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ABSTRACT

Infrared (IR) absorption patterns of equine synovial fluid (SF) were studied. 
The objeetives were to: 1) develop and optimize laboratory protocols suitable for mid- 
infrared (MIR) spectroscopic analysis o f equine SF, 2) identify significant differences 
among MIR spectra of SF from anatomically different types of equine joints, and 3) 
determine the feasibility of using MIR spectroscopy and classification algorithms for 
the differentiation o f SF samples from diseased and control joints.

The technique of MIR spectroscopy o f dried films was optimized for equine 
SF. Suitable MIR spectra o f equine SF were obtained from the 8 pL aliquots o f 3:1 SF 
to aqueous potassium thiocyanate solution deposited onto a silicon microplate by 
using an optimal spectral acquisition protocol. The overall MIR absorption pattern of 
equine SF is similar to the MIR absorption pattern of human SF reported in literature. 
The laboratory methods used in the current research for collecting the MIR spectra are 
technically straightforward and economical.

Inter-articular variability among 3 clinically normal high motion joints 
(antebrachiocarpal (AC), midcarpal (MC) and tarsocrural (TO)) was investigated. 
Statistical comparisons of MIR absorption patterns of SF from study joints were made. 
Samples from the contralateral pairs were likely to yield a similar MIR absorption 
pattern. Differences in spectral features between ipsilateral AC and MC were detected, 
and comparisons between the spectra of the carpal and TC joints revealed more 
widespread discriminatory absorption bands. The results suggested that inter-articular 
variation should be considered when using this technique.

The feasibility of the use of IR spectroscopy combined with statistical 
classification algorithms was assessed by using SF samples from joints with traumatic 
arthritis (TA) and control joints. The MIR absorption patterns of SF from joints with 
TA differed significantly from corresponding patterns for controls. A classification 
model was developed based on characteristics of 3 optimal MIR regions, and yielded 
an overall accuracy of 97% (sensitivity 93%; specificity 100%) in the calibration 
dataset. The same model with cost-adjusted prior probability of 0.60:0.40 produced an 
overall accuracy of 89% (sensitivity 83%; specificity 100%) for a validation dataset, 
and 100% correct classification for a second validation set of normal control SF.

The feasibility of this technique was further confirmed by comparing SF 
samples from tarsocrural joints with osteochondrosis (OC) and control joints. Disease- 
associated characteristics within MIR spectra o f SF were identified by the use of 
statistical modeling. The classification model developed was based on the 
characteristics of 6 optimal MIR regions, and yielded an overall accuracy of 77% 
(73% sensitivity; 81% specificity).

The feasibility of IR and statistical classification algorithms for the 
differentiation o f spectra derived from samples of diseased and control joints were 
demonstrated in this current research project. These findings favor the further 
development o f this method for diagnosis of equine joint disease. Further recruitment 
of samples from both diseased and normal equine populations is required to evaluate 
the clinical usefulness o f IR spectroscopy in diagnosis o f equine joint diseases.
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CHAPTER 1

POTENTIAL AND CURRENT ROLES OF BIOMEDICAL INFRARED 

SPECTROSCOPY AS AN ADVANCED DIAGNOSTIC TOOL IN 

VETERINARY CLINICAL SCIENCE

1.1 Introduction

Clinical diagnosis is a process of information gathering with intention of 

clarifying the character of patient’s condition that will further lead to an accurate 

prediction of prognosis and an appropriate treatment regimen (1). Generally, clinical 

diagnoses can be made by means of an evaluation of a patient’s history and physical 

examination, laboratory examination of body fluids, cell and tissue specimens and 

diagnostic imaging (2). The art of clinical diagnosis links a knowledge of basic 

science with clinical medicine and the nature of the disease mechanism, including the 

biochemical and morphological alterations of the body in the response to disease (3). 

Various diagnostic technologies have been developed and introduced to assist with 

clinical diagnosis in the past few decades. Alterations in the biochemistry and 

morphology of organs, tissues, and cells have been probed by electron microscopy, 

immunological assays, novel molecular biology techniques and biophysical 

techniques, including spectroscopy (4-9). These have provided physicians and 

veterinarians revolutionary and powerful technologies with which to detect or screen 

for disease, determine the severity or extent of a disease, monitor the pathologic 

progression and response to treatment, predict the response to treatment, and 

formulate a prognosis.
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Fourier-transform infrared (FT-IR) spectroscopy remains one of the most 

important tools in analytical chemistry, on par with nuclear magnetic resonance 

(NMR), ultraviolet (UV) spectroscopy and mass spectrometry (10). The innovation of 

high quality FT-IR spectrometers, incorporating developments both in the 

interferometer and in digital data acquisition, as well as computational processing 

have revolutionized the breadth o f applications for infrared technology (11-13). These 

advances have contributed enormously to the enhancement of accuracy, 

reproducibility and signal to noise ratio (11, 12). Today infrared spectroscopy is 

generally accepted as one o f the most versatile o f analytical techniques (11, 12). The 

application o f this emerging technology has been extended from the analytical 

chemistry community to other scientific communities, such as the biomedical 

sciences where this innovation has been utilized to diagnose clinical problems and to 

gain insights into pathogenesis (12, 14).

1.2 Theory of infrared spectroscopy

The fundamental theory underpinning infrared (IR) spectroscopy relies on 

absorption characteristics of the molecules within a sample when exposed to 

broadband IR radiation (15). Infrared radiation spans the electromagnetic region 

between the red end o f the visible region and the microwave region (0.78-1000 |am) 

(16). The IR region has traditionally been subdivided into near-infrared (0.78-2.5 qm, 

NIR), mid-infrared (2.5-50 fam, MIR) and far-infrared (50-1000 |am, FIR) regions 

(16). The absorption of IR radiation occurs when the frequency of the incident IR
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radiation is matched with the frequency of a characteristic molecular vibration (15- 

17). The position and intensity of each absorption depends upon the atoms displaced 

during the vibrational cycle, i.e. the nature of the bond(s) involved, the type of 

vibration (e.g. stretching or bending), and the inter- and intramolecular interactions 

that may modify the atomic motions defining otherwise free vibrations (15, 17). Some 

vibrational modes are localized to such an extent that they may be viewed as 

vibrations of particular bonds or bond types. For example, the “C-H stretching 

region” encompassing the wavenumber range 2800-3100 cm'* includes a variety of 

absorptions that can be traced to the stretching motions of C-H bonds. For such 

absorptions, within a compound, the intensity o f a given IR absorption band is 

roughly proportional to the concentration of molecular bonds (e.g. C-H bonds) or 

functional groups within the molecule being probed (18, 19).

The IR absorption spectrum is typically displayed as a plot of absorbance 

versus wavenumber within the IR range (16). The absorbance is defined as 

-log(I(v)/Io(v)), i.e. the negative logarithm of the ratio of measured intensities for 

single-beam spectra with the sample in the IR beam (I(v)) and with no sample in 

place (Io(v)); the “background” spectrum (20). For mid-infrared (MIR) spectra, the 

absorption position is universally reported as wavenumber or the number of waves 

per unit of length - simply the inverse of the wavelength (in centimeters) (16). This 

unit of inverse centimeters (cm'*) is convenient since it is proportional to the 

frequency and the energy of IR radiation (16). The wavenumber range of the MIR 

region (2.5-50 pm) is therefore 400 to 4000 cm'*.
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1.3 Advantages of IR spectroscopy

An important limitation of IR spectroscopic analysis is that biochemical 

information can be obtained only from IR active molecules (17). Infrared active 

molecules are those molecules that react to IR radiation by changing the net dipole 

moment, thus their IR absorption can be measured (16, 17). Despite this limitation, IR 

spectroscopy still offers several advantages in biomedical applications because most 

organic molecules absorb IR radiation (16, 17,19).

This analytical technique can be performed on any state o f the sample (gas, 

liquid, or solid) giving a variety o f possibilities for biological samples (body fluids, 

cells and tissue etc.) to become candidates for IR measurement (15, 16). The IR 

active components in a sample give rise to IR absorption bands without any need for 

chemical or immunological modification (18). No reagents are required for most 

biomedical IR measurements, making IR spectroscopy a cost effective technique for 

batch analysis of samples (18). By using computer-assisted spectral analysis and 

modern bioinformatics techniques, an enormous amount of information on chemical 

composition and structure can be gained from IR measurement of biological samples 

(11, 12).

The aforementioned advantages make IR spectroscopy suitable for both ex 

vivo analyses (where a spectroscopic measurement is performed on living cells or 

tissue specimens or biological fluids taken from the patients) and in vivo assessments 

(where the spectroscopic measurement is performed directly on the patient’s body).
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Infrared analyses o f the exfoliated cells, biopsy tissue and biological fluids 

constituted the ex vivo infrared applications in IR clinical chemistry and pathology 

(21-26). The in vivo analysis by use o f near-infrared (NIR) spectroscopy allowed the 

real-time monitoring o f tissue perfusion and oxygenation (27). In addition, non- 

invasive screening tests for human diseases such as rheumatoid arthritis (28) and skin 

lesions (29, 30) have been developed using the NIR fiber optic probe. The details of 

these applications will be described in the following sections.

1.4 The molecular basis of infrared spectral interpretation

Using a high performance IR spectrometer, the spectra may be produced with 

good reproducibility. The pattern o f absorptions (both their positions and intensities) 

making up the spectrum of a particular substance is highly specific to that substance, 

and may be considered analogous to the fingerprint o f a person (10). The unique 

characteristics of the infrared absorption pattern have been used for structural 

elucidation and identification o f compounds for many decades (10, 31). For complex 

mixtures of large molecules such as biological samples, IR spectra become 

correspondingly more complex, with bands inevitably overlapped to such an extent 

that explicit assignment o f individual bands to individual molecules is difficult or 

impossible (11). However in spite o f this complexity, IR spectra of biological samples 

such as body fluids, cells and tissue provide biochemically relevant information 

regarding the chemical structure(s) and their relative abundances of the constituents 

( 11).
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Traditional spectral interpretation in organic chemistry according to empirical 

rules has been documented elsewhere (31, 32). These manual interpretative strategies 

are used by spectroscopists for compound identification and structural elucidation. 

The concept o f vibrational group frequency is one o f the useful guidelines for spectral 

interpretation (12, 19, 20). According to this approach, the MIR region may be 

subdivided into 4 subregions according to the nature of group frequencies that give 

rise to the absorption bands. The subregions are as follows: 1) the X-H stretching 

region at 4000-2500 cm '' (where X = oxygen, carbon, or nitrogen atoms); 2) the triple 

bond region at 2500-2000 cm ''; 3) the double bond region at 2000-1500 cm ''; and 4) 

the fingerprint region at 1500-600 cm '' (19, 20). These rules and guidelines have been 

used to assist spectroscopists and other trained persons in diagnostic assessment of an 

IR spectrum. Digital spectral libraries and various computer-assist spectral 

interpretation systems (so called expert systems) are available for chemical structure 

elucidation (33). The establishment of spectral library databases not only for the 

systems for IR spectra, and multi-dimensional systems that incorporate spectroscopic 

information acquired from other types of spectroscopy and spectrometry such as 

NMR and mass spectrometry, have revolutionized scientific and medical progress 

(33).

Guidelines to assign the major MIR bands in tissues and cells have also been 

documented (6). For instance, protein IR signatures include characteristic absorptions 

whose maxima are located at 3290, 3050, 1655, 1545, and 1280 cm '' for amide A (N- 

H stretch), amide B (N-H bending first overtone), amide I (C=0 stretch), amide II (N-
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H bending) and amide III of collagen, respectively (6). Carbohydrates typically 

contribute strong absorptions in the 1000-1200 cm’* range, corresponding to C -0 

stretching vibrations (6). The CH3 and CH2 groups of lipids and proteins give rise to 

the peaks at 3000-2800 cm’*, -while peaks at 1220, 1240 and 1080 cm’* are typically 

assigned as the asymmetric and symmetric stretch of nucleic acid and lipid phosphate 

(PO2) groups (6). These guidelines are very useful for spectral interpretation and 

analysis o f cells and tissues.

1.5 Biomedical infrared spectroscopy

The proper selection o f spectroscopic measurement technique (NIR versus 

MIR) is crucial in IR spectroscopic measurement (6, 34). The selection of an IR 

spectroscopic method depends on the disease being studied, the tissues affected, the 

nature o f the chemical species of interest, and whether the measurement is to be 

carried out in-vivo or ex-vivo. Both MIR and NIR spectroscopy have been widely 

exploited in clinical and diagnostic research (6 , 18, 35-38). The MIR region (400- 

4000 cm’*) is the most information rich region since it contains the absorption bands 

corresponding to the fundamental vibrations of most organic species (18). The 

abundance of chemical information from MIR spectroscopic measurement makes 

MIR spectroscopy the method of choice for ex vivo analytical and diagnostic works 

0 8 ).

Near infrared spectroscopy generally provides spectra that are simpler than 

MIR spectra. The NIR spectra typically arise from overtone and combination
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absorptions of C-H, 0 -H  and N-H groups (6). In some circumstances, the absence of 

absorption from other confounding bonds or other functional groups facilitates the 

identification of the species of interest when using NIR spectroscopy. However, the 

NIR is not as rich in information when compared to MIR, due to the absence of 

information other functional groups such as carbonyl and phosphate groups (6). The 

main attractions of NIR spectroscopy lie in the availability of inexpensive optical 

fibers that permit the easy implementation of NIR spectroscopy for in vivo 

applications, and in the depth of penetration by near-infrared radiation into tissue 

(27). The penetration depth of NIR radiation into a sample can vary from 0.01 

millimeter to several centimeters (37). In biological fluids and tissues, the ability of 

0.2 mm to 5 mm depth penetration for NIR radiation has been reported, enhancing its 

in vivo utility (37). The depth of penetration is insufficient to fully penetrate most 

whole organs or the entire body o f most species, but information from the surface of 

the organ and surrounding tissues can be acquired with NIR spectroscopy, and may 

be suffieient for the diagnosis of some conditions (27, 35, 37). This capability has 

lead to the development of non-invasive monitoring and diagnostic tools 

incorporating either fiber optic technology or spectroscopic imaging systems (27, 35,

37X

1.6 Biological sample preparation and IR spectroscopic measurements

Infrared spectroscopy can be used to analyze a wide range of samples of 

biological origin. For example, spectroscopic analyses have been performed on the
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simplest biological fluids such as serum, synovial fluid, and amniotic fluid (38). More 

complex samples such as white blood cells, cells collected directly from patients via 

fine needle biopsy, or impression smears, have also been investigated (6). A 

remarkable advancement in IR technology is the development of IR microscopy, 

which couples a reflecting microscope to IR spectroscopy to obtain spectra from 

small, defined areas (typically 30x30 microns) within biopsy tissue sections (6). To 

obtain IR spectra from a variety of sample types, care should be taken to use sample 

preparation techniques which minimally perturb the nature and stability o f the 

samples, and avoid introduction of artifacts (6). The very strong water absorptions 

centered at -1640 cm’* and 3300 cm’* (the 0-H  bending and stretching vibrational 

modes) dictate that MIR spectroscopy of aqueous specimens requires very short 

optical path lengths (in simple terms the thickness of the sample), on the order of 6 to 

10 microns (18, 38). This is very inconvenient in practice, requiring specialized cells 

that are inconvenient to use even for the specialist, and certainly not appropriate for 

implementation in routine clinical or diagnostic use. Furthermore, water contributes 

the same very strong absorptions to aqueous biological samples, dominating and 

obscuring the absorptions of the solutes of interest and hindering the meaningful 

analysis of such samples (18, 38).

Special apparatus and techniques, such as attenuated total reflectance (ATR) 

spectroscopy, are designed to overcome this problem and to allow the measurement 

of specimens in their native aqueous state (18, 38). However, the spectroscopic 

information above the IR region 3000 cm’* is still inaccessible in the ATR spectrum
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because the region is dominated by the strongest (OH stretching) water absorption

(38). The most effective and simplest way to eliminate water absorption bands lies in 

the preparation of dried films from fresh specimens (38), which provides the further 

advantage o f inactivating degradative enzymes (6). It is easily accomplished by 

applying approximately 5 - 50 pL of aqueous specimens onto an appropriate optical 

material and allowing it to dry before the acquisition of IR spectra (18, 38). While the 

NIR spectroscopic approach offers a more convenient method for handling aqueous 

samples because NIR spectral acquisition can be achieved by using optical path 

length o f 0.5 mm or greater (18, 38), the NIR spectrum of an aqueous sample lacks 

information that is present in the counterpart MIR spectrum of a film dried from the 

same sample.

In microscopic tissue sample preparation, the best guideline is to keep the 

sample preparation simple and to a minimum (6, 39). The introduction of stains or the 

application of some tissue preparation solutions may induce artifacts and systematic 

variation in the spectroscopic data. This may further lead to bias in data interpretation 

and statistical analyses (6). The goal of IR microscopy is to obtain the spatially 

resolved spectroscopic information within the tissue section. To that end, the IR beam 

is focused on a small area of the sectioned tissue approximately 30 x 30 pm (6). 

Automated IR measurements may be acquired by the IR microscope, using a high 

precision computer controlled raster-scanning stage. The spectrum obtained from 

each small area (pixel) is combined to generate an IR spectroscopic map of the tissue 

(6). The data from IR mapping/imaging systems can be manipulated, reproduced, and

10
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displayed in several meaningful ways. One of these methods is intensity-functional 

group mapping (6). An intensity-functional group map is produced by plotting the 

intensity of an absorption band of interest as a function of 2-dimensional position 

(area within the tissue section) (6). Such plots can be very useful, for example, to 

visualize the distribution of lipids, protein and DNA within the study tissue (6).

1.7 From IR spectroscopic data to IR-based diagnosis

The most challenging and rewarding part of IR biomedical spectroscopy is the 

development of algorithms that convert IR data into clinically useful tools. The 

purpose of this step is to discover and make use of significant information within the 

IR spectra to serve the diagnostic objectives o f the clinician or researcher (13). An IR 

spectrum of a biological sample consists of the superimposition o f all IR active 

components within the sample. Their relative intensities are weighted with respect to 

the concentration. A large volume of data is contained in the biomedical spectrum 

from a single measurement (11, 12). The central hypothesis underlying the diagnostic 

interpretation of IR spectra is that the factor of interest (e.g. disease) produces 

characteristic, significant alterations in the sample composition (which may be related 

to many o f the chemical constituents within the sample) and that these alterations in 

turn promote characteristic, significant alterations in the corresponding IR spectrum 

of that sample. Such composition alterations due to disease or dysfunction may lead 

to changes in one or several characteristics of the IR absorption pattern, including 

changes in peak height, band width, and peak position (36). The key elements in the

11
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development of infrared-based diagnostic tests are the extraction and recognition of 

spectroscopic patterns which are highly correlated to the presence or absence of 

disease or the concentration of the analytes of interest (11). Advanced computational 

techniques and operations associated with the mathematical manipulation and 

interpretation o f IR derived chemical data (chemometrics) have been employed to 

fulfill this need (12, 13, 18, 36, 38, 40-42).

1.8 Ex vivo analyses by IR spectroscopy in biomedical science

1.8.1 Infrared clinical chemistry

Diagnostic information can be sought through the quantification o f specific 

analytes of interest (26, 43-47). Quantitative analysis o f IR spectra relies on Beer’s 

Law, which describes the relationship between the absorbance and concentration o f a 

particular component within non-scattering samples (18, 48). For a mixture. Beer’s 

law is (18, 48);

A(v) = S S i ( v )  Ci L

where A(v) is the absorbance as a function of wavenumber, G,(v) is the molar 

absorptivity of the i*'' constituent as a function of wavenumber, c; is concentration of 

the i*'' constituent and L is the optical path length (18, 48).

Conversion of spectroscopic data into meaningful analytical information 

requires an unbiased study population that yields high quality samples, a 

spectroscopic measurement that yields good quality spectra, levels for the analyte(s) 

of interest as determined by standard reference analytical methods and the

12
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development of a mathematical algorithm to recover the analyte concentration(s) 

from spectroscopic features (38). The usual procedure begins with the collection of 

samples that have had their analyte levels of interest determined by standard assay, 

with concentrations that span the range expected in the target population (23, 26, 43- 

47). One half to two-thirds of the spectra of these samples are randomly assigned into 

a calibration set and the rest is designated as the validation set (18). The calibration 

model is developed using the spectra in the calibration set. The most common 

modeling method reported in the literature is partial least squares (PLS) (23, 26, 43- 

47). As a secondary analytical method, PLS calibration models are built upon 

statistical correlations relating spectroscopic features to analyte levels (as determined 

by accepted analytical methods). Model development is iterative; several possible 

models are explored and refined to derive the best predictors or PLS factors that 

minimize the standard error of the calibrated concentration based on IR spectroscopy 

when compared to the reference analytical assay. Finally the model is validated by an 

independent validation set to ensure the performance and the general applicability of 

the developed model (18, 38).

Using the approach described above, the concentrations of several analytes 

have been successfully recovered from IR spectra using MIR spectral analysis of 

dried films. For example, serum analytes including albumin, cholesterol, glucose, 

total protein, triglycerides and urea have been quantified by IR spectroscopy and 

chemometric methods (PLS), with minimal standard errors of prediction (26). A 

serum cholesterol panel can be measured in single IR spectroscopic measurement to

13
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simultaneously quantify the concentration of high-density lipoprotein cholesterol and 

low-density lipoprotein cholesterol, total cholesterol and triglycerides (43). The 

quantification of glucose and urea concentration in whole blood samples has also 

been reported (44). Other types of biological fluid samples such as urine, saliva and 

amniotic fluid have also been study using dried film spectroscopic techniques (23, 47, 

49). The successful spectroscopic analyses of multiple analytes in urine such as urea, 

creatinine, and total protein, suggests that the IR-based analytical technique is 

accurate enough to serve as a routine clinical laboratory method for urea and 

creatinine analysis (47). In another study, an IR-based assay for the assessment of 

fetal lung maturity has been developed (23). Partial least square models have been 

used to predict the surfactant/albumin ratio based on IR spectra of amniotic fluid, and 

their corresponding levels by standard quantification methods. An excellent 

correlation was reported between the level o f surfactant/albumin ratio predicted by 

reagent free IR-based analysis and standard TDx FLM II assay (23).

In most of these studies, the IR spectroscopic measurement has been carried 

out by spreading the biological sample on a barium fluoride substrate, chosen because 

this salt is transparent to IR radiation (to a low wavenumber limit of -800 cm'^). The 

high cost of these windows is justified by their compatibility with aqueous samples, 

since barium fluoride is not water soluble (50). A glass substrate has also been tested 

for use in MIR spectroscopy (45). However, glass is opaque at wavenumbers below 

2000 c m '\ therefore, spectroscopic information below 2000 cm'^ is inaccessible (45, 

46). Interesting enough, by using glass as optical material, the serum concentration of

14
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albumin, glucose, protein, urea, cholesterol and triglyceride can be accurately 

predicted using only the spectroscopic data between wavenumbers 2800 and 3500 

cm'' (46). This research offers alternative, reproducible, reliable and inexpensive 

method for clinicopathological analysis using MIR spectral analysis o f dried film.

1.8.2 Infrared pathology

All forms of disturbances and injuries of organs in the body begin with 

molecular or structural alterations within the basic unit of life, namely the cell (3). 

Cells are chemically and structurally sophisticated units since they contain about 

1000 different molecules such as variety of amino acids, carbohydrates, fatty acids

(39). These are the basic molecules that are assembled into more complex molecules 

including protein, nucleic acids, DNA and RNA (39). Alterations in the structure or 

concentration of these cellular constituents lead to the morphological and functional 

changes in organ level or higher clinical manifestations (3). Infrared spectroscopy of 

the cell, tissue and biological fluids may provide an effective and reliable means for 

detecting and staging such changes in response to disease processes, whether they be 

clinical or preclinical (6, 36, 39). Moreover, spectroscopic methods may become 

useful to evaluate treatment responses, leading to improvement o f therapeutic 

regimens (51, 52). The ultimate goal of IR pathology is to provide rapid, reliable and 

economical means for preclinical diagnosis so that clinical care and therapy can be 

prescribed in a timely manner (11).

The aim of employing IR for pathological evaluation is to obtain 

spectroscopic data that are faithfully related to the pathological changes which have

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



occurred either in concert with or in response to the presence of disease, and not from 

artifactual elements that may be present in the biological samples. In biological 

samples, some compositional changes in the spectrum may arise through other 

unrelated biological sources o f variation, which may not be part of the pathological 

process (11). Potential sources given rise to such variations were described elsewhere 

in molecular epidemiology literatures (53-55). The biological samples may possess 

some inherent variability. Intra-subject and inter-subject variability may be associated 

with physiological, genetic, or environmental factors such as age, race (breed), sex, 

activity, occupation, and circadian rhythm etc. (55). Other components of variability 

found in biologically based measurements including IR spectra o f biological samples 

may be attributable to procedures involving sample collection, processing, and 

storage, and laboratory analysis (53, 54). As generally accepted, in the development 

of a diagnostic test, an appropriate study design and a proper selection of “diseased” 

and “normal” individuals are crucial for the validity o f the study (53, 56). Infrared- 

based diagnostic test development must therefore he carried out with a large number 

o f spectra to avoid the detection o f subtle differences that may be associated with 

other sources of variation and to ensure the general applicability of the diagnostic test 

in the target population (11).

Care should be taken in choosing the spectroscopic method and sample 

preparation technique to ensure that the quality of the spectra is acceptable (6, 39). 

After the appropriate sample preparation technique is chosen and the spectroscopic 

measurements completed, then the next step in the process is to seek significant

16
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diagnostic information, for example using feature selection and extraction 

methodologies (57). This process has 3 purposes: to eliminate the irrelevant 

spectroscopic information; to enhance some of the weak features that are believed to 

be important for disease diagnosis; and to transform the data into a form that is 

suitable for further analysis (57). Prior to executing the feature selection process, 

spectral preprocessing can be extremely beneficial as a means to minimize extraneous 

spectral features and amplify the genuine spectral information of potential diagnostic 

utility. Preprocessing commonly includes mathematical manipulation methods such 

as spectral differentiation and smoothing, spectral normalization, and spectral 

integration (22, 36, 40, 42, 57-61). Once the spectral pre-processing is completed, a 

statistical and computational procedure called multivariate diseased pattern 

recognition (DPR) can be used to identify spectral subregions that form the basis of 

an optimal diagnostic test and to remove subjectivity from spectral analysis (22, 36, 

40, 42, 57-61). Infrared spectroscopic features, defined by the particular combination 

o f variables from the spectra (integrated intensity within the set o f spectral 

subregions, peak amplitude, band width, area under the peak, slope of the band etc.), 

are then used as an input to a classification model (34, 36).

Two major approaches of pattern recognition have been utilized and yield 

successful outcomes in many different kinds of research (14, 22, 24, 40, 42, 58-62). 

Unsupervised pattern recognition is a method that recognizes patterns common to 

subgroups of spectra and classifies the spectra into classes (subgroups) with no prior 

knowledge about the number of classes and pattern characteristics of the classes (6,
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34, 36). The most popular unsupervised pattern recognition technique is hierarchical 

cluster analysis (14, 59, 60). The essence o f cluster analysis is to calculate some 

measures of the similarity between the spectra in the data set. Then the spectra are 

grouped based on their degree of similarity (34, 36). While cluster analysis based on 

these features can occasionally result in a final grouping of spectra that corresponds 

to disease status (24), it is often the case that the spectra cluster according to criteria 

that are unrelated to the disease of interest. In the latter case, supervised classification 

methods can be effective.

The second type of pattern recognition, namely supervised pattern recognition 

is a method whereby the spectra are classified based on prior knowledge of class 

identity or class membership (e.g. disease present versus disease absent) (18, 34, 36). 

Discriminant analysis (DA), either linear (LDA) or quadratic (QDA), has been 

commonly used for this purpose (21, 22, 25, 40, 42, 61, 62). The spectroscopic 

features that are believed to contain diagnostic information based on a set of spectra 

(this set is often referred to as the calibration set or training set o f samples) are used 

to calibrate the classification model (6, 18, 34, 36). The robustness of classification 

and the general applicability are then tested by a new set of spectra (the test or 

validation data set) (6, 18, 34, 36). The validation process is challenging when the 

sample size of the data set is small. Some studies have exploited alternative 

resampling methods for validating the classification model. Two such methods are the 

leave-one-out resampling and bootstrapping (6, 34, 36). The leave-one-out 

resampling generates the classification model based on N-1 spectra of the data set
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



containing N spectra. Then the model is used to prediet the class membership of the 

remaining speetrum. The resampling procedure is repeated until all the speetra in the 

data set take a turn to beeome the validation spectrum (6, 36). Boot strapping is a 

simulation based on multiple iterations of resampling with replacement (6, 22, 36). 

The number of spectra (e.g. N/2) is randomly selected as a training set for generating 

a classifieation model and then the remaining spectra are used for model validation 

(6, 22, 36). By utilizing one of these two resampling methods, the average 

performance of classification can be evaluated by averaging sensitivity and specifieity 

of the classification model developed from eaeh of these independent steps (41). The 

strategies as described are for training the discriminant analysis model to differentiate 

between the patterns of disease and non-diseased in the spectra. Once the final 

elassification model is developed and refined to achieve a satisfactory classification 

result (i.e. the model can discriminate the spectra with a high degree o f accuracy in 

both sets), the same model can then be applied to the spectrum of unknown sample to 

predict the disease status (34).

Sophisticated but highly effieient methods based on artificial intelligence have 

recently been developed and successfully used to eharacterize diagnostic features of 

sample spectra and to generate diagnostic algorithms for IR spectroscopic analysis of 

the biological samples (12). These artificial intelligence approaches include genetie 

algorithms for spectral features selection and artificial neural networks (ANN) (6, 

12). A genetie optimal region selection algorithm has been successfully employed by 

many researchers (21, 63-65). This algorithm is programmed to seek a set of spectral
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subregions that can provide a basis for classification. The input data are the features 

of the spectra in the dataset and their actual class designation (21, 63-65). The 

artificial neural network classification is a machine learning system based on self- 

adjustment internal control parameters. The system consists o f layers o f processing 

elements primarily used for solving pattern recognition problems (66-68).

1.8.2.1 Infrared spectroscopic applications in arthrology

The differentiation o f sera and synovial fluid samples of normal individuals 

from patients with various types o f arthritis has been reported using IR spectroscopy 

combined with DPR methods (21, 42, 61). Mid-infrared and NIR spectroscopic 

techniques have been exploited to categorize rheumatoid arthritis (RA), osteoarthritis 

(OA), and spondyloarthropathy (SA) synovial fluid samples in humans (21, 61). 

Despite the difference in IR spectroscopic measurement, an excellent and equivalent 

accuracy of class prediction o f 95% was reported by both spectroscopic techniques. 

Diagnostic features from C-H moieties (combination bands) in the NIR region and C- 

H stretching band in the MIR region were believed to contribute to the success 

achieved in both studies (21, 61). The synovial fluid from temporomandibular joints 

of patients with OA, RA and control samples was also studied by the MIR 

spectroscopic technique (69). The intensity differences among the study groups 

appear to be most discriminatory at 2300 c m '\ which corresponds to carbon dioxide 

absorption peak (69). However, no classification model was developed because of 

the limited number o f spectra in the dataset.
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Infrared based disease pattern recognition testing for rheumatoid arthritis has 

been investigated using serum as a specimen for analysis (42). Discriminant analysis 

with a complex optimization procedure was exploited, and a sensitivity and 

specificity of 84% and 88% reported from a dataset of 97 healthy and 94 rheumatic 

patients (42). Disease pattern recognition, a complex optimization procedure 

including a combination o f disease marker values (the levels of rheumatoid factor, 

antinuclear antibodies, and C-reactive protein), and the IR spectroscopic DPR score 

(the score represents the probability o f belonging to the healthy class) have been 

utilized in some IR-based diagnostic studies (40-42, 67). The multivariate DPR may 

provide the means to relate the actual disease status to the spectroscopic data even in 

the situation where the information concerning the underlying molecular components 

and processes is partially or completely unavailable (41).

The degree of cartilage degradation has been determined by using MIR fiber 

optic probe directly placed on articular cartilage of tibial plateau specimens (51). An 

encouraging result from a recently published work with MIR spectroscopy and a 

chemometric method (PLS) demonstrated correlation between the IR spectroscopic 

data and the grossly visual and histopathological grading system for assessment of 

cartilage degradation. The partial least squares model yielded a correlation between 

the actual and IR predicted grossly visual grade with = 0.82 and 0.84 for a 

histopathological grading system (51). This promising methodology may lead to the 

development of minimally invasive and objective assessment of cartilage degradation 

that may be performed in conjunction with arthroscopy in the future.
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1.8.2.2 Infrared spectroscopic applications in oncology

A classical example of IR-based diagnosis in oncology is the study of chronic 

lymphocytic leukemia cells by IR spectroscopy (24). In this study the isolated 

mononuclear cells from patients diagnosed with chronic lymphocytic leukemia (CLL) 

and normal individuals were collected, and the MIR spectra of cell suspensions were 

obtained using the dried film technique. The spectral were pre-processed using 

normalization, differentiation, and smoothing techniques (24). Then hierarchical 

cluster analysis was applied to partition the spectra into clusters. This unsupervised 

approach was able to separate the CLL cells from normal mononuclear cells based on 

the IR regions that originate from DNA and lipid in the cell (24).

The study of CLL cells using IR-spectroscopy has been extended to determine 

the drug resistant status o f these cells (52). In vitro resistance to two therapeutic 

agents, chlorambucil and cladribuine, was studied by exposing isolated CLL cells to 

the agents. The viability of the cells was determined by a cytotoxicity assay, 

identifying the inhibitory concentration sufficient to cause 50% loss in viability 

(IC50) (52). The chemosensitivity of the cells was determined by establishing a cut­

off value based on the mean of the IC50. The actual chemosensitive status, drug- 

sensitivity or drug-resistance, was determined and assigning the cells to one category 

or the other based on the IC50 cut-off value. The predicted status based on IR 

spectroscopic data was determined using LDA. The analyses for 2 chemotherapeutic 

agents were performed separately (52). The accuracy o f the class prediction of the 

training (calibration) sets was 100% for both agents. However, the accuracy of test
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(validation) sets dropped to 83% and 70% for cladribuine and chlorambucil 

respectively (52). It was suggested that alteration in DNA and membrane lipid 

associated with the development of resistance may have been reflected in changes in 

spectroscopic features used in the classification algorithm (52).

The use of MIR spectroscopic analysis has demonstrated its potential to 

discriminate malignant gastric tissue from normal control specimen collected from 

the same patients (62). The significant differences between cancerous and normal 

tissues were identified by t-test, yielding one p-value per wavenumber. Subregions 

that demonstrated p-value < 0.05 were used as inputs for classification model. These 

subregions were subjected to discriminant analysis. An accuracy of detection of 

neoplastic tissue of 88.6% (sensitivity of 96% and specificity of 75%) was reported 

by this method (62). The discrimination was believed to be based on the changes in 

amount of nucleic acids, collagen, and some amino acids of the tissue that may 

associate with the presence of gastric cancer (62).

Infrared spectroscopy combined with multivariate DPR techniques can be 

used for staging of breast tumors based on spectroscopic features derived mainly from 

the nucleic acids (22). The reliable classifier proposed in this study was achieved by 

LDA with bootstrapping cross-validation. The Nottingham standard scale for grading 

breast tumor (low, intermediate and high grades) was correlated to spectroscopic 

features. An accuracy of 87% for tumor grade prediction by the algorithm was 

reported (22). The breast tumor spectra were also classified according to the presence 

of estrogen and progesterone receptors. The classification model yielded an accuracy
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of prediction 93.9% and 89.9% for the presence of estrogen and progesterone 

receptors respectively (22).

1.9 In vivo analyses by IR spectroscopy in biomedical science

Tissue spectra are the primary outcome derived from in vivo NIR reflectance 

spectroscopic methods. The technique is based on absorption and reflection properties 

of the target tissue when exposed to NIR radiation. If the sample is thick, as 

commonly encountered in vivo, a fraction o f light that is “injected” by optic fibers at 

a certain point is scattered to such a degree that it re-emerges through the same 

surface; NIR radiation can be detected around the location where IR radiation enters 

the sample (27, 37). The term “interactance” is often preferred to “reflectance” 

spectra for this measurement geometry, since the direct probe-surface contact 

eliminates the air/surface reflective interface (27, 37). Both absorbance and light 

scattering properties are the factors determining the penetration depth of NIR into the 

target tissue.

Focal changes in tissue haemodynamics can be assessed by using a NIR 

reflectance or interactanee fiber optic probe (27, 37). A more sophisticated NIR 

camera system equipped with an array detector, the IR-sensitive silicon-based 

charged coupled device (CCD), and a variable-wavelength tunable filter allows for 

the imaging of spatially resolved oxygenation changes in the target tissue. For 

example, NIR images o f regional oxygenation variations on the heart or skin surface 

may be generated by this technique (27, 37). The reflected NIR light is gathered
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either at the collector probe (in the case of fiber optic measurements) or by the array 

detector in case o f NIR imaging. A pseudo-absorbance spectrum (intensity as a 

function of wavelength) may be calculated for the interactance spectrum by using the 

ratio between intensity of the radiation gathered from sample (I,) to the intensity of 

the reflected radiation derived from a neutral reflector sheet at the same wavelength 

(Ir) (27). The pseudo-absorbance is calculated according to equation (27, 37):

A ;=  - log (Is / Ir)

The equation is analogous to absorbance in IR transmission spectroscopy (27, 37).

1.9.1 Assessment of tissue perfusion and oxygenation using NIR spectroscopy

Non-invasive NIR reflectance spectroscopy and imaging have been utilized in 

various proof-of-concept studies in different tissue types including brain (70, 71), 

cardiac (72), muscle (73, 74) and skin tissues (75, 76). The NIR absorption bands of 

interest originate from the NIR absorption characteristics of oxyhaemoglobin (HbOz), 

deoxyhaemoglobin (Hb), and water in tissue (27, 37). The distinct maxima of NIR 

absorption by these chromophores and water content have been well documented (27, 

37). A distinctive Hb absorption can be detected at 760 nm while HbOi has a 

characteristic absorption peak at 920 nm. The intensity of these peaks may be 

monitored in relation to the isosbestic point for the spectra of Hb and HbOi, at 800 

nm (37, 76). The hydration status of the tissue may be tracked via the intensity of 

water absorptions at 970 and 1450 nm (75).

An algorithm to quantify chromophores (Hb, HbOi, and water) in tissue was 

developed using the relationship between their absorptivity spectra, and their tissue
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concentrations (72, 75, 77, 78). According to the Lambert-Beer law, the intensity 

(Ax) as a function of wavelength attributable to each chromophore is proportional to 

the concentration of that chromophore, its molar absorptivity (as a function of 

wavelength), the optical pathlength, and a path length factor that accounts for tissue 

scattering properties (72, 77, 78). Some authors also suggest an additional term that 

accounts for the measurement geometry (77, 78). The method is not without 

problems. For example, the position of the focal length change relative to the 

illumination source and detector, and the wavelength dependent optical properties of 

the tissue are possible sources of systematic error when objectively assessing focal 

changes in target tissues by NIR spectroscopy (77, 78).

Numerous proof-of-concept studies confirm the capability of NIR 

spectroscopy for non-invasive assessment and monitoring of changes in tissue 

perfusion and oxygenation (70-76). The non-invasive NIR fiber optic probe and 

imaging system has been used to monitor oxygen saturation and water contents in the 

pedicle skin flap of rats (75-76). The NIR imaging system has been utilized to 

measure oxygen saturation in skeletal muscle. The oxygen saturation of 

gastrocnemius muscle was assessed in human subjects during exercise (74). The 

regional differences in oxygen saturation within the muscle were detected with 

exercise suggesting the potential o f NIR imaging system in monitoring muscle tissue 

metabolism (74). The NIR spectroscopic imaging system was used to generate maps 

o f regional cardiac oxygenation in an open-chest porcine model (27, 72). The 

coronary artery was ligated to produce regional ischemia on cardiac tissue (72). The
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images based on the regional distribution o f deoxy- and oxyhemoglobin clearly 

demonstrated the ischemic area (72). Non-invasive NIR fiber optic optodes have been 

developed for monitoring cerebral oxygenation and metabolism of the brain in infant. 

For this purpose, the newborn piglets have been chosen as an animal model (70). The 

development o f non-invasive NIR spectroscopy for oxygenation assessment o f brain 

tissue has faced many challenges. The contribution of extracerebral component such 

as skin, skull and cerebrospinal fluid to the signal is one o f the problematic issues 

(71). The confounding interference attributable to the extracerebral components may 

be minimized and the signal of the cerebral tissue may be maximized, with careful 

setup of the measurement by placing the light delivery optode very close to the signal 

receiving optode (27, 71). The method of NIR spectroscopy and imaging are still in 

the early phase of application development (71).

1.9.2 Non-invasive in vivo diagnosis of rheumatoid arthritis

Non-invasive fiber optic NIR spectroscopy has been utilized to pass IR light 

through the joints of patients with rheumatoid arthritis (RA) to objectively evaluate 

the tissue properties within the joints (28). The NIR spectra were obtained from 

multiple joints of both RA and normal control patients. The spectroscopic data within 

the NIR range were examined and spectral subregions were statistically selected 

based on univariate t-tests on individual wavelengths and principal component 

analysis (28). The validation of the model indicated that NIR spectroscopy combined 

with a statistical pattern recognition method was successful in differentiating joints 

with RA from unaffected joints. The correct classification rates of early stage and late
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stage of RA (when combined data from all joints) were 77.3% and 71.2% 

respectively (28). The selected IR subregions are associated with the absorption 

features o f water, cytochromes and heamoglobin suggesting that the method may rely 

on the oxidative status o f joint tissue (28).

1.9.3 Non-invasive screening methods for skin lesions

The feasibility of in vivo diagnostic analysis using NIR fiber optic 

spectroscopy has been demonstrated by the differentiation of 6 common skin lesions 

in humans: actinic keratoses, basal cell carcinoma, actinic lentigo, dysplastic nevi, 

benign nevi, and seborrheic keratoses (29, 30). The results o f this exploratory study 

demonstrated significant differences in several regions between the spectra from skin 

lesions and normal control skin using paired t-tests applied at each individual 

wavelength (30). The difference spectra (diseased-normal) were subjected to analyses 

of covariance to confirm the significance of differences between skin lesion groups. 

The alterations in the spectroscopic data may be associated with the changes in 

heamoglobin species, water content and absorption of protein N-H vibrational mode 

(30). The data set was further explored using optimal region selection genetic 

algorithm to identify discriminatory spectral regions (29). The classifier, based on 

LDA with leave-one-out cross-validation, classified the spectra according to skin 

lesion groups with accuracy of 70-98% (29).

1.10 Current applications of IR spectroscopy in veterinary medicine
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The applications of IR spectroscopy developed for biomedical sciences can be 

utilized to solve clinical problems in veterinary medicine; successful proof-of- 

principle research in the biomedical field has inspired the development of 

applications specifically oriented towards veterinary medicine. The aforementioned 

advantages of small sample requirements (5-50 pL), reagent free analysis, and the 

potential for automation at very low cost have all served to enhance its appeal in 

animal health (15,16, 18). These advantages suggest the possibility o f developing IR- 

based analyses o f biological fluids such as serum, milk, and synovial fluid that may 

assist the evaluation of health status at the herd level and in disease screening for the 

animal population at large (66, 67, 79-82).

1.10.1 Infrared spectroscopy applications in veterinary urology

An example of the straightforward clinical utilization o f IR spectroscopy is 

the identification and structure elucidation of urinary calculi or urolithiasis. The 

prevention and treatment of urolithiasis is facilitated by a knowledge of the 

composition and chemical structure of the calculi (83), and to that end urinary calculi 

in canid, felid and equid species have been studied by infrared spectroscopy (83-86). 

These analyses rely on the strong and distinctive absorption bands that characterize 

and differentiate the various chemical compositions o f these calculi. For example, 

calcium oxalate uroliths may be recognized by the presence of characteristic bands at 

1320 c m '\ whereas struvite uroliths may be recognized by the presence of typical 

absorption bands at 1010 and 572 cm'^ (83, 85, 86). Information from IR 

spectroscopy as well as scanning electron microscopy has contributed to further the
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understanding of the ehemical nature of these uroliths, etiology and risk factors 

contributing to the formation of such calculi, and assist in recommending the proper 

prevention and appropriate therapeutic regimens, such as dietary management (83).

1.10.2 Infrared spectroscopy applications in herd health management

Dairy herd management systems may benefit from certain IR spectroscopic 

methods. For example, FT-IR multi-component milk analysis is an important and 

reagent-free tool that measures fat, protein, lactose, and urea in milk with a low cost 

per sample, at a speed o f up to 500 samples per hour (79, 80). Infrared analysis of 

milk urea was reported to have excellent reliability and repeatability when compared 

to a standard enzymatic test using urease enzyme to convert urea to ammonia 

(Eurochem CLIO) (79). The development of a screening test for ketosis in dairy cows 

is a good example of an IR-based screening test for metabolic disease (80). Ketosis 

results in lower milk production and lower fertility performance (80). Milk acetone 

content is considered the best indicator of ketosis in cows (80, 81). A feasibility study 

of IR spectroscopy that combined principal component analysis (data reduction 

process) and partial least squares calibration (model development), resulted in an 

accurate test for detecting subclinieal ketosis with 95-100% sensitivity, and 96-100% 

specificity, assuming a prevalence of subclinieal ketosis of 10-30% (81).

Another example of IR spectroscopy applied to dairy herd management is 

somatic cell count (SCC) determination in milk by NIR spectroscopy (82). Somatic 

cell counts in milk are considered to be the most important indicators of infection and 

inflammation of mammary gland or mastitis, and are commonly evaluated both at the
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bulk tank and at the individual cow level. Calibration o f SCO was performed using a 

PLS model that correlated NIR spectroscopic data to logarithm transformed SCO 

values. The standard errors of calibration and prediction were 0.36% and 0.38% 

respectively (82). The prediction of SCO by NIR spectroscopy was thought to be 

associated with alterations in lactose content, ionic concentration and the protein 

fraction in milk. The results of this study confirmed the possibility of this test for 

accurately screening for mastitis (82).

1.10.3 Infrared spectroscopy applications in the detection and screening of 

infectious diseases

The application of IR spectroscopy has been extended to the detection and 

screening of infectious diseases. Transmissible spongiform encephalopathies (TSE’s) 

in the forms of scrapie in sheep and bovine spongiform encephalopathy (BSE) in 

cattle are life threatening neurodegenerative disorders that raise significant concerns 

for human health (87). Infrared spectroscopic analyses of tissue and serum from 

infected animals have been performed recently (66, 67, 87-90). The technique of FT- 

IR microscopy has been used to study the molecular alterations associated with the 

scrapie infection in sections o f hamster brain tissue and homogenized brain tissue 

samples (88, 89). IR spectra o f different areas in brain tissues revealed compositional 

changes in proteins, lipids, carbohydrates, and the phosphate backbone of nucleic 

acids from the membrane constituents (88, 89). The changes in IR spectra were used 

to differentiate scrapie-infected tissues from the non-infected ones by means of both 

cluster analysis and artificial neural networks (ANN) (88, 89).
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A feasibility study has been reported for scrapie diagnosis based upon MIR 

spectroscopy o f serum in scapie-innoculated hamsters, with the aim of developing 

and antemortem screening test (90). A spectral classifier based on covariance and 

ANN analyses was able to discriminate serum spectra of infected animals from 

normal control spectra with a test sensitivity and specificity o f 97% and 100% 

respectively (90). While the test works in a practical sense, i.e. a disease-specific 

signature was recovered from MIR spectra of serum by means of multivariate 

classification algorithms, the biomolecular basis of the spectral signal underlying the 

successful diagnosis of scrapie could not be readily explained by the authors; the 

individual serum constituents contributing to the infrared signature remain unknown 

(%%.

Not long after the reported success of IR-based antemortem test in laboratory 

animals, the antemortem identification of a BSE-associated signature in MIR spectra 

of bovine serum was investigated (66, 67). Various computational and classification 

algorithms have been explored to seek a reliable assignment o f spectra to the 

infectious or noninfectious categories (67). The classification results from 4 

classification approaches including principle component analysis plus LDA, robust 

LDA, ANN, support vector machine were combined and mathematically transformed 

into a DPR scoring system (67). The numerical scoring system ranges from 0 to 1, 

indicating the likelihood of a serum spectrum belonging to either disease or control 

classes (40, 42, 67). Interestingly, the combination of 4 classifiers yielded a 

sensitivity > 85% and a specificity > 90% at a confidence level of 95% (67). The
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results from these studies support the hypothesis that the presence o f disease is 

accompanied by characteristic constituent and structural changes in serum 

composition.

1.10.4 Infrared spectroscopic application in veterinary arthrology

The potential of IR spectroscopy to solve diagnostic challenges in 

musculoskeletal disease has been investigated. For example, the spectra of synovial 

fluid derived from horses with osteochondrosis and normal controls were reported 

(91). Based on a limited number of the samples, it was suggested that differences in 

intensities at wavenumber 1000, 1035, 1115 and 1245 cm'^ may be associated with 

the presence of osteochondrosis (91). However, a classification algorithm that 

discriminated between the osteochondrosis and control spectra was not described. 

Synovial fluid spectra from horses with traumatic arthritis have recently been subject 

to multivariate analysis (92). A set o f spectroscopic features differentiating the 

synovial fluid samples associated with traumatic arthritis from the spectra of control 

samples were extracted. A preliminary classification model based on this set of 

features was calibrated by means of LDA and was validated with two independent 

sets of samples (92). The accuracy of calibration set and the validation sets were 97% 

(93 % sensitivity and 100 % specificity) and 89 % (83% sensitivity and 100% 

specificity) respectively (92). The second independent set o f the samples from 

clinically normal horses was classified with 100% accuracy (92). These results 

confirmed the feasibility of IR spectroscopy, combined with multivariate statistical 

analysis, for the diagnosis of equine joint disease.
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1.10.5 Assessment of tissue perfusion and oxygenation using NIR spectroscopy: 

veterinary applications

In veterinary clinical science, the potential of using NIR spectroscopy in real 

time monitoring tissue perfusion and tissue oxygenation saturation has also been 

explored in equine and porcine models (93-96). The technique has been used to study 

haemodynamics and oxygenation status of tissue in the hoof wall of horses (93), in 

muscular tissue (95), and intestinal tissue (94).

A noninvasive NIR spectroscopy technique was use to evaluate pedal 

haemodynamics and oxygenation in normal and laminitic horses (93). Both NIR 

emitter and detector sensors were placed on the dorsal surface o f the hoof wall of one 

front foot in order to assess the vascular function within the hoof (93). Vascular 

occlusion models e.g. cuff inflation and manual occlusions of digital vessels were 

used to induce mechanical changes within the pedal microvessels. The responses to 

ischemic and reperfusion were gauged by alterations in HbOz and Hb absorption 

bands around 900 and 760 nm respectively (93). A weak absorption band between 

780-870 nm was ascribed to oxidised cytocrome aa3, a terminal enzyme in 

mitrochodrial electron transport chain (93). This enzyme is an indicator of 

intracellular aerobic metabolism of the cells when oxygen is available. The decrease 

in HbOz and increase in Hb as well as reduction in cytochrome aa3 had been 

observed in sedated horses subjected to digital vessel occlusion (93). When the 

vascular occlusion was released, the retum-toward-baseline o f HbO^ and Hb were 

observed in NIR spectra indicating the reperfusion o f oxygenated blood and washout
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of deoxygenated blood. The initial reduction of cytochrome aa3, when the digital 

vessels were occluded, may be consistent with low oxygen availability. The rates of 

response in laminitic horses were different from normal horses (93). The change in 

cytochrome aa3 in laminitic horses was more rapid than those found in normal horses. 

The rapid change may be associated with the lower oxygen storage within 

compromised perfusion tissue of the laminitic hoof. The results from the study 

suggested the potential role of NIR spectroscopy in diagnosis o f laminitis and 

prediction of pre-laminitic condition in horses (93).

The assessment o f muscle oxygenation by use of NIR spectroscopy was 

investigated in horses by use of tourniquet occlusion and induction of systemic 

hypoxaemia under general anesthesia and unanesthetized condition (95). The NIR 

absorption bands o f oxygen dependent chromophores including heamoglobin, 

myoglobin and cytochrome aa3 have also been probed by the use o f noninvasive NIR 

spectroscopy. In the muscle, the NIR spectrum of myoglobin can not be distinguished 

from heamoglobin because the absorption bands o f myoglobin and heamoglobin are 

almost identical (27, 95). Therefore, both chromophores were reported together as 

haemoglobin/myoglobin changes (95). The deoxygenation indices were calculated by 

subtracting absorbances at the wavelength that corresponds to 

deoxyhaemoglobin/deoxymyoglobin from those o f oxyhaemoglobin/oxymyoglobin. 

The significant alterations of deoxygenation indices from pre-ischemic baseline value 

were detected in both tourniquet occlusion and induction of systemic hypoxaemia 

under general anesthesia condition but not unanesthetized condition (95). The
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movement artifact in unanesthetized horses may mask the changes in deoxygenation 

indices o f the muscle. There were no significant reductions of cytochrome aa3 

absorbance detected in both conditions (95). The artifact induced by tourniquet 

application related to changes in tissue geometry may contribute to the lack of 

significance in reduction of cytochome aa3 (i.e the changes of tissue geometry when 

applying and releasing the tourniquet may affect optical pathlength). However, the 

results of the study suggested the potential role o f noninvasive NIR spectroscopy for 

monitoring changes in deoxygenation of tissue (by use of deoxygenation indices) that 

may be useful for prevention o f postanaesthetic myopathy in horses (95).

The use o f NIR spectroscopy to evaluate focal and global tissue perfusion and 

oxygenation may be acheived by both NIR fiber optic probe and NIR camera system 

(94). The segmental arteriovenous occlusion and reperfusion of intestine using a pig 

model was utilized to test the applicability of NIR spectroscopy in detecting and 

assessing the tissue perfusion and oxygenation (94). Based upon Lambert-Beer law, 

the least squares estimation of the relative concentration of total haemoglobin was 

used as a measure of tissue perfusion (94). This variable could be derived from the 

summation of HbOi and Hb absorbances. The ratio of relative concentration of HbOz 

to total haemoglobin yielded a measure o f tissue oxygen saturation. The estimation 

for both total haemoglobin and oxygen saturation (ratio) were calculated from the 

tissue contacted area by the use of fiber optic probe. The same method of estimation 

was performed for each pixel of 256 x 256 NIR spectroscopic images. Upon the 

segmentally arteriovenous occlusion and IR spectroscopic measurement, the affected
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intestine segment demonstrated a prompt and statistically significant reduction in 

tissue oxygenation indicated by the reduction in oxyhaemoglobin to total 

haemoglobin ratio (94). The oxygenation returned to the pre-occlusion level after 

reperfusion (94). The NIR image system revealed similar results in response to 

arteriovenous occlusion and reperfusion maneuver (94). The measurement of tissue 

perfusion (reflected by the relative concentration of total haemoglobin) demonstrated 

a minimal and statistically insignificant increase over time during arteriovenous 

occlusion. This suggested a small residual flow which may occur due to incomplete 

occlusion. A statistically significant increase in total hemoglobin concentration was 

also observed in the early phase o f reperfusion before returning to the baseline level 

when using NIR fiber optic probe (94). This suggested a detection of a reactive 

hyperemic response at the initial phase of reperfusion (94). This phenomenon was 

explained in the study by suggesting that the vasodilators released in response to 

ischemia may not be completely eliminated from the ischemic site and may still exert 

their effect in decreasing vascular tone (94). Once the occlusion was released, a rapid 

and heavy influx of blood to the site may lead to hyperemic response. The tissue 

perfusion could be restored to the baseline level when the normal vascular tone can be 

re-established (94). The changes in the intestinal tissue oxygenation and 

haemodynamics in response to arteriovenous occlusion and reperfiision, particularly 

the reactive hyperemic response assessed by NIR spectroscopy, suggested that NIR 

spectroscopy may provide a rapid, reliable and sensitive means to gauge the degree of
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intestinal ischemia and may assist in determination of the margin of tissue for 

intestinal resection and anastomosis in animals (94),

Regardless o f the tissue being probed, the changes in tissue perfusion and 

oxygenation following induction of tissue ischemia or hypoxia can be detected from 

spectroscopic data, revealing the status of both tissue perfusion and oxygenation (93- 

95). However, heavily pigmented epidermal tissue in animals, such as that found in 

black hoof and black hair covered areas can influence and impede the penetration of 

NIR radiation (96). Tissue melanin may also be a source of a strong absorber of NIR 

light (96). These factors have been reported as limitations o f NIR haemodynamic 

monitoring systems in animals (96, 97). Nevertheless, these studies have suggested 

the potential role o f non-invasive NIR monitoring system for tissue perfusion and 

oxygenation in veterinary surgery and anesthesiology (93-97).

1.11 Future directions

The potential role o f IR spectroscopy in biomedical applications was once 

speculated by a renowned British physician and scientist, Thomas Henry Huxley, in 

1885. In his presidential address to the Royal Society, he stated “What an enormous 

revolution would he made in biology, if physics or chemistry could supply the 

physiologist with a means of making out the molecular structure of living tissues 

comparable to that which the spectroscope affords to the inquirer into the nature of 

the heavenly bodies”. Since the first discovery o f IR radiation in 1800 by a 

distinguished astronomer. Sir William Herschel, IR spectroscopy has been
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continuously developed and refined by the efforts of pioneers in this field. Nowadays, 

IR spectroscopy has opened up new applications and gained a lot o f attention from 

many scientific communities including biomedical and veterinary clinical sciences. 

IR spectroscopy-based analyses of biologieal fluid, cells and tissue have been 

investigated with encouraging results. Several reports have demonstrated the 

diagnostic potential o f IR spectroseopy, particularly when combined with advanced 

and powerful computational methods. Not only do IR spectra provide fundamental 

insights into pathogeneses, this revolutionizing technology holds significant promise 

for the development o f objective and reagent-free diagnostic tests that are practical, 

economical and reliable. These diagnostic tests have the potential to benefit both 

humans and animals by offering better disease detection and monitoring methods. 

These in turn trigger rapid and appropriate prevention strategies and treatment 

regimens, thus improving the quality of life for both human and animal patients.

1.12 Objectives of the current study

The broad objective of the current research project is to develop and apply IR 

spectroscopy and statistical classification algorithms to the field o f equine arthrology. 

The specific objectives of the current research project are:

1) To optimize a laboratory protocol suitable for mid-inffared (MIR)

spectroscopic analysis of equine synovial fluid
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2) To identify significant differences and variations due to anatomic 

types among joints and left and right limbs within horses on MIR spectra of 

equine synovial fluid

3) To determine the feasibility of using IR spectroscopy and statistical 

classification algorithms in differentiation of samples of clinically diseased 

joints from those of controls in horses with traumatic arthritis and 

osteochondrosis.

The studies conducted in this research project were a preliminary phase 

(exploratory phase) of diagnostic accuracy research in order to assess the feasibility 

o f this new technology for the diagnosis of joint disease in horses. It is hoped that the 

results from this research project will support the further development of this 

technique in the intermediate and advanced phase of diagnostic accuracy research in 

the future, with the ultimate goal o f developing a preclinical and economical 

screening test for joint disease.
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CHAPTER 2

DEVELOPMENT OF THE INFRARED SPECTROSCOPIC TECHNIQUES 

FOR THE ANALYSIS OF EQUINE SYNOVIAL FLUID

2.1 Introduction

Today’s infrared (IR) spectrometers would be nearly unrecognizable to the 

spectroscopist of a generation ago. With the advent of the interferometer, and 

powerful digital data acquisition and processing (1, 2), IR spectroscopic 

measurements today routinely provide a wavenumber accuracy of +/- 0.01 cm '\ a 

very high signal-to-noise ratio of 10,000:1 or better, and superb reproducibility (2). 

These features have paved the way to the adoption of this emerging technology in the 

biomedical and diagnostic arenas (1-4). The ultimate goal in the development of 

IR-based diagnostic methods is to provide medical practitioners with a reliable, 

practical, and economical diagnostic test that is suitable for routine use. The quality 

and reproducibility of spectroscopic data are of the utmost importance to ensuring the 

reliability o f such tests.

The development of IR based diagnostic tests for equine joint disease rely 

upon both state-of-the-art IR spectroscopic hardware, and also on spectral 

manipulations to bring diagnostic features into prominence (5-7). Once acceptable 

spectra have been measured, the next step is to pre-process the digitized spectroscopic 

data. These manipulations are carried out prior to pattern recognition or model 

calibration, with the aim of optimizing the accuracy of the diagnostic or analytical test
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(8-10). This chapter will focus on the optimization o f laboratory technique, spectral 

acquisition and feature enhancement, and pre-processing procedures used in the 

following chapters. The effects of these preprocessing techniques on spectral 

classification were investigated, and are reported in this chapter. The final section of 

the chapter provides an overview of decision-making criteria pertaining to the 

preprocessing and classification of equine synovial fluid (SF) using a spectroscopic 

dataset from Chapter 5 as an example.

2.2 Sample preparation technique

2.2.1 Optical materials

Various materials are available as optical windows to contain samples for 

spectroscopic analysis. These windows must be transparent to IR radiation. The vast 

majority of these materials are alkali halides, including sodium chloride, potassium 

bromide, barium fluoride, calcium fluoride and caesium iodide (11). Since biomedical 

IR spectroscopy typically involves aqueous or strongly hydrated samples (biofluids 

and tissues), expensive water-insoluble substrates such as barium fluoride and 

calcium fluoride have traditionally been used as optical windows (12-17). Even 

though it is possible to clean and to reuse these materials, it is relatively impractical to 

consider reusing them when contaminated or infectious samples are involved, or 

when batch analyses of the samples are performed (18). Alternative optical materials 

that are more economical and practical may be a better solution in such cases.
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The Institute of Biodiagnostics (in collaboration with Dr. Anthony Shaw), 

National Research Council of Canada has developed a novel sample plate made from 

a silicon wafer (19). The silicon is IR transparent, and is very cost effective making it 

a practical substitute for expensive sample substrates (18, 19). The wafer is cut to 

match the size of a 96-well microtiter plate. An adhesive plastic mask with 5 mm- 

diameter circular windows is placed on the surface of the plate to spatially define the 

positions o f those 96 wells. The microplate is designed to use with the “High- 

Throughput Screening” (HTS) accessory manufactured by Bruker Optics (Billerica, 

Massachusetts) to interface with Bruker FT-IR spectrometers. This accessory carries 

out the automated, sequential acquisition of spectra from the 96 sample wells on the 

silicon wafer, and is therefore well-suited for batch analyses of the type used in both 

the development and implementation of biomedical tests (19). A prototype of this 

novel plate design was used for this research (Figure 2.1). One disadvantage o f this 

sample plate is delicacy of the material. Care should be taken when working with the 

silicon wafer because it is very fragile under compression.

2.2.2 Mid-infrared (MIR) spectroscopy of dried films

Mid IR spectroscopic analysis of biological fluids (such as SF) is technically 

challenging due to the superimposition of strong water absorption bands (0-H  

stretching and bending vibration) upon the absorption bands of other solute species 

within the sample (7, 20). One technique that has come into common use to surmount 

this problem is to dry the sample to a film prior to the spectroscopic measurement (7, 

15-17). This approach was first developed for the spectroscopic analysis of human
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Figure 2.1. A 96-well silicon microplate with the blank position at A1 used as 

the background measurement.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SF samples (12, 21). The dried film technique is typically performed by spreading 

5-50 pL of the biological fluid of interest onto a suitable optical substrate, and 

allowing it to dry completely (7). This approach not only offers a simple and 

convenient way to eliminate the water component of the aqueous samples, but also 

stabilizes the sample since degradative enzymes are likely to be inactivated (20). The 

method can, however, also produce artifacts associated with the spatial heterogeneity 

of the dried film. For example, infrared microscopic mapping of dried amniotic fluid 

films revealed protein deposits concentrated at the edge o f the circular film (6). Some 

o f the dried films of amniotic fluid samples have demonstrated two concentric rings, 

the formation of which may be associated with capillary flow during drying (6). From 

our experience rings are likely to occur when an air bubble is accidentally created in 

depositing the sample onto the plate; care should be taken to avoid the formation of 

these bubbles. As revealed by microscopic examination, SF desiccated films with 

grossly acceptable homogeneity can be obtained by either drying under mild vacuum 

pressure or drying at room temperature (Figure 2.2) (12, 16).

2.2.3 Dilution and deposition volume optimization

Both sample dilution and deposition volume should be optimized for the 

sample o f interest to ensure well resolved spectra of sufficient magnitude, with 

minimal artifacts (6). Artifacts may be introduced into spectroscopic data, for 

example, by deposition of thick layer of films resulting in an overly long optical 

pathlength. If the pathlength is too long, the IR radiation is nearly completely
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Figure 2.2. The dried film of equine synovial fluid (8 |il)
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absorbed at wavenumbers corresponding to strong sample absorptions, and the 

spectra severely distorted as a consequence (6). To avoid such distortions, the 

intensity of light that transmits through the sample and reaches a detector must be 

within the linearity range o f the detector (6). Dilution and sample deposition volume 

are therefore optimized to produce the spectra whose peaks remain in the linearity 

range of detector. One guideline that has been suggested is maintaining the maximum 

absorbance values within the range o f 0.4 - 0.6 absorbance units (6). Once 

established, the optimal dilution and deposition volume should be maintained for 

every sample to ensure spectral reproducibility throughout the experiment.

For the current research, sample dilution and deposition volume were 

optimized by using 30 SF samples from 18 horses (11 females and 7 males). The 

samples were donated for the purpose o f this study. These horses were 1-22 years old 

with mean age of 11.3+6.0 (mean+SD) and median age of 12 years old. Appaloosa 

(n=l). Quarter horse (n=3), Standardbred (n= 13) and mixed breeds (n=l) were 

represented. Synovial fluid samples were aspirated from joints including fetlock 

(n=6), antebrachiocarpal (n=5), midcarpal (n=7), stifle (n=6) and tarsocrural (n=6). 

The samples were centrifuged at 2700 x g for 10 minutes, and the supernatants were 

kept for spectroscopic measurement. An internal standard, KSCN solution (4g/L) was 

prepared in large volume and stored at 15 °C. This standard solution was used to 

dilute all samples in the current research project (16, 22, 23). The same amount of 

internal standard was added into each sample, in the ratio 3:1 SF-to-KSCN. Dried 

films of SF were made for each sample by applying 20 |aL of neat SF and 3 different
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deposition volumes, 15, 10 and 8 pL of the 3:1 SF-to-KSCN dilution. Triplicate films 

were produced for each sample using 4 different dried film preparation protocols as 

described. Each film was prepared by spreading the SF sample preparation evenly in 

a circular motion within a 5-mm circular island on the masked silicon microplate 

described above. For each sample, different dilutions and deposition volumes were 

deposited on the same well position but on different plates (a total of 4 plates were 

used in the optimization). The spectral acquisition was performed using a protocol 

described in the next section. Once the spectra of all samples were obtained, all of the 

replicate spectra with the same concentration and deposition volume were averaged 

(Figures 2.3-2.6). The 3:1 SF-to-KSCN dilution, deposited as 8 pL aliquots, was 

chosen as an optimal dilution and deposited volume, avoiding overly intense IR 

absorption by the sample. Infrared absorption bands of the average spectrum 

including their 95% confidence interval did not exceed the absorbance level of 0.6 

(Figure 2.6) (6).

A representative spectrum of equine SF with major IR band functional 

molecular group assignments is illustrated in Figure 2.7. The major IR band 

assignment o f human SF spectra reported by Jackson et al. (24) was adopted for the 

IR band assignment of equine SF spectra. The overall IR absorption pattern of dried 

film equine SF is relatively similar to the reported IR absorption pattern of human SF

(24). The spectra o f samples produced by the dried film technique used in the current
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Figure 2.3. An average spectrum (black line) with 95% confidence limit (grey 

line) of neat synovial fluid when applying 20 pL onto silicon microplate.

Note: the magnitude of absorbencies greater than the suggested range of 0.4 -  

0.6 absorbance units.
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Figure 2.4. An average spectrum (black line) with 95% confidence limit (grey 

line) of 3:1 synovial fluid to KSCN dilution when applying 15 pL onto silicon 

microplate.

Note: the magnitude o f absorbencies greater than the suggested range of 0.4 -  

0.6 absorbance units.
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Figure 2.5. An average spectrum (black line) with 95% confidence limit (grey 

line) of 3:1 synovial fluid to KSCN dilution when applying 10 pL onto silicon 

microplate.

Note: the number of wavenumbers with a magnitude of absorbency greater 

than the suggested range of 0.4 -  0.6 absorbance units is markedly reduced.
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Figure 2.6. An average spectrum (black line) with 95% confidence limit (grey 

line) of 3:1 synovial fluid to KSCN dilution when applying 8 pL onto silicon 

microplate.

Note: there are no wavenumbers with a magnitude of absorbency greater that 

the suggested range of 0.4 -  0.6 absorbance units.
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Figure 1.1. Equine synovial fluid spectrum with major IR band assignment 

corresponding to key molecular functional grouping indicated.
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study are also dominated by the absorption bands o f N-H and C =0 vibrations from 

protein constituents, CH2 and CH3 stretching and bending vibrations and C-O 

stretching of carbohydrate (primarily hyaluronic acid) (24).

2.3 Fourier-transform infrared (FT-IR) spectral acquisition

The Fourier-transform infrared (FT-IR) spectrometer measures IR radiation 

transmitted through a sample of interest, but in an indirect way. Through a particular 

optical arrangement called an interferometer, the FT-IR spectrum is obtained by 

collecting signal interferograms (11, 25). The actual spectrum is derived from a co­

added set of interferograms by carrying out a mathematical procedure called the 

Fourier Transform. This mathematical transformation converts the power density as a 

function of the difference in pathlength to the power density as a function of 

wavenumber (11, 25). The interferometer therefore lies at the heart of the FT-IR 

spectrometer, with the pivotal advantage of this setup being that all IR frequencies 

impinge on the detector simultaneously. This confers an enormous advantage in 

signal-to-noise for a given measurement time when compared to the traditional 

grating spectrometer, which transmits only a narrow band o f frequencies to the 

detector at a time. The interferometer is an optical arrangement with three core 

components: a beam splitter, a stationary mirror, and a moving mirror (11, 25). 

Broadband (polychromatic) MIR radiation is split into two beams that interfere with 

each other in a constructive and destructive manner as the moving mirror is displaced 

(Figure 2.8). The interference results in an intensity-modulated beam exiting the
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Figure 2.8. Schematic illustration of interferometer (adapted from Reference 11)
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interferometer, that impinges upon the detector. The measured “interferogram” is 

therefore the signal intensity as a function of the pathlength difference (distance) 

between the two arms of the interferometer (Figure 2.8). Fourier-transformation 

converts the signal intensity in the distance domain (cm) dictated by the moving 

distance o f the moving mirror into the desired signal intensity in a frequency domain 

(wavenumber, cm"'), which is the single-beam infrared spectrum (5, 11). Since the 

FT-IR spectrometer analog signal from the detector is converted to digital domain for 

storage and Fourier transformation, the digitized signal may then be subject to 

mathematical manipulations as required and/or desired (5,11, 25).

In transmission-absorbance spectroscopy, the first interferogram is obtained when the 

modulated exit beam reaches the detector in an absence of the sample. After Fourier 

transformation, a background single channel spectrum is generated (11, 25). The 

background spectrum is affected by instrumental and environmental factors. The 

overall profile reflects both the intensity of the source and the response of the detector 

as a function of wavenumber (frequency). Superimposed on this profile may be 

patterns arising through the absorption by atmospheric constituents. For example, 

band complexes centered approximately at 3500 cm'^ and 1630 cm'^ commonly 

appear and are assigned to atmospheric water vapor, while bands at approximately 

2350 cm'^ and 667 cm'* are due to carbon dioxide (11, 26, 27). To factor out both the 

instrumental response profile (detector response, source emission profile) and 

possible atmospheric absorptions, a background spectrum must be measured prior to 

obtaining the spectrum with the presence of sample (26, 27). Once the interferogram
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of the sample is measured (identical to the background measurement, but with the 

sample of interest between the interferometer exit beam and the detector) and Fourier 

transformed, the sample spectrum is determined against the background spectrum in 

order to eliminate the effects from instrument and environment as much as possible 

(11, 25). The absorbance (A) is defined as the logarithm of the ratio Iq/I (28).

A = log 10 (Iq/I)

where Iq and I are the single-beam background and sample spectra respectively. 

Because it is a product based upon a ratio, the absorbance unit is dimensionless. In 

practice, the background measurement for the projects reported in this thesis was 

obtained by measuring the single-beam spectrum for a particular well position (on the 

top left comer of the plate) with no sample in place, prior to every sample 

measurement. This was especially necessary for the current study, as the laboratory 

used for our study had limited climate control, and the humidity could vary 

significantly over a 24 hour period.

Since the transmittance is defined as I/Io, the relationship between absorbance 

(A) and transmittance (T) is defined by (28):

A = -log (T )

Using the ratio of a single-beam spectrum of the sample with its counterpart 

background spectmm successfully eliminates the bands attributable to atmospheric 

water and CO2 only if the concentrations of these vapors remain stable when 

obtaining both the background and sample single-beam spectra (26, 27). However, if  

there is any difference in concentration of the vapors between the two measurements.
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these bands appear in the resultant spectrum. To ensure that atmospheric water levels 

are low and stable, the sample compartment may be purged continuously with dry air

(25). Any weak water absorptions that do appear in the spectrum may be minimized 

by using a spectral subtraction algorithm that iteratively subtracts the spectral features 

attributable to water vapour. Automated routines are available to minimize the 

intensity of residual absorptions following subtraction (27). The multisampler 

compartment (HTS-XT, Bruker Optics, Milton, ON) used for the present research is 

equipped with a desiccant cartridge without any accessible channel for purging the 

system. To minimize the influence of long-term drift in atmospheric water 

concentration, a new background measurement (predetermined at the first position of 

the top left corner o f the silicon microplate) was performed immediately prior to each 

sample measurement. While this strategy minimized the influence of atmospheric 

factors as much as possible, a system to purge the multisampler compartment would 

likely be a more effective (time saving) way to eliminate atmospheric carbon dioxide 

vapor if installation were possible.

In the current research project, a baseline variation was observed on the IR 

spectra. This variation was observed in the IR spectra of empty sample wells of the 

silicon plates prior to the deposition of sample, and the IR spectra derived from the 

deposition of a sample onto the sample wells (see Appendix 1). One of the possible 

explanations for baseline variation (especially those observed in the spectra measured 

from each well o f the plate prior the deposition o f sample) is that it may arise from 

imperfect positioning of the modulated exit beam on each well position (i.e the
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perimeter o f the modulated beam did not fit perfectly inside the perimeter o f the wells 

situated on the silicon plate). In such cases, the portion o f the beam that falls outside 

the sample well cannot reach the detector. Varying negative absorbance may occur 

when the intensity of the single-beam background ( I q)  is less than the single-beam of 

a particular sample well on the silicon plate (I). In the current research project, this 

limitation was acknowledged. Several attempts to adjust the position of the 

microplate on the carriage inside the multisampler compartment were made. The 

measurements o f silicon plate without deposition of sample suggested that samples 

wells situated on the periphery of the plate were more likely to produce spectra with 

higher degree of baseline variation. Therefore, these particular wells were not used 

(columns 1, 11 and 12; rows A and H). The baseline variation was minimized to a 

level of -0.05 to 0.05 absorbance units by the adjustment of plate position and by not 

using the wells on the periphery as previously described. The last strategy to deal 

with the minimal baseline variation of the spectra is to use derivatives of the 

spectroscopic data. The method will be described in the following section of this 

chapter.

Other possible sources of measurement variation were observed in the current 

research. The spectra derived from the deposition o f a single sample onto 3 different 

silicon plates demonstrated varying degree of within-plate variation and between- 

plate variation. These variations were observed only at some particular wavenumbers 

(see Appendices 2-6). The possible reasons for these phenomena are not yet fully 

understood. However, they appear to be related to well position on the plate. To guard
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against possible sources o f bias due to plate and to account for such effects, a 

randomized block design was used to assign samples to plate and well position prior 

to deposition of samples.

Acquisition parameters that must be specified in collecting FT-IR spectra 

include the number o f scans, spectral resolution and apodization functions (4, 18, 22, 

29). Where spectra o f high signal-to-noise ratio are desired, signal averaging is 

conducted by repetitively scanning and co-adding individual interferograms (5, 11). 

The signal-to-noise ratio (S/N) is proportional to the square root of the number of 

scans, for example co-adding 512 scans is to achieve a theoretical enhancement of 

22.63:1 S/N ratio (5, 11). Resolution is a measure of the instrument’s ability to 

separate two overlapping peaks. A nominal spectral resolution of 4 cm"' means that 

peaks whose maxima are separated by 4 wavenumbers would be resolved in the 

measured spectrum (25). The nominal resolution is dictated by the displacement 

distance of the moving mirror (11, 25). In addition to dictating the resolution, another 

consequence of the finite mirror travel is the presence of artificial side lobes (or pods) 

on the FT-IR spectra whose natural bandwidth is narrow (11). To address this 

concern, an “apodization function” is usually chosen to multiply an interferogram 

before Fourier transformation in order to minimize the artificial negative and positive 

side lobes of the spectral line (11). In particular, the Blackman-Harris 3-term 

apodization function is recommended for routine liquid and solid phase spectroscopic 

measurements, and has been used previously in many biomedical MIR spectroscopy 

studies (4, 18, 25, 29, 30).
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For the current study, the MIR spectral acquisition and enhancement of 

spectroscopic data was carried out using the following protocol: the MIR spectra in 

the range of 400 - 4000 cm'* were recorded using a multisampler compartment (HTS- 

XT, Bruker Optics, Milton, ON) interfaced with a FT-IR spectrometer (Tensor 37, 

Bruker Optics, Milton, ON) equipped with a deuterium tryglyeine sulphate (DOTS) 

detector. For each spectrum, 512 interferograms were coadded at a spectral resolution 

of 4 cm'*, and a Blackman-Harris 3-term apodization function applied to the coadded 

interferogram prior to Fourier transformation.

2.4 Spectral pre-processing

Spectral “pre-processing” encompasses a variety o f mathematical 

manipulations with 3 main purposes (8):

1) to factor out irrelevant data and hence reduce the data dimensionality

2) to preserve and/or enhance meaningful diagnostic information within the 

spectroscopic data.

3) to transform the spectroscopic data into suitable format for further analysis 

(i.e. chemometrie spectral classification)

Chemometric test development typically proceeds in two stages (8). In the 

first stage, the spectra may be subjected to differentiation and normalization (8-10), 

with the aim of minimizing the non-diagnostic sources of spectral variation. These 

include, for example, variations in spectral baseline and slope, which are remedied by 

second order differentiation, and variations in absolute intensity, which may be
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remedied by normalization. This spectral preprocessing is then typically followed by 

feature extraction -  a procedure that combines and transforms the spectroscopic data 

(as variables) into a set of new derived variables or factors to reduce the dimension of 

the spectroscopic data (8). Principal component analysis is one technique that is 

commonly used for this purpose (31,32).

Four preprocessing techniques were frequently employed for the 

spectroscopic studies reported here, including spectral averaging, subtraction, 

normalization, and differentiation/smoothing. These techniques are reviewed below.

2.4.1 Spectral averaging

A set o f spectra as defined by a user can be averaged. The idea of spectral 

averaging is to calculate the arithmetic mean intensity (y) for each data point (y,) of N 

input spectra (33).

y =  l Y i / N

The average spectrum is therefore a plot of the mean intensity of each data point 

versus wavenumber. The technique was exploited here most often to obtain the 

average o f triplicate dried film spectra. The resulting representative spectrum 

calculated from this procedure was used for subsequent analysis.

2.4.2 Spectral subtraction

This technique is widely used in spectral analysis, and simply entails the 

arithmetic subtraction of the intensity for corresponding data points for pairs of 

spectra (28). Spectral manipulation software further allows for iterative spectral 

subtraction, with the subtrahend multiplied by a user-controlled continuously variable
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factor. The digital subtraction technique is useful, for example, to recover solute 

spectroscopic information from solution spectra by subtracting the solvent spectrum 

from the sample speetrum (28).

Water is the main eonstituent in biological fluid such as SF (7, 34). For IR 

spectroscopic measurements in the native fluid state, the strong water absorptions 

overwhelm spectroseopic features of other cbemieal constituents (7, 34). 

Theoretically, digital subtraction may remove the contribution from water from the 

biological fluid spectrum. However the operation needs to be performed with caution. 

Digital subtraction of a pure water spectrum from its biological fluid counterpart by 

using software may induce artifaets in the resultant speetrum (20). Comparison of 

water absorptions in the spectrum of a biological fluid to their eounterparts in the 

spectrum of pure water reveals subtle differences (20). One possible explanation is 

that the structure of water is altered by the presenee of solutes, e.g. macromolecules 

(20). To avoid this eomplication, and to circumvent the practical difficulties 

assoeiated with MIR spectroseopy of aqueous specimens, the dried film teebnique 

was adopted for the current project (7, 20, 34).

2.4.3 Spectral normalization

Spectral normalization is one of the most common spectral preprocessing 

techniques (16, 17, 23, 29, 30, 32, 34, 35, 36). The idea is to scale eaeb speetrum in a 

dataset to some common constant value (36). This method is aimed to minimize 

variations in the overall spectral intensity, so that spectroscopic variations believed to 

be important for the spectral calibration or classification become more prominent
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(32). There are several methods for normalization. One is to add an internal standard 

to all samples. For example, KSCN gives rise to a peak at approximately 2060 cm '\ 

Normalization of the spectra to a common intensity o f this KSCN peak is one 

common normalization method (16, 17, 23, 34). By adding the same amount of 

aqueous KSCN solution to each sample in a dataset, the spectra may be normalized or 

scaled to yield a common effective pathlength or thickness of the dried film (34).

Vector normalization is a convenient procedure for the normalization of 

derivative spectra in particular (29, 30, 32, 35, 36). The first step is to choose a 

spectral region as a basis for vector normalization, the “normalization region”. Then 

the calculation is carried out in the following way; firstly, for each 2"'̂  derivative 

spectrum the sum of square absorption intensities is calculated for all data points 

within the normalization region. The square root of this sum is then evaluated for 

each spectrum, and adopted as the normalization factor for that same spectrum. When 

each spectrum is scaled in this way (the entire spectrum is divided by this 

normalization factor), the sum of square intensities within the normalization region is 

equal to 1. Put another way, the N-dimensional vector o f spectral intensities within 

the normalization range has the same length (of 1) for all spectra.

The choice of normalization range is user-defined. In one study, the 

normalization region was chosen as the region wherein the difference between the 

normal and abnormal samples was believed to be most pronounced (32). In the work 

reported here, vector normalization was performed on the 2"̂  derivative spectra (see
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the next section), using a MATLAB script (MATLAB, MathWorks, Natick, MA, 

USA) developed by collaborators at the IBD, NRC, Winnipeg, MB, Canada.

2.4.4 Spectral differentiation

Spectral differentiation is commonly used to eliminate random variations in 

baseline offset and slope (8, 25, 28) that may otherwise obscure variations of 

diagnostic relevance (29, 30, 35-37) (Figure 2.9). This technique mathematically 

transforms an absorbance spectrum to the first, second, or higher-order derivative of 

that spectrum (Figure 2.9) (8, 25, 28). In addition to removing baseline and slope 

variations, derivation also has the benefit of narrowing the spectral band shape and 

hence resolving features that might otherwise be inaccessible. The spectral 

appearance can be altered dramatically as compared to the original absorbance 

spectrum. For example, peak maxima in absorption spectra correspond to the 

zero-crossings (y axis) in the first derivative counterparts, and are inverted to give 

negative peaks in second derivative spectra (8, 25, 28) (Figure 2.10).

This technique offers several advantages to the analysis o f raw spectroscopic 

data. The effective resolution enhancement can reveal weak absorptions that might 

otherwise go unnoticed (8, 25, 28). However, care should be taken when applying this 

technique to noisy spectra - the noise component can be greatly amplified by this 

technique (8, 25). For this reason, spectral smoothing is almost always carried out 

hand-in-hand with derivation. The Savitzky-Golay algorithm is considered the most 

useful one for IR spectroscopic data (8, 10). This algorithm enables the differentiation
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Figure 2.9. A set of 8 spectra with baseline variation shown before being subjected to 

spectral differentiation (a) and their corresponding first (b) and second (c) derivative 

spectra (A = absorbance)
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Figure 2.10. A normal spectrum (a) and its corresponding first (b), and second (c) 
derivative spectrum using a KSCN band as an example
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of the spectra while simultaneously smoothing the data using suitable polynomial 

smoothing functions (a suitable array of weighting coefficients suggested by Savitzky 

and Golay is used as a smoothing function) (8, 10). All smoothing algorithms 

(including the Savitzky-Golay method) have the effect of minimizing the noise, while 

at the same time decreasing the effective spectral resolution (8, 10) and at the cost of 

spectral line distortion (8). Experience with the process teaches the practitioner the 

optimum trade-off between signal-to-noise and spectral resolution.

2.5 The effect of smoothing technique on spectral classification

A pilot study was conducted in the current research project in order to gain an 

understanding about derivation, smoothing technique and spectral classification, 

using MIR spectra of SF samples from joints with osteochondral fracture and those of 

controls. The objective of the pilot study was to investigate the effect of varying the 

degree of spectral smoothing on the accuracy of spectral classification by using a 

dataset (the traumatic arthritis dataset that was partially used in Chapter 4). The 

spectral differentiation and smoothing procedures (Savitzky-Golay smoothing 

algorithm) were simultaneously performed by the use of proprietary software 

(GRAMS/AI 7.02, Thermo Galactic, Salem, NH, USA).

The 2"'̂  order differentiation was chosen for investigation in this study due to 

its advantages for removing baseline and slope variations, and resolving features of 

the overlapping bands that may be inaccessible in absorption spectra (7-8). The peak 

maxima in absorption spectra were inverted to give negative peaks in second
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derivative spectra, therefore the positions of peak maxima are still preserved after 

transformation (8). Then, varying and increasing degrees of spectral smoothing were 

investigated. The classification of IR spectra from affected joints and those of 

controls was performed using a genetic algorithm for optimal region selection 

developed by the Institute for Biodiagnostics, National Research Council of Canada 

in collaboration with Dr. Anthony Shaw. Comparisons of classification results 

including sensitivity, specificity, and accuracy were performed among different 

degrees of smoothing.

The genetic algorithm used for spectral classification is programmed to seek a 

set of spectral subregions that can provide a basis of spectral classification, using 

discriminant analysis as the basis for that classification (39-40). Generally, this set of 

spectral regions is sought by making use of a subset o f spectra, referred to as the 

calibration set. Once the optimal regions have been chosen, the discriminant analysis 

classifier is considered to be optimized. For each spectrum, the input variables for 

spectral classification are the set of average intensities calculated from the set of 

spectral subregions (an average intensity of each spectral subregion was calculated) 

selected by the genetic algorithm and its actual class designation (whether it is in 

affected or control groups) (39-40). Classification results are reported as numbers of 

spectra in the calibration set that are correctly classified or misclassified in each class 

(41-43). These numbers allow the calculations o f sensitivity, specificity, and accuracy 

for the calibration set of spectra. The robustness and general applicability of the 

classification are then tested by an independent set of spectra, the so-called validation
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set (40). The sensitivity, specificity, and accuracy are then calculated and compared 

to those from calibration set. The spectroscopic data preprocessing and classification 

strategy for this pilot study are schematically illustrated in Appendix 7.

A set of SF sample (n=94) from 49 horses age between 2-5 years were 

included in this pilot study on spectral preprocessing. The samples were collected 

from fetlock, antebrachiocarpal and midcarpal joints. Fifty-three samples are from 

joints with osteochondral fragmentation and 41 samples are from control joints. 

Numbers o f samples according to anatomical locations o f joints in affected and 

control groups were presented in Appendix 8 . Sample preparation and spectral 

acquisition were as described previously (see section 2.2 and 2.3). Spectral 

differentiation and smoothing were applied to the set of spectra using the Savitzky- 

Golay algorithm (GRAMS/AI 7.02, Thermo Galactic, Salem, NH, USA). A total of 

94 spectra were transformed into second derivative spectra. Three different levels of 

smoothing including 15 points, 25 points and 45 points were applied to the set of 

spectra.

In order to validate and estimate the accuracy of classification for each degree 

o f smoothing, the random re-sampling with replacement technique was exploited to 

separate spectra (53 affected and 41 control spectra) into calibration and validation 

sets. The calibration set consisted of 35 spectra randomly selected from 53 affected 

spectra and 27 of those 41 control spectra (two-thirds of affected and control groups) 

by using computer generated random numbers (Minitab 13, Minitab Inc., College, 

PA, USA). The remaining spectra of those affected and control samples constituted a
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validation set. Twenty iterations o f re-sampling with replacement were conducted to 

achieve 20 sets of calibration and their corresponding validation sets. At the end of 

this re-sampling, there were 20 calibration sets and their corresponding validation sets 

for each smoothing method.

The spectroscopic data within the range of 400-1800 cm’  ̂ were used in 

spectral analysis. In our experience, inclusion of spectroscopic information within the 

range of 400-1800 cm'^ into statistical analysis is likely to yield a better classification 

result than using either the entire MIR range (400-4000 cm"') or the information from 

2750-4000 cm'^ (see Figure 2.7) in statistical analysis. In addition, restricting the IR 

range to 400-1800 cm'^ may help to reduce the high dimensionality of our data 

matrix, which is especially important when constrained by a limited sample size of SF 

samples.

Following the preprocessing and the conversion into a suitable data format 

(see Appendix 7), the classification of the spectra with respect to their class 

designation was performed using the genetic algorithm as previously described. Three 

optimal regions were successfully selected (see Appendices 9.1- 9.3 for optimal 

regions selected by genetic algorithm). Classification models based on those regions 

were optimized from each calibration set and tested using the spectra in the validation 

sets. Finally, the 95% confidence interval of the mean sensitivity, specificity and 

accuracy of the calibration and validation sets were calculated (see Appendices 10.1-

10.3 for sensitivity, specificity, and accuracy of all calibration-validation sets). The 

plot of 95% confidence intervals of the mean sensitivity, specificity and accuracy of

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the calibration and validation sets when subjected to 3 different levels of smoothing 

were placed side by side in Appendices 11.1-11.3.

There were no significant differences (a  = 0.05) among the 3 levels of 

smoothing based on the classification results (sensitivity, specificity and accuracy). 

This suggested that the smoothing procedure may not have a profound influence on 

classification result of this dataset. However, insignificant increases in the mean value 

of sensitivity, specificity and accuracy were observed in validation sets suggesting 

that smoothing might provide some benefits to the classification of the spectra 

(Appendices 11.1-11.3).

One limitation that needs to be addressed in this data analysis is the 

dependence of the spectra. A firm conclusion regarding to the classification results 

cannot be achieved because of a violation of at least one of the assumptions of 

independence for discriminant analysis. This multivariate statistical analysis requires 

an independence of the spectra being classified (i.e. each horse provides a single SF 

sample for spectral analysis). To meet such assumptions, a larger number of horses to 

provide a single sample from either affected or control joints are required. The 

optimal solutions for the spectral classification of this dataset were later developed 

and described in Chapter 4.

2,6 An overview of spectral preprocessing and classification strategy

The purpose of this section is to provide an overview and describe decision 

making criteria pertaining to the preprocessing techniques and classification strategy
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of SF spectra of horses with osteochondrosis as an example. The optimal and final 

solution for spectral preprocessing and classification will be further described in 

Chapter 5. The process of spectral classification used in this current research began 

with selection o f appropriate preprocessing techniques, selection o f significant 

infrared subregions, and development and validation of a preliminary classification 

model based on significant subregions. These 3 key elements are crucial for the 

success of the classifications of equine SF spectra in this current research project (see 

Chapter 4 and Chapter 5). In the osteochondrosis study (see Chapter 5), the spectral 

classification was performed on a set of spectra consisting o f 64 spectra from 

tarsocrural joints of 64 horses (each horse provided a single joint fluid sample). There 

were 33 samples from joints with osteochondrosis and 31 samples from controls. The 

sample preparation and spectral acquisition methods were as described previously 

(see section 2.2 and 2.3).

2.6.1 Selection of preprocessing technique

The spectral preprocessing and classification strategy described in this section 

are schematically illustrated in Appendix 12.1 and the summary of classification 

results is presented in Appendices 12.2 - 12.3. The spectral differentiation and 

smoothing procedures (Savitzky-Golay smoothing algorithm) were simultaneously 

performed by the use of proprietary software (GRAMS/AI 7.02, Thermo Galactic, 

Salem, NH, USA). Sixty-four spectra were transformed into both first and second 

derivative spectra. Varying degrees of spectral smoothing were applied to both first 

and second derivative spectra with 5, 9, 15, 19, 21, 25, 30 points. The genetic
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algorithm approach was used as a method for rapid classification and optimization of 

differentiation and smoothing preprocessing technique for this dataset. The 

classification results (accuracy) of the first and second derivative with varying degree 

of spectral smoothing based on 6 optimal regions are graphically illustrated in 

Appendix 13. Six optimal regions were chosen by the genetic optimal region 

selection algorithm. It is recommended that the ratio o f the number of spectra per 

class to number of optimal regions selected should be 5:1 to 10:1 (40). The 2"*̂  order 

derivation with 19 point smoothing was finally selected as an optimal differentiation 

and smoothing method based on the highest accuracy yielded.

The appropriateness of vector normalization technique (see section 2.4.3) for 

this dataset was also explored. For this purpose, the dataset containing 64 non­

normalized 2 "̂  derivative spectra with 19 point smoothing was subjected to vector 

normalization. The IR regions providing the basis for normalization included 1950- 

2150 cm"’, 1500-1700 c m '\ 800-1450 cm '\ These regions correspond to 

characteristic bands of KSCN (1950-2150 c m '\  protein, lipid and carbohydrate 

absorptions. The region o f particular interest was 800-1450 cm '\ This region 

encompasses characteristic bands at 1000, 1035, 1115 and 1245 cm'* which were 

reported to be associated with the presence of osteochondrosis in a previous study 

(44). The dataset of 64 second-derivative spectra was subjected to three different 

vector normalization methods as described. The non-normalized and normalized data 

were used in the next step.

2.6.2 Selection of significant infrared subregion
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In the osteochondrosis dataset, differences o f mean age in either the 

osteochondrosis or the control groups may introduce bias into data analysis. The 

horses in the osteochondrosis group were likely to be younger than the control group 

(see detail in Chapter 5). Analyses o f covariance (ANCOVA) were employed to 

detect sets of wavenumbers that demonstrated a significant effect of group (p<0 .01) 

after accounting for the age variable. The statistical analyses were performed on each 

wavenumber basis within the entire range of MIR (400-4000 cm‘ )̂. Significant 

subregions were defined as a set of at least 4 consecutive wavenumbers that 

demonstrated a significant effect o f group at a level of p < 0 .01 .

A significance level o f a  = 0.01 was set to guard against type I error arising 

from multiple statistical analyses performed on entire wavenumber range of MIR 

spectrum. The criterion o f using at least 4 consecutive wavenumbers was exclusively 

established in the current research based on the minimal width of the optimal range 

reported (1). In general, the width of the optimal region usually spans from 4 to 50 

cm'^ and 5 to 15 optimal regions were selected to include in a classification model 

(1).

Before applying ANCOVA on each wavenumber, a test for parallelism was 

performed to ensure that the data is suitable for applying ANCOVA (45). This 

assumption has to be met in order to avoid misinterpretation o f the results. Analysis 

o f non-normalized data revealed an inappropriateness of applying ANCOVA with 

this particular dataset because substantial IR subregions failed the test for parallelism. 

This problem was solved with the normalization method. The dataset after
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preprocessing with any o f 3 normalization methods was suitable for applying 

ANCOVA as indicated by the test for parallelism.

There were 6, 5 and 12 significant subregions detected when data were 

normalized on based on wavenumber range o f 1950-2150 cm'*, 1500-1700 cm'*, 800- 

1450 cm'* respectively (see Appendix 12.3). The highest number of significant 

subregions (when using 800-1450 cm'*as a basis of normalization) may reflect the 

ability of this particular normalization method to minimize variations in the overall 

spectral intensity and factor out irrelevant information, giving greater prominence to 

the spectroscopic variations believed to be important for successful spectral 

classification (32, 36). The 2"̂ * order differentiation with 19 point smoothing and 

vector normalization using the IR range of 800-1450 cm'* as a basis of normalization 

were chosen as optimal methods to preprocess the spectra of SF from horses with 

osteochondrosis and those of controls (Chapter 5). The preprocessed spectra were 

used for development of classification model and model validation as the final step.

2.6.3 Classification model development and validation

Discriminant analysis is the most common supervised pattern recognition 

method used to classify the spectra in biomedical research (12, 14, 18, 24, 29, 31, 37, 

40,41, 43). The essence o f this classification technique can be graphically illustrated 

by a multidimensional plot in some cases (Figure 4.3 in Chapter 4), but in other cases 

where there are > 3 variables an alternate representation is required (46). Each 

coordinate point represents each spectrum in N dimensional space where N is the 

number of significant regions (38, 41, 47, 48). The value on each axis corresponds to
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the average intensity of each significant region. Discriminant analysis identifies the 

boundaries that best separate the points in multidimensional space with respect to 

their group membership (38, 41, 47, 48). For example, in bivariate linear discriminant 

analysis, these boundaries may be a straight line defined by a linear equation. The 

discrimination or class assignment base on discriminant analysis can be appreciated 

by consideration of probability and Bayes’ theorem; a sample or object should be 

assigned to that class that having the highest conditional probability (38, 48). The 

class assignment based on indirect estimation o f conditional probability can be 

achieved through calibration of discriminant function and rules (38). A 

comprehensive description of the principles underlying the theory of discriminant 

analysis is beyond the scope of this thesis, readers are referred to McLachlan (49) for 

details. The discriminant analysis procedures were performed in the current research 

project by the use of proprietary statistical software (SAS 8.02, SAS institute 

Inc.,Cary, USA) with the aim of deriving the preliminary classification models. The 

classification results can be presented in a form of a contingency table that shows the 

number of samples (or spectra) based on their actual class against their predicted class

(8) (see table 5.2 in Chapter 5). Stepwise discriminant analysis was applied prior to 

calibration of classification models. This procedure is performed to select a set of 

subregions (from those significant subregions selected from the previous step) that 

most contribute to the power of discrimination (50). The significant region selection 

procedure based on ANCOVA and stepwise discriminant procedure are the strategies
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for reducing the dimensionality o f data matrix particularly when the number of 

variables exceeds sample size as seen in the current research project (50).

The model validation technique used in the osteochondrosis study was the 

leave-one-out cross-validation technique (see section 1.8.2 in Chapter 1). The 

classification results (sensitivity, specificity, and accuracy) o f the 3 methods of 

normalization applied with this dataset are summarized in Appendix 12.3. The 2"‘* 

order differentiation with 19 point smoothing and vector normalization by using IR 

range of 800-1450 cm"' as a basis of normalization yielded the highest accuracy 

among the 3 methods. The performance o f class prediction by a classification model 

using all 64 preprocessed spectra in the dataset was not as high as we expected 

(overall accuracy of 77%) when compared to the traumatic arthritis dataset for which 

overall accuracy of 97% was achieved from 29 spectra in the calibration set. The 

diagnostic features distinguishing diseased spectra from control spectra may be less 

prominent in the osteochondrosis dataset when compared to the traumatic arthritis 

dataset. The performance of the classification model may be improved and refined by 

inclusion of more samples in the future. However, the leave-one-out cross validation 

seems to be a reasonable means to estimate an overall performance of classification 

o f osteochondrosis sample at this preliminary stage.

2.7 Conclusion

The main emphases of this chapter, practical laboratory technique, optimal 

spectral acquisition, effective spectral pre-processing techniques, and data
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classification techniques comprise the foundation for the development of IR-based 

diagnosis of equine joint diseases. The optimal dilution and sample deposition 

volume were established as a strategy to achieve a suitable optical pathlength of SF 

dried films. Randomized experimental design was applied on each plate of each 

experiment to guard against possible bias sources due to the variability of the plate 

and well positions (column and row) on the prototype of silicon plate used in the 

study. Spectral acquisition protocol and parameters were optimized to obtain the 

resultant spectra with high resolution and signal-to-noise ratio. Synovial fluid spectra 

acquired within the optimal laboratory technique and spectral acquisition protocols 

are comparable to those reported in a human study (24). The same laboratory 

techniques and spectral acquisition protocol were maintained consistently for all 

studies summarized in the following chapters. The spectral pre-processing procedures 

as described in this chapter were utilized to enhance spectroscopic features that 

faithfully related to the pathological changes and to transform spectroscopic data into 

a form that is suitable for statistical analysis. Generally, the choice of technique was 

based on the nature o f the spectroscopic data and the studies being undertaken, with 

subtle but important variations to suit each set of circumstances (8). The 

preprocessing techniques were carefully optimized for each data set to achieve the 

best possible classification result.
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CHAPTER 3 

AN ANALYSIS OF INTRA-HORSE BIOCHEMICAL VARIATIONS 

BETWEEN HIGH MOTION JOINTS BASED ON THE INFRARED 

SPECTRAL CHARACTERISTICS OF SYNOVIAL FLUID

3.1 Abstract

Infrared spectroscopy relies upon the absorption characteristics of chemical 

bonds of infrared active molecules when exposed to IR light. The absorption pattern 

is very specific to the molecular species within the samples. The infrared spectrum of 

a sample is often referred to as a molecular fingerprint that reflects the structure of 

chemical constituents with the intensity of absorptions being directly related to their 

concentrations. In the development of IR-based analysis of synovial fluid (SF) for 

diagnosis and assessment o f joint diseases in horses, the proper selection of normal 

control joints and an appropriate method of comparison are crucial factors in study 

design and data analysis. Intrinsic sources of variation, other than those due to 

disease, may cause differences in composition of SF samples. These intum, may lead 

to differences in IR absorption patterns. The objective of this study is to identify 

significant differences due to natural variation among different anatomic types of 

joints and left versus right limbs that may affect the pattern o f mid-infrared (MIR) 

spectra derived from SF of clinically normal joints. Synovial fluid samples were 

collected from joints with no abnormalities detected in radiographic examination 

and/or necropsy. The left versus right comparison was conducted by use of 78

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bilateral SF samples from antebrachiocarpal (AC), midcarpal (MC), and tarsocrural 

(TC) joints obtained from 13 horses. The between-joint comparisons were conducted 

by use of 66 ipsilateral SF samples from AC, MC, and TC joints of 22 horses. Mid- 

infrared spectra were acquired and mathematically manipulated. Analyses o f variance 

for a complete block design using horse as a blocking factor were performed on each 

wavenumber. The wavenumbers that demonstrated significant effect (p<0.01) of side 

(left versus right) and significant differences (p<0.01) among joints were the primary 

outcomes of interest. Significant differences among AC, MC, and TC joints in SF 

composition were identified in MIR spectra. The MIR absorption patterns of SF 

samples derived from pairs o f contralateral joints were similar supporting their use as 

within subject control in appropriately designed studies. The finding of a broad range 

of biomolecular differences among these joints indicates that interarticular variation 

within the horse needs to be considered in prospective study design, as well as studies 

of naturally occurring joint disease. Further normal samples should be evaluated to 

better characterize the range and significance of MIR spectral changes detected.

3.2 Introduction

The synovial fluid (SF) from normal joints is a unique dialysate o f plasma 

with the addition of hyaluronate and other molecules secreted by synoviocytes (1-3). 

This specialized fluid plays important roles in articular cartilage nourishment, joint 

lubrication and disease (3). Analyses of SF using conventional and novel molecular 

(biomarker) approaches have been used to assist the clinical diagnosis of arthritic
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conditions in veterinary and human medicine (4-8). Conventional SF analysis 

consists of evaluations of color, viscosity, volume, clot formation, total protein and 

cytologic examination (6, 8). Although useful in cases of septic arthritis, these 

parameters provide limited information about the degree of synovitis, and are of little 

value in identifying articular cartilage or subchondral bone damage in the 

osteoarthritic joint (9). In recent years the focus o f osteoarthritis (OA) research has 

shifted from microscopic changes in cell number and total protein parameters, to the 

search for biomarkers (direct or indirect molecular indicators of abnormal skeletal 

turnover) for joint disease in humans and horses (4-8, 10, 11). Various biomarker 

assays have been developed to identify qualitative and quantitative changes in intra- 

articular catabolism and anabolism using biochemical analysis, radioimmunoassay or 

ELISA (4-8, 10, 11). Early results are promising but complex multiple assays may 

be required to characterize cases of joint disease, and further study is required to 

determine their usefulness for routine osteoarthritis assessment (11). Other tools 

including genetic array analysis are under development, but as yet are either too 

expensive for routine screening, or have limited availability (12).

Infrared (IR) spectroscopy is revolutionizing the assessment of biological 

molecules and the biochemical response to disease (13-18). This technology relies 

upon the absorption characteristics of biomolecules when exposed to IR light (14, 16, 

17). The absorption pattern is very specific to the nature and distribution of molecular 

species within a sample, with the intensity of absorptions being directly related to 

both the concentration and composition of the various constituents (14, 16, 17).
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Within an animal species and for a particular disease, the IR spectra of a biological 

sample may be referred to as a “molecular fingerprint” that is correlated to the 

presence or absence of that disease (14, 16, 17). The feasibility and usefulness of IR- 

based analyses of various types of biological fluids have been investigated in previous 

studies (13, 15, 16, 18). The advantages of this approach are that no specific reagents 

are required because all IR active species within the samples give rise to IR 

absorption bands without a need for chemical or immunological modification. 

Automated repetitive analyses can be performed with low cost (16). It is a potentially 

powerful technique because an enormous amount of biochemical information 

(qualitative and quantitative) is extracted from the sample constituents, with features 

contained within the IR spectrum characterizing the sum of all IR active components 

in a sample (14, 16).

Recently the application of IR spectroscopy to evaluate human arthritis has 

been pioneered resulting in a novel diagnostic methodology (13, 15). However there 

are no published studies comparing the IR profiles among normal joints, or 

identifying the effect of anatomic location on spectral variables used to characterize 

joint disease. In order to advance this technique of SF analysis, an understanding of 

the IR spectroscopic information gathered from ‘normal’ horse or joint populations is 

as important as that derived from diseased horses. It is clear from other published 

reports that significant mechanical and biochemical differences occur among different 

joints within the same organism (5, 6, 19-23). These intrinsic differences among 

joints may result in an altered response to disease among joints, even though the
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inciting cause is similar (20). The proper selection of normal controls and appropriate 

methods of comparison are crucial in study design, data analysis, and the application 

o f IR spectroscopy in the disease diagnosis and assessment o f joints. Intrinsic sources 

of variance, other than those due to disease, may cause differences in composition of 

SF attributable to biological rather than pathological reasons (1-3).

The authors hypothesized that the anatomic location from which SF is 

sampled may affect the pattern of mid-infrared spectra derived from SF of clinically 

normal antebrachiocarpal (AC), midcarpal (MC) and tarsocrural (TC) joints. The 

objective of this study is to identify significant differences in the IR absorption 

spectra attributable to the natural biochemical variation among these three high 

motion joints.

3.3 Materials and methods

This study was approved by the Animal Care Committee in accordance with 

the University of Prince Edward Island policy and the principles outlined in the Guide 

to the Care and Use of Experimental Animals prepared by the Canadian Council on 

Animal Care.

3.3.1 Study design and sample population

The effect of anatomical location of 3 high motion joints (AC, MC, and TC) 

and side (left versus right) on mid-infrared (MIR) absorbance spectra of SF 

(wavenumber range 400-4000 cm'^) was investigated. Synovial fluid samples were 

collected from multiple joints in each horse. Inclusion criteria for joint selection were
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radiographically normal AC, MC and TC and/or AC, MC and TC with no gross 

pathological lesions of synovium and articular cartilage detected by necropsy. 

Samples of SF were collected from 22 horses (105 joints) that met the criteria for 

inclusion (a pool o f ~ 30 horses was examined; exclusions were mostly due to 

abnormal radiographic findings despite a normal clinical appearance). Breeds 

represented included Standardbred (n=18). Quarter horse (n=l), and mixed breeds 

(n=3). There were 10 females and 12 males. Mean age for all study horses was 

4.3+2.3 (meant SD) years. Of these 22 horses, 13 provided bilateral and 9 provided 

unilateral ipsilateral SF samples from AC, MC, and TC joints. All SF samples 

collected were stored at -80 °C in plain cryovials for later IR spectroscopic batch 

analysis.

3.3.2 Fourier transform infrared (FT-IR) spectroscopy

Synovial fluid samples were thawed at 22 °C, centrifuged at 2700 g for 10 

minutes, and the supernatants were used for IR spectroscopic analysis. Sample 

preparation was a modification of a previously described technique (24, 25). Briefly, 

for each sample, an aliquot was drawn and diluted in aqueous 4 g/L potassium 

thiocyanate (KSCN, Sigma-Aldrich Inc., St.Louis, MO) solution in the ratio 3 parts 

SF: 1 part KSCN solution. The KSCN absorption band at approximately 2060 cm'^ 

served as one basis for spectral normalization (24, 25).

Triplicate dry films were made for each sample by depositing 8 pL aliquots of 

the diluted SF, spread evenly in circular motion onto 5 mm diameter circular islands 

within a custom made, adhesive masked, 96 well-silicon microplate (18). The
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adhesive mask attached on the surface o f the microplate served to spatially define and 

systematically separate the 5 mm islands on the microplate so as to correctly align 

samples with the IR radiation beam and detector. Samples from each horse were 

randomly assigned to well positions on the microplate. The SF films were left to dry 

at room temperature for 12 h. Once thoroughly dried, the microplate was mounted 

within the multisampler (HTS-XT, Bruker optics, Milton, ON) interfaced with the 

Fourier transform infrared (FT-IR; Tensor 37, Bruker optics, Milton, ON) 

spectrometer to allow for the acquisition of IR spectra.

Infrared absorbance spectra in the MIR region of 400-4000 cm'* were 

recorded using the FT-IR spectrometer equipped with a deuterium tryglycine sulphate 

detector. For each acquisition, 512 interferograms were signal averaged and Fourier 

transformed to generate a spectrum with a nominal resolution of 4 cm'* (18, 24, 25).

3.3.3 Data preprocessing

Triplicate spectra of each sample were averaged. Preprocessing included 

differentiation and smoothing procedures (Savisky-Golay 2nd order derivatives using 

a 2nd degree polynomial function, with 7 point smoothing) which were performed on 

all spectra to resolve and enhance weak spectral features, and remove the variation in 

baselines, using spectral calibration software (GRAM/AI 7.02 Thermo Galactic, 

Salem, NH) (26).

The preprocessed spectra were then normalized by using a wavenumber range 

of 800-1450 cm'* as a basis of vector normalization using scripts written in MATLAB 

(MATLAB 6.5, The Math Works Inc., Natick, MA). Vector normalization was
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carried out for each 2nd derivative spectrum by first summing the squares of 

absorption intensities for all data points (1 data point corresponded to -1 

wavenumber) within the spectral basis range of 800-1450 cm'* (27). The square root 

of this sum of squares calculated from each spectrum was used as the normalization 

factor for that same spectrum; the intensities o f the entire range within each spectrum 

were divided by this vector normalization factor prior to statistical analysis.

3.3.4 Statistical analysis

Two statistical comparisons were performed in order to study the effect of 

anatomical location of 3 high motion joints (AC, MC, and TC) and side (left versus 

right).

3.3.4.1 Comparison of left and right MIR spectra

Seventy-eight preprocessed spectra of bilateral SF samples from AC, MC, and 

TC joints were used for this part of the analysis. The relative intensity at each 

wavenumber in the spectrum was the dependent variable. Analyses of variance for a 

randomized block model using horse as a blocking factor were performed (PROC 

MIXED, SAS 8.02, SAS institute Inc., Cary, NC) on each intensity-wavenumber 

basis for the entire MIR regions. The effect of side (left versus right side) was 

considered significant for any wavenumber within MIR region if  the p value < 0.01.

3.3.4.2 Inter-joint comparison of the MIR spectra

Following comparisons of left and right joints within horse, preprocessed 

spectra from the remaining 9 horses (unilateral samples) and a randomly selected 

spectrum (left or right) from each o f the 13 bilaterally sampled horses were compared
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under the assumption of no significant differences between contralateral joints. These 

constituted a second set of 66 spectra from ipsilateral AC, MC, and TC joints. 

Analyses of variance were performed (PROC MIXED, SAS 8.02, SAS institute 

Inc.,Cary, NC) as described above to detect the significant effect of joint (p <0.01). 

Pairwise comparisons were performed among the 3 joints o f interest (e.g. AC-MC, 

AC-TC, MC-TC). The differences between joints for any wavenumber within MIR 

region were considered significant if  the p value <0.01.

3.4 Results

Analyses of variance were performed on 3731 wavenumbers on the set of 

preprocessed spectra ranging from wavenumbers 402.15 to 3999.28 cm'*. The only 

significant effects of side (left versus right) that were demonstrated occurred at 

wavenumbers 2568.14 cm'* (p -  0.0079) and 2699.29 cm'* (p = 0.0052).

Significant differences (193 wavenumbers) based on pairwise comparisons of 

AC and MC IR spectra were observed, and were most concentrated in the 1000-1100 

cm'*, 1550-1600 cm'*, and 3500-3650 cm'* regions; differences within the 2000-2500 

cm'* region were few. For AC-TC comparisons, significant differences (364 

wavenumbers) were most concentrated in the 560-650 cm'*, 790-840 cm'*, 890-900 

cm'*, 940-1240 cm'*, 1400-1440 cm'*, 1650-1700 cm'*, 2260-2270 cm'*, 3000-3020 

cm'*, and 3620-3830 cm'* regions. The significant IC-TC differences were more 

broad ranging (995 wavenumbers), and were concentrated in the 600-740 cm'*, 810- 

900 cm'*, 950-1050 cm'*, 1070-1090 cm'*, 1120-1140 cm'*, 1160-1800 cm'*, 2030-
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2200 cm '\ and 2830-3400 cm'^ bands. The AC and MC joints shared in common 158 

significant wavenumber differences with the TC joint. The difference spectra and 

wavenumbers demonstrating the significant differences (p < 0.01) between pairwise 

spectra (AC compared to MC joints and AC compared to TC joints) are illustrated in 

Figures 3.1 - 3.8. These illustrations show group frequencies in the fingerprint (600- 

1500 cm'^), double-bond (1500-2000 cm'*), triple-bond (2000-2500 cm'*) and X-H 

stretching regions (2500-4000 cm'*, X = oxygen, carbon, or nitrogen atoms) (27, 28).

3.5 Discussion

Comparisons o f IR absorption patterns of SF of different high motion joints of 

the horse demonstrated significant spectral differences among the joints of interest. 

Given the scarcity of significant IR spectral differences with the MIR bandwidth 

detected between left and right clinically normal AC, MC and TC joints, the 

biomolecular composition of the SF as characterized by the IR spectroscopy may be 

considered to be equivalent in non-diseased joints. A previous study found good 

agreement in oncotic pressure between contralateral joints, suggesting similar 

concentrations of molecular solutes (29). Contralateral joints have been widely used 

as controls in a variety o f joint related studies, and these results support this approach 

in studies where effects are localized to the joint of interest (30, 31). However some
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Figure 3.1 Difference spectrum (2nd derivative) o f antebrachiocarpal-midcapal spectra 
in the fingerprint region. The shaded areas represent the series of wavenumbers that 
demonstrate significant differences between the antebrachiocarpal and midcarpal joints
(p<0.01).
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Figure 3.2 Difference spectrum (2nd derivative) of antebrachiocarpal-tarsocrural spectra 
in the fingerprint region. The shaded areas represent the series of wavenumbers that 
demonstrate significant differences between the antebrachiocarpal and tarsocrural joints 
(p< 0 .01).
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Figure 3.3 Difference spectrum (2nd derivative) of antebrachiocarpal-midcarpal spectra 
in the double bond region. The shaded areas represent the series of wavenumbers that 
demonstrate significant differences between the antebrachiocarpal and midcarpal joints
(p< 0.01).
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Figure 3.4 Difference spectrum (2nd derivative) of antebrachiocarpal-tarsocrural spectra 
in the double bond region. The shaded areas represent the series of wavenumbers that 
demonstrate significant differences between the antebrachiocarpal and tarsocrural joints
(p<0.01).
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Figure 3.5 Difference spectrum (2nd derivative) of antebrachiocarpal-midcapal spectra 
in the triple bond region. The shaded areas represent the series of wavenumbers that 
demonstrate significant differences between the antebrachiocarpal and midcarpal joints
(p<0.01).
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Figure 3.6 Difference spectrum (2nd derivative) of antebrachiocarpal-tarsocrural spectra 
in the triple bond region. The shaded areas represent the series o f wavenumbers that 
demonstrate significant differences between the antebrachiocarpal and tarsocrural joints
(p<0.01).
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Figure 3.7 Difference spectrum (2nd derivative) of antebrachiocarpal-midcapal spectra 
in the X-H stretching region (X = 0 ,C  or N). The shaded areas represent the series of 
wavenumbers that demonstrate significant differences between the antebrachiocarpal and 
midcarpal joints (p<0.01).
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Figure 3.8 Difference spectrum (2nd derivative) o f antebrachiocarpal-tarsocrural spectra 
in the X-H stretching region (X = 0 ,C  or N). The shaded areas represent the series of 
wavenumbers that demonstrate significant differences between the antebrachiocarpal and 
tarsocrural joints (p<0.01).
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pharmacologie and mechanical studies have documented that changes may occur in 

contralateral control joints (32, 33). The biochemical changes occurring within the 

contralateral control joints may he objectively assessed by IR spectroscopy of SF in a 

future study to confirm the validity o f the use of contralateral joint as a normal 

control.

In contrast, the dissimilarities in IR absorption patterns observed among 

ipsilateral joints of different anatomical locations were marked, even when the joints 

were immediately adjacent. However, the IR absorption patterns o f SF samples from 

adjacent joints (AC and MC) showed fewer differences than comparisons between 

more anatomically distant joints (TC). Given the biomechanical and functional 

differences between the carpal and tarsal regions, it is reasonable to expect that 

biochemical differences as determined by IR analysis of SF, reflecting the full range 

of molecules present, would be more marked than those occurring between 

functionally similar joints (19, 21, 22, 29, 34). Despite hiomechanical differences, 

earlier workers have found no quantitative differences in total protein content (TP) 

between hocks and carpi (the precise joints sampled were not described), but TP was 

lower in the fetlock (35). Differences in the concentration of total 

glycosaminoglycans, keratan sulfate and cartilage oligomeric matrix protein between 

the interphalangeal and metacarpophalangeal joints have been reported in normal 

horses (23). Different values for total glycosaminoglycans and keratan sulphate 

concentrations in SF were also reported between AC and TC joints, but data were 

insufficient for statistical conclusions to be drawn (19). In the current study the range
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of biochemical differences among the joints was more clearly demonstrated because 

unlike specifically targeted assays, investigation by IR spectroscopy of SF reflects 

both quantitative and qualitative molecular differences o f known and unknown 

biomolecules (14,16).

The interpretation and correlation of the features of the MIR spectra to 

specific molecules is possible when examining a pure solute or a solution of a few 

distinct molecules (14, 36). For more complex biological mixtures such as the SF 

examined in the current study, the absorption bands are no longer simple and well- 

resolved -  the absorption profile reflects the superposition o f literally thousands of 

individual absorptions spread across the MIR region (14). In the case of SF, the major 

molecular contributions to the mixture are water, albumin, a-, (3- and y-globulins, 

transferrin, glucose, urea, hyaluronate and proteoglycans (5, 6, 8, 35). It is the pattern 

of overlapping absorptions rather than individual molecular moieties that provide a 

biochemical signature, referred to as a molecular fingerprint, reflecting the 

complexity and relative abundance of the chemical constituents.

Hyaluronate has been supported as a marker for osteoarthritis, as have total 

glycosaminoglycans and keratan sulfate (4, 6, 19, 23, 31). Cartilage extracted 

preparations of proteoglycans (containing chondroitin sulfate and keratan sulfate) 

have a wide absorption band (1550-1640 cm'*) with a maximum at -1635 cm'^ due to 

the overlapping of the combined absorption of carbonyl groups of acetamide residues 

(amide I), the antisymmetrical stretching of carboxylate groups of hexuronic acid 

(COO ), and other contributions (37-39). Absorption at 1550 cm'^ is associated with

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the amide II band, and 1413 cm'* with the symmetrical COO' vibration (37-39). In the 

current study significant differences with joint type were detected in areas 

corresponding to these peaks. Unless the SF samples are fractionated, and molecules 

separated prior to IR spectroscopy, the specific origins of the differences are not 

readily interpreted (14, 39). The current study also identified significant spectral 

differences among the AC, 1C, and TC joints spread across several spectral regions. 

These included subregions that would include, for example, absorption bands 

associated with proteoglycan sulfate groups, and hyaluronante primary and secondary 

alcohol hydroxyl groups (37-39). While further fractionation and analysis is clearly 

necessary to confirm the actual origin of these spectroscopic changes, these 

observations are consistent with the work of others suggesting differences among 

joints in concentrations of proteoglycans and glucosaminoglycans (19).

Caution should be exercised in interpreting the significance of absorptions in 

the X-H stretching region. While the broad 3000-3600 cm'* profile encompasses the 

0-H  stretching bands o f water and polysaccharides (37, 39), both hyaluronate (HA) 

and chondroitin sulfate (CS) have a high capacity for water binding, resulting in a 

significant contribution to the MIR spectra that varies with atmospheric humidity 

even though the samples were dried prior to spectral acquisition (39). The apparatus 

used in the study does not permit control of humidity within the sample chamber. The 

authors suggest that future IR spectroscopy studies control relative humidity in order 

to prevent dilution of the IR signal attributable to HA and CS, and to minimize the 

small spectral shift that occurs with varying OH bandwidth (39). The authors o f the
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current study suggest the fingerprint region of the spectra may be more suitable for 

comparing joints in cases where controlling humidity is difficult, as this region is less 

affected (39).

The sample size used in the current study is comparable to that used in similar 

reports examining synovial constituents (23, 30, 31). However the large number of 

variables examined increases the rate of type I error, limiting the utility of the data in 

the current study for linear discriminant analysis to model the signifieant spectral 

differences which best characterize each joint. Data reduction strategies were 

employed and a high significance level set (15, 18). Despite these steps a large 

number o f differences among joints were found. As a result the study was limited to 

pairwise comparisons o f MIR spectra o f different joints. Recruitment of further 

samples from normal joints is necessary to facilitate more advanced modeling of the 

differences between normal joints.

In conclusion, significant differences among AC, MC, and TC joints in SF 

composition were confirmed as characterized by IR spectroscopy. The MIR 

absorption patterns of SF samples derived from pairs o f contralateral joints were 

comparable supporting their use as within subject control in appropriately designed 

studies. The finding of a broad range biomoleeular differences among these joints 

indicates that interarticular variation within the horse needs to be considered in 

prospective study design, and well as studies of joint disease (19, 23, 31). Further 

normal samples should be evaluated to better characterize the range and significance 

of MIR spectral changes detected.
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CHAPTER 4

USE OF INFRARED SPECTROSCOPY FOR DIAGNOSIS OF TRAUMATIC

ARTHRITIS IN HORSES

4.1 Abstract

Infrared spectroscopy measures infrared absorption patterns of molecules in a 

sample when exposed to infrared radiation. The Infrared absorption pattern or 

spectrum reflects the chemical structure of all infrared-active components in the 

sample and their relative abundance. The spectrum of biological fluid is often referred 

to as a biochemical fingerprint that may correlate with the presence or absence of 

diseases. The objective of the study is to determine the feasibility o f using infrared 

spectroscopy to differentiate synovial fluid samples from equine joints with traumatic 

arthritis from those of controls. Synovial fluid samples were collected from 77 joints 

in 48 horses with traumatic arthritis. Of these 29 horses provided paired samples 

(affected and control) used for model calibration. The remaining 19 horses provided 

independent samples from a diseased (n=12) or a control (n=7) joint used for model 

validation. A second validation set of normal SF samples (n=20) was collected from 5 

clinically and radiographically normal horses. Fourier transform infrared spectra of 

SF were acquired, manipulated, and data from diseased joints were compared to 

controls to identify statistically significant (p<0.01) spectroscopic features that 

differentiated between the groups. A classification model using linear discriminant 

analysis was developed. Performance of the model was determined using the two 

validation datasets. A classification model based upon 3 infrared regions classified
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spectra from the calibration dataset with overall accuracy of 97 % (sensitivity 93%; 

specificity 100%). The same model with cost-adjusted prior probabilities of 0.60:0.40 

produced an overall accuracy of 89% (sensitivity 83%; specificity 100%) for the first 

validation sample dataset, and 100% correct classification of the second set of 

independent normal control joints. The IR spectroscopic patterns of SF from joints 

with traumatic arthritis differ significantly from the corresponding patterns for 

controls. These alterations in IR absorption patterns may be exploited via an 

appropriate classification algorithm to differentiate the spectra of diseased joints from 

those of controls.

4.2 Introduction

Osteoarthritis (OA) is a commonly encountered cause of lameness in 

performance horses, and has been implicated as a cause o f lameness in 54% of horses 

(1). Lameness problems have been estimated to result in 68% of days lost in training 

among racehorses (2). Timely diagnosis and aggressive treatment of traumatically 

induced OA are important to alleviate the effects of inflammation, including pain and 

reduced function, and are essential to prevent or minimize the development o f OA

(3).

Evaluation of joint disease in a horse is facilitated by clinical examination to 

detect signs of pain and gross anatomical or functional change, evaluate the horse’s 

gait, and localize the problem by use of diagnostic analgesia (3). Other diagnostic 

aids include radiography, ultrasonography, computed tomography (CT), magnetic
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resonance imaging (MRI), nuclear medical imaging, arthroscopy, and routine 

synovial fluid analysis (3-5). Although radiography is presently the most practical 

imaging technique used to aid diagnosis, pathologic changes in articular cartilage 

cannot be readily assessed, and a lack of sensitivity in the detection of subchondral 

fragmentation has been reported (6). Nuclear scintigraphy is an advanced diagnostic 

tool for musculoskeletal disease with high sensitivity but low specificity (7). Factors 

such as age, breed, and occupation o f horses can affect the radiopharmaceutical 

uptake and image interpretation (7). Magnetic resonance imaging generates excellent 

anatomic and pathoanatomic information on articular structures but the high cost of 

acquiring and maintaining equipment, the limited availability for use in horses, and 

the need for general anesthesia for high resolution images have prevented its 

widespread use (8). None of these tools yield useful biochemical information.

Conventional synovial fluid analyses are not widely used for evaluation of 

non-infectious joint disease because they rarely provide clinicians with a specific 

diagnosis (5-9). Recently, ELISA and radioimmunoassay-based evaluations of 

biomarkers within SF have been described (9-11). Complex multiple assays are 

required (9-12). Individual testing by use of these techniques is expensive (12). The 

relationships of the concentrations of the biomarkers to age, breed, sex and circadian 

rhythms are poorly understood (12). Early results are promising, but further study is 

required to determine the clinical usefulness of biomarkers for classifying OA (9-12). 

Presently the means to objectively identify the level of pathologic progression in most 

cases of traumatic and other forms of OA are not available primarily because no
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generally accepted objective standards exist (6-9). There is a real need for a rapid, 

economical, practical, and reliable diagnostic test for objective evaluation of joint 

disease, as well as the unbiased monitoring of responses to treatment.

Infrared (IR) spectroscopy is rapidly emerging as a powerful diagnostic probe 

for biological molecules in humans and other animals (13, 14). Infrared spectroscopy 

measures IR absorption patterns o f molecules when exposed to IR light (14). An IR 

spectrum is obtained when IR radiation is transmitted through a sample in a Fourier 

transform IR spectrometer (FT-IR). The fraction of the incident radiation absorbed at 

a particular wavenumber (cm'^) is determined and displayed as absorption bands on 

the spectrum (15). These absorption bands correspond to carbon skeletal and 

functional group vibrations (16). Simple molecules yield simple spectra with well- 

resolved absorption bands that reflect both structure and concentration (13, 17). In a 

complex sample, compared with a simple sample, the number o f chemical functional 

groups increases, causing the number of absorption bands and the extent o f band 

overlap to increase (17). The IR spectaim of a biological sample becomes more 

complex, but the fundamental rule still applies. The IR spectrum of body fluids or 

tissues reflects both the structure o f the individual IR active constituents and their 

relative abundance (14, 17). The absorption patterns in the IR spectra of biological 

samples may be viewed as biochemical fingerprints that correlate directly with the 

presence or absence of diseases (14, 18). For example, IR spectroscopy has been used 

in diagnosis of human diseases such as diabetes mellitus (19), Alzheimer’s disease

(20), breast tumors (21) and arthritic disorders (22-25). The advantages of an IR
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spectroscopic approach in clinical diagnosis are that no reagents are required, and 

automated repetitive analyses can be carried out at very low cost (14). In addition, 

because the IR spectrum of biological samples such as synovial fluid reflects the sum 

of all IR-active components (26), the infrared spectra of such samples may carry 

infrared signatures of known and unknown biomarkers rather than relying upon a few 

novel disease markers.

We hypothesized that traumatic arthritis in horses leads to changes in equine 

synovial fluid composition, altering the IR absorption pattern o f synovial fluid 

samples, and that these spectroscopic changes can be detected and used to 

differentiate the synovial fluid spectra of joints with traumatic arthritis from the 

spectra of control samples. The objective of the present study was to determine the 

feasibility and to evaluate the accuracy of IR spectroscopy for diagnosis of traumatic 

arthritis in horses.

4.3 Materials and methods

This study was approved by the Animal Care Committee in accordance with 

the University of Prince Edward Island policy and the principles outlined in the Guide 

to the Care and Use of Experimental Animals prepared by the Canadian Council on 

Animal Care.

4.3.1 Horses and samples

Synovial fluid samples (n-77) were collected from 48 horses evaluated for 

arthroscopic removal of osteochondral fragments or intra-articular fracture repair
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after clinical and radiographic assessments. Samples for model development 

(calibration) and initial model validation were from Californian racing Thoroughbred 

(n=25) and Quarter horses (n=23). These horses were 2 to 5 years old with a mean 

age of 3.2 ± 1.1 years (mean ± SD). There were 37 males and 11 females. All horses 

had clinical evidence of osteochondral fracture of the antebrachiocarpal, midcarpal or 

metacarpophalangeal joints. Synovial samples were collected aseptically prior to 

arthroscopic surgery, and samples from contralateral joints with no evidence of 

articular fragmentation were also collected as controls. In bilaterally osteochondral 

fragmentation cases, samples from ipsilateral antebrachiocarpal or midcarpal joint 

with no evidence of articular fragmentation were used as control samples.

Of the 48 horses, paired samples were collected from 29 (one each from 

affected and control joints); these were used for calibration of the model. From the 

remaining 19 horses with traumatic arthritis, independent samples from either an 

affected (n=12) or a control (n=7) joint only; were used for initial model validation. A 

second set o f control synovial fluid samples (n=20) was collected for further 

independent validation. These samples were from the (left and right) 

antebrachiocarpal and midcarpal joints o f 5 horses. The mean age of the horses was

4.2 ± 1.5 (mean ± SD) years. Two were Trakehner crosses, 3 were Standardbreds, 4 

were females, and 1 was male. On the basis of history and result of clinical 

evaluations, these 5 horses had no evidence o f joint disease. A general physical 

examination and lameness examination were performed by two evaluators. Bilateral 

radiographs of carpal, metacarpophalangeal, stifle, and tarsal joints were evaluated by

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a radiologist. Conventional synovial fluid analysis was also performed. All evaluators 

were unaware of clinical status of the horses. The anatomic locations fi*om which all 

the synovial samples were recovered are described in Table 4.1, and their random 

assignment into calibration or validation datasets (see below) described. All synovial 

fluid samples collected for the study were stored at -80 °C in plain cryovials for later 

batch IR spectroscopic analysis.

4.3.2 Fourier transform (FT-IR) infrared spectroscopy

Synovial fluid samples were thawed at room temperature (approximately 22 

°C) and centrifuged at 2700 x g for 10 minutes; the supernatants were kept for 

analyses. Synovial fluid samples were prepared as described previously with the 

following modification (27). Briefly, for each sample, an aliquot was drawn and 

diluted in aqueous 4 g/L potassium thiocynate (KSCN, SigmaUltra, Sigma-Aldrich 

Inc.,St.Louis, USA) solution in the ratio 3 parts synovial fluid: 1 part KSCN solution. 

The isolated KSCN absorption peak at approximately 2060 cm'^ served as a reference 

band for normalization of the spectral intensities (27, 28).

Triplicate dried films were made for each sample by applying 8 pL of the 

diluted synovial fluid preparation evenly in a circular motion onto 5-mm-diameter 

circular islands on a custom-made, adhesive-masked, silicon microplate; the adhesive 

mask serves to spatially define and systematically separate the 5 mm islands on the 

microplate so that sample islands are correctly aligned with the FT-IR detector). The 

synovial films were left to dry at room temperature for 12 hours. After the films were 

thoroughly dried, the microplate was mounted in a multisampler interfaced to the
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Table 4.1 Description of the anatomical locations and diagnoses of the study joints

Joint Diagnosis Number of synovial fluid 

samples within each category

Step lA & lB Step 2 Step 3

Antebrachiocarpal Osteochondral fracture 8 (2) 1 0

Ipsilateral/contralateral

control

8 (6) 1 10

Midcarpal Osteochondral fracture 19(11) 1 0

Ipsilateral/contralateral

control

19(8) 5 10

Metacarpophalangeal Osteochondral fracture 2 (1) 4 0

Condylar fracture of the 

third metacarpus

0 (0) 3 0

Proximal sessamoid 

fracture

0 (0) 3 0

Contralateral control 2 (1) 1 0

Number in parenthesis indicates the number of joints ranc 

used in step IB.

Step lA = Infrared (IR) region selection, Step IB = Calibi 

Step 2 = Validation of model using independent within-pc 

Step 3 = Validation of model using independent normal c(

omly selected from step 1A and

'ation for classification model, 

)pulation samples,

Dntrol samples
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FTIR spectrometer (Tensor 37, Bruker optics, Milton, Canada) to enable acquisition 

of IR spectra. Infrared spectroscopic analyses o f all samples were performed during 

the same period of time.

Infrared absorbance spectra in the range of 400-4000 cm'^ were recorded 

using a FT-IR spectrometer (HTS-XT, Bruker optics, Milton, Canada) equipped with 

a deuterium tryglycine sulfate detector. For each acquisition, 512 interferograms were 

signal averaged and Fourier transformed (Opus 4.2, Bruker Optik GmbH, Ettlingen, 

Germany) to generate a spectrum with a nominal resolution o f 4 cm’* (27).

4.3.3 Data preprocessing

Triplicate spectra of each sample yielded mean values. By use of spectral 

manipulation software (GRAMS/AI 7.02, Thermo Galactic, Salem, USA), 

differentiation and smoothing procedures (Savitsky Golay 2"^-order derivative with 

2"^-degree polynomial function and 15-point smoothing) were performed on all 

spectra to resolve and enhance weak spectral features and to remove variation in 

baselines (29). The approach to the spectral classification is outlined schematically in 

Figure 4.1.

4.3.4 Statistical Analysis

4.3.4.1 Infrared region selection

The strategy employed to find significant (p<0.01) differences between 

affected and control joints was to examine the spectroscopic differences for horses 

that provided paired samples, one for an affected joint and the other for a contralateral 

or ipsilateral control. Twenty-nine horses yielded such paired synovial fluid samples
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Figure 4.1 Infrared spectral classification and model development strategy

Acquisition of infrared (IR) spectra from dried füms 
of equine syno-wiai fluid (SI)

Preprqcessing of spectra

Selection of lR  regions demonstrating significant 
differences between affected and control joints

Samples: SF &om 29 affected & 29  control joints o f  29 horses

Development of classification model 
using linear discriminant analysis

Sàmpféâ::SF/firpm 14 affecte.j. '&  t 
randpmly sele cted from 29 horses in the preyious step

Validation of model using 
within population samples
Samples: SF from 12 affected 

;& ?  control j'oint o f an independent 
set o f  19 horses

Vaiidatian of model using 
independent normal control samples

Samples: SF from 20 normal control 
joints 5 clinically notm al horses
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resulting in 58 averaged spectra. The pairwise spectroscopic differences in the 

corresponding spectra (control minus diseased) were evaluated within the IR range 

400-1800 cm'* (molecular fingerprint region) (15). The next step was to seek those 

subregions where the difference (control minus affected) was significant (p<0.01). 

These subregions were identified by use o f paired t-tests performed with statistical 

software (SAS 8.02, SAS institute Inc.,Cary, USA). The regions which had 

significant differences between affected and control samples were identified, and the 

spectral intensities in each region were then averaged. The average value of each of 

the selected regions was then considered as a variable for inclusion in a classification 

model (30).

4.3.4.2 Development and calibration of the classification model

In order to avoid violation of assumptions of independence necessary for 

discriminant analysis, the 29 horses described previously were randomly assigned 

into group 1 (n=15) and group 2 (n=14). For group 1 (control group), only the spectra 

from the control joints (n=15) were used. For group 2 (affected group), only the 

spectra from the joints with osteochondral fracture (n=14) were used. This set of 29 

spectra provided the basis to calibrate the classification model. By use of the set of 

averaged regional intensities as input variables for each case, stepwise discriminant 

analysis was then performed by use of proprietary statistical software (SAS 8.02, SAS 

institute Inc.,Cary, USA) to select the subset of variables that most contributed to the 

power o f the discriminatory function (31). That subset of variables was then subjected 

to linear discriminant analysis (LDA) to find the discriminatory function and rule that
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best separated the two groups (affected versus control), by use o f statistical software 

(SAS 8.02, SAS institute Inc.,Cary, USA). Two sets o f cost-adjusted prior 

probabilities of group membership (31), 0.60:0.40 or 0.50:0.50 (affected to control 

ratio), were selected for this preliminary classification. The posterior probabilities of 

group membership were calculated for each spectrum. The membership of the 

spectrum was thus predicted, and the spectrum assigned to the affected or control 

group on the basis of its posterior probability. A classification table then revealed the 

correct classifications for the 29 randomly selected spectra composing the calibration 

sample set (14, 18, 32).

4.3.4.3 Validation of the model by use of within-population samples

The remaining 19 of 48 horses that were not used to calibrate the model 

yielded 19 spectra (7 control and 12 affected spectra) for use as a validation dataset, 

to test the predictive accuracy of the classification model. The classification success 

rate for this set of spectra was determined and compared with the results for the 

calibration set (14, 18, 32).

4.3.4.4 Validation of the model by use of independent normal control samples

The second independent set of samples from 5 normal control horses that 

yielded 20 averaged spectra from bilateral antebrachiocarpal and midcarpal joints was 

used to further characterize the predictive accuracy of the classification model. The 

classification success rate for this set of spectra was determined and compared with 

the results for the calibration set.
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4.4 Results

Paired t-tests revealed 24 spectral regions in the 400-1800 cm'* wavenumber 

range that had significant differences (p<0.01) between the affected and control 

synovial fluid spectra. From this set of regions, stepwise discriminant procedures 

resulted in the final selection of 3 regions that most contributed to the discriminatory 

power of the classification algorithm. These encompassed the wavenumber ranges 

1245 to 1257 cm'*, 1681 to 1684 cm'*, and 1691 to 1694 cm'* (Figure 4.2).

The classification model developed by use o f LDA, with these 3 regional 

intensities as input for each of the 29 calibration samples, correctly classified 28 of 

the 29 calibration spectra (Table 4.2), yielding an overall accuracy of 97%, specificity 

of 100%, and sensitivity o f 93%. Both sets of cost-adjusted prior probabilities give 

the same classification result.

When the classification algorithm was applied to the within-population 

validation set (n=19), the LDA classifier with cost-adjusted prior probabilities of 

0.60:0.40 (affected to control) achieved an overall accuracy of 89%, with 100% 

specificity and 83% sensitivity (Table 4.3). With equal prior probabilities of group 

membership (0.50:0.50), the overall accuracy decreased to 79% (specificity, 100%; 

sensitivity, 67%). All o f the normal control samples that composed the second 

validation set were classified correctly by use of both sets of cost-adjusted prior 

probabilities.

The basis for these classifications was depicted in Figure 4.3. With each 

measured spectrum represented by the triplet of averaged intensities in the 3
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Figure 4.2 The average spectrum (2"‘* derivative) of the control group and the 

corresponding average difference spectrum (control minus diseased spectra). The 

shaded areas represent the IR regions optimal for diagnostic classification of the 

spectra.

J001-

17001200 1300 1400

Waven umbers

Average spectrum of the control group, Average difference spectrum

Note: Negative features in the 2"^ derivative spectrum of the control group 

correspond to positive features (absorptions) in the original spectrum. The highlighted 

regions are 1245-1257 cm '', 1681-1684 cm'*, and 1691-1694 cm'*.
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T a b l e  4.2 Classification table for the calibration dataset

Infrared-based diagnosis

Control Osteochondral fracture Total

Clinical diagnosis

Control 15 0 15

Osteochondral fracture 1 13 14

Total 16 13 29

Number o f spectra classified into control and osteochondral fracture categories for both sets

o f  cost-adjusted prior probabilities 

Sensitivity = 93%, Specificity = 100%, Accuracy = 97%
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T a b l e  4 . 3  Classification table for the validation dataset

Infrared-based diagnosis

Control Osteochondral fracture Total

Clinical diagnosis

Control 7 (7) 0 (0) 7 (7)

Osteochondral fracture 2 (4) 10 (8) 12 (12)

Total 9 ( 1 1 )  1 0 ( 8 )  19(19)

Number o f  spectra classified into control and osteochondral fracture categories when setting 

cost-adjusted prior (diseased:control) = 0.60:0.40 (sensitivity = 83%, specificity = 100%, 

accuracy = 89%)

Numbers in parenthesis indicates results when setting equal cost-adjusted prior (sensitivity = 

67%, specificity = 100%, accuracy = 79%)
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Figure 4.3 Three-dimensional representation of the spectral datasets preprocessed for 

classification, and their division into the calibration and validation sets
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▲ Osteochondral fracture spectra in validation set I (within-population samples)

O Normal control spectra in validation set II (independent normal control samples) 

Note: Each observation is represented by the triplet o f  intensities within the regions 1245- 

1257 cm"' (IR region I), 1681-1684 cm’’ (IR region II) and 1691-1694 cm"' (IR region III) for 

the 2"‘‘ derivative spectrum
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subregions that provided optimal classification accuracy, the scatter plot graphically 

illustrates the separation of affected from control (clustering) spectra for the 

calibration and both validation datasets.

4.5 Discussion

In this study, significant differences in the IR absorption pattern of synovial 

fluid samples were demonstrated for comparison of samples from joints with 

traumatic arthritis to control samples. The IR spectra successfully served as 

biochemical fingerprints to permit diagnosis of traumatic arthritis by means of LDA 

classification of the processed data. These results support our hypothesis that 

characteristic IR absorption patterns may be detected and used to differentiate the 

synovial fluid spectra of the joints with traumatic arthritis from spectra for control 

samples.

The ultimate goal of this type of research is to develop a novel test that aids 

clinical and perhaps preclinical diagnosis of joint disease in horses. In agreement with 

published recommendations for the development of a new diagnostic test, an 

exploratory phase was conducted in a limited number of subjects to determine its 

feasibility and accuracy as a first step (33). Naturally occurring traumatic arthritis was 

chosen as a model to determine the feasibility and accuracy of the IR spectroscopic 

technique. It was thought that if this methodology was determined to be incapable of 

detecting more severe forms of equine joint disease, then its future use to develop a 

test for subclinical or mild joint disease would be limited. Intra-articular fracture, one
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of the subtypes of traumatic arthritis entities in horses, is often preceded by 

subchondral bone changes, and may lead to osteoarthritis if diagnosis and treatment 

are not prescribed in a timely and appropriate fashion (3, 34).

Although the features distinguishing the IR spectra of synovial fluid samples 

of affected from control joints are not readily interpreted, IR spectra of biological 

specimens reflect chemical composition and conformation, as well as possible 

intermolecular interactions (14, 16, 35). Articular cartilage damage associated with 

articular fracture or other types o f joint injury induces biochemical changes in the 

affected joints (3, 10). The release of wear-and-tear particles as well as articular 

cartilage-breakdown products activates synovial resident cells and chondrocytes to 

increase the productions o f cytokines, metalloproteinase enzymes and inflammatory 

mediators or other biomarkers that can lead to further damage of the cartilage and 

joint inflammation (3, 10, 36-40). It is possible that the IR changes detected 

correlated to one or all of these molecules. However, because o f the complex mixture 

of organic molecules in synovial fluid, the specific origins o f the features that 

underpinned the successful classifications have not been readily identified. Further 

study is required to establish the precise linkages between IR spectra and biomarkers 

of OA, if any.

One other veterinary study (41) used a limited IR spectroscopic technique for 

the evaluation of synovial fluid in 14 clinically normal horses and 2 horses with 

osteochondrosis. Gross visually apparent differences between spectra of normal and 

osteochondritic joints were reported, but a multivariate classification algorithm was
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not developed. In particular, differences in the relative intensity of the IR absorption 

bands at 1000, 1035, 1115 and 1245 cm’' were recovered and suggested to be usefal 

in differentiation between normal and osteochondritic joints. However, both the 

laboratory technique and the etiology of disease differ from the present study, and it 

is now well established that a larger number of samples must be examined in each 

class to derive diagnostic tests applicable to a larger population. Infrared spectroscopy 

of dried SF films has also been used in the diagnosis o f human arthritis, with LDA 

classifications based upon an optimally selected set of 15 IR regions between 2800 

and 3050 cm'*(23). The fact that different spectral regions are required for the present 

study may be attributable to the differences both in species and the nature of the 

arthritic conditions examined.

The cost-adjusted prior probabilities represent the group-prior probability that 

a spectrum belongs to one of the two study groups adjusted for the cost of 

misclassification (31). Henceforth this will be referred to as the cost-adjusted prior. 

Because there is no evidence suggesting true prevalence of traumatic arthritis in the 

study population nor guidelines suggesting the exact cost of misclassification, in the 

present study, the cost-adjusted priors of affected horses compared with control 

horses were explored based on two sets of values, 0.50:0.50 (equal) and 0.60:0.40. If 

the cost-adjusted prior is set to be equal, the cost of misclassification and the group- 

prior probability are assumed to be equal. Ability of the test to detect traumatic 

arthritis cases (test sensitivity) was lower in the validation compared with calibration 

sets when cost-adjusted prior was set to equal. This weakness may be improved by
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choosing an appropriate cost-adjusted prior. In screening for equine traumatic arthritis 

in horses, the aim is to identify as many affected horses as possible. The 

misclassification cost for failure of the clinician to identify affected horses would be 

delayed treatment, prolonged recovery period, or an unfavorable treatment outcome 

because o f delayed diagnosis. If an intra-articular fracture is not diagnosed early 

enough, or treatment is not started early enough, it may lead to OA. The implications 

of false positives are clinically less serious because follow up diagnostic methods (eg. 

radiography, arthroscopy) will subsequently triage out the false positive cases. In the 

present study, the authors suggest setting cost-adjusted priors in favor of disease 

diagnosis because o f the unequal cost of misclassification as described above. At this 

preliminary stage, the authors presently favor setting the cost-adjusted priors of 

affected to control ratio at 0.60 to 0.40, which implies the cost that is 1.5 times as 

great for classifying a horse with traumatic arthritis as normal relative to classifying a 

normal as having traumatic arthritis.

For the earlier diagnostic study of human arthritis using IR spectroscopy of 

SF, the spectral classification method was developed by combining an optimal region 

selection algorithm with LDA classification (23). The differentiation of IR spectra of 

joint fluid from 12 nonarthritic and 74 arthritic patients was achieved, and 

subsequently, the sub-classification of 3 categories o f human conditions (rheumatoid 

arthritis, osteoarthritis and spondyloarthropathy) was detected with overall specificity 

and sensitivity of 100% and 96.5%, respectively. The classification success rates were 

therefore comparable to those achieved for the present study, despite the differences
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in species and disease etiology, suggesting that IR spectroscopy may be generally 

useful to accurately diagnose a variety of joint diseases in a broad spectrum of 

species.

The classification accuracy for the within-population validation set of spectra 

was marginally lower than that for the calibration set when a 60:40 cost-adjusted 

prior was used. However, the accuracy and sensitivity o f the algorithm for the 

validation set (79% and 67% respectively) are considerably reduced when setting a 

50:50 cost adjusted prior. Although the specificity remains at 100% for either ratio of 

priors and in all 3 data sets, the sensitivity appeared to vary according to cost adjusted 

prior values in this preliminary study. The authors of the present study found that cost 

adjusted prior values were helpful tools in optimizing the classification of spectra 

from populations of limited sample size. An objective estimation of cost-adjusted 

priors may not be feasible for the equine population at large. The authors suggest that 

spectral and prevalence data from a larger sample size may be more useful for the 

future development and optimization of the specificity and sensitivity o f this test for 

clinical use (31, 33). This would better enable the scope of spectral variation in the 

affected population at large to be encompassed, and reduce the reliance of the test on 

estimating cost adjusted prior values, possibly increasing the number of 

discriminatory variables for inclusion in the final classification model, and thus 

increasing sensitivity and accuracy.

The spectroscopic data from the 3 significant spectral regions found in our 

proof-of-concept study yielded robust results in classifying control spectra but is less
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accurate in classifying affected spectra. This was not unexpected given the number of 

samples available for this study, which allowed for inclusion of only 3 of the 24 

significant variables in the classification model (on the basis of IR region and 

stepwise selection procedure). These 3 variables were selected statistically and were 

the important variables that most contributed to the power of discrimination (31). The 

discriminatory function and rule based on these selective variables were considered 

sufficient for accurate classification between groups in the calibration set but clearly 

did not encompass all possible variations of the diseased population. This is indicated 

by the lower sensitivity (67-83%) of the validation set when classifying affected 

spectra on the basis of 3 significant variables. It is expected that the differences in 

performance between the calibration and the validation sets will be reduced as more 

samples become available for analysis. With a larger number of samples in the 

calibration set, the varying degree of articular cartilage changes and other changes 

associated with the traumatic injuries in the population of affected horses will be 

better represented. Similarly, the larger the number of samples in the validation set, 

the more confidence we can have in the ability of the discriminatory algorithm to 

discriminate spectra correctly (32). These preliminary results do address our initial 

objective, and favor the further development of this method of joint disease diagnosis 

in horses.

In the present study, the misclassification of certain affected spectra as 

controls may have been attributable to variation of the degree and duration of 

inflammation among traumatic joints. Possibly, a sample from a joint with mild
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arthritis was difficult to differentiate from the controls because of the limited number 

of spectral regions in the present classification model. Such variation in the degree of 

severity is inevitable when studying joint disease in a naturally occurring setting, and 

may contribute substantially to the variability of synovial fluid variables of affeeted 

horses, has been reported in arthritis biomarker studies in horses (38). Other OA 

induced models such as osteochondral fragment and forced exercise models may 

provide more eontrol for the degree of inflammation in the affected group (42). 

Nonetheless, the ability o f the approach in this report to eorrectly identify control or 

normal joints (test specificity) in both validation sets clearly revealed the diagnostic 

potential for this classifieation algorithm in the normal equine population.

The current results demonstrate the feasibility o f a novel IR-based approach 

for the diagnosis of equine traumatic arthritis. Further recruitment of cases and 

normal eontrol horses is anticipated to develop and expand the scope of applications, 

and is necessary to validate the clinical value and aecuracy of the method for 

screening and diagnosing patients with joint disease in the larger equine population.
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CHAPTER 5

IDENTIFICATION OF INFRARED ABSORPTION SPECTRAL 

CHARACTERISTICS OF SYNOVIAL FLUID OF HORSES WITH 

TARSOCRURAL OSTEOCHONDROSIS

5.1 Abstract

Fourier-transform infrared (FT-IR) spectroscopy is a measurement of infrared 

(IR) absorption pattern (IR spectrum) of a sample when exposed to IR light. A 

biological fluid sample such as synovial fluid (SF) gives rise to a unique IR spectrum, 

which reflects the chemical constituents within it. Mid-inffared spectroscopic analysis 

of SF was employed in this study. Sixty-four SF samples o f the tarsocrural joints 

from 64 horses were collected (one sample for each horse). O f these horses, 33 

samples are from joints with radiographic evidence o f osteochondrosis (OC) and the 

remaining 31 samples are from joints with no clinical or radiographic evidence of 

OC. Disease-associated characteristics within MIR spectra o f SF have been studied 

and statistically selected for further spectral classification purposes. These disease- 

associated features were used as variables in a classification model. By use o f linear 

discriminant analysis and leave-one-out cross validation, SF spectra derived from 

samples of joints with OC can be differentiated from the control samples with 

accuracy of 77% (81% specificity and 73% sensitivity). The misclassification rate 

within the OC group aged less than 2 years was lower than the misclassification rate 

for horses aged greater than 2 years of age (overall misclassification rate is 23%). The 

disease-associated characteristics in MIR spectra of SF from joints with OC may be
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exploited via appropriate feature selection and elassification algorithms to 

differentiate the spectra o f SF from joint with OC from those of controls. Further 

study with larger sample size including varying degree of OC and age-, breed-, and 

gender-matched controls would further validate the clinical value o f IR spectroscopy 

in diagnosis of equine OC.

5.2 Introduction

Disturbances occurring in the development of articular or periarticular 

structures may prevent horses from reaching their full athletic potential, particularly if 

diagnosis and treatment are not provided in a timely manner. O f these disorders, 

osteochondrosis (OC; dyschondroplasia) has been documented to have significant 

impact on equine performance, industry economics and welfare (1-4). The disease is 

characterized by a failure of endochondral ossification occurring at the physes and the 

articular-epiphyseal cartilage complex during the growing phase o f the bones (3). 

Commonly found in many equine breeds, the reported incidence ranges from 10- 

31.5% depending upon the study design and subpopulation examined (5-8). Lesions 

have been reported in most equine joints, but the tarsocrural joint is the most 

commonly affected site (9).

The routine diagnosis of OC is based upon orthopaedic examination and 

radiography (10). In clinical cases, orthopedic examination is usually prompted by 

signs of effusion or lameness. The severity of lameness may vary from none to 

marked and the response to intra-articular anesthesia varies among horses (10).
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However in many cases of OC in young horses, a radiographic diagnosis of 

subclinical or “occult” disease is made during routine pre-purchase or pre-insurance 

screening (10). Radiographic evaluation is the most common approach to diagnosis, 

but the cost and time required for evaluating large numbers of horses to identify 

subclinical OC remains an obstacle for early intervention (6, 8). Such an assessment 

o f young horses is not always diagnostic. Radiographic screening has previously been 

shown to be of benefit for preclinical diagnosis and the initiation of management 

changes which may impede the progression of OC (11). Although this modality is 

generally useful, cases o f OC have been diagnosed by arthroscopy which were neither 

clinically nor radiographically apparent (12). Scintigraphy and ultrasonography have 

also been useful in selected cases of OC, but all of these image modalities provide 

only gross pathoanatomic information (10, 13). None o f these tools yields 

information about biochemical changes in response to pathological processes 

occurring in OC affected joints.

Recently there has been a move to the identification of serum and synovial 

fluid biomarkers of joint disease (14-18). With the exceptions of sepsis or severe 

acute traumatic arthritis, conventional synovial fluid analysis has had limited value 

for the diagnosis and staging o f OC or osteoarthritis (16). Anabolic and catabolic 

markers for equine OC have been isolated and quantified from both synovial fluid 

and serum. Keratan sulphate (KS) epitope concentration in synovial fluid from OC 

affected joints was found to be significantly lower compared to controls (15). The 

insignificant elevation of plasma KS concentration was also detected in OC affected
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horses (18). Significant changes in concentrations of chondroitin sulfate epitope 846  

(C S-846), and carboxy propeptide of type II procollagen (CPU) in synovial fluid have 

also been associated with OC lesions in young horses (15). Age has been identified as 

a significant factor in the expression of these markers (15). Other serum biomarkers 

for OC investigated include C S-846, CPU, collagenase-generated neoepitope of type- 

II collagen fragments (234  CEQ), collagenase-generated neoepitope of type-I and 

type-II collagen fragments (COL2-3/4Cshort) and cross-linked telopeptide degradation 

fragment of type-I collagen (CTxl) (14). The latter have been correlated with lesion 

severity (14). Early results of these ELISA and radioimmunoassay based evaluations 

have provided insights into the pathogenesis of OC and may assist clinical evaluation 

and screening for OC in future. However, complex multiple assays may be required 

to characterize cases o f OC, and individual testing using these techniques is 

expensive (1 4 ,1 5 ,1 7 ) .

Fourier transform infrared (FT-IR) spectroscopy remains one o f the most 

important tools in analytical chemistry (19). Recently its application has been 

extended to solving clinical diagnostic problems in human and veterinary medicine 

(20-27). Based on the measurement of infrared (IR) absorption patterns of biological 

specimens, this technique is rapidly emerging as a powerful diagnostic tool for 

probing biological molecules in humans and animals (26, 28). Within this field of 

study, applications using IR absorption spectroscopy are showing promise in the 

development of biomedical tests (20-28). Measurement simply entails transmitting IR 

radiation through the sample of interest (eg. synovial fluid) and measuring the
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absorbance as a function of wavelength or wavenumber (the reciprocal of the 

wavelength) (28). Each molecular species gives rise to a unique spectrum of 

absorptions, each component of which corresponds to a unique intramolecular 

vibration o f the carbon skeleton and the functional groups attached to it (29).

In biomedical FT-IR spectroscopy, the IR spectrum of each body fluid or 

tissue reflects both the structure of the individual IR active constituents and their 

relative abundance (28, 30). Unlike a simple molecular spectrum, the IR spectrum of 

a biological sample is more complex because the number of chemical functional 

groups is increased, causing the number o f absorption bands and the extent of band 

overlap to increase (30). The absorption patterns within the IR spectra of biological 

samples may be viewed as biochemical “fingerprints” that correlate directly with the 

presence or absence of diseases (28, 31). Recent proof-of-principle studies have 

demonstrated the potential of IR analyses of serum and synovial fluid as a new 

diagnostic tool for human arthritis (20, 21, 25, 27). One decisive advantage of an IR 

spectroscopic approach to clinical diagnosis is that no reagents are required. The IR 

spectrum can be derived directly from IR-active constituents within a sample without 

a need of chemical modification or the aid of comparative substances (28, 29). 

Therefore automated repetitive analyses can be carried out at very low cost. 

Moreover, since the IR spectrum of biological samples reflects the sum of all IR 

active components, the IR spectra of such samples may carry signatures of both 

known and unknown biomarkers rather than relying upon a few novel disease 

markers.
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We hypothesized that OC leads to changes in equine synovial fluid 

composition, altering the IR absorption pattern of synovial fluid samples. The 

objective of this study is to determine the feasibility of using mid-inffared FT-IR 

spectroscopy to differentiate between synovial fluid samples of joints with OC from 

those of control samples.

5.3 Materials and methods

This study was approved by the Animal Care Committee in accordance with 

the University of Prince Edward Island policy and the Guide to the Care and Use of 

Experimental Animals prepared by the Canadian Council on Animal Care.

5.3.1 Horses and samples

A synovial fluid sample (n=64) was collected from a tarsocrural joint of each 

of 64 equine patients presented to the Veterinary Teaching Hospital, Atlantic 

Veterinary College for clinical and radiographic assessment of the hocks. The age of 

study horses ranged from 8 months to 7 years old (mean ± SD; 2.6 ±1.3  years). There 

were 32 females and 32 males consisting of Appaloosa (n = 1), Belgian (n = 1), 

Percheron (n = 1), Thoroughbred (n = 1), Shire (n = 1), Trakehner cross (n = 2), 

Warmblood (n = 5), Quarter horse (n = 5), and Standardbred (n = 47) breeds. Thirty- 

three samples were from horses with radiographic evidence of OC affecting the 

intermediate ridge of the distal aspect of the tibia, lateral trochlear ridge of the talus, 

or medial maleolus of the tibia. The samples were collected aseptically after 

radiographic examination or prior to arthroscopic removal o f the OC fragment. The
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remaining 31 control samples were collected from joints with no clinical evidence of 

OC based upon radiographic examination and/or necropsy findings. All synovial fluid 

samples collected for the study were stored at -80 °C in plain cryovials for later batch 

FT-IR spectroscopic analysis.

5.3.2 Fourier transform (FT-IR) infrared spectroscopy

Synovial fluid samples were thawed at room temperature, centrifuged at 2700 

X g for 10 minutes, and the supernatants used for analyses. The samples were 

prepared as described previously with the following modification (32). Briefly, for 

each sample, an aliquot was drawn and diluted in aqueous 4 g/L potassium 

thiocyanate (KSCN, SigmaUltra, Sigma-Aldrich Inc., St.Louis, MO, USA) solution in 

the ratio 3 parts synovial fluid: 1 part KSCN solution. Triplicate dry films were made 

for each sample by applying 8 pL o f the diluted synovial fluid, spread evenly in 

circular motion onto 5 mm diameter circular islands within a custom made, adhesive 

masked, 96-well, silicon microplate (the adhesive mask serves to spatially define and 

systematically separate the 5 mm islands on the microplate so that sample islands are 

correctly aligned with the FT-IR radiation source and detector). Synovial fluid 

samples from all study horses were randomly assigned to well positions on the 

microplate. The synovial films were left to dry at room temperature for 12 h. Once 

the films were thoroughly dried, the microplate was mounted within a multisampler 

(HTS-XT autosampler, Bruker Optics, Milton, ON, Canada) interfaced with a FT-IR 

spectrometer equipped with a deuterium try glycine sulfate detector (Tensor 37, 

Bruker Optics, Milton, ON, Canada) to allow for the acquisition of MIR spectra.
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Infrared spectroscopic measurements of all samples were performed during the same 

period of time. Absorbance spectra in the range of 400-4000 cm'^ were recorded. For 

each acquisition, 512 interferograms were signal averaged and Fourier transformed to 

generate a spectrum with a nominal resolution o f 4 cm'* (32).

5.3.3 Data preprocessing

A data processing strategy was used to extract and to enhance relevant 

features within MIR spectra that contributed to the success of classification. Triplicate 

spectra of each sample were first averaged, and then differentiation and smoothing 

procedures (Savitsky Golay 2"“* order derivatives using 2"^ degree polynomial 

functions, with 19 point smoothing) were performed on all spectra to resolve and 

enhance weak spectral features and to remove variation in baselines (33), using 

spectral manipulation software (GRAMS/AI 7.02, Thermo Galactic, Salem, NH, 

USA).

The spectra were then normalized by using a wavenumber range of 800-1450 

cm'* as a basis of vector normalization, using scripts written in MatLab (MATLAB 

6.5, The Math Works Inc., Natick, MA, USA). The script was developed by the 

Institute of Biodiagnostics (in collaboration with Dr. R. Anthony Shaw, Institute of 

Biodiagnostics, National Research Council o f Canada). Vector normalization 

employed scaling the 2"^ derivative spectra in the dataset, by defining the sum of 

square intensities over the wavenumber range o f 800-1450 cm'* as equal to unity (23). 

Vector normalization was carried out for each 2"“* derivative spectrum by first 

summing the squares of absorption intensities for all data points (1 data point
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corresponded to approximately 1 wavenumber) within the spectral basis range o f 800- 

1450 c m '\ The square root of this sum of squares calculated from each spectrum was 

used as the normalization factor for that same spectrum. The intensities of the entire 

range within each spectrum were divided by this normalization factor based on the 

square root of the sum of square intensities within the wavenumber range of 800- 

1450 cm'* being assigned a value equal to 1.

5.3.4 Statistical analysis

5.3.4.1 Selection of significant subregions

The following strategy was employed to identify spectral subregions wherein 

the significant effect of group (OC versus control) was demonstrated in the 

normalized 2nd derivative of the MIR spectra. The relative intensity of normalized 

spectra at each wavenumber was used as a dependent variable. Statistical analysis 

was performed on each wavenumber basis for the entire mid-IR range of 400-4000 

cm’’ (SAS 8.02, SAS institute Inc.,Cary, NC, USA). The set of independent variables 

included group (fixed effect), age (covariate), microplate (random effect), within 

microplate row (random effect), and within microplate column (random effect). 

Analyses o f covariance were employed to detect the sets of wavenumbers that 

demonstrated the significant effect of group (p<0.01), accounting for the age variable. 

Significant subregions were defined as a set of at least 4 consecutive wavenumbers 

which demonstrated a significant effect of group at a level of p < 0.01. The spectral 

intensities within each region were then averaged. The average value o f each of the
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selected regions was then considered as a variable for inclusion within a classification 

model (34).

S.3.4.2 Classification model development and validation

Using the set of averaged regional intensities as input variables for eaeh case, 

stepwise discriminant analysis was performed using proprietary statistieal software 

(SAS 8.02, SAS institute Inc., Cary, NC, USA) to select the subset of variables that 

most contributed to the power of the discriminatory function (35). These subsets of 

variables (optimal regions) were then subjected to linear discriminant analysis (LDA) 

to find the discriminatory function and rule that best separated the two groups (OC 

versus eontrol), using statistical software (SAS 8.02, SAS institute Inc., Cary, NC, 

USA). An equal prior probability was set. The performance of classifieation models 

indicated by aceuracy, specificity and sensitivity were estimated based on the cross- 

validation (leave-one-out) method (21).

5.4 Results

Analysis o f covariance revealed 12 significant subregions that met the 

selection criteria (Table 5.1; Figure 5.1). From this set o f significant subregions, the 

stepwise discriminant procedure resulted in the final selection o f 6 optimal regions 

that most contributed to the discriminatory power of the classification algorithm 

(Table 5.1). Linear discriminant analysis resulted in classification results o f 77% 

overall accuracy, 81% specificity and 73% sensitivity estimated by the cross- 

validation method (Table 5.2). Age, accounted for in the final model, was found to
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Table 5.1 Significant infrared absorption spectrum subregions found to discriminate 

between osteochondrosis and control groups

Infrared regions (wavenumber) P value

*536 -  542 cm"' 0.0024 -  0.0066

762 -  766 cm ' 0.0029 -  0.0065

"851 -8 5 5  cm ' 0.0046 -  0.0084

*866 -  872 cm '' 0.0006 -  0.0073

*923 -  927 cm'' 0.0053-0.0091

958 -  968 cm '' 0.0006 -  0.0099

985 -  991 cm '' 0.0008 -  0.0027

*996- 1019 cm'' 0.0002 -  0.0069

1027- 1036 cm'' 0.0005 -  0.0074

1073 -  1083 cm ' 0.0015-0.0073

1093-1100  cm '' 0.0014-0.0083

*1763-1772 cm'' 0 .0001-0.0064

“ Indicates the regions selected by the stepwise discriminant procedure for 

inclusion in the final classification model.
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Figure 5.1 Graphie representation of normalized 2"̂ * derivative spectra (2"** order 

derivative intensity value). The shade areas represent the significant wavenumber 

regions identified by analyses o f covariance.

n .005

Wavenumber (cm )

*Regions selected by the stepwise discriminant procedure for inclusion in the final 

classification model
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Table 5.2 Classification table comparing clinical diagnosis to infrared-based 

diagnosis by use of LDA leave-one-out cross validation.

Infrared-based diagnosis 

Control Osteochondrosis Total

Clinical diagnosis

Control 25 6 31

Osteochondrosis 9 24 33

Total 34 30 64

Numbers in bold indicate number o f samples that were correctly classified
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significantly influence the analysis. Based upon the identification of age as a 

significant determinant o f outcome, the distributions of horses correctly classified and 

misclassified in each of 3 age categories are demonstrated in Table 5.3.

5.5 Discussion

Infrared spectroscopy in combination with feature extraction and selection 

methods may be successfully used to differentiate samples o f OC affected horses 

from those of controls with an overall accuracy o f 77%. Specifically, the alterations 

in features within 6 significant subregions may be associated with the presence or 

absence o f disease, forming the basis for a classification algorithm. The information 

may be useful in designing studies for further infrared spectral classification in larger 

sample populations.

An alteration in the MIR spectra of synovial fluid from 2 horses with 

tarsocrural OC compared to control joints was first observed in horses less than 12 

months old using reflectance spectroscopy (36). A visual comparison of the MIR 

spectra obtained from 8 control samples and 4 samples from OC affected joints 

revealed spectroscopic differences at 1000, 1035, 1115 and 1245 cm'* (36). Statistical 

significance was not determined, and a multivariate classification algorithm was not 

developed. Despite the differences in the type of FT-IR spectroscopy employed 

(transmission versus reflectance) and sample preparation techniques between the 

studies, the wavenumbers o f 1000 and 1035 cm'* reported previously (36) were 

captured in 2 significant subregions (996 - 1019 cm'* and 1027 - 1036 cm'*) also
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identified in this study. However, only one of these spectral features (1000 cm"') was 

captured with the spectral ranges contributing (996 - 1019 cm'^) to the current final 

classification algorithm. The reason for this difference is unknown, but sample size 

and population differences between the 2 studies, particularly in age distribution of 

cases and controls, may be a contributing factor. For the current study, the inclusion 

of a larger number o f samples within each disease class may be crucial for optimizing 

the extraction of the disease-relevant information from MIR spectra, thus permitting 

the meaningful detection o f a greater number o f statistically significant discriminatory 

MIR regions. The present classification success rate, although encouraging at 77%, 

may improve further in future FT-IR based studies of equine OC by using a still 

larger sample size. Such a large scale study would not only to improve the accuracy 

of this diagnostic test but also the range of applicability to a larger and more diverse 

diseased (clinical and subclinical) population.

The central concept underpinning the current study is that characteristic 

alterations in molecular synovial fluid constituents associated with joint disease lead 

to characteristic changes in IR absorption patterns (20, 21, 25, 27). While the spécifié 

molecular changes and species contributing to the features distinguishing the MIR 

spectra of OC from control joints have not been identified to date, it has been well 

established that IR spectra of biological samples reflect both the structure of the 

individual IR active constituents (including known and unknown biomarkers) and 

their relative abundance (28, 30). Alterations in known biomarker concentrations in 

synovial fluid have been reported in studies of equine OC using other methods. The

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



authors of these studies have proposed that alterations in biomarker concentrations 

are associated with either growth or pathogenesis of equine joint disease (15, 18, 37). 

The differences attributable to disease and age in the current IR study support this 

contention. To the authors’ knowledge, none of the assays for known markers has 

been developed for routine diagnostic screening of horses for OC, and significant 

intra and inter assay variation may limit their accuracy in this role (14). The results of 

radiographic screening have also been shown to vary depending upon the age of the 

horse when examined and the joint affected, but may fail to diagnose cases with non­

radiographic signs (6, 12). Similarly, the variation in correct classification rates in 

different age groups in the current study using FT-IR spectroscopy will need to be 

addressed before the test may be applied to screening o f the general equine 

population for tarsocrural OC.

Alterations in CS-846 epitope and CPU associated with OC have been 

observed in young horses during musculoskeletal development, but not in mature 

horses (15). The presence of proteoglycan components in synovial fluid and serum 

may reflect both physiologic and pathologic cartilage extracellular matrix turnover 

(14, 16, 18, 38). In OC free equine joints, the highest concentration of 

glycosaminoglycans was detected in neonates (38). This parameter decreased with 

increasing age, with the effect of aging disappearing at 4 years (38). In the current 

feasibility study, the IR-based approach identified several spectral subregions within 

which the absorptions of proteoglycans would be expected to contribute prominently.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in particular the 996-1019 cm’* region that lies within the range characteristic of 

carbohydrate C -0 stretching vibrations (31, 39).

In agreement with the findings of previous studies investigating synovial fluid 

markers o f OC, the search for the optimal IR signature o f OC within the spectra may 

have to consider the dynamic nature o f the disease process and to take into account 

physiological factors such as age, breed, and gender that may influence the pattern of 

MIR spectra (15, 17, 18, 37, 38, 40). In the current study, the wide age range of 

horses was controlled for in the statistical analysis to minimize bias. However it was 

clear from the rates of misclassification in the different age groups (Table 5.3) that 

this variable remains a possible confounder. Age has been shown to influence the 

expression of known biomarkers for OC (18, 37). Taking the age factor into account 

and quantifying group effects when adjusted for age are logical next steps toward the 

refinement and implementation of this diagnostic test. While the present samples 

were collected from clinical cases presented for evaluation, future studies designed to 

develop the IR-based test for application to the equine population at large should 

consider age, gender, and perhaps breed matched control selection (18, 37).

The conditions of prior probability may be adjusted based upon criteria such 

as the cost of misclassification and the proportion of sample size (35). Adjustment of 

this ratio may influence the sensitivity and specificity estimation. For this preliminary 

study, an equal prior probability was set assuming no prior knowledge on how the 

spectra should be classified or no preference for any group (35). The leave-one-out 

cross validation is a model validation method requires that each discriminatory
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function is constructed by taking one spectrum out of the dataset (31). That spectrum 

is then used to validate the discriminatory model. This process is repeated for all 

spectra in the dataset until every single spectrum takes its turn to validate the model

(31). This method was employed to enhance robustness of LDA classifier and has 

been proposed to be useful in classification of human arthritic disorders (21). With a 

limited numbers of horses, the total error rate o f the dataset based on the cross 

validation method was 23%. A more accurate rate of classification of OC and control 

spectra may be achieved through the larger numbers o f classification attributes (or 

spectral subregions) derived from larger sample size.

The misclassification rate within the OC group aged < 2 years was lower 

(18%) than the misclassification rate for horses > 2 years of age (37%) (Table 5.3). 

As alluded to above, it is possible that the significant features associated with OC in 

MIR spectra may be less prominent in older horses (38). In future studies it may also 

be possible to identify different age-dependent spectral features that allow the 

development of classifiers for OC that encompass variations attributable to growth as 

well as pathologic progression. Combination o f theses attributes may probe a “real 

signature” within MIR spectra that is highly specific to the presence or absence of OC 

for all ages.

In conclusion, the current study demonstrated significant features in the FT-IR 

absorption pattern that were associated with OC. The differentiation of MIR spectra 

obtained fi-om OC and control synovial fluid samples is feasible. The ultimate goal of 

this type of research is to develop novel tests that aid clinical and preclinical
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diagnosis of joint disease in horses. Further study with a larger sample size including 

occult cases, and using matched controls, would further validate the clinical value of 

IR-based diagnosis of equine OC, and complete the transition to clinical utility.
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CHAPTER 6 

CONCLUDING REMARKS

This dissertation focuses on 4 main topics; the technical development of 

methods for infrared spectroscopy-based analysis of synovial fluid (SF) in horses, the 

natural variation in mid-infrared (MIR) absorption patterns o f SF attributable to the 

differences in anatomical location of the joints, the characteristic features of MIR 

absorption patterns that differentiate the SF samples of diseased joints from controls, 

and the feasibility assessment of using MIR spectroscopy for diagnosis of joint 

diseases in horses. The ultimate goal o f the current research was to develop MIR 

spectroscopic techniques for the diagnosis and characterization of equine joint 

diseases.

The research project met the criteria for an exploratory (early) phase project 

with regards to a guideline for the design of diagnostic accuracy studies (1), to 

determine the feasibility of MIR spectroscopy and classification algorithms in the 

diagnosis of equine joint diseases. The essence of the current research project will be 

encapsulated in this chapter within the three following sections: summary of the main 

findings, significance and implications of the results, and recommendations and 

suggestions for the direction of future research.

6.1 Summary of the main findings

In Chapter 2, the techniques required for MIR spectroscopy of dried films 

were optimized for SF collected from the joints of horses. The sample preparation.
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the MIR spectral acquisition, and the procedures to enhance spectroscopic data were 

optimized to yield the following protocol, which was followed for all spectroscopic 

measurements conducted during the current research project. Sample preparations of 

3:1 SF to aqueous potassium thiocyanate solution were deposited as 8 p,L aliquots 

onto the custom-made silicon plate (2). A randomized block design was applied to 

randomly assign samples to the plate and the well position prior to deposition of 

samples. It was felt that this experimental design helps guard against possible sources 

of bias involving the instruments and measurement techniques in the early phase of 

the development of a new diagnostic test. The MIR spectra were recorded using a 

Fourier transform infrared (FT-IR) spectrometer. For each spectrum, 512 

interferograms were coadded at a spectral resolution of 4 c m '\ and a Blackman- 

Harris 3-term apodization function applied to the coadded interferogram prior to 

Fourier transformation. The overall MIR absorption pattern o f equine SF derived 

from our laboratory protocol is similar to the MIR absorption pattern of human SF 

reported in the literature (3). Four main preprocessing techniques were employed for 

the spectroscopic studies in this dissertation including spectral averaging, subtraction, 

normalization, and differentiation/smoothing. We found the spectral preprocessing 

techniques useful for the enhancement of spectroscopic features and transformation of 

spectroscopic data into a form that was suitable for statistical analysis. The 

preprocessing techniques were carefully optimized for each data set to achieve the 

best possible classification results.
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In Chapter 3, inter-articular variability was studied with the objective of 

identifying significant differences due to natural variations among anatomical types 

of high motion joints (antebrachiocarpal (AC), midcarpal (MC) and tarsocrural (TC)), 

and left versus right limbs in the same horses. Inter-articular variability may affect the 

pattern of MIR spectra derived from SF o f clinically normal joints. In this study, we 

found that the pattern of MIR spectra o f SF samples from the same type of joint is 

likely to be similar when the left and right side were compared within a horse. 

Differences in spectral features between ipsililateral AC and MC spectra within the 

same horse were significant, but comparisons between the spectra of carpal and TC 

joints revealed many more discriminatory absorption bands. Although there were 

sufficient data to demonstrate these differences, the sample size was not sufficient to 

characterize the typical IR signature for each of the joint types, or to develop a 

classification strategy that might identify which of the many significant features 

identified contributed most to discriminating among these joints. The results from the 

current study were sufficient to suggest that the inter-articular variation within the 

same horse should be considered in study designs, and that the biochemical response 

to the same disease is likely to vary as a function of joint location. Researchers should 

proceed with caution when using different types of joints for spectra comparisons 

either within subjects or between subjects. Further normal samples should be 

evaluated to better characterize the range and significance of IR spectral changes 

detected.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Chapter 4 we examined the feasibility of using MIR spectroscopy of SF for 

the diagnosis of traumatic arthritis in racing horses based on the comparison of 

spectroscopic data derived from SF samples of the affected and control joints. 

Temporally this was the first experiment conducted due to reasons of sample 

availability. However, because traumatic arthritis represents a severe form of joint 

disease in which progressive degenerative changes are followed by catastrophic 

osteochondral failure, it was thought that this disease would be an appropriate first 

test of the feasibility of IR spectroscopy of SF for the diagnosis of equine joint 

disease. The MIR spectroscopic patterns of SF from joints with traumatic arthritis 

differed significantly from the corresponding patterns for controls. A classification 

model was developed based upon characteristics of 3 MIR regions that classified 

spectra from the calibration dataset with an overall accuracy of 97% (sensitivity 93%; 

specificity 100%). The same model with cost-adjusted prior probabilities of 0.60:0.40 

produced an overall accuracy of 89% (sensitivity 83%; specificity 100%) for a 

validation sample dataset, and 100% correct classification for a second set consisting 

of independent normal control joints. This study confirmed the hypothesis that 

characteristic alterations in IR absorption patterns may be discovered and exploited 

via an appropriate feature selection and classification algorithm to differentiate the 

spectra of diseased joints from those of controls. The development of appropriate 

classification techniques proved difficult as it involved a level of modeling outside 

the experience of many veterinary researchers. Nevertheless this experiment (now 

published) clearly demonstrated the feasibility o f this approach to diagnose joint
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disease in the horse. Further recruitment of cases and normal control horses is 

anticipated to develop and expand the scope of applications, and is necessary to 

validate the clinical value and accuracy of the method for screening and diagnosing 

patients with joint disease in the larger equine population.

In Chapter 5 the feasibility of using MIR spectroscopy of SF for the diagnosis 

of tarsocrural osteochondrosis (OC) in horses was illustrated based on comparison of 

spectroscopic data derived from SF samples of the affected and control joints. 

Disease-associated characteristics within MIR spectroscopic patterns of SF were 

identified using a statistical approach and used for spectral classification purposes. By 

the use of linear discriminant analysis to classify the spectra, based on the 

characteristics of 6 MIR regions and leave-one-out cross validation, SF spectra 

derived from samples of joints with OC were differentiated from the control samples 

with an overall accuracy of 77% (81% specificity and 73% sensitivity). While 

confirming that IR-based diagnosis of OC is possible, this study further highlighted 

one of the major difficulties associated with the study of joint disease -  its dynamic 

nature. That is to say that age, and the progression of the disease, affected the 

classification of OC spectra. In conclusion, this study demonstrated significant 

features in the FT-IR absorption pattern that were associated with OC, and hence that 

the differentiation of MIR spectra obtained from OC and control SF samples is 

feasible. Further study with a larger sample size including occult cases, and using 

matched controls, would further establish and validate the clinical value of IR-based 

diagnosis of equine OC, and complete the transition to clinical utility.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 Significance and implications of the results

Changes in the composition of SF in concert with or as a response to the 

presence o f disease, provides a basis for the diagnosis of joint diseases for both 

conventional SF analyses and novel molecular analyses of biomarkers (4-6). Various 

biochemical, immunological, and molecular methods have been employed to develop 

assays for specific biomarkers and various other SF constituents (7-12). In the current 

research, we proposed the use of FT-IR spectroscopy to detect characteristic 

diagnostic signatures in the IR absorption pattern o f SF. Infrared absorption patterns 

for equine SF samples, measured using laboratory techniques developed in the course 

of the current research project, were comparable to SF spectra for human samples (3). 

Our study confirmed the reported advantages of MIR spectroscopy: with the 

exception of a simple aqueous diluent (4 g/L potassium thiocyanate in water), no 

reagents were required for spectroscopic analysis of SF because all infrared active 

constituents gave rise to absorption bands without any need for chemical or 

immunological modification; the laboratory techniques, once developed, were 

relatively simple and fast; only small amount o f sample (8 pL) was required for 

spectroscopic analysis; and batch analyses of samples were performed at low cost.

We have pursued exploratory studies to determine the feasibility of using MIR 

spectroscopy and classification algorithms for diagnosis of equine joint diseases. 

Initially we had hoped to investigate a range of joint disorders, but challenges in the 

time required to develop expertise in this field, and difficulty in recruiting a large 

number o f samples from clinical cases with the consent of owners led to a
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rationalization of the initial project goals. As a consequence, two articular disorders, 

traumatic arthritis and osteochondrosis, were chosen to examine the diagnostic 

potential o f this technique as an ex-vivo test. The preliminary results addressed our 

hypothesis that the IR spectra o f SF can serve as biochemical fingerprints with 

sufficient latent information to permit the diagnosis of traumatic arthritis and 

osteochondrosis in horses by means of discriminant analysis. These findings favor the 

further development o f this method in the diagnosis of joint diseases in horses. The 

lack of an affordable and accessible gold standard for diagnosing equine joint disease 

remains a significant challenge for the development of IR-based diagnostic technique, 

as does the recruitment of large numbers o f well characterized samples. The 

extraction of genuine spectroscopic characteristics of traumatic arthritis and 

osteochondrosis may require the recruitment of large number o f samples from both 

disease groups as well as other types of joint disease (e.g. septic arthritis) to develop 

an appropriate algorithm that capable o f distinguishing among different types of joint 

disease. However, with future endeavors targeted towards its development, the 

ultimate goal of this type o f research, to provide a rapid, economical, practical, and 

reliable means for objective evaluation of joint disease, as well as an unbiased 

monitoring of response to treatment can be accomplished.

6.3 Recommendations and direction for future research

In the initial phase, we have obtained evidence for the natural biochemical 

variability of SF composition among anatomically different types o f joints (inter-
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articular variation). Other possible sources of natural variation may include intra­

subject and inter-subject variability associated with physiological, genetic, 

environmental factors, age, breed, sex, activity, occupation, and circadian rhythm

(13). These possible sources of variation need to be characterized systematically and 

considered (as required) in future study design. The reproducibility of IR spectra may 

be affected by subtle instrumental and enviromnental variables. Considerable efforts 

were made to correct and to guard against possible biases from the instrumental and 

environmental sources o f variation in the current researeb. We reeommend 

minimizing such variability in the future by improving the design of the next 

generation of silicon plate and customization of the plate bolder to correct for the 

imperfect positioning of modulated exiting beam onto the sample well situated on the 

silicon plate. To minimize environmental effects, the IR spectroscopic measurements 

should be conducted in appropriately controlled environment. The installation of a 

purging system on the multisampler compartment of the FT-IR spectrometer to 

reduce the effects of atmospheric water vapor and carbon dioxide on spectral noise on 

the instrument detector is suggested.

According to the current research laboratory protocol, after centrifugation, the 

cell portion was discarded. This portion may provide some useful information in 

diagnosis of joint disease either by studying IR absorption by the DNA content of the 

cells or the cytoplasmic contents. Future researchers may choose to focus on the IR 

spectroscopy of the cellular portion of SF. However, the development and
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optimization o f an optimal IR spectroscopic measurement protocol is required for the 

cell specimens, as are appropriate cell isolation and sample storage protocols.

The identification of IR spectral features suitable for the classification of 

disease often leads to questions regarding the constituent molecules contributing to 

those spectral features. Additional procedures could be added to the sample 

preparation process. The fractionation of the biological fluid composition using high 

performance liquid chromatography (HPLC) has been utilized prior to spectroscopic 

measurement in one study (14). A novel technology has also been reported using 

silicon nanoparticles as the substrate for immobilization of a particular protein of 

interest, followed by characterization of the protein attached to those particles by the 

use of FT-IR spectroscopy (15). The combination of nanobead-based technology and 

FT-IR spectroscopy may increase the sensitivity to detect cytokines, DNA or 

enzymes (15). This may open up the opportunity for development o f advanced IR- 

based diagnosis in the near future. In addition, IR spectroscopy combined with other 

technologies such as nuclear magnetic resonance (NMR) and Raman spectroscopies, 

mass spectrometry and protein arrays may better serve for the structural identification 

and protein characterization purposes (15, 16). However, additional complex 

preparatory work prior to spectroscopic measurement and the use o f other 

technologies may be conducted with the cost of increasing expense and time required 

to perform sample analysis. The latter disadvantages are undesirable when developing 

tests for clinical screening and diagnosis.
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In future studies, the classification models may be improved and refined by 

the inclusion of more spectra. To our knowledge, firm recommendations for the 

calculation of sample size for multivariate spectral classification have not been 

reported. In fact, the development o f IR-based diagnosis depends critically on the 

collection of a large number of spectra and their corresponding (true) disease status

(17). Ideally, the search for genuine signature o f disease in the spectra (optimal region 

selection procedure) requires a large number of spectra to encompass all possible 

spectral variations associated with the presence o f particular disease o f interest in the 

population at large (17). Sample size was a critical issue in all 3 experiments 

presented in this thesis. We support the use of the general guidelines for the design of 

diagnostic accuracy studies, and for justifying the sample size (1). According to these 

guidelines (1), the architecture of diagnostic accuracy research consists of three 

phases, the exploratory (n = 10-50), challenge (n = 10-100), and clinical phases (the 

number of subjects equivalent to several hundreds).

In order to expand the usefulness of IR spectroscopy in the field of arthrology, 

the application of this technique should not be confined to the uses based only upon 

qualitative analyses (i.e. to correlate spectroscopic data to the presence or absence of 

joint disease). Infrared-based analysis could be focused on the development of 

automated, reagent free analytical tools for routinely clinical use (2). The 

demonstrated potential of IR-based analysis in clinical chemistry to quantify several 

analytes in whole blood, serum, urine, and milk samples (18-23), suggests 

possibilities in quantifying some useful SF parameters (that could be passive
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biomarkers or indicators for joint diseases) such as nucleated cell counts, protein, 

glucose, urea, and lipid concentrations within a single spectroscopic measurement 

(24-26). Concentrations of other important SF compositions such as hyaluronan and 

proteoglycan (e.g. chondroitin sulfate, keratan sulfate etc.) contents (that could be 

potential biomarkers for joint diseases) may be quantified by the use of IR 

spectroscopic measurement and appropriate algorithms (24, 27, 28). If the 

quantitative IR spectroscopic techniques for SF analysis could be successfully 

developed, this technique would complement the diagnostic fingerprinting approach 

developed within this thesis work. The implementation in arthrology of either 

quantitative or qualitative (IR pathology) analysis of IR spectra should be expanded 

to other species such as canine, feline and laboratory animals. The suecess in 

developing IR-based veterinary diagnostic tests may contribute benefits to both 

humans and animals by offering better disease detection and monitoring methods. 

These in turn would trigger more rapid and appropriate prevention strategies and 

treatment regimens, thus improving the quality of life for both human and animal 

patients.

Finally, once the satisfactory differentiation of the diseased from normal 

conditions can be achieved, future research should aim at disease staging. Joint 

disease staging, as it currently stands, is often based on subjective classification 

system that categorizes patients into homogenous clusters based on degrees of 

severity or clinical signs of a particular disease. Infrared analyses may offer objective 

classification of arthritis based upon discrete and objectively selected IR spectral
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features. For instance, based upon spectroscopic features of SF spectra, traumatic 

arthritis horses may potentially be subcategorized into either acute or chronic stages 

accompanied by the presence o f osteoarthritis. Osteochondritic horses may potentially 

be subcategorized as horses that have OC and are actively grooving (young), horses 

that have OC and are undergoing adaptation to training, and horses that have chronic 

OC where the joints are also developing osteoarthritis as a consequence. The 

diagnostic results based on an IR-based disease staging system may provide more 

useful diagnostic information that best represents the pathophysiologic manifestation 

of joint disease. A disease staging system would further assist the decision making in 

medical or surgical treatment selection and expected treatment outcomes and would 

also provide an accurate prognosis of the joint disease. In addition, IR-based 

technique may serve as a screening tool for the detections of traumatic arthritis and 

osteochondrosis as well as other types of joint disorder in horse population followed 

by the use of other image modalities to confirm the final diagnosis. The improvement 

and refinement of the classification model to achieve as high as possible sensitivity 

and specificity are crucial for the development of the screening test for diagnosis of 

joint diseases. However, an appropriate study design by inclusion of more than one 

type of joint disease (e.g. traumatic arthritis, osteochondrosis, septic arthritis and 

normal controls etc.) with a large number of spectra in each disease category would 

be required to evaluate the clinical effectiveness in clinical settings and the prognostic 

impact on the population at large (1, 29).
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Appendix 1 Infrared spectra o f 95 wells on a silicon plate without deposition o f any 

sample (a set of flat lines) and the IR spectra derived from the deposition of a sample 

onto 95 wells

2500 2000
W avenum ber cm-1

Note: The absorbance unit of spectra of a silicon plate without deposition o f any 

samples are essentially situated below zero level.
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Appendix 2 The plot o f 2"^ order differential intensity (absorb) at 1246 cm"' for each 

of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well 

96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well 

order in plate 3)

W A V E N U M - I 2 4 5 . 9 7 6 4 5 2 I

absorb
0 . 0 0 0 4 0

0 . 0 0 0 3 5

0 . 0 0 0 3 0

0 . 0 0 0 2 5

0 ,0 00 2 0

0 . 0 0 0 1 5

0 .00 0 10

0 . 0 0 0 0 5

0 .00 0 00

- 0 . 0 0 0 0 5

- 0 .0 0 0 1 0

- 0 . 0 0 0 1 5

- 0 . 0 0 0 2 0

- 0 . 0 0 0 2 5

- 0 . 0 0 0 3 0

- 0 . 0 0 0 3 5

- 0 . 0 0 0 4 0

0

T 1 -I-
100 3 0 0

wel 1

Note: the low witbin-plate variation with values distributed about the mean with no 

pattern. The vertical lines are to separate sets o f wells o f different plates.
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Appendix 3 The plot of 2"^ order differential intensity (absorb) at 2058 cm'^ for each 

of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well 

96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well 

order in plate 3)

W A V E N U M - 2 0 5 7 . 9 8 2 7 7 7 7

absorb
0 . 0 0 0 3 0

0 . 0 0 0 2 5

0.00020

0 . 0 0 0 1 5

0.00010

0 . 0 0 0 0 5

0 .0 0 0 0 0

- O . O Ô 0 0 5

- 0 . 0 0 0 1 0

- 0 . 0 0 0 1 5

- 0 . 0 0 0 2 0

- 0 . 0 0 0 2 5

- 0 . 0 0 0 3 0

- 0 . 0 0 0 4 0

- 0 . 0 0 0 4 5

- 0 . 0 0 0 5 0

- 0 . 0 0 0 5 5

- 0 . 0 0 0 6 0

3 0 02001000

wel 1

Note: The high within-plate variation and value distributed about the mean with no 

pattern. The vertical lines are to separate sets o f wells of different plates.
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Appendix 4 The plot o f 2"̂ * order differential intensity (absorb) at 3633 cm'^ for each 

of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well 

96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well 

order in plate 3)

W A V E N U M = 3 G 3 2 . 8 I Z I 4 7 9

absorb
0 . 0 0 0 3 0

0 . 0 0 0 2 5

0.00020

0 . 0 0 0 1 5

0 .0 0 0 1 0

0 . 0 0 0 0 5

0 . 0 0 0 0 0

- 0 . 0 0 0 0 5

- 0 , 0 0 0 1 0

- 0 . 0 0 0 1 5

- 0 .0 0 0 2 0

- 0 . 0 0 0 2 5

- 0 . 0 0 0 3 0

- 0 . 0 0 0 3 5

- 0 . 0 0 0 4 0

- 0 . 0 0 0 4 5

- 0 . 0 0 0 5 0

- 0 . 0 0 0 5 5

- 0 . 0 0 0 6 0

0 100 200 3 0 0

we 11

Note: Low within-plate variation, value distributed about the mean with some pattern, 

no differences among plates. The vertical lines are to separate sets of wells of 

different plates.
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Appendix 5 The plot of 2"^ order differential intensity (absorb) at 668 cm'^ for each 

of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well 

96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well 

order in plate 3)

W A V E N U M - 6 6 8 . 3 1 3 9 9 4 8 2

a b s o rb
0 . 0 0 0 3 0

0 . 0 0 0 2 5

0 .00020

0 . 0 0 0 1 5

0 .00010

0 . 0 0 0 0 5

0 .00000

- 0 . 0 0 0 0 5

- 0 . 0 0 0 1 0

- 0 . 0 0 0 1 5

- 0 . 0 0 0 2 0

- 0 . 0 0 0 2 5

- 0 . 0 0 0 3 0

- 0 . 0 0 0 3 5

- 0 . 0 0 0 4 0

- 0 . 0 0 0 4 5

- 0 . 0 0 0 5 0

- 0 . 0 0 0 6 0

100 200 3 0 00

Note: Low within-plate variation, value distributed about the mean with some pattern 

and disparities among plates. The vertical lines are to separate sets of wells of 

different plates.

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix 6 The plot o f 2"^ order differential intensity (absorb) at 1658 cm'^ for each 

of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well 

96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well 

order in plate 3)

W A V E N U M = I G 5 7 . 7 6 5 8 8 3 3

a bsorb  
0 . 0 0 0 6 0  
0 . 0 0 0 5 5  
0 . 0 0 0 5 0  
0 . 0 0 0 4 5  
0 . 0 0 0 4 0  
0 . 0 0 0 3 5  
0 . 0 0 0 3 0  
0 . 0 0 0 2 5  
0 . 0 0 0 2 0  
0 . 0 0 0 1 5  
0 . 0 0 0 1 0  
0 . 0 0 0 0 5  
0 . 0 0 0 0 0  

- 0 . 0 0 0 0 5  
- 0 . 0 0 0 1 0  
- 0 . 0 0 0 1 5  
- 0 . 0 0 0 2 0  
- 0 . 0 0 0 2 5  
- 0 . 0 0 0 3 0  
- 0 . 0 0 0 3 5  
- 0 . 0 0 0 4 0  
- 0 . 0 0 0 4 5  
- 0 . 0 0 0 5 0  
- 0 . 0 0 0 5 5  
- 0 . 0 0 0 6 0  
- 0 . 0 0 0 6 5  
- 0 . 0 0 0 7 0  
- 0 . 0 0 0 7 5  
- 0 . 0 0 0 8 0  
- 0 . 0 0 0 8 5  
- 0 . 0 0 0 9 0  
- 0 . 0 0 0 9 5  
- 0 . 0 0 1 0 0  
- 0 . 0 0 1 0 5  
- 0 . 0 0 1 1 0  
- 0 . 0 0 1 1 5  
- 0 . 0 0 1 2 0  
- 0 . 0 0 1 2 5  
- 0 . 0 0 1 3 0  
- 0 . 0 0 1 3 5  
- 0 . 0 0 1 4 0  
- 0 . 0 0 1 4 5  
- 0 . 0 0 1 5 0

I ' I—  

100 200 3 0 0

w el 1

Note: High within-plate variation, value distributed about the mean with some 

pattern. The vertical lines are to separate sets o f wells of different plates.
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Appendix 7 The spectroscopic data preprocessing and classification strategics

Fourier transform  sp ec tra l acquisition (OPUS 4.2 software® )

Spectra l averaging o f  the trip licate spec tra  (GRAM/AI 7.02 software*®)

Spectral p reprocessing p ro ced u res  ( GRAM/AI 7.02)
T he original abso rbance  sp ec tra  w ere p rep rocessed  with 2^  o rder differentiation 

an d  3 levels of sm oothing, 15,25 and  45 po in ts (Savitzky G olay algorithm )

3 s e ts  o f spec tra  w ere generated  from th e  original se t of ab so rbance  spec tra  
S e t 1: Second derivative spec tra  w ith IS point sm oothing 
S et 2: Second derivative sp ec tra  w ith 25 point sm oothing 
S e t 3: Second derivative spec tra  w ith 45 point sm oothing

R andom  sam pling  the sp ec tra  and  ass ig n ed  them  into a  calibration set. 
T he rem aining of the  spectra  constitu ted  a validation se t (Minrtab 13 so ftw are^

Re sam pling  with replacem ent w as rep ea ted  20 tim es to assign  th e  sp ec tra  into 
calibration and  validation s e ts  fo r each  of level o f sm oothing

20 calibration-validation s e ts  w ere  created  for each  level of sm oothing 
and  w ere used  a s  Inputs fo r g en e tic  optim al region selection  algorithm

Note: “ OPUS 4.2, Bruker Optik GmbH, Ettlingen, Germany 

GRAMS/AI 7.02, Thermo Galactic, Salem, NH, USA 

'  Minitab 13, Minitab Inc., College, PA, USA
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Appendix 7 The spectroscopic data preprocessing and classification strategics 

(continue from previous page)

Data files were prepared for “genetic optimal region algorithms” 
using program script (MATLAB 6.5 softwares'*) to combine 

a class designation file (In text file format) with the 
spectroscopic datafile (In MATLAB file format)

Optimal region selection by “genetic algorithm®” 
to select optimal regions that best discriminate 

disease from control spectra in each calibration set

Calibration of classification model (discriminant analysis) 
Performed on each calibration set based on the optimal region characteristics

Classification model validation using spectra in corresponding validation set

Calculations of mean sensitivity, specificity, and accuracy for each level of smoothing

Calculations of sensitivity, specificity, and accuracy 
for each pair of calibration and validation set (20 pairs per each level of smoothing)

Note:  ̂MATLAB, MathWorks, Natick, MA, USA

® The Institute for Biodiagnostics, National Research Council of Canada, 

Winnipeg, MB, Canada
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Appendix 8 Number of samples with respect to anatomical location of joints in

affected (traumatic arthritis) and control groups

Study Joints Traumatic arthritic group Control group

Fetlock 15 3

Antebrachiocarpal 10 16

Midcarpal 28 22

Total 53 41
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Appendix 9.1 Three optimal regions selected by genetic algorithm for 20 pairs o f calibration-validation sets of spectra in

traumatic arthritis dataset (TT1-TT20) when preprocessing with 2"*̂  order differentiation and 15 point smoothing technique

(Savitzky-Golay algorithm)
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Appendix 9.2 Three optimal regions selected by genetic algorithm for 20 pairs of calibration-validation sets o f spectra in

traumatic arthritis dataset (TT1-TT20) when preprocessing with 2"̂  order differentiation and 25 point smoothing technique

(Savitzky-Golay algorithm)
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Appendix 9.3 Three optimal regions selected by genetic algorithm for 20 pairs of calibration-validation sets o f spectra in

traumatic arthritis dataset (TT1-TT20) when preprocessing with 2"̂  order differentiation and 45 point sm oothing technique

(Savitzky-Golay algorithm)
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Appendix 10.1 Sensitivity, specificity and accuracy of all calibration and validation

sets when preprocessing with 2"̂  order differentiation and 15 point smoothing

Set

Calibration Validation

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

TTl 87.5 85.2 85.5 72.2 64.3 68.8

TT2 88.6 96.3 91.9 61.1 78.6 68.8

TT3 77.1 96.3 85.5 72.2 85.7 78.1

TT4 88.6 88.9 88.7 61.1 64.3 62.5

TT5 80 96.3 87.1 55.6 92.9 71.9

TT6 85.7 92.6 88.7 72.2 71.4 71.9

TT7 88.6 88.9 88.7 61.1 85.7 71.9

TT8 82.9 92.6 87.1 66.7 92.9 78.1

TT9 74.3 92.6 82.3 72.2 85.7 78.1

TTIO 77.1 88.9 82.3 72.2 78.6 75

T T ll 88.6 81.5 85.5 72.2 57.1 65.6

TTl 2 85.7 96.3 90.3 72.2 64.3 68.8

TTl 3 82.9 92.6 87.1 66.7 78.6 71.9

TT14 91.4 85.2 88.7 66.7 78.6 71.9

TTl 5 91.4 88.9 90.3 61.1 71.4 65.6

TTl 6 82.9 96.3 88.7 61.1 92.9 75

TTl 7 82.9 88.9 85.5 66.7 35.7 53.1

TTl 8 85.7 96.3 90.3 61.1 64.3 62.5

TTl 9 74.3 85.2 79 72.2 92.9 81.2

TT20 85.7 88.9 87.1 72.2 42.9 59.4

Note; TT1-TT20 correspond to calibration-validation set 1 -2 0
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Appendix 10.2 Sensitivity, specificity and accuracy of all calibration and validation

sets when preprocessing with 2"** order differentiation and 25 point smoothing

Calibration Validation

Set Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

TTl
82.9 100 90.3 61.1 78.6 68.8

TT2 82.9 96.3 88.7 55.6 78.6 65.6
TT3 85.7 81.5 83.9 61.1 92.9 75
TT4 85.7 88.9 87.1 72.2 64.3 68.8
TT5 80 92.6 85.5 72.2 85.7 78.1
TT6 85.7 96.3 90.3 77.8 71.4 75
TT7 82.9 92.6 87.1 55.6 78.6 65.6
TT8 88.6 88.9 88.7 61.1 92.9 75
TT9 80 81.5 80.6 83.3 85.7 84.4

TTIO 82.9 88.9 85.5 72.2 78.6 75
T T ll 85.7 92.6 88.7 77.8 42.9 62.5
TT12 88.6 81.5 85.5 72.2 57.1 65.6
TTl 3 85.7 88.9 87.1 77.8 64.3 71.9
TTl 4 94.3 81.5 88.7 72.2 92.9 81.2
TTl 5 85.7 96.3 90.3 55.6 78.6 65.6
TTl 6 85.7 92.6 88.7 72.2 71.4 71.9
TTl 7 80 74.1 77.4 77.8 50 65.6
TTl 8 80 100 88.7 55.6 85.7 68.8
TTl 9 77.1 88.9 82.3 77.8 100 87.5
TT20 80 100 88.7 88.9 42.9 68.8

Note; TT1-TT20 correspond to calibration-validation set 1 -2 0
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Appendix 10.3 Sensitivity, specificity and accuracy of all calibration and validation

sets when preprocessing with 2"̂* order differentiation and 45 point smoothing

Calibration Validation

Set Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

TTl 85.7 92.6 88.7 66.7 92.9 78.1
TT2 91.4 96.3 93.5 50 85.7 65.6
TT3 77.1 88.9 82.3 72.2 71.4 71.9
TT4 88.6 92.6 90.3 61.1 50 56.2
TT5 80 96.3 87.1 72.2 78.6 75
TT6 88.6 92.6 90.3 77.8 71.4 75
TT7 85.7 85.2 85.5 61.1 78.6 68.8
TT8 88.6 85.2 87.1 72.2 85.7 78.1
TT9 80 88.9 83.9 83.3 78.6 81.2

TTIO 80 88.9 83.9 72.2 85.7 78.1
T T ll 88.6 81.5 85.5 72.2 57.1 65.6
TT12 82.9 92.6 87.1 83.3 71.4 78.1
TTl 3 80 92.6 85.5 83.3 78.6 81.2
TT14 82.9 88.9 85.5 77.8 100 87.5
TTl 5 82.9 92.6 87.1 55.6 85.7 68.8
TT16 85.7 92.6 88.7 77.8 78.6 78.1
TTl 7 82.9 85.2 83.9 77.8 64.3 71.9
TTl 8 88.6 85.2 87.1 55.6 78.6 65.6
TT19 77.1 85.2 80.6 72.2 85.7 78.1
TT20 85.7 92.6 88.7 88.9 50 71.9

Note: TT1-TT20 correspond to calibration-validation set 1 -2 0
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Appendix 11.1 The 95% confidence interval of the mean sensitivity o f the calibration and validation sets when preprocessing

with 2"̂  order differentiation and 15, 25 and 45 point smoothing technique (Savitzky-Golay algorithm)
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Appendix 11.2 The 95% confidence interval o f the mean specificity of the calibration and validation sets when preprocessing

with 2"‘* order differentiation and 15, 25 and 45 point smoothing technique (Savitzky-Golay algorithm)

95% confidence interval of the calibration ^

• 95% confidence interval of the validation set
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Smoothing point
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Appendix 11.3 The 95% confidence interval o f the mean accuracy o f the calibration and validation sets when preprocessing

with 2"̂  order differentiation and 15, 25 and 45 point smoothing technique (Savitzky-Golay algorithm)
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Appendix 12.1 The summary of spectral preprocessing and classification strategies

of osteochondrosis dataset

Spectra l p r e p r o c e ss in g

64  sp ec tra  in o s te o c h o n d r o s is  d a ta se t

N orm alization b y  u s in g  
800-1460  cm-^ a s  a b a s is  

fo r  norm alization

F urther p r e p r o c e ss in g  b y  th e  u se  o f  v e c to r  nonnalizatiO n

N orm alization b y  u sin g  
1350-2160 crri-  ̂ a s a b a sis  

fo rn o rm a iiza tlo n

N orm ailzation by u sin g  
1600-1700  cm ^ as a b a s is  

for  norm alization

First 0 rder d ifferentiation  with 

5 , 9 ,1 5 ,1 9 ,  2 1 ,2 6 ,3 0  poin t sm o o th in g
S e c o n d  ord erd ifferen tia tlo n  with  

6, 9 ,1 6 ,1 9 ,2 1 ,  2 6 ,3 0  point sm o o th in g

D eterm in ation  of d eg ree  o f  optim al d ifferentiation  an d  sm o o th in g  
b y  u s in g  the c la ssific a tio n  resu lts from g en etic  aigorlthm

T he s e c o n d  order differentiation  and 19 poin t sm o o th in g  
p r e p r o c e s s in g  m eth od  w a s c h o se n  b a se d  the  h ig h e s t  a ccu racy
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Appendix 12.2 The summary of spectral preprocessing and classification strategies

of osteochondrosis (non-normalized) dataset

Non-normalized data

Second derivative spectra with 19 point smoothing

Anaiysis of covariance (ANCOVA) 
performed on each wavenumber basis 

(400-4000 cm-'') using “age” as covariate factor

Checking Assumption for ANCOVA 
by using a test for paraiielism

Substantiai iR regions faiied the test for paraiieiism

ANCOVA may not appiy safeiy with 
“non-normaiized data”

The dataset may require 
further preprocessing ?
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Appendix 12.3 The summary of spectral preprocessing and classification strategies of osteochondrosis (normalized) dataset
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Vector noiraalization

B asis for normalization: 1990-2150 cm^ Basis for normalization: 1500 1700 cm^ B asis fo r normalization: 800-1450 cnr^

Second derivative spectravd th  19 point sm oothing

Significant region selection  procedure 
based on selection  criterion

6 significant regions 
matched selection  criteria

Significant region selection  procedure 
based  on selection criterion

12 significant regions 
m atched selection criteria

5 significant regions 
m atched selection criteria

Significant region selection procedure 
based  on selection criterion

Analysis o f covariance 
Perform ed on each w avenum ber basis 

using “age” as co v a ria tek c to r

Analysis o f covariance 
Performed on each w arenum ber basts 

using “ag e” as covariate factor

Analysis of covariance 
Perfom ied on each w avenum ber basis 

using “age” as covariate factor

Stepwise discrim inant a n a ^ i s  
4 o f 6 significant regions were 

statistically selected

Stepvds e discrim inant analysis 
2 o f 5 significant regions were 

statistically  selected

Stepw ise discrim inant analys is 
G o f 12 significant regions were 

statistically s  elected

Linear discrim inant analysis 
based  on 4 significant regions and 

leave-one-out cross validation 
Sensitivity^ 67% 
Specificity =77%  
A ccuracy=72%

Q uadratic discrim inant analysis 
based  on 2 significant regions and 

leave-one-out cross validation 
Sensitivity =42% 
Specificity=68% 
A ccuracy=55%

Linear discrim inant analysis 
based  on 6 significant regions and 

leave-on e-out cro ss  validation 
Sensitivity =73% 
Specificity = 81% 
A ccuracy = 77%
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Appendix 13 The accuracy of the and 2"*̂  derivative spectra with varying degree

of spectral smoothing based on 6 optimal regions selected by genetic algorithm
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Note: The second derivative spectra with 19 point smoothing yielded the highest 

accuracy of classification (marked by grey circle)
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