosis. *Vet Clin North Am Food*
19 *Anim Pract* 1996;12:373-381.
- 20 14. Tiwari A, Vanleeuwen JA, Dohoo IR, Keefe GP. Effects of seropositivity for
21 *Mycobacterium avium subspecies paratuberculosis* on risk of culling in Maritime
22 Canadian dairy cattle. *Proc 54th Ann Conv Can Vet Med Assoc*, Halifax
23 2002:264.

- 1 15. Wilson DJ, Rossiter C, Han HR, Sears PM. Financial effects of *Mycobacterium*
2 *paratuberculosis* on mastitis, milk production, and cull rate in clinically normal
3 cows. Agri Pract 1995;16:12-18.
- 4 16. Buergelt CD, Duncan JR. Age and milk production data of cattle culled from a
5 dairy herd with paratuberculosis. J Am Vet Med Assoc 1978;173:478-480.
- 6 17. Chi J, VanLeeuwen JA, Weersink A, Keefe GP. Direct production losses and
7 treatment costs from bovine viral diarrhoea virus, bovine leukosis virus,
8 *Mycobacterium avium subspecies paratuberculosis*, and *Neospora caninum*. Prev
9 Vet Med 2002;55:137-153.
- 10 18. Johnson-Ifearulundu YJ, Kaneene JB, Sprecher DJ, Gardiner JC, Lloyd JW. The
11 effect of subclinical *Mycobacterium paratuberculosis* infection on days open in
12 Michigan, USA, dairy cows. Prev Vet Med 2000;46:171-181.
- 13 19. Kelton, D and Lissemore K. Reasons that Dairy Cows Leave Home – Valid or
14 not? Proc 30th Ann Conv Am Assoc of Bov Pract. Montreal, 1997:177.
- 15 20. Tiwari A, Vanleeuwen JA, Dohoo IR, Stryhn H, Keefe GP. Effects of
16 seropositivity for bovine Leukemia virus, *Mycobacterium avium* subspecies
17 *paratuberculosis*, and *Neospora caninum* on calving to conception interval in
18 maritime Canadian dairy cattle. Proc Soc Vet Epidemiol and Prev Vet Med,
19 Warwick, 2003:243-252.
- 20 21. DeLisle GW, Milestone BA. The economic impact of Johne's disease in New
21 Zealand. In: Milner A, Wood P, eds. Johne's disease. East Melbourne, CSIRO,
22 1989:41-45.

- 1 22. Stabel JR, Goff JP, Kimura K. Effects of supplemental energy on metabolic and
2 immune measurements in periparturient dairy cows with Johne's disease. *J Dairy*
3 *Sci* 2003;86:3527-3535.

4 23. Ott SL, Wells SJ, Wagner BA. Herd-level economic losses associated with
5 Johne's disease on US dairy operations. *Prev Vet Med* 1999;40:179-192.

6 24. Chiodini RJ. Immunology: resistance to paratuberculosis. *Vet Clin North Am*
7 *Food Anim Pract* 1996;12:313-343.

8 25. Chiodini RJ, Van Kruiningen HJ, Merkal RS. Ruminant paratuberculosis (Johne's
9 disease): the current status and future prospects. *Cornell Vet* 1984;74:218-262.

10 26. Hagan WA. Age as a factor in susceptibility to Johne's disease. *Cornell Vet*
11 1938;28:34.

12 27. Rankin JD. The experimental infection of cattle with *Mycobacterium johnei*. IV:
13 adult cattle maintained in an infectious environment. *J Comp Pathol* 1962;72:133-
14 117.

15 28. Kennedy DJ, Benedictus G. Control of *Mycobacterium avium* subsp.
16 *paratuberculosis* infection in agricultural species. *Rev Sci Tech* 2001;20:151-179.

17 29. Streeter RN, Hoffsis GF, Bech-Nielsen S, Shulaw WP, Rings DM. Isolation of
18 *Mycobacterium paratuberculosis* from colostrum and milk of subclinically
19 infected cows. *Am J Vet Res* 1995;56:1322-1324.

20 30. Sweeney RW. Transmission of paratuberculosis. *Vet Clin North Am Food Anim*
21 *Pract* 1996;12:305-312.

- 1 31. Seitz SE, Heider LE, Heuston WD, Bech-Nielsen S, Rings DM, Spangler L.
2 Bovine fetal infection with *Mycobacterium paratuberculosis*. J Am Vet Med
3 Assoc 1989;194:1423-1426.
- 4 32. Sweeney RW, Whitlock RH, Rosenberger AE. *Mycobacterium paratuberculosis*
5 isolated from fetuses of infected cows not manifesting signs of the disease. Am J
6 Vet Res 1992;53:477-480.
- 7 33. Cetinkaya B, Erdogan HM, Morgan KL. Relationships between the presence of
8 Johne's disease and farm and management factors in dairy cattle in England. Prev
9 Vet Med 1997;32:253-266.
- 10 34. Jakobsen MB, Alban L, Nielsen SS. A cross-sectional study of paratuberculosis in
11 1155 Danish dairy cows. Prev Vet Med 2000;46:15-27.
- 12 35. Waters WR, Miller JM, Palmer MV, Stabel JR, Jones DE, Koistinen KA,
13 Steadham EM, Hamilton MJ, Davis WC, Bannantine JP. Early induction of
14 humoral and cellular immune responses during experimental *Mycobacterium*
15 *avium* subsp. *paratuberculosis* infection of calves. Infect Immun 2003;71:5130-
16 5138.
- 17 36. Hirst HL, Garry FB, Morley PS, Salman MD, Dinsmore RP, Wagner BA,
18 McSweeney KD, Goodell GM. Seroprevalence of *Mycobacterium avium* subsp
19 *paratuberculosis* infection among dairy cows in Colorado and herd-level risk
20 factors for seropositivity. J Am Vet Med Assoc 2004;225:97-101.
- 21 37. Muskens J, Bakker D, de Boer J, van Keulen L. Paratuberculosis in sheep: its
22 possible role in the epidemiology of paratuberculosis in cattle. Vet Microbiol
23 2001;78:101-109.

- 1 38. Daniels MJ, Henderson D, Greig A, Stevenson K, Sharp JM, Hutchings MR. The
2 potential role of wild rabbits *Oryctolagus cuniculus* in the epidemiology of
3 paratuberculosis in domestic ruminants. *Epidemiol Infect* 2003;130:553-559.
- 4 39. Daniels MJ, Hutchings MR, Greig A. The risk of disease transmission to
5 livestock posed by contamination of farm stored feed by wildlife excreta.
6 *Epidemiol Infect* 2003;130:561-568.
- 7 40. Jorgensen JB. Survival of *Mycobacterium paratuberculosis* in slurry. *Nord Vet
8 Med* 1977;29:267-270.
- 9 41. Lovell R, Levi M, Francis J. Studies on the survival of Johne's bacilli. *J Comp
10 Pathol* 1944;54:120-129.
- 11 42. Lund BM, Donnelly CW, Rampling A. Heat resistance of *Mycobacterium
12 paratuberculosis*. *Lett Appl Microbiol* 2000;31:184-185.
- 13 43. Grant IR, Ball HJ, Rowe MT. Incidence of *Mycobacterium paratuberculosis* in
14 bulk raw and commercially pasteurized cows' milk from approved dairy
15 processing establishments in the United Kingdom. *Appl Environ Microbiol
16 2002;68:2428-2435.*
- 17 44. Gao A, Mutharia L, Chen S, Rahn K, Odumeru J. Effect of pasteurization on
18 survival of *Mycobacterium paratuberculosis* in milk. *J Dairy Sci* 2002;85:3198-
19 3205.
- 20 45. Stabel JR. Johne's disease and milk: do consumers need to worry? *J Dairy Sci
21 2000;83:1659-1663.*
- 22 46. Ellingson J. *M. paratuberculosis* found in U.S. milk. 2004. Found at:
23 http://www.johnes.org/_newsfiles/109216471862392.html

- 1 47. Whitlock RH. Preclinical and clinical manifestations of paratuberculosis
2 (including pathology). *Vet Clin North Am Food Anim Pract* 1996;12:345-356.

3 48. Kalis CH, Hesselink JW, Barkema HW, Collins MT. Use of long-term
4 vaccination with a killed vaccine to prevent fecal shedding of *Mycobacterium*
5 *avium* subsp. *paratuberculosis* in dairy herds. *Am J Vet Res* 2001;62:270-274.

6 49. Wells SJ, Wagner BA. Herd-level risk factors for infection with *Mycobacterium*
7 *paratuberculosis* in US dairies and association between familiarity of the herd
8 manager with the disease or prior diagnosis of the disease in that herd and use of
9 preventive measures. *J Am Vet Med Assoc* 2000;216:1450-1457.

10 50. Rossiter CA, Burhans WS. Farm-specific approach to paratuberculosis (Johne's
11 disease) control. *Vet Clin North Am Food Anim Pract* 1996;12:383-415.

12 51. Johnson YJ, Kaneene JB. Management-related risk factors for *M.*
13 *paratuberculosis* infection in Michigan, USA, dairy herds. *Prev Vet Med*
14 1998;37:41-54.

15 52. Goodger WJ, Collins MT, Nordlund KV, Eisele C, Pelletier J, Thomas CB et al.
16 Epidemiologic study of on-farm management practices associated with prevalence
17 of *Mycobacterium paratuberculosis* infections in dairy cattle. *J Am Vet Med
18 Assoc* 1996;208:1877-1881.

19 53. Collins MT. Interpretation of a commercial bovine paratuberculosis enzyme-
20 linked immunosorbent assay by using likelihood ratios. *Clin Diagn Lab Immunol*
21 2002;9:1367-1371.

- 1 54. Kalis CH, Hesselink JW, Barkema HW, Collins MT. Culture of strategically
2 pooled bovine fecal samples as a method to screen herds for paratuberculosis. *J
3 Vet Diag Invest* 2000;12:547-551.
- 4 55. Van Schaik G, CR Rossiter CR, Stehman SM, Shin SJ, Schukken YH.
5 Longitudinal study to investigate variation in results of repeated ELISA and
6 culture of fecal samples for *Mycobacterium avium* subsp. *paratuberculosis* in
7 commercial dairy herds. *Am J Vet Res* 2003;64:479-484.
- 8 56. Benedictus G, Kalis CJ. Paratuberculosis: eradication, control and diagnostic
9 methods. *Acta Vet Scand* 2003;44:231-241.
- 10 57. Sechi LA, Mura M, Tanda E, Lissia A, Fadda G, Zanetti S. *Mycobacterium avium*
11 sub. *paratuberculosis* in tissue samples of Crohn's disease patients. *New
12 Microbiol* 2004;27:75-7.
- 13 58. Canadian Animal Health Consultative Committee Annual Report for 2002. Found
14 at: <http://www.inspection.gc.ca/english/animal/health/ahcc/ahcc2002/adssc-report.shtml>
- 15 59. National Johne's Disease Program: Standard Definitions and Rules for Cattle.
16 2003. Found at: <http://www.aahc.com.au/bjd/5th%20ed%20SDRS%20-%20August%202003.pdf>.
- 17 60. The New Market Assurance Programs for Johne's Disease. 2003. Australian
18 Animal Health Association. Found at: <http://www.aahc.com.au/jd/maps/>.
- 19 61. Animal health Australia National Johne's disease control program, National
20 coordinators quarterly report Oct-Dec 03
21 http://www.aahc.com.au/jd/njdcp_mar04.pdf.

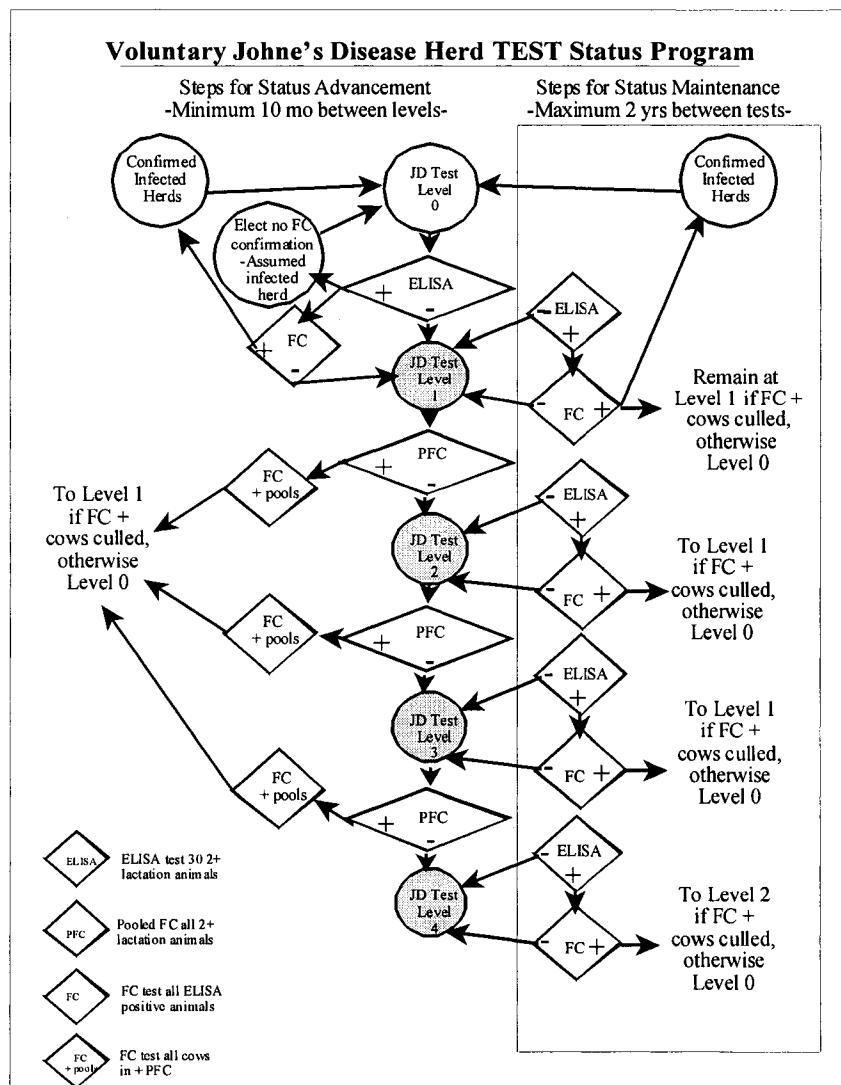
- 1 62. Kalis CH, Hesselink JW, Russchen EW, Barkema HW, Collins MT, Visser IJ.
2 Factors influencing the isolation of *Mycobacterium avium* subsp.
3 *paratuberculosis* from bovine fecal samples. J Vet Diag Invest 1999;11:345-351.
4 63. Kalis CHJ. Gezondheidsdienst voor Dieren (Dutch Animal Health Service),
5 personal communication, 2004.
6 64. Uniform Standards for the Voluntary U.S. Johne's Control Program. 2002. Found
7 at: <http://www.aphis.usda.gov/vs/nahps/johnes/>.
8 65. Veterinary Services Annual Report: Johne's Program. Found at:
9 <http://www.aphis.usda.gov/vs/highlights/section3/section3-20.html>
10 66. New National Johne's Disease Herd Prevalence Study. 2004. Found at:
11 <http://www.usaha.org/committees/resolutions/resolution01-2004.pdf>
12 67. Raizman EA, Wells SJ, Godden SM, Bey RF, Oakes MJ, Bentley DC, Olsen KE.
13 The distribution of *Mycobacterium avium* ssp. *paratuberculosis* in the
14 environment surrounding Minnesota dairy farms. J Dairy Sci. 2004;87:2959-
15 2966.
16 68. Carter MMA, National Johne's Disease Control Program Coordinator,
17 Certification and Control Team, National Center for Animal Health Programs,
18 USDA-APHIS-VS. 2004, personal communication.
19 69. VanLeeuwen JA, Keefe GP, Tremblay R, Power C, Wichtel JJ. Seroprevalence of
20 infection with *Mycobacterium avium* subspecies *paratuberculosis*, bovine
21 leukemia virus, and bovine viral diarrhea virus in maritime Canada dairy cattle.
22 Can Vet J 2001;42:193-198.

- 1 70. An Integrated Johne's Disease Control Program for Cattle in Alberta.
- 2 [http://www1.agric.gov.ab.ca/\\$department/newslett.nsf/all/ahf303?OpenDocument](http://www1.agric.gov.ab.ca/$department/newslett.nsf/all/ahf303?OpenDocument)

3 **Table 1.** Affects of paratuberculosis on health, production, and culling.

Parameter	Diagnosis criteria	Affect of paratuberculosis	Reference
Milk Production	Tissue positive	16% decrease in last lactation compared to two years prior and 6% decrease compared to one year prior	1
	Fecal positive	590 kg and 1270 kg less milk in third and fourth lactations, respectively	2
	ELISA positive	4% (376 kg) decrease in 305ME production 551 kg decrease in 305ME production 573 and 1273 kg less milk in first and fifth lactations, respectively	7 9 8
Risk of Culling	Fecal positive	Greater culling rate cost infected herd US\$ 75 per cow per year	15
	ELISA positive	Odds Ratio= 2.34 for risk of culling	14
Reduced Slaughter Value	Clinical JD	Reduced slaughter value of 20 to 30%	1
	Fecal positive	59 kg less weight at slaughter, for a loss of US\$ 48 per head	5
	ELISA Positive	Estimated losses of CAN\$ 1330 per infected 50 cow herd	17
Fertility	Tissue Positive	Higher fertility cull rate overall	6
	Fecal positive	No difference in fertility	21
	ELISA positive	49 day increase in days open in first lactation heifers No difference in fertility	20 21
Mastitis	Fecal positive	Lower Somatic Cell Count	21
		Cull rate for mastitis was 22.6% versus 3.6% in culture-negative cows	6

ELISA positive	Higher somatic cell count at the cow level and herd level
	Odds Ratio = 2.90 for risk of culling due to mastitis


10

14

4 **Table 2.** Recommendations for decreasing the risk of new infections of *Mycobacterium*
5 *avium* subsp. *paratuberculosis* in a dairy operation.

Protect young stock from feces of mature cattle and feces-contaminated feed and water	Reduce the number of infected animals that may be shedding bacteria
<p>a. Clean and disinfect maternity and calf pens after each use</p> <p>b. Calve cows in clean, dry, dedicated maternity pens</p> <p>c. Immediate removal of calves from maternity pen (while calf still wet)</p> <p>d. Collect colostrum from cleaned udders</p> <p>e. After colostrum feeding, use pasteurized milk or milk replacer</p> <p>f. Raise calves separate from the adult herd for first year of life</p> <p>g. Do not allow shared feed/water between adult cows and young stock</p> <p>h. Use separate equipment for handling feed and manure</p> <p>i. Feed-bunk and waterers should have no risk of fecal contamination</p> <p>j. Do not spread manure on grazing or hay land for young-stock</p>	<p>a. Immediate cull of animals with clinical signs of JD.</p> <p>b. Consider testing adult cows with ELISA or fecal culture; positive ELISA should be confirmed with fecal culture in clinically normal cows</p> <p>c. Cull fecal culture-positive cows; they are active shedders and are increasing the environmental challenge on the farm</p> <p>d. Maintain a closed herd or purchase animals only from source farms that have implemented similar or better control programs than purchasing farm (management practices and testing)</p>

8 **Figure 1. Schematic diagram of proposed Canadian Voluntary Johne's Disease Control Program for**
9 **dairy cattle.**

APPENDIX – B

Data Collection Farm - Risk factors for Neosporosis, Bovine viral diarrhea (BVD), Johne's Disease and Leukosis.

A. Location and identification

Name: <input type="text"/>	001 <input type="text"/>
DHI number: <input type="text"/>	002 <input type="text"/>
Quarter: <input type="text"/>	003 <input type="text"/>
Section: <input type="text"/>	004 <input type="text"/>
Township: <input type="text"/>	005 <input type="text"/>
CSD: <input type="text"/>	006 <input type="text"/>
County: <input type="text"/>	007 <input type="text"/>
Range: <input type="text"/>	008 <input type="text"/>
Meridian: <input type="text"/>	009 <input type="text"/>
Postal code: <input type="text"/>	010 <input type="text"/>

B. Farm and Farmer

Age (in years) of the primary person making day-to-day management decisions about the cows on the farm: 011 _____

Province of the farm: 012 _____

¹Alberta ⁴New Brunswick ⁷Ontario

¹⁰Saskatchewan

²British Columbia ⁵Newfoundland ⁸Prince Edward Island

³Manitoba ⁶Nova Scotia ⁹Quebec

Area of the farm (in Acres), both owned and rented, in the last summer: 013 _____

Area of pasture (grazing) (in Acres), both owned and rented, 014 _____

in the last summer: _____

Area of forage production (in Acres), both owned and rented, 015 _____

in the last summer: _____

Area of land used for non-forage agricultural(in Acres), both owned and 016 _____
rented,

in the last summer: _____

Number of full-time employees, including family members, working directly in 017 _____
dairy production: _____

Number of part-time employees, including family members, working directly 018 _____
in dairy production: _____

Percentage of the total family income derived from dairy production: 019 _____

Primary breed of your dairy cows (check one): 020 _____

¹Holstein ²Jersey ³Ayrshire ⁴Brown Swiss

⁵Guernsey ⁶Shorthorn ⁷Other

C. Herd population

Please, fill in the table below (use an estimate, if exact numbers are unavailable)

021

to

050

	Pre-weaned calves	Open heifers	Bred heifers	Milk cows	Dry cows	Bulls
Number of animals on day of blood sampling	021	022	023	024	025	026
Number of animals sold for dairy purposes in the last 12 months	027	028	029	030	031	032
Number of animals culled in the last 12 months	033	034	035	036	037	038
Number of animals died in the last 12 months	039	040	041	042	043	044
Number of animals purchased in the last 12 months	045	046	047	048	049	050

How many of the cows (milking and dry) were raised on your farm:

051

How many of the cows (milking and dry) are registered:

052

D. Housing

Pre-weaned calves housing. Please, check all that apply for each season:

053

to

058

Barn type	Winter	Summer
Group pens	053	054
Individual pens	055	056
Hutches	057	058

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey #

Winter housing. Please, check all that apply for each group of animals on your farm: 059

Barn type	Open heifers	Bred heifers	Milk cows	Dry cows	Bulls	to 073
Tie-stall or Stanchion	059	060	061	062	063	
Freestall	064	065	066	067	068	
Loose housing	069	070	071	072	073	

Summer housing. Please, check all that apply for each group of animals on your farm: 074

	Open heifers	Bred heifers	Milk cows	Dry cows	Bulls	to 093
Totally confined (in barn) 24 hrs/day	074	075	076	077	078	
Spent some time grazing and met some of their nutritional requirement from pasture	089	090	091	092	093	
Given access to a concrete or dirt (non-turf) surface exercise yard (outdoor) some time each day	079	080	081	082	083	
Given access to a small field for the propose of exercise (not primarily for grazing)	084	085	086	087	088	

If your heifers (open/bred) have access to pasture then answer the rest of the questions in this section

How did you manage the pastures that were used by **heifers** in the most

094

recent grazing season:

¹continuous grazing (continuous access to the same pasture for the whole

pasture season)

²controlled access grazing (rotational or strip grazing)

Was any cattle manure mechanically spread on pastures that were used for

095

grazing by **heifers**? ⁰No ¹Yes

Were these pastures dragged or harrowed this year? ⁰No

096

¹Yes

Were these pastures clipped at all this year? ⁰No ¹Yes

097

Have you used lime on **heifer** pastures for reducing soil acidity during the last

5 years? ⁰No ¹Yes

098

If YES, how often do the pasture fields receive lime?

099

¹every year

²every 2 - 3 years

³every 4 - 5 year

⁴every 6 -10 years

⁵never

E. Biosecurity – Purchase

Has the farm purchased any dairy animals in the last 5 years? ⁰No ¹Yes

100

If Yes,

Percentage of purchased dairy animals directly from other producers:

101

Percentage of purchased dairy animals from private dealers:

102

Percentage of purchased dairy animals through an auction:

103

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey #

When animals are transported to your farm, do you only use your own trailer?	104	<input type="checkbox"/>	
<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes			
If YES, does other use your trailer to transport cows? <input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	105	<input type="checkbox"/>	
Before bringing cattle (either beef or dairy) on your farm, the farm normally requires:			
• a negative test for BVDV from animal	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	106	<input type="checkbox"/>
• a negative test for Leucosis from animal	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	107	<input type="checkbox"/>
• a negative test for Neosporosis from the animal	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	108	<input type="checkbox"/>
• a negative test for Johne's disease from the animal	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	109	<input type="checkbox"/>
• a negative HERD test for Johne's disease	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	110	<input type="checkbox"/>
• a negative HERD HISTORY for Johne's disease	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	111	<input type="checkbox"/>
• a low somatic cell count from the cow	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	112	<input type="checkbox"/>
• a low bulk tank somatic cell count for the herd	<input type="checkbox"/> ⁰ No <input type="checkbox"/> ¹ Yes	113	<input type="checkbox"/>

F. Biosecurity – Contact

Please, fill in the table below to describe contact between your dairy animals and other animal species that are **on your farm**:

	Numbers on farm	Direct animal contact with dairy cattle ⁰ No / ¹ Yes	Contact with feed for dairy animals ⁰ No / ¹ Yes	Contact with water for dairy animals ⁰ No / ¹ Yes	114 to 149
Beef cattle	114	115	116	117	
Sheep	118	119	120	121	
Goats	122	123	124	125	
Chicken or other poultry	126	127	128	129	
Horses and other equines	130	131	132	133	
Pigs	134	135	136	137	
Deer or elk	138	139	140	141	
Exotic ruminants (alpacas, llamas)	142	143	144	145	
Domestic rabbits	146	147	148	149	

In the past 5 years have any of your dairy cattle had contact with cattle (dairy or beef) from other herds through any of the following routes:

- shared pasture (e.g.: community pasture) ⁰No ¹Yes 168
- contract raising of young stock ⁰No ¹Yes 169
- fence line contact while on pasture ⁰No ¹Yes 170
- contact at fairs/exhibitions ⁰No ¹Yes 171

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey #

- | | | | | |
|---------------------------|--|---|-----|----------------------|
| • lending cows or bulls | <input type="checkbox"/> ⁰ No | <input type="checkbox"/> ¹ Yes | 172 | <input type="text"/> |
| • borrowing cows or bulls | <input type="checkbox"/> ⁰ No | <input type="checkbox"/> ¹ Yes | 173 | <input type="text"/> |

Please, fill in the table below with estimates to describe the dogs and cats that live on your farm:

	Number of males	Number of spayed females	Number of not spayed females	Number of litters in the last 12 months	Usual Birthing locations
Dogs	151	152	150	153	154
Cats	156	157	155	158	159

(APPROXIMATION)

150
to

159

CODES FOR USUAL BIRTHING LOCATION:

1-DAIRY BARN

2-FEEDSTORAGE AREAS

3- HOUSE

4- OTHER (PLEASE SPECIFY)

Compared with the previous years, has the number of litters of dogs in the last 12

16

months:

0

¹increased

²decreased

³continued to be the same

Compared with previous years, has the number of litters of cats in the last 12

16

months :

1

¹increased

²decreased

³continued to be the same

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey #

If there are NO dogs on the farm, how long ago (years) did one reside on the farm? 16

2

In the last 12 months how often have the following animals been seen on the farm?

	Never	1 – 3 times/year	4 – 6 times/year	More than 6 times/year	
Coyotes/wolves					163 <input type="text"/>
Foxes					164 <input type="text"/>
Other dogs					165 <input type="text"/>
Stray cats					166 <input type="text"/>
Raccoons					167 <input type="text"/>
Skunk					168 <input type="text"/>

Does the farm use a footbath for disinfecting all visitor's boots before entering the cow and /or heifer barns ?

⁰No ¹Yes 174

If YES, how many times is the disinfectant changed each month? 175

During the past 12 months, give the number of times each category of people **actually entered your barn** and whether you felt their vehicles/equipment was properly cleaned.

	Number of times	Vehicles or equipment cleaned 0 No / ¹ Yes	176 to 197
other dairy farmers	176	177	
other beef farmers	178	179	
cattle dealers	180	181	
AI technicians + sales reps	182	183	
veterinarians	184	185	
nutrition technicians/advisors + sales reps.	186	187	
udder health advisers	188	189	
hoof trimmers	190	191	
dead stock collection	192	193	
contract manure spreaders	194	195	
DHI Technicians	194A	195A	
Others (specify) e.g equipment sales rep	196	197	

During the past 12 months, did you borrow equipment from other farmers that could have manure contact (e.g. foot trimming chute, manure spreader, tractor, cattle trailer) ? ⁰No ¹Yes 198 _____

If YES, did you always disinfect it before using it? ⁰No ¹Yes 199 _____

During the past year, did you lend equipment to other farmers that could have 200 manure contact? 0No 1Yes

If YES, did you always disinfect it before using it again? 0No 201

¹Yes

G. Biosecurity - Transmission of disease through blood.

Do you use a new needle for every injection? 0No 1Yes 202

If NOT, do you use a disinfected needle for every injection? 0No 203

1Yes

Do you use new syringe for every injection? 0No 1Yes 204

If NOT, do you use a disinfected syringe for every injection? 0No 205

1Yes

Usual method of dehorning: 206

1paste

2cutting (gougers, wire, etc)

3burning (electric, butane, etc)

If you use cutting equipment for dehorning, do you disinfect them between 207 animals? 0No 1Yes

Are the instruments used for extra teat removal disinfected between animals? 208
 0No 1Yes

Do people who artificially inseminate cows/heifers on your farm change rectal 209 gloves between animals? 0No 1Yes

Do people who do other rectal exams (e.g. pregnancy check) change rectal 210 gloves between animals? 0No 1Yes

Estimate the level of rodent infestation on your farm: 211
 1low
 2medium

3high

What is the primary method you use for insect control?

212

1spray

2bait

3adhesive tape

4other 5none

Is the equipment used for hoof trimming disinfected between animals?

213

0No 1Yes

H. Biosecurity - Vaccination and medication practices

Do you use coccidiostats/ionophores in calves/heifers/cows? ⁰No ¹Yes

214

If YES, please fill in the table below(check that apply):

215

	Decoquinate in feed (Deccox)	Lasalocid in feed (Bovatec)	Monensin in feed (Rumensin) premix	Monensin in bolus (Rumensin) CRC)	to 227
Pre-weaned calves	215	216	217		
heifers	218	219	220	221	
dry cows		222	223	224	
milk cows		225	226	227	

Did you vaccinate any dairy animals on your farm for any disease in the last 12

228

months? ⁰No ¹Yes

Did you vaccinate any dairy animals on your farm for BVD in the last 12

229

months?

⁰No ¹Yes don't know

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey # _____

If yes, in their 1st year of vaccination, are animals boosted 2-4 weeks 230

after

their 1st shot? 0No 1Yes

If YES, are these 2 injections given after the animals are 6 months 231

of

age? 0No 1Yes

If you think you vaccinated your cows with BVD vaccine, indicate the vaccines you usually use in each group of animals in the table below (Check all that apply):

Vaccine Name	Cows	Heifers (+6 mo.)	Calves
Barvac 3, Barvac 3-BRSV, Barvac 3-Somnugen, Barvac 3-Somnugen-BRSV	232	233	234
Bovshield 3, Bovshield 4, Bovshield 4+L5	235	236	237
Breed back 9/Sumnagen	238	239	240
BRSV Vac 4, BRSV Vac 9	241	242	243
Cattlemaster BVD-K, Cattlemaster3, Cattlemaster 4, Cattlemaster 4+L5, Cattlemaster 4+VL5	244	245	246
Experess 5, Express 5 Somnugen, Express 10, Express 10 Somnugen	244A	245A	246A
Herd-vac 3	247	248	249
Horizon 1+vac3, Horizon 4, Horizon 9	250	251	252
IBR Plus 4	253	254	255
Journey 4	256	257	258
Preg-guard 9	259	260	261
Prism 4	259A	260A	261A
Pyramid MVL3, Pyramid MVL4, Pyramid 4+preresponse, Pyramid 9	262	263	264
Reliant 3, Reliant 4, Reliant 8	265	266	267
Respishield 4, Respishield 4L5	268	269	270
Resvac 3/Somnuvac, Resvac 4/Somnuvac	271	272	273
Sentry 4, Sentry 4/Somnugen, Sentry 9, Sentry 9/Somnugen	274	275	276
Starvac 3 plus, Starvac 4 plus	274A	275A	276A
Triangle 1, Triangle 3, Triangle 4, Triangle 4+HS, Triangle 8, Triangle 9 (OR ANY OF THESE WITH TYPE II BVD)	277	278	279
Virabos 3, Virabos 4, Virabos 4+H. Somnus, Virabos 4 + VL5	280	281	282
OTHER	280A	281A	282A

Please provide the name of your vet if you do not know about the vaccination

.....

I. Calving and calf management

- What is the usual amount of time after which your newborn heifer dairy calves are usually separated from their mothers (in hours)? 283 []
- What percentage of heifer calves born on the farm remained with their dams for more than 24 hours? 298 []
- What is the percentage of your newborn heifer dairy calves suckle their dam? 284 []
[]
- Are teats usually washed before the newborn heifer dairy calves nurse? 299a []
- ⁰No ¹Yes
- Are teats usually washed before colostrum is collected? ⁰No ¹Yes 299b []
- What percentage of your newborn heifer dairy calves receive colostrum : 285 []
- ¹only from their mother [] %
- ²pooled from all cows [] % 286 []
- ³pooled from BLV negative cows [] % 287 []
- ⁴pooled from Johne's disease negative cows [] % 288 []
- What percentage of your newborn heifer dairy claves receive: 289 []
- ¹fresh colostrum [] %
- ²frozen colostrum [] % 290 []
- ³fermented colostrum [] % 291 []
- ⁴heat treated colostrum [] % 292 []
- With regard to the primary source of milk given to calves, what percentage of milk fed to your heifer dairy calves is:
- ¹milk replacer [] %
- ²pooled milk from all cows [] % 294 []
- ³pooled milk from negative for BLV cows [] % 295 []
- ⁴pooled from negative for Johne's disease cows [] % 296 []

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey #

⁵milk from mastitic (clinic or high SCC)cows or with antibiotic residue % 297

For calving indoor, if calving is always outdoors, skip to #308 and

300

use code -999:

Was the calving area used as a hospital area for sick cows in the last 12 months?

⁰No ¹Yes

Type of bedding used in calving areas.

301

¹straw

²shavings/sawdust

³other

⁴none

Frequency of adding bedding to calving areas:

302

¹each calving

²every 2-4 calvings

³every 5 or more calvings

Frequency of removing surface manure from calving areas:

303

¹each calving

²every 2-4 calvings

³every 5 or more calvings

Frequency of removing ALL manure from calving areas:

304

¹each calving

²every 2-4 calving

³every 5 or more

After separation from the mother, but before weaning, do dairy heifer calves

305

have physical contact (nose to nose) with other pre-weaned calves? ⁰No

¹Yes

After separation from the mother, but before weaning, do dairy heifer calves

306

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey # _____

have physical contact (nose to nose) with heifers? ⁰No ¹Yes

After separation from the mother, but before weaning, do dairy heifer calves 307 _____

have physical contact (nose to nose) with adult cows? ⁰No ¹Yes

What percentages of pre-weaned dairy heifers calves are uniquely identified 308 _____

(e.g ear tags)? _____

Primary location of calving in the summer: 309 _____

¹freestall

²tie-stall/stanchion

³loose housing

⁴maternity pen

⁵pasture

Primary Location of calving in the winter: 310 _____

¹freestall

²tie-stall/stanchion

³loose housing

⁴maternity pen

If maternity pens are used, what is the usual number of cows in the pens at 311 _____
one time.

¹always just a single cow in pen

²sometimes multiple cows in the pen

If multiple cows are in the calving pen at a time, what is the 312 _____
percentage of calvings when multiple cows present: _____

Percentage of placentas partially or fully eaten by: 313

Dogs

¹Never ²Sometimes ³often

313

to

316

Cats

¹Never ²Sometimes ³often

314

321

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey # _____

Do dogs, cats or wildlife have access to stored grain? ⁰No ¹Yes 327

Do you have an outdoor feed bunk or manger built for heifers? ⁰No ¹Yes 328

¹Yes

Do you have an outdoor feed bunk or manger built for milk cows? ⁰No ¹Yes 329

¹Yes

Do you have an outdoor feed bunk or manger built for dry cows? ⁰No ¹Yes 330

¹Yes

Method of manure removal from milk cow barn. 331

¹gutter cleaner

²alley scraper (mechanical or tractor)

³slatted floor

⁴removed (with bucket, bulldozer, etc.) as bedded pack

⁵alley flushed with water

⁶other(specify).....

Method of storage of manure from milk cow barn:

332

¹pit (under barn)

²open pile

³earth lagoon

⁴concrete lagoon

⁵other (specify)

Distance (in feet) from milk cow manure storage area to nearest farm well? 333

Distance (in feet) from milk cow manure storage area to stream, lake or pond? 334

Do cows have access to a stream, lake or pond? ⁰No ¹Yes 335

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey # _____

Which methods are used to dispose of manure on owned or rented land?

(check all that apply)

¹injection 336

²spread with surface incorporation (e.g. plowing, disking) 337

³spread without surface incorporation (e.g. plowing, disking) 338

How many days do you wait after applying manure to a field before heifers are 339 allowed to graze the field or get fed green chop from the field?

In the last 12 months, what percentage of the grains you fed to heifers were 340 homegrown?

In the last 12 months, what percentage of the roughages you fed to heifers 341 were homegrown?

In the last 12 months, what percentage of the grains you fed to cows were 342 homegrown?

In the last 12 months, what percentage of the roughages you fed to cows were 343 homegrown?

Origin of drinking water by season; fill in for each group of animals on your 344 farm: to

1 - Surfaced water (stream, pond or lake) 351

2 - Well water

3 - Municipal water

Source of water in the...	Open heifers	Bred heifers	Dry cows	Milking cows
WINTER	344	345	346	347
SUMMER	348	349	350	351

How often is equipment that holds manure (e.g. bucket, spreader) also used to 352

handle feed fed to heifers?

- ¹regularly (at least weekly)
- ²occasionally (less than once a week)
- ³not a practice

How often is equipment that holds manure (e.g. bucket, spreader) also used to 353 _____

handle feed fed to cows?

- ¹regularly (at least weekly)
- ²occasionally (less than once a week)
- ³not a practice

Do heifers less than 12 months of age share a feed bunk with adult cattle? 354 _____

- ⁰No
- ¹Yes

Do heifers less than 12 months of age share a water trough with adult cattle? 355 _____

- ⁰No
- ¹Yes

K. Prevalence of disease

Please fill in the table based on the last 12 months, Give your best estimate: 3

(for disease monitoring, do not include animals tested as part of this research project) t

	Clinical Cases (sick animals)	Disease Monitoring * (sick and healthy animals)		3
	Number of animals with the disease problem	Number of animals tested (blood, milk or fecal test)	Number of animals with positive tests results	
BVD	356	357	358	
Leukosis	359	360	361	
Johne's Disease	362	363	365	
Neosporosis	365	366	367	
Retained afterbirth (> 24 hrs)	368			
Abortion less than 4 months	369			
Abortion 4 to 7 months	370			
Abortion greater than 7 months	371			

*** Do not include the tests and results from this research project.**

Data collection form for risk factors of Neosporosis, BVD, Johne's Disease and Leucosis-survey # _____

In the LAST 5 YEARS, how many cattle have been diagnosed with Johne's disease by: 3

	Number of animal tested	Number of positives
Fecal test	372	373
Blood test	374	375
Veterinary diagnosis	376	

IN The LAST 12 MONTHS, how many of your CULLED COWS showed chronic diarrhea, 377 normal appetite and weight loss that didn't respond to treatment?

What is done with apparently healthy cows that have a positive Johne's disease test? 378

¹immediately shipped

²slaughtered at end of lactation

³kept on farm but handled differently

⁴nothing

Any other Johne's Disease's Control procedure? Describe. 379

Appendix C – Publication status of thesis chapters

- Chapter 2. A. Tiwari, J. A. VanLeeuwen, S. L.B. McKenna, G. P. Keefe, H. W. Barkema. Johne's Disease in Canada. Part I: Clinical symptoms, Pathophysiology, Diagnosis and Prevalence in Dairy Herds. Accepted in Can. Vet. J.
- Chapter 3. A. Tiwari, J. A. VanLeeuwen, I. R. Dohoo, G. P. Keefe, J. P. Haddad, R. Tremblay, H. M. Scott, T. Whiting, F. Markham. Seroprevalence and spatial distribution of bovine leukemia virus, bovine viral diarrhea virus and Mycobacterium avium subspecies paratuberculosis in Canadian dairy cattle. Planned Submitted to Vet Res.
- Chapter 4. A. Tiwari, J. A. VanLeeuwen, I. R. Dohoo, G. P. Keefe, J. P. Haddad, R. Tremblay, H. M. Scott, T. Whiting. Effects of bovine leukemia virus, bovine viral diarrhea virus, *Mycobacterium avium* subspecies *paratuberculosis*, and *Neospora caninum* on milk, fat and protein production and somatic cell count. Submitted to J. Dairy. Sci.
- Chapter 5. A. Tiwari, J. A. VanLeeuwen, I. R. Dohoo, H. Stryhn, G. P. Keefe, J. P. Haddad. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in four Canadian provinces. Vet. Microbiol. 109, 147-158.
- Chapter 6. A. Tiwari, J. A. VanLeeuwen, I. R. Dohoo, J. P. Haddad, G.P. Keefe. Direct production losses from subclinical *Mycobacterium avium* subspecies *paratuberculosis* infection in Canadian dairy herds. Submitted to Vet. Microbiology.
- Chapter 7. A. Tiwari, J. A. VanLeeuwen, I. R. Dohoo, G. P. Keefe, J. P. Haddad, H. M. Scott, T. Whiting. Management risk factors associated with Mycobacterium avium subspecies paratuberculosis infection in Canadian dairy herds. Submitted to Prev. Vet. Med.
- Appendix A. S. L.B. McKenna, G. P. Keefe, A. Tiwari, J. A. VanLeeuwen, H. W. Barkema. Johne's Disease in Canada - Part II: Disease Impacts, Risk Factors and Control Programs for Dairy Producers. Accepted in Can. Vet. J.