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Abstract

This thesis is comprised of two distinct areas: the first area representing the bulk of the 
work to be presented here, focusses on the development of novel analytical tools for the 
study of electronic structure. The second area highlights the refinement of potential energy 
surfaces algorithmically.

There is a great deal of interest in understanding electronic interactions within atoms 
and molecules. As we are confined to only 3-dimensions when visualizing a set of data, it 
is impossible to completely visualize the effects of particle interactions. Nonetheless, over 
the years, there have been numerous methods devised in order to analyze these interactions 
in different ways. In the first part of this thesis, the development of novel tools to examine 
electronic structure effects will be highlighted.

We introduce the intex density X( R,  u), which combines both the intracular and extrac- 
ular coordinates to yield a simultaneous probability density for the position of the centre- 
of-mass radius (R) and relative separation (u) of  electron pairs. The principle application 
of the intex density explored here is in the investigation of the recently observed secondary 
Coulomb hole. The Hartree-Fock (HP) intex densities for the helium atom and heliumlike 
ions are symmetric functions that may be used to prove the isomorphism 2P{2R) = E{R),  
where P{u) is the intracule density and E{R)  is the extracule density. This is not true of 
the densities that have been constructed from explicitly correlated wave functions. The dif­
ference between these asymmetric functions and their symmetric HP counterparts produces 
a topologically rich intex correlation hole. We conclude that the probability of observing 
an electron pair with a very large interelectronic separation increases with the inclusion of 
correlation only when their centre-of-mass radius is close to half of their separation.

Despite providing more details regarding the correlation hole than the intracule alone, 
the intex density is still limited in nature by its lack of information regarding the spatial ori­
entation of the R  and u  vectors. This led to the development of the probability density for 
the angle between these two vectors using both Hartree-Pock (HP) and explicitly correlated 
Kinoshita wave functions. This angular density, A{6ru), and the angular-dependent intex 
density, X{R,  u, 6 ru), are explored for the helium isoelectronic series from He to Ne*+ to 
study the distribution of electron pairs in atomic systems (both HP and exact). We demon­
strate that the most probable angle depends significantly on the scalar values of R  and u for 
both the HP and exact treatments. As R  and u simultaneously increase, the favoured angle 
for these densities approach 0 and tt.



With a more complete description and understanding of the secondary Coulomb hole, 
the focus of our study was directed towards determining the origin of the hole. These anal­
yses were carried out by examining the correlation hole in intracules, AP{u),  for atoms 
with varying electron-nuclear potentials including systems with Coulombic potentials, har­
monic potentials, and those with a zero potential (aside from an infinite confining potential). 
These studies have highlighted the role of a non-zero potential in the presence of the sec­
ondary hole and have suggested this counter-intuitive effect is the result of shielding. This 
theory is well supported by evidence in the literature including an analogous effect (i.e. 
contraction of electron pairs at large values of u) that has been observed for excited states 
and has been attributed to shielding.

In addition to these electronic structure analyses with respect to correlation, we also 
present findings regarding the effects of using polarization functions in basis sets to de­
scribe atoms and molecules. Previous research has indicated that the introduction of polar­
ization functions into a basis set leads to an overall contraction of the intracule density. We 
examine this contraction of electron pairs through analysis of position intracules, various 
components of the energy, and differences in electron densities. This combined data has 
yielded conclusive evidence that the inclusion of polarization functions leads to an increase 
in density in the bonding regions in order to improve bond descriptions.

The second area explored in this thesis is regarding the development of novel software 
to be used for the optimization of chemical reactions. This optimization is based on a new 
method described herein, known as the linear combination of functional groups. In this 
process, a large set of substituents is superimposed at a functional site within a reactant 
complex. By allowing these substituents to interact with the fixed part of the molecule 
while prohibiting interactions between each of the functional groups, one can effectively 
determine the contribution of each moiety to the overall energy. Localized molecular or­
bitals are used in this study as they are highly transferable from molecule to the next. This 
allows for the construction of a library of coefficients specific for each functional group 
to determine the form of the molecular orbitals of said group that would be applicable 
in any chemical environment. Through the use of minimization/maximization algorithms 
one can optimize the energy difference between two states (e.g. products and reactants) 
with respect to each of these functional groups. The details of the method and the results 
of an optimization on the deprotonation of HO-X (X being the set of functional groups) 
is demonstrated herein. The results obtained in the proof-of-concept stage of this project 
demonstrate great merit for this concept.
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1 Introduction

Computational chemistry is a relatively new branch of science having only truly been de­

veloped within the past 100 years. In fact, the first theoretical calculations to be performed 

in the field of chemistry were not conducted until 1927 by the German physicists, Walter 

Heitler and Fritz London. The difficulty in performing such calculations stems from the 

unorthodox behaviour (wave-particle duality) of microscopic particles and the many-body 

problem. Unlike the objects observed in everyday life, these subatomic particles must be 

treated with quantum mechanics rather than the more traditional classical mechanics.

1.1 Classical Mechanics

Sir Isaac Newton’s contributions to the field of science simply cannot be overstated. In 

the latter part of the 17'’’ century, it was he who first formulated what is now referred to 

as classical mechanics, which describes the laws that govern the motion of macroseopie 

objects. ' Newton’s second law of motion, which is commonly expressed as

F  = m a ,  (l.I)

where F  defines the foree acting on an object while m  and a represent the mass and ac­

celeration of the objeet, respectively, can be used to determine the past, present, and future 

positions of any object under the specified boundary conditions. In a more general form, 

this law states that the net force which is acting on a particle is equal to the rate of change



in the particle’s momentum with time. This can be denoted by

-  dp dimv) ^ d m  dv ( f f

where the term vanishes as the mass is constant. Since the force is given by m 

it is easily shown that, if said force is constant, the position, f, is a function of time, t, 

expressed as

r(f) =  [  [ — dt dt = +  cit + C2 (1.3)
J J m  m

Here, ci is obtained from the first indefinite integral, which yields the velocity function and 

C2 is obtained from the second integration yielding the final position function, f{t). At time 

t =  0, f{t) = c*2 , and thus is simply the initial position, fo, of the object. Similarly, c) is 

found to be equal to the initial velocity, vq, of the object and thus we can write (1.3) as

r(t) — — +  vqI +  To (1.4)
m

From this equation, it is noted that by knowing the initial position and velocity of a macro­

scopic particle as well as the mass of the object and the constant net force acting on it, 

one can readily determine the future motion of this particle. This expression demonstrates 

the incredible utility of Newton’s second law of motion; however, systems are often more 

complicated than this as there are numerous variables to consider. Nonetheless, by consid­

ering all parameters, one can effectively determine the position of the object at any time, t. 

Unfortunately, these laws of motion do not apply to microscopic particles. Consequently, 

this idea led to the development of quantum mechanics in the early twentieth century. The 

reason these particles cannot be described using classical mechanics can be explained in 

part by the Heisenberg Uneertainty Principle. The Heisenberg Uncertainty Principle states, 

“The more preeisely the position is determined, the less precisely the momentum is known 

in this instant, and vice versa” (translation by American Institute of Physics).^ Mathemat­



ically, this principle is given by A x A p  > hjAix where A t  and Ap  are the uncertainties 

in the position and momentum respectively and h is Planck’s constant. ' When considering 

the size of the particles (i.e. macroscopic) that are treated with classical mechanics, this 

level of uncertainty is negligible even for high accuracy studies; however, in the study of 

microscopic particles, the uncertainty is relevant and thus, the exact position and momen­

tum of these particles eannot be known simultaneously with reasonable accuraey. Instead, 

one must rely on quantum mechanics which describes the motion of such particles in a 

probabilistic or statistical manner.

1.2 Quantum Mechanics

Without the development of quantum meehanics, we would not be capable of understanding 

the behaviour of subatomic particles, and thus our fundamental understanding of how atoms 

and molecules function would be severely limited.

1.2.1 The Schrodinger Equation

The Schrodinger equation is the foundation for non-relativistic quantum mechanics. It is as 

essential to quantum mechanics as Newton’s Laws of Motion are to classical mechanics.'' 

It is the fundamental equation on which most quantum chemical models are based and it 

can be expressed as

E  *) -  E  t) +  V( r ,  t ) . (1.5)

where ^ { r , t )  is the state or wave function of the system, V{r, t )  is the potential energy 

operator, and is the Laplacian operator involving the second partial derivatives over 

the set of Cartesian coordinates (V^ = - ^  + - ^  + of particle j  (e.g. electron i or 

nucleus A). The r  (r =  {(Tj, z,)}) and t variables denote the position and time co­

ordinates, respectively. ' The expression shown above is the time-dependent Schrodinger



Table 1.1: Definition of atomic units.
Measure Unit Value in Atomic Units Value in SI Units
Length Oo 1 bohr 5.2918 X 10-^1 m
Mass 1 9.1095 X lQ-31 kg
Charge e 1 1.6022 X 10“ ®̂ C
Energy E 1 hartree {E^) 4.3598 X 10-1* J
Energy E 1 hartree {Eh) 27.211 eV
Energy E 1 hartree (Eh) 627.51 kcal/mol
Angular momentum h 1 1.0546 X 10-*4 J s
Vacuum permittivity 47reo 1 1.113 X 10-1° c2/(Jm)

equation for a general system in 3-dimensions. The solution to the time-dependent equa­

tion can be separated into time and space components and fortunately, many applications 

of quantum chemistry can be accurately described by the time-independent Schrodinger 

equation which observes stationary states of the wave function. Throughout this thesis, we 

will only be concerned with the time-independent expression and will simply refer to it as 

the Schrodinger equation. This expression for a system consisting of N  electrons and M  

nuclei is given by

2 m
= E ' ^ { r , R ) , (1.6)

2=1 A~1

where V (r) is once again the potential energy operator, E  is the total energy of the sys­

tem, and ' ^ {r ,R)  is the time-independent wave function which depends on the set of all 

electronic (r =  r i ,  r 2 , . . . ,  v n )  and nuclear ( R  = R^,  R 2 , ■. ■, R n )  coordinate vectors.

There are a number of simplifications that can be applied to the Schrodinger equation. 

The first that is discussed here is the conversion from SI units to atomic units. These atomic 

units are defined in order to simplify the expressions and the conversions are given in Table

1.1.5

There has yet to be any mention of the form of the potential energy operator. This was 

done intentionally, in order to simplify the form of the expression. Using the atomic unit



simplification, the Schrodinger equation can be expressed fully as

,  AT M  ̂ / N - 1  AT N  M  „

M —1 M  'y '7 ^

m{r ,R)  = E m { r , R )  (1.7)

where the terms enclosed in round brackets represent the potential energy operator, V.  In 

this expression, and R ab are the interelectronic and intemuclear distances, respectively, 

while r^A is the distance between electron i and nucleus A. Finally, Za is the atomic 

number of nucleus A  and the remaining terms are as previously described.

In this final expression, there are five separate terms in square brackets. Each term 

represents an operator for a particular component of the energy. The first two terms, with 

the Laplacian operators, represent the kinetic energy operators for the electrons and nuclei, 

respectively. The potential energy operator is comprised of the electronic repulsion (term 

3), electron nuclear attraction (term 4) and nuclear repulsion (term 5) operators. The sum of 

these five terms can be expressed as a single Hermitian operator known as the Hamiltonian 

operator, Ê.  It is defined by the terms in square brackets and using this operator, the 

Schrodinger equation can be written in its most common form as

f f ^ ( r , R )  = E ' l ' ( r , R )  (1.8)

This equation is an eigenvalue problem where the eigenfunctions of the Hamiltonian op­

erator represent the ground and excited state wave functions and the eigenvalues are the 

corresponding energy values for these states.

1.2.2 The Bom-Oppenheimer Approximation

As shown in equation (1.7), the operators consist of both electronic and nuclear terms. 

However, since nuclei are far more massive than electrons (M^/rrie ~  1840 for H atom), ̂



they move at a much slower pace. This is the basis of the Bom-Oppenheimer (BO) ap­

proximation developed by said researchers in 1926.^ This approximation assumes that as 

electronic motion is much faster than nuclear motion, one can treat the system as if the 

electrons move within a field of static nuclei. Using this approximation, the Hamiltonian 

operator is greatly simplified. First and foremost, since the nuclei are considered fixed, the 

nuclear kinetic energy operator can be omitted. The Hamiltonian operator is then given by

N  N - 1  N   ̂ N  M  „  M - 1  M „  „

Furthermore, as the nuclei are fixed in space, the final term representing the nuclear repul­

sion operator simply becomes a constant. Since constants do not affect the eigenfunctions 

in an eigenvalue problem, but simply add said constant to each of the eigenvalues, this term 

can be removed from the Hamiltonian operator to form the electronic Hamiltonian, Heiec, 

given by
.  N  N - 1  N  N  M  ^

Z=1 Z = 1 j>, *=1 A=1

Using this newly defined operator, the electronic Schrodinger equation can be expressed as

Helec'^{r;R) = Eeiec'^{r-,R) (1.11)

where iJe/ec is the electronic energy. Here, the wave function has been denoted by ^(r; R)  

which indicates that it is no longer a function of the nuclear coordinates, R,  but instead 

has a parametric dependence. This indicates that if the coordinates of the nuclei were 

to change, the wave function would also change. The BO approximation will be used 

throughout this thesis, and thus the wave function will simply be given by \k(r). Upon 

solving the electronic Schrodinger equation, the total energy, E,  is given by the sum of the 

electronic and nuclear repulsion components as follows



M  — 1 A/ fy  ry

(1.12)
A= 1  B > A

1.3 Solving the Schrodinger Equation

Despite the approximations deseribed in the previous section, solving the Schrodinger 

equation remains a formidable task. The solution for the one-eleetron hydrogen atom is 

well established, as are the solutions for a variety of fictional systems (e.g. particle in a 

box, the linear rigid rotor, Hooke’s law atom, etc.); ' however, in real chemical systems 

(i.e. molecules and multi-electron atoms), the introduction of a second electron leads to the 

inseparability of the Schrodinger equation and the inability to obtain analytical solutions. 

This has led to the development of a wide range of techniques to approximate the solution 

for these more complicated systems. These techniques can be grouped into a number of 

classes, including perturbative methods, variational methods, quantum Monte Carlo simu­

lations, and density functional theories. The majority of the work in this thesis will involve 

variational methods and it is these techniques that will be discussed in detail here.

1.3.1 The Variational Theorem

With any approximation, it is essential to have a measure of its accuracy. In quantum 

chemistry, the variational theorem is used for this purpose. The theorem states that for any 

normalized trial wavefunction, <po, that obeys the boundary conditions imposed upon the 

true wave function, the expectation value (predicted mean value) of the Hamiltonian opera­

tor, Eg , will always be greater than the exact ground state energy, Eq.  ̂This is represented 

mathematically as

i^G\H\(f)G) = Eg > Eo (1.13)

Using this principle, one can effectively measure the quality of any approximation to the 

wave function as lower energies reflect more accurate guesses. If one obtains the true



ground state energy, then 4>g must be identical to the exact wave function. This principle is 

used in many quantum chemical methods for the determination of accuracy; however, not 

all techniques are variational. It is only true when the energy determined by the method is 

obtained from the expectation value of the Hamiltonian operator as shown in (1.13).

1.4 The Hartree Method

One of the earliest methods developed to obtain approximate solutions to the Schrodinger 

equation was developed by Douglas Hartree in the late 1920s.^ * This method is commonly 

referred to as the Hartree self-consistent field method or simply the Hartree method. It is 

also the basis for the more popular Hartree-Fock (HF) method that will be discussed in the 

next section.

The Hartree method involves the use of a Hartree product wave function,^ which 

approximates the true wave function as a product of single particle functions (i.e. orbitals) 

as follows:
N

T'^^(£Ci,æ2,...,æ„) =  (114)
1=1

Here, Xi is the combined position-spin coordinate vector (xi = (r^,w,), where w, is the 

spin coordinate) of electron i, N  is the number of electrons and %, is the spin orbital. A 

spin orbital is simply an orbital function that contains a single spin-up (a) or spin-down (/3) 

electron. In freshman chemistry classes, one is often told that an orbital can hold up to 

two electrons. This statement describes spatial orbitals, ip{r), which can hold one electron 

of each spin type. The relationship between spin and spatial orbitals is as follows:

%,(=:) =  V;,(r) a(w) =  ^"(r)

%,+i(a;) =  ^,(r) /9(w) =  (r) (1.15)

where i is restricted to be odd so that the first electron in a spatial orbital has spin a  and



the second has spin /?. The functional form of the spin functions is undefined; however, it 

is important to know that the spin functions are chosen to be orthonormal. Thus

(a(w,)|o!(w,)) =  =  1 (a(w,)|,9(w,)) =  (/3(w,)|a(w,)) =  0 (1.16)

There are a number of deficiencies in the Hartree method that led to the development of 

Hartree-Fock theory. The first problem is that electrons are assigned to specific orbitals. 

This disobeys the laws of quantum mechanics that state that electrons should be indistin­

guishable. A second, related problem is that the wave function is not antisymmetric. The 

antisymmetry principle states that the wave function for any fermion (particle with a half­

integer spin) must be antisymmetric with respect to the interchange of two electrons; in 

other words, the sign of the wave function must change upon the permutation of an elec­

tron pair. Therefore the following must be true:

^(® l, •■■1 3̂ 2, X j , ..., XJY) — ^ (^1 ? ^2) ' ') ®J1 1 5 • • • î ^iv) (1.17)

This is clearly not true for a Hartree product wave function. Consider the two-electron case 

as an example. The antisymmetry principle would require that

%i(zi)X2(z3) =  -%i(a:3)%2(zi) (1.18)

but this is not true for all choices of Xi and X2- The final problem results from the idea that 

the positions of the electrons are not correlated in any manner. The position of one electron 

is completely independent of the positions of any of the other electrons.

1.5 The Hartree-Fock (HF) Method

Building on the foundation laid out by Hartree, in 1930 Vladimir Fock modified the theory 

to address the previously described problems.^ All of these problems are resolved, at least



to some extent, by expressing the wave function as a combination of all signed permutations 

of the Hartree products as shown below for a two-electron system.

=  ;^[Xi(a^i)X2(æ2) -  Xi(®2)X2(a5i)] (1.19)

where 1 /  is a normalization constant. At first glance, it may appear that the electrons 

are once again designated to specific orbitals; however, with the inclusion of each of the 

permutations (in this case, just the second term), one can note that each electron is associ­

ated with every orhital. For systems containing a large number of electrons, writing out all 

of the signed permutations is an undesirable task. However, there is a simple method for 

obtaining each of these terms. This approach involves the construction of a Slater determi­

nant.

A Slater determinant consists of columns corresponding to molecular orbitals and rows 

corresponding to electrons. For the two-electron system, it is given by

X l ( Z l )  X 2 ( Z l )

X l(z3) %2(Z3)
 ̂ [X i(a:i)X 2(a:3)-X iW X 2(a:i)] (1.20)

Using a Slater determinant to write the Hartree-Fock (HF) wave function is very useful 

due to some of the properties of determinants. * First, if two columns (or rows) in a matrix 

are identical, the determinant is equal to zero. For a chemical system, this is analagous to 

having two electrons of the same spin in the same orhital which is prohibited by the Pauli 

exclusion principle.  ̂ Secondly, upon the interchange of two columns (or rows) in a matrix, 

the determinant is multiplied by a factor of -1, which ensures the antisymmetric behaviour 

of the HF wave function.

Thus far, a Slater determinant has only been shown for a two-electron system, but 

systems containing any number of electrons, N,  can be represented in the same fashion.
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For the general ïV-electron case, the HF wave function is given by

=
Xi(a:3) %2(z2)

Xi(zjv) X2(z;v) . . .  %N(a:7v)

( 1.21)

For large systems, it is inefficient to write out the entire Slater determinant, and thus it is 

often expressed in a more concise form given by

=  |XiX2...X,Xj. X#) (12%

The HF energy, is given by the expectation value of the Hamiltonian operator 

with the HF wave function. From the definition of the electronic Hamiltonian in (1.10), 

it can be noted that the first and third terms are one-electron operators, while the second 

term representing the electronic repulsions is a two-electron operator. Therefore, H  can he 

simplified by grouping the one-electron operators into a single operator, and the electron 

repulsion operator can he simply expressed as . These new operators are thus defined 

as
1 _ 1

(123)Vij

w inch simplifies the Hamiltonian operator to

N N - 1  N

(1.24)
%=1 1=1 j>i

For the purposes of this thesis, it is essential for the reader to have a good understanding 

of the theory involved in the HF method in order to truly understand its deficiencies. For 

this reason, we will show here how to derive the Hartree-Fock equations for a two-electron 

system. The equations will then he generalized for a system with A^-electrons. We will not.

11



however, show the full derivation for the general Æ-electron case as it is beyond the scope 

of this document.

We first focus on the one-electron operator. The expectation value resulting from this 

operator is given by

= f  $^ ^ dæ idæ 2+  I  d x i d x 2 (1.25)
i=l ''

where is the HF wave function given by the Slater determinant consisting of two spin 

orbitals shown by

=  1X1X2) =  ;^[Xi(a:i)X 2(æ2) -  Xi(®2)X2(æi)] (1.26)

We will begin with the derivation with respect to the first integral in (1.25). Substituting the 

definition of the wave function from (1.26) into the expectation value of the one-electron 

operator for electron one in (1.25), we obtain

\  j [ x \ { x \ ) x l { x 2 ) -  X\{x2)xl{xx)]hi[xi{xx)x2{x2 ) -  Xi{x2 )X2{xi)]dx-^dx2 (1.27)

Expanding this expression yields the following four terms 

I f -
2 / [xI(a:i)X2(a:2)/tiXi(zi)x2(z2) -xI(a:2)X2(a:i)/iiXi(a;i)X2(a:3)

-  X Î(z i)x 2 (a :2 )^ iX i(a :2 )X 2 (a :i)  +  x I(z2 )x 2 (a :i)^ iX i(a ;2 )X 2 (a :i)]  (kcidaza (1 .28)

Since hi only operates on electron 1, all functions of electron 2 can be integrated out. Due 

to the orthonormality of the spin functions (a and /?), the two negative terms integrate to 

zero while the two positive terms integrate to unity yielding

\  J [ x l { x i ) h i X i ( x i )  + x*2{xi )hiX2 {xi)] dx i  (1.29)

12



One can perform an analogous derivation for the expectation value of fi2 (second integral 

in (1.25)) and find that, due to the indistinguishable nature of electrons, it is equivalent to 

that shown for hi (i.e. =  {^^^\hi \ ' ^^^)) .  Thus for the sum of all of the

one-electron operators for this two-electron system, the expectation value is

^  = {■̂ ^̂ \hi + = / [xi(æi)^Xi(æi) + X2(xi)hx2{xi)] dxi
t=i

(1.30)

Instead of writing out the integrals in every equation, there is a common shorthand notation 

to describe these one-electron integrals.^ This notation, given by

(1.31)

simplifies (1.30) to

=  (l|fi|l> +  (2|Â|2) (1.32)

For the general A^-electron case, one can show that^

1=1 1=1

Thus far, the derivation has only involved spin orbitals. To modify these equations for the 

use of spatial orbitals, we must integrate over the spin components of the orbitals. Since a 

spin orbital is simply the product of a spatial orbital, ip{r), and a spin function ia{üJ^) or 

/3(w,)), as given by (1.15), we can use this definition to adapt (1.30) for spatial orbitals as 

follows:

{i\h\i) = J  i ’l{ri)a*{uji)hil>i{rt)a{uji)(iriduji = J  V'i(ri)Wi(ri)dri = (%|A|z)

(1.34)

Here we have used the orthonormality condition of the spin orbitals in the integration over 

the spin components. One could have just as easily used an orbital with a /? spin component

13



in the previous expression and obtained the same result. The reader may have noticed the 

use of round brackets in the final expression on the right-hand side. These round brackets 

have an equivalent definition as {i\h\i) except the round brackets indicate that spatial or­

bitals are involved instead of spin orbitals and thus the expectation value now involves the 

sum over the N/2  spatial orbitals (i.e.

We now turn our attention to the two-electron operator, given by For the two- 

electron system, the expectation value of said operator is

^ y[xI(a:i)X2(a:3) -  XÎ(a:a)X2(a:i)]

X — [Xi{xx)x2{x2 ) -  Xi(æ2)X2(æi)]dæidæ2 (1.35) 
1̂2

As in the case of the one-electron operator, we multiply to expand the integrand yielding 

four terms given by

XÎ(zi)X2(a:3)— Xi(a:i)X2(a:3) -  x l(z3)x2(a:i)— X i(zi)x2(z3)
^12 ri2

-XÎ(a:i)X2(a:3)— Xi(a:3)X2(a:i) 4- xI(a:3)xKa:i)— xi(a:2)x2(a;i)
1̂2 ’"12

dæidæ2 (1.36)

Since rig =  rgi, we can interchange xx  and X2 in terms 3 and 4 of the integrand giving

I I
Xl(a:i)x;(a;3)— %i(a:i)x2(a;a) -  xI(a:3)X2(2:i)— Xi(a:i)X2(z3)

’’12 ’"12

-Xl(a:3)X2(a:i)— X i(zi)x2(z3 ) +  Xi(a:i)X2(a:3)— Xi(a:i)X2(z3)
’’12 ’’12

dxida;2 (1.37)

Using this alternative form, it is easy to note that term 1 is equal to term 4 while terms 2 

and 3 are also equivalent. This simplifies the expression to

/ Xl(a:i)X2(2:3)— Xi(a:i)X2(a:a) -  xI(a:3)X2(a;i)— Xi(a:i)X2(a:3)
’"12 ’"12

14
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The form in which (1.38) is expressed is known as the physicists’ notation.^ Chemists tend 

to rearrange this equation to simplify the integration over the spin components. This is 

achieved by placing orbitals containing electron 1 on the left side of the operator, and those 

pertaining to electron 2 on the right side. Thus, the equivalent chemists’ notation is

/ %I(a:i)xi(a;i)— x;(za)x2(za) -  Xi(zi)%2(a;i)— xî(a:3)%2(a:3)
fU  1̂2

dxidæa (1.39)

Much like the expectation value of the one-electron operator, there is also a short hand

notation for that of the two-electron operator. For the physicists’ notation, angled brackets

are used as follows:

=  (12|12) -  (12|21) (1.40)

while the chemists’ notation employs square brackets as shown below.

=  [11|22] -  [12|21] (1.41)

For a general ^-electron system, it can be shown that the expectation value with respect to 

spin orbitals is given by

1=1 j>% »=i j>« «=1 j>i
(1.42)

For spin orbitals, we can now derive a full expression for the expectation value of the full 

electronic Hamiltonian by combining (1.33) and (1.42) to give

= ^(,|fc |i) + Ÿ Î Z  ((Vlu) -  (ij'lii))
1=1 1=1 ] > i

N  N - 1  N

=  -  [i j \ j i ])  (1.43)
2=1 2=1 J>2

To determine the final form of the expectation value of the electronic Hamiltonian with
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respect to spatial orbitals, the two-electron integral terms in (1.42) must be defined more 

carefully. Due to the orthogonality of the spin functions, this expression can be given by

N - 1  N

1=1 j>i

where m , is the spin quantum number (m s= ± |) and 6,  ̂ is the Kronecker delta, which 

equals I i f  i = j  and 0 when i A j- When converting to spatial orbitals, %, =  or i/'f, 

and thus there are four unique possibilities for the combination of spins when i A T-

[V'fV'fiV'fV'f] (1 .4 5 )

(v l;* ):  (1.46)

In (1.45), all of these integrals would give non-zero values as the spin functions would 

integrate to unity. However, in (1.46) only the first and fourth expressions would yield non­

zero values. One can see that when i ^  j  there are four possible {ii\j'j) integrals but only 

two possible {ij\ji) integrals for each set of i and j .  However, one must also consider the 

case where i = j .  Before we consider this case, it is helpful to more clearly describe these 

two different types of two-electron integrals.

The two-electron integrals, (2*|jy) and are known as the Coulomb and exchange

integrals, respectively, this expression indicates that there are two separate terms for the 

two electron integrals. Using the chemists’ notation, these integrals over spatial orbitals are

Ai\jj) = j  i^*{ri)'ipt{ri)^'ip*{r2 )'ipjir2 )dridr2 = Ĵ J (1.47)

(ub'O  =  J  ^ r (^ i)V ';(r i)^ V 'j(ra )t(',(ra )d r id ra  =  (1.48)

where and K^j are the notations for the Coulomb and exchange integrals. One gains a 

better understanding of the physical meaning of the Coulomb integrals by rewriting (1.47)
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in the following way;

Jt]= f  |^ ,(ri)|^— |(A;(ra)|^dridra (1.49)
J f'l2

The squared modulus of an orbital (or wavefunction), |i/^j(ri)p, defines the probability 

density of said orbital; hence, these Coulomb integrals describe the interaction between 

the electron density of one orbital with that of another orbital. Therefore, these Coulomb 

integrals are used to approximate electron repulsions in HF theory. However, this is the 

cause of the major source of error in the HF method. An individual electron in the HF model 

does not feel the repulsion from each individual electron, but instead experiences average 

field of smeared out electron charge from all of the remaining electrons in the system.^ 

This method of estimating repulsion energies is known as the mean field approximation. 

Calculating electron repulsions using mean field theory leads to the omission of Coulombic 

electron correlation (or simply electron correlation). The concept of electron correlation 

will be discussed in more detail later in this chapter.

As for the exchange integrals, there is no true physical interpretation of these terms. 

They are effectively a result of having an antisymmetric wave function and only occur be­

tween electrons of the same spin. Nonetheless, they are essential for an accurate description 

of a quantum mechanical system and are calculated according to (1.48).

Returning to the evaluation of the two-electron integrals when 1 = j ,  exchange is not 

possible because two electrons of the same spin cannot occupy the same spin orbital and 

exchange only occurs between same spin electrons. Electron repulsion however, is possible 

between electrons with different spins within the same orbital. Thus equation (1.44) can be 

modified for the use of spatial orbitals as follows
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N - 1  N  N/ 2  N/ 2

J ]  X I  ([^^1;;] -  =  X Z X 2 (^C^lij) -  2 (ù l i0 )  +
i=l J>1 2=1 J>2 2=1

A T /2 A T /2

=  Z  É  ( 4 4  -  2K „) +  J» (1.50)
1=1 J>t 2 = 1

In order to simplify this equation, one can remove the restriction that j  > i from the double 

summation and avoid double counting all interactions by dividing by 2. In this process, 

we effectively include the interaction between electrons in the same orbital twice, 2 but 

we also include the interaction In theory, is equal to zero, but without the spin 

component, it has the same value as as one can note by setting j  =  i in expressions 

(1.47) and (1.48). Including A',, compensates for double counting the repulsion between 

the two electrons in the same orbital. We can thus reduce the expectation value of the 

two-electron operator to

N/ 2  N/ 2  

2=1 J=1

We now have complete expressions for the expectation values of the one- and two-electron 

operators in terms of spatial orbitals. Referring back to equations (1.33) and (1.34) we can 

write the expectation value of the electronic Hamiltonian operator under the HF model as

N/ 2  N/ 2  N/ 2

2 = 1 2=1 J = 1
N/ 2  N/ 2  N/ 2

Eelec = =  2X^(«|/l|i) + X ] Z  (^(**14) -  (U|;«
2 = 1 2=1 J = 1
N/ 2  N/ 2  N/ 2

=  2 ^  Ff,. +  ^  ^  (2  (1.52)
2=1 2=1 J = 1

Here, we have used as a short hand notation for the expectation value of the one-electron 

operators.^ In this expression, we have a complete equation to calculate the electronic en­

ergy of a system with respect to its spatial orbitals while the total energy is given by (1.12).
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However, we have yet to describe how to determine these orbital functions.

1.5.1 The Hartree-Fock Equations

As the variational theorem states, the expectation value of any normalized trial wave func­

tion will always he greater than or equal to that of the true ground state wave function.^ 

Therefore, our goal is to obtain the best guess and thus the most accurate energy possible. 

Under the HF approximation, this best guess is obtained by minimizing the energy expres­

sion with respect to the spatial orbitals all the while ensuring that the determined orhital 

functions are orthonormal. This minimization problem where a set of constraints can be 

involved is solved using the Lagrange method of undetermined multipliers.^ The Lagrange 

function, jSf, is defined as the difference between a function and any constraints on said 

function scaled by a Lagrange multiplier, A. For the HF method, this is given by

N  N

^  (1.53)
1=1 j=i

Since the second term in this equation (the constraint) is equal to zero, the Lagrange func­

tion has the same minima as the energy expression. Therefore the goal is to minimize the 

Lagrange function with respect to the orbitals which in turn would minimize the energy of 

the system. When minimizing a function, one often thinks first of derivatives. In theory, 

this is very similar to what is done to solve for the molecular orbitals. However, the energy 

expression is not a function, but a functional. Unlike â function which inputs a variable and 

returns a value, a functional inputs & function to return a value. In this case, the energy ex­

pression is a functional of the molecular orbitals, which we denote as E[x{x)\ or E[f{r)]. 

When minimizing a functional, one takes a variation instead of a derivative; however, many 

of the rules such as the product rule and chain rules are similar for both methods. To locate 

a minimum, the roots of the first variation, Ô (not to he confused with the Kronecker delta.
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of the Lagrange function must be determined. Mathematically this is

N  N

=  JE -  ^  ^  =  0 (1.54)
1=1 J=1

where the term vanishes as the variation of a constant is zero.

The first variation of the energy, SE, can be obtained by performing said operation on 

equation (1.43). This yields

N   ̂ N  N

([%X,|X;X;] +  [X,<^X,|X;Xj] +  [X.X.|<^XjXj]
Î=1 1—1 J=1

+  [x ,x , |x /x ;]  -  [(^X.XjIXjX,] -  [X,<^X;|X;X,] "  [x,X#XjX,] -  [x ,X ;lx /x ,])  (1.55)

where the factor of 1/2 is used to remove the restriction (j > i) from the double summation. 

To simplify this expression we can define the Coulomb, J, and exchange operators, K,  as 

follows:

'//a:i)|x,(a:i)>  =  <x/a:3)|r{;2^|Xj(a;3))|x,(a:i)> (1-56)

.^j(a:i)|x,(a:i)) =  (x/a:3)|r{2^|x,(a:3))|Xj(a;i)) (1.57)

The operators are shown acting on a molecular orbital, %„ as it is impossible to show the 

exchange operator alone since it involves the interchange of the orbital it is acting on with 

one contained in the operator itself. Using these definitions and the fact that [JXiXilXjXj] =  

[x,<^X,|X;Xj] we can express (1.55) as

N  N

1=1 I,]
(1.58)

This simplifies to
N

JE =  ^  (((^X.I/.IX.) +  (X ,|/,|% > ) (1.59)
1— 1
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where the Fock operator, / ,  has been introduced.^ This form of this operator is given by 

fi = K  + J3 -  Kj.  By substituting (1.59) into (1.54), one then obtains

N  N  N

1=1 1=1 J = 1

Based on the properties of complex numbers, it is known that {Xi\îi\^Xt) =  {^X%\ît\x%Y 

and {Xi\5Xj) — and thus the variation of the Lagrange function can be written

N  N  N

5 ^  = Y ]  ((%!%;) +  complex conjugate =  0
2=1 2=1 J = 1
iV /  iV \

=  I h\Xi) -  5 1  K \X j )  j +  complex conjugate =  0 (1.61)
1=1 V j=i /

As this must be true for all %, and thus all 5xi, the terms enclosed in round brackets

must equal zero, which leads to the following relationship

N

fz\Xz) = ' ^ \ ] \ X i )  (1 62)
j=i

There are various sets of \ j  which minimize the energy of different state functions; how­

ever, it can be shown that one such set of the Lagrange multipliers are given by 

This reduces the HF equations to^

Âlx,) =  ,̂|%.) (1 63)

where s, is the energy of the i* molecular orbital.

To convert the HF equations for use with spatial orbitals, we use the definition of a spin

orbital (%«(æi) =  ^ j(ri)a (w i) or ^j(ri)/3(wi)), to write the HF equations as

Â(zi)V',(ri)A(wi) =  6,^ ,(ri)a(w i) (1.64)
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Multiplying both sides of (1.64) on the left by o*(wi) and integrating over the spin compo­

nent yields

(1.65)

An alternative to the previous definition of the Fock operator is the following;

p 1
f { x i )  = h{ri) +  /  X*j{x2 ) —  (1 -  ^ i 2)Xj{x2 )dx2 (1.66)

where ^ 1 2  is the permutation operator which acts to interchange the positions of electrons 

1 and 2. Substituting this definition into the left hand side of (1.65) gives

V',(ri) = J  a*{u)i)h{ri)a{uji)duji

'  p  1

^  /  a*{uji)x*ix2 ) —  (1 -  ^ i 2)Xj{x2 )a{i^i)dx2du 
j=i ''

V',(n)

M r i )  (1.67)

Using the permutation operator, to expand the final integral into two separate integrals 

and by defining the closed-shell Fock operator as

f{ri) = J  a*{ui)f{xi)a{uji)du}i (1.68)

we can rewrite the equation as

N

/(n)V',(ri) = h{ri)'ip̂ {ri) + Ÿ] f  a*{ui)x*{x2)— Xj{x2)a{( î)A{ri)dx2duJi

p 1
/  a*{ui)x*{x2)— X3ixi)a(u2)A{r2)dx2duJi  (1.69)

3 = 1

where we have used the orthogonality of the spin functions to simplify the first term on the 

right-hand side. The remaining spin orbitals must now be substituted with the appropriate 

spatial orbitals. Therefore, both sums over all spin orbitals, need to be replaced with
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two separate sums, one for ct-spin, and one for ^0-spin electrons, Y1

where each sum runs over N /2  terms. This substitution converts (1.73) to

/(r i)V ',(r i) =  h (r i)^ ,(r i)

+  ^  / a*(wi) [il}*{r2 )a*{uj2) ] — [V'j(ra)a(w2)] a(wi)^,(ri)dwidw2dra
3=1

^Np=N/2

V  / a*{uji) yj*{r2)f^*{uj2)] —  [ipj{r2)fi{uj2)]a{^^i)ipz{ri)dujiduj2dr2

VV/2 .  ^

- ^  /  a*{uji)[il3*{r2)a*{uj2)]— ['ipj(ri)a{uji)]a{uj2)'ipz{r2)dujidu2dr2
3=1

N/ 2

/ a*(cci) [V;(r2)/)*(w2)] —  [V;j(ri)/)(wi)]a(w2)i/;Xr2)dwidw2dr2 (1.70)
3=1

where the terms enclosed in square brackets are those that were substituted for the spin 

orbitals. The subsequent integration over the spin components of the expression gives

/(r i)V ',(r i) =  h (r i)^ ,(r i)+
Af/2 .  .

2 ^  / ii*j{r2 )— iij{r2 )dr2
3=1

lA.(ri)

N/2
/  V'J(ra)— i/z(r2 )dr2

3 =  1

V'j(ri) (1.71)

Using the definitions for the Coulomb and exchange operators given by (1.56) and (1.57) 

and modified for spatial orbitals by replacing all occurrences of x  and æ* with i/ and r*, 

respectively, we can reduce the spatial HF equations to

f{ri)ipz{ri) =
AT/2

M ri) +
J = l

and subsequently to the most common form

/(ri)V',(ri) =£iipz{ri) (1.73)
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1.5.2 The Roothaan-Hall Equations

It is possible to solve the Hartree-Fock equations using approximate numerical methods 

for atomic systems; ' however, this is uncommon in recent times due to the development of 

highly efficient algorithms to solve these equations for any type of system. Most commonly, 

these equations are solved using the Roothaan-Hall equations, which were developed inde­

pendently by Roothaan'^ and Hall'^ in 1951. These equations require the introduction of 

a basis set {4>u}- Instead of directly solving for the best possible functions to represent the 

molecular orbitals, we instead express the molecular orbitals, as a linear combination 

of atomic orbitals (LCAO) by
K

^  (1.74)
U=1

where are scaling coefficients indicating what portion of each basis function, is used 

in the composition of a given molecular orbital and K  is the number of basis functions in 

the basis set. These coefficients are optimized to produce the lowest possible energy for

the given system as will be discussed shortly. There are a number of predefined basis sets

which are commonly used in quantum chemistry. The details concerning these basis sets 

and how they are composed will be discussed in a subsequent section of this chapter.

Using the LCAO method to define the molecular orbitals in the spatial HF equations of 

(1.73) yields
K  K

f \  ^   ̂Cj/j(/)y) =  £j| ^   ̂ (1.75)
t/= l

The subsequent combination of these new equations with on the left gives

K  K

{4>n\f\ ^  ^ ] c-ui4*ii) (1.76)
u= l y= \

/  ^ ^ (r i) /( r i) (^ „ (r i)d r i  =  e, ^  /  ^*(ri)(?!.^(ri)dri (1.77)
i/=i y=i

This last expression is informally the Roothaan-Hall equations; however, they are more
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often presented in matrix form. To do this, we must first define a set of new matrices, the 

Fock matrix, F,  the overlap matrix, S,  the coefficient matrix, C,  and the energy matrix, 

E.^  The elements of the first two matrices are given by

= J  <l>l{ri)f{ri)(f>u{ri)dri (1.78)

S„u = J  ^%(ri)(^„(ri)dri (1.79)

while C  is simply a K  x K  matrix consisting of the coefficients, c^, and FI is a diagonal

matrix with elements that correspond to the orbital energies, e*. Using these new defini­

tions, we can express the Roothaan-Hall equations in their most common form as

E C  = S C E  (1.80)

This appears to be a simple eigenvalue problem; however, from (1.78), it can be noted 

that the Fock matrix is dependent on its own eigenfunctions, {ipi}\ therefore, this problem 

must be solved using an iterative procedure. This process is known as a self-consistent 

field method (SCF) as the iterations are continued until the molecular orbital coefficients 

or energies converge (i.e. become self-consistent).

Due to the dependence of the Fock matrix on the molecular orbitals, solving this prob­

lem is not trivial. However, in recent years, highly efficient algorithms have been developed 

to rapidly perform this SCF routine. To discuss this procedure, we first introduce the elec­

tron density, p{r), which describes the distribution of electron charge throughout a system 

as a function of the spatial vector, r.^ This density is given by

N /2

p{r) =  2 ^  (1.81)
a = l

Expanding this expression in terms of the basis introduced for the molecular orbitals yields
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JV/2

 ̂É  2 ]  =  2 ]  2 ]  (1.82)
a = l  IJ. 1/ )i u

where we have introduced an element of the density matrix, P, which is given by

N

Pnu =  2 ^  c*«c^a (1.83)
a = l

Returning to the definition of the Fock matrix given in (1.78), a more direct expression 

can be written by using the definition of the Fock operator from (1.73). With the Fock 

operator consisting of one- and two-electron components, the Fock matrix can be split into 

analogous parts defined by 77“ ’’'̂ and respectively. The matrix elements are given by 

the following expressions

I f  f 7
=  - 9  /  -f /  <()*(ri) ^  — </)^(ri)dri (1.84)

 ̂ J '> A=1

G  HU =  ‘̂ { 4> ix\^j\4'u ) —

=  2 /  0;(ri)^c^>^(r3)ri-2^^c^i<p<r(r’2)<^*.(ri)dridr2
• ' a O'

-  / 4'l{rr)^c\^(pl{r-i)r:[2M'f'2)^c„i(t>a{rx)àrxér-2 (1.85)
2  A a

Using the definition of the charge density matrix element, Pij, the expression for can 

be simplified as follows:

G HU = J ^ ^ F a c t[( /^ 2̂ |Act) -  i(/xcr|Ai/)] (1.86)
A fT

where we have used the chemists’ notation to write the two-electron integrals in short form 

over basis functions denoted by //, i>. A, and a. The Fock matrix elements can then be 

computed from
K  K

FHU =  77̂ ,/ +  2 2  2Z  ^Aa[(/̂ î |Ao-) -  \{iia\\u)\ (1.87)
A=1 (7=1
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while the overlap matrix elements, >5̂ ,̂ are determined from (1.79). Although in the deriva­

tion of the HF equations, we restricted the molecular orbitals to be orthonormal, there is no 

such requirement for the basis functions used in the LCAO procedure. Thus, the overlap 

matrix is not equivalent to the identity matrix, which would greatly simplify this eigenvalue 

problem. However, this is the approach that is employed in order to solve the problem.

The first step in the SCF method is transforming the overlap matrix, S,  to the identity

matrix. There are a few different ways of doing this but one method, known as symmetrical 

orthogonalization, involves the calculation of the inverse square root of the S  matrix. This 

matrix can be denoted as but can simply be referred to as X . ^  The properties of this

matrix are such that

X ^ S X  = 1 (1.88)

where X ^  is the conjugate transpose of X  and 1 is the identity matrix. One must remember 

that for matrix multiplication, the order of the multiplication matters. One cannot simply 

rearrange the matrices in a multiplication as one can with variables. Thus to obtain such a 

sequence in the Roothaan-Hall equations, we first multiply by X ^  on the left to give

X ^ F C  = X ^ S C E  (1.89)

Since X X ~ ^  = 1, we can insert this term anywhere in the expression since a matrix 

multiplied by the identity matrix returns the original matrix. Multiplying F  and S  by this 

term yields

[X ^FX]{X - '^C)  = X ^ S X { X - ^ C ) E  (1.90)

F ' C  = C ' E  (1.91)

where the identity in (1.88) was used to reduce the first three matrices on the right-hand 

side to 1. We have also defined two new matrices, F'  and C', given by the terms enclosed 

in square and round brackets, respectively. Obtaining the new coefficient matrix, C ,  and
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the orbital energies, of the energy matrix can be achieved by diagonalizing F ' . These 

coefficients and energies are given by the eigenvectors and the eigenvalues, respectively, 

of this diagonalized matrix. In order to obtain the true coefficients, c^ , one must consider 

the definition of the C  matrix. As it is given by C  =  X ^ ^ C ,  C  can be obtained by 

multiplying both sides on the left by X  to give

X C  =  C  (1.92)

The new set of coefficients is then used to calculate a new F  matrix and the process is 

repeated as many times as necessary to obtain results that are converged to a satisfactory 

level. One can then use the final set of coefficients to construct the HF wave function 

from the Slater determinant. With this wave function, one can determine any quantum 

mechanical observable or manipulate the wave function for electronic structure studies.

1.5.3 Open-Shell Systems

The derivation of the HF method in the previous section was for the closed-shell restricted 

HF method (RHF).^ This method is commonly used for systems in the ground state at equi­

librium geometries that contain an even number of electrons. However, for molecules with 

odd numbers of electrons, or other open-shell systems (e.g. diradicals, excited states), the 

RHF model lacks accuracy. As you may recall, in the RHF model two electrons are con­

fined to a single spatial orbital. However, consider the Hg molecule with a bond length such 

that the two hydrogen atoms are becoming non-interacting bodies. In this case, confining 

the electrons in the system to the same orhital is not an ideal definition. For systems such as 

this, or for any open-shell system, the Unrestricted Hartree-Fock (UHF) method provides a 

more accurate description of the wave function.

In the UHF method, one does not restrict the a  and /3 electrons to be in the same spatial
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orbital.^ Thus, the spin orbital, %(æ), is represented by

(1.93)
^^(r);8(w)

RHF theory requires that '0“ =  =  ih however, this restriction is not present under the

UHF model. When we expand these molecular orbitals in a basis of one-electron functions, 

the basis functions must be the same for the and orbitals; however the contributions 

of each basis function to the MO (c^ in (1.74)) need not be the same. It should be noted, 

though, that for closed-shell systems at equilibrium geometries, the UHF solution will be 

equivalent to the RHF solution as the assumption that the pair of electrons reside in the 

same spatial orbital is completely valid.

In a similar fashion to the derivation of the HF equations for RHF theory, we can derive 

a set of HF equations for the UHF method given by^

/'"(ri)V'r(ri) =  (1.94)

/^ ( r i )^ f ( r i )= e f i / ' f ( r i )  (1.95)

where the Fock operator in this case is given by

/ “(n ) = h{ri) + Y^[J^{ri) -  K^(ri)] 4 - ^  jf(r i) (1.96)
a = l  a = l

where and are the numbers of a  and electrons, respectively (an analogous ex­

pression can be obtained for by interchanging all occurrences of a  and /3). One can note 

that the first sum involves both Coulomb and exchange components as both are possible 

for electrons of the same spin, while the second sum only involves the Coulomb operator 

as exchange does not occur between electrons with different spins.

Much like the Roothaan-Hall equations which are used to obtain the molecular orbitals
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and energies for the RHF method, one can derive similar expressions for the UHF method 

which are known as the Pople-Nesbet equations. These are a set of two matrix equations 

given by

p a c »  =  (1.97)

Recall that the a-Fock operator contains terms involving the /3 electrons and orbitals, and 

thus these two matrix equations are codependent. Thus, one must solve these two equations 

simultaneously in order to obtain the UHF molecular orbitals and energy.

In addition to the UHF method, for open-shell systems, one can also use the restricted 

open-shell HF method (ROHF).^  ̂ This approach uses doubly occupied spatial orbitals 

where possible and then singly occupied orbitals wherever necessary. This approach is 

not as common as the UHF method as it is more difficult to implement as well as the fact 

that the UHF is also used for some closed-shell systems.

1.6 Basis Sets

It was discussed earlier that to solve the HF equations, one often expands the molecular 

orbitals in a linear combination of atomic orbitals. These atomic orbitals comprise the 

basis set for the system. In theory, one can use any type of basis function that satisfies the 

boundary conditions of the problem; however, some are more appropriate than others.

There are many basis sets that are predefined in the literature that are most often 

comprised of Gaussian type orbitals (GTO). These are of the form rjx^y^ w h e r e  

i + j  + k = I, the angular momentum quantum number, ry is a normalization constant, and 

a  is the exponent controlling the radial distribution of the function. In some cases. Slater 

type orbitals (STO) of the form are used; however, GTOs are preferable as

integration over these functions is far easier. In a minimal basis set, a single basis func­

tion is used to represent every orbital for a given atom. For example, when dealing with 

a hydrogen or helium atom, the basis set would consist of a single basis function repre­
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senting the Is orbital, whereas for the atoms lithium through neon, one has a total of five 

basis functions (Is, 2s, 2p^, 2py, and 2p^). The electronic configuration is ignored when 

considering the number of orbitals for a specific atom. Thus, although Be has an electronic 

configuration of Is  ̂ 2s ,̂ a minimal basis set for the Be atom would still contain functions 

for the three 2p orbitals. The most commonly used minimal bases are those of the STO-nG 

set developed by Pople. These basis sets consist of a set of n contracted Gaussian functions 

which are used to approximate an STO. For example, a Is orbital, in an ST0-3G basis 

set is given by

(f>̂ (̂r) = di(/>i(r) + d2(p2 (r) + d3(f>3 (r) where ^*(r) =  r/e""*''" (1.98)

where d, is a contraction coefficient defining the contribution of each Gaussian to the full 

basis function, When contracted basis sets are used, the contraction coefficients are 

predefined and the contribution of 0̂ ® is controlled entirely by a single coefficient, c. There­

fore, to represent a molecular orbital for a beryllium atom using an ST0-3G basis set, one 

would have the following:

ijjBe =  -f C2(fP‘̂  + C3<̂ ^̂  +  ■+ (199)

where the coefficients cy would be determined through an SCF procedure for each molecu­

lar orbital and each 0“ is given by a form analogous to (1.98).

As valence orbitals are often those that participate in the bonding of molecules, these 

orbitals are often represented by more than a single orbital. Such basis sets are referred to 

as split-valence. Bases employing two basis functions to describe each orbital are referred 

to as split valence double-zeta (DZ), those employing three functions per valence orbital 

are split valence triple zeta (TZ) basis sets, etc.^ In these cases, the core orbitals are still 

represented by a single basis function but as in the STO-nG bases, they are often comprised 

of a linear combination of contracted Gaussians. However, one can have a case where the
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core is also split into the same number of functions as each valence orbital. In these cases, 

the basis sets are simply denoted as double-zeta, triple-zeta, etc.

Two of the most common types of bases are split valence and are known as the Pople 

basis sets and the Dunning’s correlation consistent basis sets.^ '̂ ’̂  ̂We will denote the Pople 

basis sets as k-lmG (DZ) or k-lmnG  (TZ) where k denotes the contraction of the core 

orbitals, while the indices I, m,  and n, denote the contraction of each basis function for the 

split valence, and G simply indicates that Gaussian functions are employed. For instance, 

the 3-2IG basis set uses a contraction of 3 Gaussians to describe each core orbital, and 

is a split valence DZ basis where the first basis function describing the valence is given 

by a contraction of two Gaussians, and the second basis function is described by a single 

Gaussian primitive. Similarly, the 6-31IG basis is a split valence TZ basis with a set of 

3, 1, and 1 Gaussians for the three basis functions describing each valence orbital and a 

contraction of 6 functions for the basis functions describing the core orbitals.

For different types of systems, one might prefer to add different types of Gaussians 

to obtain a more accurate description. For example, in anionic systems, where electron 

densities tend to be more dispersed, it is common to add diffuse functions to improve 

accuracy. These diffuse functions account for electron density in far out regions and are 

denoted by -t- symbols. Thus, the 6-311G basis set with diffuse functions on heavy atoms 

(all but H and He, which are the light atoms) would be denoted 6-311-t-G while the same 

basis with diffuse functions on both heavy and light atoms is given by 6-311++G.

Similarly, it is common to use functions of higher angular momenta, £, than are nor­

mally associated with a particular atom. For example, one could add a set of d-orbitals 

to a carbon atom to more effectively describe the system. These higher angular momenta 

functions are referred to as polarization functions and their notation is similar to that of 

the diffuse functions. For polarization functions on heavy atoms, one can write 6-311G(d) 

which indicates the addition of a set of d-orbitals to each heavy atom, or 6-31 lG(d,p) refers 

to the addition of a set of d-orbitals to heavy atoms and a set of p-orbitals to the light atoms.
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In older literature one might see these notations given by 6-31 IG* and 6-3IIG**, respec­

tively. However, one can add any type of polarization functions such as 6-311G(3df,pd) 

where 3 sets of d-orbitals and 1 set of f-orbitals are added to the heavy atoms while 1 set 

of both p- and d-orbitals are added to hydrogen and helium atoms. Thus, the first number 

in brackets refers to the polarization functions added to the heavy atoms and the number 

after the comma (if present) refers to those added to the light atoms. It is quite common 

to use both diffuse and polarization functions in a basis set and this can be indicated by 

6-311++G(d,p).

We previously mentioned the Dunning’s correlation consistent (cc) basis sets. These 

bases are denoted by cc-pVXZ where pV refers to polarization of valence orbitals, and 

XZ refers to the level of valence splitting (i.e. DZ, TZ, etc). These basis sets are often 

used in extrapolation schemes as they were designed to converge to the complete (infinite) 

basis set limit. There are also augmented versions of these bases which are denoted by 

aug-cc-pVXZ where the augmentation refers to the addition of diffuse functions.

Any type of basis set can be used in a quantum chemical calculation; however, the 

quality of the basis is reflected in the accuracy of the results. Nonetheless, when performing 

a calculation, one can define their own basis set, modify an existing basis set, or simply use 

one of the many predefined basis sets that are included in the many programs that perform 

quantum mechanical calculations.

1.7 Correlation and Correlated Methods

It was mentioned in a previous section that the Hartree-Fock method does not account for 

Coulombic electron correlation. Instead, it considers repulsions between electrons in an 

average way rather than accounting for interactions between individual electrons. The HF 

method does, however, include what is known as Fermi correlation which is neglected in 

the Hartree method. * This correlation is included as the Pauli exclusion principle prohibits 

two electrons with the same spin from occupying the same spatial orbital. Thus, as the HF
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method satisfies the Pauli principle, there is a small region of space, known as the Fermi 

hole, surrounding an electron where there is zero probability of finding another electron of 

the same spin.

However, when most theoreticians refer to electron correlation, they are referring to the 

Coulombic type. For this reason, we will simply refer to Coulombic correlation as corre­

lation for the remainder of this thesis. The omission of this correlation between electrons 

in the HF model leads to erroneous results that represent approximately 0.5-1.0% of the 

total electronic energy of the system. ' One might scoff at an error of only 1%; however, it 

has been noted that this error is often on the same order of magnitude as reaction energies. 

Consider the example of the dissociation of CI2 . The true bond dissociation energy is 239.3 

kJ/mol; however, at the HF/6-311+G(d) level of theory, this energy is predicted to be 50.27 

kJ/mol. This represents an error of nearly 80%. Thus, although the correlation energy may 

only be as low as 1.0% of the total system energy, this error causes major problems in 

determining the energies of chemical reactions.

To overcome the deficiencies in the HF model, methods which include electron corre­

lation have been developed and due to the expanding capabilities of modem technologies, 

such calculations are becoming feasible for increasingly large systems. Many of the tradi­

tional correlated methods are not employed in this study due to the availability of simpler 

models with equivalent accuracy; however, we will give a brief mention of these theories 

to show how eorrelation is included.

Hartree-Fock theory is considered the standard for a non-correlated method. Thus, 

Lowdin defined the correlation energy, Ecorr  ̂ for a system as the difference between the 

exact non-relativistic energy, Eexacu and the energy at the HF limit, E h f -̂  ̂ This is ex­

pressed by

Ecorr ~  E^xact Ej{p (1.100)

Many correlated models are known as post-Hartree-Fock methods as they incorporate the 

HF wave function but add corrections at the end to account for the electron correlation.
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These methods include the commonly used Moller-Plesset peiturbative theory (MPPT: 

MP2, MP3, MP4, etc.),^° configuration interaction (CI),^' and coupled cluster (CC)^  ̂tech­

niques. Each of these methods accounts for correlation in different ways; however, they all 

incorporate excited state determinants in addition to the HF ground state wave function to 

include correlation effects. It has long been noted that correlation often pushes electrons 

farther apart and thus the inclusion of these excited states accounts for this by allowing 

electrons to increase their separations.

Density functional theory (DPT) is becoming one of the most popular correlated meth­

ods today due to its lower computational cost compared to the aforementioned theories.  ̂

Unlike MPPT, Cl, and CC, as well as HF, DFT is not a wave function based theory. In­

stead, it uses the electron density, p{r), to determine the energy of a s y s t e m . D F T ,  

as the name suggests, employs functionals to determine each of the energy components. 

The functionals for the kinetic energy, electron nuclear attraction energy and electron re­

pulsions in a mean field are used for all types of DFT methods; however, the functional 

that accounts for exchange and correlation takes many different f o r m s . T h i s  functional 

often contains empirical parameters obtained by fitting results to extensive sets of exper­

imental data. Nonetheless, with careful parameterization, one can obtain highly accurate 

results from DFT. Finally, since DFT simplifies a wave function problem which contains 

?)N coordinates to one involving the density and thus only 3 coordinates, this simplifica­

tion greatly reduces computational times and is one of the major reasons that its use is so 

widespread today.

MPPT, Cl, CC, and DFT all have one thing in common: they account for correlation 

implicitly. A separate class of correlated methods are those that are explicitly correlated 

and these are the methods that have been employed throughout this research project. These 

explicitly correlated methods were first described in the seminal paper by Hylleraas in 

1929. In this paper, Hylleraas included a linear ri2 term in the wave function of the helium 

atom. In 1957, Kinoshita reported the development of a similar wave function with this
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same form of explicit correlation.^^ Each of these methods will be discussed in more detail 

in the results and discussion chapters of this thesis. In recent years, explicit correlation 

has been developed further and is often combined with the previously mentioned implicitly 

correlated methods to improve the results. These combined methods are referred to as the 

R12 methods (e.g. MPPT-R12).^^’̂ ^

1.8 Two-Electron Probability Distributions

From the solution of the Schrodinger equation, whether it is through exact or approximate 

methods, one obtains the wave function. The wave function contains all of the information 

required to physically describe a system, but one cannot visualize such a function. It simply 

requires too many dimensions to be plotted in any discernible form. Therefore, the function 

is often manipulated to a form which can be displayed.

1.8.1 The Electron and Pair Densities

In the discussion of the Roothaan-Hall equations, the electron density, p(r),  was briefly 

introduced. It is one of the most common probability densities as it provides information 

regarding the distribution of electrons within a system. A more rigorous deflnition of the 

electron density is given by

p[r) = N  J  ■■■J ■ ■ ■ ,rjv)^'(T’,r 2 , . . .  ,rAr)dr2 . . -driv (I.IOI)

One can see that this density is obtained by integrating the squared modulus of the wave 

function over all but one of the electronic coordinates. Integration of the resulting density 

over the angular components of r

p{r) = J  p{r)dür  (1.102)
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Figure 1.1: Spherically averaged a) electron density, and b) pair density, for the ground state o f  He.

where dür  denotes the integration over the angular components of u,  yields the spherically 

averaged electron density, p(r), which is easily represented in two-dimensions. An example 

of this density is provided in Figure 1.1 along with the spherically averaged pair density, 

p{ri,r2), which will be discussed shortly. In some instances, p{r) is plotted despite the 

requirement for four-dimensions. This fourth dimension is obtained either through the use 

of colours to denote different values of the density, as in electrostatic potential maps, or by 

plotting specific values (slices) of the density as a function of the three spatial coordinates. 

The latter method will be employed in Chapter 5 when exploring electron densities of 

molecules in an analysis of the effects of adding polarization functions to basis sets.

More useful than the electron density is the pair density, p{rx,r2 ). Similar in nature 

to the electron density, it is obtained from the squared modulus of the wave function while 

integrating over all but the first two electronic coordinate vectors as shown below. '

p ( r i , r 2 ) =
N { N - 1 )

J  ■■■ J  ^ * ( r i , r a , r 3 , . . . , r r f )

X ' ^ { r i , r 2 , r 3 , . . .  , V N ) d r s  . .  . d v N  (1 .1 0 3 )

As this density depends on the coordinates of two electrons, the pair density requires seven 

dimensions for graphical representation. As this is not possible, the most common sim-
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plification is to integrate over all angular components of the r i and rg vectors to obtain 

p(n , 2̂). This density is highly useful as, unlike the electron density, it provides informa­

tion regarding the simultaneous distances of two electrons from a reference point. Since 

the majority of chemistry is dependent on interactions between pairs of electrons, this den­

sity provides useful insight into electronic behaviour. However, ideally one would like to 

explore the full pair density including angular components to not only know how far elec­

trons are from the nucleus, but also where they are in position space. This deficiency has 

led to the development of many probability densities, which are obtained by manipulating 

p(ri, T2 ) in order to obtain different pieces of information regarding electronic structure. 

Some of these densities will be discussed in this chapter, while development of new densi­

ties will be detailed throughout the results and discussion chapters of this thesis.

1.8.2 Intracule Densities

Although the spherically averaged pair density, p (ri,r2), provides positional information 

regarding two electrons simultaneously, due to the required integration of the angular com­

ponents, no information is obtained regarding the distance between the two electrons. 

However, as previously mentioned, this information is contained in the full pair density 

p(ri, rg); the only question is how to manipulate the function in order to obtain it.

The variable describing the separation of electrons is the interelectronic coordinate vec­

tor u.  This vector is given by

t t  =  r i 2  =  r i  -  r a  (1 .1 0 4 )

while the scalar « is simply the length of the u  vector (i.e. u =  |r i — ra|. Using this

information, a probability density containing u  can be obtained from the pair density by

I{u) = j  J  p{r-i_,r2)ô{u -  {ri -  r2))dri_dr2 (1 .1 0 5 )

where 5(x) is a three-dimensional Dirac delta function. This function acts by substituting
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Figure 1.2: The intracule density, P{u), of the ground states of the a) He atom, and b) Be atom. 

u for vi in this expression through the equality, w — (ri -  rg) =  0. This yields

I{u) = J  p(r +  u , r)dr (1.106)

As this expression contains a single electron position vector, V2 , this variahle is replaced 

by a general position vector, r.  In each of these expressions, I{u)  is the position intracule 

density, which describes the probability of finding two electrons separated by the vector 

u.  Most often, the position intracule is integrated over the angular coordinates to obtain 

the spherically averaged position intracule, P{u). This spherically averaged density is often 

calculated directly from the pair density or equivalently from the squared modulus of the 

wave function by

-2dfî„P{u) = J  J  p{rx,r2 ) S { u - \ r i - r 2 \)dridr2

= J  |^ '(ri,r2, ■ ■ ■ ,rjv)p5(w -  k i  -  r2|)dridr2 .. .drivdfî„ (1.107)

As we will only be dealing with P{u) throughout this thesis, it will simply be referred to as 

the position intracule, or in some cases, the intracule, unless specification is required. This 

density, as shown in Figure 1.2, is highly informative as it provides information regarding 

the separation of electrons in chemical systems. The intracule has been studied intensively
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Table 1.2: Variously commonly studied intracules
Intracule Notation Description of Probability
Wigner W(u, v) Electrons having separation of, u and relative momenta, v
Position f (u ) Electrons being separated by a distance, u.
Momentum M{v) Electrons having relative momenta, v
Dot54,55 D (z) Electron pair with x = u  ■ v  = u v  cos[0]
Action A{w) Electrons having scalar product w — uv

since its development in 1961 by Coulson and Neilson.^^* These intracules are often 

compared for different chemical systems or in systems treated with and without correlated 

models to determine the effects of electron correlation on interelectronic distances.

There are a number of other types of intracules that have been studied over the years. 

These include densities describing the relative momentum variable, v = \p\ — p^\ (where 

Pi is the momentum vector for electron i), and others which combine position (u) and 

momentum variables. A list of commonly studied intracules is given in Table 1.2.

It should be noted that the Wigner intracule is a quasi probability density. This density 

provides information regarding both the momentum and position of electrons despite the 

fact that the Heisenberg uncertainty principle states that we cannot know both parameters 

simultaneously with high accuracy. Each of the intracules listed here provides valuable 

information for comparing properties of electrons simultaneously and they continue to be 

studied today.

1.8.3 The Extracule Density

The position intracule provides information regarding the separation of electrons; hence, it 

provides relative position information; but the question remains, where in space do these 

electrons reside? This question can be answered by the extracule density which is a function 

of the centre-of-mass vector, The centre-of-mass vector (R)  and scalar (R) of two
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electrons with position vectors r \  and rg with the nucleus fixed at the origin are defined as

R
r i +T2 r i +  rg (1.108)

Unlike the intracule where the position of electrons in space is unknown, the extracule does 

provide information as to where they reside by providing the absolute position information 

through the centre-of-mass coordinate. The determination of the spherically averaged ex­

tracule, E{R),is  similar to that of the position intracule and can be given by

E{R) = J j  p{rI, r 2 ) S { R - ^ \ r t  + r 2 \)dridr' (1.109)

where the only difference lies in the different form of the one-dimensional Dirac delta 

function. One can also derive a form dependent on the vector R  as shown previously with 

the intracule, but again, these forms are generally not used in analyses.

Extracules are not investigated as often as intracules; nonetheless, they do provide an­

other unique way of studying electron pairs (Figure 1.3). Neither the intracule, the extrac­

ule, nor any of the other densities that have been discussed thus far are complete in nature. 

Due to the complexity of a problem involving two electrons, there will always be some 

information which is averaged over (through integration) in order to provide a graphical

a) E(R) b)
E(R)

4.0
1.20

3.0

0.80

2.0

0.40
1.0

J- R (a.u.) j- R (a.u.)

Figure 1.3: The extracule density, E{R), of the ground states of the a) He atom, and b) Be atom.
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representation of the information. Nonetheless, by manipulating the wave function and 

pair densities in specific ways, one can gain valuable information regarding electron struc­

ture. The discussion of this thesis will involve the development of new densities in order to 

provide different perspectives of the information contained in the wave function.

1.8.4 The Coulomb Hole

As previously noted, due to the use of the mean-field approximation in the Hartree-Fock 

method, the effects of electron correlation are neglected. In 1961, Coulson and Neilson 

published a now famous paper detailing not only the previously described, position in­

tracule, P{u), but also the Coulomb or correlation hole. This Coulomb hole is the result 

of the difference between position intracules obtained from exact (i.e. correlated) and HF 

wave functions as given by

AP(u) =  -  P^^{u)  (1.110)

The Coulomb hole demonstrates the effect that correlation has on interelectronic sepa­

rations in a system. From the figure of the Coulomb hole (Figure 1.4), the initial negative 

region followed by the positive region indicate that correlation decreases the probability 

that electrons will be close together. Therefore, it is concluded that by allowing in­

dividual electrons to "see" one another, they are pushed further apart. This suggests that the 

mean field approximation underestimates electron repulsion energies in chemical systems.

1.8.5 The Secondary Coulomb Hole

It was long believed that the effects of correlation on interelectronic separations were ac­

curately described by a universal contraction of electrons. However, in 2009, Pearson et 

al. described a new phenomenon that they referred to as the secondary Coulomb hole.^* In 

this work, the correlation hole was analyzed at large values of u (i.e. where the function
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Figure 1.4; The Coulomb hole and the secondary Coulomb hole (inset) for the ground state of He atom.

approached zero) through the use of highly accurate HF and correlated wave functions. 

They detected the presence of a secondary negative region in the correlation hole (Figure 

1.4). This phenomenon had been noted before but it had been considered to be an artefact 

of inaccurate wave f u n c t io n s .H o w e v e r ,  these researchers demonstrated that the sec­

ondary Coulomb hole did not occur with the less accurate HF wave functions, but instead 

only became evident as the accuracy of the wave functions increased.

The occurrence of this secondary Coulomb hole suggests that correlation decreases the 

probability that electrons will be far apart. This is counterintuitive as previous evidence 

suggested that correlation universally pushed electrons further apart. This idea has been 

behind the development of correlation methods such as configuration interaction (Cl) which 

incorporates higher energy orbitals to allow for the electrons to separate further than a 

HF treatment would allow. Furthermore, it is commonly stated in introductory text books 

describing quantum chemistry that correlation increases interelectronic separations.^^

Since the seminal paper on this topic, there have been reports detailing the secondary 

Coulomb hole in different systems including the H2 molecule and the fictional system de­

scribing two electrons confined to the surface of a sphere (spherium).^^ These systems will 

be discussed in more detail throughout this thesis as we provide more evidence regarding 

this newly discovered effect.
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1.9 Project Goals

The focus of the first half of this research project is two-fold. First of all, we aimed to 

develop new tools for the analysis of electronic structure. The motivation for the develop­

ment of these tools was to gain a further understanding of the secondary Coulomb Hole 

with the hopes of determining its exact origin. We examined various methods in an attempt 

to explain the source of this phenomenon including the development of a new probability 

density, the study of fictional two-electron systems with varying differences from real two- 

electron systems, and finally the study of the relationship between the size of the secondary 

hole and the properties of the particular system.

As previously mentioned, the intracule density provides relative position information. 

Thus, it contains information concerning how far apart two electrons are within a system, 

but it affords no details regarding where the electrons are in the system with respect to the 

nucleus. The extracule density does provide this absolute position information but is lack­

ing in terms of interelectronic separation data. Thus, it is obvious that a probability density 

that could provide both relative (intracule) and absolute (extracule) position information 

would be highly beneficial. This novel probability density, which we have coined the in- 

tex distribution, was to be determined for a series of atomic systems in order to provide a 

greater understanding of the secondary Coulomb hole.

There are a number of fictional systems that have been studied through the use of quan­

tum mechanics to determine how they relate to real systems. Two such systems, are the 

Hooke’s Law atom, or hookium, and ballium. Hookium is analogous to the helium atom 

being a two-electron system; however, the two electrons are bound to the nucleus by a har­

monic potential instead of the more physical Coulombic potential. Ballium, on the other 

hand, has a constant or zero potential inside the sphere. By modifying the state of exis­

tence of these nuclear potentials, we can determine what role, if any, the nucleus plays in 

the existence of the secondary hole.
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Finally, we examined the size, or strength, of the secondary hole to determine whether it 

could be related to a measurable property of the HF intracule. This relationship was studied 

for the helium isoelectronic series with respect to properties related to the diffuseness of 

the electron density.

In a related electronic structure study, we analyzed the effects of polarization functions 

on interelectronic separations. Much like the recently observed secondary Coulomb hole, 

it had been noted in a recent paper that the introduction of polarization functions into a 

basis set led to an overall contraction of electron pairs. We aimed to determine the origin of 

this effect by conducting more thorough analyses involving intracules, energy components, 

and electron densities.

Deviating from electronic structure studies, the second part of this research project 

focussed on the development of a reaction optimization program. This introductory chapter 

did not contain information directly aimed at this project; however, all of the discussion 

regarding QM methods and calculations is pertinent. A more detailed description of the 

theory will be discussed in the chapter describing the project which should be more than 

sufficient for the required understanding of the reader.

The idea behind this project was to create a program with the capability to optimize 

any chemical or biochemical process. The concept was to target a functional site within 

a reactant complex such as a drug or drug precursor, which could he optimized to make 

the drug work more efficiently or make it easier to synthesize. The foundation for the 

optimization is to superimpose a large series of functional groups at this one site in the 

molecule. The algorithm would then sort through this set of functional groups to determine 

which one would be best in order to optimize the specific reaction process with respect 

to reaction or activation energies. The goal of this program is not to be a stand-alone 

system, but to work in conjunction with experimental chemistry to streamline these types 

of processes.
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2 A Simultaneous Probability Density for the Intracule 

and Extracule Coordinates

This chapter was reproduced in part with permission from Proud, A. J.; Pearson, J.K. J. 

Chem. Phys. 2010,133, 134113. Copyright 2010, American Institute of Physics.

2.1 Introduction

In the previous chapter, we discussed the intracule, P{u), and extracule, E{R),  densities 

which describe the distribution of electrons within a system with respect to the interlec- 

tronic separation variable, u, and the centre of mass radius, R. These densities, especially 

the intracule, are highly useful in the study of electronic structure and in determining the 

effects of electron correlation. The previously mentioned Coulomb hole, which again is 

given by

A f  W  =  (2.1)

was initially used to show that correlation causes electrons to separate; however, the sec­

ondary Coulomb hole that was discovered by Pearson et al. elucidates a richer behaviour of 

electronic structure differences between the HF and correlated models. This secondary hole 

indicates that at large interelectronic separations, correlation actually leads to a contraction 

of the electron pairs. This counterintuitive effect requires further study to be properly un­

derstood and in the present chapter as well as the following two chapters, data will be 

presented which sheds more light on the origins of the secondary Coulomb hole as well as
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evidence suggesting the potential cause of the effect.

It would be invaluable to know more about the spatial distribution of electrons in the 

case that correlation causes a contraction of their distribution. This information is impos­

sible to obtain from the spherically averaged intracule density alone, as it only measures 

relative distances between electrons and not their absolute location. The location of 

an electron pair however may be probed using its centre of mass vector A  =  ^(ri 4- rg) 

described by the extracule density, and thus it would be advantageous to develop a 

simultaneous probability density for both of these coordinates. In the current work, we 

will be concerned with deriving such a density for the ground state of the helium atom 

and helium-like ions. Thus, we need only consider the radial component of the extracule 

coordinate R — | | r i  -I- r 2 | due to the spherical symmetry of such systems.

The simultaneous probability of finding two electrons separated by a distance u and 

with their centre of mass located at R  is described by

X{R ,u )  = {<b\ô{R -  | | r i  + r 2 \)ô{u -  jn  -  (2.2)

where ^  is the wave function and 5{x) is a one-dimensional Dirac delta function. Because 

this density combines both relative (intracular) and absolute (extracular) position infor­

mation to more completely describe the spatial distribution of electron pairs, we refer to 

X {R ,u )  as the intex density.

As this chapter will involve a great deal of interpretation with regards to the R  and u  

coordinates, these vectors as well as those describing the positions of electrons 1 and 2 are 

represented graphically in Figure 2.1.

The purpose of this chapter is to introduce the intex density and subsequently deter­

mine the intex correlation holes of the ground states of the helium atom and helium-like 

ions, defined as the difference between the exact and HF intex densities. This provides the 

opportunity to obtain a deeper understanding of the phenomenon of electron correlation;
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Figure 2.1: Schematic representation of a two-electron atom with electronic coordinate vectors ri, t’2 , R. 
Z  indicates the nuclear charge at the origin.

more specifically, it will allow for a more complete description of the secondary Coulomb 

hole,^^’̂  ̂which demonstrates the high utility of this novel probability density. Atomic units 

are used throughout.

2.2 Hartree-Fock Intex Density

For an ^-electron (N  > 2) system, the pair density

p{ru  t-2) =  -  ri)ô{r’2 - (2.3)

gives the probability that one electron will be found at r i and another at V2 simultaneously. 

As mentioned in the previous chapter, one can obtain the intracule and extracule densities 

from p (r i,r 2) by

P{u) = J j  J p{r i , r 2)0 { u - [ r i - r 2] )dr idr 2 dClu (2.4)

and

E{R) = j  J j  p{r-i,r2) S { R - l [ r i  + r 2] )dr idr 2 d n R  (2.5)

respectively, where dfîi denotes integration over the angular components of vector i.
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Similarly, one can also obtain an expression for the intex distribution directly from the 

pair density by

X{R ,u )  = J  J  j  J  p{'r'i,r2) ô { R - l [ r i + r 2] ) ô { u - [ r i - r 2] )dr idr 2 dnuàOR.  (2.6)

and subsequent integration over the R  and u variables will yield the intracule or extracule 

density, respectively, as shown below

poo
I  X ( R ,u )  dR = P{u) (2.7)

Jo

/•oo
/  %(A,u)du =  E(E) (2.8)

Jo

If the two-particle density is obtained from a restricted HF wave function for a closed shell 

system, the intex density may be expanded as

K

u) =  ^  (/rz/A(T)x, (2.9)

where represents the usual HF two-particle density matrix element, ' which is ob­

tained from the density matrix elements, of (1.83), by

T/ji/Aa =  -  {‘̂Pfii/Pxa — PfiaPxv) (2.10)

and {nuXa)x are the intex integrals over atomic orbital basis functions denoted by fi, u. A,

and a. These integrals are given by

i f  ' li  7 /  77 7 i
(/ii/Acr)x =  y  J  —)(t),y{R— —)(j)*x{R+—)( l)a{R+-^)d fludflR  (2.11)

For the concentric cases of two-electron systems where all of the basis functions are
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Gaussians of s-type symmetry, equation (2.11) may be integrated analytically as

(ssss)x =  ^  -  7 ~  '5)1 p , i 2 )
Ru{a + p — J  -  0 )

where a, /3, 7 , and 5 represent the exponents of the Gaussian functions and sinh(æ) is the 

hyperbolic sine function. Alternatively, one may pursue other forms for 4> such as Slater 

functions to enforce the nuclear-electronic cusp conditions; however, these are significantly 

more difficult to implement and have been shown to have a minimal effect on intracules 

when compared to an appropriately chosen set of Gaussians. Thus far, only calcula­

tions of intracules involving s-type Gaussians have been performed; however, determining 

these intex integrals for p- and d-orbitals would be of great interest to be able to calculate

intracules for larger atoms and molecules. Although, this chapter will highlight the use of

the intex distribution to develop a greater understanding about the features of the Coulomb

hole, it must be stressed that this probability density presents a novel way of describing

electron pairs in atomic and molecular systems.

In order to construct accurate HF intex distributions, we employed a series of even- 

tempered basis sets proposed by Schmidt and Ruedenberg,^^ which utilize Gaussian prim­

itives with exponents given by

Cfc =  (fc =  1 ,2 , . . . ,  A'), (2.13)

where,

InlnP = bln K  + b', (2.14)

and

Ina =  aln(/? — 1 ) -I-a'. (2.15)

The coefficients (a, a', b, b') for all atoms from helium through argon are available in the 

literatureand thus, it is straightforward to construct a basis set containing any number of
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Figure 2.2: a) HF intex density of the helium atom, b) Correlated intex density of the helium atom. Con­
tours have magnitudes of 5n x 10“ ,̂ where n=l,2,3,...,20.

Gaussian functions, K.  Coefficients for the atomic orbitals were then determined using the 

Q-CHEM package.

We have calculated X^^{R, u) with basis sets up to =  40 and found that the largest of 

these is satisfactorily converged for the purposes of this investigation. This is demonstrated 

by comparing the K  = 39 and K  = AO intex densities and calculating the maximum 

difference between the two as max„>o, r>o {R, u) -  (i?, u)\ = 1.0 x 10“ ,̂ which

we interpret as a measure of the maximum basis set incompleteness error (BSIE) in the 

K  — 40 intex density. This level of accuracy is more than sufficient to study fine correlation 

effects at large values of

The HF intex density for the ground-state of the helium atom is shown in Figure 2.2a. 

The distribution has a global maximum at u =  0.891 and R  =  0.446 and monotonically 

decays in all directions away from it. Interestingly, one can see that the distribution is 

symmetric about then = 2R line.

Inspection of equation (2.12) reveals that X^^{R,u)  =  X^^{u/2,2R),  confirming 

that the distribution is exactly symmetric. This demonstrates a rigorous relationship be­

tween the HF intracule and extracule densities for spherically symmetric systems in ac-
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Table 2.1: Coordinates (i?max, ^max) and magnitude of the maxima in the HF and correlated 
intex densities for the helium isoelectronic series.

HF Exact
Ion Z (^max) T/'max) ^{Rmaxi T̂ max) (-Rmax) Tfmax) ^  ( Rmax 1 Ttmax )
He 2 (0.446, 0.891) 1.031 (0.468, 0.978) 1.045
Li+ 3 (0.282, 0.564) 2.680 (0.290, 0.598) 2.711
Be^+ 4 (0.206, 0.413) 5.099 (0.210, 0.430) 5.147
B3+ 5 (0.163, 0.325) 8.291 (0.165,0.336) 8.355
q 4+ 6 (0.134, 0.268) 12.253 (0.136, 0.275) 12.334
N5+ 7 (0.114, 0.228) 16.987 (0.115, 0.234) 17.084
q 6+ 8 (0.099, 0.199) 22.492 (0.100, 0.203) 22.605
F7+ 9 (0.088, 0.176) 28.769 (0.089, 0.179) 28.898
Ne»+ 10 (0.079, 0.158) 35.817 (0.079, 0.160) 35.962

cordance with the isomorphisms for intracule and extracule densities reported in the liter­

ature. From an empirical relation, Koga found the approximate isomorphism d{R) = 

8h{2R) for the spherically averaged extracule and intracule d e n s it ie s ,w h e r e  d{R) =  

E^^{R){47rR‘̂ y ^  and h{u) = (u){4nu^)~^. Romera later confirmed that this expres­

sion was exact for systems with two-electron densities of even parity. Integrating our 

intex distribution (2.12) appropriately (equations (2.7) and (2.8)) provides a simple alter­

native derivation for this isomorphism.

In addition to the ground state of the helium atom, we have computed the HF intex 

densities for the ground states of the helium-like ions with atomic numbers Z  =  3 to 10. 

As in several previous studies of this s e r i e s , t h e  hydride ion, H“, was omitted due 

to the difficulty in obtaining adequately converged results. As expected, the maxima in 

the intex densities shift to lower values of R  and u as the charge on the ions increased. 

The coordinates and magnitude of the maxima in the intex densities are listed in Table

2.1. Despite the contraction towards the origin, the intex density for each ion of the He 

isoelectronic series is qualitatively similar.
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2.3 Correlated Wave Fimction/Intex Density

In a previous paper, Pearson et al. employed explicitly correlated wave functions of the 

Hylleraas type^  ̂ to produce correlated intracules and the corresponding Coulomb holes. 

Unfortunately however, variationally optimized exponents and coefficients of the Hyller­

aas expansions are not available in the literature for all of the ions in the isoelectronic 

series presented here and thus we have also explored a series of explicitly correlated wave 

functions based on those first described by Kinoshita in 1957:^*

T2) =  ^  c, j  0 ^  '  . (2.16)
Z=1  ̂ '

where s, t, and u are the Hylleraas coordinates defined as

s =  |n | +  |r2| t = \ r i \ - \ r 2 \ u =  |ri -  r2| (2.17)

and the exponents, and n, are non-negative integers. These exponents, along with

the nonlinear parameter (, and the linear parameters c, may be variationally optimized and 

this has been reported previously for a variety of expansion sizes, K.  The Kinoshita wave 

function employed here uses half-integer powers, which was demonstrated to significantly 

improve the accuracy of the expansion. Using an expansion of K =  100 terms, the 

wave function reproduces an energy for the ground-state of the helium atom to within 

1 picohartree (pEh) of the exact value which exceeds the accuracy of the previously 

reported Hylleraas wave functions.

With the u variable already incorporated into the wave function, the extracule variable, 

R, may be related to these expressions by the equality

(2 .18)
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Switching from Cartesian coordinates to Hylleraas coordinates and integrating over the 

three external angles {Or , requires the inclusion of the Jacobian resulting in the

following

d n d r ,  - ,  (2.19)
V  + V? —

Substituting this equality into (2.6) where the pair density is obtained from the Kinoshita 

wavefunction (expressed in terms of R, t, and n) and integration of the resultant expression 

over t affords the intex density. These expressions were integrated numerically using the 

built-in numerical integrator in the Mathematica package.

Figure 2.2b illustrates the intex density obtained using the 100-term Kinoshita wave 

function. Although, as in the case of HF, the correlated intex density appears symmetric 

about thQU = 2R line, close inspection of (2.16) shows that the intex density obtained from 

these correlated functions will not possess this exact symmetry. This asymmetry is more 

clearly evident in the intex correlation hole {vide infra) and in the data provided in Table

2.1. From this data, it is clearly seen that, in addition to other effects, correlation causes a 

deviation in the maxima from this line of symmetry.

2.4 Intex Correlation Hole

The intex density is a valuable quantity to describe correlation effects in atomic and molec­

ular systems due to its inherent relative (intracule density) and absolute (extracule density) 

position information. Figure 2.3 displays the intex correlation hole for the ground state of 

the helium atom, A X {R ,u ) ,  which is given by

A%(A, u) =  u) -  u), (2.20)

As previously noted, the intracule can be derived from the intex density by integrating over 

the R  variable. Similarly, the usual Coulomb hole, AP{u),  can be calculated by
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Figure 2 .3 ; a) The intex correlation hole, AX{R,  u), for the ground state o f the helium atom. Contours 
have values of ±2 x 10“” , ± 4  x 10“", and ±8  x 10“™ where n=2,3,4,5 and m=2,3,4,5,6. Positive contours 
are denoted by solid lines whereas negative contours are denoted by dashed lines, b) The Coulomb hole, 
AP{u)  for the ground state of the helium atom.

[
/AX[R, u) dR  =  AP{u) (2 .21)

From Figure 2 .3  we observe two negative regions intersected by a positive region in 

the correlation hole. A negative value of A X  {R, u) indicates a decrease in probability due 

to the effects of electron correlation whereas a positive value of A X {R ,  u) indicates an 

increase in probability. Because each intex density is normalized to the number of electron 

pairs, the integral
r f

A X { R ,u ) d R d u  = 0 (2 .2 2 )/ /
vanishes and thus the size of both negative regions is exactly proportional to that of the 

positive one. The positive region reaches a maximum value of 0.092 at R = 0 .5 2 0  and 

u = 1 .4 1 7  and this area extends along then = 2R  line, creating a ridge. The first negative 

region, which mainly occurs at small u, reaches a minimum value of 0.109 at R  = 0 .3 4 4  

and u =  0 .5 6 2  (Min I) . The second negative region is far more shallow than the first and 

reaches a minimum value of 0.0008 at R  = 0 .8 8 6  and u =  3 .7 8 6  (Min II).
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The correlation hole for the helium atom^* (see Figure 2.3) has roots at u =  1.1 and 

u = 3.6 and the conclusion is that the effects of correlation make it less favorable for 

electrons to be closer than 1.1 atomic units or farther apart than 3.6 atomic units. While 

the former is more intuitive than the latter, the results are clear and the intex density offers 

additional insight into this phenomenon. However, from the intex correlation hole, it would 

appear as though the relative separation of an electron pair does not universally indicate 

whether correlation will act to separate or contract the pair. The absolute position (R) of 

the electron pair is an important quantity, as is evidenced by the rich topology of the intex 

correlation hole in both the u and R  dimensions. Evidently, correlation can increase the 

probability of finding electrons separated by large distances (u > 3.6) so long as their centre 

of mass is close to ^u. Additionally, when u < R, which implies that the electron pair is 

on the same side of the nucleus, the intex correlation hole is always negative. This feature 

indicates that in such cases correlation will always act to either separate the electrons or 

move their centre of mass closer to the origin (or both).

The intex correlation holes were also determined for the helium isoelectronic series 

up to Ne®+ and as expected, the features of / \X {R ,u )  contract toward the origin as the 

atomic number and nuclear charge increase. As with the case of the Coulomb holes of this 

series, the intex correlation holes are all qualitatively similar and each system bears the 

same topological features. Table 2.2 summarizes the extrema of the correlation holes and 

lists the strengths of the secondary Coulomb holes defined by

1*00
/  |A f ( u ) |d

J ÜO
u (2.23)

where üg is the second root of AP{u).  S  is well defined for all of the systems under 

investigation in the current work because all exhibit a second root Ü2 and it appears as 

though such secondary Coulomb holes may be ubiquitous in two-electron systems.

S  has been reported previously for Z-scaled intracules for He, Li+, Be^+, B^+, and Ne®+ 

and all are in exact agreement with those in Table 2.2 upon introduction of the scaling
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Table 2.2: Coordinates {R, u) of the extrema in intex correlation holes and secondary hole 
strength for the helium isoelectronic series.

Ion Z Min I (Æ, u) Max (i?, u) Min II (/?, u) S
He 2 (0.344, 0.562) (0.520, 1.417) (0.886, 3.786) 6.30 X 10-4
Li+ 3 (0.227, 0.286) (0.316, 0.873) (0.570, 2.399) 3 .54x10-4

Be^+ 4 (0.170, 0.207) (0.227,0.632) (0.421, 1.759) 2.33 X 10-4
B3+ 5 (0.136, 0.162) (0.177, 0.495) (0.333,1.389) 1.71 X 10-4
C4+ 6 (0.113,0.134) (0.146, 0.407) (0.276, 1.149) 1.34x10-4

N®+ 7 (0.097, 0.114) (0.123,0.346) (0.235, 0.979) 1.09 X 10-4
q 6+ 8 (0.085, 0.099) (0.107, 0.300) (0.205, 0.852) 9.20 X 10-®
p7+ 9 (0.076, 0.087) (0.095, 0.265) (0.182, 0.756) 7.94 X I0-®
Ne®+ 10 (0.068, 0.078) (0.085,0.238) (0.163,0.677) 6.97 X I0-®

factor, Z.  The additional data for N®+, 0®+ and confirms the trend that the 

proportion of the secondary Coulomh hole diminishes with increasing Z.

2.5 Z-Scaling

It was mentioned earlier that the intex density for each of the ions in the helium isoelec­

tronic series is qualitatively similar. However, it would he interesting to have a quantitative 

assessment of the similarities between each of the densities. In various reports, Coulson, 

Curl and Boyd detailed the scaling of intracule densities by a factor, Z  — 5, where Z  is the 

atonfic number of the ion and  ̂ is a screening constant. *̂"*® This approach was also em­

ployed by Pearson et al. in their paper detailing the secondary Coulomb hole. We employ 

an analogous approach here for the intex density. These screening factors are introduced 

to demonstrate that the distribution of electrons in different systems can be correlated with 

respect to the effective nuclear charge that is approximated hy Z  — 8 . In the past, these 

factors have also heen useful in comparing the effects of screening between the ground and 

excited states of atoms.

These new functions, X'{R!, u') are obtained by first scaling the R  and u coordinates
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by z  — (5 to give R' = {Z — S)R and u' = {Z — S)u. Using these scaled coordinates in the 

intex distribution, X{R' ,u ') ,  and dividing by the square of the scaling constant yields the 

Z-scaled intex density, X'{R', u') as follows:

X \ K ,  «') =  (2.24)

In order to determine the optimal value for the screening constant, 6 , we minimized the 

following expression with respect to 5

=  I  j  [ x f j { B ; , u ' ) - x ' g f ( g , v : ) ] i R i u  (2 .2 5 )

through brute force analysis using numerical integration methods. As we were looking

for a single screening constant for each tested system of the helium isoelectronic series,

the ion that was used in this minimization scheme was Ne®+ as it represented the great­

est difference from the intex density of the reference Helium atom. Through this process, 

the optimal value was determined to be 5 =  0.339. Using this value, we also determined 

(0.339) for the remaining ions in the isoelectronic series as a quantitative assessment 

of the differences between the scaled densities. These values as well as other measures 

including the coordinates of the extrema and scaled hole strengths are tabulated in Table

2.3. In the determination of the optimal value of S, we also looked at the use of differ­

ent values of screening constants for the R, Sr, and u ,6u, coordinates, but it was de­

termined that the best correlation between the He and Ne®+ intex densities was obtained 

when Su = 6u = 0.339. Figure 2.4 displays the scaled intex correlation holes for each of 

the systems studied here. One can note that the correlation holes are very similar and each 

show the same type of trend in terms of configurations where correlated or HF treatments 

are favoured. The values of S  that are given in the table indicate that even when multiplied 

by the scaling constant, Z  — S, the size of the hole decreases suggesting that the effect is 

more complex than simply being related to the distance of the electrons from the nucleus.
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Figure 2.4; The Z-scaled intex densities, A X {R', u' )/{Z—&Y, for the ground states of the He isoelectronic 
series (Z =  2 to 10) Contours have values of ±2  x 10“” , ±2  x 10“”, and ±2  x 10“" where n =  2,3,4,5,6  
and m =  3 ,4,5,6  As Z increases the following contours are excluded c) to i)—k ±2 x 10“  ̂ and g) to 
i ) ^  ±8 X 10“  ̂ Positive contours are denoted by solid lines whereas negative contours are denoted by 
dashed lines

In Chapter 4, we will explore the strength of the secondary Coulomb hole with respect to 

other properties of the position intracule, but for now, we note that we can obtain reason-
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Table 2.3: Assessments of the similarities between the Z-scaled intex densities and corre- 
lation holes.

Ion ^fon Mini  {R',u') Max {R', u') MinII(/?',u') (Z -  ,5)^
He ------ (0.572, 0.768) (0.865, 2.354) (1.471, 6.288) I.OlxIO-3
Li+ 0.0303 (0.605, 0.760) (0.840, 2.323) (1.518, 6.383) 9.41 X 10-4

Be^+ 0.0433 (0.622, 0.758) (0.831,2.315) (1.540, 6.438) 8.54 X 10-4
B3+ 0.0505 (0.634, 0.757) (0.827, 2.309) (1.553,6.472) 7.96 X 10-4
C4+ 0.0551 (0.642, 0.756) (0.824, 2.306) (1.562, 6.502) 7.56 X 10-4

N®+ 0.0583 (0.647, 0.756) (0.822,2.303) (1.568,6.521) 7.27 X 10-4
Q6+ 0.0606 (0.651,0.756) (0.821,2.301) (1.571,6.525) 7.05 X 10-4
F7+ 0.0624 (0.655, 0.756) (0.819, 2.297) (1.575,6.543) 6.88 X 10-4

Ne*+ 0.0638 (0.657, 0.756) (0.819, 2.300) (1.577, 6.543) 6.73 X 10-4

ably overlapped functions by scaling the position intracules of each of the ions by a factor 

involving the atomic number and a screening constant.

2.6 Concluding Remarks

In this chapter, we have introduced the development of a novel electron pair distribution, the 

intex density, which is defined by (2.2). This new density employs both the intracular and 

extracular coordinates to more completely describe the probability distributions of electron 

pairs in position space. Using even-tempered basis sets of 40 s-type Gaussians, we have 

calculated the HF intex distribution of the ground state helium-like ions from He to Ne®+. 

In all of these cases we note that the intex distribution is symmetrical about the line u =  2R, 

implying the previously d e sc r ib e d r e la t io n  2P{2R) =  E(R).

A  correlated treatment of the intex density was performed using Kinoshita type wave 

functions. Unlike the HF intex density, the correlated intex density is not symmetric about 

the u = 2R  line. Using the correlated intex densities, we were able to determine the 

intex correlation hole for the ground state of the helium atom and the helium isoelectronic
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series. The intex correlation hole provides a more complete picture of the effects of electron 

correlation on the spatial distribution of electron pairs in an atomic system. Specifically, 

we observe that the secondary Coulomb hole is not universal; it does not occur at all large 

values of u, but instead is dependent on the centre of mass of the electron pair. We conclude 

that the probability of observing an electron pair with a very large interelectronic separation 

increases with the inclusion of correlation only when their centre of mass radius is close 

to half of their separation. It would be reasonable to conjecture that in such cases, one 

electron remains close to the nucleus while the second is far away as such configurations 

would lead to favourable interactions between the electron and the nucleus. However, to 

accurately determine the most probable configurations, one must consider the probability 

distribution of the angle between the interelectronic separation and centre-of-mass vectors. 

This can be achieved through selective integration over the angular components of the two 

vectors and will be explored in detail in the ensuing chapter. Additionally, it has been 

shown that part of the effects of correlation in these systems are to decrease the probability 

of observing u < R  (i.e. both electrons on the same side of the nucleus).
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3 Angular Dependence of the Two-Electron Intex Distri­

bution

This chapter was reproduced in part with permission from Proud, A. J.; Pearson, J.K. Chem. 

Phys. Lett. 2012, 520, 118. Copyright 2010, American Institute of Physics.

3.1 Introduction

Two-electron atoms have been the focus of a wide range of theoretical research.®' *̂  There 

is value in understanding the pair-wise interactions of electrons in such simple systems as 

this can usually be extrapolated to better understand even the most subtle correlation effects 

in arbitrarily large systems. Even the correlation energy of the helium atom still gamers 

attention from the chemical physics community. Furthermore, the subtle (and coun­

terintuitive) correlation effects that have been observed within the context of the Coulomb 

hole35.58,87,88 yet to be satisfactorily explained (i.e. the secondary Coulomb hole).

In the previous chapter, we introduced the intex density to describe the spatial dis­

tribution of electron pairs in terms of the intracular (w) and extracular (R) coordinates 

simultaneously. The intex density is, as previously mentioned, given by

X{R ,u )  = { ^ { r i , r 2)\ô{R -  ^|ri -t-ra]) J(u -  In  -  r 2 | ) |^ ( n ,■>’2)) (3.1)

and describes the probability that a pair of electrons will be separated by a distance u and 

simultaneously have their centre of mass located at a distance R  from a reference point.
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Figure 3.1: Schematic representation of a two-electron atom with electronic coordinate vectors Vi,r 2 , R, 
u, and the angular coordinates 6ru, and O1 2 . Z  indicates the nuclear charge at the origin.

The intex density has proven to be quite useful in providing a clearer picture of the 

effects of electron correlation and the spatial distribution of electron pairs owing to the 

fact that it contains information regarding the relative separation of electrons and their 

absolute position in space. In the present chapter, we aim to expand the development of the 

intex density by studying its dependence on the angle, between the coordinate vectors 

R  and u.  Figure 3.1 is an expansion of Figure 2.1 illustrating the angular separation of 

the R  and u  vectors as well as that between the electron position vectors, r i  and rg. In 

spherically symmetric systems such as the ground states of two-electron atoms, the set of 

scalar coordinates r%, rg, and 612 represent a complete description. Analogously, the scalar 

intracular coordinate, u, extracular coordinate, R, and angle 9ru also represent a complete 

set. As such, we will focus on the ground states of the helium isoelectronic sequence in 

this work for the purposes of simplifying the initial implementation of this new probability 

density.

Probability densities of interelectronic angles have been studied extensively*^*®  ̂ and 

are intimately related to angular correlation, which is the result of electrons increasing their 

angle of separation (#12) in order to avoid one another. This differs from radial correlation, 

which is the result of electrons avoiding one another by adopting different radii with re­
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spect to the nucleus. Such probability distributions still gamer much attention today from 

well-respected theoreticians as evidenced by the recent work by Koga et al. The inter­

electronic angle density describes the probability of finding two electrons with an angle of 

9 i2 separating their respective position vectors and are generally of the form

where dri dr2 /dOi2 denotes the integration over all spatial and angular components of r i  

and V2 with the exception of Ou- Here, p (ri, r 2 ) is the previously mentioned pair density 

function given by

P (ri,ra) =  J  , riv)P drg • ■ • drjv (3.3)

In an alternative approach to studying angular correlation phenomena, we have calculated 

the contributions of the angle Oru to the intex density and observe what effects correlation 

has on the optimal angle between the R  and u  vectors. This probability distribution may 

also be obtained from the two-electron density by

X ( R , u ,Oru) =  J  J  J  J  /o(n,r2)<5 R -  + ra) rr / , , dîÎRdn
o [u -(r i-r2 )J  dri dr2

where Or^ is an angular component of the vector u  with the R  vector acting as the principal 

axis and again, df2„dr2i?/d^/j„ denotes integration over all angular components of the R  

and u  vectors with the exception of Oru- The angular component may then be isolated by 

integrating over the radial R  and u components as follows

(3.5)

Throughout this chapter we will refer to X{R ,  u, Oru) as the angular-dependent intex
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density and to A{9ru) simply as the angular intex density. The form of our expression 

differs slightly from that in equation (3.2) in that we retain the sin(^) factor of the Jacobian 

so that we may maintain the normalization of the probability distribution, which in the 

case of such two-electron densities is the number of electron pairs, or N {N  — l) /2 . This 

resembles the approach of Boyd and co-workers for interelectronic angle densities.

A primary and immediate application of these angular densities is to better understand 

the spatial distributions of electron pairs and how this gives rise to the anomalous secondary 

Coulomb hole. These quantities are also important for the fundamental understanding of 

electron-electron interactions in our test systems because for probable configurations of 

u and R, there exists two very different extremes whereby 9ru =  tt/2 or 9ru =  (0, tt) 

and these represent cases where the electrons are equidistant from the nucleus and where 

the pair of electrons and the nucleus are colinear, respectively. Therefore the influence of 

the nuclear potential may be probed using this technique. Also, X{R,  u, 9ru) allows one 

to understand the distribution of 9ru for specific values of u and R. For a more general 

application to larger atoms and molecules, the vectorized extracular coordinate may be 

considered, R ,  which will allow for the localization of such an analysis.

In the present chapter, we study the features of these probability distributions and con­

sequently learn about the restrictions that correlation imposes upon the spatial distribution 

of electron pairs. Along with the intex density, it is shown that this novel density provides a 

clearer picture of the effects of electron correlation and more details concerning the nature 

of the secondary Coulomb hole. Once again, atomic units are used throughout the chapter.

3.2 Theory

3.2.1 Hartree-Fock Wave Function

The angular and angular-dependent intex densities may be obtained from equations 3.5 and

3.4, respectively. If one uses a HF wave function to generate the two-particle density, the
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angular dependence function may be expressed as an expansion

K

, (3us)
jxvXa

where is the usual HF two-particle density matrix described in Chapter 2, while

{ni/Xa)x^ are the angular intex integrals over the set of K  atomic orbital basis functions 

denoted by u. A, and a. One can note the similarities between the present expression 

and that given by (2.9) for the intex distribution where the intex integrals, {^v \a )x ,  are 

replaced by the angular intex integrals, (ni'Xa)xA ■ These new integrals are given by

{fMi/Xa)xA = J  j  -j)4>a{R+-j ) — , (3.7)

and for spherically concentric systems utilizing Gaussian basis functions of s-type symme­

try, these integrals may be expressed analytically as

(SSSS)X  ̂ =  8 sin(gR^)  ̂ g)

where the exponents of the Gaussian primitives are denoted by a, /?, 7 , and 5. From expres­

sions (3.8) and (3.5), it is straightforward to obtain A{9ru) through numerical integration 

over R  and u and we have employed the numerical integrator implemented in the Mathe- 

matica package for this purpose.

For the purposes of constructing accurate HF wave functions, we employed the same 

set of even-tempered basis sets proposed by Schmidt and Ruedenberg that were used for 

the study of the intex distribution in the previous chapter. Thus, the K  exponents of the 

Gaussian primitives can be determined from expressions (2.13)-(2.15). The atomic orhital 

coefficients were once again determined using the Q-CHEM package.

We have determined that basis sets consisting of /F =  30 Gaussians produce intex 

densities that are more than adequately converged for the current work. This determination
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is based on a calculation of the maximum BSIE for the K  = 30 Gaussian helium-like ion 

basis set as m ^   ̂ u) — ^ " 1 2 9 «)| =  2.3 x 10“ .̂

3.2.2 Kinoshita Wave Function

Kinoshita wave functions have long been considered as high-accuracy benchmarks for cal­

culations on atomic systems. For the construction of our exact wave functions we 

have once again chosen a series of Kinoshita expansions given by

« " " - ( n . r , )  =  ( ^ ) ” ' . ( 3 .9 )
1=1 ' '

The accuracies of these Kinoshita wavefunctions are more than adequate for the purposes 

of this study as was mentioned in Chapter 2.

To obtain the angular intex density, a function solely dependent on 9nu, s and t was 

substituted using the definitions of s (s =  ri -|- r^), and t (t = ri — rg), containing ri and 

T2 after which these variables were replaced by the identities

T i =  \ j  E ? -  R u c o s ,{6 r u ) T2 =  B ?  +  —  +  R u c o s {9 r u ) . ( 3 .1 0 )

The angular-dependent intex density may then be obtained by using the resultant wave 

function, dependent on R, u, and Or^ in equation (3.4).

3.3 Results and Discussion

The HF and Kinoshita angular intex densities for the ground state of the helium atom are 

shown in Figure 3.2(a). This figure demonstrates that there is very little dependence on the 

angle between the vectors R  and u  over most of the range from 0 to tt . Due to the inherent 

symmetry in the definition of 9ru, A{0ru) is symmetric about tt/ 2 .  The density displays 

maxima at 9ru ~  0.749 and 2.393 under the HF approximation whereas the maxima occur

67



at 9nu ~  0.574 and 2.568 for the correlated treatment. The local minima for both methods 

occur at Ôr u  = t t / 2 .  Figure 3.2(b) displays the angular intex correlation hole, AA{Oru), 

which is given by

AA(gm ) =  (3.11)

We observe a minimum at tt/2  radians in AA{9ru) indicating, as expected, that HF has 

a preference for configurations where the electrons are equidistant from the nucleus in 

comparison to exact treatments. This is not to say that systems under the HF approximation 

are most probable to have configurations where 9ru =  t t / 2 ,  as that would contradict what is 

shown in Figure 3.2(a). Intead, this angle represents where the HF and correlated treatments 

differ the greatest in favour of HF. Similarly, the maxima are much closer to 0 and t t ,  which 

signifies a greater preference in correlated systems for configurations where one electron is 

closer to the nucleus than the other.

Due to the spherical symmetry of the systems in the helium isoelectronic series, one 

might expect that the most probable configuration would be that of the electrons being 

equidistant from the nucleus (i.e. 9r^ = tt/ 2 ) .  However, with local minima occurring 

where the R  and u  vectors are perpendicular to one another (i.e. electrons equidistant from 

the nucleus), the plot of A{9ru) confirms that this is not the case. The angular-dependent 

intex density may be used to explore this further {vide infra).
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Figure 3.2: a) A{9ru) for HF and Kinoshita wave functions of the ground state of the helium atom, b) 
^A{6ru) for the ground state of the helium atom.
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Table 3.1: Coordinates of the maxima in the angular intex density (0%*) in radians and the 
relative angular dependence of A{0 ru) for the helium-like ions, Ap (defined in the text).

Ion Z
HF Exact

nmax^Ru ûmax^Ru A ,

He 2 0.749 0.0494 0.574 0.142

Li+ 3 0.828 0.0317 0.686 0.0779

Be^+ 4 0.868 0.0272 0.748 0.0544
B3+ 5 0.891 0.0215 0.789 0.0426
C4+ 6 0.907 0.0194 0.818 0.0357
N5+ 7 0.919 0.0180 0.840 0.0312
q 6+ 8 0.928 0.0170 0.856 0.0281
p7+ 9 0.934 0.0163 0.869 0.0258

Ne®+ 10 0.940 0.0157 0.880 0.0240

The angular intex densities were determined for the series of helium-like ions from He 

to Ne*+ and the coordinates of the maxima are indicated in Table 3.1. Also included in the 

table is a measure of the relative angular dependence (Ag) of A{6 ru) for each of the ions 

defined by

where and correspond to the value of A(6ru) at the local minimum

and maximum, respectively. The value of Ag demonstrates the relative difference in prob­

abilities of the local minima and maxima in densities where a local minimum is observed 

and thus provides a measure of how greatly the density of the system is affected by changes 

in this angle.

Table 3.1 demonstrates that as the nuclear charge increases, the angle of the global 

maxima steadily increases in addition to an apparent decrease in the relative angular de­

pendence, Ag. With the only difference in these systems being that of the differing nuclear 

charges, these trends can be attributed to the electrons being drawn closer to the nucleus in
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Figure 3.3: Intex correlation hole, AX{R,  u), for the ground state of the helium atom. Contours have 
values of ±2  x 10“", ± 4  x 10“", and ±8  x 10“"* where n =  2 — 5 and m =  2 — 6. Solid lines denote 
positive contours whereas dashed lines denote negative contours.

the systems containing more protons. Consequently, when the electrons are closer to the 

nucleus, the positions of the electrons are more limited.

In addition to these trends, which are common to both HF and correlated eases, there 

are some significant differences between the two approaches, themselves. From the tabu­

lated data, it can be noted that 9 ^ ^  is lower in correlated systems suggesting a preference 

for angles closer to 0 (or tt) ,  as discussed previously. Furthermore, the relative angular 

dependence is significantly greater in correlated systems, especially for the ions with lower 

nuclear charges. Therefore the data demonstrates that correlated treatments favour con­

figurations where one electron is closer to the nucleus in comparison to HF theory. This 

idea is neither surprising nor new as correlation causes the position of one electron to be 

dependent on the positions of the remaining electrons in the system while the motions 

of opposite-spin electrons under the HF model are statistically independent; however, the 

angular intex density gives us a brand new way of looking at this effect.
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To investigate the properties of the intex correlation hole^  ̂ we can take slices of the 

angular-dependent intex distribution, X{R,  u, 9ru), at fixed values of R  and u. This will 

afford an analysis of the probability distribution of for specific configurations of the 

electron pair relevant to the Coulomb and secondary Coulomb holes. To try and yield 

more information regarding these holes, we have chosen to examine the extrema of the 

intex correlation hole (A X {R, u) = X^'^{R, u) — X™{R, u)) and these are shown in Fig­

ure 3.3. There are two minima occurring at {Ri,ui)  = (0.344,0.562) and (^ 2 , 6 2 ) =  

(0.886,3.786) and a maximum at (R,u)  =  (0.520,1.417). Appropriate slices of the 

angular-dependent intex density are then studied using these coordinates.

The HF and Kinoshita angular-dependent intex densities at the coordinates of the ex­

trema of the intex correlation hole are displayed in Figures 3.4(a)-(c) while their respec­

tive angular-dependent intex correlation holes, AX {R ,  u, 9ru), are represented in Figures 

3.4(d)-(f). As expected, the probability for HF systems is greater in (a) and (c) which rep­

resent the two minima in the intex correlation hole. Conversely, the correlated density is 

greater in the system described in (b), which is taken from the coordinates of the maximum 

in the intex correlation hole. From the plots of A X (/?, u, 9ru), we see that a minimum oc­

curs at 9nu =  7t/2 in all cases. This again confirms that this configuration is more greatly 

favoured in relation to other angles for HF systems regardless of the value of R  and u.

The main point of interest here is the trend that is observed when we progress from (a) 

to (c). As we progress from the coordinates of (a) to the coordinates of (c), the values of R 

and u both increase. From Figure 3.4, we see that in (a), the density reaches a maximum at 

tt/ 2  for both HF and correlated systems, whereas in (b) and (c), tt/ 2  represents a minimum 

and the level of dependence on 9nu is increasing. This reveals the explanation behind the 

overall form of the angular intex density in Figure 3.2. In the case where both R  and u 

are very large values, two extremes would be possible: the first case being that where both 

electrons are far from the nucleus (and each other) with 9r^ =  t t / 2  and the second case 

being the configuration where one electron is near the nucleus while the other is very far
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Figure 3.4: HF and Kinoshita angular-dependent intex densities, X{R,u,9ru),  and the corresponding 
correlation holes AX{R,  u, 9ru) at values of R  and u corresponding to the extrema of the intex correlation 
hole for the ground state of the helium atom shown in Fig. 3.3. The coordinates {R, u) are as follows: 
a) and d) (.Ri,wi) =  (0.344,0.562); b) and e) -> {R,û) = (0.520,1.417); c) and f) (% ,Û 2 ) =  
(0.886,3.786)

away corresponding to 9ru ~  0 or tt. In the first case, we effectively have three separate 

one-particle systems, where neither electron has significant interaction with the nucleus 

nor each other, whereas in the second case, one electron is interacting favourably with 

the nucleus while the other is far enough away to be considered an isolated system. It is 

obvious that the latter is the more favourable configuration and thus it is expected that as
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we increase both R  and u, the level of angular dependence will increase and the optimal 

angle will approach 0  and tt with the angular intex density consisting of two sharp peaks in 

these regions.

The relevant question then becomes, how large must R  and u become before we observe 

such an inflection in the curvature of the angular-dependent intex density with respect to 

d fiu  (i.e. a local minimum at 9 n u  =  t t / 2 ) ?  From Figure 3.4, we know that a maximum 

in X {R ,u ,9ru)  at 9ru =  7f/2 does occur for small values of R  and u, so by gradually 

increasing each of these variables until an inflection is observed we are able to isolate 

the critical values of R  and u for which the inflection takes place. These analyses were 

conducted for both the HF and Kinoshita densities and the results are shown in Figure

3.5. The dashed line in this figure divides the regions where the angular-dependent intex 

density at fixed R  and u  is a minimum or a maximum with respect to 9 r u  at t t / 2 .  The 

region below this line (low R  and/or u) are the sets of coordinates where a maximum 

occurs at 7t/2, whereas the majority of the density which lies above the line represents 

the coordinates where a minimum is observed. Figure 3.5(a) demonstrates that the critical 

coordinate line for the HF system is symmetric about the u = 2R  line, as expected from

a)

s

05

0 0 ' -
0 0 0 5 1 0 1 5

b)

2 0

05 1 0 15

R R

Figure 3.5: Critical coordinate lines for the inflection of the angular-dependent intex density at 7t/ 2 for the 
ground state of the helium atom with a) HF, and b) Kinoshita wave functions.
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Figure 3.6: Critical coordinate line comparison for HF and correlated treatments for the ground state of the 
helium atom.

the known symmetry of the intex density for two-electron systems consisting solely of s- 

type orbitals of even parity. The differences in this critical coordinate line for the HF 

and Kinoshita densities are fairly minimal but the region corresponding to configurations 

where the angular-dependent intex density reaches a maximum at 6 r u  = t t / 2  is larger 

in HF systems. This is more evident in Figure 3.6 which displays the critical coordinate 

lines for both treatments overlaid. Approximate numerical integrations were performed 

to determine the percentage of the intex density that lies below this critical coordinate 

line. It was determined that for HF densities, configurations where  ̂ =  7 t /2  represents a 

maximum in probability are roughly 31% of the density whereas this percentage decreases 

to approximately 23% for Kinoshita densities. This figure highlights some key differences 

about correlated systems. The critical line for the correlated system is extended towards 

both the R  and u axes. Furthermore, the correlated critical line deviates from the HF line 

to a greater extent with respect to the u values than for the R  values. This result is intuitive 

as one would expect correlation to have a greater effect on the interelectronic separation 

variable, u, than on the centre-of-mass variable, R.
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With regards to the secondary Coulomb hole, it was noted in the previous chapter that 

the effects of correlation on the intex density are to increase the probability that electron 

pairs will be found with % u /2  while systems treated with the HF method have greater 

probabilities for configurations with combined small u and large R  values or large u and 

small R  values. But these observations are limited by the fact that they were obtained by 

integration over the angular components of the R  and u  vectors. As we stated previously, 

R, u, and 9ru represent a complete set of coordinates for spherically symmetric systems; 

therefore, integrating over this angle leads to a loss of information. For this reason, we have 

explored the angular-dependent intex density, X { R , u,9ru), by taking slices at different 

values of 9ru much like we did previously for specific R  and u values.

In the previous case, when we observed slices of X{R, u, 9 r u ) at predefined R  and u 

values, we chose to study the extrema of the intex correlation hole as there are countless 

possibilities of R  and u coordinates that could have been chosen, but those were the main 

areas of interest. Here we have chosen to study X {R , u, 9 r u ) using slices at every interval 

of 10° from 10° to 90°. As previously mentioned, the angular density is symmetric about 

9ru =  7t/2 by definition, and thus this range adequately represents all possible orientations 

of the R  and u  vectors. Contour plots of each of these slices are provided in Figure 3.7.

The information provided by these slices of the angular-dependent intex density are 

highly informative. Previously, we noted that correlation favours orientations where the 

centre of mass radius, R, is roughly twice the value of the interelectronic separation, u. 

This information was provided by the intex density which was previously unknown due 

to the limited information of the intracule density. However, from the data in this figure, 

we can see that this idea is also limited by the omission of the angular component in the 

intex density. These contour plots demonstrate that correlation only favours configurations 

where R  is twice u at angles less than 30°. In fact, there are very few configurations that 

are favoured in correlated treatments when 9ru is greater than 30° which is consistent with 

electrons trying to avoid one another in correlated treatments. However, in every contour
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Figure 3.7: Slices of the angular-dependent intex correlation hole, AX(iî, u, at specific values of 
9ru) for the ground state of the helium atom. Contours have values of ±2 x 10“” , ±4  x 10“", and ±8 x 
10“™ where n =  2 — 5 and m = 2 — Q Solid lines denote positive contours whereas dashed lines denote 
negative contours Slices were chosen in 10° intervals starting at 10° in a) up to 90° in i)
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plot, a positive region at moderate u (roughly 0.8 < u < 3.2) and small R  values, indicate 

a preference for such configurations in correlated treatments. With these relative values of 

R  and u, the electrons would likely be situated on opposite sides of the nucleus regardless 

of the value of 9ru, which is consistent with what would be expected in a correlated model 

due to angular correlation.

The information generated by these slices of the angular-dependent intex density are 

useful, but can we use it to gain more insight into the secondary Coulomb hole? In the com­

parison of correlated and HF treatments, the data indicate that under the HF approximation, 

there is a greater probability of having configurations with large values of u and small val­

ues of R  regardless of the value of 9ru- However, at the larger angles (i.e. 9ru > 35°), 

systems treated with HF theory demonstrate greater probabilities of having distant electrons 

at all values of R. Therefore, these configurations appear to contribute more substantially 

to the occurrence of the secondary Coulomb hole. Nonetheless, all configurations do con­

tribute to some extent to this effect as evidenced by the negative contours at large u in every 

contour plot presented in Figure 3.7.

3.4 Conclusion

We have introduced the angular-dependent intex density X{R , u, 6ru), isolated the angular 

component of this distribution, A{6ru), and used it to explore correlation effects in two- 

electron atoms. We have determined that exact treatments of these quantities favour angles 

closer to 0 or TT between the R  and u vectors while a HF treatment favours orientations 

where the angle is closer to 7t/2. Using the angular-dependent intex density to explore areas 

of interest in the intex correlation hole, it was noted that as R  and u increase, the favoured 

angles for both HF and exact densities approach 0 and tt. This reflects the fact that as R  

and u grow, the electrons and the nucleus can behave like three independent particles and 

thus 9ru will approach 0 or tt to allow for one of the electrons to approach the nucleus and 

create a lower-energy configuration. In terms of the secondary Coulomb hole (which exists
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at large u), given that correlation favours orientations where u f 2 (see Figure 3.3)*’ we 

may conclude that it is also likely that the intex angle (Ôru) approaches 0 and n for these 

configurations and thus one electron remains relatively close to the nucleus while the other 

is far. We have demonstrated that the most probable angles can depend significantly on the 

values of R  and u. Both the HF and near-exact Kinoshita densities predict that electrons 

will generally be equidistant from the nucleus at small R  and/or u values. The angular intex 

density has proven to provide a more complete picture of electron-electron interactions and 

the effects of electron correlation.
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4 Correlation Effects on Interelectronic Separations

4.1 Introduction

As mentioned previously, the simplest way to explore electron correlation effects is through 

the study of two-electron systems. Such systems have been studied extensively in the past 

and continue to be an area of focus today. 19,36,58.62,s i , 109-111 Coulson and Neilson’s work 

clearly demonstrated that correlation pushes electrons further apart and this was consid­

ered to be an accurate description until the discovery of the secondary Coulomb hole. Prior 

to the paper by Pearson et al. detailing this phenomenon, there were a few reports noting 

the presence of a secondary negative region in AP{u),  but they were considered to be arte­

facts resulting from inaccurate wavefunctions.'**’̂  ̂®’ However, the paper detailing this hole 

clearly indicated that the secondary negative region did not appear until the HF intracules 

reached a certain level of accuracy.

In Chapter 2, we described the intex density, X {R , u), which again, details the elec­

tronic distribution with respect to the centre of mass radius, R, and the interelectronic 

distance, Using this density to analyze the correlation hole, it was noted that correla­

tion does not universally contract distant electron pairs. This contraction with respect to 

HF treatments was found to be dependent on the R  variable (Figure 2.3a). In the previ­

ous chapter, we sought to expand our understanding of the secondary hole by studying the 

dependence of the intex distribution on the angle between the R  and u  vectors.

Although Chapters 2 and 3 did shed more light on correlation effects and the nature 

of the secondary Coulomb hole, they did not elucidate the origin of this counter-intuitive
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effect. Other studies on systems such as the Hg molecule and spherium (a system 

where the movements of two electrons are confined to the surface of a hollow sphere)'" 

have noted that when you increase the probability that the electrons will be far apart (i.e. 

lengthening the bond in H2 or increasing the radius, R, in spherium), one eventually reaches 

a point where there is a complete reversal in the trend of the Coulomb hole. Thus, the 

primary and secondary negative regions decrease and increase in size, respectively, until the 

primary region vanishes entirely. At this point, HF treatments cause electrons to separate 

at all values of ti.

In this chapter, we will discuss our studies regarding the correlation hole, AP{u), in 

systems containing traditional Coulombic potentials (real systems) and others containing 

alternative external potentials (fictional systems) to determine what effect, if any, the form 

of the potential has on the strength and/or existence of the secondary Coulomb hole. For 

the purposes of the study, HF energy and intracule calculations for the real systems were 

carried out using the Q-CHEM package'^ while Mathematical® was used to develop code 

for the fictional systems and for the exact real systems. Atomic units are used throughout.

4.2 Results

4.2.1 Real Systems

The study of correlation holes for the helium isoelectronic series has been well documented 

in the l i t e r a t u r e a s  well as in the previous two chapters. With only two 

electrons in the system, the ground state electron configuration is given by Is  ̂ and thus, 

only s-type orbitals are required to accurately describe these systems. For the construction 

of the HF wave function, we employ the same set of even-tempered basis sets developed by 

Schmidt and Ruedenberg that were used in Chapters 2 and 3. Here, we have employed the 

same basis set consisting of 60 s-type Gaussians as that which was employed by Pearson 

and coworkers in their seminal paper on the secondary Coulomb hole.®* The accuracy of
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Figure 4.1: a) Exact and HF intracules and b) Coulomb hole, for the ground state of the Helium atom.

the intracules obtained from these basis sets is more than adequate for the requirements 

of this study. It should be noted that a basis set containing 30 or 40 Gaussian functions 

would be sufficient for these purposes; however, as intracule calculations can be performed 

rapidly relative to intex and angular intex calculations, a larger basis set was used to obtain 

a wave function closer to the HF limit.

Figure 4.1 displays both the Coulomb hole and the secondary Coulomb hole of the 

ground state of the helium atom. The Coulomb hole was also calculated for each of the 

ions of the helium isoelectronic series from Z =  3 to 10. Table 4.1 lists the strength of 

the secondary hole for each of these ions as well as three measures used to indicate how 

diffuse the electrons are within these systems (Umax,{u), and {v?)) in addition to the two- 

electron energy of the system ((u“^)). The first measure, Umax, is the value of u where 

the intracule density reaches a maximum. The last three measures are the moments of the 

position intracule which are given by

u^P{u) du (4.1)

The three moments listed in the table each have a clear physical interpretation: (u) is 

defined as the average or mean value of u, (u^) can be related to the standard deviation, a.
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of the probability distribution by

a — \ / {v?) ~  (u)2 (4.2)

while {u~^) is exactly equal to the sum of the Coulomb and exchange components of the 

HF energy. The values for all of these measures were obtained from the HF intracule. From 

the data listed in the table, it can be noted that as the atomic number increases, the first and 

second moments decrease indicating contracting electron density while the first negative 

moment increases which is indicative of stronger electronic repulsions as the electrons 

are drawn inward. Additionally, the size of the secondary hole decreases concomitantly. 

These measures provide a more quantitative measure of how the strength of the secondary 

Coulomb hole is related to the diffuseness of the electrons within the system.

We have attempted to develop a relationship between the size of the secondary Coulomb 

hole and these tabulated properties of the HF intracule. By developing such an empirical 

relationship, we can gain insight into what factors lead to the existence of the hole which 

allows for a more concrete understanding of the deficiencies of the HF model. Displayed

Table 4.1: Extrema/moments of the HF intracule and secondary Coulomb hole strengths 
for the He isoelectronic series.

Ion Z ^max (u> ("2) Strength (S)
He 2 1.097 1.362 2.370 1.026 6 .1 1 x 1 0  4

Li+ 3 0.664 0.838 0.891 1.652 3.54 X 10-4

Be^+ 4 0.475 0.606 0.464 2.277 2.33 X 10-4
B3+ 5 0.370 0.474 0.284 2.902 1.71 X 10-4
C4+ 6 0.303 0.390 0.191 3.527 1.34 X 10-4
N5+ 7 0.256 0.331 0.138 4.153 1.09 X 10-4
q 6+ 8 0.222 0.287 0.104 4.778 9.20 X 10-^
F7+ 9 0.196 0.245 0.0811 5.403 7.94 X 10-^

Ne»+ 10 0.176 0.228 0.0651 6.028 6.97 X 10-^

82



a) b)

R2= 0.9979

•r’
0.2 0.4 0.6 1.00.8 0.3 0.6 0.9 1.2

c)

6.0 X 10-4 h R2= 0.9996

4.5 X 10-4^

ë S.Ox 10-4-

1.5x10-4- /

0.5 1.0 1.5
<w%>

2.0

d)

R2= 0.9997

4.5 6.01.5 3.0
<«-!>

Figure 4.2: Linear (a and b) and power (c and d) function relationships between the strength of the sec­
ondary Coulomb hole and a) Umax, b) the first moment, {u), c) the second moment, (u^), and d) the first 
negative moment,

in Figure 4.2 are four of the relationships that were developed between the strength of the 

hole and each of the four quantitative measures listed in Table 4.1. There was no theoretical 

reasoning for choosing the type of trend line to employ for each of these relationships; they 

were simply chosen on a case by case basis to provide the best possible agreement with the 

results obtained from the calculations. However, polynomial fits were avoided whenever 

possible as one can easily fit any curve to a high order polynomial function. In addition to 

the relationships presented here, others were developed as well and these can he found in 

Appendix A.

This figure clearly demonstrates a strong correlation between the secondary Coulomb
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hole and the properties studied here. Each of the values indicate very little deviance 

from the fit line suggesting that these models would be useful in predicting the size of 

secondary Coulomb holes. For the two linear plots, if one looks closely at the data points 

nearest the origin, it can be noted that there is a slight curvature of the data suggesting that 

the relationship is not exactly linear. Nonetheless, for the systems studied here, a linear 

relationship proves to be an accurate predictive model. However, one must keep in mind 

that each of these systems are single atoms containing two electrons. To determine the true 

value of these relationships as predictive models, one would have to include data involving 

atomic and molecular systems containing varying numbers of electrons.

4.2.2 Hookium

Hookium, Hk, is a w e ll-d o c u m e n te d " ^ ^ fic t io n a l system that is very similar to the 

He atom. It contains two electrons which are attracted to the centre of the system by 

an external potential (i.e. the nucleus). However, whereas in He, the two electrons are 

attracted to the protons contained within the nucleus, in Hk, the two electrons are bound to 

the “nucleus” by a harmonic potential. Thus one can think of the two electrons as being 

bound to springs, with force constants k, that emanate from the centred origin. From 

Hooke’s Law, * we know that

F = - k A f  (4.3)

where the negative sign simply indicates that the direction of the force, F, is opposite that 

of the displacement, Ar. The potential energy, V, stored in the spring is then given by the 

integral of the force expression over the distance which gives us

V  =  (4.4)

In terms of the quantum mechanical representation of Hk and He, the potential energy 

operator is the only difference between the two systems. The Coulombic potential of He is
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replaced by the harmonic potential of hookium. Therefore, the Hamiltonian for Hk is given 

by

H  = + + (4.5)

where the Coulombic potential of He, V = — (2rf ̂  +  2r^^), is replaced by the harmonic 

potential expression given by (4.4).

It has been noted that when k =  1/4, the Schrodinger equation for hookium is exactly 

solvable with an energy of exactly 2 The exact wave function obtained from this

solution is

. . . . .

From this wave function, a simple closed-form expression of the position intracule, 

P('u), can be derived which is given by

There have been a number of methods reported in the literature of different types of 

basis functions used to construct the HP wave f u n c t i o n . T h e  most accurate HF 

energy to date was reported by Ragot^'^ who proposed the use of a HF orbital expansion 

of the form

xP^^{r) =  ^  c ,( - l ) * ^ e x p ( - a r ^ )  (4.8)
2 = 0

where c, is the scaling orbital coefficient for each term of the expansion and rjn is the 

normalization constant given by

In the previous two expressions, a  and /3 are the Gaussian exponents. In this case, both a  

and j3 were chosen to be Using this expansion with n =  11, the author noted a HF energy
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of 2.0384388718 with a convergence on the order of 10“ °̂. The problem remains 

to caleulate a HF intracule from this expansion which is not trivial; however, the author 

also suggested a closed form approximation to the previous expansion. This proposed HF 

orbital was given by

= % ^exp(-ar^) \ / (4. 10)  

where a  and /3 are both parameters to be optimized and the normalization constant ttihf is

By optimizing the energy with respect to the two parameters, this HF orbital led to an 

energy of 2.0384394491 Eh where the parameters were optimized at a  =  0.251117376 

and ^ =  2.711087898.**® This energy value is only 5.8 x 10“ '’ Eh greater than the HF 

limiting energy given by the aforementioned orbital expansion.

With no definitive way of determining the accuracy of the intracule obtained from the 

latter method employed by Ragot, we also explored the approach used by O’Neill and Gill 

in their study of Hookium.'*® This group eonsidered two different types of basis functions 

to develop accurate HF wave functions. The first method involved the use of harmonic- 

oscillator eigenfunctions which are comprised of Hermite polynomials. *^

Here, Hk{x) is the Hermite polynomial given by

u  r çjk
Hk{x) = — ^  (h exp{—f  + 2 tx)t~ '"~^d t=  (--1)* exp(z^)-—  exp(-z^) (4.13) 

2 m  J  (zz*

where /  is a contour integral, i is the imaginary unit (i = \ / ^ ) ,  and k\ denotes the factorial
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of k. Using this set of basis functions, the HF orbital is given by the expansion

N

'•Pi'f) = '^Ck(l)k{r) (4.14)
fc=i

With a basis set comprised of iV =  7 basis functions, the authors determined that the energy 

of hookium was E  = 2.03843887 Eh with the determined convergence of the energy to 

be on the order of 10”*. However, due to the relatively complicated nature of the basis 

functions, they instead employed an expansion of Gaussian basis functions to obtain a 

good approximation for the wave function. The exponents of the Gaussian functions that 

were used appear to be based on a randomly selected geometric series with a few exponents 

in the middle of the set optimized to obtain a more accurate energy. The exponents used 

were the set, {0.0375, 0.0750, 0.23185, 0.30241, 0.37297, 0.6000, 1.2000, 2.4000}, which 

produced an energy of 2.0384390

Here we employ a similar strategy as the latter approach by O’Neill et al.^^ Using a 

method analogous to that developed by Sehmidt and Ruedenberg®  ̂for the development of 

even-tempered basis sets, we generated lists of K  exponents for s-type Gaussian primitives 

and determined which exponents produced the lowest energy for a given set of K  basis 

functions. The formula used to generate the exponents is that which is given by (2.13). The 

Gaussian exponents, ( , were obtained simply by optimizing a  and ^  through brute-force 

analysis for each different expansion size, K.  We initially attempted to determine values 

for the parameters for a, a', h, and h' as done by Schmidt and Ruedenberg (equations (2.14) 

and (2.15)); however, this method did not yield good results, and it was abandoned in favour 

of optimizing the values of ot and (3 for each individual case. Using an expansion of only 7 

Gaussians, an energy of E  =  2.03843887175 Eh was obtained with a convergence on the 

order of 10~^°. This energy is of the same aceuracy as the most accurate report to date by 

R a g o t b u t  uses a simpler and more conventional basis set. Using the obtained Gaussian 

exponents, the HF position intracule was then calculated as per normal methods. Expan-
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Table 4.2: Optimized parameters for s-type Gaussians of Hookium for basis set size, K.
K a /?
3 0.19436 1.24033 2.038 438 879
4 0.16115 1.20012 2.038 438 875

5 0.15281 1.24221 2.038 438 874
6 0.14990 1.26600 2.038 438 871 76

7 0.15554 1.24550 2.038 438 871 75

sions of /(' =  3 , 4 ,5 ,6  Gaussians were also used to determine the level of convergence of 

the energy as well as the accuracy of the position intracule. The maximum error associated 

with the intracule, was assessed by the following expression

poo

0L15)
Jo

where Pk^{u)  is the position intracule obtained from the HF wave function using a basis 

set consisting of K  Gaussian functions and \x\ denotes the absolute value of the enclosed 

functions. It was determined that Ferr =  1.65 x 10“® which was deemed sufficient for the 

purposes of the study. Table 4.2 describes the values of the optimal a  and 13 parameters for 

each basis set expansion as well as the associated energy.

Figure 4.3 displays the intracules for the exact and HF wave functions in a) while the 

correlation hole and an inset of the secondary Coulomb hole are shown in b). Relative to 

the secondary Coulomb holes for the He isoelectronic series, the strength of the hole in Hk 

is only on the order of 10“*. The reasons for this significantly weaker secondary hole will 

be explored in the discussion section of this chapter.

4.2.3 Ballium

The particle-in-a-box (PIB) model is well known to both theoreticians and non-theoreticians 

in the fields of chemistry and physics. It effectively restricts the movement of a particle
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Figure 4.3: a) Exact and HF intracules and b) Coulomb hole, for the ground state of the Hookium atom.

to within the confines of a specific area by imposing an infinite external potential at the 

walls of this region (box). For a one-dimensional box of length i, the external potential, 

V  (x), can be expressed by

y (z )  =
0

oo

0 < z  <   ̂

otherwise
(4.16)

where x  is the position coordinate of the electron along the length of the box. From this 

expression, it is clear that there is a zero or constant potential exerted on the particle within 

the box, unlike the cases with Coulombic potentials in real systems or the harmonic po­

tential in the case of Hookium. Therefore, the electron or electrons move freely within the 

boxed area.

For the simple case of a single particle in a box, there is a very well known solu­

tion. However, in recent years, there has been a focus on systems of interacting particles 

(i.e. two electrons) in boxes of varying shapes and numbers of dimensions. Such sys­

tems are far more complicated as they involve the interelectronic interaction term which 

makes the Schrodinger equation inseparable. The two-particle systems studied to date in­

clude cylindrical boxes, 2-D rectangular (or 3-D cuboidal) boxes, 128.129 spherical 

boxes to name a few. For the purposes of this study, we have focussed on the
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spherical boxes which are commonly referred to as D-ballium, where D represents the 

dimensionality of the system. For the sake of comparison with the He and Hk cases, 3- 

ballium was analyzed in this study.

The Hamiltonian operator for the 3-ballium system is defined as

^  +  y (r i)  +  y(ra) +  —  (4.17)
z z ri2

where the one-electron potential energy operators, V{ri), much like those defined for the 

PIB model are given by

0 < Vi < R
&L18)

otherwise

When dealing with ballium, it is convenient to define the wave function in terms of 

a scaled coordinate vector t  = r f R  in order to effectively scale all radii to u n i t y . F o r  

the HF wave function, the chosen basis functions must obey the condition that ^ (r i, R) = 

'^ {R ,r 2 ) = 0 where R  is the radius of the ball, and the wave function should vanish for any 

electronic scalar coordinates greater than R. The two most accurate results to date for this 

system have been published by Thompson and Alavi*^  ̂ who used a basis set consisting of 

spherical Bessel functions and Loos and GilP'*  ̂who employed an even-degree polynomial 

basis. Here, we employed the basis designed by Loos and Gill as it has demonstrated 

higher accuracy with greater numbers of basis functions. As we were uncertain what level 

of accuracy would be required for studies of the secondary Coulomb hole, we opted for the 

most accurate description that has been published to date.

The basis functions of Loos and Gill are given by'***

K - 1

<A(t) =  (1 -- fZ) (4.19)
fc=0
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where K  is the number of basis functions in the expansion and t  is the aforementioned 

scaled electronic coordinate. One can note the presence of the (1 — t"̂ ) factor in the ex­

pression which forces the function to be equal to zero when i =  1 (i.e. r =  R). In order 

to account for the piecewise definition of the one-electron potential energy operator, these 

same restraints were placed on the wave function using the Mathematica package.’® With 

a constant (zero) potential acting on the electrons within the sphere, it can be shown that 

the energy of the system is given as

E h f  (4.20)

where (T) and ( J) are the expectation values of the kinetic energy and Coulomb operators, 

respectively, and r] is the normalization constant given by

In the previous equation, the values of 3 represent the number of dimensions of the ball and 

[x] ! ! denotes the double factorial of x which is a piecewise function defined as

x\\I I  =

a: • (z — 2) • (a; — 4 ) . . .  5 • 3 ■ 1 if x > 0 and odd ,

X ■ (x — 2) ■ (x — 4 ) . . .  6 ■ 4 • 2 if X > 0 and even , (4.22)

1 if X =  — 1 or X =  0

The scaling coefficients, c,, for the basis functions were determined variationally through 

built-in minimization algorithms in the Mathematica’® package by minimizing (4.20) with 

respect to the coefficients.

Unlike hookium, there is no exact solution to the Schrodinger equation for 3-Ballium. 

However, Loos and Gill devised a wave function much like those developed by Hylleraas
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in the late 1920s. The wave function, which is explicitly correlated, is of the form 110

(jJ I (jJ
^ (n , ’’2, w) =  ^  ^  ^  c,jk(l +  Aa)V',jk(n,r2, u) (4.23)

j=0 j=0 k=0

where Pu  is the previously described permutation operator which ensures antisymmetry of 

the wave function. The basis functions in this expression, are defined by

where x, y, and z are scaled coordinates representing respectively, ri, r2 , and u, as

Two of the sums in (4.23) are up to w, which is a value used to control the number of basis 

functions in the expansion. The relationship between u  and the number of basis functions, 

is"0

K  = (4.26)

Once again, the reader can note that the correlated wave function contains the factor of 

(1 — x^)(l — y^) which forces the wave function to vanish when either electron is at the 

boundary of the sphere.

One may recall from the introduction, that the orbital energies in the HF method are 

given from the eigenvalues of X ^ F X  where X  is as described in the introduction (i.e.

X  =  5 “ /̂̂ ). Similarly, for correlated wave functions of this form, the ground state energy

of the system is given by the lowest e i g e n v a l u e o f

X ^ (r  +  J ) X  (4.27)

where T  and J  are the kinetic and electron repulsion matrices, respectively. Furthermore,
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Figure 4.4: a) Exact and HF intracules and b) Coulomb hole, for the ground state of the 3-Ballium atom.

the coefficients of the basis functions, c ĵk, are given by the eigenfunctions of this product 

of matrices.

When determining the position intracule from the correlated wave function, since the u 

variable is incorporated explicitly, one simply integrates over the x  and y coordinates. How­

ever, as before, since this is a confined system, one must impose the following restraints on 

each of the variables:

|z — 1/1 <  z  <  X  + y (4.28)

Performing such actions would yield the intracule with respect to z, i.e. P{z) ; however, one 

can obtain the true intracule, P{u), by simply replacing z with its definition from (4.25).

Using this methodology, and that described for the HF treatment, we obtained the posi­

tion intracules for a number of 3-ballium systems with varying radii,/?(!, 3, 4.5, 5, 10, 20). 

An example is shown in Figure 4.4 with the Coulomb hole displayed on the right-hand side. 

As noticed by the magnified inset of the Coulomb hole, there is no detectable secondary 

negative region for these systems. We also performed analyses with UHF wave functions 

with the same set of basis functions but these results were identical to those obtained using 

the RHF wave functions. However, there are issues associated with using the present basis 

functions for UHF analyses and these will be discussed in the next section.
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4.3 Discussion

From the results shown in Figures 4.1-4.3, it is obvious that the type of external potential 

involved in a system has a significant effect on the strength and/or presence of the secondary 

Coulomb hole. We explored three distinct two-electron cases in this study: 1) helium with 

a traditional Coulombic potential, 2) hookium with a harmonic potential, and 3) 3-ballium 

with a potential of zero inside of the sphere and an infinite potential at the boundaries. The 

strength of the secondary hole in each of these cases is summarized in Table 4.3 below. 

Additionally Figure 4.5 details the one-electron external potential for each of the cases and 

the accompanying secondary Coulomb holes.

The data suggest that as the form of the external potential is modified, there is a notice­

able change in the secondary hole. From the Coulombic potential in helium to the harmonic 

potential in hookium, the secondary hole strength decreases by four orders of magnitude. 

Moreover, employing a potential of zero inside the bounds of the system, the secondary 

hole ceased to exist.

The results obtained for 3-Ballium at a number of radii suggest that the secondary 

Coulomb hole may not exist in the absence of a non-zero potential or restoring force. 

However, for spheres with larger radii, the RHF approximation becomes increasingly inac­

curate. Thompson and Alavi'^^ have noted that the RHF and UHF solutions begin to differ 

at Tg Ri 6 where is defined as

^  (4.29)

Table 4.3: Relating the strength of the secondary hole to the external potential.
System Potential Secondary Hole Strength (S)
Helium Coulombic Yes 6.1 X 10-^

Hookium Harmonic Yes 3.1 X 10“®

3-Ballium Constant (Zero) No N/A
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Figure 4.5: Graphical representation of the one-electron external potentials of a) helium, b) hookium, and 
c) 3-ballium along with their respective secondary Coulomb holes given in d)-f).
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Therefore, using the RHF method beyond radii of approximately 4.8 au yields inaccurate 

descriptions of the wave function, and in turn, the position intracule. However, with a radius 

of 4.8 au, the electrons can separate by nearly 9.6 au in this system. If we consider ballium 

to be comparable to the real systems with Coulombic potentials, it would be somewhat 

analogous to the case when Z  = 0. Since, the occurrence of the secondary Coulomb 

hole shifts to higher values of u with lower nuclear charges, the secondary hole in ballium 

would be furthest out compared to the systems of the helium isoelectronic series studied 

here. However, the secondary Coulomb hole does begin at 3.4 au in helium, and thus one 

might expect that it would occur at some point in the ball with a radius of 4.8 au where the 

RHF model provides an accurate description.

As noted previously, we have used the UHF method to analyze the 3-hallium system 

but our results did not differ from those obtained using the RHF method at all values of 

R. This is due to the spherical symmetry of the basis functions employed in the study 

which prevents the breaking of this form of symmetry required to allow for a different 

UHF solution. The basis set employed by Thompson and Alavi does allow for symmetry 

breaking and they noted more accurate (i.e. lower) energies for the UHF systems for r, > 6. 

Analyses using this same basis set should be performed in the future to determine the true 

nature of long range correlation effects in ballium.

Regardless, there is still a great deal of information suggesting that the secondary hole 

will not exist for the ballium system. When considering ballium, there are two extreme 

scenarios that can be considered. The first is that it follows the series of the helium isoelec­

tronic series. From Table 2.2, it can be noted that the strength of the hole increases with 

decreasing atomic number Z. In this case, ballium could be considered to be similar to the 

Z  = 0 case and one would expect the secondary hole to be the largest of any of the systems 

studied here. However, this is obviously not observed in this study.

The second extreme is the scenario that we did observe. With no potential drawing 

these electrons centrally, the secondary Coulomb hole does not exist. This suggests that an
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attractive external potential is the origin of the secondary hole and our theory is that it is 

caused by an inadequate description of screening in the HF method.

Consider the cases which have been studied in the literature thus far. The first report de­

tailed the secondary Coulomb hole in the helium isoelectronic series with the hole strength 

decreasing as the nuclear charge inereased.^* As we increase the atomic number, the elec­

trons contract towards the nucleus and in order to avoid one another, they are more likely 

to move to opposite sides of the nuclei even under the HF approximation. Such configura­

tions would minimize the effeets of screening since the two electrons would no longer be 

interfering with the respective attraetion to the nucleus or origin.

The second case published in the literature was the study of the Hg molecule and the 

effect on the secondary hole as the bond length was stretched. In this case, the size of 

the secondary negative region actually surpassed that of the primary negative region as the 

bond length increased beyond 3.0 au. More recently, Hollett et al. noted that as the bond 

length increases past 3.6 au, one observes a complete reversal of the correlation hole, i.e. 

HF pushes electrons further apart at all values of u. This is indicated by an initial positive 

region followed by a negative region in the graph of AP{u). The authors claimed that 

this is due to overlocalization of the molecular orbitals in the UHF approach. However, 

consider what this could mean in the context of screening. If the HF method overestimates 

screening on distant electrons, the two electrons will likely reside near their respective 

nuclei shielding one another strongly from the opposite nucleus. This would likely cause 

an overlocalization of the UHF orbitals compared to the exact system where the electrons 

would reside more in the bonding region.

The most recent study that has been published focussed on the fictional atom, spherium. 

In this system, the motions of the two electrons are confined to the surface of a sphere of 

radius R. Much like the H2 molecule, a reversal of the correlation hole was noted at large 

values of R. As this system does not have a non-zero attractive external potential, one can 

say that this is obviously not the defining factor for the presence of a secondary Coulomb
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hole. However, remember that the electrons in this system are confined to move on the 

surface of the sphere. Therefore, they will always be the same distance from the centre of 

the system and even if there were a “traditional” nucleus at the origin, the electron nuclear 

attraction energy would be a constant. Recall from Chapter 1 that the expectation value of 

a constant operator does not affect the eigenfunctions of the full operator (i.e. nuclear re­

pulsion operator as part of the Hamiltonian operator) but simply adds said constant to each 

of the eigenvalues. This is effectively the same scenario that we are faced with here. Even 

if we place a nucleus with protons at the centre of this system, the wave function will not 

change. The energy of the system will change, but the wave function will remain the same. 

The spherium system simply differs to much from the other systems to draw significant 

conclusions from these results. However, it should be noted, that due to the unorthodox 

nature of this system, the presence of the secondary Coulomb hole in spherium does not 

necessarily contradict the hypothesis that screening is the cause.

Another piece of evidence suggesting that the secondary Coulomb hole will not exist 

in the true UHF solution of ballium stems from the fact that all other systems which have 

demonstrated this phenomenon have shown it when studied using the RHF model. For the 

real atomic/ionic systems in the He isoelectronic series, the RHF solution is the only solu­

tion (i.e. UHF is identical), but for H2 and spherium, at relatively small bond lengths/radii, 

correlation holes calculated with the RHF solution demonstrate the secondary Coulomb 

hole and these holes remain at large separations where RHF theory provides an inadequate 

description. The fact that ballium does not demonstrate this hole even with radii of 4.5 au 

suggests that even when treated at the UHF level of theory, this effect will not be present.

This idea that HF systems have a greater probability of having distant electrons is not 

a new one; but it is new for ground states. The Coulomb holes of excited states have been 

well documented in the literature and they all express significant negative regions at 

large values of u. These systems can be considered an extreme case for shielding of valence 

electrons by electrons in inner shells, which is much greater than that by electrons in the
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same shell. In fact, Thakkar'^  ̂ stated the following in a paper detailing the Coulomb hole 

for excited states of helium;

Counter-intuitive ejfects such as an increase in interelectronic repulsion upon 

inclusion o f electron correlation occur for helium and smoothly disappear as 

the atomic number increases.

This quote demonstrates that even in excited states, it was unexpected. But as discussed, 

as the atomic number increases, the size of the negative region decreases as there would be 

less shielding as the electrons are drawn closer to the nucleus. In a separate report, Ugalde 

et al. identified the cause of this effect in excited states as shielding as noted below:

Electron correlation is shown to reduce the nuclear shielding provided by the 

K-shell distribution and as a consequence, to lead to a relative shrinking of the 

outer shell density

This describes the exact effect that we are observing here. Shielding would not be nearly 

as great for electrons in the same shell, but it would still be present. This provides a logical 

explanation as to why the secondary hole is large in excited states and largely unnoticeable 

in the ground state. To be certain that shielding is the cause of the secondary hole, we must 

obtain the results using the true UHF intracule for ballium; however, based on the evidence 

presented here, it is hypothesized that the secondary Coulomb hole is a nuclear effect.

4.4 Conclusion

We have analyzed the effect of the external potential on the shape of the Coulomb hole. 

It has been noted that the secondary Coulomb hole is most strongly expressed in real sys­

tems with Coulombic potentials and while it is still present for Hookium with its harmonic 

potential, the strength of the hole decreases significantly. The results obtained thus far for 

3-ballium have indicated that this phenomenon does not occur; however, further studies
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need to be conducted for confirmation. Nonetheless, based on the evidence presented here, 

and past work reported in the literature, it is anticipated that the secondary Coulomb hole 

will not he present in ballium or any other system lacking an attractive potential.
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5 Polarization Effects on Interelectronic Separations in 

Atoms and Molecules

5.1 Introduction

The previous three chapters focussed on the development of novel tools for the study of 

electronic structure and their application to the study of correlation effects in two electron 

systems. In this chapter, we change gears and focus not on correlation effects but the effeets 

of the addition of polarization functions to a basis set.

As discussed in Chapter 1, the variational theorem states that by using a normalized 

trial wave function, 4>g, the ground state energy obtained will always be greater than or 

equal to the exact ground state energy for a particular system.^ As it is often impossible 

to solve the Schrodinger equation exactly, this theorem is highly useful since it acts as a 

measure of the accuracy for a given as improvements in the trial wave function would 

be evidenced by lower ground state energies for the system.

Recently, Pearson et al. reported their studies on basis set effects on position, P{u), 

and dot, D(x),  in tracules.T his report explored the HF intracule, using wave

functions expanded in a variety of basis sets. These intracules were then compared to a large 

reference basis (in that case 6-311++G(3d/, 3pd)) to detect any differences between the 

intracules of the large, highly polarized, reference basis and those obtained from the smaller 

basis sets. This difference was denoted AP{u),  not to be confused with the Coulomb holê ® 

which is traditionally defined as AP{u) = — P^^{u). AP{u)  in this instance is
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given by

A f  (u) =  -  P^' (ii) (5.1)

where is the intracule obtained using the reference basis set and P^'{u)  is the

intracule obtained from using any of the other basis sets employed in the study. The work 

indicated that upon the inclusion of polarization functions into the basis sets for the systems 

of the G1 test set, AP{u)  displayed a so-called “basis antihole". This is opposite to the 

effect that is seen for the Coulomb hole^®’̂ * as polarization causes electron pairs to contract, 

whereas correlation often causes electrons to be further apart. This basis antihole implies 

that incorporating polarization functions leads to an increase in electron repulsion energy 

(denoted by Ej),  by drawing electrons closer together. One might expect that due to the 

presence of the higher angular momentum orbitals and an increased flexibility in the basis 

set, the electrons would move more freely and the electron-electron repulsion energy would 

decrease; however, this is not the case.

Here, we examine why systems studied with polarized basis sets display the basis an­

tihole and greater two-electron energies (Pee) compared to their respective unpolarized 

counterparts. From the variational theorem, we know that as the basis set improves, the 

energy must decrease and thus we also explore the other components of the energy to de­

termine which ones compensate for this decrease in Pge- For the purposes of this study, all 

energy and intracule calculations were performed using Q-CHEM. Atomic units are used 

throughout this chapter.

5.2 Results and Discussion

5.2.1 Basis Set Dependence in Intracules

Expanding the HF wave function in a one-electron basis set, the position intracule F(u) 

can be expressed as
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[//, A, cr]p (5.2)
IMvXcT

where [^i,v,\,a]p are the intracule integrals and r̂ Â<r is the usual two-particle density 

matrix.'*  ̂ The [ssss]p integrals are well-known, while the integrals containing orbitals of 

higher angular momenta can be obtained either through differentiation as suggested by 

Boys,'"*  ̂ or by using the recurrence relation recently developed by Hollet et al. These 

intracule integrals have also been implemented into the Q-CHEM package^* for orbitals 

with angular momenta up to £ =  3.

For the purposes of this study, position intracules were calculated for each of the atoms 

and molecules of the G 1 test set^ ŝ with the exception of the hydrogen atom as it con­

tains only a single electron. These intracules were constructed from HF wave functions 

expanded from basis sets of increasing complexity. The basis set comparisons employed in 

this study are as follows:

(1)6-31G vs 6-31G(d,p)

( 2 )  6 - 3 1 1 G V S  6 - 3 1 1 G ( d , p )

(3) 6-311++G vs 6-311++G(d,p)

(4) 6-311+4-G(d,p) vs 6-311++G(3d,3p)

(5) 6-311+4-G(3d,3p) vs 6-311++G(3df,3pd)

(6 ) cc-VDZ vs cc-pVDZ

(7) cc-VTZ vs cc-pVTZ

where cc-VDZ and cc-VTZ are the non-polarized parts of the respective Dunning’s corre­

lation consistent basis sets. From this set of comparisons, with the exception of cases 

(4) and (5), it can be noted that each set contains basis sets with and without polarization 

functions. In cases (4) and (5), the comparisons were performed to explore the effects of in­

creasing levels of polarization within the basis sets. Thus, in contrast to the earlier work^^
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Figure 5.1: (Color) Averaged difference intracules, AP{u) normalized to unity for the atoms (left) and 
molecules (right) for the G1 test set. The case defined in the legend corresponds to the basis set comparison 
as described in the text.

where a single reference basis set was used in all cases, here the difference intracule is 

expressed by

A f f  («) -  f  («) (5.3)

where i denotes the comparison case number and the remaining terms are as previously de­

scribed. From the cases listed above, the second basis set in the list denotes the reference. 

Results of the averaged difference intracules are shown in Figure 5.1. These intracules 

represent an average for all of the atoms (left) or molecules (right) in the G1 test set which 

were all normalized to unity. From the plot of the atomic difference intracules, it is appar­

ent that for the most part, polarization functions have no consistent effect on interelectronic 

separations in atoms. However, upon looking at the averaged difference intracule for the 

molecular systems, a basis antihole is clear and the magnitudes of the resulting functions 

are much greater than those obtained for the atomic systems. This suggests that the differ­

ences in atomic systems are essentially noise. Atomic intracules aside, this figure demon­

strates that the basis antihole is a property of molecular systems. As previously mentioned 

both here and in the paper by Pearson et the antihole is indicative of electrons being 

closer together in the reference (i.e. polarized) systems, which is a counterintuitive effect.
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5.2.2 Basis Set Dependence on Energy Components

Based on the different results obtained for atomie and molecular systems, all components of 

the energy were explored for these seven basis set comparisons. Table 5.1 lists the energy 

differences for the kinetic, electron nuclear attraction, AE^^, and two-electron,

A e H \  components of the energy as well as the total energy difference, AEj^^, for basis set 

comparison (2). For a comprehensive list of the difference in energy components between 

the basis and its polarized reference, the interested reader is directed to the Supplementary 

Information. In the final two columns of this table, A e Ĥ  is partitioned further into the 

Coulomb, A E f \  and exchange components, A E ^ .  Herein, it can be noted that AE^e 

tends to be positive for molecular systems indicating a decrease in the two-eleetron energy, 

while the sign of A  Egg for atomic systems is dependent on the particular element. This 

correlates well with the results shown in Figure 5.1 as the basis antihole for molecules cor­

responds well to the trend for molecular two-electron energy differences. There are some 

exceptions for these molecular trends within the G1 test set, but these instances represented 

a small percentage of the total number of test cases. Systems containing the electropositive 

Li and electronegative F atoms where often those problematic cases that demonstrated a 

decrease in AEfe ■

Close observation of the AE^  ̂ values for atomic systems in Table 5.1 reveals one in­

teresting note. For systems containing filled or half-filled valence shells (He, Li, Be, N, 

Ne, Na, Mg, P, and Ar), the addition of polarization functions has no effect. This is most 

likely due to the symmetry of these systems. Having a half-filled or filled shell leads to 

the incorporation of a single electron or pair of electrons, respectively, into each valence 

atomic orbital, by Hund’s rule. The subsequent addition of one more electron to any of 

these orbitals would disrupt the symmetry and thus polarization of said orbitals would be 

beneficial.
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Table 5.1 : Energy differences for basis set comparison (2)

System A E S a e S AES AES AEg)
A1 -0.00213 0.00814 -0.03512 0.02485 0.03170 -0.00685

Ar 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

B -0.00308 0.00536 -0.00687 -0.00158 0.00658 -0.00816

Be 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

C -0.00302 0.00505 -0.00573 -0.00234 0.00496 -0.00731

Cl -0.00356 0.00847 -0.02004 0.00800 0.01642 -0.00842

F -0.00272 0.00493 -0.00569 -0.00195 0.00432 -0.00627

He 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Li 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Mg 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

N 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Na 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Ne 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

O -0.00272 0.00463 -0.00568 -0.00166 0.00478 -0.00644

P 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

s -0.00319 0.00844 -0.02425 0.01262 0.02085 -0.00823

Si -0.00257 0.00882 -0.02947 0.01808 0.02502 -0.00694

BeH -0.00403 0.00538 -0.02246 0.01305 0.02072 -0.00767

CH -0.01540 -0.00319 -0.04260 0.03039 0.04634 -0.01595

CH2(Mi) -0.02333 -0.01322 -0.07093 0.06082 0.07739 -0.01657

-0.01410 -0.00990 -0.03552 0.03132 0.04638 -0.01506

CHa -0.01817 -0.01469 -0.03934 0.03587 0.05753 -0.02166

CH3CI -0.04320 -0.07913 -0.10776 0.14369 0.17137 -0.02768

CH3SH -0.06255 -0.08676 -0.21907 0.24328 0.28666 -0.04338

CH4 -0.02091 -0.01789 -0.03814 0.03512 0.06121 -0.02609

CI2 -0.04678 -0.17659 -0.13461 0.26441 0.26247 0.00194

GIF -0.03658 -0.13091 -0.06743 0.16176 0.16129 0.00048
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Table 5.1: {Continued. )

System aêS AEi^) A Eÿ) A E g

CIO -0.05844 -0.19780 -0.09446 0.23382 0.23591 -0 .0 0 2 1 0

CN -0.04257 -0.10480 -0.12726 0.18949 0.18892 0.00056

CO -0.06857 -0.06952 -0.28497 0.28592 0.31774 -0.03183

C0 2 -0.11849 -0.09924 -0.54085 0.52160 0.58603 -0.06442

es -0.06517 -0.11710 -0.35027 0.40220 0.43004 -0.02784

Fa -0.01817 -0.05463 -0.06147 0.09792 0.09802 -0 .0 0 0 1 0

Ha -0.00450 0.00415 -0.01559 0.00694 0.01387 -0.00694

HaCCHa -0.03434 -0.03422 -0.10053 0.09942 0.14077 -0.04135

H2CO -0.05882 -0.06940 -0.21199 0.22257 0.26365 -0.04108

H2NNH2 -0.05938 -0.06109 -0.17348 0.17519 0.20704 -0.03185

H2O -0.03704 -0.02611 -0.10374 0.09282 0.10693 -0.01412

HaS -0.04679 -0.03825 -0.21351 0.20498 0.23280 -0.02782

H3CCH3 -0.04006 -0.03720 -0.07886 0.07600 0.12301 -0.04700

H3COH -0.05583 -0.06351 -0.13564 0.14332 0.17888 -0.03555

HCCH -0.02955 0.00438 -0.14987 0.11594 0.15077 -0.03482

HCl -0.02856 -0.02179 -0.12289 0.11612 0.12928 -0.01316

HCN -0.04916 -0.04086 -0.21345 0.20514 0.24235 -0.03721

HCO -0.06275 -0.07557 -0.21313 0.22595 0.25967 -0.03373

HF -0.02477 -0.01730 -0.06472 0.05725 0.06488 -0.00764

HOCl -0.05408 -0.13372 -0.13917 0.21881 0.22656 -0.00775

HOOH -0.05983 -0.08140 -0.18122 0.20279 0.21998 -0.01719

Lia -0.00018 0.00056 -0.00250 0.00177 0.00213 -0.00036

LiP -0.00661 -0.02145 0.03261 -0.01777 -0.02358 0.00581

LiH -0.00113 0.00157 -0.00957 0.00687 0.00910 -0.00223

Na -0.07527 -0.07752 -0.31241 0.31466 0.35249 -0.03784

Naa -0.00032 0.00087 -0.01123 0.01004 0.01041 -0.00037

NaCl -0.00723 -0.00405 -0.13930 0.13612 0.13806 -0.00194
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Table 5.1: {Continued. )

System a e S AEi^) AEÿ) A Eg)

NH -0.01867 -0.01096 -0.05040 0.04268 0.05645 -0.01377

NH2 -0.03176 -0.01863 -0.09152 0.07838 0.09811 -0.01973

NHa -0.03218 -0.02272 -0.09035 0.08089 0 .1 0 0 1 2 -0.01923

NO -0.06952 -0.16052 -0.16704 0.25803 0.26098 -0.00294

O2 -0.05875 -0.13201 -0.14914 0.22240 0.23364 -0.01124

OH -0.02364 -0.01282 -0.06356 0.05274 0.06762 -0.01499

P2 -0.06938 -0.13313 -0.59634 0.66010 0.69314 -0.03304

PH2 -0.04001 -0.01483 -0.23035 0.20517 0.23842 -0.03325

PH3 -0.05384 -0.02342 -0.30050 0.27008 0.31376 -0.04368

S2 -0.07515 -0.20359 -0.36533 0.49377 0.51042 -0.01665

Si2 -0.03514 -0.04325 -0.37625 0.38436 0.41286 -0.02850

SizHg -0.09221 -0.00722 -0.63157 0.54658 0.65622 -0.10963

SiH2(M i) -0.03042 -0.00879 -0.20851 0.18688 0.21151 -0.02463

SiH2("Bi) -0.02605 -0.00019 -0.15941 0.13355 0.16402 -0.03047

SiHs -0.04064 0.00290 -0.24702 0.20348 0.25265 -0.04917

SiH4 -0.05288 -0.00324 -0.31094 0.26130 0.32346 -0.06216

SiO -0.06417 -0.08018 -0.48996 0.50596 0.53286 -0.02689

SO -0.08707 -0.22143 -0.29901 0.43337 0.45720 -0.02383

SO2 -0.24128 -0.58339 -0.85288 1.19499 1.24007 -0.04508

The variational theorem states that as the accuracy of the wavefunction improves, the 

energy for the system decreases. Since polarization functions cannot have a detrimental 

effect on the wavefunction, these increases in two-electron energies, must be offset by 

greater decreases in the kinetic and electron nuclear attraction components of the energy. 

The question that needs to be answered is which component of the energy factors more 

prominently in the reduction of the energy. From the set of data displayed in Table 5.1, it
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b) c)

d)

Figure 5.2: (Color) Electron density differences, Ap(2)(r), for a representative group of molecules from 
the G1 test set. a) Methane, C H 4 ,  b) ammonia, N H 3 ,  c) water, H 2 O ,  d) hydrogen fluoride, HF, e) methanol, 
C H 3 O H ,  f) ethene, C 2 H 4 .  Green and red areas in the density difference indicate positive (+0.004) and nega­
tive (-0.004) values, respectively. All other colors present are indicative of atoms within the molecules.

is apparent that in majority of molecular systems, the stabilizing energy resulting from the 

attraction between the electrons and nuclei plays the major role in reducing the total energy 

of the system. This indicates that the electrons are attracted more strongly to the nuclei 

in the system but still does not provide a clear explanation as to why the introduction of 

polarization functions leads to a contraction of electrons in molecular systems.

5.2.3 Basis Set Dependence in the Electron Density

To develop a more complete picture as to what is occurring in these systems upon inclusion 

of polarization, we looked at the differences in electron densities for the seven previously 

mentioned basis set comparisons.

Ap'(r) = (5.4)
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Examples of these difference electron densities, Ap^^^(r), are displayed in Figure 5.2. Once 

again, the basis set comparison chosen for this display was case (2 ) as previously done in 

Table 5.1. In these density plots, the isovalues that are shown are ±0.004. There was no 

theoretical reasoning for the choice of these particular values; they were simply chosen to 

provide a good visual representation of the positive (green) and negative (red) regions of 

Ap(r). From the figure, it is evident that once the polarized functions are included in the 

constmction of the wavefunction, an increase in the electron density within the bonding 

regions occurs. This is consistent with results obtained for the small subset of systems 

studied by Roos and Sigbahn amongst others. *45-148 However, herein, we have provided a 

great deal of evidence supporting this theory through the use of a wide range of basis set 

comparisons

5.2.4 Summary

Although these electron density differences do not tell the whole story, they provide a great 

deal of evidence as to why the electron repulsion energy is increasing in the molecules of 

the G1 test set. The inclusion of polarization functions allows for more accurate descrip­

tions of the bonding regions and thus instead of increasing interelectronic separations with 

the inclusion of higher angular momenta orbitals, these orbitals overlap more effectively, 

providing a more accurate description of the electronic stmcture within a chemical bond. 

A great example of this is shown in Figure 5.2 (f), the ethene molecule. For the Tr-bond 

in this system, the p-orbitals would have to bend to effectively describe this type of bond; 

however, this is not possible. Therefore, once d-orbitals are incorporated into the basis set, 

they can combine with the p-orbitals to more effectively describe the overlap in the 7r-bond.

The idea that polarization functions increase electron density in bonding regions has 

been known for some time, at least for the small set of systems that have been described in 

the literature. However, to explore the validity of analyzing the origins of the basis antihole 

using electron densities, we separated the position intracule, P{u), into its Coulomb, J{u),

110



and exchange, K(u),  components. These fragments of the total intracule can be defined as

J{u) = ^  j  J p{r)p{r +  u)drdflu  (5.5)

and

^ ( 4  =  [  [  Xi{r)Xj{r)Xz{r + u )x j{r  + u))drdnu  (5.6)

where p(r) is the electron density, % (̂r) is the z**’ spin orbital and denotes integration 

over the angular components of the vector u.  It is clear from these expressions that the 

Coulomb intracule is directly related to the electron density. It can be shown that the zeroth 

moment of the Coulomb and exchange components of the intracule are given

fOO -, poo 1

y  u°J(u)du =  -Ar^ y  u°A-(u)diz =  - - N  (5.7)

where N  is the number of electrons. With the position intracule given by the sum of the 

Coulomb and exchange intracules (P{u) = J{u) + K{u)), the ratio of the contribution of 

each of the components is

Thus, the contribution to the total intracule from the Coulomb component is N  times greater 

than that of the exchange component. Therefore, as the number of electrons within a system 

increases, the Coulomb intracule becomes the dominating factor, and because this compo­

nent is directly related to the electron density, using the differences in electron density to 

study the basis antihole is reasonable.

Ideally one would look at the difference in the pair density for these comparisons; how­

ever, visualization of this function is not possible. Nonetheless, the electron density dif­

ference does an adequate job of explaining all of the observations in this study and from 

the evidence involving the Coulomb and exchange intracules above, this form of analysis 

is completely valid. The idea that atoms and molecules behave differently with molecules
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showing increases in electron repulsion energy and atoms showing no obvious trend fits 

perfectly with this explanation. In molecules, the polarization functions improve the de­

scription of bonding regions leading to increases in electron density in the bond and the 

concomitant increase in repulsion energy and the presence of the basis antihole; whereas, 

in atomic systems which tend to be relatively symmetric, polarization functions would not 

cause significant differences. Any effect on an atomic system would be highly dependent 

on the electronic configuration of the specific atom as noted by the values of AEee in Tahle 

5.1.

With the increase in the two-electron energy, the one-electron components of the energy 

must compensate for this decrease in order for the wavefunction to satisfy the variational 

theorem. The identity of the major contributor to this decrease was found to be the electron 

nuclear attraction component of the energy. However, the kinetic energy also demonstrated 

slight decreases. This suggests that since the electron density within the bonding region is 

increasing, the electron nuclear attraction would increase in magnitude (i.e. become more 

negative) as the electrons are being drawn closer to additional nuclei. In the case of the 

difference in kinetic energy, two competing effects would be observed. First, as electrons 

are drawn closer to nuclei as they appear to be based on the results in Figure 5.2, kinetic 

energy tends to increase which would result in a positive A E t - But second, as the electrons 

are localizing in the bonding regions, the stronger attraction to two separate nuclei may 

compete with one another leading to a decrease in kinetic energy. These two competing 

effects could result in a AE-r smaller in magnitude than the corresponding AE^n - One can 

consider an object with external potential forces heing exerted on it in opposing directions; 

these opposing forces would lead to a hindrance of the kinetic energy of said object. There 

are some exceptions to this trend as noted by the data in Tahle 5.1 and more in-depth studies 

would have to be carried out to confirm or deny this hypothesis.

For the molecules in Figure 5.1 (left), as we move from case (3) to case (4) and finally 

to case (5), it is noted that the difference intracules become far more similar to their refer­
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ence basis. These comparison cases involve increasing levels of functionalization starting 

with the 6-311++G basis. In cases (4) and (5), the ^unpolarized' bases actually contain 

polarization functions, but do not contain the same level of polarization as their respective 

reference basis sets. Thus, slight improvements are noted upon the inclusion of further 

polarization functions, but the initial introduction of the higher angular momenta orbitals 

makes the most significant difference in improving the quality of the bond description.

5.3 Conclusion

The discovery of the basis antihole was somewhat surprising as it was believed that the 

addition of polarization functions to a system would lead to a decrease in repulsion energy 

and a concomitant separation of the electrons. However, as the basis antihole demonstrates, 

this is not the case in most molecular systems. We have shown here how the polarization 

functions improve the quality of the description of the bonding region. As the intracule 

can be directly related to the electron density through the Coulomb component, this in 

turn causes the electrons to get closer together leading to this increase in repulsion energy. 

To compensate for this increase in electron repulsion energy, and to obey the variational 

principle, it was determined that the electron nuclear attraction energy provides the greatest 

contribution in terms of decreasing the overall energy.

There have been some exceptions to the trend of increases in electronic repulsion and 

greater compensation by the electron nuclear attraction component, but these cases are 

rare (representing less than 1% of the cases studied). They appear to be most prevalent 

in systems containing atoms which are highly electronegative or electropositive such as 

fluorine, chlorine, and lithium. Regardless, this work demonstrated that there is a strong 

relationship between the occurrence of the basis antihole and increased electron density in 

the bonding regions due to the more accurate description of the bond through the inclusion 

of the polarization functions.
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6 Optimizing Reaction Energetics Through the Linear Com­

bination of Functional Groups (LCFG) Method

6.1 Introduction

This chapter diverges from the previous studies on electronic structure and focusses on 

a concept more broadly applieable to theoretical chemistry and the field of ehemistry as a 

whole. Since the advent of the field in the 1920s, there have been a number of advancements 

in quantum chemistry which have led to highly aecurate approximations to the solution of 

the Schrodinger equation. These include the development of the previously mentioned 

correlated methods such as configuration interaction (Cl), coupled cluster (CC), Mpller 

Plesset perturbation theory (MPPT), and density functional theory (DPT). These methods 

are commonly used today in the field of computational chemistry but their application 

is limited by an exponential increase in computational cost with system size. Therefore, 

highly accurate calculations on large molecules are still not feasible due to this scaling 

problem.

Regardless, experimental chemists often use computational chemistry as a supplement 

to their work. For instance, chemists involved in drug discovery and development often 

use computational techniques to determine what types of drugs to focus on in order to save 

time and money in the lab. For these same reasons, pharmaceutical companies often employ 

teams of theoreticians to enhance productivity and fiscal responsibility. Nonetheless, due to 

the high cost of accuracy in computational models, there are limitations to the advantages
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that can be provided by theoretical work.

In this project, we aim to develop a program that is capable of optimizing reaction 

energetics with respect to substituents in a given reactant complex. Similarly, in 2006 

Yang et al. reported their work on designing molecules through the optimization of atomic 

potentials. In that report, they demonstrated the utility of the method by using it to 

determine the most polarizable molecule from a set of 25 constructed by linking all possible 

combinations of two identical sets of 5 substituents (-CH3 , -OH, -NHg, -F, -Cl, and -SH). 

The method accurately predicted HS-SH as the most polarizable molecule of the 25. This 

results in significant time savings as the polarizability of each of the individual molecules 

need not be determined. These results provided the motivation behind the work that will be 

reported in this chapter. However, instead of optimizing a single state in terms of atomic 

potentials, we focussed on optimizing the energy difference, A E, between two states with 

respect to a set of substituents through a process that we refer to as a linear combination of 

functional groups (LCFG). It should be noted that the Rothlisberger group also performed 

similar calculations prior to those by Yang et al. that were applied in the design of a 

nonpeptidic anticancer drug candidate.

6.2 Methodology

The aim of this project is to optimize reaction energetics of a particular reaction with re­

spect to a functional group at a designable site in a molecule. Figure 6.2 shows a reaction 

coordinate showing the reactant state Si  and two possible states for the transition state 

(5 2 a) or the products (5%). Now, consider any process involving a reactant complex with 

a site that can be modified without affecting the type of reaction that occurs. To deter­

mine what functional group would optimize the energetics of such a reaction (minimize 

or maximize either AE„ or AE), one would have to perform calculations on the reactant 

and product (or transition) states of the molecule for each functional group. If one was 

interested in testing a wide range of functional groups, calculations of the highest accuracy
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Figure 6.1 : Reaction coordinate diagram for a general reaction defining the states of interest in the LCFG 
process.

would require an enormous amount of time for reactions involving molecules comprised 

of more than 5 or 6  heavy atoms. However, consider a large catalytic complex where the 

sizes of the functional groups are significantly smaller than the full molecule. In this case, 

recalculating all of the integrals involved in the fixed part of the system (which we will 

refer to as the reference system) would comprise the majority of the total calculation time 

despite the fact that these integrals are redundant. Thus, instead of performing separate 

calculations for each individual functional group, it would be far more efficient to perform 

a single calculation where all of the desired functional groups are superimposed at the same 

position in the molecule.

To develop such a method, one must allow each substituent to interact with the reference 

system while prohibiting interactions between the different functional groups. To achieve 

this, the energy expression can be partitioned into separate components for the reference 

system, Eref, and the designable site (i.e. superimposed functional groups), Y1 for both 

states of interest. Si  and %. This can be represented mathematically as

^ 6„ =  1 (6 .1)
a = l
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where ba is a coefficient defining the fraction of the energy contributed by individual func­

tional groups. We may then minimize or maximize A E  with respect to the linear coeffi­

cients, ha, hence, the functional group pertaining to the largest coefficient would be that 

which optimizes the specific energetics of the process.

Since the reference system is fixed, the only components of the energy incorporated 

in and are those that only involve the atoms of the reference system. All other 

interactions, be they between the reference system and the functional group or between 

different orbitals within the functional group, would be included in or Ef^. Every 

optimization performed in this study was carried out at the HF level of theory using the 

STO-3G basis (denoted by HF/ST0-3G) as a reasonable ab initio starting point. Upon 

expanding the molecular orbitals in a basis of atomic orbitals, the HF energy, previously 

given by (1.12) and (1.56), can be expressed as

K  K  K  K  K  K  M  M  y  y

= + ‘î" ) + È Ê è È + È È - t r
1^=1 /x=l u = l  A=1 a = l  A=1 B > A

where and are elements of the kinetic and electron nuclear attraction integral 

matrices, respectively, while represents an element of the electron repulsion integral 

matrix. Finally, and are elements of the previously described charge density 

and two-particle density matrices. In order to separate the components of the energy, we 

can define the energy of the reference system as

-^ re f  -^ re f -^ re f -^ re f  -^ re f  -^ re f  - ^ r e f  -^ re f  ry ry

^=1  i /= l  /x= l u=X A=1 a=X A=X B > A

where Eref and Mref refer to the set of basis functions describing the reference system and

the set of nuclei in the reference system, respectively. For the energy pertaining to each 

of the functional groups, we must construct individual one- and two-electron matrices for
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each functional group. These are given by

{4>f \̂Ô\(j)̂ ), otherwise 

for the matrices of one-electron integrals, where O is the appropriate operator, and

0 , 1 < j . i h v k , \ h a  < K^ef
i  (6.5)

2{fiu\Xa) — {^ia\Xu), otherwise

for the two-electron integral matrix. Using these definitions, the energy contribution for 

each of the functional groups is given by

Ka Ka Ka

= E  E  + E E E E
^=1 i / = l  ju=l I/—1 A=1 cr=l

A ^a ry ry  A^ref A^ref ry ry

where Ka and M„ are the full set of basis functions and nuclei in the full chemical system 

with functional group, a. It should be noted that by using the indices and Mref, h is 

assumed that the components of the matrices and the ordering of the nuclei are in such a 

way that these sums only run over the components that are associated with the reference 

system.

The one- and two-electron integral matrices are assembled according to (6.4) and (6.5) 

while the values of each of the integrals can easily be calculated using one of the many 

programs that performs quantum chemical calculations. Where the problem lies, is in how 

to define the molecular orbital (MO) coefficient matrices, C  to determine the contribution 

of each basis function to every molecular orbital. In order to discuss how the coefficients 

are determined, we must first introduce the concept of localized molecular orbitals (LMOs) 

versus the more traditional canonical molecular orbitals (CMOs). CMOs are the orbitals
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Figure 6.2: Comparison of the a) canonical, and b) localized molecular orbitals for the ground state of the 
water molecule calculated at the HF/STO-3G level of theory.

that are obtained as the eigenfunctions of the Pock operator. In general, these orbitals are 

delocalized over the entire chemical system and are highly dependent on the composition 

of the given molecule. LMOs, on the other hand, are far more conceptual; one can easily 

imagine what these orbitals would look like for any given system as they represent the 

bonds, lone pairs, and core orbitals within a molecule. Figure 6.2 shows the differences 

between CMOs and LMOs for the ground state of the water molecule at the HF/STO-3G 

level of theory.

The most important feature of LMOs is that they are highly transferable from one 

molecule to another, whereas with a CMO treatment, the molecular orbitals change drasti­

cally from one compound to the next. Figure 6.3 demonstrates the non-transferable nature 

of CMOs versus the high transferability of LMOs. The CMOs that are depicted in the figure 

range from the HOMO-3 up to HOMO whereas the displayed LMOs are the four orbitals 

that are contained in both the HgO and HOF molecules (oxygen Is core, 0-H  bond, and two 

oxygen lone pairs). Such localization allows for the transfer of atomic orbital coefficients 

from one molecule to the next for a specific LMO (e.g. lone pair of an oxygen atom).

As mentioned at the beginning of the discussion on molecular orbitals, the CMOs are 

obtained interatively by solving the Roothaan-Hall equations in an SCF procedure. In
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a) H20 HOF *̂) H2O HOF

Figure 6.3: Comparison of the transferability of a) CMOs, and b) LMOs using the water molecule and 
hypofluorous acid as examples.

contrast, the LMOs are obtained by adding linear combinations of CMOs to obtain the 

most localized orbitals possible. This is possible due to the property of determinants that 

states that if one adds a multiple of column A to column B, the determinant will not change. 

Thus, for a two-electron system with a wave function given by a single Slater determinant 

as

Xi(ri) %2(ri)
Xi(ra) X2 (ra)

we can modify the columns by adding a multiple of column 1 to column 2  as follows

(6.7)

Xi{ri) X2{ri) +  kxi{ri )  

Xi(ra) X2(r3) +  A;xi(ra)
(6 .8)
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without changing the wave function (where k  is simply a coefficient denoting the addition 

of a multiple of column 1). One can work out the determinant above to prove the validity 

of this claim. This idea that one can combine different CMOs in various ways without 

affecting the accuracy of the wave function is the basis for the construction of LMOs. 

However, as one can imagine, there are countless ways to mix the CMOs to obtain new sets 

of molecular orbitals, especially in larger systems.

Lennard-Jones and Pople originally theorized that one could obtain localized orbitals 

by minimizing the interorbital repulsions which are given

4 ^ ^ /  — |<?ij(r2 ) p d r i d r 2 (6.9)

where the factor of 4 stems from the fact that there are four interorbital repulsions from 

the electrons in a pair of molecular orbitals. This idea was the basis for the Edmiston and 

Ruedenberg (ER) localization method. More correctly, in the ER localization scheme, 

the repulsions within a single orbital are maximized, but in doing so, one effectively mini­

mizes the repulsions between different orbitals.

The ER localization method is one of the most popular today though there have been a 

number of other localization s c h e m e s d e v e l o p e d  over the years such as that of Boys 

et al. , which maximizes the distance between centroids of charge in a molecule. ^̂ 4,155 

However, this method does fail to yield properly localized orbitals for some molecules.  ̂

For this reason, we have chosen to use the ER scheme; however, it should be noted, that 

the Boys method as well as the Pipek-Mezey method were studied in the initial stages 

of the project but no significant differences in the LMOs were noted.

With the introduction to CMOs and LMOs complete, we now return to the discussion 

concerning the MO coefficient matrix. The LMOs of these partitioned systems can be di­

vided into three categories: 1) the LMOs describing the core orbitals, lone pairs, and bonds 

within the reference system, 2) the LMO(s) describing the bond between the designable
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site functional group and the reference system, and 3) the LMOs describing the core or­

bitals, lone pairs, and bonds within the designable site functional group. Describing the 

exact form of the coefficient matrices as well as where each piece of data is obtained either 

by written descriptions or through the use of mathematical expressions is non trivial, and 

thus we will instead demonstrate this pictoiially in Figure 6.4.

B -  

C -

_L

Figure 6.4: Fragmentation of the MO coefficient matrix. (A)-(C) Atomic orbital basis functions describing 
the reference system, the reference system atom attached to the functional site, and the functional group 
atoms, respectively. (l)-(3) LMOs describing reference system orbitals, reference system/functional group 
bond, and functional group orbitals, respectively.

The simplest, and perhaps, most efficient way to define the MO coefficients of the 

reference system (Region A1 in Figure 6.4), is to perform a ealculation on the reference 

system with the empty valence being capped with a hydrogen atom. Hydrogen is likely 

the least biased choice for a capping agent as it is not electron withdrawing or electron 

donating and its small size allows for a simple description of the atom in terms of basis set 

size. This is similar to the method employed in QM/MM and ONIOM calculations in order 

to complete the valence of any bonds that are broken in the partitioning process,

All coefficients pertaining to the reference system basis functions that are used in the 

description of the LMOs (Region A l) for the reference system are obtained through this
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initial calculation using the hydrogen capping agent. The remaining LMO coefficients will 

either be supplied through a pre-built library of coefficients or set to zero. As the orbitals in 

these systems are localized, the contribution of atoms (and thus their basis functions) that 

are not involved in the bond or lone pair that the orbital is describing is often negligible 

anyway. This suggests that omitting the orbital contribution from distant atoms will not 

result in large energetic errors.

Two different approaches of assembling the MO coefficient matrices were employed in 

this study and they are represented in Figure 6.5 with regions shaded in light green denoting 

MO coefficients that are provided by the initial SCF calculation. The regions shaded in dark 

green denote those that are provided from a predefined library and white regions indicate 

the coefficients that are set to zero. These two methods, Method I (MI) and Method II 

(Mil), will be compared in the results and discussion section of this chapter. Ideally, one 

would prefer to use Method II as it requires less information to be included in the library.

Method I Method II

Figure 6.5: Pictorial representation of the two methods for constructing the coefficient matrices. Shaded 
regions indicate the origin of the coefficients as follows: —> coefficients provided from initial calculation
on reference system capped with H atom, ■  -4- coefficients provided from the predefined library, and □  -4 
coefficients set to zero.

The results presented in the next section are obtained using the energy expressions 

from (6 .1)-(6 .6 ) where the density and two-particle density matrices are formed from the 

two aforementioned methods of constructing the MO coefficient matrix. Recall that in HF
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theory, these two matrices can be related to the MO coefficients by

N/ 2

-P/ii/ =  2 ^  c*„c^a (6 .10)
a = l

^ ~  - ^{ ‘̂ P f i u P x a  — P ^iaP xu)  (6 . 11)

The construction of the library of coefficients is a huge undertaking. Thus, instead 

of focussing on the development of this library, the focus of this project was to develop 

the fundamental process for these optimizations. Thus, for the two methods displayed in 

Figure 6.5, any coefficients that are specified as being provided by the library were instead 

obtained from a calculation on the true molecule. One might suggest that this introduces 

an advantageous bias; however, one must remember that these orbitals are localized and 

demonstrate very little differences from one molecule to the next. This reaction affords 

the opportunity for a proof-of-concept investigation whereby we can determine the level of 

accuracy retained by truncating the MO coefficient matrix.

For the purposes of this study, the GAMESS software p a c k a g e w a s  used to calculate 

all of the one- and two-electron integrals while the optimization procedures were carried out 

using Mathematica.^^ All of the calculations presented in the next section were performed 

using the ST0-3G basis set. Atomic units are used throughout unless otherwise stated.

6.3 Results and Discussion

The LCFG method has been tested on the deprotonation of the HO-X molecule, where 

X denotes the designable site containing the superimposed functional groups. This pro­

cess was chosen as it represents a reasonably simple test case to determine the validity of 

the method. As this reaction is a simple deprotonation, one cannot specify a transition 

state, and thus, the optimization was carried out with the goal of maximizing the differ­

ence between the energies of the product (5 /)  and reactant {Si) states as a function of the
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substituent in the X position.

In reality, one would often want to maximize A E  for an exothermic reaction or mini­

mize it for an endothermie process to obtain an estimate of the most stable product; how­

ever, the choice of minimizing or maximizing may in principle be left to the user. We have 

used our code to predict the order of reaction energies, AE ,  from highest to lowest. When 

a large number of functional groups is superimposed at the designable site, one would 

not care about the exact order of reaction energies; however, it would likely be of interest 

to determine the functional groups that would lead to a few of the highest or lowest A E  

values.

For this optimization, a set consisting of five functional groups was superimposed at 

the X site in the O-X bond. These substituents include -H, -F, -Cl, -CH3 , and -NH2 which 

were chosen to give a set of functional groups with varying electronegativities. The energy 

results for this optimization are summarized in Table 6.1 where HF, Ml and Mil refer to 

calculations obtained from a full HF benchmark calculation and the LCFG calculations 

using MO coefficient matrices based on Methods 1 and 11, respectively. From this data, 

it can be noted that the energy values obtained from these LCFG optimizations contain 

a significant amount of error compared to the actual HF calculations. However, as all of 

the systems contain significant errors, the only concern is whether or not the errors are 

relative and lead to a retention of the order of A E  values. One must realize that the sole 

purpose of this program is to determine the optimal substituent(s) for a given reaction. 

Thus, quantitative energetics are not required for a successful application.

From the data listed in Table 6.1, it can be noted that for each of the three methods, the 

order of the reaction energies from lowest to highest is as follows:

HF -Cl < -F < -NH2 < -CH3 < -H

Ml -Cl < -H < -F < -NH2 < -CH;

Mil -F < -CH3 < -NH2 < -Cl < -H
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Table 6.1: Results of the LCFG optimization for the deprotonation of HO-X

Substituent (X) HF

Order of A  E  
Ml Mil

-Cl 0.72076 -0.46596 0.13137 1 1 4

-F 0.82116 -0.39085 0.72762 2 3 1 .
-NH2 0.83662 0.10802 0.25630 3 4 3

-CH3 0.84283 0.13143 0.26460 4 5 2

-H 0.90088 -0.46523 -0.46523 5 2 5

Comparing the results from Method II to those from the true HF calculations, it is clear 

that this method is ineffective in the prediction of the optimal suhstituent(s), at least for 

this particular reaction. This is not an unexpected result as this method does not provide as 

much information as the coefficient matrix used in Method I.

At first glance, it may appear as though Method I also performed poorly in terms of 

predicting the best substituents to minimize/maximize the reaction energetics; however, 

one must consider how the coefficients for these systems were obtained. All of the atomic 

orbital coefficients for the functional group LMOs (that are not set to zero) were obtained 

directly from calculations on the specific compound (HO-X), while those for the fixed 

reference were obtained from a calculation involving the reference system, -OH, capped 

with a hydrogen atom. Thus, the MO coefficients used in the optimization of the HOH 

complex are exact (with the exception of the omitted coefficients). This leads to a strong 

hias for the -H substituent in the optimization and results in a spurious placement of it 

within the ordering in Tahle 6 .1 for MI and MIL

When considering the results of the optimization without the biased -H substituent, one 

can note that the reaction energies obtained from the LCFG/MI calculations are identical
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to those obtained from the true HF calculations.

HF -Cl <  F < -NHa < -CH3

MI -Cl < -F < -NH2 <  -CH3

These findings demonstrate great promise for the idea of algorithmically optimizing a re­

actant complex for a specific reaction process and serve as an important proof-of-concept 

for the idea.

6.4 Future Work and Conclusions

Despite the simplicity of the test case studied here, the LCFG method of optimizing re­

action energetics appears to merit further study. Obviously, we would like to expand the 

applications of this code to be suitable for any type of reaction. But first, there remains 

work that can be performed to optimize the code.

Presently, much of the work carried out in these optimizations is done manually. The 

integrals as well as the localized molecular orbitals for the reference system are initially 

calculated in GAMESS'^' after which they are imported into Mathematical^ where the 

optimization is conducted. Additionally, as LMOs are not automatically arranged accord­

ing to the schematic in Figure 6.3, one must manually modify the coefficient matrices to 

arrange the molecular orbitals in the proper order. For efficient use of this program, each 

step of this process should be automated. In the future, we plan to develop this code as a 

stand alone program in Fortran to maximize the cost savings for the method; however, the 

method as is was deemed sufficient for this proof-of-concept project.

As previously mentioned, the predefined library of coefficients must be carefully con­

structed. This library will be formed in such a way to remove the bias for the reactant 

complex containing a hydrogen atom at the designable site. The exact method for deter­

mining the MO coefficients for this library needs to be explored. Some possible options
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include performing calculations on a wide range of molecules containing the substituent of 

interest after which an average or weighted average of the MO coefficients would be used 

to determine the appropriate values of the library to minimize error. Alternatively, one 

could simply optimize these coefficients in order to minimize the difference between the 

actual HF energy and that which is obtained through the LCFG method. These optimiza­

tions could be carried out for a given substituent in a wide range of chemical environments 

to obtain coefficients that would be unbiased to a particular class of molecules. The con­

struction of said library is a major undertaking and will require a great deal of time and 

effort.

The end goal of this project is to have a fully functional program that can optimize 

a reactant complex with respect to functional groups present at multiple designable sites 

within the molecule. In a multiple site optimization, cost savings of the method would 

increase dramatically making for the most efficient use of this code.

Finally, as mentioned in the introduction, the correlation energy, which is not included 

at the HF level of theory, is often on the same order of magnitude as reaction energies. The 

results reported here have been on HF calculations using minimal basis sets; however, in 

order for this method to be useful as a complement to experimental chemistry, it must be 

adapted in the future for use with a correlated method. Kohn-Sham (KS) density functional 

theory (DFT) is a method which we see as a potential candidate for an accurate method as, 

much like HF, an SCF routine is used to determine the contribution of each basis function 

to the KS orbitals. Although KS orbitals technically have no physical meaning since DFT 

is not a wave function theory, it is still possible to obtain localized KS orbitals to use 

in this method. Alternative correlated methods, such as the MPPT, Cl, and CC levels 

of theory are post-HF methods which employ the HF wavefunction as well as additional 

corrections. The implementation of these methods would likely be more complicated than 

with DFT; however, if this program is deemed successful, these post-HF methods could 

also be incorporated.
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Herein, we have described the development of a novel method known as the linear com­

bination of functional groups and its application in optimizing reaction energetics. For the 

simple test case of the deprotonation of the HO-X molecule, this optimization scheme has 

performed surprisingly well. Although this test case is simplistic due to the small size of 

the reactant, it does pose problems as the products introduce a charge on the atom neigh­

boring the functional groups. In later applications of this code, reaction sites would likely 

be separated from the designable site by more than a single bond. It would be interesting 

to study a series of reactions to determine the maximum distance that the designable site 

can be separated from the reaction site where the method can still accurately predict the 

optimal substituent.

It must be reiterated that this project is still in the stages of infancy. There is a great deal 

of work that can still be done in this area; however, the results that have been obtained thus 

far have demonstrated great potential for the idea. There will always be some adjustment to 

the method that can be made to improve the predictive accuracy, but it is essential to begin at 

the simplest starting point to avoid the addition of any unnecessary, time-consuming steps. 

This is the point to which the program has been described in this chapter; however, if, 

upon the inclusion of the library coefficients, the accuracy proves to be inadequate, one can 

always modify the method of fragmenting the energy expression or allow for relaxation of 

the predetermined LMOs of the functional group. Nonetheless, further research is essential 

to determine what methods will prove most effective and which ones need reconsidering.
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7 Conclusion

This thesis has highlighted the details of two separate research projects: the first, which 

was covered in Chapters 2-5, involved the study of electronic structure while the second, 

described in Chapter 6, pertained to the development of a novel method for the optimization 

of reaction processes. This chapter will serve to summarize the major conclusions that 

were drawn from the data generated in this research and discuss future avenues of research 

involving these projects.

7.1 Summary

Chapters 2 and 3 detailed the development of new probability densities that provide novel 

ways of studying electronic structure. The intex and angular intex densities have been 

developed for s-type orbitals and have been used to study the distribution of electrons in 

two-electron systems. These two densities have each been employed to elucidate informa­

tion regarding correlation effects and the nature of the secondary Coulomb hole in addition 

to the general electronic structure of such systems.

In order to make these densities applicable to the study of the electronic structure of 

molecules, the expressions for the intex and angular intex integrals must be expanded for 

the use of orbitals with higher angular momenta. Once these expressions are obtained, the 

intex density and angular intex densities can be used for analyses of a wide range of atomic 

and molecular systems. It would be interesting to observe the intex correlation hole of 

molecules and use it to analyze the secondary Coulomb holes in these molecular systems
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and note how they compare to those of atomic systems.

The intex density, described in Chapter 2, demonstrated that HF methods do not favour 

large electronic separations in all configurations as the Coulomb hole, AP{u), suggests. 

Instead, the intex correlation hole demonstrates that this probability is intrinsically linked 

to the centre of mass variable, R, and correlated treatments appear to favour large values of 

u for electronic configurations where u % 2R.

However, from Chapter 3, we know that this assessment is also incomplete. When av­

eraging over all angles in the system, it does provide an accurate description of the effects 

of correlation; however, the angular-dependent intex density, X (R ,u ,9 ru )  has demon­

strated that this observation is dependent on the angle between the R  and u vectors. When 

this angle is equal to 7t/2 (or 90°) and the electrons are equidistant from the nucleus, 

HF treatments are more probable both when averaging over all values of R  and u (i.e. 

A^^{'k/2) > ri^^“°*(7r/2)), but also at all configurations with large u regardless of the 

value of the centre of mass radius. However, as is decreased towards 0 (or increased 

towards tt), the probability in correlated treatments becomes greater on average and we 

begin to see a preference in correlated treatments of the configurations where u ~  2R. 

Nonetheless, it has been noted that at small values of R  and large values of u, there is 

a greater probability of systems having these configurations under the HF method than a 

correlated treatment, regardless of the value of 6ru. Thus, this angular work has not only 

provided a new way of looking at electron pairs, but has demonstrated that the secondary 

Coulomb hole results from all possible relative configurations of the R  and u vectors; how­

ever, the largest contributors to the effect are those configurations where the angle between 

said vectors is approaching 7t / 2  radians.

Chapter 4 acted as a final and summary chapter for the studies on the secondary Coulomb 

hole. By studying the effect of the external potential on the secondary Coulomb hole, we 

were able to determine the dependence of the hole on the form of the nuclear potential. 

From the data obtained thus far, it appears that an attraetive external potential is required

131



for correlation to lead to the contraction of distant electrons. With a very noticeable sec­

ondary negative region present for excited states of two electron systems, it is believed 

that the secondary hole is a result of nuclear screening. All of the data obtained thus far 

supports this theory; however, it remains to determine the intracule for 3-ballium at the 

UHF level of theory. If the secondary Coulomb hole does exist for this system, it would 

contradict this hypothesis concerning shielding; however, as previously explained, it is not 

expected that the hole will exist for ballium. Understanding the secondary Coulomb hole 

is essential for a more accurate understanding of the HF model and its deficiencies. Having 

a complete understanding of the method could potentially lead to the development of more 

efficient correlated methods. As current correlated methods such as Cl and CC are purely 

mathematically motivated, this greater understanding of the HF and exact position intrac­

ules could lead to the determination of the correlation energy through physically motivated 

methods such as intracule functional theory.

In Chapter 5, we detailed the analysis of an effect similar to the Coulomb hole which 

results from the comparison of the effects on interelectronic separations using basis sets 

with and without polarization functions. It had been previously noted that polarization 

functions led to a contraction of electron pairs, but there was no explanation as to why 

this occurs. One might expect that the addition of polarization functions would provide 

more flexibility for electronic motion and lead to a concomitant increase in interelectronic 

separations. However, through the study of each component of the energy in polarized and 

unpolarized basis sets as well as the Coulomb hole and differences in the electron density 

Ap(r), it was determined that by incorporating polarization functions, these orbitals cause 

electrons to shift towards the bonding regions to improve the description of chemical bonds 

in molecules. For this reason, this effect appears to be a feature of molecular systems while 

there appears to be no such trend for the atomic systems. Through this study, we were 

able to correlate the behaviour in the position intracule (basis antihole) with the increase in 

electron density in the bonding regions of molecules.
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While the first four results and discussion chapters focussed on the analysis of elec­

tronic structure, Chapter 6 focussed on a separate project involving the development of a 

program capable of optimizing reaction energetics with respect to a set of functional groups 

superimposed at a designable site within the molecule. We have demonstrated the utility 

of this program through the optimization of a deprotonation reaction of an HO-X molecule 

where X represents the functional site which is optimized. Although this reaction is very 

simple, the theory involved in this code should apply to a reactant complex of any size. As 

mentioned in that chapter, the foundation for this program has been established but there 

are still many areas which can be explored to expand the applicability of the code and 

improve its predictive capabilities.
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Appendix A

In Chapter 4, we developed correlations between the strength of the secondary Coulomb 

hole and different properties of the intracule that are related to the diffuseness of said den­

sity. The correlations presented in that chapter could essentially be applied to any atom 

or molecule while maintaining their relevance. Here, we present two new correlations, the 

first of which is really only relevant for atoms, while the second would only apply to a set 

of ions in an isoelectronic series.

For one of the previous correlations, we had noted that the first moment of the position 

intracule, (n), yielded the average value of u  in that system. For a system with two elec­

trons, when both of the electrons are considered simultaneous, they tend to adopt different 

radii in order to avoid one another. Thus, we can consider two new moments which give 

the average inner radius, (r<), and the average outer radius, (r>). These values have been 

previously defined by Koga as

poo poo

{ f < ) =  /  /  p ( r i , r 2 ) X M i n ( r i , r 2 ) d r i d r 2 (1)
J o  Jo

(2)
poo poo

( r > )  =  /  /  p ( r i , r 2 )  X M a x ( r i , r 2 ) d r i d r 2
J o  Jo

We will denote the difference between these two radii as Ar^ given simply by

Ar-io =  (r>) -  (r<) (3)

This new variable describes the average radial separation of the two electrons in the system.
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Figure A. 1 : Correlation between a) the average radial separation and the strength of the secondary Coulomb 
hole, and b) the formal charge (PC) of the ion and the inverse of the secondary hole strength.

The relationship between Ar ô and the strength of the secondary Coulomb hole is given in 

Figure la. One can see that the trend is linear and indicates that as the electrons increase 

their radial separation, the size of the secondary hole increases. These data substantiate the 

idea that HF theory overestimates screening when the electrons are far apart.

As mentioned earlier, the second correlation that will be discussed here is only relevant 

for a given isoelectronic series. This relationship concerns the formal charge (FC) on the 

ion with the inverse of the strength of the secondary hole (i.e. 5 “ )̂. The formal charge is 

expressed in atomic units in terms of the elementary charge e which in SI units is equal to 

1.602 X The results of this correlation are given in Figure lb. This relationship

is analogous to those that were explored in Chapter 4 as the electron density would be less 

diffuse as the ionic charge is increased. Thus, as there is a much smaller probability that 

the electrons will be far apart, the strength of the secondary Coulomb hole decreases as was 

noted in the previously studied relationships.

135



Appendix B

In the study of polarization effects presented in Chapter 5, all contributors to the energy 
were analyzed to determine which components compensated for the increase in electron 
repulsion energy to lead to the overall decrease in the total energy required by the varia­
tional theorem. Tabulated below are all of the energy differences for the seven basis set 
comparisons for each individual element of the energy.

Table B.l: AEtot for the seven basis set comparisons.

System
AEtot

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
A1 -0.00279 -0.00213 -0.00213 -0.00170 -0.00003 -0.00337 -0.00391
Ar -0.00159 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

B -0.00255 -0.00308 -0.00304 -0.00072 -0 .0 0 0 0 1 -0.00322 -0.00374
Be -0.00018 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

C -0.00302 -0.00302 -0.00300 -0.00067 -0 .0 0 0 0 1 -0.00314 -0.00365
Cl -0.00502 -0.00356 -0.00356 -0.00097 -0 .0 0 2 0 0 -0.00385 -0.00645
F -0.00410 -0.00272 -0.00270 -0.00077 -0.00115 -0.00279 -0.00453
He 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Li -0.00014 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Mg -0.00039 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

N -0.00435 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Na -0.07491 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Ne -0.00053 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

0 -0.00362 -0.00272 -0.00265 -0.00079 -0.00115 -0.00283 -0.00453
P -0 .0 0 1 2 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

S -0.00454 -0.00319 -0.00319 -0.00119 -0.00198 -0.00375 -0.00631
Si -0.00335 -0.00257 -0.00256 -0.00154 -0.00004 -0.00364 -0.00418
BeH -0.00477 -0.00403 -0.00393 -0.00044 -0 .0 0 0 1 0 -0.10138 -0.10103
CH -0.01560 -0.01540 -0.01520 -0.00206 -0.00040 -0.01852 -0.02128
CH2(M i) -0.02314 -0.02333 -0.02312 -0.00288 -0.00041 -0.02278 -0.02664
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Table B.l; {Continued. )

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
CH2(3gi) -0.01374 -0.01410 -0.01418 -0.00153 -0.00064 -0.01362 -0.01661
CH3 -0.01781 -0.01817 -0.01823 -0.00219 -0.00089 -0.01821 -0.02163
CH3CI -0.04410 -0.04320 -0.04230 -0.00569 -0.00281 -0.04706 -0.04775
CH3SH -0.06323 -0.06255 -0.06199 -0.00755 -0.00328 -0.06310 -0.06809
CH4 -0.02118 -0.02091 -0.02072 -0.00266 -0.00076 -0.02242 -0.02435
CI2 -0.05111 -0.04678 -0.04547 -0.00811 -0.00836 -0.05404 -0.06021
CIF -0.04455 -0.03658 -0.03678 -0.01137 -0.00610 -0.03608 -0.05322
CIO -0.06385 -0.05844 -0.05785 -0.01084 -0.00808 -0.05780 -0.07172
CN -0.04205 -0.04257 -0.04210 -0.00414 -0.00268 -0.04228 -0.04977
c o -0.07011 -0.06857 -0.06811 -0.00604 -0.00388 -0.07003 -0.07651
C0 2 -0.11789 -0.11859 -0.11873 -0.00961 -0.00824 -0.11782 -0.13630
e s -0.06486 -0.06517 -0.06464 -0.00782 -0.00302 -0.06532 -0.07262
F2 -0.02774 -0.01817 -0.01777 -0.00630 -0.00446 -0.01880 -0.02728
H2 -0.00454 -0.00450 -0.00451 -0.00055 -0 .0 0 0 0 1 -0.00414 -0.00499
H2CCH2 -0.03432 -0.03534 -0.03534 -0.00431 -0.00265 -0.03458 -0.04383
H2C0 -0.06104 -0.05882 -0.05976 -0.00616 -0.00388 -0.06021 -0.06809
H2NNH2 -0.06433 -0.05938 -0.06004 -0.00612 -0.00242 -0.07228 -0.06513
H2 0 -0.03814 -0.03704 -0.03779 -0.00414 -0.00172 -0.04629 -0.04061
H2S -0.04814 -0.04679 -0.04668 -0.00562 -0.00190 -0.04355 -0.05081
H3CCH3 -0.04072 -0.04006 -0.03979 -0.00486 -0.00160 -0.04282 -0.04644
H3COH -0.05914 -0.05582 -0.05657 -0.00661 -0.00326 -0.06159 -0.06300
HCCH -0.02869 -0.02955 -0.02969 -0.00337 -0.00295 -0.02862 -0.03770
HCl -0.02924 -0.02856 -0.02835 -0.00361 -0.00160 -0.02745 -0.03185
HCN -0.04799 -0.04916 -0.04850 -0.00456 -0.00309 -0.04858 -0.05716
HCC -0.06357 -0.06275 -0.06307 -0.00625 -0.00395 -0.06357 -0.07177
HF -0.02795 -0.02477 -0.02484 -0.00308 -0.00172 -0.03090 -0.02718
HOCl -0.05987 -0.05408 -0.05368 -0.00987 -0.00620 -0.05900 -0.06677
HOOH -0.06720 -0.05983 -0.05988 -0.00771 -0.00416 -0.07035 -0.06558
LÎ2 -0.00068 -0.00018 -0.00017 -0 .0 0 0 0 1 -0 .0 0 0 0 1 -0.00009 -0 .0 0 0 1 2

LiF -0.01331 -0.00661 -0.00427 -0.00379 -0.00018 -0.01246 -0.01072
LiH -0.00192 -0.00113 -0.00114 -0.00028 -0.00004 -0.00233 -0.00164
N2 -0.07491 -0.07527 -0.07503 -0.00682 -0.00322 -0.07534 -0.08800
Na2 -0.00028 -0.00032 -0.00031 -0.00033 -0 .0 0 0 1 0 -0.00017 -0 .0 0 0 2 2

NaCl -0.00858 -0.00723 -0.00712 -0.00289 -0.00066 -0.00800 -0.00944
NH -0.01960 -0.01867 -0.01831 -0.00226 -0.00039 -0.16107 -0.02051
NH2 -0.03238 -0.03176 -0.03169 -0.00386 -0.00075 -0.11049 -0.03524
NHa -0.03393 -0.03218 -0.03267 -0.00267 -0.00027 -0.04060 -0.03583
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Table B.l; (Continued.)

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
NO -0.07253 -0.06952 -0.06930 -0.00684 -0.00430 -0.07337 -0.08029
Ü2 -0.06921 -0.05875 -0.05811 -0.00807 -0.00470 -0.30773 -0.06690
OH -0.02494 -0.02364 -0.02367 -0.00293 -0.00153 -0.02732 -0.02647
? 2 -0.06901 -0.06938 -0.06842 -0.01443 -0.00382 -0.07323 -0.08059
PH2 -0.04294 -0.04001 -0.04005 -0.00521 -0.00132 -0.03781 -0.04414
PH3 -0.05810 -0.05384 -0.05383 -0.00594 -0.00128 -0.04929 -0.05728
S2 -0.07843 -0.07515 -0.07395 -0.01615 -0.00900 -0.23349 -0.09399
SÎ2 -0.02620 -0.03514 -0.03398 -0.01296 -0.00131 -0.02126 -0.03560
SisHe -0.09872 -0.09221 -0.09155 -0.00914 -0.00241 -0.07941 -0.09628
SiH2(M i) -0.03276 -0.03042 -0.03028 -0.00340 -0.00061 -0.02727 -0.03221
SiH2("5i) -0.02799 -0.02605 -0.02597 -0.00445 -0.00081 -0.02381 -0.02936
SiHa -0.04390 -0.04064 -0.04061 -0.00508 -0.00104 -0.03497 -0.04399
SiH4 -0.05724 -0.05288 -0.05267 -0.00525 -0.00109 -0.04370 -0.05508
SiO -0.07734 -0.06417 -0.06557 -0.01306 -0.00329 -0.05908 -0.07967
SO -0.09578 -0.08707 -0.08810 -0.01927 -0.00881 -0.08291 -0.10749
SO2 -0.26486 -0.24128 -0.24080 -0.04580 -0.01806 -0.22806 -0.28326

138



Table B.2: A E t  for the seven basis set comparisons.

System
A  Ex

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
AI -0.08343 0.00814 0.00818 -0.00410 0.00006 0.00807 0.00372
Ar -0.33576 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

B -0.00372 0.00536 0.00587 -0.00182 0.00003 0.00568 0.00374
Be -0.00196 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

C 0.00549 0.00505 0.00538 -0.00145 0.00003 0.00527 0.00361
Cl -0.29022 0.00847 0.00847 -0.00299 0.00399 0.00846 0.00871
F -0.19701 0.00493 0.00511 -0.00134 0.00178 0.00573 0.00537
He 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Li 0.00463 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Mg -0.04042 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

N -0.08240 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Na 0.00053 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Ne -0.11270 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

O -0.14661 0.00463 0.00501 -0.00127 0.00183 0.00527 0.00513
P -0.21532 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

s -0.24823 0.00844 0.00844 -0.00348 0.00375 0.00796 0.00787
Si -0.12944 0.00882 0.00891 -0.00445 0.00005 0.00818 0.00397
BeH -0.00372 0.00538 0.00472 -0 .0 0 0 2 0 0.00081 0.09114 0.09273
CH -0.00336 -0.00319 -0.00166 -0.00236 -0.00032 -0.02098 -0.00216
CHsCMi) -0.02014 -0.01322 -0.01107 -0.00219 -0.00143 -0.03913 0.00868
CH2("5i) -0.05282 -0.00990 -0.01017 0.00316 -0.00459 -0.03244 0.01384
CH3 -0.06179 -0.01469 -0.01443 0.00495 -0.00392 -0.04587 0.02189
CH3CI -0.47581 -0.07913 -0.07256 -0.00700 -0.01004 -0.17653 -0.03800
CH3SH -0.46683 -0.08676 -0.08226 -0.00806 -0 .0 1 0 1 1 -0.21867 -0.04743
CH4 -0.06402 -0.01789 -0.01521 0.00837 -0.00287 -0.06149 0.03332
CI2 -0.86124 -0.17659 -0.17194 -0.05284 -0.01428 -0.26833 -0.24268
CIF -0.71928 -0.13091 -0.13387 -0.05708 -0.01488 -0.14834 -0.21393
CIO -0.76687 -0.19780 -0.19656 -0.06779 -0.02480 -0.26294 -0.26937
CN -0.20272 -0.10480 -0.10092 -0.00979 -0.00790 -0.12377 -0.07186
CO -0.22360 -0.06952 -0.06994 -0.00507 -0.00692 -0.09716 -0.02562
C0 2 -0.42445 -0.00924 -0.10992 -0.01896 -0.01178 -0.19627 -0.08192
c s -0.43968 -0.11710 -0.11130 -0.01860 -0.00767 -0.21935 -0.10384
F2 -0.50506 -0.05463 -0.05430 -0.00476 -0.00592 -0.05074 -0.08725
H2 0.00314 0.00415 0.00453 0.00097 -0.00013 0.00344 0.00499
H2CCH2 -0.11991 -0.03422 -0.03303 0.00373 -0.00181 -0.09061 0.03318
H2C0 -0.26588 -0.06940 -0.07357 -0.00863 -0.00504 -0.14340 -0.02177
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Table B.2: (Continued.)

A F / j ’

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
H2NNH2 -0.29085 -0.06109 -0.06422 -0.01341 -0.00357 -0.17172 0.03339
H2O -0.18602 -0.02611 -0.02834 -0.01484 0.00204 -0.07870 0.00664
H2S -0.37452 -0.03825 -0.03697 -0.00865 -0.00179 -0.12820 -0.04201
H3CCH3 -0.13620 -0.03720 -0.03340 0.00958 -0.00612 -0.12779 0.05759
H3COH -0.27405 -0.06351 -0.06431 -0.01208 -0.00489 -0.14304 0.00453
HCCH -0.10815 0.00438 0.00461 -0.00992 -0.01430 -0.06900 -0.02314
HCl -0.37973 -0.02179 -0.02073 -0.00827 -0.00360 -0.08213 -0.02479
HCN -0.13413 -0.04086 -0.03671 -0.00390 -0.00783 -0.08517 -0.02314
HCO -0.25845 -0.07557 -0.07771 -0.01051 -0.00612 -0.12867 -0.03628
HF -0.22976 -0.01730 -0.01800 -0.01473 -0 .0 0 1 1 0 -0.04266 -0.00868
HOCl -0.66075 -0.13372 -0.13325 -0.04772 -0.01524 -0.19021 -0.17698
HOOH -0.43554 -0.08140 -0.08259 -0.04233 -0.00313 -0.15202 -0.05830
LÎ2 0.00293 0.00056 0.00050 -0.00033 -0 .0 0 0 1 0 -0.00149 0.00014
LiF -0.19178 -0.02145 -0.00477 -0.00393 -0.00107 -0.03243 -0.04733
LiH 0.00673 0.00157 0.00148 0 .0 0 0 1 1 0.00004 -0.00441 0.00326
N2 -0.25661 -0.07752 -0.07548 -0.01333 0.00209 -0.13794 -0.03058
Na2 0.00789 0.00087 0.00088 0.00096 0.00099 0.00697 0.00973
NaCl -0.28767 -0.00405 -0.00737 -0.00687 0.00279 -0.00277 -0.01481
NH -0.08900 -0.01096 -0.00925 -0.00609 0.00187 0.10219 -0.00074
NH2 -0.09861 -0.01863 -0.01790 -0.00781 0.00163 0.05831 0.01057
NH3 -0.11813 -0.02272 -0.02404 -0.00041 0.00156 -0.07815 0.03153
NO -0.45017 -0.16052 -0.16282 -0.02723 -0.00734 -0.24078 -0.12917
O2 -0.55703 -0.13201 -0.12788 -0.04406 -0.00842 -0.67596 -0.11104
OH -0.16367 -0.01282 -0.01265 -0.01335 0.00273 -0.04040 0 .0 0 0 0 2

P2 -0.68117 -0.13313 -0.12530 -0.05494 -0.01125 -0.29387 -0.16110
PH2 -0.27689 -0.01483 -0.00779 0.00075 -0.08812 -0.12829 -0.03290
PHs -0.31334 -0.02342 -0.02252 -0.00429 -0.00045 -0.12829 -0.03290
S2 -0.88673 -0.20359 -0.19534 -0.06919 -0 .0 2 1 1 1 -0.55062 -0.26344
Si2 -0.38593 -0.04325 -0.03706 -0.04049 -0.00642 -0.30412 -0.06558
S i2 H e -0.45735 -0.00722 -0.00311 -0.00963 0.00336 -0.19714 -0.01318
S i H 2 ( M i ) -0.16707 -0.00879 -0.00758 -0.00502 0.00067 -0.05150 -0.01013
S i H 2 ( 3 g i ) -0.18378 -0.00019 0.00053 -0.00681 0.00175 -0.04122 -0.00511
S iH 3 -0.18446 0.00290 0.00364 -0.00533 0.00304 -0.05846 -0.00074
S iH 4 -0.19887 -0.00324 -0 .0 0 1 1 2 -0.00381 0.00347 -0.08305 -0.00522
SiO -0.38220 -0.08018 -0.09134 -0.04157 -0.00377 -0.08206 -0.13815
SO -0.72189 -0.22143 -0.23172 -0.08270 -0.02005 -0.29361 -0.31366
S O 2 -1.33445 -0.58339 -0.58478 -0.14535 -0.03904 -0.77499 -0.73453
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Table B.3: for the seven basis set comparisons.

AEgjv
System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
A1 0.05600 -0.03512 -0.03558 0.01887 -0.00018 -0.02327 -0.01247
Ar 0.35105 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

B 0.00360 -0.00687 -0.00860 0.00532 -0 .0 0 0 0 1 -0.00632 -0.00298
Be 0.00722 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

C -0.01067 -0.00573 -0.00683 0.00405 -0.00165 -0.25209 -0.25533
Cl 0.29334 -0.02004 -0.02003 0.00860 -0.00862 -0.01560 -0.01802
F 0.19474 -0.00569 -0.00648 0.00361 -0.00225 -0.00604 -0.00497
He 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Li -0.00357 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Mg 0.03288 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

N 0.08751 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Na -0 .0 0 1 2 1 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Ne 0.11165 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

0 0.15256 -0.00568 -0.14619 0.00389 -0.00260 -0.00555 -0.00518
P 0.22724 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

s 0.24735 -0.02423 -0.02417 0.01117 -0.00945 -0.01564 -0.01873
Si 0.11347 -0.02947 -0.03011 0.01660 -0.00009 -0.01908 -0.01070
BeH -0.01537 -0.02246 -0.02170 -0.00088 -0.00165 -0.25209 -0.25533
CH -0.04475 -0.04260 -0.04609 0.00146 -0.00029 -0.02148 -0.05172
CH2(M i) -0.05931 -0.07093 -0.07545 -0.00662 0.00069 -0.03878 -0.10751
CU^eB,) 0.01617 -0.03552 -0.03300 -0.00726 0.00322 -0.00593 -0.06835
CH3 0.01870 -0.03934 -0.03786 -0.01054 0.00155 -0.00107 -0.08793
CH3CI 0.32388 -0.10776 -0.11545 -0.02803 -0.00280 -0.04422 -0.18763
CH3SH 0.21117 -0.21907 -0.22544 -0.03800 -0.00521 -0.08996 -0.30249
CH4 0.01775 -0.03814 -0.04272 -0.01715 0.00106 0.00799 -0.10427
CI2 0.57235 -0.13461 -0.13388 -0.03565 -0.04534 -0.01549 -0.22294
CIF 0.51010 -0.06743 -0.04740 -0.01842 -0.01515 -0.04397 -0.08028
CIO 0.50315 -0.09446 -0.07891 0.01207 -0.01148 -0.02676 -0.09061
CN -0.02695 -0.12726 -0.13255 -0.01296 -0.00373 -0.10706 -0.19345
CO -0.13948 -0.28497 -0.27155 -0.02720 -0.01499 -0.26967 -0.36420
C02 -0.19679 -0.54085 -0.48628 -0.03042 -0.03187 -0.47403 -0.62947
c s 0.00485 -0.35027 -0.36962 -0.03745 -0.01829 -0.23562 -0.44689
F2 0.29190 -0.06147 -0.04853 -0.02274 -0.01194 -0.07660 -0.09789
H2 -0.01403 -0.01559 -0.01614 -0.00205 0.00007 -0.01388 -0.01745
H2CCH2 0.00582 -0.10053 -0.09950 -0.02159 -0.00991 -0.04292 -0.20507
H2C0 0.00053 -0.21199 -0.18740 -0.01837 -0.01300 -0.13948 -0.28788
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Table B.3: (Continued.)

System
AEejV

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
H2NNH2 0.05684 -0.17348 -0.15255 -0.01466 -0.00602 -0.12159 -0.29617
H2O 0.07013 -0.10374 -0.08990 0.00590 -0.00856 -0.08459 -0.14308
H2S 0.16931 -0.21351 -0.21708 -0.02505 -0.00728 -0.08710 -0.24271
H3CCH3 0.03840 -0.07886 -0.08652 -0.02967 0.00168 0.00628 -0.20193
H3COH 0.08957 -0.13564 -0.11982 -0.01282 -0.00627 -0.07792 -0.22574
HCCH -0.02547 -0.14987 -0.15024 -0.00550 0.00281 -0.07468 -0.14645
HCl 0.27663 -0.12289 -0.12338 -0.00870 -0.00303 -0.04216 -0.14256
HCN -0.11803 -0.21345 -0.21843 -0.02471 -0.00716 -0.17481 -0.26848
HCO -0.02229 -0.21313 -0.19555 -0.01213 -0.01368 -0.16238 -0.28101
HF 0.14956 -0.06472 -0.05457 0.00717 -0.00446 -0.07130 -0.07131
HOCl 0.40143 -0.13917 -0.11746 -0.01899 -0.01249 -0.12324 -0.17717
HOOH 0.14490 -0.18122 -0.15379 -0.00657 -0.01301 -0.17415 -0.23275
LÎ2 0.00203 -0.00250 -0.00244 0.00037 -0.00015 -0.00084 -0.00108
LiF 0.18878 0.03261 -0.01444 -0.02191 -0.00032 0.12396 0.07409
LiH -0.01983 -0.00957 -0.00937 -0.00288 -0.00041 -0.01193 -0.01410
N2 -0.12363 -0.31241 -0.31798 -0.02232 -0.01935 -0.25463 -0.42637
Na2 -0.01727 -0.01123 -0.01154 -0.00526 -0.00093 -0.02293 -0.02575
NaCl 0.15251 -0.13930 -0.12250 -0.01662 -0.01833 -0.08268 -0.14987
NH 0.03843 -0.05040 -0.05338 0.00358 -0.00295 -0.20267 -0.06368
NH2 0.00446 -0.09152 -0.09152 0.00003 -0.00386 -0.15557 -0.13124
NH3 0.01762 -0.09035 -0.08391 -0.00975 -0.00470 -0.05573 -0.16066
NO 0.12296 -0.16704 -0.15678 -0.00598 -0.01154 -0.10230 -0.24613
O2 0.23968 -0.14914 -0.14619 -0.00269 -0.01314 0.34515 -0.22421
OH 0.10383 -0.06356 -0.05959 0.01072 -0.00623 -0.04859 -0.07578
P2 0.02632 -0.59634 -0.62523 -0.09065 -0.03384 -0.48214 -0.76372
PH2 0.04940 -0.23035 -0.23372 -0.01994 -0.00486 -0.11553 -0.23509
PH3 0.06193 -0.30050 -0.30484 -0.04487 -0.00356 -0.14328 -0.31772
S2 0.40438 -0.36533 -0.38258 -0.03473 -0.05340 -0.23419 -0.48611
Si2 0.15724 -0.37625 -0.39770 -0.04719 -0 .0 1 2 0 1 0.19795 -0.34860
SiaHe -0.14636 -0.63157 -0.64723 -0.07256 -0.02074 -0.28199 -0.66490
S1H2(Mi ) -0.06323 -0.20851 -0.21313 -0.01931 -0.00281 -0.13299 -0.21849
SiH2(^Bi) 0.03143 -0.15941 -0.16146 0.20919 -0.00589 -0.06939 -0.13655
SiHa -0.06226 -0.24702 -0.24843 -0.00664 -0.00885 -0.11268 -0.24276
SiH4 -0.12677 -0.31094 -0.31902 -0.03602 -0.01035 -0.14573 -0.32874
SiO -0.30890 -0.48996 -0.44031 -0.05593 -0.02614 -0.40936 -0.51458
SO 0.19488 -0.29901 -0.24780 0.01461 -0.02997 -0.17556 -0.26583
SO2 -0.21171 -0.85288 -0.76423 -0.15915 -0.07968 -0.60523 -0.97211
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Table B.4: A Egg for the seven basis set comparisons

AEgg
System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
A1 0.02465 0.02485 0.02527 -0.01648 0.00009 0.01183 0.00484
Ar -0.01688 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

B -0.00243 -0.00158 -0.00031 -0.00422 -0.00003 -0.00257 -0.00450
Be -0.00543 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

C 0.00216 -0.00234 -0.00155 -0.00328 -0.00003 -0.00334 -0.00483
Cl -0.00814 0.00800 0.00799 -0.00657 0.00263 0.00329 0.00286
F -0.18339 -0.00195 -0.00132 -0.00304 -0.00069 -0.00247 -0.00493
He 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Li -0.00119 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Mg 0.00714 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

N -0.00554 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Na 0.00068 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Ne 0.00051 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

0 -0.00957 -0.00166 -0.00007 -0.00341 -0.00037 -0.00255 -0.00448
P -0.01312 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

S -0.00366 0.01262 0.01255 -0.00888 0.00371 0.00392 0.00455
Si 0.01262 0.01808 0.01864 -0.01369 0 .0 0 0 0 0 0.00725 0.00255
BeH 0.01097 0.01305 0.01304 0.00064 0.00074 0.05957 0.06158
CH 0.03251 0.03039 0.03255 -0.00115 0 .0 0 0 2 1 0.02393 0.03260
CH2(M i) 0.05631 0.06082 0.06340 0.00593 0.00033 0.05514 0.07219
CH2(3Bi) 0.02291 0.03132 0.02899 0.00257 0.00071 0.02475 0.03790
CH3 0.02528 0.03587 0.03405 0.00341 0.00148 0.02874 0.04441
CH3CI 0.10782 0.14369 0.14571 0.02934 0 .0 1 0 0 2 0.17369 0.17789
CH3SH 0.19244 0.24327 0.24571 0.03851 0.01205 0.24552 0.28183
CH4 0.02508 0.03512 0.03720 0.00613 0.00106 0.03108 0.04660
CI2 0.23777 0.26441 0.26035 0.08039 0.05126 0.36916 0.40541
CIF 0.16462 0.16176 0.14450 0.06413 0.02392 0.15623 0.24100
CIO 0.19987 0.23382 0.21763 0.04487 0.02820 0.23189 0.28827
CN 0.18762 0.18949 0.19137 0.01861 0.00895 0.18856 0.21554
CO 0.29298 0.28592 0.27338 0.02623 0.01804 0.29681 0.31332
C02 0.50334 0.52160 0.47747 0.03977 0.03541 0.55248 0.57508
c s 0.36997 0.40220 0.41628 0.04823 0.02294 0.38966 0.47810
F2 0.18542 0.09792 0.08506 0.06120 0.01340 0.10853 0.15790
H2 0.00635 0.00694 0.00709 0.00054 0.00005 0.00631 0.00748
H2CCH2 0.07977 0.09942 0.09718 0.01355 0.00907 0.09894 0.12805
H2C0 0.20431 0.22257 0.20121 0.02084 0.01416 0.22267 0.24156
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Table B.4: (Continued.)

AEge
System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
H2NNH2 0.16967 0.17519 0.15673 0.02195 0.00717 0.22103 0.19765
H2O 0.07675 0.09282 0.08044 0.00480 0.00481 0.11701 0.09583
H2S 0.15707 0.20498 0.20737 0.02808 0.00717 0.17175 0.23391
H3CCH3 0.05708 0.07600 0.08013 0.01523 0.00283 0.07869 0.09790
H3COH 0.12534 0.14333 0.12756 0.01828 0.00789 0.15937 0.15821
HCCH 0.10494 0.11594 0.11594 0.01205 0.00855 0.11507 0.13189
HCl 0.07387 0.11612 0.11677 0.01336 0.00503 0.09684 0.13550
HCN 0.20417 0.20514 0.20664 0.02405 0.01190 0.21140 0.23446
HCO 0.21717 0.22595 0.21018 0.01639 0.01584 0.22748 0.24553
HF 0.05225 0.05725 0.04773 0.00447 0.00384 0.08306 0.05281
HOCl 0.19946 0.21881 0.19703 0.05684 0.02153 0.25445 0.28138
HOOH 0.22344 0.20279 0.17650 0.041219 0.01190 0.25582 0.22547
LÎ2 -0.00564 0.00177 0.00177 -0.00005 0.00024 0.00224 0.00082
LiF -0.01031 -0.01777 0.01494 0.02204 0 .0 0 1 2 0 -0.10399 -0.03747
LiH 0.01118 0.00687 0.00674 0.00250 0.00024 0.01401 0.00920
N2 0.30533 0.31466 0.31843 0.02883 0.01404 0.31721 0.36895
Na2 0.00909 0.01004 0.01035 0.00396 -0.00016 0.01579 0.01581
NaCl 0.12659 0.13612 0.12275 0.02060 0.01487 0.07745 0.15523
NH 0.03097 0.04268 0.04432 0.00025 0.00069 -0.06059 0.04391
NH2 0.06178 0.07838 0.07773 0.00393 0.00148 -0.01323 0.08544
NH3 0.06658 0.08089 0.07528 0.00748 0.00287 0.09329 0.09330
NO 0.25467 0.25804 0.25030 0.02637 0.01457 0.26971 0.29501
O2 0.24813 0.22240 0.21596 0.03869 0.01686 0.02308 0.26835
OH 0.03490 0.05274 0.04857 -0.00030 0.00197 0.06167 0.04930
P2 0.58584 0.66010 0.68211 0.13116 0.04127 0.70279 0.84423
PH2 0.18455 0.20517 0.20778 0.02252 0.00279 0.16584 0.21443
PH3 0.24904 0.27008 0.27354 0.04323 0.00274 0.22228 0.29334
S2 0.40392 0.49377 0.50396 0.08777 0.06551 0.55133 0.65556
Si2 0.20249 0.38436 0.40078 0.07471 0.01713 0.08491 0.37858
SisHe 0.50499 0.54658 0.55879 0.07305 0.01497 0.39972 0.58180
SiH2(M i) 0.19754 0.18688 0.19042 0.02093 0.00153 0.15722 0.19641
SiH2(3gi) 0.12436 0.13356 0.13496 -0.01856 0.00333 0.08681 0.11229
SiH3 0.20283 0.20348 0.20418 0.00689 0.00478 0.13617 0.19951
SiH4 0.26841 0.26130 0.26747 0.03458 0.00579 0.18509 0.27888
SiO 0.61375 0.50597 0.46608 0.08444 0.02662 0.43234 0.57306
SO 0.43124 0.43337 0.39142 0.04882 0.04121 0.38626 0.47201
SO2 1.28130 1.19499 1.10820 0.25870 0.10066 1.15216 1.42337
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Table B.5: A E j  for the seven basis set comparisons.

A E j
System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
A1 0.02953 0.03170 0.03216 -0.01309 0.00047 0.02098 0.01530
Ar -0.02483 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

B 0.00391 0.00658 0.00811 -0.00324 0.00016 0.00553 0.00508
Be -0.00507 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

C 0.00734 0.00496 0.00590 -0.00236 0.00016 0.00384 0.00370
Cl -0.00692 0.01642 0.01641 -0.00488 0.00497 0.01207 0.01514
F 0.00136 0.00432 0.00498 -0.00153 0.00019 0.00384 0.00359
He 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Li -0.00030 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Mg 0.00699 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

N -0.01051 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Na 0.00079 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Ne -0.00069 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

O -0.00778 0.00478 0.00639 -0.00167 0.00060 0.00404 0.00442
P -0.01852 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

S -0.00175 0.02085 0.02079 -0.00638 0.00622 0.01312 0.01756
Si 0.01621 0.02502 0.02563 -0 .0 1 1 2 0 0.00057 0.01587 0.01247
BeH 0.01976 0.02072 0.02068 0.00124 0 .0 0 1 0 1 0.10939 0 .0 1 1 2 0

CH 0.04693 0.04634 0.04891 -0.00066 0.00094 0.05045 0.06566
CH2(M i) 0.07190 0.07739 0.08081 0.00457 0.00072 0.06865 0.09020
CHgC^Bi) 0.03597 0.04638 0.04353 0.00390 0.00127 0.03978 0.05604
CHs 0.04470 0.05753 0.05545 0.00553 0.00247 0.04976 0.07098
CH3CI 0.12545 0.17137 0.17377 0.03071 0.01086 0.20050 0.20979
CHgSH 0.22541 0.28666 0.28924 0.04010 0.01373 0.28559 0.32897
CH4 0.04896 0.06121 0.06371 0.00864 0.00169 0.05565 0.07827
CI2 0.22093 0.26247 0.25899 0.07600 0.05033 0.36838 0.40022
CIF 0.15029 0.16129 0.14297 0.06170 0.02277 0.15273 0.23832
CIO 0.18469 0.23591 0.21841 0.03838 0.02944 0.23010 0.28506
CN 0.18447 0.18892 0.19106 0.01965 0.00959 0.19093 0.21862
CO 0.32227 0.31774 0.30391 0.02906 0.02168 0.33015 0.35024
C02 0.56286 0.58603 0.53723 0.04346 0.04190 0.62199 0.64705
c s 0.38919 0.43003 0.44587 0.05024 0.02614 0.41649 0.51305
F2 0.18072 0.09802 0.08418 0.06028 0.01195 0.10841 0.15600
H2 0.01270 0.01387 0.01419 0.00108 0.00009 0.01261 0.01496
H2CCH2 0.11650 0.14076 0.13836 0.01769 0.01175 0.13953 0.18073
H2C0 0.23925 0.26365 0.23991 0.02421 0.01714 0.26276 0.28858
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Table B.5: (Continued.)

AEy
System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
H2NNH2 0.19273 0.20704 0.18674 0.02150 0.00857 0.25940 0.23164
H2Q 0.08634 0.10693 0.09269 0.00381 0.00572 0.13880 0.10881
H2S 0.17776 0.23280 0.23526 0.02818 0.00821 0.19651 0.26190
H3CCH3 0.09994 0.12301 0.12766 0.01939 0.00426 0.12315 0.15488
H3COH 0.15358 0.17888 0.16116 0.01966 0.00551 0.19547 0.19751
HCCH 0.13725 0.15077 0.15070 0.01478 0.01069 0.15348 0.17213
HCl 0.07931 0.12928 0.12990 0.01320 0.00551 0.10920 0.14888
HCN 0.23862 0.24235 0.24465 0.02766 0.01478 0.25096 0.27852
HCO 0.24623 0.25967 0.24260 0.01940 0.01938 0.26232 0.28525
HF 0.05709 0.06488 0.05387 0.00450 0.00457 0.09666 0.05872
HOCl 0.19312 0.22655 0.20333 0.05328 0.02170 0.26436 0.28575
HOOH 0.23097 0.21998 0.19067 0.03915 0.01252 0.28159 0.23828
Li2 -0.00412 0.00213 0.00213 -0.00009 0.00022 0.00239 0 .0 0 1 0 0

LiF -0 .0 2 1 0 1 -0.02358 0.01466 0.02377 0.00152 -0.12584 -0.04707
LiH 0.01547 0.00910 0.00895 0.00286 0.00041 0.01805 0.01219
N2 0.33541 0.35249 0.35734 0.03169 0.01731 0.35589 0.41634
NE2 0.01038 0.01041 0.01074 0.00405 -0.00039 0.01678 0.01748
NaCl 0.12116 0.13806 0.12388 0.02099 0.01537 0.07331 0.15635
NH 0.03954 0.05646 0.05802 0.00037 0.00151 -0.02342 0.05839
NH2 0.07628 0.09811 0.09731 0.00307 0.00282 0.02861 0.10631
NHa 0.08093 0 .1 0 0 1 2 0.09399 0.00727 0.00373 0.11663 0.11431
NO 0.25017 0.26098 0.25192 0.02609 0.01681 0.27621 0.29982
O2 -0.00778 0.23364 0.22707 0.04105 0.01954 -0.05137 0.28349
OH 0.04389 0.06762 0.06261 0.00028 0.00335 0.07999 0.06484
P2 0.60454 0.69314 0.71700 0.13905 0.04581 0.74086 0.89172
PH2 0.21329 0.23842 0.24120 0.02515 0.00551 0.19650 0.25074
PH3 0.28874 0.31376 0.31720 0.04541 0.00453 0.25992 0.33720
S2 0.40501 0.51042 0.52193 0.09289 0.07331 0.53035 0.68754
Si2 0.20958 0.41286 0.43078 0.08331 0.01964 0.05455 0.41168
SiaHe 0.61038 0.65622 0.66851 0.07979 0.01940 0.49859 0.69613
SiH2(Mi) 0.22190 0.21151 0.21543 0.02153 0.00236 0.17936 0.22069
SiH2(^Bi) 0.15193 0.16402 0.16558 -0.01225 0.00497 0.11854 0.14952
SiHa 0.25146 0.25265 0.25361 0.01300 0.00690 0.18313 0.25447
SiH4 0.33262 0.32346 0.32995 0.03877 0.00760 0.24116 0.34314
SiO 0.63872 0.53286 0.48933 0.08902 0.02962 0.45190 0.60407
SO 0.44457 0.45720 0.41221 0.05468 0.04787 0.40861 0.50568
SO2 1.31330 1.24010 1.14690 0.26041 0.11142 1.19350 1.47770
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Table B.6: AE}^ for the seven basis set comparisons.

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
AI -0.00488 -0.00685 -0.00689 -0.00339 -0.00037 -0.00915 -0.01046
Ar 0.00795 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

B -0.00633 -0.00816 -0.00841 -0.00098 -0.00019 -0.00810 -0.00958
Be -0.00036 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

C -0.00518 -0.00731 -0.00745 -0.00092 -0.00018 -0.00718 -0.00853
Cl -0 .0 0 1 2 1 -0.00842 -0.00842 -0.00169 -0.00233 -0.00878 -0.01228
F -0.00320 -0.00627 -0.00630 -0.00151 -0.00088 -0.00631 -0.00852
He 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Li -0.00090 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Mg 0.00015 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

N 0.00497 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Na -0 .0 0 0 1 1 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Ne 0 .0 0 1 2 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

O -0.00179 -0.00644 -0.00646 -0.00174 -0.00097 -0.00659 -0.00891
P 0.00540 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

s -0.00191 -0.00823 -0.00824 -0.00250 -0.00250 -0.00920 -0.01302
Si -0.00359 -0.00694 -0.00699 -0.00249 -0.00047 -0.00862 -0.00991
BeH -0.00878 -0.00767 -0.00764 -0.00060 -0.00027 -0.04982 -0.05037
CH -0.01442 -0.01595 -0.01636 -0.00049 -0.00073 -0.02652 -0.03306
CH2(Mi) -0.01559 -0.01657 -0.01741 0.00135 -0.00039 -0.01352 -0.01801

-0.01306 -0.01506 -0.01453 -0.00133 -0.00056 -0.01504 -0.01814
CHs -0.01942 -0.02166 -0.02140 -0 .0 0 2 1 2 -0 .0 0 1 0 0 -0 .0 2 1 0 2 -0.02657
CH3CI -0.01763 -0.02768 -0.02807 -0.00138 -0.00084 -0.02681 -0.03191
CHsSH -0.03298 -0.04338 -0.04353 -0.00159 -0.00168 -0.04008 -0.04714
CH4 -0.02387 -0.02609 -0.02651 -0.00251 -0.00064 -0.02457 -0.03167
CI2 0.01684 0.00194 0.00136 0.00439 0.00093 0.00077 0.00519
CIF 0.01434 0.00048 0.00153 0.00244 0.00115 0.00350 0.00268
CIO 0.01518 -0 .0 0 2 1 0 -0.00079 0.00659 -0.00124 0.00179 0.00321
CN 0.00315 0.00056 0.00031 -0.00104 -0.00064 -0.00237 -0.00308
CO -0.02929 -0.03183 -0.03054 -0.00283 -0.00364 -0.03335 -0.03693
C0 2 -0.05952 -0.06443 -0.05976 -0.00368 -0.00649 -0.06951 -0.07196
c s -0.01921 -0.02784 -0.02960 -0 .0 0 2 0 2 -0.00320 -0.02683 -0.03495
F2 0.00470 -0 .0 0 0 1 0 0.00088 0.00092 0.00145 0 .0 0 0 1 2 0.00190
H2 -0.00635 -0.00694 -0.00709 -0.00054 -0.00005 -0.00631 -0.00748
H2CCH2 -0.03673 -0.04135 -0.04118 -0.00414 -0.00267 -0.04059 -0.05268
H2C0 -0.03494 -0.04108 -0.03870 -0.00337 -0.00299 -0.04009 -0.04702
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Table B.6: {Continued.)

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
H2NNH2 -0.02306 -0.03185 -0.03001 0.00045 -0.00141 -0.03837 -0.03399
H2O -0.00959 -0.01412 -0.01223 0.00099 -0.00091 -0.02180 -0.01299
H2S -0.02069 -0.02782 -0.02788 -0 .0 0 0 1 0 -0.00104 -0.02476 -0.02798
H3CCH3 -0.04286 -0.04700 -0.04754 -0.00415 -0.00143 -0.04446 -0.05698
H3COH -0.02824 -0.03555 -0.03360 -0.00138 -0.00177 -0.03610 -0.03930
HCCH -0.03231 -0.03482 -0.03476 -0.00274 -0.00215 -0.03842 -0.04024
HCl -0.00544 -0.01316 -0.01304 0.00016 -0.00048 -0.01237 -0.01338
HCN -0.03445 -0.03721 -0.03801 -0.00361 -0.00288 -0.03957 -0.04406
HCO -0.02907 -0.03373 -0.03241 -0.00301 -0.00343 -0.03484 -0.03973
HF -0.00484 -0.00764 -0.00614 -0.00003 -0.00073 -0.01360 -0.00591
HOCl 0.00634 -0.00775 -0.00630 0.00356 -0.00017 -0.00991 -0.00438
HOOH -0.00753 -0.01719 -0.01418 0.00204 -0.00053 -0.02577 -0.01281
LÎ2 -0.00152 -0.00036 -0.00037 0.00004 0 .0 0 0 0 2 -0.00015 -0.00018
LiF 0.01071 0.00581 0.00028 -0.00173 -0.00031 0.02186 0.00960
LiH -0.00429 -0.00223 -0 .0 0 2 2 1 -0.00036 -0.00007 -0.00404 -0.00299
N2 -0.03008 -0.03784 -0.03891 -0.00285 -0.00327 -0.03867 -0.04739
Na2 -0.00129 -0.00037 -0.00039 -0.00009 0.00023 -0.00099 -0.00167
NaCl 0.00542 -0.00194 -0.00113 -0.00039 -0.00049 0.00414 -0 .0 0 1 1 2

NH -0.00857 -0.01377 -0.01370 -0 .0 0 0 1 2 -0.00082 -0.03717 -0.01448
NH2 -0.01450 -0.01973 -0.01958 0.00085 -0.00134 -0.04184 -0.02087
NH3 -0.01434 -0.01923 -0.01871 0 .0 0 0 2 1 -0.00087 -0.02334 -0 .0 2 1 0 1

NO 0.00450 -0.00294 -0.00163 0.00028 -0.00223 -0.00650 -0.00481
O2 -0.00338 -0.00124 -0 .0 1 1 1 2 -0.00237 -0.00268 0.07445 -0.01514
OH -0.00899 -0.01488 -0.01403 -0.00058 -0.00138 -0.01832 -0.01554
P2 -0.01870 -0.03304 -0.03490 -0.00789 -0.00454 -0.03807 -0.04749
PH2 -0.02874 -0.03325 -0.03342 -0.00263 -0.00272 -0.03067 -0.03630
PH3 -0.03969 -0.04368 -0.04367 -0.00218 -0.00180 -0.03764 -0.04386
S2 -0.00108 -0.01665 -0.01798 -0.00511 -0.00781 0.02098 -0.03198
Sia -0.00709 -0.02850 -0.02999 -0.00859 -0.00251 0.03036 -0.03310
812% -0.10539 -0.10963 -0.10972 -0.00674 -0.00443 -0.09887 -0.11433
SiH2(Mi) -0.02436 -0.02463 -0.02501 -0.00059 -0.00083 -0.02213 -0.02428
SiH2(^Bi) -0.02758 -0.03047 -0.03062 -0.00631 -0.00163 -0.03173 -0.03723
SiH3 -0.04863 -0.04917 -0.04944 -0.00612 -0 .0 0 2 1 2 -0.04696 -0.05497
S1H4 -0.06422 -0.06216 -0.06249 -0.00419 -0.00181 -0.05608 -0.06427
SiO -0.02497 -0.02689 -0.02326 -0.00457 -0.00300 -0.01956 -0.03102
SO -0.01333 -0.02383 -0.02079 -0.00586 -0.00666 -0.02235 -0.03368
SO2 -0.03196 -0.04508 -0.03871 -0.00171 -0.01075 -0.04131 -0.05437
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