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ABSTRACT

Infrared (IR) absorption patterns of equine synovial fluid (SF) were studied.
The objectives were to: 1) develop and optimize laboratory protocols suitable for mid-
infrared (MIR) spectroscopic analysis of equine SF, 2) identify significant differences
among MIR spectra of SF from anatomically different types of equine joints, and 3)
determine the feasibility of using MIR spectroscopy and classification algorithms for
the differentiation of SF samples from diseased and control joints.

The technique of MIR spectroscopy of dried films was optimized for equine
SF. Suitable MIR spectra of equine SF were obtained from the 8 pL aliquots of 3:1 SF
to aqueous potassium thiocyanate solution deposited onto a silicon microplate by
using an optimal spectral acquisition protocol. The overall MIR absorption pattern of
equine SF is similar to the MIR absorption pattern of human SF reported in literature.
The laboratory methods used in the current research for collecting the MIR spectra are
technically straightforward and economical.

Inter-articular variability among 3 clinically normal high motion joints
(antebrachiocarpal (AC), midcarpal (MC) and tarsocrural (TC)) was investigated.
Statistical comparisons of MIR absorption patterns of SF from study joints were made.
Samples from the contralateral pairs were likely to yield a similar MIR absorption
pattern. Differences in spectral features between ipsilateral AC and MC were detected,
and comparisons between the spectra of the carpal and TC joints revealed more
widespread discriminatory absorption bands. The results suggested that inter-articular
variation should be considered when using this technique.

The feasibility of the use of IR spectroscopy combined with statistical
classification algorithms was assessed by using SF samples from joints with traumatic
arthritis (TA) and control joints. The MIR absorption patterns of SF from joints with
TA differed significantly from corresponding patterns for controls. A classification
model was developed based on characteristics of 3 optimal MIR regions, and yielded
an overall accuracy of 97% (sensitivity 93%; specificity 100%) in the calibration
dataset. The same model with cost-adjusted prior probability of 0.60:0.40 produced an
overall accuracy of 89% (sensitivity 83%,; specificity 100%) for a validation dataset,
and 100% correct classification for a second validation set of normal control SF.

The feasibility of this technique was further confirmed by comparing SF
samples from tarsocrural joints with osteochondrosis (OC) and control joints. Disease-
associated characteristics within MIR spectra of SF were identified by the use of
statistical modeling.  The classification model developed was based on the
characteristics of 6 optimal MIR regions, and yielded an overall accuracy of 77%
(73% sensitivity; 81% specificity).

The feasibility of IR and statistical classification algorithms for the
differentiation of spectra derived from samples of diseased and control joints were
demonstrated in this current research project. These findings favor the further
development of this method for diagnosis of equine joint disease. Further recruitment
of samples from both diseased and normal equine populations is required to evaluate
the clinical usefulness of IR spectroscopy in diagnosis of equine joint diseases.
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CHAPTER 1
POTENTIAL AND CURRENT ROLES OF BIOMEDICAL INFRARED
SPECTROSCOPY AS AN ADVANCED DIAGNOSTIC TOOL IN
VETERINARY CLINICAL SCIENCE

1.1 Introduction

Clinical diagnosis is a process of information gathering with intention of
clarifying the character of patient’s condition that will further lead to an accurate
prediction of prognosis and an appropriate treatment regimen (1). Generally, clinical
diagnoses can be made by means of an evaluation of a patient’s history and physical
examination, laboratory examination of body fluids, cell and tissue specimens and
diagnostic imaging (2). The art of clinical diagnosis links a knowledge of basic
science with clinical ﬁedicine and the nature of the disease mechanism, including the
biochemical and morphological alterations of the body in the response to disease (3).
Various diagnostic technologies have been developed and introduced to assist with
clinical diagnosis in the past few decades. Alterations in the biochemistry and
morphology of organs, tissues, and cells have been probed by electron microscopy,
immunological assays, novel molecular biology techniques and biophysical
techniques, including spectroscopy (4-9). These have provided physicians and
veterinarians revolutionary and powerful technologies with which to detect or screen
for disease, determine the severity or extent of a disease, monitor the pathologic
progression and response to treatment, predict the response to treatment, and

formulate a prognosis.
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Fourier-transform infrared (FT-IR) spectroscopy remains one of the most
important tools in analytical chemistry, on par with nuclear magnetic resonance
(NMR), ultraviolet (UV) spectroscopy and mass spectrometry (10). The innovation of
high quality FT-IR spectrometers, incorporating developments both in the
interferometer and in digital data acquisition, as well as computational processing
have revolutionized the breadth of applications for infrared technology (11-13). These
advances have contributed enormously to the enhancement of accuracy,
reproducibility and signal to noise ratio (11, 12). Today infrared spectroscopy is
generally accepted as one of the most versatile of analytical techniques (11, 12). The
application of this emerging technology has been extended from the analytical
chemistry community to other scientific communities, such as the biomedical
sciences where this inﬁovation has been utilized to diagnose clinical problems and to

gain insights into pathogenesis (12, 14).

1.2 Theory of infrared spectroscopy

The fundamental theory underpinning infrared (IR) spectroscopy relies on
absorption characteristics of the molecules within a sample when exposed to
broadband IR radiation (15). Infrared radiation spans the electromagnetic region
between the red end of the visible region and the microwave region (0.78-1000 pm)
(16). The IR region has traditionally been subdivided into near-infrared (0.78-2.5 pm,
NIR), mid-infrared (2.5-50 um, MIR) and far-infrared (50-1000 pm, FIR) regions

(16). The absorption of IR radiation occurs when the frequency of the incident IR
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radiation is matched with the frequency of a characteristic molecular vibration (15-
17). The position and intensity of each absorption depends upon the atoms displaced
during the vibrational cycle, i.e. the nature of the bond(s) involved, the type of
vibration (e.g. stretching or bending), and the inter- and intramolecular interactions
that may modify the atomic motions defining otherwise free vibrations (15, 17). Some
vibrational modes are localized to such an extent that they may be viewed as
vibrations of particular bonds or bond types. For example, the “C-H stretching
region” encompassing the wavenumber range 2800-3100 cm™ includes a variety of
absorptions that can be traced to the stretching motions of C-H bonds. For such
absorptions, within a compound, the intensity of a given IR absorption band is
roughly proportional to the concentration of molecular bonds (e.g. C-H bonds) or
functional groﬁps witﬁin the molecule being probed (18, 19).

The IR absorption spectrum is typically displayed as a plot of absorbance
versus wavenumber within the IR range (16). The absorbaﬁce is defined as
-log(I(v)/Io(v)), i.e. the negative logarithm of the ratio of measured intensities for
single-beam spectra with the sample in the IR beam (I(v)) and with no sample in
place (Ip(v)); the “background” spectrum (20). For mid-infrared (MIR) spectra, the
absorption position is universally reported as wavenumber or the number of waves
per unit of length - simply the inverse of the wavelength (in centimeters) (16). This
unit of inverse centimeters (cm™) is convenient since it is proportional to the
frequency and the energy of IR radiation (16). The wavenumber range of the MIR

region (2.5-50 pm) is therefore 400 to 4000 cm™.
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1.3 Advantages of IR spectroscopy

An important limitation of IR spectroscopic analysis is that biochemical
information can be obtained only from IR ‘active molecules (17). Infrared active
molecules are those molecules that react to IR radiation by changing the net dipole
moment, thus their IR absorption can be measured (16, 17). Despite this limitation, IR
spectroscopy still offers several advantages in biomedical applications because most
organic molecules absorb IR radiation (16, 17, 19).

This analytical technique can be performed on any state of the sample (gas,
liquid, or solid) giving a variety of possibilities for biological samples (body fluids,
cells and tissue etc.) to become candidates for IR measurement (15, 16). The IR
active components in é sample give rise to IR absorption bands without any need for
chemical or immunological modification (18). No reagents are required for most
biomedical IR measurements, making IR spectroscopy a cost effective technique for
batch analysis of samples (18). By using computer-assisted spectral analysis and
modern bioinformaticé techniques, an enormous amount of information on chemical
composition and structure can be gained from IR measurement of biological samples
(11, 12).

The aforementioned advantages make IR spectroscopy suitable for both ex
vivo analyses (where a spectroscopic measurement is performed on living cells or
tissue specimens or biological fluids taken from the patients) and in vivo assessments

(where the spectroscopic measurement is performed directly on the patient’s body).
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Infrared analyses of the exfoliated cells, biopsy tissue and biological fluids
constituted the ex vivo infrared applications in IR clinical chemistry and pathology
(21-26). The in vivo analysis by use of near-infrared (NIR) spectroscopy allowed the
real-time monitoring of tissue perfusion and oxygenation (27). In addition, non-
invasive screening tests for human diseases such as rheumatoid arthritis (28) and skin
lesions (29, 30) have been developed using the NIR fiber optic probe. The details of

these applications will be described in the following sections.

1.4 The molecular basis of infrared spectral interpretation

Using a high performance IR spectrometer, the spectra may be produced with
good reproducibility. The pattern of absorptions (both their positions and intensities)
making up the spectrﬁm of a particular substance is highly specific to that substance,
and may be considered analogous to the fingerprint of a person (10). The unique
characteristics of the infrared absorption pattern have been used for structural
elucidation and identification of compounds for many decades (10, 31). For complex
mixtures of large molecules such as biological samples, IR spectra become
correspondingly more complex, with bands inevitably overlapped to such an extent
that explicit assignment of individual bands to individual molecules is difficult or
impossible (11). However in spite of this complexity, IR spectra of biological samples
such as body fluids, cells and tissue provide biochemically relevant information

regarding the chemical structure(s) and their relative abundances of the constituents

(11).
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Traditional spectral interpretation in organic chemistry according to empirical
rules has been documented elsewhere (31, 32). These manual interpretative strategies
are used by spectroscopists for compound identification and structural elucidation.
The concept of vibrational group frequency is one of the useful guidelines for spectral
interpretation (12, 19, 20). According to this approach, the MIR region may be
subdivided into 4 subregions according to the nature of group frequencies that give
rise to the absorption bands. The subregions are as follows: 1) the X-H stretching
region at 4000-2500 cm™ (where X = oxygen, carbon, or nitrogen atoms); 2) the triple
bond region at 2500-2000 cm™; 3) the double bond region at 2000-1500 cm™; and 4)
the fingerprint region at 1500-600 cm™ (19, 20). These rules and guidelines have been
used to assist spectroscopists and other trained persons in diagnostic assessment of an
IR spectrum. Digitai spectral libraries and various computer-assist spectral
interpretation systems (so called expert systems) are available for chemical structure
elucidation (33). The establishment of spectral library databases not only for the
systems for IR spectra, and multi-dimensional systems that incorporate spectroscopic
information acquired from other types of spectroscopy and spectrometry such as
NMR and mass spectrometry, have revolutionized scientific and medical progress
(33).

Guidelines to assign the major MIR bands in tissues and cells have also been
documented (6). For instance, protein IR signatures include characteristic absorptions
whose maxima are located at 3290, 3050, 1655, 1545, and 1280 cm™! for amide A (N-

H stretch), amide B (N-H bending first overtone), amide I (C=0 stretch), amide II (N-
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H bending) and amide III of collagen, respectively (6). Carbohydrates typically
contribute strong absorptions in the 1000-1200 cm™ range, corresponding to C-O
stretching vibrations (6). The CH3 and CH, groups of lipids and proteins give rise to
the peaks at 3000-2800 cm™, while peaks at 1220, 1240 and 1080 cm™ are typically
assigned as the asymmetric and symmetric stretch of nucleic acid and lipid phosphate
(POy) groups (6). These guidelines are very useful for spectral interpretation and

analysis of cells and tissues.

1.5 Biomedical infrared spectroscopy

The proper selection of spectroscopic measurement technique (NIR versus
MIR) is crucial in IR spectroscopic measurement (6, 34). The selection of an IR
spectroscopic method.depends on the disease being studied, the tissues affected, the
nature of the chemical species of interest, and whether the measurefnent is to be
carried out in-vivo or ex-vivo. Both MIR and NIR spectroscopy have been widely
exploited in clinical and diagnostic research (6, 18, 35-38). The MIR region (400-
4000 cm™) is the most information rich region since it contains the absorption bands
corresponding to the fundamental vibrations of most organic species (18). The
abundance of chemical information from MIR spectroscopic measurement makes
MIR spectroscopy the method of choice for ex vivo analytical and diagnostic works
(18).

Near infrared spectroscopy generally provides spectra that are simpler than

MIR spectra. The NIR spectra typically arise from overtone and combination

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



absorptions of C-H, O-H and N-H groups (6). In some circumstances, the absence of
absorption from other confounding bonds or other functional groups facilitates the
identification of the species of interest when using NIR spectroscopy. However, the
NIR is not as rich in information when compared to MIR, due to the absence of
information other functional groups such as carbonyl and phosphate groups (6). The
main attractions of NIR spectroscopy lie in the availability of inexpensive optical
fibers that permit the easy implementation of NIR spectroscopy for in vivo
applications, and in the depth of penetration by near-infrared radiation into tissue
(27). The penetration depth of NIR radiation into a sample can vary from 0.01
millimeter to several centimeters (37). In biological fluids and tissues, the ability of
0.2 mm to 5 mm depth penetration for NIR radiation has been reported, enhancing its
in vivo utility (37). 'fhe depth of penetration is insufficient to fully penetrate most
whole organs or the entire body of most species, but information from the surface of
the organ and surrounding tissues can be acquired with NIR spectroscopy, and may
be sufficient for the diagnosis of some conditions (27, 35, 37). This capability has
lead to the development of non-invasive monitoring and diagnostic tools
incorporating either fiber optic technology or spectroscopic imaging systems (27, 35,

37).
1.6 Biological sample preparation and IR spectroscopic measurements

Infrared spectroscopy can be used to analyze a wide range of samples of

biological origin. For example, spectroscopic analyses have been performed on the
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simplest biological fluids such as serum, synovial fluid, and amniotic fluid (38). More
complex samples such as white blood cells, cells collected directly from patients via
fine needle biopsy, or impression smears, have also been investigated (6). A
remarkable advancement in IR technology is the development of IR microscopy,
which couples a reflecting microscope to IR spectroscopy to obtain spectra from
small, defined areas (typically 30x30 microns) within biopsy tissue sections (6). To
obtain IR spectra from a variety of sample types, care should be taken to use sample
preparation techniques which minimally perturb the nature and stability of the
samples, and avoid introduction of artifacts (6). The very strong water absorptions
centered at ~1640 cm™ and 3300 cm™ (the O-H bending and stretching vibrational
modes) dictate that MIR spectroscopy of aqueous specimens requires very short
optical path lengths (iﬁ simple terms the thickness of the sample), on the order of 6 to
10 microns (18, 38). This is very inconvenient in practice, requiring specialized cells
that are inconvenient to use even for the specialist, and certainly not appropriate for
implementation in routine clinical or diagnostic use. Furthermore, water contributes
the same very strong absorptions to aqueous biological samples, dominating and
obscuring the absorptions of the solutes of interest and hindering the meaningful
analysis of such samples (18, 38).

Special apparatus and techniques, such as attenuated total reflectance (ATR)
spectroscopy, are designed to overcome this problem and to allow the measurement
of specimens in their native aqueous state (18, 38). However, the spectroscopic

information above the IR region 3000 cm™ is still inaccessible in the ATR spectrum
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because the region is dominated by the strongest (OH stretching) water absorption
(38). The most effective and simplest way to eliminate water absorption bands lies in
the preparation of dried films from fresh specimens (38), which provides the further
advantage of inactivating degradative enzymes (6). It is easily accomplished by
applying approximately 5 - 50 pL of aqueous specimens onto an appropriate optical
material and allowing it to dry before the acquisition of IR spectra (18, 38). While the
NIR spectroscopic approach offers a more convenient method for handling aqueous
samples because NIR spectral acquisition can be achieved by using optical path
length of 0.5 mm or greater (18, 38), the NIR spectrum of an aqueous sample lacks
information that is present in the counterpart MIR spectrum of a film dried from the
same sample.

In microscopic tissue sample preparation, the best guideline is to keep the
sample preparation simple and to a minimum (6, 39). The introduction of stains or the
application of some tissue preparation solutions may induce artifacts and systematic
variation in the spectroscopic data. This may further lead to bias in data interpretation
and statistical analyses (6). The goal of IR microscopy is to obtain the spatially
resolved spectroscopic information within the tissue section. To that end, the IR beam
is focused on a small area of the sectioned tissue approximately 30 x 30 pm (6).
Automated IR measurements may be acquired by the IR microscope, using a high
precision computer controlled raster-scanning stage. The spectrum obtained from
each small area (pixel) is combined to generate an IR spectroscopic map of the tissue

(6). The data from IR mapping/imaging systems can be manipulated, reproduced, and

10
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displayed in several meaningful ways. One of these methods is intensity-functional
group mapping (6). An intensity-functional group map is pfoduced by plotting the
intensity of an absorption band of interest as a function of 2-dimensional position
(area within the tissue section) (6). Such plots can be very useful, for example, to

visualize the distribution of lipids, protein and DNA within the study tissue (6).

1.7 From IR spectroscopic data to IR-based diagnosis

The most challenging and rewarding part of IR biomedical spectroscopy is the
development of algorithms that convert IR data into clinically useful tools. The
purpose of this step is to discover and make use of significant information within the
IR spectra to serve the diagnostic objectives of the clinician or researcher (13). An IR
spectrum of a biological sample consists of the superimposition of all IR active
components within the sample. Their relative intensities are weighted with respect to
the concentration. A large volume of data is contained in the biomedical spectrum
from a single measurement (11, 12). The central hypothesis underlying the diagnostic
interpretation of IR spectra is that the factor of interest (e.g. disease) produces
characteristic, significant alterations in the sample composition (which may be related
to many of the chemical constituents within the sample) and that these alterations in
turn promote characteristic, significant alterations in the corresponding IR spectruni
of that sample. Such composition alterations due to disease or dysfunction may lead
to changes in one or several characteristics of the IR absorption pattern, including

changes in peak height, band width, and peak position (36). The key elements in the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



development of infrared-based diagnostic tests are the extraction and recognition of
spectroscopic patterns which are highly correlated to the presence or absence of
disease or the concentration of the analytes of interest (11). Advanced computational
techniques and operations associated with the mathematical manipulation and
interpretation of IR derived chemical data (chemometrics) have been employed to

fulfill this need (12, 13, 18, 36, 38, 40-42).

1.8 Ex vivo analyses by IR spectroscopy in biomedical science
1.8.1 Infrared clinical chemistry

Diagnostic information can be sought through the quantification of specific
analytes of interest (26, 43-47). Quantitative analysis of IR spectra relies on Beer’s
Law, which describes‘the relationship between the absorbance and concentration of a
particular component within non-scattering samples (18, 48). For a mixture, Beer’s
law is (18, 48);

AWV)= Zg(v) gL

where A(Vv) is the absorbance as a function of wavenumber, (V) is the molar
absorptivity of the i™ constituent as a function of wa-venumber, ¢; is concentration of
the i™ constituent and L is the optical path length (18, 48).

Conversion of spectroscopic data into meaningful analytical information
requires an unbiased study population that yields high quality samples, a
spectroscopic measurement that yields good quality spectra, levels for the analyte(s)

of interest as determined by standard reference analytical methods and the

12
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development of a mathematical algorithm to recover the analyte concentration(s)
from spectroscopic features (38). The usual procedure begins with the collection of
samples that have had their analyte levels of interest determined by standard assay,
with concentrations that span the range expected in the target population (23, 26, 43-
47). One half to two-thirds of the spectra of these samples are randomly assigned into
a calibration set and the rest is designated as the validation set (18). The calibration
model is developed using the spectra in the calibration set. The most common
modeling method reported in the literature is partial least squares (PLS) (23, 26, 43-
47). As a secondary analytical method, PLS calibration models are built upon
statistical correlations relating spectroscopic features to analyte levels (as determined
by accepted analytical methods). Model development is iterative; several possible
models are explored end refined to derive the best predictors or PLS factors that
minimize the standard error of the calibrated concentration based on IR spectroscopy
when compared to the reference analytical assay. Finally the model is validated by an
independent validation set to ensure the performance and the general applicability of
the developed model (18, 38).

Using the approach described above, the concentrations of several analytes
have been successfully recovered from IR spectra using MIR spectral analysis of
dried films. For example, serum analytes including albumin, cholesterol, glucose,
total protein, triglycerides and urea have been quantified by IR spectroscopy and
chemometric methods (PLS), with minimal standard errors of prediction (26). A

serum cholesterol panel can be measured in single IR spectroscopic measurement to

13
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éimultaneously quantify the concentration of high-density lipoprotein cholesterol and
low-density lipoprotein cholesterol, total cholesterol and triglycerides (43). The
quantification of glucose and urea concentration in whole blood samples has also
been reported (44). Other types of biological fluid samples such as urine, saliva and
amniotic fluid have also been study using dried film spectroscopic techniques (23, 47,
49). The successful spectroscopic analyses of multiple analytes in urine such as urea,
creatinine, and total protein, suggests that the IR-based analytical technique is
accurate enough to serve as a routine clinical laboratory method for urea and
creatinine analysis (47). In another study, an IR-based assay for the assessment of
fetal lung maturity has been developed (23). Partial least square models have been
used to predict the surfactant/albumin ratio based on IR spectra of amniotic fluid, and
their corresponding ‘levels by standard quantification methods. An excellent
correlation was reported between the level of surfactant/albumin ratio predicted by
reagent free IR-based analysis and standard TDx FLM II assay (23>).

In most of these studies, the IR spectroscopic measurement has been carried
out by spreading the biological sample on a barium fluoride substrate, chosen because
this salt is transparent to IR radiation (to a low wavenumber limit of ~8§00 cm'l). The
high cost of these windows is justified by their compatibility with aqueous samples,
since barium fluoride is not water soluble (50). A glass substrate has also been tested
for use in MIR spectroscopy (45). However, glass is opaque at wavenumbers below
2000 cm™, therefore, spectroscopic information below 2000 cm™ is inaccessible (45,

46). Interesting enough, by using glass as optical material, the serum concentration of
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albumin, glucose, protein, urea, cholesterol and triglyceride can be accurately
predicted using only the spectroscopic data between wavenumbers 2800 and 3500

' (46). This research offers alternative, reproducible, reliable and inexpensive

cm’
method for clinicopathological analysis using MIR spectral analysis of dried film.
1.8.2 Infrared pathology

All forms of disturbances and injuries of organs in the body begin ‘with
molecular or structural alterations within the basic unit of life, namely the cell (3).
Cells are chemically and structurally sophisticated units since they contain about
1000 different molecules such as variety of amino acids, carbohydrates, fatty acids
(39). These are the basic molecules that are assembled into more complex molecules
including protein, nucleic acids, DNA and RNA (39). Alterations in the structure or
concentration of thesé cellular constituents lead to the morphological and functional
changes in organ level or higher clinical manifestations (3). Infrared spectroscopy of
the cell, tissue and biological fluids may provide an effective and reliable means for
detecting and staging such changes in response to disease processes, whether they be
clinical or preclinical (6, 36, 39). Moreover, spectroscopic methods may become
useful to evaluate treatment responses, leading to improvement of therapeutic
regimens (51, 52). The ultimate goal of IR pathology is to provide rapid, reliable and
economical means for preclinical diagnosis so that clinical care and therapy can be
prescribed in a timely manner (11).

The aim of employing IR for pathological evaluation is to obtain

spectroscopic data that are faithfully related to the pathological changes which have
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occurred either in concert with or in response to the presence of disease, and not from
artifactual elements that may be present in the biological samples. In biological
samples, some compositional changes in the spectrum may arise through other
unrelated biological sources of variation, which may not be part of the pathological
process (11). Potential sources given rise to such variations were described elsewhere
in molecular epidemiology literatures (53-55). The biological samples may possess
some inherent variability. Intra-subject and inter-subject variability may be associated
with physiological, genetic, or environmental factors such as age, race (breed), sex,
activity, occupation, and circadian rhythm etc. (55). Other components of variability
found in biologically based measurements including IR spectra of biological samples
may be attributable to procedures involving sample collection, processing, and
storage, and laboratory analysis (53, 54). As generally accepted, in the development
of a diagnostic test, an appropriate study design and a proper selection of “diseased”
and “normal” individuals are crucial for the validity of the study (53, 56). Infrared-
based diagnostic test development must therefore be carried out with a large number
of spectra to avoid the detection of subtle differences that may be associated with
other sources of variation and to ensure the general applicability of the diagnostic test
in the target population (11).

Care should be taken in choosing the spectroscopic method and sample
preparation technique to ensure that the quality of the spectra is acceptable (6, 39).
After the appropriate sample preparation technique is chosen and the spectroscopic

measurements completed, then the next step in the process is to seek significant
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diagnostic information, for example using feature selection and extraction
methodologies (57). This process has 3 purposes: to eliminate the irrelevant
spectroscopic information; to enhance some of the weak features that are believed to
be important for disease diagnosis; and to transform the data into a form that is
suitable for further analysis (57). Prior to executing the feature selection process,
spectral preprocessing can be extremely beneficial as a means to minimize extraneous
spectral features and amplify the genuine spectral information of potential diagnostic
utility, Preprocessing commonly includes mathematical manipulation methods such
as spectral differentiation and smoothing, spectral normalization, and spectral
integration (22, 36, 40, 42, 57-61). Once the spectral pre-processing is completed, a
statistical and computational procedure called multivariate diseased pattern
recognition (DPR) ca.ﬁ be used to identify spectral subregions that form the basis of
an optimal diagnostic test and to remove subjectivity from spectral analysis (22, 36,
40, 42, 57-61). Infrared spectroscopic features, defined by the particular combination
of variables from the spectra (integrated intensity within the set of spectral
subregions, peak amplitude, band width, area under the peak, slope of the band etc.),
are then used as an input to a classification model (34, 36).

Two major approaches of pattern recognition have been utilized and yield
successful outcomes in many different kinds of research (14, 22, 24, 40, 42, 58-62).
Unsupervised pattern recognition is a method that recognizes patterns common to
subgroups of spectra and classifies the spectra into classes (subgroups) with no prior

knowledge about the number of classes and pattern characteristics of the classes (6,
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34, 36). The most popular unsupervised pattern recognition technique is hierarchical
cluster analysis (14, 59, 60). The essence of cluster analysis is to calculate some
measures of the similarity between the spectra in the data set. Then the spectra are
grouped based on their degree of similarity (34, 36). While cluster analysis based on
these features can occasionally result in a final grouping of spectra that corresponds
to. disease status (24), it is often the case that the spectra cluster according to criteria
that are unrelated to the disease of interest. In the latter case, supervised classification
methods can be effective.

The second type of pattern recognition, namely supervised pattern recognition
is a method whereby the spectra are classified based on prior knowledge of class
identity or class membership (e.g. disease present versus disease absent) (18, 34, 36).
Discriminant analysis. (DA), either linear (LDA) or quadratic (QDA), has been
commonly used for this purpose (21, 22, 25, 40, 42, 61, 62). The spectroscopic
features that are believed to contain diagnostic information based on a set of spectra
(this set is often referred to as the calibration set or training set of samples) are used
to calibrate the classification model (6, 18, 34, 36). The robustness of classification
and the general applicability are then tested by a new set of spectra (the test or
validation data set) (6, 18, 34, 36). The validation process is challenging when the
sample size of the data set is small. Some studies have exploited alternative
resampling methods for validating the classification model. Two such methods are the
leave-one-out resampling and bootstrapping (6, 34, 36). The leave-one-out

resampling generates the classification model based on N-1 spectra of the data set
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containing N spectra. Then the model is used to predict the class membership of the
remaining spectrum. The resampling procedure is repeated until all the specfra in the
data set take a turn to become the validation spectrum (6, 36). Boot strapping is a
simulation based on multiple iterations of resampling with replacement (6, 22, 36).
The number of spectra (e.g. N/2) is randomly selected as a training set for generating
a classification model and then the remaining spectra are used for model validation
(6, 22, 36). By utilizing one of these two resampling methods, the average
performance of classification can be evaluated by averaging sensitivity and specificity
of the classification model developed from each of these independent steps (41). The
strategies as described are for training the discriminant analysis model to differentiate
between the patterns of disease and non-diseased in the spectra. Once the final
classification model ié developed and refined to achieve a satisfactory classification
result (i.e. the model can discriminate the spectra with a high degree of accuracy in
both sets), the same model can then be applied to the spectrum of unknown sample to
predict the disease status (34).

Sophisticated but highly efficient methods based on artificial intelligence have
recently been developed and successfully used to characterize diagnostic features of
sample spectra and to generate diagnostic algorithms for IR spectroscopic analysis of
the biological samples (12). These artificial intelligence approaches include genetic
algorithms for spectral features selection and artificial neural networks (ANN) (6,
12). A genetic optimal region selection algorithm has been successfully employed by

many researchers (21, 63-65). This algorithm is programmed to seek a set of spectral
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subregions that can provide a basis for classification. The input data are the features
of the spectra in the dataset and their actual class designation (21, 63-65). The
artificial neural network classification is a machine learning system based on self-
adjustment internal control parameters. The system consists of layers of processing
elements primarily used for solving pattern recognition problems (66-68).
1.8.2.1 Infrared spectroscopic applications in arthrology

The differentiation of sera and synovial fluid samples of normal individuals
from patients with various types of arthritis has been reported using IR spectroscopy
combined with DPR methods (21, 42, 61). Mid-infrared and NIR spectroscopic
techniques have been exploited to categorize rheumatoid arthritis (RA), osteoarthritis
(OA), and spondyloarthropathy (SA) synovial fluid samples in humans v(21, 61).
Despite the differencé in IR spectroscopic measurement, an excellent and equivalent
accuracy of class prediction of 95% was reported by both spectroscopic techniques.
Diagnostic features from C-H moieties (combination bands) in the NIR region and C-
H stretching band in the MIR region were believed to contribute to the success
achieved in both studies (21, 61). The synovial fluid from temporomandibular joints
of patients with OA, RA and control samples was also studied by the MIR
spectroscopic technique (69). The intensity differences among the study groups
appear to be most discriminatory at 2300 cm™, which corresponds to carbon dioxide
absorption peak (69). However, no classification model was developed because of

the limited number of spectra in the dataset.
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Infrared based disease pattern recognition testing for rheumatoid arthritis has
been investigated using serum as a specimen for analysis (42). Discriminant analysis
with a complex optimization procedure was exploited, and a sensitivity and
specificity of 84% and 88% reported from a dataset of 97 healthy and‘ 94 rheumatic
patients (42). Disease pattern recognition, a complex optimization procedure
including a combination of disease marker values (the levels of rheumatoid factor,
antinuclear antibodies, and C-reactive protein), and the IR spectroscopic DPR score
(the score represents the probability of belonging to the healthy class) have been
utilized in some IR-based diagnostic studies (40-42, 67). The multivariate DPR may
provide the means to relate the actual disease status to the spectroscopic data even in
the situation where the information concerning the underlying molecular components
and processes is partiélly or completely unavailable (41).

The degree of cartilage degradation has been determined by using MIR fiber
optic probe directly placed on articular cartilage of tibial plateau specimens (51). An
encouraging result from a recently published work with MIR spectroscopy and a
chemometric method (PLS) demonstrated correlation between the IR spectroscopic
data and the grossly visual and histopathological grading system for assessment of
cartilage degradation. The partial least squares model yielded a correlation between
the actual and IR predicted grossly visual grade with R* = 0.82 and 0.84 for a
histopathological grading system (51). This promising methodology may lead to the
development of minimally invasive and objective assessment of cartilage degradation

that may be performed in conjunction with arthroscopy in the future.
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1.8.2.2 Infrared spectroscopic applications in oncology

A classical example of IR-based diagnosis in oncology is the study of chronic
lymphocytic leukemia cells by IR spectroscopy (24). In this study the isolated
mononuclear cells from patients diagnosed with chronic lymphocytic leukemia (CLL)
and normal individuals were collected, and the MIR spectra of cell suspensions were
obtained using the dried film technique. The spectral were pre-processed using
normalization, differentiation, and smoothing techniques (24). Then hierarchical
cluster analysis was applied to partition the spectra into clusters. This unsupervised
approach was able to separate the CLL cells from normal mononuclear cells based on
the IR regions that originate from DNA and lipid in the cell (24).

The study of CLL cells using IR-spectroscopy has been extended to determine
the drug resistant stafus of these cells (52). In vitro resistance to two therapeutic
agents, chlorambucil and cladribuine, was studied by exposing isolated CLL cells to
the agents. The viability of the cells was determined by a cytotoxicity assay,
identifying the inhibitory concentration sufficient to cause 50% loss in viability
(IC50) (52). The chemosensitivity of the cells was determined by establishing a cut-
off value based on the mean of the IC50. The actual chemosensitive status, drug-
sensitivity or drug-resistance, was determined and assigning the cells to one category
or the other based on the IC50 cut-off value. The predicted status based on IR
spectroscopic data was determined using LDA. The analyses for 2 chemotherapeutic
agents were performed separately (52). The accuracy of the class prediction of the

training (calibration) sets was 100% for both agents. However, the accuracy of test
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(validation) sets dropped to 83% and 70% for cladribuine and chlorambucil
respectively (52). It was suggested that alteration in DNA and membrane lipid
associated with the development of resistance may have been reflected in changes in
spectroscopic features used in the classification algorithm (52).

The use of MIR spectroscopic analysis has demonstrated its potential to
discriminate malignant gastric tissue from normal control specimen collected from
the same patients (62). The significant differences between cancerous and normal
tissues were identified by t-test, yielding one p-value per wavenumber. Subregions
that demonstrated p-value < 0.05 were used as inputs for classiﬁéation model. These
subregions were subjected to discriminant analysis. An accuracy of detection of
neoplastic tissue of 88.6% (sensitivity of 96% and specificity of 75%) was reported
by this method (62). ’fhe discrimination was believed to be based on the changes in
amount of nucleic acids, collagen, and some amino acids of the tissue that may
associate with the presence of gastric cancer (62).

Infrared spectroscopy combined with multivariate DPR techniques can be
used for staging of breast tumors based on spectroscopic features derived mainly from
the nucleic acids (22). The reliable classifier proposed in this study was achieved by
LDA with bootstrapping cross-validation. The Nottingham standard scale for grading
breast tumor (low, intermediate and high grades) was correlated to spectroscopic
features. An accuracy of 87% for tumor grade prediction by the algorithm was
reported (22). The breast tumor spectra were also classified according to the preserice

of estrogen and progesterone receptors. The classification model yielded an accuracy

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of prediction 93.9% and 89.9% for the presence of estrogen and progesterone

receptors respectively (22).

1.9 In vivo analyses by IR spectroscopy in biomedical science

Tissue spectra are the primary outcome derived from in vivo NIR reflectance
spectroscopic methods. The technique is based on absorption and reflection properties
of the target tissue when exposed to NIR radiation. If the sample is thick, as
commonly encountered in vivo, a fraction of light that is “injected” by optic fibers at
a certain point is scattered to such a degree that it re-emerges through the same
surface; NIR radiation can be detected around the location where IR radiation enters
the sample (27, 37). The term “interactance” is often preferred to “reflectance”
spectra for this meésurement geometry, since the direct probe-surface contact
eliminates the air/surface reflective interface (27, 37). Both absorbance and light
scattering properties are the factors determining the penetration depth of NIR into the
target tissue.

Focal changes in tissue haemodynamics can be assessed by using a NIR
reflectance or interactance fiber optic probe (27, 37). A more sophisticated NIR
camera system equipped with an array detector, the IR-sensitive silicon-based
charged coupled device (CCD), and a variable-wavelength tunable filter allows for
the imaging of spatially resolved oxygenation changes in the target tissue. For
example, NIR images of regional oxygenation variations on the heart or skin surface

may be generated by this technique (27, 37). The reflected NIR light is gathered
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either at the collector probe (in the case of fiber optic measurements) or by the array
detector in case of NIR imaging. A pseudo-absorbance spectrum (intensity as a
function of wavelength) may be calculated for the interactance spectrum by using the
ratio between intensity of the radiation gathered from sample (I5) to the intensity of
the reflected radiation derived from a neutral reflector sheet at the same wavelength
(Iy) (27). The pseudo-absorbance is calculated according to equation (27, 37):
A= -log (Is/ 1))

The equation is analogous to absorbance in IR transmission spectroscopy (27, 37).
1.9.1 Assessment of tissue perfusion and oxygenation using NIR spectroscopy

Non-invasive NIR reflectance spectroscopy and imaging have been utilized in
various proof-of-concept studies in different tissue types including brain (70, 71),
cardiac (72), muscle (73, 74) and skin tissues (75, 76). The NIR absorption bands of
interest originate from the NIR absorption characteristics of oxyhaemoglobin (HbO,),
deoxyhaemoglobin (Hb), and water in tissue (27, 37). The distinct maxima of NIR
absorption by these chromophores and water content have been well documented (27,
37). A distinctive Hb absorption can be detected at 760 nm while HbO, has a
characteristic absorption peak at 920 nm. The intensity of these peaks may be
monitored in relation to the isosbestic point for the spectra of Hb and HbO,, at 800
nm (37, 76). The hydration status of the tissue may be tracked via the intensity of
water absorptions at 970 and 1450 nm (75).

An algorithm to quantify chromophores (Hb, HbO,, and water) in tissue was

developed using the relationship between their abSorptiVity spectra, and their tissue
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concentrations (72, 75, 77, 78). According to the Lambert-Beer law, the intensity
(Ay) as a function of wavelength attributable to each chromophore is proportional to
the concentraﬁon of that chromophore, its molar absorptivity (as a function of
wavelength), the optical pathlength, and a path length factor that accounts for tissue
scattering properties (72, 77, 78). Some authors also suggest an additional term that
accounts for the measurement geometry (77, 78). The method is not without
problems. For example, the position of the focal length change relative to the
illumination source and detector, and the wavelength dependent optical properties of
the tissue are possible sources of systematic error when objectively assessing focal
changes in target tissues by NIR spectroscopy (77, 78).

Numerous proof-of-concept studies confirm the capability of NIR
spectroscopy for noﬁ-invasive assessment and monitoring of changes in tissue
perfusion and oxygenation (70-76). The non-invasive NIR fiber optic probe and
imaging system has been used to monitor oxygen saturation and water contents in the
pedicle skin flap of rats (75-76). The NIR imaging system has been utilized to
measure oxygen saturation in skeletal muscle. The oxygen saturation of
gastrocnemius muscle was assessed in human subjects during exercise (74). The
regional differences in oxygen saturation within the muscle were detected with
exercise suggesting the potential of NIR imaging system in monitoring muscle tissue
metabolism (74). The NIR spectroscopic imaging system was used to generate maps
of regional cardiac oxygenation in an open-chest porcine model (27, 72). The

coronary artery was ligated to produce regional ischemia on cardiac tissue (72). The
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images based on the regional distribution of deoxy- and oxyhemoglobin clearly
demonstrated the ischemic area (72). Non-invasive NIR fiber optic optodes have been
developed for monitoring cerebral oxygenation and metabolism of the brain in infant.
For this purpose, the newborn piglets have been chosen as an animal model (70). The
development of non-invasive NIR spectroscopy for oxygenation assessment of brain
tissue has faced many challenges. The contribution of extracerebral component such
as skin, skull and cerebrospinal fluid to the signal is one of the vproblematic issues
(71). The confounding interference attributable to the extracerebral components may
be minimized and the signal of the cerebral tissue may be maximized, with careful
setup of the measurement by placing the light delivery optode very close to the signal
receiving optode (27, 71). The method of NIR spectroscopy and imaging are still in
the early phase of appiication development (71).
1.9.2 Non-invasive in vivo diagnosis of rheumatoid arthritis

Non-invasive fiber optic NIR spectroscopy has been utilized to pass IR light
through the joints of patients with rheumatoid arthritis (RA) to objectively evaluafe
the tissue properties within the joints (28). The NIR spectra were obtained from
multiple joints of both RA and normal control patients. The spectroscopic data within
the NIR range were examined and spectral subregions were statistically selected
based on univariate t-tests on individual wavelengths and principal component
analysis (28). The validation of the model indicated that NIR spectroscopy combined
with a statistical pattern recognition method was successful in differentiating joints

with RA from unaffected joints. The correct classification rates of early stage and late
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stage of RA (when combined data from all joints) were 77.3% and 71.2%
respectively (28). The selected IR subregions are associated with the absorption
features of water, cytochromes and heamoglobin suggesting that the method may rely
on the oxidative status of joint tissue (28).
1.9.3 Non-invasive screening methods for skin lesions

The feasibility of in vivo diagnostic analysis using NIR fiber optic
spectroscopy has been demonstrated by the differentiation of 6 common skin lesions
in humans: actinic keratoses, basal cell carcinoma, actinic lentigo, dysplastic nevi,
benign nevi, and seborrheic keratoses (29, 30). The results of this exploratory study
demonstrated significant differences in several regions between the spectra from skin
lesions and normal control skin using paired t-tests applied at each individual
wavelength (30). The difference spectra (diseased-normal) were subjected to analyses
of covariance to confirm the significance of differences between skin lesion groups.
The alterations in the spectroscopic data may be associated with the changes in
heamoglobin species, water content and absorption of protein N-H vibrational mode
(30). The data set was further explored using optimal region selection genetic
algorithm to identify discriminatory spectral regions (29). The classifier, based on
LDA with leave-one-out cross-validation, classified the spectra according to skin

lesion groups with accuracy of 70-98% (29).

1.10 Current applications of IR spectroscopy in veterinary medicine
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The applications of IR spectroscopy developed for biomedical sciences can be
utilized to solve clinical problems in veterinary medicine; successful proof-of-
principle research in the biomedical field has inspired the development of
applications specifically oriented towards veterinary medicine. The aforementioned
advantages of small sample requirements (5-50 pL), reagent free analysis, and the
potential for aﬁtomation at very low cost have all served to enhance its appeal in
animal health (15, 16, 18). These advantages suggest the possibility of developing IR-
based analyses of biological fluids such as serum, milk, and synovial fluid that may
assist the evaluation of health status at the herd level and in disease screening for the
animal population at large (66, 67, 79-82).

1.10.1 Infrared spectroscopy applications in veterinary urology

An example of the straightforward clinical utilization of IR spectroscopy is
the identification and structure elucidation of urinary calculi or urolithiasis. The
prevention and treatment of urolithiasis is facilitated by a knowledge of the
composition and chemical structure of the calculi (83), and to that end urinary calculi
in canid, felid and equid species have been studied by infrared spectroscopy (83-86).
These analyses rely on the strong and distinctive absorption bands that characterize
and differentiate the various chemical compositions of these calculi. For example,
calcium oxalate uroliths may be recognized by the presence of characteristic bands at
1320 cm’, whereas struvite uroliths may be recognized by the presence of typical
absorption bands at 1010 and 572 em’ (83, 85, 86). Information from IR

spectroscopy as well as scanning electron microscopy has contributed to further the
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understanding of the chemical nature of these uroliths, etiology and risk factors
contributing to the formation of such calculi, and assist in recommending the proper
prevention and appropriate therapeutic regimens, such as dietary management (83).
1.10.2 Infrared spectroscopy applications in herd health management

Dairy herd management systems may benefit from certain IR spectroscopic
methods. For example, FT-IR multi-component milk analysis is an important and
reagent-free tool that measures fat, protein, lactose, and urea in milk with a low cost
per sample, at a speed of up to 500 samples per hour (79, 80). Infrared analysis of
milk urea was reported to have excellent reliability and repeatability when compared
to a standard enzymatic test using urease enzyme to convert urea to ammonia
(Eurochem CL10) (79). The development of a screening test for ketosis in dairy cows
is a good example of ‘an IR-based screening test for metabolic disease (80). Ketosis
results in lower milk production and lower fertility performance (80). Milk acetone
content is considered the best indicator of ketosis in cows (80, 81). A feasibility study
of IR spectroscopy that combined principal component analysis (data reduction
process) and partial least squares calibration (model development), resulted in an
accurate test for detecting subclinical ketosis with 95-100% sensitivity, and 96-100%
specificity, assuming a prevalence of subclinical ketosis of 10-30% (81).

Another example of IR spectroscopy applied to dairy herd management is
somatic cell count (SCC) determination in milk by NIR spectroscopy (82). Somatic
cell counts in milk are considered to be the most important indicators of infection and

inflammation of mammary gland or mastitis, and are commonly evaluated both at the
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bulk tank and at the individual cow level. Calibration of SCC was performed using a
PLS model that correlated NIR spectroscopic data to logarithm transformed SCC
values. The standard errors of calibration and prediction were 0.36% and 0.38%
respectively (82). The prediction of SCC by NIR spectroscopy was thought to be
associated with alterations in lactose content, ionic concentration and the protein
fraction in milk. The results of this study confirmed the possibility of this test for
accurately screening for mastitis (82).
1.10.3 Infrared spectroscopy applications in the detection and screening of
infectious diseases
The application of IR spectroscopy has been extended to the detection and
screening of infectious diseases. Transmissible spongiform encephalopathies (TSE’s)
in the forms of scraﬁie in sheep and bovine spongiform encephalopathy (BSE) in
cattle are life threatening neurodegenerative disorders that raise significant concerns
for human health (87). Infrared spectroscopic analyses of tissue and serum from
infected animals have been performed recently (66, 67, 87-90). The technique of FT-
IR microscopy has been used to study the molecular alterations associated with the
scrapie infecfion in sections of hamster brain tissue and homogenized brain tissue
samples (88, 89). IR spectra of different areas in brain tissues revealed compositional
changes in proteins, lipids, carbohydrates, and the phosphate backbone of nucleic
acids frorﬁ the membrane constituents (88, 89). The changes in IR spectra were used
to differentiate scrapie-infected tissues from the non-infected ones by means of both

cluster analysis and artificial neural networks (ANN) (88, 89).
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A feasibility study has been reported for scrapie diagnosis based upon MIR
spectroscopy of serum in scapie-innoculated hamsters, with the aim of developing
and antemortem screening test (90). A spectral classifier based on covariance and
ANN analyses was able to discriminate serum spectra of infected animals from
normal control spectra with a test sensitivity and specificity of 97% and 100%
respectively (90). While the test works in a practical sense, i.e. a disease-specific
signature was recovered from MIR spectra of serum by means of multivariate
classification algorithms, the biomolecular basis of the spectral signal underlying the
successful diagnosis of scrapie could not be readily explained by the authors; the
individual serum constituents contributing to the infrared signature remain unknown
(90).

Not long after ‘the reported success of IR-based antemortem test in laboratory
animals, the antemortem identification of a BSE-associated signature in MIR spectra
of bovine serum was investigated (66, 67). Various computational and classification
algorithms have been explored to seek a reliable assignment of spectra to the
infectious or noninfectious categories (67). The classification results from 4
classification approaches including principle component analysis plus LDA, robust
LDA, ANN, support vector machine were combined and mathematically transformed
into a DPR scoring system (67). The numerical scoring system ranges from 0 to 1,
indicating the likelihood of a serum spectrum belonging to either disease or control
classes (40, 42, 67). Interestingly, the combination of 4 classifiers yielded a

sensitivity > 85% and a specificity > 90% at a confidence level of 95% (67). The
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results from these studies support the hypothesis that the presence of disease is
accompanied by characteristic constituent and structural changes in serum
composition.
1.10.4 Infrared spectroscopic application in veterinary arthrology

The potential of IR spectroscopy to solve diagnostic challenges in
musculoskeletal disease has been investigated. For example, the épectra of synovial
fluid derived from horses with osteochondrosis and normal controls were reported
(91). Based on a limited number of the samples, it was suggested that differences in
intensities at wavenumber 1000, 1035, 1115 and 1245 cm’! may be associated with
the presence of osteochondrosis (91). However, a classification algorithm that
discriminated between the osteochondrosis and control spectra was not described.
Synovial fluid spectra. from horses with traumatic arthritis have recently been subject
to multivariate analysis (92). A set of spectroscopic features differentiating the
synovial fluid samples associated with traumatic arthritis from the spectra of control
samples were extracted. A preliminary classification model based on this set of
features was calibrated by means of LDA and was validated with two independent
sets of samples (92). The accuracy of calibration set and the validation sets were 97%
(93 % sensitivity and 100 % specificity) and 89 % (83% sensitivity and 100%
specificity) respectively (92). The second independent set of the samples from
clinically normal horses was classified with 100% accuracy (92). These results
confirmed the feasibility of IR spectroscopy, combined with multivariate statistical

analysis, for the diagnosis of equine joint disease.
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1.10.5 Assessment of tissue perfusion and oxygenation using NIR spectroscopy:
veterinary applications

In veterinary clinical science, the potential of using NIR spectroscopy in real
time monitoring tissue perfusion and tissue oxygenation saturation has also been
explored in equine and porcine models (93-96). The technique has been used to study
haemodynamics and oxygenation status of tissue in the hoof wall of horses (93), in
muscular tissue (95), and intestinal tissue (94).

A noninvasive NIR spectroscopy technique was use to evaluate pedal
haemodynamics and oxygenation in normal and laminitic horses (93). Both NIR
emitter and detector sensors were placed on the dorsal surface of the hoof wall of one
front foot in order to assess the vascular function within the hoof (93). Vascular
occlusion models e.g.‘ cuff inflation and manual occlusions of digital vessels were
used to induce mechanical changes within the pedal microvessels. The responses to
ischemic and reperfusion were gauged by alterations in HbO; and Hb absorption
bands around 900 and 760 nm respectively (93). A weak absorption band between
780-870 nm was ascribed to oxidised cytocrome aa3, a terminal enzyme in
mitrochodrial electron transport chain (93). This enzyme is an indicator of
intracellular aerobic metabolism of the cells when oxygen is available. The decrease
in HbO, and increase in Hb as well as reduction in cytochrome aa3 had been
observed in sedated horses subjected to digital vessel occlusion (93). When the
vascular occlusion was released, the return-toward-baseline of HbO, and Hb were

observed in NIR spectra indicating the reperfusion of oxygenated blood and washout

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of deoxygenated blood. The initial reduction of cytochrome aa3, when the digital
vessels were occluded, may be consistent with low oxygen availability. The rates of
response in laminitic horses were different from normal horses (93). The change in
cytochrome aa3 in laminitic horses was more rapid than those found in normal horses.
The rapid change may be associated with the lower oxygen storage within
compromised perfusion tissue of the laminitic hoof. The results from the study
suggested the potential role of NIR spectroscopy in diagnosis of laminitis and
prediction of pre-laminitic condition in horses (93).

The assessment of muscle oxygenation by use of NIR spectroscopy was
investigated in horses by use of tourniquet occlusion and induction of systemic
hypoxaemia under general anesthesia and unanesthetized condition (95). The NIR
absorption bands of oxygen dependent chromophores including heamoglobin,
myoglobin and cytochrome aa3 have also been probed by the use of noninvasive NIR
spectroscopy. In the muscle, the NIR spectrum of myoglobin can not be distinguished
from heamoglobin because the absorption bands of myoglobin and heamoglobin are
almost identical (27, 95). Therefore, both chromophores were reported together as
haemoglobin/myoglobin changes (95). The deoxygenation indices were calculated by
subtracting  absorbances at the wavelength that corresponds to
deoxyhaemoglobin/deoxymyoglobin from those of oxyhaemoglobin/oxymyoglobin.
The significant alterations of deoxygenation indices from pre-ischemic baseline value
were detected in both tourniquet occlusion and induction of systemic hypoxaemia

under general anesthesia. condition but not unanesthetized condition (95). The
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movement artifact in unanesthetized horses may mask the changes in deoxygenation
indices of the muscle. There were no significant reductions of cytochrome aa3
absorbance detected in both conditions (95). The artifact induced by tourniquet
application related to changes in tissue geometry may contribute to the lack of
significance in reduction of cytochome aa3 (i.e the changes of tissue geometry when
applying and releasing the tourniquet may affect optical pathlength). However, the
results of the study suggested the potential role of noninvasive NIR spectroscopy for
monitoring changes in deoxygenation of tissue (by use of deoxygenation indices) that
may be useful for prevention of postanaesthetic myopathy in horses (95).

The use of NIR spectroscopy to evaluate focal and global tissue perfusion and
oxygenation may be acheived by both NIR fiber optic probe and NIR camera system
(94). The segmental aﬁeriovenous occlusion and reperfusion of intestine using a pig
model was utilized to test the applicability of NIR spectroscopy in detecting and
assessing the tissue perfusion and oxygenation (94). Based upon Lambert-Beer law,
the least squares estimation of the relative concentration of total haemoglobin was
used as a measure of tissue perfusion (94). This variable could be derived from the
summation of HbO, and Hb absorbances. The ratio of relative concentration of HbO,
to total haemoglobin yielded a measure of tissue oxygen saturation. The estimation
for both total haemoglobin and oxygen saturation (ratio) were calculated from the
tissue contacted area by the use of fiber optic probe. The same method of estimation
was performed for each pixel of 256 x 256 NIR spectroscopic images. Upon the

segmentally arteriovenous occlusion and IR spectroscopic measurement, the affected
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intestine segment demonstrated a prompt and statistically significant reduction in
tissue oxygenation indicated by the reduction in oxyhaemoglobin to total
haemoglobin ratio (94). The oxygenation returned to the pre-occlusion level after
reperfusion (94). The NIR image system revealed similar results in response to
arteriovenous occlusion and reperfusion maneuver (94). The measurement of tissue
perfusion (reflected by the relative concentration of total haemoglobin) demonstrated
a minimal and statistically insignificant increase over time durin‘g arteriovenous
occlusion. This suggested a small residual flow which may occur due to incomplete
occlusion. A statistically significant increase in total hemoglobin concentration was
also observed in the early phase of reperfusion before returning to the baseline level
when using NIR fiber optic probe (94). This suggested a detection of a reactive
hyperemic response a£ the initial phase of reperfusion (94). This phenomenon was
explained in the study by suggesting that the vasodilators released in response to
ischemia may not be completely eliminated from the ischemic site and may still exert
their effect in decreasing vascular tone (94). Once the occlusion was released, a rapid
and heavy influx of blood to the site may lead to hyperemic response. The tissue
perfusion could be restored to the baseline level when the normal vascular tone can be
re-established (94). The changes in the intestinal tissue oxygenation and
haemodynamics in response to arteriovenous occlusion and reperfusion, particularly
the reactive hyperemic response assessed by NIR spectroscopy, suggested that NIR

spectroscopy may provide a rapid, reliable and sensitive means to gauge the degree of
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intestinal ischemia and may assist in determination of the margin of tissue for
intestinal resection and anastomosis in animals (94).

Regardless of the tissue being probed, the changes in tissue perfusion and
oxygenation following induction of tissue ischemia or hypoxia can be detected from
spectroscopic data, revealing the status of both tissue perfusion and oxygenation (93-
95). However, heavily pigmented epidermal tissue in animals, such as that found in
black hoof and black hair covered areas can influence and impede the penetration of
NIR radiation (96). Tissue melanin may also be a source of a strong absorber of NIR
light (96). These factors have been reported as limitations of NIR haemodynamic
monitoring systems in animals (96, 97). Nevertheless, these studies have suggested
the potential role of non-invasive NIR monitoring system for tissue perfusion and

oxygenation in veterinary surgery and anesthesiology (93-97).

1.11 Future directions

The pétential role of IR spectroscopy in biomedical applications was once
speculated by a renowned British physician and scientist, Thomas Henry Huxley, in
1885. In his presidential address to the Royal Society, he stated “What an enormous
revolution would be made in biology, if physics or chemistry could supply the
physiologist with a means of making out the molecular structure of living tissues
comparable to that which the spectroscope affords to the inquirer into the nature of
the heavenly bodies”. Since the first discovery of IR radiation in 1800 by a

distinguished astronomer, Sir William Herschel, IR spectroscopy has been
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continuously developed and refined by the efforts of pioneers in this field. Nowadays,
IR spectroscopy has opened up new applications and gained a lot of attention from
many scientific communities including biomedical and veterinary clinical sciences.
IR spectroscopy-based analyses of biological fluid, cells and tissue have been
investigated with encouraging results. Several reports have demonstrated the
diagnostic potential of IR spectroscopy, particularly when combined with advanced
and powerful computational methods. Not only do IR spectra provide fundamental
insights into pathogeneses, this revolutionizing technology holds significant promise
for the development of objective and reagent-free diagnostic tests that are practical,
economical and reliable. These diagnostic tests have the potential to benefit both
humans and animals by offering better disease detection and monitoring methods.
These in turn triggef rapid and appropriate prevention strategies and treatment

regimens, thus improving the quality of life for both human and animal patients.

1.12 Objectives of the current study

The broad objective of the current research project is to develop and apply IR
spectroscopy and statistical classification algorithms to the field of equine arthrology.
The specific objectives of the current research project are:

1) To optimize a laboratory protocol suitable for mid-infrared (MIR)

spectroscopic analysis of equine synovial fluid
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2) To identify significant differences and variations due to anatomic
types among joints and left and right limbs within horses on MIR spectra of
equine synovial fluid

3) To determine the feasibility of using IR spectroscopy and statistical

classification algorithms in differentiation of samples of clinically diseased

joints from those of controls in horses with traumatic arthritis and
osteochondrosis.

The studies conducted in this research project were a preliminary phase
(exploratory phase) of diagnostic accuracy research in order to assess the feasibility
of this new technology for the diagnosis of joint disease in horses. It is hoped that the
results from this research project will support the further development of this
technique in the interrhediate and advanced phase of diagnostic accuracy research in
the future, with the ultimate goal of developing a preclinical and economical

screening test for joint disease.
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CHAPTER 2
DEVELOPMENT OF THE INFRARED SPECTROSCOPIC TECHNIQUES

FOR THE ANALYSIS OF EQUINE SYNOVIAL FLUID

2.1 Introduction

Today’s infrared (IR) spectrometers would be nearly unrecognizable to the
spectroscopist of a generation ago. With the advent of the interferometer, and
powerful digital data acquisition and processing (1, 2), IR spectroscopic
measurements today routinely provide a wavenumber accuracy of +/- 0.01 cm™, a
very high signal-to-noise ratio of 10,000:1 or better, and superb reproducibility (2).
These features have paved the way to the adoption of this emerging technology in the
biomedical and diagﬁostic arenas (1-4). The ultimate goal in the development of
IR-based diagnostic methods is to provide medical practitioners with a reliable,
practical, and economical diagnostic test that is suitable for routine use. The quality
and reproducibility of spectroscopic data are of the utmost importance to ensuring the
reliability of such tests.

The development of IR based diagnostic tests for equine joint disease rely
upon both state-of-the-art IR spectroscopic hardware, and also on spectral
manipulations to bring diagnostic features into prominence (5-7). Once acceptable
spectra have been measured, the next step is to pre-process the digitized spbectroscopic

data. These manipulations are carried out prior to pattern recognition or model

calibration, with the aim of optimizing the accuracy of the diagnostic or analytical test
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(8-10). This chapter will focus on fhe optimization of laboratory technique, spectral
acquisition and feature enhancement, and pre-processing procedures used in the
following chapters. The effects of these preprocessing techniques on spectral
classification were investigated, and are reported in this chapter. The final section of
the chapter provides an overview of decision-making criteria pertaining to the
preprocessing and classification of equine synovial fluid (SF) using a spectroscopic

dataset from Chapter 5 as an example.

2.2 Sample preparation technique
2.2.1 Optical materials

Various materials are available as optical windows to contain samples for
spectroscopic analysis‘. These windows must be transparent to IR radiation. The vast
majority of these materials are alkali halides, including sodium chloride, potassium
bromide, barium fluoride, calcium fluoride and caesium iodide (11). Since biomedical
IR spectroscopy typically involves aqueous or strongly hydrated samples (biofluids
and tissues), expensive water-insoluble substrates such as barium fluoride and
calcium fluoride have traditionally been used as optical windows (12-17). Even
though it is possible to clean and to reuse these materials, it is relatively impractical to
consider reusing them when contaminated or infectious samples are involved, or
when batch analyses of the samples are performed (18). Alternative optical materials

that are more economical and practical may be a better solution in such cases.
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The Institute of Biodiagnostics (in collaboration with Dr. Anthony Shaw),
National Research Council of Canada has developed a novel sample plate made from
a silicon wafer (19). The silicon is IR transparent, and is very cost effective making it
a practical substitute for expensive sample substrates (18, 19). The wafer is cut to
match the size of a 96-well microtiter plate. An adhesive plastic mask with 5 mm-
diameter circular windows is placed on the surface of the plate to spatially define the
positions of those 96 wells. The microplate is designed to use with the “High-
Throughput Screening” (HTS) accessory manufactured by Bruker Optics (Billerica,
Massachusetts) to interface with Bruker FT-IR spectrometers. This accessory carries
out the automated, sequential acquisition of spectra from the 96 sample wells on the
silicon wafer, and is therefore well-suited for batch analyses of the type used in both
the development and 'implementation of biomedical tests (19). A prototype of this
novel plate design was used for this research (Figure 2.1). One disadvantage of this
sample plate is delicacy of the material. Care should be taken when working with the
silicon wafer because it is very fragile under compression.

2.2.2 Mid-infrared (MIR) spectroscopy of dried films ,

Mid IR spectroscopic analysis of biological ﬂuids (such as SF) is technically
challenging due to the superimposition of strong water absorption bands (O-H
stretching and bending vibration) upon the absorption bands of other solute species
within the sample (7, 20). One technique that has come into common use to surmount
this problem is to dry the sample to a film prior to the spectroscopic measurement (7,

15-17). This approach was first developed for the spectroscopic analysis of human
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Figure 2.1. A 96-well silicon microplate with the blank position at Al used as

the background measurement.
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SF samples (12, 21).  The dried film technique is typically performed by spreading
5-50 pL of the biological fluid of interest onto a suitable optical substrate, and
allowing it to dry completely (7). This approach not only offers a simple and
convenient way to eliminate the water component of the aqueous samples, but also
stabilizes the sample since degradative enzymes are likely to be inactivated (20).' The
method can, however, also produce artifacts associated with the spatial heterogeneity
of the dried film. For example, infrared microscopic mapping of dried amniotic fluid
films revealed protein deposits concentrated at the edge of the circular film (6). Some
of the dried films of amniotic fluid samples have demonstrated two concentric rings,
the formation of which may be associated with capillary flow during drying (6). From
our experience rings are likely to occur when an air bubble is accidentally created in
depositing the sample. onto the plate; care should be taken to avoid the formation of
these bubbles. As revealed by microscopic examination, SF desiccated films with
grossly acceptable homogeneity can be obtained by either drying under mild vacuum
pressure or drying at room temperature (Figure 2.2) (12, 16).
2.2.3 Dilution and deposition volume optimization

Both sample dilution and deposition volume should be optimized for the
sample of interest to ensure well resolved spectra of sufficient magnitude, with
minimal artifacts (6). Artifacts may be introduced into spectroscopic data, for
example, by deposition of thick layer of films resulting in an overly long optical

pathlength. If the pathlength istoo long, the IR radiation is nearly completely
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Figure 2.2. The dried film of equine synovial fluid (8 pl)
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absorbed at wavenumbers corresponding to strong sample absorptions, and the
spectra severely distorted as a consequence (6). To avoid such distortions, the
intensity of light that transmits through the sample and reaches a detector must be
within the linearity range of the detector (6). Dilution and sample deposition volume
are therefore optimized to produce the spectra whose peaks remain in the linearity
range of detector. One guideline that has been suggested is maintaining the maximum
absorbance values within the range of 0.4 - 0.6 absorbance units (6). Once
established, the optimal dilution and deposition volume should be maintained for
every sample to ensure spectral reproducibility throughout the experiment.

For the current research, sample dilution and deposition volume were
optimized by using 30 SF samples from 18 horses (11 females and 7 males). The
samples were donatedl for the purpose of this study. These horses were 1-22 years old
with mean age of 11.3+6.0 (mean+SD) and median age of 12 years old. Appaloosa
(n=1), Quarter horse (n=3), Standardbred (n= 13) and mixed breeds (n=1) were
represented. Synovial fluid samples were aspirated from joints including fetlock
(n=6), antebrachiocarpal (n=5), midcarpal (n=7), stifle (n=6) and tarsocrural (n=6).
The samples were centrifuged at 2700 x g for 10 minutes, and the supernatants were
kept for spectroscopic measurement. An internal standard, KSCN solution (4g/L) was
prepared in large volume and stored at 15 °C. This standard solution was used to
dilute all samples in the current research project (16, 22, 23). The same amount of
internal standard was added into each sample, in the ratio 3:1 SF-to-KSCN. Dried

films of SF were made for each sample by applying 20 pL of neat SF and 3 different
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deposition volumes, 15, 10 and 8 pL of the 3:1 SF-to-KSCN dilution. Triplicate films
were produced for each sample using 4 different dried film preparation protocols as
described. Each film was prepared by spreading the SF sample preparation evenly in
a circular motion within a 5-mm circular island on the masked silicon microplate
described above. For each sample, different dilutions and deposition volumes were
deposited on the same well position but on different plates (a total of 4 plates were
used in the optimization). The spectral acquisition was performed using a protocol
described in the next section. Once the spectra of all samples were obtained, all of the
replicate spectra with the same concentration and deposition volume were averaged
(Figures 2.3-2.6). The 3:1 SF-to-KSCN dilution, deposited as 8 pL aliquots, was
chosen as an optimal dilution and deposited volume, avoiding overly intense IR
absorption by the sample. Infrared absorption bands of the average spectrum
including their 95% confidence interval did not exceed the absorbance level of 0.6
(Figure 2.6) (6).

A representative spectrum of equine SF with major IR band functional
molecular group assignments is illustrated in Figure 2.7. The major IR band
assignment of human SF spectra reported by Jackson et al. (24) was adopted for the
IR band assignment of equine SF spectra. The overall IR absorption pattern of dried
film equine SF is relatively similar to the reported IR absorption pattern of human SF

(24). The spectra of samples produced by the dried film technique used in the current
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Figure 2.3. An average spectrum (black line) with 95% confidence limit (grey
line) of neat synovial fluid when applying 20 pL onto silicon microplate.
Note: the magnitude of absorbencies greater than the suggested range of 0.4 —

0.6 absorbance units.
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Figure 2.4. Aﬁ average spectrum (black line) with 95% confidence limit (grey

line) of 3:1 synovial fluid to KSCN dilution when applying 15 pL onto silicon

microplate.

Note: the magnitude of absorbencies greater than the suggested range of 0.4 —

0.6 absorbance units.
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Figure 2.5. An average spectrum (black line) with 95% confidence limit (grey
line) of 3:1 synovial fluid to KSCN dilution when applying 10 pL onto silicon

microplate.
Note: the number of wavenumbers with a magnitude of absorbency greater

than the suggested range of 0.4 — 0.6 absorbance units is markedly reduced.
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Figure 2.6. Aﬁ average spectrum (black line) with 95% confidence limit (grey

line) of 3:1 synovial fluid to KSCN dilution when applying 8 pL onto silicon

microplate.

Note: there are no wavenumbers with a magnitude of absorbency greater that

the suggested range of 0.4 — 0.6 absorbance units.
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Figure 2.7. Equine synovial fluid spectrum with major IR band assignment

corresponding to key molecular functional grouping indicated.
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study are also dominated by the absorption bands of N-H and C=0 vibrations from
protein constituents, CH, and CHj stretching and bending vibrations and C-O
stretching of carbohydrate (primarily hyaluronic acid) (24).
2.3 Fourier-transform infrared (FT-IR) spectral acquisition

The Fourier-transform infrared (FT-IR) spectrometer measures IR radiation
transmitted through a sample of interest, but in an indirect way. Through a particular
optical arrangement called an interferometer, the FT-IR spectrum is obtained by
collecting signal interferograms (11, 25). The actual spectrum is derived from a co-
added set of interferograms by carrying out a mathematical procedure called the
Fourier Transform. This mathematical transformation converts the power density as a
function of the difference in pathlength to the power density as a function of
wavenumber (11, 25)‘. The interferometer therefore lies at the heart of the FT-IR
spectrometer, with the pivotal advantage of this setup being that all IR frequencies
impinge on the detector simultaneously. This confers an enormous advantage in
signal-to-noise for a given measurement time when compared to the traditional
grating spectrometer, which transmits only a narrow band of frequencies to the
detector at a time. The interferometer is an optical arrangement with three core
components: a beam splitter, a stationary mirror, and a moving mirror (11, 25).
Broadband (polychromatic) MIR radiation is split into two beams that interfere with
each other in a constructive and destructive manner as the moving mirror is displaced

(Figure 2.8). The interference results in an intensity-modulated beam exiting the
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Figure 2.8. Schematic illustration of interferometer (adapted from Reference 11)
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interferometer, that impinges upon the detector. The measured “interferogram” is
therefore the signal intensity as a function of the pathlength difference (distance)
between the two arms of the interferometer (Figure 2.8). Fourier-transformation
converts the signal intensity in the distance domain (cm) dictated by the moving
distance of the moving mirror into the desired signal intensity in a frequency domain
(wavenumber, cm™), which is the single-beam infrared spectrum (5, 11). Since the
FT-IR spectrometer analog signal from the detector is converted to digital domain for
storage and Fourier transformation, the digitized signal may then be subject to
mathematical manipulations as required and/or desired (5, 11, 25).

In transmission-absorbance spectroscopy, the first interferogram is obtained when the
modulated exit beam reaches the detector in an absence of the sample. After Fourier
transformation, a background single channel spectrum is generated (11, 25). The
background spectrum is affected by instrumental and environmental factors. The
overall profile reflects both the intensity of the source and the response of the detector
as a function of wavenumber (frequency). Superimposed on this profile may be
patterns arising through the absorption by atmospheric constituents. For example,
band complexes centered approximately at 3500 cm™ and 1630 cm™ commonly
appear and are assigned to atmospheric water vapor, while bands at approximately
2350 cm™! and 667 cm™! are due to carbon dioxide (11, 26, 27). To factor out both the
instrumental response profile (detector response, source emission profile) and
possible atmospheric absorptions, a background spectrum must be measured prior to

obtaining the spectrum with the presence of sample (26, 27). Once the interferogram
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of the sample is measured (identical to the background measurement, but with the
sample of interest between the interferometer exit beam and the detector) and Fourier
transformed, the sample spectrum is determined against the background spectrum in
order to eliminate the effects from instrument and environment as much as possible
(11, 25). The absorbance (A) is defined as the logarithm of the ratio Io/I (28).
A =logo (Ip/T)

where Iy and I are the single-beam background and sample. spectra respectively.
Because it is a product based upon a ratio, the absorbance unit is dimensionless. In
practice, the background measurement for the pfojects reporfed in this thesis was
obtained by measuring the single-beam spectrum for a particular well position (on the
top left corner of the plafe) with no sample in place, prior to every sample
measurement. This wés especially necessary for the current study, as the laboratory
used for our study had limited climate control, and the humidity could vary
significantly over a 24 hour period.

Since the transmittance is defined as I/Iy, the relationship between absorbance
(A) and transmittance (T) is defined by (28):

A =-log (T)

Using the ratio of a single-beam spectrum of the sample with its counterpart
background spectrum successfully eliminates the bands attributable to atmospheric
water and CO, only if the concentrations of these vapors remain stable when
obtaining both the background and sample single-beam spectra (26, 27). However, if

there is any difference in concentration of the vapors between the two measurements,
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these bands appear in the resultant spectrum. To ensure that atmospheric water levels
are low and stable, the sample compartment may be purged continuously with dry air
(25). Any weak water absorptions that do appear in the spectrum may be minimized
by using a spectral subtraction algorithm that iteratively subtracts the spectral features
attributable to water vapour. Automated routines are available to minimize the
intensity of residual absorptions following subtraction (27). The | multisampler
compartment (HTS-XT, Bruker Optics, Milton, ON) used for the present research is
equipped with a desiccant cartridge without any accessible channel for purging the
system. To minimize the influence of long-term drift in atmospheric water
concentration, a new background measurement (predetermined at the first position of
the top left corner of the silicon microplate) was performed immediately prior to each
sample measurement.l While this strategy minimized the influence of atmospheric
factors as much as possible, a system to purge the multisampler compartment would
likely be a more effective (time saving) way to eliminate atmospheric carbon dioxide
vapor if installation were possible.

In the current research project, a baseline variation was observed on the IR
spectra. This variation was observed in the IR spectra of empty sample wells of the
silicon plates prior to the deposition of sample, and the IR spectra derived from the
deposition of a sample onto the sample wells (see Appendix 1). One of the possible
explanations for baseline variation (especially those observed in the spectra measured
from each well of the plate prior the deposition of sample) is that it may arise from

imperfect positioning of the modulated exit beam on each well position (i.e the
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perimeter of the modulated beam did not fit perfectly inside the perimeter of the wells
situated on the silicon plate). In such cases, the portion of the beam that falls outside
the sample well cannot reach the detector. Varying negative absorbance may occur
when the intensity of the single-beam background (Iy) is less than the single-beam of
a particular sample well on the silicon plate (I). In the current research project, this
limitation was acknowledged. Several attempts to adjust the position of the
microplate on the carriage inside the multisampler compartment were made. The
measurements of silicon plate without deposition of sample suggested that samples
wells situated on the periphery of the plate were more likely to produce spectra with
higher degree of baseline variation. Therefore, these particular wells were not used
(columns 1, 11 and 12; rows A and H). The baseline variation was minimized to a
level of -0.05 to 0.05 ébsorbance units by the adjustment of plate position and by not
using the wells on the periphery as previously described. The last strategy to deal
with the minimal baseline variation of the spectra is to use derivatives of the
spectroscopic data. The method will be described in the following section of this
chapter.

Other possible sources of measurement variation were observed in the current
research. The spectra derived from the deposition of a single sample onto 3 different
silicon plates demonstrated varying degree of within-plate variation and between-
plate variation. These variations were observed only at some particular wavenumbers
(see Appendices 2-6). The possible reasons for these phenomena are not yet fully

understood. However, they appear to be related to well position on the plate. To guard
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against possible sources of bias due to plate and to account for such effects, a
randomized block design was used to assign samples to plate and well position prior
to deposition of samples.

Acquisition parameters that must be specified in collecting FT-IR spectra
include the number of scans, spectral resolution and apodization functions (4, 18, 22,
29). Where spectra of high signal-to-noise ratio are desired, signal averaging is
conducted by repetitively scanning and co-adding individual interferograms (5, 11).
The signal-to-noise ratio (S/N) is proportional to the square root of the number of
scans, for example co-adding 512 scans is to achieve a theoretical enhancement of
22.63:1 S/N ratio (5, 11). Resolution is a measure of the instrument’s ability to
separate two overlapping peaks. A nominal spectral resolution of 4 cm” means that
peaks whose maximé are separated by 4 wavenumbers would be resolved in the
measured spectrum (25). The nominal resolution is dictated by the displacement
distance of the moving mirror (11, 25). In addition to dictating the resolution, another
consequence of the finite mirror travel is the presence of artificial side lobes (or pods)
on the FT-IR spectra whose natural bandwidth is narrow (11). To address this
concern, an “apodization function” is usually chosen to multiply an interferogram
before Fourier transformation in order to minimize the artificial negative and positive
side lobes of the spectral line (11). In particular, the Blackman-Harris 3-term
apodization function is recommended for routine liquid and solid phase spectroscopic
measurements, and has been used previously in many biomedical MIR spectroscopy

studies (4, 18, 25, 29, 30).
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For the current study, the MIR spectral acquisition and enhancement of
spectroscopic data was carried out using the following protocol: the MIR spectra in
the range of 400 - 4000 cm™ were recorded using a multisampler compartment (HTS-
XT, Bruker Optics, Milton, ON) interfaced with a FT-IR spectrometer (Tensor 37,
Bruker Optics, Milton, ON) equipped with a deuterium tryglycine sulphate (DGTS)
detector. For each spectrum, 512 interferograms were coadded at a spectral resolution
of 4 cm™, and a Blackman-Harris 3-term apodization function applied to the coadded

interferogram prior to Fourier transformation.

2.4 Spectral pre-processing
Spectral “pre-processing” encompasses a variety of mathematical
manipulations with 3 fnain purposes (8):
1) to factor out irrelevant data and hence reduce the data dimensionality
2) to preserve and/or enhance meaningful diagnostic information within the
spectroscopic data.
3) to transform the spectroscopic data into suitable format for further analysis
(ie. cherhometric spectral classification)
Chemometric test development typically proceeds in two stages (8). In the
first stage, the spectra may be subjected to differentiation and normalization (8-10),
with the aim of minimizing the non-diagnostic sources of spectral variation. These
include, for example, variations in spectral baseline and slope, which are remedied by

second order differentiation, and variations in absolute intensity, which may be
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remedied by normalization. This spectral preprocessing is then typically followed by
feature extraction — a procedure that combines and transforms the spectroscopic data
(as variables) into a set of new derived variables or factors to reduce the dimension of
the spectroscopic data (8). Principal component analysis is one technique that is
commonly used for this purpose (31, 32).

Four preprocessing techniques were frequently employed for the
spectroscopic  studies reported here, including spectral averaging, subtraction,
normalization, and differentiation/smoothing. These techniques are reviewed below.
2.4.1 Spectral averaging

A set of spectra as defined by a user can be averaged. The idea of spectral
averaging is to calculate the arithmetic mean intensity (y) for each data point (y;) of N
input spectra (33). |

y=2Vvi/N
The average spectrum is therefore a plot of the mean intensity of each data point
versus wavenumber. The technique was exploited here most often to obtain the
average of triplicate dried film spectra. The resulting representative spectrum
calculated from this procedure was used for subsequent analysis.
2.4.2 Spectral subtraction

This technique is widely used in spectral analysis, and simply entails the
arithmetic subtraction of the intensity for corresponding data points for pairs of
spectra (28). Spectral manipulation software further allows for iterative spectral

subtraction, with the subtrahend multiplied by a user-controlled continuously variable
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factor. The digital subtraction technique is useful, for example, to recover solute
spectroscopic information from solution spectra by subtracting the solvent spectrum
from the sample spectrum (28).

Water is the main constituent in biological fluid such as SF (7, 34). For IR
spectroscopic measurements in the native fluid state, the strong water absorptions
overwhelm spectroscopic features of other chemical constituents (7, 34).
Theoretically, digital subtraction may remove the contribution from water from the
biological fluid spectrum. However the operation needs to be performed with caution.
Digital subtraction of a pure water spectrum from its biological fluid counterpart by
using software may induce artifacts in the resultant spectrum (20). Comparison of
water absorptions in the spectrum of a biological fluid to their counterparts in the
spectrum of pure wafer reveals subtle differences (20). One possible explanation is
that the structure of water is altered by the presence of solutes, €.g. macromolecules
(20). To avoid this complication, and to circumvent the practical difficulties
associated with MIR spectroscopy of aqueous specimens, the dried film technique
was adopted for the current project (7, 20, 34).

2.4.3 Spectral normalization

Spectral normalization is one of the most common spectral preprocessing
techniques (16, 17, 23, 29, 30, 32, 34, 35, 36). The idea is to scale each spectrum in a
dataset to some common constant value (36). This method is aimed to minimize
variations in the overall spectral intensity, so that spectroscopic variations believed to

be important for the spectral calibration or classification become more prominent
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(32). There are several methods for normalization. One is to add an internal standard
to all samples. For example, KSCN gives rise to a peak at approximately 2060 cm’™.
Normalization of the spectra to a common intensity of this KSCN peak is one
common normalization method (16, 17, 23, 34). By adding the same amount of
aqueous KSCN solution to each sample in a dataset, the spectra may be normalized or
scaled to yield a common effective pathlength or thickness of the dried film (34).

Vector normalization is a convenient procedure for the normalization of
derivative spectra in particular (29, 30, 32, 35, 36). The first step is to choose a
spectral region as a basis for vector normalization, the “normalization region”. Then
the calculation is carried out in the following way; firstly, for each 2™ derivative
spectrum the sum of square absorption intensities is calculated for all data points
within the normalization region. The square root of this sum is then evaluated for
each spectrum, and adopted as the normalization factor for that same spectrum. When
each spectrum is scaled in this way (the entire spectrum is divided by this
normalization factor), the sum of square intensities within the normalization region is
equal to 1. Put another way, the N-dimensional vector of spectral intensities within
the normalization range has the same length (of 1) for all spectra.

The choice of normalization range is user-defined. In one study, the
normalization region was chosen as the region wherein the difference between the
normal and abnormal samples was believed to be most pronounced (32). In the work

reported here, vector normalization was performed on the 2™ derivative spectra (see
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the next section), using a MATLAB script (MATLAB, MathWorks, Natick, MA,
USA) developed by collaborators at the IBD, NRC, Winnipeg, MB, Canada.
2.4.4 Spectral differentiation

Spectral differentiation is- commonly used to eliminate random variations in
baseline offset and slope (8, 25, 28) that may otherwise obscure variations of
diagnostic relevance (29, 30, 35-37) (Figure 2.9). This technique mathematically
transforms an absorbance spectrum to the first, second, or higher-order derivative of
that spectrum (Figure 2.9) (8, 25, 28). In addition to removing baseline and slope
variations, derivation also has the benefit of narrowing the spectral band shape and
hence resolving features that might otherwise be inaccessible. The spectral
appearance can be altered dramatically as compared to the original absorbance
spectrum. For examble, peak maxima in absorption spectra correspond to the
zero-crossings (y axis) in the first derivative counterparts, and are inverted to give
negative peaks in second derivative spectra (8, 25, 28) (Figure 2.10).

This technique offers several advantages to the analysis of raw spectroscopic
data. The effective resolution enhancement can reveal weak absorptions that might
otherwise go unnoticed (8, 25, 28). However, care should be taken when applying this
technique to noisy spectra - the noise component can be greatly amplified by this
technique (8, 25). For this reason, spectral smoothing is almost always carried out
hand-in-hand with derivation. The Savitzky-Golay algorithm is considered the most

useful one for IR spectroscopic data (8, 10). This algorithm enables the differentiation
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Figure 2.9. A set of 8 spectra with baseline variation shown before being subjected to
spectral differentiation (a) and their corresponding first (b) and second (c¢) derivative

spectra (A = absorbance)
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derivative spectrum using a KSCN band as an example
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of the spectra while simultaneously smoothing the data using suitable polynomial
smoothing functions (a suitable array of weighting coefficients suggested by Savitzky
and Golay is used as a smoothing function) (8, 10). All smoothing algorithms
(including the Savitzky-Golay method) have the effect of minimizing the noise, while
at the same time decreasing the effective spectral resolution (8, 10) and at the cost of
spectral line distortion (8). Experience with the process teaches the practitioner the

optimum trade-off between signal-to-noise and spectral resolution.

2.5 The effect of smoothing technique on spectral classification

A pilot study was conducted in the current research project in order to gain an
understanding about derivation, smoothing technique and spectral classification,
using MIR spectra of SF samples from joints with osteochondral fracture and those of
controls. The objective of the pilot study was to investigate the effect of varying the
degree of spectral smoothing on the accuracy of spectral classification by using a
dataset (the traumatic arthritis dataset that was partially used in Chapter 4). The
spectral differentiation and smoothing procedures (Savitzky-Golay smoothing
algorithm) were simultaneously performed by the use of proprietary software
(GRAMS/AI 7.02, Thermo Galactic, Salem, NH, USA).

The 2™ order differentiation was chosen for investigation in this study due to
its advantages for removing baseline and slope variations, and resolving features of
the overlapping bands that may be inaccessible in absorption spectra (7-8). The peak

maxima in absorption spectra were inverted to give negative peaks in second
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derivative spectra, therefore the po'sitions of peak maxima are still preserved after
transformation (8). Then, varying and increasing degrees of spectral smoothing were
investigated. The classification of IR spectra from affected joints and those of
controls was performed using a genetic algorithm for optimal region selection
developed by the Institute for Biodiagnostics, National Research Council of Canada
in collaboration with Dr. Anthony Shaw. Comparisons of classification results
including sensitivity, specificity, and accuracy were performed among different
degrees of smoothing.

The genetic algorithm used for spectral classification is programmed to seek a
set of spectral subregions that can provide a basis of spectral classification, using
discriminant analysis as the basis for that classification (39-40). Generally, this set of
spectral regions is sought by making use of a subset of spectra, referred to as the
calibration set. Onc; the optimal regions have been chosen, the discriminant analysis
classifier is considered to be optimized. For each spectrum, the input variables for
spectral classification are the set of average intensities calculated from the set of
spectral subregions (an average intensity of each spectral subregion was calculated)
selected by the genetic algorithm and its actual class designation (whether it is in
affected or control groups) (39-40). Classification results are reported as numbers of
spectra in the calibration set that are correctly classified or misclassified in each class
(41-43). These numbers allow the calculations of sensitivity, specificity, and accuracy
for the calibration set of spectra. The robustness and general applicability of the

classification are then tested by an independent set of spectra, the so-called validation
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set (40). The sensitivity, specificity, and accuracy are then calculated and compared
to those from calibration set. The spectroscopic data preprocessing and classification
strategy for this pilot study are schematically illustrated in Appendix 7.

A set of SF sample (n=94) from 49 horses age between 2-5 years were
included in this pilot study on spectral preprocessing. The samples were collected
from fetlock, antebrachiocarpal and midcarpal joints. Fifty-three samples are from
joints with osteochondral fragmentation and 41 samples are from control joints.
Numbers of samples according to anatomical locations of joints in affected and
control groups were presented in Appendix 8. Sample preparation and spectral
acquisition were as described previously (see section 2.2 and 2.3). Spectral
differentiation and smoothing were applied to the set of spectra using the Savitzky-
Golay algorithm (GRAMS/AI 7.02, Thermo Galactic, Salem, NH, USA). A total of
94 spectra were transformed into second derivative spectra. Three different levels of
smoothing including 15 points, 25 points and 45 points were applied to the set of
spectra.

In order to validate and estimate the accuracy of classification for each degree
of smoothing, the random re-sampling with replacement technique was exploited to
separate spectra (53 affected and 41 control spectra) into calibration and validation
sets. The calibration set consisted of 35 spectra randomly selected from 53 affected
spectra and 27 of those 41 control spectra (two-thirds of affected and control groups)
by using computer generated random numbers (Minitab 13, Minitab Inc., College,

PA, USA). The remaining spectra of those affected and control samples constituted a
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validation set. Twenty iterations of re-sampling with replacement were conducted to
achieve 20 sets of calibration and their corresponding validation sets. At the end of
this re-sampling, there were 20 calibration sets and their corresponding validation sets
for each smoothing method.

The spectroscopic data within the range of 400-1800 cm™ were used in
spectral analysis. In our experience, inclusion of spectroscopic information within the
range of 400-1800 cm' into statistical analysis is likely to yield a better classification
result than using either the entire MIR range (400-4000 cm™) or the information from
2750-4000 cm™ (see Figure 2.7) in statistical analysis. In addition, restricting the IR
range to 400-1800 cm™ may help to reduce the high dimensionality of our data
matrix, which is especially important when constrained by a limited sample size of SF
samples.

Following the preprocessing and the conversion into a suitable data format
(see Appendix 7), the classification of the spectra with respect to their class
designation was performed using the genetic algorithm as previously described. Three
optimal regions were successfully selected (see Appendices 9.1- 9.3 for optimal
regions selected by genetic algorithm). Classification models based on those regions
were optimized from each calibration set and tested using the spectra in the validation
sets. Finally, the 95% confidence interval of the mean sensitivity, specificity and
accuracy of the calibration and validation sets were calculated (see Appendices 10.1-
10.3 for sensitivity, specificity, and accuracy of all calibration-validation sets). The

plot of 95% confidence intervals of the mean sensitivity, specificity and accuracy of
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the calibration and validation sets when subjected to 3 different levels of smoothing
were placed side by side in Appendices 11.1-11.3.

There were no significant differences (¢ = 0.05) among the 3 levels of
smoothing based on the classification results (sensitivity, specificity and accuracy).
This suggested that the smoothing procedure may not have a profound influence on
classification result of this dataset. However, insignificant increases in the mean value
of sensitivity, specificity and accuracy were observed in validation sets suggesting
that smoothing might provide some benefits to the classification of the spectra
(Appendices 11.1-11.3).

One limitation that needs to be addressed in this data analysis is the
dependence of the spectra. A firm conclusion regarding to the classification results
cannot be achieved because of a violation of at least one of the assumptions of
independence for discriminant analysis. This multivariate statistical analysis requires
an independence of the spectra being classified (i.e. each horse provides a single SF
sample for spectral analysis). To meet such assumptions, a larger number of horses to
provide a single sample from either affected or control joints are required. The
optimal solutions for the spectral classification of this dataset were later developed

and described in Chapter 4.
2.6 An overview of spectral preprocessing and classification strategy
The purpose of this section is to provide an overview and describe decision

making criteria pertaining to the preprocessing techniques and classification strategy
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of SF spectra of horses with osteochondrosis as an example. The optimal and final
solution for spectral preprocessing and classification will be further described in
Chapter 5. The process of spectral classification used in this current research began
with selection of appropriate preprocessing techniques, selection of significant
infrared subregions, and development and validation of a preliminary classification
model based on significant subregions. These 3 key elements are crucial for the
success of the classifications of equine SF spectra in this current research project (see
Chapter 4 and Chapter 5). In the osteochondrosis study (see Chapter 5), the spectral
classification was performed on a set of spectra consisting of 64 spectra from
tarsocrural joints of 64 horses (each horse provided a single joint fluid sample). There
were 33 samples from joints with osteochondrosis and 31 samples from controls. The
sample preparation and spectral acquisition methods were as described previously
(see section 2.2 and 2.3).
2.6.1 Selection of preprocessing technique

The spectral preprocessing and classification strategy described in this section
are schematically illustrated in Appendix 12.1 and the summary of classification
results is presented in Appendices 12.2 - 12.3. The spectral differentiation and
smoothing procedures (Savitzky-Golay smoothing algorithm) were simultaneously
performed by the use of proprietary software (GRAMS/AI 7.02, Thermo Galactic,
Salem, NH, USA). Sixty-four spectra were transformed into both first and second
derivative spectra. Varying degrees of spectral smoothing were applied to both first

and second derivative spectra with 5, 9, 15, 19, 21, 25, 30 points. The genetic
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algorithm approach was used as a method for rapid classification and optimization of
differentiation and smoothing preprocessing technique for this dataset. The
classification results (accuracy) of the first and second derivative with varying degree
of spectral smoothing based on 6 optimal regions are graphically illustrated in
Appendix 13. Six optimal regions were chosen by the genetic optimal region
selection algorithm. It is recommended that the ratio of the number of spectra per
class to number of optimal regions selected should be 5:1 to 10:1 (40). The 2™ order
derivation with 19 point smoothing was finally selected as an optimal differentiation
and smoothing method based on the highest accuracy yielded.

The appropriateness of vector normalization technique (see section 2.4.3) for
this dataset was also explored. For this purpose, the dataset containing 64 non-
normalized 2™ derivative spectra with 19 point smoothing was subjected to vector
normalization. The IR regions providing the basis for normalization included 1950-
2150 cm™, 1500-1700 cm™, 800-1450 cm™. These regions correspond to
characteristic bands of KSCN (1950-2150 cm™), protein, lipid and carbohydrate
absorptions. The region of particular interest was 800-1450 ém'l. This region
encompasses characteristic bands at 1000, 1035, 1115 and 1245 cm™ which were
reported to be associated with the presence of osteochondrosis in a previous study
(44). The dataset of 64 second-derivative spectra was éubjected to three different
vector normalization methods as described. The non-normalized and normalized data
were used in the next step.

2.6.2 Selection of significant infrared subregion
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In the osteochondrosis dataset, differences of mean age in either the
osteochondrosis or the control groups may introduce bias into data analysis. The
horses in the osteochondrosis group were likely to be younger than the control group
(see detail in Chapter 5). Analyses of covariance (ANCOVA) were employed to
detect sets of wavenumbers that demonstrated a significant effect of group (p<0.01)
after accounting for the age variable. The statistical analyses were performed on each
wavenumber basis within the entire range of MIR (400-4000 cm'l). Significant
subregions were defined as a set of at least 4 consecutive wavenumbers that
demonstrated a significant effect of group at a level of p <0.01.

A significance level of o = 0.01 was set to guard against type I error arising
from multiple statistical analyses performed on entire wavenumber range of MIR
spectrum. The criterion of using at least 4 consecutive wavenumbers was exclusively
established in the current research based on the minimal width of the optimal range
reported (1). In general, the width of the optimal region usually spans from 4 to 50
cm™ and 5 to 15 optimal regions were selected to include in a classification model
(1.

Before applying ANCOVA on each wavenumber, a test for parallelism was
performed to ensure that the data is suitable for applying ANCOVA (45). This
aésumption has to be met in order to avoid misinterpretation of the results. Analysis
of non-normalized data revealed an inappropriateness of applying ANCOVA with
this particular dataset because substantial IR subregions failed the test for parallelism.

This problem was solved with the normalization method. The dataset after
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preprocessing with any of 3 normalization methods was suitable for applying
ANCOVA as indicated by the test for parallelism.

There were 6, 5 and 12 significant subregions detected when data were
normalized on based on wavenumber range of 1950-2150 em™, 1500-1700 cm'l, 800-
1450 cm™ respectively (see Appendix 12.3). The highest number of significant
subregions (when using 800-1450 cm™as a basis of normalization) may reflect the
ability of this particular normalization method to minimize variations in the overall
spectral intensity and factor out irrelevant information, giving greater prominence to
the spectroscopic variations believed to be important for successful spectral
classification (32, 36). The 2™ order differentiation with 19 point smoothing and
vector normalization using the IR range of 800-1450 cm™ as a basis of normalization
were chosen as optimal methods to preprocess the spectra of SF from horses with
osteochondrosis and those of controls (Chapter 5). The preprocessed spectra were
used for development of classification model and model validation as the final step.
2.6.3 Classification model development and validation

Discriminant analysis is the most common supervised pattern recognition
method used to classify the spectra in biomedical research (12, 14, 18, 24, 29, 31, 37,
40, 41, 43). The essence of this classification technique can be graphically illustrated
by a multidimensional plot in some cases (Figure 4.3 in Chapter 4), but in other cases
where there are > 3 variables an alternate representation is required (46). Each
coordinate point represents each spectrum in N dimensional space where N is the

number of significant regions (38, 41, 47, 48). The value on each axis corresponds to
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the average intensity of each significant region. Discriminant analysis identifies the
boundaries that best separate the points in multidimensional space with respect to
their group membership (38, 41, 47, 48). For example, in bivariate linear discriminant
analysis, these boundaries may be a straight line defined by a linear equation. The
discrimination or class assignment base on discriminant analysis can be appreciated
by consideration of probability and Bayes’ theorem; a sample or object should be
assigned to that class that having the highest conditional probability (38, 48). The
class assignment based 6n indirect estimation of conditional probability can be
achieved through calibration of discriminant function and rules (38). A
comprehensive description of the principles underlying the theory of discriminant
analysis is beyond the scope of this thesis, readers are referred to McLachlan (49) for
details. The discriminant analysis procedures were performed in the current research
project by the use of proprietary statistical software (SAS 8.02, SAS institute
Inc.,Cary, USA) with the aim of deriving the preliminary classification models. The
classification results can be presented in a form of a contingency table that shows the
number of samples (or spectra) based on their actual class against their predicted class
(8) (see table 5.2 in Chapter 5). Stepwise discriminant analysis was applied prior to
calibration of classification models. This procedure is performed to select a set of
subregions (from those significant subregions selected from the previous step) that
most contribute to the power of discrimination (50). The significant region selection

procedure based on ANCOVA and stepwise discriminant procedure are the strategies
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for reducing the dimensionality of data matrix particularly when the number of
variables exceeds sample size as seen in the current research project (50).

The model validation technique used in the osteochondrosis study was the
leave-one-out cross-validation technique (see section 1.8.2 in Chapter 1). The
classification results (sensitivity, specificity, and accuracy) of the 3 methods of
normalization applied with this dataset are summarized in Appendix 12.3. The 2™
order differentiation with 19 point smoothing and vector normalization by using IR
range of 800-1450 cm™ as a basis of normalization yielded the highest accuracy
among the 3 methods. The performance of class prediction by a classification model
using all 64 preprocessed spectra in the dataset was not as high as we expected
(overall accuracy of 77%) when compared to the traumatic arthritis dataset for which
overall accuracy of 97% was achieved from 29 spectra in the calibration set. The
diagnostic features distinguishing diseased spectra from control spectra may be less
prominent in the osteochondrosis dataset when compared to the traumatic arthritis
dataset. The performance of the classification model may be improved and refined by
inclusion of more samples in the future. However, the leave-one-out cross validation
seems to be a reasonable means to estimate an overall performance of classification

of osteochondrosis sample at this preliminary stage.

2.7 Conclusion
The main emphases of this chapter, practical laboratory technique, optimal

spectral acquisition, effective spectral pre-processing techniques, and data
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classification techniques comprise the foundation for the development of IR-based
diagnosis of equine joint diseases. The optimal dilution and sample deposition
volume were established as a strategy to achieve a suitable optical pathlength of SF
dried films. Randomized experimental design was applied on each plate of each
experiment to guard against possible bias sources due to the variability of the plate
and well positions (column and row) on the prototype of silicon plate used in the
study. Spectral acquisition protocol and parameters were optimized to obtain the
resultant spectra with high resolution and signal-to-noise ratio. Synovial fluid spectra
acquired within the optimal laboratory technique and spectral acquisition protocols
are comparable to those reported in a human study (24). The same laboratory
techniques and spectral acquisition protocol were maintained consistently for all
studies surnfnarized in the following chapters. The spectral pre-processing procedures
as described in this chapter were utilized to enhance spectroscopic features that
faithfully related to the pathological changes and to transform spectroscopic data into
a form that is suitable for statistical analysis. Generally, the choice of technique was
based on the nature of the spectroscopic data and the studies being undertaken, with
subtle but important variations to suit each set of circumstances (8). The
preprocessing techniques were carefully optimized for each data set to achieve the

best possible classification result.
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CHAPTER3
AN ANALYSIS OF INTRA-HORSE BIOCHEMICAL VARIATIONS
BETWEEN HIGH MOTION JOINTS BASED ON THE INFRARED

SPECTRAL CHARACTERISTICS OF SYNOVIAL FLUID

3.1 Abstract

Infrared spectroscopy relies upon the absorption characteristics of chemical
bonds of infrared active molecules when exposed to IR light. The absorption pattern
is very specific to the molecular species within the samples. The infrared spectrum of
a sample is often referred to as a molecular fingerprint that reflects the structure of
chemical constituents with the intensity of absorptions being directly related to their
concentrations. In the development of IR-based analysis of synovial fluid (SF) for
diagnosis and assessment of joint diseases in horses, the proper selection of normal
control joints and an appropriate method of comparison are crucial factors in study
design and data analysis. Intrinsic sources of variation, other than those due to
disease, may cause differences in composition of SF samples. These inturn, may lead
to differences in IR absorption patterns. The objective of this study is to identify
signiﬂcant differences due to natural variatioﬁ among different anatomic types of
joints and left versus right limbs that may affect the pattern of mid-infrared (MIR)
spectra derived from SF of clinically normal joints. Synovial fluid samples were
collected from joints with no abnormalities detected in radiographic examination

and/or necropsy. The left versus right comparison was conducted by use of 78
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bilateral SF samples from antebrachiocarpal (AC), midcarpal (MC), and tarsocrural
(TC) joints obtained from 13 horses. The between-joint coinparisons were conducted
by use of 66 ipsilateral SF samples from AC, MC, and TC joints of 22 horses. Mid-
infrared spectra were acquired and mathematically manipulated. Analyses of variance
for a complete block design using horse as a blocking factor were performed on each
wavenumber. The wavenumbers that demonstrated significant effect (p<0.01) of side
(left versus right) and significant differences (p<0.01) among joints were the primary
outcomes of interest. Significant differences among AC, MC, and TC joints in SF
composition were identified in MIR spectra. The MIR absorption patterns of SF
samples derived from pairs of contralateral joints were similar supporting their use as
within subject control in appropriately designed studies. The finding of a broad range
of biomolecular differences among these joints indicates that interarticular variation
within the horse needs to be considered in prospective study design, as well as studies
- of naturally occurring joint disease. Further normal samples should be evaluated to

better characterize the range and significance of MIR spectral changes detected.

3.2 Introduction

The synovial fluid (SF) from normal joints is a unique dialysate of plasma
with the addition of hyaluronate and other molecules secreted by synoviocytes (1-3).
This specialized fluid plays important roles in articular cartilage nourishment, joint
lubrication and disease (3). Analyses of SF using conventional and novel molecular

(biomarker) approaches have been used to assist the clinical diagnosis of arthritic
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" conditions in veterinary and human medicine (4-8). Conventional SF analysis
consists of evaluations of color, viscosity, volume, clot formation, total protein and
cytologic examination (6, 8). Although useful in cases of septic arthritis, these
parameters provide limited information about the degree of synovitis, and are of little
value in identifying articular cartilage or subchondral bone damage in the
osteoarthritic joint (9). In recent years the focus of osteoarthritis (OA) research has
shifted from microscopic changes in cell number and total protein parameters, to the
search for biomarkers (direct or indirect molecular indicators of abnormal skeletal
turnover) for joint disease in humans and horses (4-8, 10, 11). Various biomarker
assays have been developed to identify qualitative and quantitative changes in intra-
articular catabolism and anabolism using biochemical analysis, radioimmunoassay or
ELISA (4-8, 10, 11). Early results are promising but complex multiple assays may
be required to characterize cases of joint disease, and further study is required to
determine their usefulness for routine osteoarthritis assessment (11). Other tools
including genetic array analysis are under development, but as yet are either too
expensive for routine screening, or have limited availability (12).

Infrared (IR) spectroscopy is revolutionizing the assessment of biological
molecules and the biochemical response to disease (13-18). This technology relies
upon the absorption characteristics of biomolecules when exposed to IR light (14, 16,
17). The absorption pattern is very specific to the nature and distribution of molecular
species within a sample, with the intensity of absorptions being directly related to

both the concentration and composition of the various constituents (14, 16, 17).
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Within an animal species and for a particular disease, the IR spectra of a biological
sample may be referred to as a “molecular fingerprint” that is correlated to the
presence or absence of that disease (14, 16, 17). The feasibility and usefulness of IR-
based analyses of various types of biological fluids have been investigated in previous
studies (13, 15, 16, 18). The advantages of this approach are that no specific reagents
are required because all IR active species within the samples give rise to IR
absorption bands without a need for chemical or immunological modification.
Automated repetitive analyses can be performed with low cost (16). It is a potentially
powerful technique because an enormous amount of biochemical information
(qualitative and quantitative) is extracted from the sample constituents, with features
contained within the IR spectrum characterizing the sum of all IR active components
in a sample (14, 16).

Recently the application of IR spectroscopy to evaluate human arthritis has
been pioneered resulting in a novel diagnostic methodology (13, 15). However there
are no published studies comparing the IR profiles among normal joints, or
identifying the effect of anatomic location on spectral variables used to characterize
joint disease. In order to advance this technique of SF analysis, an understanding of
the IR spectroscopic information gathered from ‘normal’ horse or joint populations is
as important as that derived from diseased horses. It is clear from other published
reports that significant mechanical and biochemical differences occur among different
joints within the same organism (5, 6, 19-23). These intrinsic differences among

joints may result in an altered response to disease among joints, even though the
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inciting cause is similar (20). The proper selection of normal controls and appropriate
methods of comparison are crucial in study design, data analysis, and the application
of IR spectroscopy in the disease diagnosis and assessment of joints. Intrinsic sources
of variance, other than those due to disease, may cause differences in composition of
SF attributable to biological rather than pathological reasons (1-3).

The authors hypothesized that the anatomic location from which SF is
sampled may affect the pattern of mid-infrared spectra derived from SF of clinically
normal antebrachiocarpal (AC), midcarpal (MC) and fcarsocrural (TC) joints. The
objective of this study is to identify significant differences in the IR absorption
spectra attributable to the natural biochemical variation among these three high

motion joints.

3.3 Materials and methods

This study was approved by the Animal Care Committee in accordance with
the University of Prince Edward Island policy and the principles outlined in the Guide
to the Care and Use of Experimental Animals prepared by the Canadian Council on
Animal Care.
3.3.1 Study design and sample population

The effect of anatomical location of 3 high motion joints (AC, MC, and TC)
and side (left versus right) on mid-infrared (MIR) absorbance spectra of SF
(wavenumber range 400-4000 cm™) was investigated. Synovial fluid samples were

collected from multiple joints in each horse. Inclusion criteria for joint selection were
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radiographically normal AC, MC and TC and/or AC, MC and TC with no gross
pathological lesions of synovium and articular cartilage detected by necropsy.
Samples of SF were collected from 22 horses (105 joints) that met the criteria for
inclusion (a pool of ~ 30 horses was examined; exclusions were mostly due to
abnormal radiographic findings despite a normal clinical appearance). Breeds
represented included Standardbred (n=18), Quarter horse (n=1), and mixed breeds
(n=3). There were 10 females and 12 males. Mean age for all study horses was
4.3+2.3 (mean+SD) years. Of these 22 horses, 13 provided bilateral and 9 provided
unilateral ipsilateral SF samples from AC, MC, and TC joints. All SF samples
collected were stored at -80 °C in plain cryovials for later IR spectroscopic batch
analysis.
3.3.2 Fourier transform infrared (FT-IR) spectroscopy

Synovial fluid samples were thawed at 22 °C, centrifuged at 2700 g for 10
minutes, and the supernatants were used for IR spectroscopic analysis. Sample
preparation was a modification of a previously described technique (24, 25). Briefly,
for each sample, an aliquot was drawn and diluted in aqueous 4 g/L potassium
thiocyanate (KSCN, Sigma-Aldrich Inc., St.Louis, MO) solution in the ratio 3 parts
SF: 1 part KSCN solution. The KSCN absorption band at approximately 2060 cm™!
served as one basis for spectral normalization (24, 25).

Triplicate dry films were made for each sample by depositing 8 pL aliquots of
the diluted SF, spread evenly in circular motion onto 5 mm diameter circular islands

within a custom made, adhesive masked, 96 well-silicon microplate (18). The
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adhesive mask attached on the surface of the microplate served to spatially define and
systematically separate the 5 mm islands on the microplate so as to correctly align
samples with the IR radiation beam and detector. Samples from each horse were
randomly assigned to well positions on the microplate. The SF films were left to dry
at room temperature for 12 h. Once thoroughly dried, the microplate was mounted
within the multisampler (HTS-XT, Bruker optics, Milton, ON) interfaced with the
Fourier transform infrared (FT-IR; Tensor 37, Bruker optics, Milton, ON)
spectrometer to allow for the acquisition of IR spectra.

Infrared absorbance spectra in the MIR region of 400-4000 cm™ were
recorded using the FT-IR spectrometer equipped with a deuterium tryglycine sulphate
detector. For each acquisition, 512 interferograms were signal averaged and Fourier
transformed to generate a spectrum with a nominal resolution of 4 cm™ (18, 24, 25).
3.3.3 Data preprocessing

Triplicate spectra of each sample were averaged. Preprocessing inciuded
differentiation and smoothing procedures (Savisky-Golay 2nd order derivatives using
a 2nd degree polynomial function, with 7 point smoothing) which were performed on
all spectra to resolve and enhance weak spectral features, and remove the variation in
baselines, using spectral calibration software (GRAM/AI 7.02 Thermo Galactic,
Salem, NH) (26).

The preprocessed spectra were then normalized by using a wavenumber range
of 800-1450 cm™! as a basis of vector normalization using scripts written in MATLAB

(MATLAB 6.5, The Math Works Inc., Natick, MA). Vector normalization was
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carried out for each 2nd derivative spectrum by first summing the squares of
absorption intensities for all data points (1 data point corresponded to ~1
wavenumber) within the spectral basis range of 800-1450 cm™ (27). The square root
of this sum of squares calculated from each spectrum was used as the normalization
factor for that same spectrum; the intensities of the entire range within each spectrum
were divided by this vector normalization factor prior to statistical analysis.
3.3.4 Statistical analysis

Two statistical comparisons were performed in order to study the effect of
anatomical location of 3 high motion joints (AC, MC, and TC) and side (left versus
right).
3.3.4.1 Comparison of left and right MIR spectra

Seventy-eight preprocessed spectra of bilateral SF samples from AC, MC, and
TC joints were used for this part of the analysis. The relative intensity at each
wavenumber in the spectrum was the dependent variable. Analyses of variance for a
randomized block model using horse as a blocking factor were performed (PROC
MIXED, SAS 8.02, SAS institute Inc., Cary, NC) on each intensity-wavenumber
basis for the entire MIR regions. The effect of side (left versus right side) was
considered significant for any wavenumber within MIR region if the p value < 0.01.
3.3.4.2 Inter-joint comparison of the MIR spectra

Following comparisons of left and right joints within horse, preprocessed
spectra from the remaining 9 horses (unilateral samples) and a randomly selected

spectrum (left or right) from each of the 13 bilaterally sampled horses were compared
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under the assumption of no significant differences between contralateral joints. These
constituted a second set of 66 spectra from ipsilateral AC, MC, and TC joints.
Analyses of variance were performed (PROC MIXED, SAS 8.02, SAS institute
Inc.,Cary, NC) as described above to detect the significant effect of joint (p <0.01).
Pairwise comparisons were performed among the 3 joints of interest (e.g. AC-MC,
AC-TC, MC-TC). The differences between joints for any wavenumber within MIR

region were considered significant if the p value < 0.01.

3.4 Results

Analyses of variance were performed on 3731 wavenumbers on the set of
preprocessed spectra ranging from wavenumbers 402.15 to 3999.28 cm’™. The only
significant effects of side (left versus right) that were demonstrated occurred at
wavenumbers 2568.14 cm™ (p = 0.0079) and 2699.29 cm™ (p = 0.0052).

Significant differences (193 wavenumbers) based on pairwise comparisons of
AC and MC IR spectra were observed, and were most concentrated in the 1000-1100
cm’), 1550-1600 cm™’, and 3500-3650 cm™ regions; differences within the 2000-2500

! region were few. For AC-TC comparisons, significant differences (364

cm’
wavenumbers) were most concentrated in the 560-650 cm™, 790-840 cm™, 890-900
cm™, 940-1240 cm™, 1400-1440 ecm™, 1650-1700 cm™, 2260-2270 c¢m™, 3000-3020
cm™, and 3620-3830 cm™ regions. The significant IC-TC differences were more

broad ranging (995 wavenumbers), and were concentrated in the 600-740 cm’, 810-

900 em’’, 950-1050 cm™, 1070-1090 cm™, 1120-1140 cm™, 1160-1800 cm™, 2030-
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2200 cm™, and 2830-3400 cm™ bands. The AC and MC joints shared in common 158
significant wavenumber differences with the TC joint. The difference spectra and
wavenumbers demonstrating the significant differences (p < 0.01) between pairwise
spectra (AC compared to MC joints and AC compared to TC joints) are illustrated in
Figures 3.1 - 3.8. These illustrations show group frequencies in the fingerprint (600-
1500 cm™), double-bond (1500-2000 cm™), triple-bond (2000-2500 cm™) and X-H

stretching regions (2500-4000 cm™, X = oxygen, carbon, or nitrogen atoms) (27, 28).

3.5 Discussion

Comparisons of IR absorption patterns of SF of different high motion joints of
the horse demonstrated significant spectral differences among the joints of interest.
Given the scarcity of significant IR spectral differences with the MIR bandwidth
detected between left and right clinically normal AC, MC and TC joints, the
biomolecular composition of the SF as characterized by the IR spectroscopy may be
considered to be equivalent in non-diseased joints. A previous study found good
agreement in oncotic pressure between contralateral joints, suggesting similar
concentrations of molecular solutes (29). Contralateral joints have been widely used
as coﬁtrols in a variety of joint related studies, and these results support this approach

in studies where effects are localized to the joint of interest (30, 31). However some
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Figure 3.1 Difference spectrum (2nd derivative) of antebrachiocarpal-midcapal spectra
in the fingerprint region. The shaded areas represent the series of wavenumbers that
demonstrate significant differences between the antebrachiocarpal and midcarpal joints
(p<0.01).
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Figure 3.2 Difference spectrum (2nd derivative) of antebrachiocarpal-tarsocrural spectra

in the fingerprint region. The shaded areas represent the series of wavenumbers that
demonstrate significant differences between the antebrachiocarpal and tarsocrural joints

(p<0.01).
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Figure 3.3 Difference spectrum (2nd derivative) of antebrachiocarpal-midcarpal spectra
in the double bond region. The shaded areas represent the series of wavenumbers that
demonstrate significant differences between the antebrachiocarpal and midcarpal joints
(p<0.01).
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Figure 3.4 Difference spectrum (2nd derivative) of antebrachiocarpal-tarsocrural spectra
in the double bond region. The shaded areas represent the series of wavenumbers that
demonstrate significant differences between the antebrachiocarpal and tarsocrural joints
(p<0.01).
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Figure 3.5 Difference spectrum (2nd derivative) of antebrachiocarpal-midcapal spectra
in the triple bond region. The shaded areas represent the series of wavenumbers that

demonstrate significant differences between the antebrachiocarpal and midcarpal joints
(p<0.01).

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100+

®
L X MR R - i W 8- N
“3
—

-1007]

-200 T T
2000 2100 2200 23:]0 24'00 2500

Wavenumbers

Figure 3.6 Difference spectrum (2nd derivative) of antebrachiocarpal-tarsocrural spectra
in the triple bond region. The shaded areas represent the series of wavenumbers that
demonstrate significant differences between the antebrachiocarpal and tarsocrural joints
(p<0.01).
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Figure 3.7 Difference spectrum (2nd derivative) of antebrachiocarpal-midcapal spectra
in the X-H stretching region (X = O,C or N). The shaded areas represent the series of
wavenumbers that demonstrate significant differences between the antebrachiocarpal and
midcarpal joints (p<0.01).
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Figure 3.8 Difference spectrum (2nd derivative) of antebrachiocarpal-tarsocrural spectra
in the X-H stretching region (X = O,C or N). The shaded areas represent the series of
wavenumbers that demonstrate significant differences between the antebrachiocarpal and
tarsocrural joints (p<0.01).
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pharmacologic and mechanical studies have documented that ‘changes may occur in
contralateral control joints (32, 33). The biochemical changes océurring within the
contralateral control joints may be objectively assessed by IR spectroscopy of SFina
future study to confirm the validity of the use of contralateral joint as a normal
control.

In contrast, the dissimilarities in IR absorption patterns observed among
ipsilateral joints of different anatomical locations were marked, even when the joints
were immediately adjacent. However, the IR absorption patterns of SF samples from
adjacent joints (AC and MC) showed fewer differences than comparisons between
more anatomically distant joints (TC). Given the biomechanical and functional
differences between the carpal and tarsal regions, it is reasonable to expect that
biochemical differences as determined by IR analysis of SF, reflecting the full range
of molecules present, would be more marked than those occurring between
functionally similar joints (19, 21, 22, 29, 34). Despite biomechanical differences,
carlier workers have found no quantitative differences in total protein content (TP)
between hocks and carpi (the precise joints sampled were not described), but TP was
lower in the fetlock (35). Differences in the concentration of total
glycosaminoglycans, keratan sulfate and cartilage oligomeric matrix protein between
the interphalangeal and metacarpophalangeal joints have been reported in normal
horses (23). Different values for total glycosaminoglycans and keratan sulphate
concentrations in SF were also reported between AC and TC joints, but data were

insufficient for statistical conclusions to be drawn (19). In the current study the range
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of biochemical differences among the joints was more clearly demonstrated because
unlike specifically targeted assays, investigation by IR spectroscopy of SF reflects
both quantitative and qualitative molecular differences of known and unknown
biomolecules (14, 16).

The interpretation and correlation of the features of the MIR spectra to
specific molecules is possible when examining a pure solute or a solution of a few
distinct molecules (14, 36). For more complex biological mixtures such as the SF
examined in the current study, the absorption bands are no longer simple and well-
resolved — the absorption profile reflects the superposition of literally thousands of
individual absorptions spread across the MIR region (14). In the case of SF, the major
molecular contributions to the mixture are water, albumin, a-, B- and y-globulins,
transferrin, glucose, urea, hyaluronate and proteoglycans (5, 6, 8, 35). It is the pattern
of overlapping absorptions rather than individual molecular moieties that provide a
biochemical signature, referred to as a molecular fingerprint, reflecting the
complexity and relative abundance of the chemical constituents.

Hyaluronate has been supported as a marker for osteoarthritis, as have total
glycosaminoglycans and keratan sulfate (4, 6, 19, 23, 31). Cartilage extracted
preparations of proteoglycans (containing chondroitin sulfate and keratan sulfate)
have a wide absorption band (1550-1640 cm™) with a maximum at ~1635 cm™ due to
the overlapping of the combined absorption of carbonyl groups of acetamide residues
(amide I), the antisymmetrical stretching of carboxylate groups of hexuronic acid

(COQ), and other contributions (37-39). Absorption at 1550 cm™ is associated with
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the amide II band, and 1413 cm™ with the symmetrical COO’ vibration (37-39). In the
current study significant differences with joint type were detected in areas
corresponding to these peaks. Unless the SF samples are fractionated, and molecules
separated prior to IR spectroscopy, the specific origins of the differences are not
readily interpreted (14, 39). The current study also identified significant spectral
differences among the AC, IC, and TC joints spread across several spectral regions.
These included subregions that would include, for example, absorption bands
associated with proteoglycan sulfate groups, and hyaluronante primary and secondary
alcohol hydroxyl groups (37-39). While further fractionation and analysis is clearly
necessary to confirm the actual origin of these spectroscopic changes, these
observations are consistent with the work of others suggesting differences among
joints in concentrations of proteoglycans and glucosaminoglycans (19).

Caution should be exercised in interpreting the significance of absorptions in
the X-H stretching region. While the broad 3000-3600 cm™ profile encompasses the
O-H stretching bands of water and polysaccharides (37, 39), both hyaluronate (HA)
and chondroitin sulfate (CS) have a high capacity for water binding, resulting in a
significant contribution to the MIR spectra that varies with atmospheric humidity
even though the samples were dried prior to spectral acquisition (39). The apparatus
used in the study does not permit control of humidity within the sample chamber. The
authors suggest that future IR spectroscopy studies control relative humidity in order
to prevent dilution of the IR signal attributable to HA and CS, and to minimize the

small spectral shift that occurs with varying OH bandwidth (39). The authors of the
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current study suggest the fingerprint region of the spectra may be more suitable for
comparing joints in cases where controlling humidity is difficult, as this region is less
affected (39).

The sample size used in the current study is comparable to that used in similar
reports examining synovial constituents (23, 30, 31). However the large number of
vériables examined increases the rate of type I error, limiting the utility of the data in
the current study for linear discriminant analysis to model the significant spectral
differences which best characterize each joint. Data reduction strategies were
employed and a high significance level set (15, 18). Despite these steps a large
number of differences among joints were found. As a result the study was limited to
pairwise comparisons of MIR spectra of different joints. Recruitment of further
samples from normal joints is necessary to facilitate more advanced modeling of the
differences between normal joints.

In conclusion, significant differences among AC, MC, and TC joints in SF
composition were confirmed as characterized by IR spectroscopy. The MIR
absorption patterns of SF samples derived from pairs of contralateral joints were
comparable supporting their use as within subjgct control in appropriately designed
studies. The finding of a broad range biomolecular differences among these joints
indicates that interarticular variation within the horse needs to be considered in
prospective study design, and well as studies of joint disease (19, 23, 31). Further
normal samples should be evaluated to better characterize the range and significance

of MIR spectral changes detected.
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CHAPTER 4
USE OF INFRARED SPECTROSCOPY FOR DIAGNOSIS OF TRAUMATIC
ARTHRITIS IN HORSES

4.1 Abstract

Infrared spectroscopy measures infrared absorption patterns of molecules in a
sample when exposed to infrared radiation. The Infrared absorption pattern or
spectrum reflects the chemical structure of all infrared-active components in the
sample and their relative abundance. The spectrum of biological fluid is often referred
to as a biochemical fingerprint that may correlate with the presence or absence of
diseases. The objective of the study is to determine the feasibility of using infrared
spectroscopy to differentiate synovial fluid samples from equine joints with traumatic
arthritis from those of controls. Synovial fluid samples were collected from 77 joints
in 48 horses with traumatic arthritis. Of these 29 horses provided paired samples
(affected and control) used for model calibration. The remaining 19 horses provided
independent samples from a diseased (n=12) or a control (n=7) joint used for model
validation. A second validation set of normal SF samples (n=20) was collected from 5
clinically and radiographically normal horses. Fourier transform infrared spectra of
SF were acquired, manipulated, and data from diseased joints were compared to
controls to identify statistically significant (p<0.01) spectroscopic features that
differentiated between the groups. A classification model using linear discriminant
analysis was developed. Performance of the model was determined using the two

validation datasets. A classification model based upon 3 infrared regions classified
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spectra from the calibration dataset with overall accuracy of 97 % (sensitivity 93%;
specificity 100%). The same model with cos‘;—adjusted prior probabilities of 0.60:0.40
produced an overall accuracy of 89% (sensitivity 83%; specificity 100%) for the first
validation sample dataset, and 100% correct classification of the second set of
independent normal control joints. The IR spectroscopic patterns of SF from joints
with traumatic arthritis differ significantly from the corresponding patterns for
controls. These alterations in IR absorption patterns may be exploited via an
appropriate classification algorithm to differentiate the spectra of diseased joints from

those of controls,

4.2 Introduction

Osteoarthritis (OA) is a commonly encountered cause of lameness in
performance horses, and has been implicated as a cause of lameness in 54% of horses
(1). Lameness problems have been estimated to result in 68% of days lost in training
among racehorses (2). Timely diagnosis and aggressive treatment of traumatically
induced OA are important to alleviate the effects of inflammation, including pain and
reduced function, and are essential to prevent or minimize the development of OA
(3).

Evaluation of joint disease in a horse is facilitated by clinical examination to
detect signs of pain and gross anatomical or functional change, evaluate the horse’s
gait, and localize the problem by use of diagnostic analgesia (3). Other diagnostic

aids include radiography, ultrasonography, computed tomography (CT), magnetic
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resonance imaging (MRI), nuclear medical imaging, arthroscopy, and routine
synovial fluid analysis (3-5). Although radiography is presently the most practical
imaging technique used to aid diagnosis, pathologic changes in articular cartilage
cannot be readily assessed, and a lack of sensitivity in the detection of subchondral
fragmentation has been reported (6). Nuclear scintigraphy is an advanced diagnostic
tool for musculoskeletal disease with high sensitivity but low specificity (7). Factors
such as age, breed, and occupation of horses can affect the radiopharmaceutical
uptake and image interpretation (7). Magnetic resonance imaging generates excellent
anatomic and pathoanatomic information on articular structures but the high cost of
acquiring and maintaining equipment, the limited availability for use in horses, and
the need for general anesthesia for high resolution images have prevented its
widespread use (8). None of these tools yield useful biochemical information.
Conventional synovial fluid analyses are not widely used for evaluation of
non-infectious joint disease because they rarely provide clinicians with a specific
diagnosis (5-9). Recently, ELISA and radioimmunoassay-based evaluations of
biomarkers within SF have been described (9-11). Complex multiple assays are
required (9-12): Individual testing by use of these techniques is expensive (12). The
relationships of the concentrations of the biomarkers to age, breed, sex and circadian
thythms are poorly understood (12). Early results are promising,v but further study is
required to determine the clinical usefulness of biomarkers for classifying OA (9-12).
Presently the means to objectively identify the level of pathologic progression in most

cases of traumatic and other forms of OA are not available primarily because no
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generally accepted objective standards exist (6-9). There is a real need for a rapid,
economical, practical, and reliable diagnostic test for objective evaluation of joint
disease, as well as the unbiased monitoring of responses to treatment.

Infrared (IR) spectroscopy is rapidly emerging as a powerful diagnostic probe
for biological molecules in humans and other animals (13, 14). Infrared spectroscopy
measures IR absorption patterns of molecules when exposed to IR light (14). An IR
spectrum is obtained when IR radiation is transmitted through a sample in a Fourier
transform IR spectrometer (FT-IR). The fraction of the incident radiation absorbed at
a particular wavenumber (cm™) is determined and displayed as absorption bands on
the spectrum (15). These absorption bands correspond to carbon skeletal and
functional group vibrations (16). Simple molecules yield simple spectra with well-
resolved absorption bands that reflect both structure and concentration (13, 17). Ina
complex sample, compared with a simple sample, the number of chemical functional .
groups increases, causing the number of absorption bands and the extent of band
overlap to increase (17). The IR spectrum of a biological sample becomes more
complex, but the fundamental rule still applies. The IR spectrum of body fluids or
tissues reflects both the structure of the individual IR active constituents and their
relative abundance (14, 17). The absorption patterns in the IR spectra of biological
samples may be viewed as biochemical fingerprints that correlate directly with the
presence or absence of diseases (14, 18). For example, IR spectroscopy has been used
in diagnosis of human diseases such as diabetes mellitus (19), Alzheimer’s disease

(20), breast tumors (21) and arthritic disorders (22-25). The advantages of an IR
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spectroscopic approach in clinical diagnosis are that no reagents are required, and
automated repetitive analyses can be carried out at very low cost (14). In addition,
because the IR spectrum of biological samples such as synovial fluid reflects the sum
of all IR-active components (26), the infrared spectra of such samples may carry
infrared signatures of known and unknown biomarkers rather than relying upon a few
novel disease markers.

We hypothesized that traumatic arthritis in horses leads to changes in equine
synovial fluid composition, altering the IR absorption pattern of synovial fluid
samples, and that these spectroscopic changes can be detected and used to
differentiate the synovial fluid spectra of joints with traumatic arthritis from the
spectra of control samples. The objective of the present study was to determine the
feasibility and to evaluate the accuracy of IR spectroscopy for diagnosis of traumatic

arthritis in horses.

4.3 Materials and methods

This study was approved by the Animal Care Committee in accordance with
the University of Prince Edward Island policy and the principles outlined in the Guide
to the Care and Use of Experimental Animals prepared by the Canadian Council on
Animal Care.
4.3.1 Horses and samples

Synovial ﬂgid samples (n=77) were collected from 48 horses evaluated for

arthroscopic removal of osteochondral fragments or intra-articular fracture repair
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after clinical and radiographic assessments. Samples for model development
(calibration) and initial model validatioﬁ were from Californian racing Thoroughbred
(n=25) and Quarter horses (n=23). These horses were 2 to 5 years old with a mean
age of 3.2 + 1.1 years (mean + SD). There were 37 males and 11 females. All horses
had clinical evidence of osteochondral fracture of the antebrachiocarpal, midcarpal or
metacarpophalangeal joints. Synovial samples were collected aseptically prior to
arthroscopic surgery, and samples from contralateral joints with no evidence of
articular fragmentation were also collected as controls. In bilaterally osteochondral
fragmentation cases, samples from ipsilateral antebrachiocarpal or midcarpal joint
with no evidence of articular fragmentation were used as control samples.

Of the 48 horses, paired samples were collected from 29 (one each from
affected and control joints); these were used for calibrétion of the model. From the
remaining 19 horses with traumatic arthritis, independent samples from either an
affected (n=12) or a control (n=7) joint only; were used for initial model validation. A
second set of control synovial fluid samples (n=20) was collected for further
independent validation. These samples were from the (left and right)
antebrachiocarpal and midcarpal joints of 5 horses. The mean age of the horses was
4.2 + 1.5 (mean + SD) years. Two were Trakehner crosses, 3 were Standardbreds, 4
were females, and 1 was male. On the basis of history and result of clinical
evaluations, these 5 horses had no evidence of joint disease. A general physical
examination and lameneés examination were performed by two evaluators. Bilateral

radiographs of carpal, metacarpophalangeal, stifle, and tarsal joints were evaluated by
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a radiologist. Conventional synovial fluid analysis was also performed. All evaluators
were unaware of clinical status of the horses. The anatomic locations from which all
the synovial samples were recovered are described in Table 4.1, and their random
assignment into calibration or validation datasets (see below) described. All synovial
fluid samples collected for the study were stored at -80 °C in plain cryovials for later
batch IR spectroscopic analysis.

4.3.2 Fourier transform (FT-IR) infrared spectroscopy

Synovial fluid samples were thawed at room temperature (approximately 22
°C) and centrifuged at 2700 x g for 10 minutes; the supernatants were kept for
analyses. Synovial fluid samples were prepared as described previously with the
following modification (27). Briefly, for each sample, an aliquot was drawn and
diluted in aqueous 4 g/L potassium thiocynate (KSCN, SigmaUltra, Sigma-Aldrich
Inc.,St.Louis, USA) solution in the ratio 3 parts synovial fluid: 1 part KSCN solution.
The isolated KSCN absorption peak at approximately 2060 cm™ served as a reference
band for normalization of the spectral intensities (27, 28).

Triplicate dried films were made for each sample by applying 8 uL of the
diluted synovial fluid preparation evenly in a circular motion onto 5-mm-diameter
circular islands on a custom-made, adhesive-masked, silicon microplate; the adhesive
mask serves to spatially define and systematically separate the 5 mm islands on the
microplate so that sample islands are correctly aligned with the FT-IR detector). The
synovial films were left to dry at room temperature for 12 hours. After the films were

thoroughly dried, the microplate was mounted in a multisampler interfaced to the
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Table 4.1 Description of the anatomical locations and diagnoses of the study joints

Joint Diagnosis Number of synovial fluid
samples within each category
Step 1A&1B | Step2 | Step 3
Antebrachiocarpal Osteochondral fracture 8 (2) 1 0
Ipsilateral/contralateral 8 (6) 1 10
control
Midcarpal Osteochondral fracture 19 (11) 1 0
Ipsilateral/contralateral 19 (8) 5 10
control
Metacarpophalangeal | Osteochondral fracture 2(H 4 0
Condylar fracture of the 0(0) 3 0
third metacarpus
Proximal sessamoid 0(0) 3 0
fracture
Contralateral control 2(1) 1 0

used in step 1B.

Step 2 = Validation of model using independent within-population samples,

Step 3 = Validation of model using independent normal control samples

Number in parenthesis indicates the number of joints randomly selected from stepl A and

Step 1A = Infrared (IR) region selection, Step 1B = Calibration for classification model,
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FTIR spectrometer (Tensor 37, Bruker optics, Milton, Canada) to enable acquisition
of IR spectra. Infrared spectroscopic analyses of all samples were performed during
the same period of time.

! were recorded

Infrared absorbance spectra in the range of 400-4000 cm’
using a FT-IR spectrometer (HTS-XT, Bruker optics, Milton, Canada) equipped with
a deuterium tryglycine sulfate detector. For each acquisition, 512 interferograms were
signal averaged and Fourier transformed (Opus 4.2, Bruker Optik GmbH, Ettlingen,
Germany) to generate a spectrum with a nominal resolution of 4 em™ (27).

4.3.3 Data preprocessing

Triplicate spectra of each sample yielded mean values. By use of spectral
manipulation software (GRAMS/AI 7.02, Thermo Galactic, Salem, USA),
differentiation and smoothing procedures (Savitsky Golay 2™-order derivative with
2“d-degree polynomial function and 15-point smoothing) were performed on all
spectra to resolve and enhance weak spectral features and to remove variation in
baselines (29). The approach to the spectral classification is outlined schematically in
Figure 4.1.

4.3.4 Statistical Analysis
4.3.4.1 Infrared region selection

The strategy employed to find significant (p<0.01) differences between

affected and control joints was to examine the spectroscopic differences for horses

that provided paired samples, one for an affected joint and the other for a contralateral

or ipsilateral control. Twenty-nine horses yielded such paired synovial fluid samples
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Figure 4.1 Infrared spectral classification and model development strategy

Acquisition of infrared (IR) spectra from: dried films
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resulting in 58 averaged spectra. The pairwise spectroscopic differences in the
corresponding spectra (control minus diseased) were evaluated within the IR rangé
400-1800 cm™ (molecular fingerprint region) (15). The next step was to seek those
subregions where the difference (control minus affected) was significant (p<0.01).
These subregions were identified by use of paired t-tests performed with statistical
software (SAS 8.02, SAS institute Inc.,Cary, USA). The regions Which had
significant differences between affected and control samples were identified, and the
spectral intensities in each region were then averaged. The average value of each of
the selected regions was then considered as a variable for inclusion in a classification
model (30).
4.3.4.2 Development and calibration of the classification model

In order to avoid violation of assumptions of independence necessary for
discriminant analysis, the 29 horses described previously were randomly assigned
into group 1 (n=15) and group 2 (n=14). For group 1 (control group), only the spectra
from the control joints (n=15) were used. For group 2 (affected group), only the
spectra from the joints with osteochondral fracture (n=14) were used. This set of 29
spectra provided the basis to calibrate the classification model. By use of the set of
averaged regional intensities as input variables for each case, stepwise discriminant
analysis was then performed by use of proprietary statistical software (SAS 8.02, SAS
institute Inc.,Cary, USA) to select the subset of variables that most contributed to the
power of the discriminatory function (31). That subset of variables was then subjected

to linear discriminant analysis (LDA) to find the discriminatory function and rule that
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best separated the two groups (affected versus control), by use of statistical software
(SAS 8.02, SAS institute Inc.,Cary, USA). Two sets of cost-adjusted prior
probabilities of group membership (31), 0.60:0.40 or 0.50:0.50 (affected to control
ratio), were selected for this preliminary classification. The posterior probabilities of
group membership were calculated for each spectrum. The membership of the
spectrum was thus predicted, and the spectrum assigned to the affected or control
group on the basis of its posterior probability. A classification table then revealed the
correct classifications for the 29 randomly selected spectra composing the calibration
sample set (14, 18, 32).
4.3.4.3 Validation of the model by use of within-population samples

The remaining 19 of 48 horses that were not used to calibrate the model
yielded 19 spectra (7 control and 12 affected spectra) for use as a validation dataset,
to test the predictive accuracy of the classification model. The classification success
rate for this set of spectra was determined and compared with the results for the
calibration set (14, 18, 32).
4.3.4.4 Validation of the model by use of independent normal control samples

The second independent set of samples from 5 normal control horses that
yielded 20 averaged spectra from bilateral antebrachiocarpal and midcarpal joints was
used to further characterize the predictive accuracy of the classification model. The
classification success rate for this set of spectra was determined and compared with

the results for the calibration set.
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4.4 Results

Paired t-tests revealed 24 spectral regions in the 400-1800 cm™ wavenumber
range that had significant differences (p<0.01) between the affected and control
synovial fluid spectra. From this set of regions, stepwise discriminant procedures
resulted in the final selection of 3 regions that most contributed to the discriminatory
power of the classification algorithm. These encompassed the wavenumber ranges
1245 t0 1257 em™, 1681 to 1684 cm™, and 1691 to 1694 cm™ (Figure 4.2).

The classification model developed by use of LDA, with these 3 regional
intensities as input for each of the 29 calibration samples, correctly classified 28 of
the 29 calibration spectra (Table 4.2), yielding an overall accuracy of 97%, specificity
of 100%, and sensitivity of 93%. Both sets of cost-adjusted prior probabilities give
the same classification result.

When the classification algorithm was applied to the within-population
validation set (n=19), the LDA classifier with cost-adjusted prior probabilities of
0.60:0.40 (affected to control) achieved an overall accuracy of 89%, with 100%
specificity and 83% sensitivity (Table 4.3). With equal prior probabilities of group
membership (0.50:0.50), the overall accuracy decreased to 79% (specificity, 100%;
sensitivity, 67%). All of the normal control samples that composed the second
validation set were classified correctly by use of both sets of cost-adjusted prior
probabilities.

The basis for these classifications was depicted in Figure 4.3. With each

measured spectrum represented by the triplet of averaged intensities in the 3
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Figure 4.2 The average spectrum (2™ derivative) of the control group and the
corresponding average difference spectrum (control minus diseased spectra). The

shaded areas represent the IR regions optimal for diagnostic classification of the
spectra.
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Table 4.2 Classification table for the calibration dataset

Infrared-based diagnosis

Control Osteochondral fracture Total
Clinical diagnosis
Control 15 0 15
Osteochondral fracture 1 13 14
Total 16 13 29

Number of spectra classified into control and osteochondral fracture categories for both sets
of cost-adjusted prior probabilities

Sensitivity = 93%, Specificity = 100%, Accuracy = 97%
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Table 4.3 Classification table for the validation dataset

Infrared-based diagnosis

Control Osteochondral fracture Total
Clinical diagnosis
Control 7(7) 0(0) 7
Osteochondral fracture | 2(4) 10 (8) 12 (12)
Total 9(11) 10 (8) 19 (19)

Number of spectra classified into control and osteochondral fracture categories when setting
cost-adjusted prior (diseased:control) = 0.60:0.40 (sensitivity = 83%, specificity = 100%,
accuracy = 89%)

Numbers in parenthesis indicates results when setting equal cost-adjusted prior (sensitivity =

67%, specificity = 100%, accuracy = 79%)
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Figure 4.3 Three-dimensional representation of the spectral datasets preprocessed for

classification, and their division into the calibration and validation sets

O Control spectra in calibration set

® Osteochodral fracture spectra in calibration set
A Control spectra in validation set I (within-population samples)

A Osteochondral fracture spectra in validation set I (within-population samples)

< Normal control spectra in validation set II (independent normal control samples)

Note: Each observation is represented by the triplet of intensities within the regions 1245-

1257 cm™ (IR region I), 1681-1684 cm™ (IR region IT) and 1691-1694 cm™ (IR region IIT) for

the 2™ derivative spectrum
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subregions that provided optimal classification accuracy, the scatter plot graphically
illustrates the separation of affected from control (clustering) spectra for the

calibration and both validation datasets.

4.5 Discussion

In this study, significant differences in the IR absorption pattern of synovial
fluid samples were demonstrated for comparison of samples from joints with
traumatic arthritis to control samples. The IR spectra successfully served as
biochemical fingerprints to permit diagnosis of traumatic arthritis by means of LDA
classification of the processed data. These results support our hypothesis that
characteristic IR absorption patterns may be detected and used to differentiate the
synovial fluid spectra of the joints with traumatic arthritis from spectra for control
samples.

The ultimate goal of this type of research is to develop a novel test that aids
clinical and perhaps preclinical diagnosis of joint disease in horses. In agreement with
published recommendations for the development of a new diagnostic test, an
exploratory phase was conducted in a limited number of subjects to determine its
feasibility and accuracy as a first step (33). Naturally occurring traumatic arthritis was
chosen as a model to determine the feasibility and accuracy of the IR spectroscopic
technique. It was thought that if this methodology was determined to be incapable of
detecting more severe forms of equine joint disease, then its future use to develop a

test for subclinical or mild joint disease would be limited. Intra-articular fracture, one
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of the subtypes of traumatic arthritis entities in horses, is often preceded by
subchondral bone changes, and may lead to osteoarthritis if diagnosis and treatment
are not prescribed in a timely and appropriate fashion (3, 34).

Although the features distinguishing the IR spectra of synovial fluid samples
of affected from control joints are not readily interpreted, IR spectra of biological
specimens reflect chemical composition and conformation, as well as possible
intermolecular interactions (14, 16, 35). Articular cartilage damage associated with
articular fracture or other types of joint injury induces biochemical changes in the
affected joints (3, 10). The release of wear-and-tear particles as well as articular
cartilage-breakdown products activates synovial resident cells and chondrocytes to
increase the productions of cytokines, metalloproteinase enzymes and inflammatory
mediators or other biomarkers that can lead to further damage of the cartilage and
joint inflammation (3, 10, 36-40). It is possible that the IR changes detected
correlated to one or all of these molecules. However, because of the complex mixture
of organic molecules in synovial fluid, the specific origins of the features that
underpinned the successful classifications have not been readily identified. Further
study is required to establish the precise linkages between IR spectra and biomarkers
of OA, if any.

One other veterinary study (41) used a limited IR spectroscopic technique for
the evaluation of synovial fluid in 14 clinically normal horses and 2 horses with
osteochondrosis. Gross visually apparent differences between spectra of normal and

osteochondritic joints were reported, but a multivariate classification algorithm was
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not developed. In particular, differences in the relative intensity of the IR absorption
bands at 1000, 1035, 1115 and 1245 cm™ were recovered and suggested to be useful
in differentiation between normal and osteochondritic joints. However, both the
laboratory technique and the etiology of disease differ from the present study, and it
is now well established that a larger number of samples must be examined in each
class to derive diagnostic tests applicable to a larger population. Infrared spectroscopy
of dried SF films has also been used in the diagnosis of human arthritis, with LDA
classifications based upon an optimally selected set of 15 IR regions between 2800
and 3050 cm™(23). The fact that different spectral regions are required for the present
study may be attributable to the differences both in species and the nature of the
arthritic conditions examined.

The cost-adjusted prior probabilities represent the group-prior probability that
a spectrum belongs to one of the two study groups adjusted for the cost of
misclassification (31). Henceforth this will be referred to as the cost-adjusted prior.
Because there is no evidence suggesting true prevalence of traumatic arthritis in the
study population nor guidelines suggesting the exact cost of misclassification, in the
present study, the cost-adjusted priors of affected horses compared with control
horses were explored based on two sets of values, 0.50:0.50 (equal) and 0.60:0.40. If
the cost-adjusted prior is set to be equal, the cost of misclassification and the group-
prior probability are assumed to be equal. Ability of the test to detect traumatic
arthritis cases (test sensitivity) was lower in the validation compared with calibration

sets when cost-adjusted prior was set to equal. This weakness may be improved by
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choosing an appropriate cost-adjusted prior. In screening for equine traumatic arthritis
in horses, the aim is to identify as many affected horses as possible. The
misclassification cost for failure of the clinician to identify .affected horses would be
delayed treatment, prolonged recovery period, or an unfavorable treatment outcome
because of delayed diagnosis. If an intra-articular fracture is not diagnosed early
enough, or treatment is not started early enough, it may lead to OA. The implications
of false positives are clinically less serious because follow up diagnostic methods (eg.
radiography, arthroscopy) will subsequently triage out the false positive cases. In the
present study, the authors suggest setting cost-adjusted priors in favor of disease
diagnosis because of the unequal cost of misclassification as described above. At this
preliminary stage, the authors presently favor setting the cost-adjusted priors of
affected to control ratio at 0.60 to 0.40, which implies the cost that is 1.5 times as
great for classifying a horse with traumatic arthritis as normal relative to classifying a
normal as having traumatic arthritis.

For the earlier diagnostic study of human arthritis using IR spectroscopy of
SF, the spectral classification method was developed by combining an optimal region
seiection algorithm with LDA classification (23). The differentiation of IR spectra of
joint fluid from 12 nonarthritic and 74 arthritic patients was achieved, and
subsequently, the sub-classification of 3 categories of human conditions (rheumatoid
arthritis, osteoarthritis and spondyloarthropathy) was detected with overall specificity
and sensitivity of 100% and 96.5%, respectively. The classification success rates were

therefore comparable to those achieved for the present study, despite the differences
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in species and disease etiology, suggesting that IR spectroscopy may be generally
useful to accurately diagnose a variety of joint diseases in a broad spectrum of
species.

The classification accuracy for the within-population validation set of spectra
was marginally lower than that for the calibration set when a 60:40 cost-adjusted
prior was used. However, the accuracy and sensitivity of the algorithm for the
validation set (79% and 67% respectively) are considerably reduced when setting a
50:50 cost adjusted prior. Although the specificity remains at 100% for either ratio of
priors and in all 3 data sets, the sensitivity appeared to vary according to cost adjusted
prior values in this preliminary study. The authors of the present study found that cost
adjusted prior values were helpful tools in optimizing the classification of spectra
from populations of limited sample size. An objective estimation of cost-adjusted
priors may not be feasible for the equine population at large. The authors suggest that
spectral and prevalence data from a larger sample size may be more useful for the
future development and optimization of the specificity and sensitivity of this test for
clinical use (31, 33). This would better enable the scope of spectral variation in the
affected population at large to be encompassed, and reduce the reliance of the test on
estimating cost adjusted prior values, possibly increasing the number of
discriminatory variables for inclusion in the final classification model, and thus
increasing sensitivity and accuracy.

The spectroscopic data from the 3 significant spectral regions found in our

proof-of-concept study yielded robust results in classifying control spectra but is less
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accurate in classifying affected spectra. This was not unexpected given the number of
samples available for this study, which allowed for inclusion of only 3 of the 24
significant variables in the classification model (on the basis of IR region and
stepwise selection procedure). These 3 variables were selected statistically and were
the important variables that most contributed to the power of discrimination (31). The
discriminatory function and rule based on these selective variables were considered
sufficient for accurate classification between groups in the calibration set but clearly
did not encompass all possible variations of the diseased population. This is indicated
by the lower sensitivity (67-83%) of the validation set when classifying affected
spectra on the basis of 3 significant variables. It is expected that the differences in
performance between the calibration and the validation sets will be reduced as more
samples become available for analysis. With a larger number of samples in the
calibration set, the varying degree of articular cartilage changes and othef changes
associated with the traumatic ‘injuries in the population of affected horses will be
better represented. Similarly, the larger the number of samples in the validation set,
the more confidence we can have in the ability of the discriminatory algorithm to
discriminate spectra correctly (32). These preliminary resuits do address our initial
objective, and favor the further development of this method of joint disease diagnosis
in horses.

In the present study, the misclassification of certain affected spectra as
controls may have been attributable to variation of the degree and duration of

inflammation among traumatic joints. Possibly, a sample from a joint with mild
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arthritis was difficult to differentiate from the controls because of the limited number
of spectral regions in the present classification model. Such variation in the degree of
severity is inevitable when studying joint disease in a naturally occurring setting, and
may contribute substantially to the variability of synovial fluid variables of affected
horses, has been reported in arthritis biomarker studies in horses (38). Other OA
induced models such as osteochondral fragment and forced exercise models may
provide more control for the degree of inflammation in the affected group (42).
Nonetheless, the ability of the approach in this report to correctly identify control or
normal joints (test specificity) in both validation sets clearly revealed the diagnostic
potential for this classification algorithm in the normal equine population.

The current results demonstrate the feasibility of a novel IR-based approach
for the diagnosis of equine traumatic arthritis. Further recruitment of cases and
normal control horses is anticipated to develop and expand the scope of applications,
and is necessary to validate the clinical value and accuracy of the method for

screening and diagnosing patients with joint disease in the larger equine population.
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CHAPTER 5
IDENTIFICATION OF INFRARED ABSORPTION SPECTRAL
CHARACTERISTICS OF SYNOVIAL FLUID OF HORSES WITH
TARSOCRURAL OSTEOCHONDROSIS

5.1 Abstract

Fourier-transform infrared (FT-IR) spectroscopy is a measurement of infrared
(IR) absorption pattern (IR spectrum) of a sample when exposed to IR light. A
biological fluid sample such as synovial fluid (SF) gives rise to a unique IR spectrum,
which reflects the chemical constituents within it. Mid-infrared spectroscopic analysis
of SF was employed in this study. Sixty-four SF samples of the tarsocrural joints
from 64 horses were collected (one sample for each horse). Of these horses, 33
samples are from joints with radiographic evidence of osteochondrosis (OC) and the
remaining 31 samples are from joints with no clinical or radiographic evidence of
OC. Disease-associated characteristics within MIR spectra of SF have been studied
and statistically selected for further spectral classification purposes. These disease-
associated features were used as variables in a classification model. By use of linear
discriminant analysis and leave-one-out cross validation, SF spectra derived from
samples of joints with OC can be differentiated from the control samples with
accuracy of 77% (81% specificity and 73% s'ensitivity). The misclassification rate
within the OC group aged less than 2 years was lower than the misclassification rate
for horses aged greater than 2 years of age (overall misclassification rate is 23%). The

disease-associated characteristics in MIR spectra of SF from joints with OC may be
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exploited via appropriate feature selection and classification algorithms to
differentiate the spectra of SF from joint with OC from those of controls. Further
study with larger sample size including varying degree of OC and age-, breed-, and
gender-matched controls would further validate the clinical value of IR spectroscopy

in diagnosis of equine OC.

5.2 Introduction

Disturbances occurring in the development of articular or periarticular
structures may prevent horses from reaching their full athletic potential, particularly if
diagnosis and treatment are not provided in a timely manner. Of these disorders,
osteochondrosis (OC; dyschondroplasia) has been documented to have significant
impact on equine performance, industry economics and welfare (1-4). The disease is
characterized by a failure of endochondral ossification occurring at the physes and the
articular-epiphyseal cartilage complex during the growing phase of the bones (3).
Commonly found in many equine breeds, the reported incidence ranges from 10-
31.5% depending upon the study design and subpopulation examined (5-8). Lesions
have been reported in most equine joints, but the tarsocrural joiht is the most
commonly affected site (9).

The routine diagnosis of OC is based upon orthopaedic examination and
radiography (10). In clinical cases, orthopedic examination is usually prompted by
signs of effusion or lameness. The severity of lameness may vary from none to

marked and the response to intra-articular anesthesia varies among horses (10).

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



However in many cases of OC in young horses, a radiographic diagnosis of
subclinical or “occult” disease is made during routine pre-purchase or pre-insurance
screening (10). Radiographic evaluation is the most common approach to diagnosis,
but the cost and time required for evaluating large numbers of horses to identify
subclinical OC remains an obstacle for early intervention (6, 8). Such an assessment
of young horses is not always diagnostic. Radiographic screening has previously been
shown to be of benefit for preclinical diagnosis and the initiation of management
changes which may impede the progression of OC (11). Although this modality is
generally useful, cases of OC have been diagnosed by arthroscopy which were neither
clinically nor radiographically apparent (12). Scintigraphy and ultrasonography have
also been useful in selected cases of OC, but all of these image modalities provide
only gross pathoanatomic information (10, 13). None of these tools yields
information about biochemical changes in response to pathological processes
occurring in OC affected joints.

Recently there has been a move to the identification of serum and synovial
fluid biomarkers of joint disease (14-18). With the exceptions of sepsis or severe
acute traumatic arthritis, conventional synovial fluid analysis has had limited value
for the diagnosis and staging of OC or osteoarthritis (16). Anabolic and catabolic
markers for equine OC have been isolated and quantified from both synovial fluid
and serum. Keratan sulphate (KS) epitope concentration in synovial fluid from OC
affected joints was found to be significantly lower compared to controls (15). The

insignificant elevation of plasma KS concentration was also detected in OC affected
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horses (18). Significant changes in concentrations of chondroitin sulfate epitope 846
(CS-846), and carboxy propeptide of type II procollagen (CPII) in synovial fluid have
also been associated with OC lesions in young horses (15). Age has been identified as
a significant factor in the expression of these markers (15). Other serum biomarkers
for OC investigated include CS-846, CPII, collagenase-generated neoepitope of type-
II collagen fragments (234 CEQ), collagenase-generated neoepitope of type-I and
type-II collagen fragments (COL2-3/4Cgor) and cross-linked telopeptide degradation
fragment of type-I collagen (CTx1) (14). The latter have been correlated with lesion
severity (14). Early results of these ELISA and radioimmunoassay based evaluations
have provided insights into the pathogenesis of OC and may assist clinical evaluation
and screening for OC in future. However, complex multiple assays may be required
to characterize cases of OC, and individual testing using these techniques is
expensive (14, 15, 17).

Fourier transform infrared (FT-IR) spectroscopy remains one of the most
important tools in analytical chemistry (19). Recently its application has been
extended to solving clinical diagnostic problems in human and veterinary medicine
(20-27). Based on the measurement of infrared (IR) absorption patterns of biological
specimens, this technique is rapidly emerging as a powerful diagnostic tool for
probing biological molecules in humans and animals (26, 28). Within this field of
study, applications using IR absorption spectroscopy are showing promise in the
development of biomedical tests (20-28). Measurement simply entails transmitting IR

radiation through the sample of interest (eg. synovial fluid) and measuring the
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absorbance as a function of wavelength or wavenumber (the reciprocal of the
wavelength) (28). Each molecular species gives rise to a unique spectrum of
absorptions, each component of which corresponds to a unique intramolecular
vibration of the carbon skeleton and the functional groups attached to it (29).

In biomedical FT-IR spectroscopy, the IR spectrum of each body fluid or
tissue reflects both the structure of the individual IR active constituents and their
relative abundance (28, 30). Unlike a simple molecular spectrum, the IR spectrum of
a biological sample is more complex because the number of chemical functional
groups is increased, causing the number of absorption bands and the extent of band
overlap to increase (30). The absorption patterns within the IR spectra of biological
samples may be viewed as biochemical “fingerprints” that correlate directly with the
presence or absence of diseases (28, 31). Recent proof-of-principle studies have
demonstrated the potential of IR analyses of serum and synovial fluid as a new
diagnostic tool for human arthritis (20, 21, 25, 27). One decisive advantage of an IR
spectroscopic approach to clinical diagnosis is that no reagents are required. The IR
spectrum can be derived directly from IR-active constituents within a sample without
a need of chemical modification or the aid of comparative substances (28, 29).
Therefore automated repetitive analyses can be carried out at very low cost.
Moreover, since the IR spectrum of biological samples reflects the sum of all IR
active components, the IR spectra of such samples may carry signatures of both
known and unknown biomarkers rather than relying upon a few novel disease

markers.
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We hypothesized that OC leads to changes in equine synovial fluid
composition, altering the IR absorption pattern of synovial fluid samples. The
objective of this study is to determine the feasibility of using mid-infrared FT-IR
spectroscopy to differentiate between synovial fluid samples of joints with OC from

those of control samples.

5.3 Materials and methods

This study was approved by the Animal Care Committee in accordance with
the University of Prince Edward Island policy and the Guide to the Care and Use of
Experimental Animals prepared by the Canadian Council on Animal Care.
5.3.1 Horses and samples

A synovial fluid sample (n=64) was collected from a tarsocrural joint of each
of 64 equine patients presented to the Veterinary Teaching Hospital, Atlantic
Veterinary College for clinical and radiographic assessment of the hocks. The age of
study horses ranged from 8 months to 7 years old (mean + SD; 2.6 + 1.3 years). There
were 32 females and 32 males consisting of Appaloosa (n = 1), Belgian (n = 1),
Percheron (n = 1), Thoroughbred (n = 1), Shire (n = 1), Trakehner cross (n = 2),
Warmblood (n = 5), Quarter horse (n = 5), and Standardbred (n = 47) breeds. Thirty-
three samples were from horses with radiographic evidence of OC affecting the
intermediate ridge of the distal aspect of the tibia, lateral trochlear ridge of the talus,
or medial maleolus of the tibia. The samples were collected aseptically after

radiographic examination or prior to arthroscopic removal of the OC fragment. The
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remaining 31 control samples were collected from joints with no clinical evidence of
OC based upon radiographic examination and/or necropsy findings. All synovial fluid
samples collected for the study were stored at -80 °C in plain cryovials for later batch
FT-IR spectroscopic analysis.
5.3.2 Fourier transform (FT-IR) infrared spectroscopy

Synovial fluid samplves were thawed at room temperature, centrifuged at 2700
x g for 10 minutes, and the supernatants used for analyses. The samples were
prepared as described previously with the following modification (32). Briefly, for
each sample, an aliquot was drawn and diluted in aqueous 4 g/L. potassium
thiocyanate (KSCN, SigmaUltra, Sigma-Aldrich Inc., St.Louis, MO, USA) solution in
the ratio 3 parts synovial fluid: 1 part KSCN solution. Triplicate dry films were made
for each sample by applying 8 pL of the diluted synovial fluid, spread evenly in
circular motion onto 5 mm diameter circular islands within a custom made, adhesive
masked, 96-well, silicon microplate (the adhesive mask serves to spatially define and
systematically separate the 5 mm islands on the microplate so that sample islands are
correctly aligned with the FT-IR radiation source and detector). Synovial fluid
samples from all study horses were randomly assigned to well positions on the
microplate. The synovial films were left to dry at room temperature for 12 h. Once
the films were thoroughly dried, the microplate was mounted within a multisampler
(HTS-XT autosampler, Bruker Optics, Milton, ON, Canada) interfaced with a FT-IR
spectrometer equipped with a deuterium tryglycine sulfate detector (Tensor 37,

Bruker Optics, Milton, ON, Canada) to allow for the acquisition of MIR spectra.
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Infrared spectroscopic measurements of all samples were performed during the same
period of time. Absorbance spectra in the range of 400-4000 cm™ were recorded. For
each acquisition, 512 interferograms were signal averaged and Fourier transformed to
generate a spectrum with a nominal resolution of 4 cm™ (32).

5.3.3 Data preprocessing

A data processing strategy was used to extract and to enhance relevant
features within MIR spectra that contributed to the success of classification. Triplicate
spectra of each sample were first averaged, and then differentiation and smoothing
procedures (Savitsky Golay 2™ order derivatives using 2™ degree polynomial
functions, with 19 point smoothing) were performed on all spectra to resolve and
enhance weak spectral features and to remove variation in baselines (33), using
spectral manipulation software (GRAMS/AI 7.02, Thermo Galactic, Salem, NH,
USA).

The spectra were then normalized by using a wavenumber range of 800-1450
cm’ as a basis of vector normalization, using scripts written in MatLab (MATLAB
6.5, The Math Works Inc., Natick, MA, USA). The script was developed by the
Institute of Biodiagnostics (in collaboration with Dr. R. Anthony Shaw, Institute of
Biodiagnostics, National Research Council of Canada). Vector normalization
employed scaling the 2™ derivative spectra in the dataset, by defining the sum of
square intensities over the wavenumber range of 800-1450 cm™ as equal to unity (23).
Vector normalization was carried out for each 2% derivative spectrum by first

summing the squares of absorption intensities for all data points (1 data point

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



corresponded to approximately 1 wax)enumber) within the spectral basis range of 800-
1450 cm™. The square root of this sum of squares calculated from each spectrum was
used as the normalization factor for that same spectrum. The intensities of the entire
range within each spectrum were divided by this normalization factor based on the
square root of the sum of square intensities within the wavenumber range of 800-
1450 cm™ being assigned a value equal to 1.
5.3.4 Statistical analysis
5.3.4.1 Selection of significant subregions

The following strategy was employed to identify spectral subregions wherein
the significant effect of group (OC versus control) was demonstrated in the
normalized 2nd derivative of the MIR spectra. The relative intensity of normalized
spectra at each wavenumber was used as a dependent variable. Statistical analysis
was performed on each wavenumber basis for the entire mid-IR range of 400-4000
cm™ (SAS 8.02, SAS institute Inc.,Cary, NC, USA). The set of independent variables
included group (fixed effect), age (covariate), microplate (random effect), within
microplate row (random effect), and within microplate column (random effect).
Analyses of covariance were employed to detect the sets of wavenumbers that
demonstrated the significant effect of group (p<0.01), accounting for the age variable.
Significant subregions were defined as a set of at least 4 consecutive wavenumbers
which demonstrated a significant effect of group at a level of p < 0.01. The spectral

intensities within each region were then averaged. The average value of each of the

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



selected regions was then considered as a variable for inclusion within a classification
model (34).
5.3.4.2 Classification model development and validation

Using the set of averaged regional intensities as input variables for each case,
stepwise discriminant analysis was performed using proprietary statistical software
(SAS 8.02, SAS institute Inc., Cary, NC, USA) to select the subset of variables that
most contributed to the power of the discriminatory function (35). These subsets of
variables (optimal regions) were then subjected to linear discriminant analysis (LDA)
to find the discriminatory function and rule that best separated the two groups (OC
versus control), using statistical software (SAS 8.02, SAS institute Inc., Cary, NC,
USA). An equal prior probability was set. The performance of classification models
indicated by accuracy, specificity and sensitivity were estimated based on the cross-

validation (leave-one-out) method (21).

5.4 Results

Analysis of covariance revealed 12 significant subregions that met the
selection criteria (Table 5.1; Figure 5.1). From this set of significant subregions, the
stepwise discriminant procedure resulted in the final selection of 6 optimal regions
that most contributed to the discriminatory power of the classification algorithm
(Table 5.1). Linear discriminant analysis resulted in classification results of 77%
overall accuracy, 81% specificity and 73% sensitivity estimated by the cross-

validation method (Table 5.2). Age, accounted for in the final model, was found to

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.1 Significant infrared absorption spectrum subregions found to discriminate

between osteochondrosis and control groups

Infrared regions (wavenumber) P value
2536 — 542 cm’™ 0.0024 — 0.0066
762 — 766 cm’™ 0.0029 — 0.0065
851 — 855 cm™ 0.0046 — 0.0084
866 — 872 cm™ 0.0006 — 0.0073
%923 — 927 cm’! 0.0053 — 0.0091
958 — 968 cm™ 0.0006 — 0.0099
985 —991 cm™ 0.0008 ~ 6.0027

2996 — 1019 cm’™ 0.0002 — 0.0069
1027 — 1036 cm™ 0.0005 — 0.0074
1073 — 1083 cm™ 0.0015 — 0.0073
1093 — 1100 cm™ 0.0014 — 0.0083
1763 — 1772 cm™ 0.0001 — 0.0064

*Indicates the regions selected by the stepwise discriminant procedure for

inclusion in the final classification model.
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Figure 5.1 Graphic representation of normalized 2" derivative spectra (2“d order
derivative intensity value). The shade areas represent the significant wavenumber

regions identified by analyses of covariance.
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Table 5.2 Classification table comparing clinical diagnosis to infrared-based

diagnosis by use of LDA leave-one-out cross validation.

Infrared-based diagnosis

Control Osteochondrosis Total
Clinical diagnosis
Control 25 6 31
Osteochondrosis 9 24 33
Total 34 30 64

Numbers in bold indicate number of samples that were correctly classified
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significantly influence the analysis. Based upon the identification of age as a
significant determinant of outcome, the distributions of horses correctly classified and

misclassified in each of 3 age categories are demonstrated in Table 5.3.

5.5 Discussion

Infrared spectroscopy in combination with feature extraction and selection
methods may be successfully used to differentiate samples of OC affected horses
from those of controls with an overall accuracy of 77%. Specifically, the alterations
in features within 6 significant subregions may be associated with the presence or
absence of disease, forming the basis for a classification algorithm. The information
may be useful in designing studies for further infrared spectral classification in larger
sample populations.

An alteration in the MIR spectra of synovial fluid from 2 horses with
tarsocrural OC compared to control joints was first observed in horses less than 12
months old using reflectance spectroscopy (36). A visual comparison of the MIR
spectra obtained from 8 control samples and 4 samples from OC affected joints
revealed spectroscopic differences at 1000, 1035, 1115 and 1245 cm™ (36). Statistical
significance was not determined, and a multivariate classification algorithm was not
developed. Despite the differences in the type of FT-IR spectroscopy employed
(transmission versus reflectance) and sample preparation téchniques between the
studies, the wavenumbers of 1000 and 1035 cm™ reported previously (36) were

captured in 2 significant subregions (996 - 1019 cm and 1027 - 1036 cm™) also
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Table 5.3 Distribution of horses correctly classified and misclassified in each of 3 age categories

Age category (years)

Group Subgroup age <2 2<age<5 S<age<7 Total
Control Correct classification 0 21 4 25
Misclassification 0 5 1 6
Total 0 26 5 31
Osteochondrosis  Correct classification 14 10 0 24
Misclassification 3 6 0 9
Total 17 16 0 33
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identified in this study. However, only one of these spectral features (1000 cm™) was
captured with the spectral ranges contributing (996 - 1019 cm™) to the current final
classification algorithm. The reason for this difference is unknown, but sample size
and population differences between the 2 studies, particularly in age distribution of
cases and controls, may be a contributing factor. For the current study, the inclusion
of a larger number of samples within each disease class may be crucial for optimizing
the extraction of the disease-relevant information from MIR spectra, thus pérmitting
the meaningful detection of a greater number of statistically significant discriminatory
MIR regions. The present classification success rate, although encouraging at 77%,
may improve further in future FT-IR based studies of equine OC by using a still
larger sample size. Such a large scale study would not only to improve the accuracy
of this diagnostic test but also the range of applicability to a larger and more diverse
diseased (clinical and subclinical) population.

The central concept underpinning the current study is that characteristic
alterations in molecular synovial fluid constituents associated with joint disease lead
to characteristic changes in IR absorption patterns (20, 21, 25, 27). While the specific
molecular changes and species contributing to the features distinguishing the MIR
spectra of OC from control joints have not been identified to date, it has been well
established that IR spectra of biological samples reflect both the structure of the
individual IR active constituents (including known and unknown biomarkers) and
their relative abundance (28, 30). Alterations in known biomarker concentrations in

synovial fluid have been reported in studies of equine OC using other methods. The
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authors of these studies have proposed that alterations in biomarker concentrations
are associated with either growth or pathogenesis of equine joint disease (15, 18, 37).
The differences attributable to disease and age in the current IR study support this
contention. To the authors’ knowledge, none of the assays for known markers has
been developed for routine diagnostic screening of horses for OC, and significant
intra and inter assay variation may limit their accuracy in this role (14). The results of
radiographic screening have also been shown to vary depending upon the age of the
horse when examined and the joint affected, but may fail to diagnose cases with non-
radiographic signs (6, 12). Similarly, the variation in correct classification rates in
different age groups in the current study using FT-IR spectroscopy will need to be
addressed before the test may be applied to screening of the general equine
population for tarsocrural OC.

Alterations in CS-846 epitope and CPII associated with OC have been
observed in young horses during musculoskeletal development, but not in mature
horses (15). The presence of proteoglycan components in synovial fluid and serum
may reflect both physiologic and pathologic cartilage extracellular matrix turnover
(14, 16, 18, 38). In OC free equine joints, the highest concentration of
glycosaminoglycans was detected in neonates (38). This parameter decreased with
increasing age, with the effect of aging disappearing at 4 years (38). In the current
feasibility study, the IR-based approach identified several spectral subregions within

which the absorptions of proteoglycans would be expected to contribute prominently,
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in particular the 996-1019 cm™ region that lies within the range characteristic of
carbohydrate C-O stretching vibrations (31, 39).

In agreement with the findings of previous studies investigating synovial fluid
markers of OC, the search for the optimal IR signature of OC within the spectra may
have to consider the dynamic nature of the disease process and to take into account
physiological factors such as age, breed, and gender that may influence the pattern of
MIR spectra (15, 17, 18, 37, 38, 40). In the current study, the wide age range of
horses was controlled for in the statistical analysis to minimize bias. However it was
clear from the rates of misclassification in the different age groups (Table 5.3) that
this variable remains a possible confounder. Age has been shown to influence the
expression of known biomarkers for OC (18, 37). Taking the age factor into account
and quantifying group effects when adjusted for age are logical next steps toward the
refinement and implementation of this diagnostic test. While the present samples
were collected from clinical cases presented for evaluation, future studies designed to
develop the IR-based test for application to the equine population at large should
consider age, gender, and perhaps breed matched control selection (18, 37).

The conditions of prior probability may be adjusted based upon criteria such
as the cost of misclassification and the proportion of sample size (35). Adjustment of
this ratio may influence the sensitivity and specificity estimation. For this preliminary
study, an equal prior probability was set assuming no prior knowledge on how the
spectra should be classified or no preference for any group (35). The leave-one-out

cross validation is a model validation method requires that each discriminatory
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function is constructed by taking one spectrum out of the dataset (31). That spectrum
is then used to validate the discriminatory model. This process is repeated for all
spectra in the dataset until every single spectrum takes its turn to validate the model
(31). This method was employed to enhance robustness of LDA classifier and has
been proposed to be useful in classification of human arthritic disorders (21). With a
limited numbers of horses, the total error rate of the dataset based on the cross
validation method was 23%. A more accurate rate of classification of OC and control
spectra may be achieved through the larger numbers of classification attributes (or
spectral subregions) derived from larger sample size.
The misclassification rate within the OC group aged < 2 years was lower
(18%) than the misclassification rate for horses > 2 yéars of age (37%) (Table 5.3).
As alluded to above, it is possible that the significant features associated with OC in
MIR spectra may be less prominent in older horses (38). In future studies it may also
; be possible to identify different age-dependent spectral features that allow the
development of classifiers for OC that encompass variations attributable to growth as
well as pathologic progression. Combination of theses attributes may probe a “real
signature” within MIR spectra that is highly specific to the presence or absence of OC
for all ages.
In conclusion, the current study demonstrated significant features in the FT-IR
absorption pattern that were associated with OC. The differentiation of MIR spectra
obtained from OC and control synovial fluid samples is feasible. The ultimate goal of

this type of research is to develop novel tests that aid clinical and preclinical
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diagnosis of joint disease in horses. Further study with a larger sample size including
occult cases, and using matched controls, would further validate the clinical value of

IR-based diagnosis of equine OC, and complete the transition to clinical utility.
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CHAPTER 6
CONCLUDING REMARKS

This dissertation focuses on 4 main topics; the technical development of
methods for infrared spectroscopy-based analysis of synovial fluid (SF) in horses, the
‘natural variation in mid-infrared (MIR) absorption patterns of SF attributable to the
differences in anatomical location of the joints, the characteristic features of MIR
absorption patterns that differentiate the SF samples of diseased joints from controls,
and the feasibility assessment of using MIR spectroscopy for diagnosis of joint
diseases in horses. The ultimate goal of the current research was to develop MIR
spectroscopic techniques for the diagnosis and characterization of equine joint
diseases.

The research project met the criteria for an exploratory (early) phase project
with regards to a guideline for the design of diagnostic accuracy studies (1), to
determine the feasibility of MIR spectroscopy and classification algorithms in the
diagnosis of equine joint diseases. The essence of the current research project will be
encapsulated in this chapter within the three following sections: summary of the main
findings, significance and implications of the results, and recommendations and

suggestions for the direction of future research.
6.1 Summary of the main findings

In Chapter 2, the techniques required for MIR spectroscopy of dried films

were optimized for SF collected from the joints of horses. The sample preparation,
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the MIR spectral acquisition, and the procedures to enhance spectroscopic data were
optimized to yield the following protocol, which was followed for all spectroscopic
measurerhents conducted during the current research project. Sample preparations of
3:1 SF to aqueous potassium thiocyanate solution were deposited as 8 pL aliquots
onto the custom-made silicon plate (2). A randomized block design was applied to
randomly assign samples to the plate and the well position prior to deposition of
sampies. It was felt that this experimental design helps guard against possible sources
of bias involving the instruments and measurement techniques'in the early phase of
the development of a new diagnostic test. The MIR spectra were recorded using a
Fourier transform infrared (FT-IR) spectrometer. For eéch spectrum, 512
interferograms were coadded at a spectral resolution of 4 cm™, and a Blackman-
Harris 3-term apodization function applied to the coadded interferogram prior to
Fourier transformation. The overall MIR absorption pattern of equine SF derived
from our laboratory protocol is similar to the MIR absorption pattern of human SF
reported in the literature (3). Four main preprocessing techniques were employed for
the spectroscopic studies in this dissertation including spectral averaging, subtraction,
normalization, and differentiation/smoothing. We found the spectral preprocessing
techniques useful for the enhancement of spectroscopic features and transformation of
spectroscopic data into a form that was suitable for statistical analysis. The
preprocessing techniques were carefully optimized for each data set to achieve the

best possible classification results.
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In Chapter 3, inter-articular variability was studied with the objective of
identifying signiﬁcaﬁt differences due to natural variations among anatomical types
of high motion joints (antebrachiocarpal (AC), midcarpal (MC) and tarsocrural (TC)),
and left versus right limbs in the same horses. Inter-articular variability may affect the
pattern of MIR spectra derived from SF of clinically normal joints. In this study, we
found that the pattern of MIR spectra of SF samples from the same type of joint is
likely to be similar when the left and right side were compared within a horse.
Differences in spectral features between ipsililateral AC and MC spectra within the
same horse were significant, but comparisons between the spectra of carpal and TC
joints revealed many more discriminatory absorption bands. Although there were
sufficient data to demonstrate these differences, the sample size was not sufficient to
characterize the typical IR signature for each of the joint types, or to develop a
classification strategy that might identify which of the many significant features
identified contributed most to discriminating among these joints. The results from the
current study were sufficient to suggest that the inter-articular variation within the
same horse should be considered in study designs, and that the biochemical response
to the same disease is likely to vary as a function of joint location. Researchers should
proceed with caution when using different types of joints for spectra comparisons
either within subjects or between subjects. Further normal samples should be
evaluated to better characterize the range and significance of IR spectral changes

detected.
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In Chapter 4 we examined the feasibility of using MIR spectroscopy of SF for
the diagnosis of traumatic arthritis in racing horses based on the comparison of
spectroscopic data derived from SF samples of the affected and control joints.
Temporally this was the first experiment conducted due to reasons of sample
availability. However, because traumatic arthritis represents a severe form of joint
disease in which progressive degenerative changes are followed by catastrophic
osteochondral failure, it was thought that this disease would be an appropriate first
test of the feasibility of IR spectroscopy of SF for the diagnoéis of equine joint
disease. The MIR spectroscopic patterns of SF from joints with traumatic arthritis
differed significantly from the corresponding patterns for controls. A classification
model was developed based upon characteristics of 3 MIR regions that classified
spectra from the calibration dataset with an overall accuracy of 97% (sensitivity 93%;
specificity 100%). The same model with cost-adjusted prior probabilities of 0.60:0.40
produced an overall accuracy of 89% (sensitivity 83%; specificity 100%) for a
validation sample dataset, and 100% correct classification for a second set consisting
of independent normal control joints. This study confirmed the hypothesis that
characteristic alterations in IR absorption patterns may be discovered and exploited
via an appropriate feature selection and classification algorithm to differentiate the
spectra of diseased joints from those of controls. The development of appropriate
classification techniques proved difficult as it involved a level of modeling outside
the experienbe of many veterinary researchers. Nevertheless this experiment (now

published) clearly demonstrated the feasibility of this approach to diagnose joint
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disease in the horse. Further recruitment of cases and normal control horses is
anticipated to develop and expand the scope of applications, and is necessary to
validate the clinical value and accuracy of the method for screening and diagnosing
patients with joint disease in the larger equine population.

In Chapter 5 the feasibility of using MIR spectroscopy of SF for the diagnosis
of tarsocrural osteochondrosis (OC) in horses was illustrated based on comparison of
spectroscopic data derived from SF samples of the affected and control joints.
Disease-associated characteristics within MIR spectroscopic patterns of SF were
identified using a statistical approach and used for spectral classification purposes. By
the use of linear discriminant analysis to classify the spectra, based on the
characteristics of 6 MIR regions and leave-one-out cross validation, SF spectra
derived from samples of joints with OC were differentiated from the control samples
with an overall accuracy of 77% (81% specificity and 73% sensitivity). While
confirming that IR-based diagnosis of OC is possible, this study further highlighted
one of the major difficulties associated with the study of joint disease — its dynamic
nature. That is to say that age, and the progression of the disease, affected the
classification of OC spectra. In conclusion, this study demonstrated significant
features in the FT-IR absorption pattern that were associated with OC, and hence that
the differentiation of MIR spectra obtained from OC and control SF samples is
feasible. Further study with a larger sample size including occult cases, and using
matched controls, would further establish and validate the clinical value of IR-based

diagnosis of equine OC, and complete the transition to clinical utility.
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6.2 Significance and implications of the results

Changes in the composition of SF in concert with or as a response to the
presence of disease, provides a basis for the diagnosis of joint diseases for both
conventional SF analyses and novel molecular analyses of biomarkers (4-6). Various
biochemical, immunological, and molecular methods have been employed to develop
assays for specific biomarkers and various other SF constituents (7-12). In the current
research, we proposed the use of FT-IR spectroscopy to detect characteristic
diagnostic signatures in the IR absorption pattern of SF. Infrared absorption patterns
for equine SF samples, measured using laboratory techniques developed in the course
of the current research project, were comparable to SF spectra for human samples (3).
Our study confirmed the reported advantages of MIR spectroscopy: with the
exception of a simple aqueous diluent (4 g/L potassium thiocyanate in water), no
reagents were required for spectroscopic analysis of SF because all infrared active
constituents gave rise to absorption bands without any need for chemical or
immunological modification; the laboratory techniques, | once developed, were
relatively simple and fast; only small amount of sample (8§ pl) was required for
spectroscopic analysis; and batch analyses of samples were performed at low cost.

We have pursued exploratory studies to determine the feasibility of using MIR
spectroscopy and classification algorithms for diagnosis of equine joint diseases.
Initially we had hoped to investigate a range of joint disorders, but challenges in the
time required to develop expertise in this field, and difficulty in recruiting a large

number of samples from clinical cases with the consent of owners led to a
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rationalization of the initial project goals. As a consequence, two articular disorders,
traumatic arthritis and osteochondrosis, were chosen to examine the diagnostic
potential of this technique as an ex-vivo test. The preliminary results addressed our
hypothesis that the IR spectra of SF can serve as biochemical fingerprints with
sufficient latent information to permit the diagnosis of traumatic érthritis and
osteochondrosis in horses by means of discriminant analysis. These findings favor the
further development of this method in the diagnosis of joint diseases in horses. The
lack of an affordable and accessible gold standard for diagnosing equine joint disease
remains a significant challenge for the development of IR-based diagnostic technique,
as does the recruitment of large numbers of well characterized samples. The
extraction of genuine spectroscopic characteristics of traumatic arthritis and
osteochondrosis may require the recruitment of large number of samples from both
disease groups as well as other types of joint disease (e.g. septic arthritis) to develop
an appropriate algorithm that capable of distinguishing among different types of joint
disease. However, with future endeavors targeted towards its development, the
ultimate goal of this type of research, to provide a rapid, economical, practical, and
reliable means for objective evaluation of joint disease, as well as an unbiased

monitoring of response to treatment can be accomplished.
6.3 Recommendations and direction for future research

In the initial phase, we have obtained evidence for the natural biochemical

variability of SF composition among anatomically different types of joints (inter-
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articular variation). Other possible sources of natural variation may include intra-
subject and inter-subject variability associated with physiological, genetic,
environmental factors, age, breed, sex, activity, occupation, and circadian rhythm
(13). These possible sources of variation need to be characterized systematically and
considered (as required) in future study design. The reproducibility of IR spectra may
be affected by subtle instrumental and environmental variables. Considerable efforts
were made to correct and to guard against possible biases from the instrumental and
environmental sources of variation in the current research. We recommend
minimizing such Variability in the future by improving the design of the next
generation of silicon plate and customization of the plate holder to correct for the
imperfect positioning of modulated exiting beam onto the sample well situated on the
silicon plate. To minimize environmental effects, the IR spectroscopic measurements
should be conducted in appropriately controlled environment. The installation of a
purging system on the multisampler compartment of the FT-IR spectrometer to
reduce the effects of atmospheric water vapor and carbon dioxide on spectral noise on
the instrument detector is suggested.

According to the current research laboratory protocol, after centrifugation, the
cell portion was discarded. This portion may provide some useful information in
diagnosis of joint disease either by studying IR absorption by the DNA content of the
cells or the cytoplasmic contents. Future researchers may choose to focus on the IR

spectroscopy of the cellular portion of SF. However, the development and
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optimization of an optimal IR spectroscopic measurement protocol is required for the
cell specimens, as are appropriate cell isolation and sample storage protocols.

The identification of IR spectral features suitable for the classification of
disease often leads to questions regarding the constituent molecules contributing to
those spectral features. Additional procedures could be added to the sample
preparation procesé. The fractionation of the biological fluid composition using high
performance liquid chromatography (HPLC) has been utilized prior to spectroscopic
measurement in one study (14). A novel technology has also been reported using
silicon nanoparticles as the substrate for immobilization of a particular protein of
interest, followed by characterization of the protein attached to those particles by the
use of FT-IR spectroscopy (15). The combination of nanobead-based technology and
FT-IR spectroscopy may increase the sensitivity to detect cytokines, DNA or
enzymes (15). This may open up the opportunity for development of advanced IR-
based diagnosis in the near future. In addition, IR spectroscopy combined with other
technologies such as nuclear magnetic resonance (NMR) and Raman spectroscopies,
mass spectrometry and protein arrays may better serve for the structural identification
and protein characterization purposes (15, 16). However, additional complex
preparatory work prior to spectroscopic measurement and the use of other
technologies may be conducted with the cost of increasing expense and time required
to perform sample analysis. The latter disadvantages are undesirable when developing

tests for clinical screening and diagnosis.
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In future studies, the classification models may be improved and refined by
the inclusion of more spectra. To our knowledge, firm recommendations for the
calculation of sample size for multivariate spectral classification have not been
reported. In fact, the development of IR-based diagnosis depends critically on the
collection of a large number of spectra and their corresponding (true) disease status
(17). Ideally, the search for genuine signature of disease in the spectra (optimal region
selection procedure) requires a large number of spectra tor encompass all possible
spectral variations associated with the presence of particular disease of interest in the
population at large (17). Sample size was a critical issue in all 3 experiments
presented in this thesis. We support the use of the general guidelines for the design of
diagnostic accuracy studies, and for justifying the sample size (1). According to these
guidelines (1), the architecture of diagnostic accuracy research consists of three |
phases, the exploratory (n = 10-50), challenge (n = 10-100), and clinical phases (the
number of subjects equivalent to several hundreds).

In order to expand the usefulness of IR spectroscopy in the field of arthrology,
the application of this technique should not be confined to the uses based only upon
qualitative analyses (i.e. to correlate spectroscopic data to the presence or absence of
joint disease). Infrared-based analysis could be focused on the development of
automated, reagent free analytical tools for routinely clinical use (2). The
demonstrated potential of IR-based analysis in clinical chemistry to quantify several
analytes in whole blood, serum, urine, and milk samples (18-23), suggests

possibilities in quantifying some useful SF parameters (that could be passive
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biomarkers or indicators for joint diseases) such as nucleated cell counts, protein,
glucose, urea, and lipid concentrations within a single spectroscopic measurement
(24-26). Concentrations of other important SF compositions such as hyaluronan and
préteoglycan (e.g. chondroitin sulfate, keratan sulfate etc.) contents (that could be
potential biomarkers for joint diseases) may be quantified by the use of IR
spectroscopic measurement and appropriate algorithms (24, 27, 28). If the
quantitative IR spectroscopic techniques for SF analysis could be successfully
developed, this technique would complement the diagnostic fingerprinting approach
developed within this thesis work. The implementation in arthrology of either
quantitative or qualitative (IR pathology) analysis of IR spectra should be expanded
to other species such as canine, feline and laboratory animals. The success in
developing IR-based veterinary diagnostic tests may contribute benefits to both
humans and animals by offering better disease detection and monitoring methods.
These in turn would trigger more rapid and appropriate prevention strategies and
treatment regimens, thus improving the quality of life for both human and animal
patients.

Finally, once the satisfactory differentiation of the diseased from normal
conditions can be achieved, future research should aim at disease staging. Joint
disease staging, as it currently stands, is often based on subjective classification
system that categorizes patients into homogenous clusters based on degrees of
severity or clinical signs of a particular disease. Infrared analyses may offer objective

classification of arthritis based upon discrete and objectively selected IR spectral
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features. For instance, based upon spectroscopic features of SF spectra, traumatic
arthritis horses may potentially be subcategorized into either acute or chronic stages
accompanied by the presence of osteoarthritis. Osteochondritic horses may potentially
be subcategorized as horses that have OC and are actively growing (young), horses
that have OC and are undergoing adaptation to training, and horses that have chronic
OC where the joints are also developing osteoarthritis as a consequence. The
diagnostic results based on an IR-based diéease staging system may provide more
useful diagnostic information that best represents the pathophysiologic manifestation
of joint disease. A disease staging system would further assist the decision making in
medical or surgical treatment selection and expected treatment outcomes and would
also provide an accurate prognosis of the joint disease. In addition, IR-based
technique may serve as a screening tool for the detections of traumatic arthritis and
osteochondrosis as well as other types of joint disorder in horse population followed
by the use of other image modalities to confirm the final diagnosis. The improvement
and refinement of the classification model to achieve as high as possible sensitivity
and specificity are crucial for the development of the screening test for diagnosis of
joint diseases. However, an appropriate study design by inclusion of more than one
type of joint disease (e.g. traumatic arthritis, osteochondrosis, septic arthritis and
normal controls etc.) with a large number of spectra in each disease category would
be required to evaluate the clinical effectiveness in clinical settings and the prognostic

impact on the population at large (1, 29).
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Appendix 1 Infrared spectra of 95 wells on a silicon plate without deposition of any

sample (a set of flat lines) and the IR spectra derived from the deposition of a sample

onto 95 wells

Absorbance Units

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber cm-1

Note: The absorbance unit of spectra of a silicon plate without deposition of any

samplés are essentially situated below zero level.
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Appendix 2 The plot of 2" order differential intensity (absorb) at 1246 cm™! for each
of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well
96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well

order in plate 3)
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Note: the low within-plate variation with values distributed about the mean with no

pattern. The vertical lines are to separate sets of wells of different plates.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix 3 The plot of 2" order differential intensity (absorb) at 2058 cm™! for each
of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well
96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well

order in plate 3)

WAVENUM=2057.9827777

absorb
0.00030 7

$.00025 1
0.00020 1
0.00015}
0.00010
0.00005 1

0.00000 7
=0.00005 ]
-0.000l0¥
-0.00015 1

=0.00020
=0.00025 1
=0.00030
-0.00035}
=0,00040
=0.00045 |
=0.00050 1
=0.00055
=0.0006

(] 100 200 300

well

Note: The high within-plate variation and value distributed about the mean with no

pattern. The vertical lines are to separate sets of wells of different plates.
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Appendix 4 The plot of 2™ order differential intensity (absorb) at 3633 cm’! for each
of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well
96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well

order in plate 3)

HAVENUM=3632.8121479

absorb
.00030 ]

]

0.00025 ]
0.00020
0.00015 1
0
(]
]

.000101 -
00005 1 L/V\/\W/\IJ
00000 1

=0.00005 ]
=0.00010 7
=0.00015

=0.00020 1
~0.00025 1
=0.00030 1

-0.000351
-0.00040 4
-0.00045
-0,00050 1
-0,00055 1
~0.000601__ . R R NS N
0 100 200 306 -

well

Note: Low within-plate variation, value distributed about the mean with some pattern,
no differences among plates. The vertical lines are to separate sets of wells of

different plates.
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Appendix 5 The plot of 2™ order differential intensity (absorb) at 668 cm™! for each
of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well
96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well

order in plate 3)

HAVENUM=668.31399482

absorb
0.00030 ]

00025 1
00020
00015

0.

0. .
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0.00005 1
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-0.00005 1 Vf\f\/\/\j\{ﬂUf\/\j\/qvf\/

~0.00010 7
«0.00015
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-0.00060 1 . — L ,
0 100 200 300

well

Note: Low within-plate variation, value distributed about the mean with some pattern
and disparities among plates. The vertical lines are to separate sets of wells of

different plates.
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Appendix 6 The plot of 2™ order differential intensity (absorb) at 1658 cm'l for each
of 95 wells in 3 different plates (well 1-95 corresponds to well order in plate 1, well
96-190 corresponds to well order in plate 2, and well 191- 285 corresponds to well

order in plate 3)

WAVENUN=1657. 7658833

absorb
60 1

55
50
45
40
35
25
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5
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5
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bl

0 100 ' 200 300

well

Note: High within-plate variation, value distributed about the mean with some

pattern. The vertical lines are to separate sets of wells of different plates.
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Appendix 7 The spectroscopic data preprocessing and classification strategies

f Fourier transform spectral acquisition (0_!’03 4.2 software? ) [

l

I Spectral averaying of the triplicate spectra {GRAM/AI 7,02 softwareb) I

Spectral preprocessing procedures (GRAMWAILT.02)

The original absorbance spectra were. preprocessed with 27% order differentiation
and 3 fevels of smaothmg, 15,29 ami 45 points (Savitzky-Golay atgomhm)

3

Isetsof spectra were generated from the original set of absorbance spectra
Set 1: Second derivative spectra with 15 point smoothing.
‘Set2; Second derivative spectra with 25 point smoothing
‘Set 3: Second derivative spectra with 45-poin{ smoothing’

l

Random sampling the spectra and assigned them into a calibration set.
The remaining of the spectra constituted a vailda(mn set (Minitab 13 software®)

!

Re-sampling with replacemem was npeaied 20 times to assign-the spectra into
calibration and validation sets for each of level of smoothing

|

20 ca!ihraiian-vaiidaﬁon sets were created for each level of smoothing
and were used as inputs for.genetic optimal region: selection algorithm

Note: * OPUS 4.2, Bruker Optik GmbH, Ettlingen, Germany
> GRAMS/AI 7.02, Thermo Galactic, Salem, NH, USA

¢ Minitab 13, Minitab Inc., College, PA, USA
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Appendix 7 The spectroscopic data preprocessing and classification strategies

(continue from previous page)

spectroscopic data file

Data files were prepared for “genetic optimal region algorithms”
using program script (MATLAB 6.5 softwaresd) to combine
a class designation file (in text file format} with the

{in MATLAB file format)

l

Optimal region selection by “genetic algorithme”
to select optimal regions that best discriminate
disease from control spectrain each calibration set

l

Calibration of classification model {discriminant analysis)

b

Petformed on each calibration set based on the optimal region characteristics

4

CléssificatiOn model validation using spectra in corresponding validation set

A

5

‘Calculations of sensitivity, specificity, and accuracy
for each pair of calibration and validation set {20 pairs per each level of sm oothlng)

k!

Calculations of mean sensitivity, specificity, and accuracy for each leve! of smoothing

Note: ¢ MATLAB, MathWorks, Natick, MA, USA

¢ The Institute for Biodiagnostiés, National Research Council of Canada,

Winnipeg, MB, Canada
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Appendix 8 Number of samples with respect to anatomical location of joints in

affected (traumatic arthritis) and control groups

Study Joints Traumatic arthritic group Control group
Fetlock 15 3
Antebrachiocarpal 10 16
Midcarpal 28 22
Total 53 41
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Appendix 9.1 Three optimal regions selected by genetic algorithm for 20 pairs of calibration-validation sets of spectra in
traumatic arthritis dataset (TT1-TT20) when preprocessing with 2™ order differentiation and 15 point smoothing technique

(Savitzky-Golay algorithm)
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Appendix 9.2 Three optimal regions selected by genetic algorithm for 20 pairs of calibration-validation sets of spectra in
traumatic arthritis dataset (TT1-TT20) when preprocessing with 2™ order differentiation and 25 point smoothing technique

(Savitzky-Golay algorithm)

-eo3eno<od

500 - e
450 oo : } i § : ; e B : I
A00 i i i HE i i i H i i i i H i . i i H
™ T2 T3 TI'4 T15 TT6 177 T8 718  TMO TT11 TT2 -TNM3. T4 TT15 . TTi6 TT17 - TT18 TT19 TT20
Calibration - validation set

222



‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

Appendix 9.3 Three optimal regions selected by genetic algorithm for 20 pairs of calibration-validation sets of spectra in
traumatic arthritis dataset (TTI-TT2'O) when preprocessing with 2™ order differentiation and 45 point smoothing technique

(Savitzky-Golay algorithm)
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Appendix 10.1 Sensitivity, specificity and accuracy of all calibration and validation

sets when preprocessing with 2™ order differentiation and 15 point smoothing

Calibration Validation

Set Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

TT1 87.5 85.2 85.5 722 64.3 68.8
TT2 88.6 96.3 91.9 61.1 78.6 68.8
TT3 77.1 96.3 85.5 72.2 85.7 78.1
TT4 88.6 88.9 88.7 61.1 64.3 62.5
TT5 80 96.3 87.1 55.6 92.9 71.9
TT6 85.7 92.6 88.7 72.2 71.4 71.9
TT7 88.6 88.9 88.7 61.1 85.7 71.9
TT8 82.9 92.6 87.1 66.7 92.9 78.1
TT9 743 92.6 82.3 72.2 85.7 78.1
TT10 77.1 88.9 82.3 722 78.6 75
TT11 88.6 81.5 85.5 72.2 57.1 65.6
TT12 85.7 96.3 90.3 722 64.3 68.8
TT13 82.9 926 87.1 66.7 78.6 71.9
TT14 91.4 85.2 88.7 66.7 78.6 71.9
TT15 91.4 88.9 90.3 61.1 71.4 65.6
- TT16 82.9 96.3 88.7 61.1 929 75
TT17 82.9 88.9 85.5 66.7 35.7 53.1
TT18 85.7 96.3 90.3 61.1 64.3 62.5
TT19 74.3 85.2 79 722 92.9 812
TT20 85.7 88.9 87.1 722 42.9 59.4

Note: TT1-TT20 correspond to calibration-validation set 1 - 20
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Appendix 10.2 Sensitivity, specificity and accuracy of all calibration and validation

sets when preprocessing with 2™ order differentiation and 25 point smoothing

Calibration Validation

Set Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

T 82.9 100 90.3 61.1 78.6 68.8
T12 82.9 96.3 88.7 55.6 78.6 65.6
T13 85.7 81.5 83.9 61.1 92.9 75
TT4 85.7 $8.9 87.1 7.2 64.3 68.8
115 80 92.6 85.5 72.2 85.7 78.1
TT6 85.7 96.3 90.3 77.8 71.4 75
17 82.9 9.6 87.1 55.6 78.6 65.6
T18 $8.6 $8.9 88.7 61.1 92.9 75
T19 80 81.5 80.6 83.3 85.7 84.4
TTI0 g9 88.9 85.5 7.2 78.6 75
TTH 857 92.6 $8.7 7738 0.9 62.5
TT12

$8.6 81.5 85.5 722 57.1 65.6
TT13

85.7 88.9 87.1 77.8 643 719
TT14 gy 5 81.5 88.7 7222 92.9 81.2
TT15

85.7 96.3 90.3 55.6 78.6 65.6
TT16

85.7 92.6 88.7 722 714 71.9
TT17 80 74.1 77.4 77.8 50 65.6
TT18 80 100 88.7 55.6 85.7 68.8
T a9 88.9 82.3 77.8 100 87.5
T120 80 100 88.7 $8.9 2.9 68.8

Note: TT1-TT20 correspond to calibration-validation set 1 - 20
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Appendix 10.3 Sensitivity, specificity and accuracy of all calibration and validation

sets when preprocessing with 2" order differentiation and 45 point smoothing

Calibration Validation

Set  Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

T 85.7 92.6 88.7 66.7 92.9 78.1
T2 914 96.3 93.5 50 85.7 65.6
13 77.1 88.9 82.3 722 71.4 71.9
T g6 92.6 90.3 61.1 50 56.2
1T 80 96.3 87.1 722 78.6 75

TI6 836 92.6 90.3 77.8 714 75

7 g5y 85.2 85.5 61.1 78.6 68.8
T8 436 85.2 87.1 722 85.7 78.1
L 80 88.9 83.9 833 78.6 81.2
T g9 88.9 83.9 7222 85.7 78.1
T g6 81.5 85.5 722 57.1 65.6
T2 g9 92.6 87.1 83.3 71.4 78.1
TT13 80 92.6 85.5 833 78.6 81.2
T4 g9 88.9 85.5 77.8 100 87.5
R X 92.6 87.1 55.6 85.7 68.8
TT6 857 92.6 88.7 778 78.6 78.1
TH7 g9 85.2 83.9 77.8 643 719
TTI8 46 85.2 87.1 55.6 78.6 65.6
TTO 991 85.2 80.6 722 85.7 78.1
TT20 - 454 92.6 88.7 88.9 50 71.9

Note: TT1-TT20 correspond to calibration-validation set 1 - 20
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Appendix 11.1 The 95% confidence interval of the mean sensitivity of the calibration and validation sets when preprocessing

with 2" order differentiation and 15, 25 and 45 point smoothing technique (Savitzky-Golay algorithm)

88

o S SRS

O P S = B I

= { - 85% confidence interval of the validation set

: 15points . 25points - 45 points © 7 15points - 25points T 45 points..
' Smoothing point.

227



‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

Appendix 11.2 The 95% confidence interval of the mean specificity of the calibration and validation sets when preprocessing

with 2" order differentiation and 15, 25 and 45 point smoothing technique (Savitzky-Golay algorithm)
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Appendix 11.3 The 95% confidence interval of the mean accuracy of the calibration and validation sets when preprocessing

with 2™ order differentiation and 15, 25 and 45 point smoothing technique (Savitzky-Golay algorithm)
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Appendix 12.1 The summary of spectral preprocessing and classification strategies

of osteochondrosis dataset

I 64 spectra in osteochondrosis dataset I

h A

l Spectral preprocessing '
|

v
v
First order differentiation with
5,9,15, 19, 21, 25, 30 point smoothing

Second orderdifferentiation with
5,9,18, 19,21, 25,30 point smoothing

Y

Determination.of degree of optimal differentiation and smoothing
by using the classification results from genetic algorithm~

A

The second order differentiation and 19 point smoothing
preprocessing method was chosen based the highest accuracy

v

Further preprocessing by the use of vector normalization

3 v

Normalization by using " Normaiization by using Normalization by using
19502160 cm-1.as a basis 15001700 cm-! as a basis :800-1450.¢m-1 as a basis
for normaiization for normalization for normalization
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Appendix 12.2 The summary of spectral preprocessing and classification strategies

of osteochondrosis (non-normalized) dataset

Second derivative spectra with 19 point smoothing

l

Non-normalized data

l

Analysis of covariance (ANCOVA)
performed onh each wavenumber basis
(4004000 cm-1) using “age” as covariate factor

l

Checking Assumption for ANCOVA
by using a test for parallelism

[

Substantlal [R regions falled the test for parallelism
~ANCOVA may not apply safely with
“non-normalized data”

l

The dataset may require
further preprocessing ?
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I Second derivative spectrawith 19 point smoothing I

L 2
' Vector nommalization |

Appendix 12.3 The summary of spectral preprocessing and classification strategies of osteochondrosis (normalized) dataset

v

¥

Basis for normalization: 1990.2150 cm? |

'

| Basis for normalization: 1500-1700 crm! J

| Basis for normalization: 8004450 cr! |

Analysis of covariance
Performed on each wavenumber basis
using “age” as covariate factor

Analysis of covariance
Performed on each wavenumber basis
using “age” as covariate factor

A

h 4

Significant region selection procedure
based on selection criterion

h §

Analysis of covariance
Performed on each wavenumber basis
using “age” a8 covariate factor

¥

¥

Significant region selection procedure
based on selection criterion

Significant region selection procedure
hased on selection criterion

k4

6 significant regions
matched selection criteria

9 significant regions
matched selection criteria

R

!

|

12 significant regions
“matched selection criteria

Stepwise discriminant analysis
4 of 6 significant regions were

Stepwis e discriminant analysis’
2 of 5 significant regions were
statistically selected

!

statistically selected

L 2

- Stepwise discriminant analysis
6 of 12 significant regions were
statis tically s elected

k 4

Linear discriminant analysis
based on 4 significant regions and
leave-one-out cross validation
Sensitivity = 67%
Specificity = 77%
Accuracy=72%

¥

Quadratic discriminant analysis
based on 2 significant regions and
leave-one-out cross validation
Sensitivity =42%
Specificity =68%

.- Accuracy =53%

. Linear discriminant analysis
based on 6 significant regions and
“leave.one-out cross-validation
Sensitirity = 73%
Specificity = 81%
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Appendix 13 The accuracy of the 1% and 2™ derivative spectra with varying degree

of spectral smoothing based on 6 optimal regions selected by genetic algorithm
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O - First derivative spectra, A - Second derivative spectra
Note: The second derivative spectra with 19 point smoothing yielded the highest

accuracy of classification (marked by grey circle)
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