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Abstract

This thesis is comprised of two distinct areas: the first area representing the bulk of the
work to be presented here, focusses on the development of novel analytical tools for the
study of electronic structure. The second area highlights the refinement of potential energy
surfaces algorithmically.

There is a great deal of interest in understanding electronic interactions within atoms
and molecules. As we are confined to only 3-dimensions when visualizing a set of data, it
is impossible to completely visualize the effects of particle interactions. Nonetheless, over
the years, there have been numerous methods devised in order to analyze these interactions
in different ways. In the first part of this thesis, the development of novel tools to examine
electronic structure effects will be highlighted.

We introduce the intex density X (R, u), which combines both the intracular and extrac-
ular coordinates to yield a simultaneous probability density for the position of the centre-
of-mass radius (R) and relative separation (u) of electron pairs. The principle application
of the intex density explored here is in the investigation of the recently observed secondary
Coulomb hole. The Hartree-Fock (HF) intex densities for the helium atom and heliumlike
ions are symmetric functions that may be used to prove the isomorphism 2P(2R) = E(R),
where P(u) is the intracule density and E(R) is the extracule density. This is not true of
the densities that have been constructed from explicitly correlated wave functions. The dif-
ference between these asymmetric functions and their symmetric HF counterparts produces
a topologically rich intex correlation hole. We conclude that the probability of observing
an electron pair with a very large interelectronic separation increases with the inclusion of
correlation only when their centre-of-mass radius is close to half of their separation.

Despite providing more details regarding the correlation hole than the intracule alone,
the intex density is still limited in nature by its lack of information regarding the spatial ori-
entation of the R and u vectors. This led to the development of the probability density for
the angle between these two vectors using both Hartree-Fock (HF) and explicitly correlated
Kinoshita wave functions. This angular density, A(fg, ), and the angular-dependent intex
density, X (R, u, g, ), are explored for the helium isoelectronic series from He to Ne8t to
study the distribution of electron pairs in atomic systems (both HF and exact). We demon-
strate that the most probable angle depends significantly on the scalar values of R and u for
both the HF and exact treatments. As R and v simultaneously increase, the favoured angle
for these densities approach 0 and 7.



With a more complete description and understanding of the secondary Coulomb hole,
the focus of our study was directed towards determining the origin of the hole. These anal-
yses were carried out by examining the correlation hole in intracules, AP(u), for atoms
with varying electron-nuclear potentials including systems with Coulombic potentials, har-
monic potentials, and those with a zero potential (aside from an infinite confining potential).
These studies have highlighted the role of a non-zero potential in the presence of the sec-
ondary hole and have suggested this counter-intuitive effect is the result of shielding. This
theory is well supported by evidence in the literature including an analogous effect (i.e.
contraction of electron pairs at large values of u) that has been observed for excited states
and has been attributed to shielding.

In addition to these electronic structure analyses with respect to correlation, we also
present findings regarding the effects of using polarization functions in basis sets to de-
scribe atoms and molecules. Previous research has indicated that the introduction of polar-
ization functions into a basis set leads to an overall contraction of the intracule density. We
examine this contraction of electron pairs through analysis of position intracules, various
components of the energy, and differences in electron densities. This combined data has
yielded conclusive evidence that the inclusion of polarization functions leads to an increase
in density in the bonding regions in order to improve bond descriptions.

The second area explored in this thesis is regarding the development of novel software
to be used for the optimization of chemical reactions. This optimization is based on a new
method described herein, known as the linear combination of functional groups. In this
process, a large set of substituents is superimposed at a functional site within a reactant
complex. By allowing these substituents to interact with the fixed part of the molecule
while prohibiting interactions between each of the functional groups, one can effectively
determine the contribution of each moiety to the overall energy. Localized molecular or-
bitals are used in this study as they are highly transferable from molecule to the next. This
allows for the construction of a library of coefficients specific for each functional group
to determine the form of the molecular orbitals of said group that would be applicable
in any chemical environment. Through the use of minimization/maximization algorithms
one can optimize the energy difference between two states (e.g. products and reactants)
with respect to each of these functional groups. The details of the method and the results
of an optimization on the deprotonation of HO-X (X being the set of functional groups)
is demonstrated herein. The results obtained in the proof-of-concept stage of this project
demonstrate great merit for this concept.

vi
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1 Introduction

Computational chemistry is a relatively new branch of science having only truly been de-
veloped within the past 100 years. In fact, the first theoretical calculations to be performed
in the field of chemistry were not conducted until 1927 by the German physicists, Walter
Heitler and Fritz London. ' The difficulty in performing such calculations stems from the
unorthodox behaviour (wave-particle duality) of microscopic particles and the many-body
problem. Unlike the objects observed in everyday life, these subatomic particles must be

treated with quantum mechanics rather than the more traditional classical mechanics.

1.1 Classical Mechanics

Sir Isaac Newton’s contributions to the field of science simply cannot be overstated. In
the latter part of the 17" century, it was he who first formulated what is now referred to
as classical mechanics, which describes the laws that govern the motion of macroscopic

objects.! Newton’s second law of motion, which is commonly expressed as
F=ma, (1.1)

where F defines the force acting on an object while m and @ represent the mass and ac-
celeration of the object, respectively, can be used to determine the past, present, and future
positions of any object under the specified boundary conditions. In a more general form,

this law states that the net force which is acting on a particle is equal to the rate of change



in the particle’s momentum with time. This can be denoted by

L d dm®) _dm  di  EF
F = — = — - e -
dt dt a T T e

1.2)

— . . . . . 2=
where the U %’t’—’ term vanishes as the mass is constant. Since the force is given by m %—t%",
it is easily shown that, if said force is constant, the position, 7, is a function of time, ¢,

expressed as

F F
F(t) = //Edtdtz Et2+c‘1t+é’2 (1.3)

Here, ¢; is obtained from the first indefinite integral, which yields the velocity function and
¢, 1s obtained from the second integration yielding the final position function, 7(¢). At time
t = 0, 7(t) = ,, and thus & is simply the initial position, 7, of the object. Similarly, ¢; is

found to be equal to the initial velocity, 7, of the object and thus we can write (1.3) as

—

F
F(t) = Et2 + Tot + 7o (1.4)

From this equation, it is noted that by knowing the initial position and velocity of a macro-
scopic particle as well as the mass of the object and the constant net force acting on it,
one can readily determine the future motion of this particle. This expression demonstrates
the incredible utility of Newton’s second law of motion; however, systems are often more
complicated than this as there are numerous variables to consider. Nonetheless, by consid-
ering all parameters, one can effectively determine the position of the object at any time, ¢.
Unfortunately, these laws of motion do not apply to microscopic particles. Consequently,
this idea led to the development of quantum mechanics in the early twentieth century. The
reason these particles cannot be described using classical mechanics can be explained in
part by the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle states,
“The more precisely the position is determined, the less precisely the momentum is known

in this instant, and vice versa” (translation by American Institute of Physics).? Mathemat-



ically, this principle is given by AzAp > h/4r where Ar and Ap are the uncertainties
in the position and momentum respectively and % is Planck’s constant.! When considering
the size of the particles (i.e. macroscopic) that are treated with classical mechanics, this
level of uncertainty is negligible even for high accuracy studies; however, in the study of
microscopic particles, the uncertainty is relevant and thus, the exact position and momen-
tum of these particles cannot be known simultaneously with reasonable accuracy. Instead,
one must rely on quantum mechanics which describes the motion of such particles in a

probabilistic or statistical manner.

1.2 Quantum Mechanics

Without the development of quantum mechanics, we would not be capable of understanding
the behaviour of subatomic particles, and thus our fundamental understanding of how atoms

and molecules function would be severely limited.

1.2.1 The Schrédinger Equation

The Schrodinger equation is the foundation for non-relativistic quantum mechanics. It is as
essential to quantum mechanics as Newton’s Laws of Motion are to classical mechanics.*
It is the fundamental equation on which most quantum chemical models are based and it
can be expressed as

_ho¥(r,t) 2 -

S = Zv —Zm—v (r,t) + V(r,)¥(r,t), (1.5)
where U(r,t) is the state or wave function of the system, V(r,t) is the potential energy
operator, and Vf is the Laplacian operator involving the second partial derivatives over
the set of Cartesian coordinates (V? = 59: s + ay2 + 322) of particle 7 (e.g. electron ¢ or
nucleus A). The r (r = {(z,, 4, 2)}) and ¢ variables denote the position and time co-

ordinates, respectively.! The expression shown above is the time-dependent Schrodinger



Table 1.1: Definition of atomic units.

Measure Unit Value in Atomic Units  Value in SI Units
Length ag 1 bohr 5.2918 x 10~ m
Mass Me 1 9.1095 x 103! kg
Charge e 1 1.6022 x 10719 C
Energy E 1 hartree (E},) 4.3598 x 107187
Energy E 1 hartree (Ep) 27.211eV

Energy E 1 hartree (Ep) 627.51 kcal/mol
Angular momentum h 1 1.0546 x 10734 J s
Vacuum permittivity Arreq 1 1.113 x 1071° C%/(J m)

equation for a general system in 3-dimensions. The solution to the time-dependent equa-
tion can be separated into time and space components and fortunately, many applications
of quantum chemistry can be accurately described by the time-independent Schrodinger
equation which observes stationary states of the wave function. Throughout this thesis, we
will only be concerned with the time-independent expression and will simply refer to it as
the Schrodinger equation. This expression for a system consisting of /V electrons and M
nuclei is given by !>

N M

h 2 h 2 _
__i;vi ;:312MAVA+V(7') Ur,R)=EY(r,R), (16

where V(r) is once again the potential energy operator, F is the total energy of the sys-
tem, and ¥(r, R) is the time-independent wave function which depends on the set of all
electronic (r = ry,7s,...,rn) and nuclear (R = Ry, R, ..., RN) coordinate vectors.

There are a number of simplifications that can be applied to the Schrodinger equation.
The first that is discussed here is the conversion from SI units to atomic units. These atomic
units are defined in order to simplify the expressions and the conversions are given in Table
1.1.3

There has yet to be any mention of the form of the potential energy operator. This was

done intentionally, in order to simplify the form of the expression. Using the atomic unit



simplification, the Schrédinger equation can be expressed fully as

1 N , M 1 \ N-1 N 1 M ZA
—52‘%2%%&( ZT——ZZEJF

=1 A=1 > Y =l A=1 P
50

A=1 B>A 4B

¥(r,R)=FEY(r,R) (1.7)

where the terms enclosed in round brackets represent the potential energy operator, V. In
this expression, 7,, and R4 are the interelectronic and internuclear distances, respectively,
while r,4 is the distance between electron ¢ and nucleus A. Finally, Z4 is the atomic
number of nucleus A and the remaining terms are as previously described.

In this final expression, there are five separate terms in square brackets. Each term
represents an operator for a particular component of the energy. The first two terms, with
the Laplacian operators, represent the kinetic energy operators for the electrons and nuclei,
respectively. The potential energy operator is comprised of the electronic repulsion (term
3), electron nuclear attraction (term 4) and nuclear repulsion (term 5) operators. The sum of
these five terms can be expressed as a single Hermitian operator known as the Hamiltonian
operator, H. Tt is defined by the terms in square brackets and using this operator, the

Schrodinger equation can be written in its most common form as

H¥(r,R)= E¥(r,R) (1.8)

This equation is an eigenvalue problem where the eigenfunctions of the Hamiltonian op-
erator represent the ground and excited state wave functions and the eigenvalues are the

corresponding energy values for these states.

1.2.2 The Born-Oppenheimer Approximation

As shown in equation (1.7), the operators consist of both electronic and nuclear terms.

However, since nuclei are far more massive than electrons (M4/m, =~ 1840 for H atom), !



they move at a much slower pace. This is the basis of the Born-Oppenheimer (BO) ap-
proximation developed by said researchers in 1926.% This approximation assumes that as
electronic motion is much faster than nuclear motion, one can treat the system as if the
electrons move within a field of static nuclei. Using this approximation, the Hamiltonian
operator is greatly simplified. First and foremost, since the nuclei are considered fixed, the

nuclear kinetic energy operator can be omitted. The Hamiltonian operator is then given by

1 N N-1 N 1 N M 7 M-1 M 7.7
H=-:= 2 — - 24 ZA78 1.9
PIEDIPV DI IESEDID DL el
=1 =1 3>t 1=1 A=1 A=1 B>A

Furthermore, as the nuclei are fixed in space, the final term representing the nuclear repul-
sion operator simply becomes a constant. Since constants do not affect the eigenfunctions
in an eigenvalue problem, but simply add said constant to each of the eigenvalues, this term

can be removed from the Hamiltonian operator to form the electronic Hamiltonian, ﬂezec,

given by . 1 N N-1 N 1 N M 7
Helec=_§zvg+zzr——22£ (110)
1=1 =1 > ¥ =1 4=1 "

Using this newly defined operator, the electronic Schrédinger equation can be expressed as

A~

Heee¥(r; R) = Ee.Y(7r; R) (1.11)

where .. is the electronic energy. Here, the wave function has been denoted by ¥(r; R)
which indicates that it is no longer a function of the nuclear coordinates, R, but instead
has a parametric dependence. This indicates that if the coordinates of the nuclei were
to change, the wave function would also change. The BO approximation will be used
throughout this thesis, and thus the wave function will simply be given by ¥(r). Upon
solving the electronic Schrédinger equation, the total energy, E, is given by the sum of the

electronic and nuclear repulsion components as follows



M
z
E=FEaet y. Y. Zals (1.12)

1.3 Solving the Schrodinger Equation

Despite the approximations described in the previous section, solving the Schrodinger
equation remains a formidable task. The solution for the one-electron hydrogen atom is
well established, as are the solutions for a variety of fictional systems (e.g. particle in a
box, the linear rigid rotor, Hooke’s law atom, etc.);! however, in real chemical systems
(i.e. molecules and multi-electron atoms), the introduction of a second electron leads to the
inseparability of the Schrodinger equation and the inability to obtain analytical solutions.
This has led to the development of a wide range of techniques to approximate the solution
for these more complicated systems. These techniques can be grouped into a number of
classes, including perturbative methods, variational methods, quantum Monte Carlo simu-
lations, and density functional theories. The majority of the work in this thesis will involve

variational methods and it is these techniques that will be discussed in detail here.

1.3.1 The Variational Theorem

With any approximation, it is essential to have a measure of its accuracy. In quantum
chemistry, the variational theorem is used for this purpose. The theorem states that for any
normalized trial wavefunction, ¢¢, that obeys the boundary conditions imposed upon the
true wave function, the expectation value (predicted mean value) of the Hamiltonian opera-
tor, Eg, will always be greater than the exact ground state energy, Fy.> This is represented

mathematically as

(¢c|H|pc) = Eg > Eo (1.13)

Using this principle, one can effectively measure the quality of any approximation to the

wave function as lower energies reflect more accurate guesses. If one obtains the true



ground state energy, then ¢ must be identical to the exact wave function. This principle is
used in many quantum chemical methods for the determination of accuracy; however, not
all techniques are variational. It is only true when the energy determined by the method is

obtained from the expectation value of the Hamiltonian operator as shown in (1.13).

1.4 The Hartree Method

One of the earliest methods developed to obtain approximate solutions to the Schrodinger
equation was developed by Douglas Hartree in the late 1920s.”® This method is commonly
referred to as the Hartree self-consistent field method or simply the Hartree method. It is
also the basis for the more popular Hartree-Fock (HF) method that will be discussed in the
next section.

The Hartree method involves the use of a Hartree product wave function,® ¥# %, which
approximates the true wave function as a product of single particle functions (i.e. orbitals)

as follows:

N
VP (@y, s, ... n) = [ [ xa(s) (1.14)
=1

Here, x; is the combined position-spin coordinate vector (x; = (r;,w,), where w, is the
spin coordinate) of electron i, N is the number of electrons and Y, is the i** spin orbital. A
spin orbital is simply an orbital function that contains a single spin-up («) or spin-down (5)
electron. ' In freshman chemistry classes, one is often told that an orbital can hold up to
two electrons. This statement describes spatial orbitals, 1)(7), which can hold one electron

of each spin type. The relationship between spin and spatial orbitals is as follows:

Xo(x) = wz("') O‘(w) = 1/’?("')
Xes1(T) = u(r) B(w) = ¥ (r) (1.15)

where 1 is restricted to be odd so that the first electron in a spatial orbital has spin « and



the second has spin 3. The functional form of the spin functions is undefined; however, it

is important to know that the spin functions are chosen to be orthonormal. Thus

(a(@)la(w)) = (B)lBw)) =1 (a(w)lBw)) = (Blw)la(w)) =0  (1.16)

There are a number of deficiencies in the Hartree method that led to the development of
Hartree-Fock theory. The first problem is that electrons are assigned to specific orbitals.
This disobeys the laws of quantum mechanics that state that electrons should be indistin-
guishable. A second, related problem is that the wave function is not antisymmetric. The
antisymmetry principle states that the wave function for any fermion (particle with a half-
integer spin) must be antisymmetric with respect to the interchange of two electrons; in
other words, the sign of the wave function must change upon the permutation of an elec-

tron pair. > Therefore the following must be true:

\If(:cl, L2, -y Ly oo i Ly oeny a:N) = —\I/(a,'l, Z2,...;Lj,..., Ty, ,:EN) (117)

This is clearly not true for a Hartree product wave function. Consider the two-electron case

as an example. The antisymmetry principle would require that

x1(x1)x2(x2) = —x1(z2)X2(21) (1.18)

but this is not true for all choices of x; and y2. The final problem results from the idea that
the positions of the electrons are not correlated in any manner. The position of one electron

is completely independent of the positions of any of the other electrons.

1.5 The Hartree-Fock (HF) Method

Building on the foundation laid out by Hartree, in 1930 Vladimir Fock modified the theory

to address the previously described problems.® All of these problems are resolved, at least



to some extent, by expressing the wave function as a combination of all signed permutations
of the Hartree products as shown below for a two-electron system.

VI = ba(@)e(es) ~ x(@u(en) (1.19)
where 1/+/2! is a normalization constant. At first glance, it may appear that the electrons
are once again designated to specific orbitals; however, with the inclusion of each of the
permutations (in this case, just the second term), one can note that each electron is associ-
ated with every orbital. For systems containing a large number of electrons, writing out all
of the signed permutations is an undesirable task. However, there is a simple method for
obtaining each of these terms. This approach involves the construction of a Slater determi-
nant, 01!

A Slater determinant consists of columns corresponding to molecular orbitals and rows

corresponding to electrons. For the two-electron system, it is given by

gHF _ % xi(w1) xa(z1) _ —\/%[Xl(wﬂh(wz) (@) xe(e)] (1.20)
“Ixi(x2) xo(x2) )
Using a Slater determinant to write the Hartree-Fock (HF) wave function is very useful
due to some of the properties of determinants.® First, if two columns (or rows) in a matrix
are identical, the determinant is equal to zero. For a chemical system, this is analagous to
having two electrons of the same spin in the same orbital which is prohibited by the Pauli
exclusion principle.! Secondly, upon the interchange of two columns (or rows) in a matrix,
the determinant is multiplied by a factor of -1, which ensures the antisymmetric behaviour
of the HF wave function.
Thus far, a Slater determinant has only been shown for a two-electron system, but

systems containing any number of electrons, /N, can be represented in the same fashion.
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For the general N-electron case, the HF wave function is given by

xi(x1) xa(z1) ... xn(z1)
\I,HF:\/% xi(z2) xo(®2) ... xw(x2) (1.21)
xi(zn) xo(zn) .. xn(@N)

For large systems, it is inefficient to write out the entire Slater determinant, and thus it is

often expressed in a more concise form given by

[THFY = |x1X2- XX XN) (1.22)

EHF

The HF energy, , is given by the expectation value of the Hamiltonian operator

with the HF wave function. From the definition of the electronic Hamiltonian in (1.10),
it can be noted that the first and third terms are one-electron operators, while the second
term representing the electronic repulsions is a two-electron operator. Therefore, H canbe
simplified by grouping the one-electron operators into a single operator, h,, and the electron
repulsion operator can be simply expressed as . > These new operators are thus defined

as

M
Z 1
4 b, = — (1.23)

) 1
h,=—<V?+
A Ty

2
A=1

which simplifies the Hamiltonian operator to

N . -1 N
A=S"h+ B (1.24)

1 3>

=z

=1 3

For the purposes of this thesis, it is essential for the reader to have a good understanding
of the theory involved in the HF method in order to truly understand its deficiencies. For
this reason, we will show here how to derive the Hartree-Fock equations for a two-electron

system. The equations will then be generalized for a system with N-electrons. We will not,

11



however, show the full derivation for the general /N-electron case as it is beyond the scope
of this document.
We first focus on the one-electron operator. The expectation value resulting from this

operator is given by

N
(UHEY ™ by 9 HTF) = / UHF by OHF dgy dacy + / UHF by OHF 4z de,  (1.25)
i=1

where UHF is the HF wave function given by the Slater determinant consisting of two spin

orbitals shown by

UHE = |x1x0) = %[Xl(wlbﬁ(mz) — x1(x2)x2(1)] (1.26)

We will begin with the derivation with respect to the first integral in (1.25). Substituting the
definition of the wave function from (1.26) into the expectation value of the one-electron

operator for electron one in (1.25), we obtain

%/[XI($1)X§(w2) — X} (x2)x3 (@)l (@) xa(22) — X1(22)X2(21)] derdws (127)

Expanding this expression yields the following four terms

3 [ @)a(e) - xi@)xie)ia @)l

- XT(wI)Xg(wﬂille(932)X2($1) + X} (@2)X3 (@) hixa (2) xo(@1)) dzidzy  (1.28)

Since i only operates on electron 1, all functions of electron 2 can be integrated out. Due
to the orthonormality of the spin functions (o and ), the two negative terms integrate to

zero while the two positive terms integrate to unity yielding

1 N R
5 /[Xik(wl)thl(wl) + x5(T1)hix2(1)] dy (1.29)

12



One can perform an analogous derivation for the expectation value of h (second integral
in (1.25)) and find that, due to the indistinguishable nature of electrons, it is equivalent to
that shown for hy (i.e. (UHF |hy|WHF) = (GHF|h, | UHF)) Thus for the sum of all of the

one-electron operators for this two-electron system, the expectation value is

2

(WA S R) = Wy + hal 0 ) = [ sl (1) + xaln)xa(en)] dan
1=1

(1.30)

Instead of writing out the integrals in every equation, there is a common shorthand notation

to describe these one-electron integrals.® This notation, given by

Oalhlx) = (ilhli) = / X; (@) hx, (1) dzy (1.31)

simplifies (1.30) to
(UHF |y 4 ho|WHFY = (1]R[1) + (2]h]2) (1.32)

For the general NV-electron case, one can show that’

N N
(THF|S ™ b UHF) =3 (ilhfd) (1.33)
=1 =1

Thus far, the derivation has only involved spin orbitals. To modify these equations for the
use of spatial orbitals, we must integrate over the spin components of the orbitals. Since a
spin orbital is simply the product of a spatial orbital, (), and a spin function (c(w,) or
B(w,)), as given by (1.15), we can use this definition to adapt (1.30) for spatial orbitals as

follows:

(1l = [ wi(ra)a )b (ra)aen) draden = [ i(ra)iun(ra) drs = GlAl)
(1.34)
Here we have used the orthonormality condition of the spin orbitals in the integration over

the spin components. One could have just as easily used an orbital with a 3 spin component

13



in the previous expression and obtained the same result. The reader may have noticed the
use of round brackets in the final expression on the right-hand side. These round brackets
have an equivalent definition as (i|k|i) except the round brackets indicate that spatial or-

bitals are involved instead of spin orbitals and thus the expectation value now involves the

sum over the N/2 spatial orbitals (i.e. S (i|h|i) = SSN2(i|hli)).5

2

We now turn our attention to the two-electron operator, 0,,, given by r;l. For the two-

electron system, the expectation value of said operator is
A 1 * * * *
(W0, |917) = [ (@0 (es) - xi(@a)xi(en)
1
X T_U[Xl(wl))m(wz) — X1(®2)x2(1)|dz dEy  (1.35)

As in the case of the one-electron operator, we multiply to expand the integrand yielding

four terms given by

3 [ e Dx(eale) - i) ()

* * 1 * * 1

—Xl(wl)X2($2);‘1;X1(332)X2(w1) + X1($2)X2($1)EX1($2)X2($1) dzides (1.36)
Since 13 = 791, we can interchange x; and x in terms 3 and 4 of the integrand giving
1 . ‘ 1 . ‘ 1
2 x1(®1)x3(T2) —x1 (@) x2(2) — X1 (T2)x2(®1) — X1 (%) X2(T2)
T19 T12

* * 1 * * 1

—Xl(mz)Xz(wl)T—mM(wl)X2(m2) + X1(w1)X2($2)r—Xl(wl)Xz(iBz)} dzides (1.37)
12

Using this alternative form, it is easy to note that term 1 is equal to term 4 while terms 2

and 3 are also equivalent. This simplifies the expression to

/ [x’{(%)xé(wz);%Xl(wl)xfz(wz) - xr<w2>x;<w1>r—fle<w1>><2<w2>} dzydez
(1.38)

14



The form in which (1.38) is expressed is known as the physicists’ notation.? Chemists tend
to rearrange this equation to simplify the integration over the spin components. This is
achieved by placing orbitals containing electron 1 on the left side of the operator, and those

pertaining to electron 2 on the right side. Thus, the equivalent chemists’ notation is

1 1
/ [XI(“’l)Xl(ml)r—lzxg(wz)m(wz)_Xl(wl)XE(wl)T—mXI(mz)X2($2) dardas (139)

Much like the expectation value of the one-electron operator, there is also a short hand
notation for that of the two-electron operator. For the physicists’ notation, angled brackets
are used as follows:

(UHF |91, BHFY = (12[12) — (12|21) (1.40)

while the chemists’ notation employs square brackets as shown below.
(UHE 05| OHFY = [11]22] — [12)21] (1.41)

For a general N-electron system, it can be shown that the expectation value with respect to

spin orbitals is given by

N-1 N N-1 N N-1 N
(THEIN D "0, W) =% ((ijiiy (5171) ) Z > ([wby - [ZJlJ@])
=1 3> =1 3> =1 3>

(1.42)
For spin orbitals, we can now derive a full expression for the expectation value of the full

electronic Hamiltonian by combining (1.33) and (1.42) to give

N-1 N

BHF = (QHF| 4| 0HF) = Z (lhlay + 323 (et~ (ki)

= thm 3 (Gl - i) a4

=1 3>

To determine the final form of the expectation value of the electronic Hamiltonian with

15



respect to spatial orbitals, the two-electron integral terms in (1.42) must be defined more

carefully. Due to the orthogonality of the spin functions, this expression can be given by

N-1 N
(W 015 OHF) = 35 ((i1]7] = bmaamaslidlid)) (144)

=1 3>z
where m, is the spin quantum number (ms=:I:%) and 0, , is the Kronecker delta, which
equals 1 if ¢ = 7 and O when ¢ # j. When converting to spatial orbitals, x, = ¥ or 1/1? ,

and thus there are four unique possibilities for the combination of spins when ¢ # j:
Gilig):  Weerlses]  [ewrlufel]  wlullusu?] [l i) (145)

(iglid) s [Weyesee]  [ewl|elee]  wluelel]  [Wllflefel] (146)

In (1.45), all of these integrals would give non-zero values as the spin functions would
integrate to unity. However, in (1.46) only the first and fourth expressions would yield non-
zero values. One can see that when i # j there are four possible (i|j;) integrals but only
two possible (i7]ji) integrals for each set of ¢ and j. However, one must also consider the
case where ¢ = j. Before we consider this case, it is helpful to more clearly describe these
two different types of two-electron integrals.

The two-electron integrals, (2i|57) and (ij|j), are known as the Coulomb and exchange
integrals, respectively. this expression indicates that there are two separate terms for the

two electron integrals. Using the chemists’ notation, these integrals over spatial orbitals are

wm=/wmwm¢%mm%mwwm=% (1.47)
. * L
(Z]‘JZ) = /% (T1)¢J(T1)r—l2¢] (”'2)%(7'2)(17'1d7'2 =K, (1.48)

where J,, and K, are the notations for the Coulomb and exchange integrals.' One gains a

better understanding of the physical meaning of the Coulomb integrals by rewriting (1.47)

16



in the following way:

1
Iy = [ 1) P16 ra)Pracrs (149)

The squared modulus of an orbital (or wavefunction), |¢,(r1)|?, defines the probability
density of said orbital; hence, these Coulomb integrals describe the interaction between
the electron density of one orbital with that of another orbital. Therefore, these Coulomb
integrals are used to approximate electron repulsions in HF theory. However, this is the
cause of the major source of error in the HF method. An individual electron in the HF model
does not feel the repulsion from each individual electron, but instead experiences average
field of smeared out electron charge from all of the remaining electrons in the system.’
This method of estimating repulsion energies is known as the mean field approximation.
Calculating electron repulsions using mean field theory leads to the omission of Coulombic
electron correlation (or simply electron correlation). The concept of electron correlation
will be discussed in more detail later in this chapter.

As for the exchange integrals, there is no true physical interpretation of these terms.
They are effectively a result of having an antisymmetric wave function and only occur be-
tween electrons of the same spin. Nonetheless, they are essential for an accurate description
of a quantum mechanical system and are calculated according to (1.48).

Returning to the evaluation of the two-electron integrals when ¢ = 37, exchange is not
possible because two electrons of the same spin cannot occupy the same spin orbital and
exchange only occurs between same spin electrons. Electron repulsion however, is possible
between electrons with different spins within the same orbital. Thus equation (1.44) can be

modified for the use of spatial orbitals as follows

17



N-1 N N/2 N/2

> 37 (lilis] = Smaamaslishiil) = 32D (4(anlsz) — 26igli) ) + Y il

=1 3> =1 3> =1
N/2 N/2
=35 (40— 2Ky) + D0 (1.50)
=1 3> 1=1

In order to simplify this equation, one can remove the restriction that 3 > 7 from the double
summation and avoid double counting all interactions by dividing by 2. In this process,
we effectively include the interaction between electrons in the same orbital twice, 2.J,,, but
we also include the interaction K,,. In theory, K,, is equal to zero, but without the spin
component, it has the same value as J,, as one can note by setting 7 = ¢ in expressions
(1.47) and (1.48). Including K,, compensates for double counting the repulsion between
the two electrons in the same orbital. We can thus reduce the expectation value of the

two-electron operator to

N/2 N/2

(WHF[oy,07F) = 373 (20, - K, ) (1.51)

=1 3=1

We now have complete expressions for the expectation values of the one- and two-electron
operators in terms of spatial orbitals. Referring back to equations (1.33) and (1.34) we can

write the expectation value of the electronic Hamiltonian operator under the HF model as

N/2 N/2 N/2
B = (WITLHT) =23 (i) + 303 (206l3s) - @wlii))
=1 1
N/2 N/2 N/2J
_ QZH”-{—ZZ (2, - Ko) (152)
=1 =1

Here, we have used H,, as a short hand notation for the expectation value of the one-electron
operators.® In this expression, we have a complete equation to calculate the electronic en-

ergy of a system with respect to its spatial orbitals while the total energy is given by (1.12).
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However, we have yet to describe how to determine these orbital functions.

1.5.1 The Hartree-Fock Equations

As the variational theorem states, the expectation value of any normalized trial wave func-
tion will always be greater than or equal to that of the true ground state wave function.’
Therefore, our goal is to obtain the best guess and thus the most accurate energy possible.
Under the HF approximation, this best guess is obtained by minimizing the energy expres-
sion with respect to the spatial orbitals all the while ensuring that the determined orbital
functions are orthonormal. This minimization problem where a set of constraints can be
involved is solved using the Lagrange method of undetermined multipliers.> The Lagrange
function, .Z, is defined as the difference between a function and any constraints on said

function scaled by a Lagrange multiplier, A. For the HF method, this is given by

N
L=E-Y Y M\((alxg) —8,) (1.53)

=1 y=1

Since the second term in this equation (the constraint) is equal to zero, the Lagrange func-
tion has the same minima as the energy expression. Therefore the goal is to minimize the
Lagrange function with respect to the orbitals which in turn would minimize the energy of
the system. When minimizing a function, one often thinks first of derivatives. In theory,
this is very similar to what is done to solve for the molecular orbitals. However, the energy
expression is not a function, but a functional. Unlike a function which inputs a variable and
returns a value, a functional inputs a function to return a value. In this case, the energy ex-
pression is a functional of the molecular orbitals, which we denote as E[x(x)] or E[¢(r)].
When minimizing a functional, one takes a variation instead of a derivative; however, many
of the rules such as the product rule and chain rules are similar for both methods. To locate

a minimum, the roots of the first variation, é (not to be confused with the Kronecker delta,
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d,,) of the Lagrange function must be determined. Mathematically this is

H

N N
ZZ Xy ((0xa1%5) + (albx;)) = 0 (1.54)

where the d,, term vanishes as the variation of a constant is zero.
The first variation of the energy, 6 &/, can be obtained by performing said operation on

equation (1.43). This yields

N N N
o 1 i
OE =) (0xlhlx) + (alhlox) +5 D) ([5x1xz|xjxgl + DadxalxoXo] + Daxaldx; x]
=1 =1 j=1

+ [X‘LX%'XJ(SX]] - [6X1XJ‘XJX’L] - [Xz(SXJIXJXz] - [XlXJ\(SX]X’L] - [XzX]'XJ6Xz]) (1.55)

where the factor of 1/2 is used to remove the restriction (7 > 1) from the double summation.

To simplify this expression we can define the Coulomb, J, and exchange operators, K, as

follows:
Jy(@) (1)) = (6 (@2)Ir 37 X, (2)) [x. (1)) (1.56)
k] (@1) (1)) = ((x2) lrle a(x2)) X, (1)) (1.57)

The operators are shown acting on a molecular orbital, x,, as it is impossible to show the
exchange operator alone since it involves the interchange of the orbital it is acting on with
one contained in the operator itself. Using these definitions and the fact that [dx,x.|X,x;] =

[x:9x.]x;X;] we can express (1.55) as

N N
SE =Y (0xalhlx)+0alhloxa)+ Y (63l 1x) — (63l K, )+ (xal Sy 1630 — (xal K 16
=1 2
(1.58)
This simplifies to
N
Z ( Sxalfiba) + (xilledx») (1.59)
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where the Fock operator, f , has been introduced.’ This form of this operator is given by

f, =h, + Ejvz 1 jJ - K ,. By substituting (1.59) into (1.54), one then obtains

N

=3 (<‘5X’|fz|xl> Oalfilox.) ) ZZ( 1 (8Xa[Xp) + <X1|5X]>)) =0 (1.60)

1=1 =1 y=1

Based on the properties of complex numbers, it is known that {x.|/,|0x.) = Ox.|f.lx)*

and (x,|0x,) = (0x;,|x.)*, and thus the variation of the Lagrange function can be written

N N
5Xz’fz\Xz ZZ/\” (dx.|x,) + complex conjugate = 0
1 1=1 j=1
N
(6l <fz|Xz Z Aylx;) > + complex conjugate = 0 (1.61)

=1

Il
Mz

0L

)

il
M=

1=1

As this must be true for all y, and thus all dy,, the terms enclosed in round brackets

must equal zero, which leads to the following relationship

N
fiba) = Aalx) (1.62)

=1

There are various sets of \,, which minimize the energy of different state functions; how-
ever, it can be shown that one such set of the Lagrange multipliers are given by A,; = €,4,,.

This reduces the HF equations to’

flx) = &lx) (1.63)

where ¢, is the energy of the i™ molecular orbital.
To convert the HF equations for use with spatial orbitals, we use the definition of a spin

orbital (x,(x1) = 9, (r1)a(w) or ¢, (r1)B(wr)), to write the HF equations as
fl@a)vu(ri)a(wr) = ey (r1)e(w) (1.64)
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Multiplying both sides of (1.64) on the left by o*(w;) and integrating over the spin compo-

nent yields

[ enfenatoia) b =) (165)

An alternative to the previous definition of the Fock operator is the following:

f@y) = h(ry) +Z / X](mz (1= Pu)x,(@2)dez (1.66)

where &, is the permutation operator which acts to interchange the positions of electrons

1 and 2. Substituting this definition into the left hand side of (1.65) gives
{/ a*(wl)f(ml)a(wl)dwl} U (r1) = [/ a*(wl)il('rl)a(wl)dwl} Y.(r1)

[Z/ *(wr) X](ilﬁz (1 - «@12))(](582)&(&11)(1332(1&)1‘ (r1) (1.67)

Using the permutation operator, &4, to expand the final integral into two separate integrals

and by defining the closed-shell Fock operator as
firs) = [ o (enato)t (168)
we can rewrite the equation as
. . N 1
f(r)i(ry) = h(ra)(re) + Z/a*(wl)x;(m2)r_2>(] (T2)o(wr)(r1)dwadw,
1=1 !
Y 1
-3 / 0 (w2)x} (@2) Xy (@1 )alwa Wi (ra)dmadn (169
Pt 12

where we have used the orthogonality of the spin functions to simplify the first term on the
right-hand side. The remaining spin orbitals must now be substituted with the appropriate

spatial orbitals. Therefore, both sums over all spin orbitals, Z;V , need to be replaced with

22



Ng=N/2
] s

No=N/2

two separate sums, one for a-spin, » ) , and one for (3-spin electrons, Y

where each sum runs over N/2 terms. This substitution converts (1.73) to

Flr)w(r) = h(r)e(ry)
N/2

+ Z:l/a*(wl) [w;(rz)a*(wQ)] %12 [¥,(r2)a(ws)] a(ws ), (11 )dwr dwadry

N/2

#3 [ et Bl @] 1 W Ben] ot dadod,

12

N/2

- Z/a*(wl) [w;‘(rg)a*(wg)} le [, (1) ae(wy)] a(w2) ¥, (r2)dwr dwadrs

N/2

= / o (wn) [2(r2) 8" ()] %[1/1](r1)ﬁ(w1)]a(wQ)zb,(rg)dwldwgdrz (1.70)

where the terms enclosed in square brackets are those that were substituted for the spin
orbitals. The subsequent integration over the spin components of the expression gives

N/2

Ferwur) = hr)wu(r)+ |2 / w;w;%%(rg)drz W, (r1)

N/2

- Z/@(Tz);};wz(m)drz ¥,(ry) (171)
1=1

Using the definitions for the Coulomb and exchange operators given by (1.56) and (1.57)
and modified for spatial orbitals by replacing all occurrences of x and x; with 7 and r;,

respectively, we can reduce the spatial HF equations to

N/2
Frr) = |hr) + 3 (20m) = Ky(r) ) | 0u(r0) = ei(r) - (172)

and subsequently to the most common form

Fr ) (r1) = ety (r) (1.73)
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1.5.2 The Roothaan-Hall Equations

It is possible to solve the Hartree-Fock equations using approximate numerical methods
for atomic systems;! however, this is uncommon in recent times due to the development of
highly efficient algorithms to solve these equations for any type of system. Most commonly,
these equations are solved using the Roothaan-Hall equations, which were developed inde-
pendently by Roothaan!? and Hall!® in 1951. These equations require the introduction of
a basis set {¢, }. Instead of directly solving for the best possible functions to represent the
molecular orbitals, we instead express the molecular orbitals, 1/,, as a linear combination

of atomic orbitals (LCAQO) by
K

wz = Z Cn®y (1.74)

v=1
where ¢, are scaling coefficients indicating what portion of each basis function, ¢, is used
in the composition of a given molecular orbital and K is the number of basis functions in
the basis set. These coefficients are optimized to produce the lowest possible energy for
the given system as will be discussed shortly. There are a number of predefined basis sets
which are commonly used in quantum chemistry. The details concerning these basis sets
and how they are composed will be discussed in a subsequent section of this chapter.
Using the LCAO method to define the molecular orbitals in the spatial HF equations of

(1.73) yields
K K
I endn) =l D cnd) (1.75)
v=1 v=1

The subsequent combination of these new equations with (¢, | on the left gives

K K
<¢u,f| Z Cm¢u> =&, <¢ﬂ, Z Cm,(bu) (176)
v=1 v=1

K R K
> e / er(r1)f(r)ou(r)dr =) / ¢ (r1)dy(r1)dry (1.77)
v=1 v=1

This last expression is informally the Roothaan-Hall equations; however, they are more
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often presented in matrix form. To do this, we must first define a set of new matrices, the
Fock matrix, F', the overlap matrix, S, the coefficient matrix, C, and the energy matrix,

E .5 The elements of the first two matrices are given by

F,, = / ¢%(r1) f (r1)Bu(r1)dry (1.78)

Sy = /¢;(r1)¢y(r1)dr1 (1.79)

while C is simply a K x K matrix consisting of the coefficients, c,;, and F is a diagonal
matrix with elements that correspond to the orbital energies, ¢;. Using these new defini-

tions, we can express the Roothaan-Hall equations in their most common form as
FC =SCE (1.80)

This appears to be a simple eigenvalue problem; however, from (1.78), it can be noted
that the Fock matrix is dependent on its own eigenfunctions, {1;}; therefore, this problem
must be solved using an iterative procedure. This process is known as a self-consistent
field method (SCF) as the iterations are continued until the molecular orbital coefficients
or energies converge (i.e. become self-consistent). !’

Due to the dependence of the Fock matrix on the molecular orbitals, solving this prob-
lem is not trivial. However, in recent years, highly efficient algorithms have been developed
to rapidly perform this SCF routine. To discuss this procedure, we first introduce the elec-
tron density, p(r), which describes the distribution of electron charge throughout a system

as a function of the spatial vector, r.> This density is given by

N/2

p(r) =2 Wi(r)va(r) (1.81)

Expanding this expression in terms of the basis introduced for the molecular orbitals yields
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N/2

p(r) =233 bur) Y cuatu(r) = Y Y Pty (r)bu(r) (1.82)

a=1l p v

where we have introduced an element of the density matrix, P, which is given by

N
P =2 Cutva (1.83)
a=1

Returning to the definition of the Fock matrix given in (1.78), a more direct expression
can be written by using the definition of the Fock operator from (1.73). With the Fock
operator consisting of one- and two-electron components, the Fock matrix can be split into
analogous parts defined by HJ'* and G, respectively. The matrix elements are given by

the following expressions

R 1 M 7
HJ® = (gulhlow) = 5 /¢Z(TI)V%¢V(T1)‘1”'1 + /¢;(7‘1) Z ﬁ%(”‘l)dﬁ (1.84)
A=l

G = 2ulJjl60) — (6ul K;160)
=2 [ 61(r2) 3 hi(ra)ri Y coat(ra)iu(ra)dradrs
A o

= [ G X i rardonra) Y cota(ra)dradrs - (185)
A o

Using the definition of the charge density matrix element, F;;, the expression for G, can

be simplified as follows:

Guw =YY Puol(uv|ro) = L(uo|av)] (1.86)

A o

where we have used the chemists’ notation to write the two-electron integrals in short form
over basis functions denoted by p, v, A, and ¢. The Fock matrix elements can then be

computed from

K K
F.=H,+ ZZ Pro|(pv|Ao) — 3(po|Av)] (1.87)

A=1 o=1
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while the overlap matrix elements, S, are determined from (1.79). Although in the deriva-
tion of the HF equations, we restricted the molecular orbitals to be orthonormal, there is no
such requirement for the basis functions used in the LCAO procedure. Thus, the overlap
matrix is not equivalent to the identity matrix, which would greatly simplify this eigenvalue
problem. However, this is the approach that is employed in order to solve the problem.

The first step in the SCF method is transforming the overlap matrix, S, to the identity
matrix. There are a few different ways of doing this but one method, known as symmetrical
orthogonalization, involves the calculation of the inverse square root of the S matrix. This
matrix can be denoted as S/, but can simply be referred to as X . The properties of this
matrix are such that

Xt§x =1 (1.88)

where X1 is the conjugate transpose of X and 1 is the identity matrix. One must remember
that for matrix multiplication, the order of the multiplication matters. One cannot simply
rearrange the matrices in a multiplication as one can with variables. Thus to obtain such a

sequence in the Roothaan-Hall equations, we first multiply by X on the left to give

X'FC = X'SCE (1.89)

Since X X! = 1, we can insert this term anywhere in the expression since a matrix
multiplied by the identity matrix returns the original matrix. Multiplying F' and S by this
term yields

[XIFX)(X'C)= X'SX(X"'C)E (1.90)
F'C'=CE (1.91)

where the identity in (1.88) was used to reduce the first three matrices on the right-hand
side to 1. We have also defined two new matrices, F’ and C’, given by the terms enclosed

in square and round brackets, respectively. Obtaining the new coefficient matrix, C’, and
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the orbital energies, ¢;, of the energy matrix can be achieved by diagonalizing F'. These
coefficients and energies are given by the eigenvectors and the eigenvalues, respectively,
of this diagonalized matrix. In order to obtain the true coefficients, c,,,, one must consider
the definition of the C’ matrix. As it is given by C' = X 'C, C can be obtained by

multiplying both sides on the left by X to give

XC'=C (1.92)

The new set of coefficients is then used to calculate a new F' matrix and the process is
repeated as many times as necessary to obtain results that are converged to a satisfactory
level. One can then use the final set of coefficients to construct the HF wave function
from the Slater determinant. With this wave function, one can determine any quantum

mechanical observable or manipulate the wave function for electronic structure studies.

1.5.3 Open-Shell Systems

The derivation of the HF method in the previous section was for the closed-shell restricted
HF method (RHF).’ This method is commonly used for systems in the ground state at equi-
librium geometries that contain an even number of electrons. However, for molecules with
odd numbers of electrons, or other open-shell systems (e.g. diradicals, excited states), the
RHF model lacks accuracy. As you may recall, in the RHF model two electrons are con-
fined to a single spatial orbital. However, consider the H, molecule with a bond length such
that the two hydrogen atoms are becoming non-interacting bodies. In this case, confining
the electrons in the system to the same orbital is not an ideal definition. For systems such as
this, or for any open-shell system, the Unrestricted Hartree-Fock (UHF) method provides a
more accurate description of the wave function.

In the UHF method, one does not restrict the o and 3 electrons to be in the same spatial
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orbital.® Thus, the spin orbital, x(x), is represented by

x(x) = pe(rlal) (1.93)

Y2 (r)B(w)

RHF theory requires that /% = ¥® = 1, however, this restriction is not present under the
UHF model. When we expand these molecular orbitals in a basis of one-electron functions,
the basis functions must be the same for the 1/ and ° orbitals; however the contributions
of each basis function to the MO (c,; in (1.74)) need not be the same. It should be noted,
though, that for closed-shell systems at equilibrium geometries, the UHF solution will be
equivalent to the RHF solution as the assumption that the pair of electrons reside in the
same spatial orbital is completely valid.

In a similar fashion to the derivation of the HF equations for RHF theory, we can derive

a set of HF equations for the UHF method given by

A

fEr)vi(ry) = i (r1) (1.94)
Flr )0l (ry) = el () (1.95)

where the Fock operator in this case is given by
. . Ne N8
Fé(re) = h(ry) + ) [J2(r1) — K2(ro)] + Y _ J2(r) (1.96)
a=1 a=1

where N and N” are the numbers of o and §3 electrons, respectively (an analogous ex-
pression can be obtained for f* by interchanging all occurrences of o and /). One can note
that the first sum involves both Coulomb and exchange components as both are possible
for electrons of the same spin, while the second sum only involves the Coulomb operator
as exchange does not occur between electrons with different spins.

Much like the Roothaan-Hall equations which are used to obtain the molecular orbitals
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and energies for the RHF method, one can derive similar expressions for the UHF method
which are known as the Pople-Nesbet equations. ' These are a set of two matrix equations
given by

F*C* = S°C*E* FfC® = S°C’E® (1.97)

Recall that the a-Fock operator contains terms involving the 3 electrons and orbitals, and
thus these two matrix equations are codependent. Thus, one must solve these two equations
simultaneously in order to obtain the UHF molecular orbitals and energy.

In addition to the UHF method, for open-shell systems, one can also use the restricted
open-shell HF method (ROHF).'> This approach uses doubly occupied spatial orbitals
where possible and then singly occupied orbitals wherever necessary. This approach is
not as common as the UHF method as it is more difficult to implement as well as the fact

that the UHF is also used for some closed-shell systems.

1.6 Basis Sets

It was discussed earlier that to solve the HF equations, one often expands the molecular
orbitals in a linear combination of atomic orbitals. These atomic orbitals comprise the
basis set for the system. In theory, one can use any type of basis function that satisfies the
boundary conditions of the problem; however, some are more appropriate than others.
There are many basis sets that are predefined in the literature that are most often
comprised of Gaussian type orbitals (GTO). These are of the form na'y/z¥e=*"" where
i+ j + k = £, the angular momentum quantum number, 7 is a normalization constant, and
« is the exponent controlling the radial distribution of the function. In some cases, Slater
type orbitals (STO) of the form nz'y? zFe~°", are used; however, GTOs are preferable as
integration over these functions is far easier. In a minimal basis set, a single basis func-
tion is used to represent every orbital for a given atom. For example, when dealing with

a hydrogen or helium atom, the basis set would consist of a single basis function repre-
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senting the 1s orbital, whereas for the atoms lithium through neon, one has a total of five
basis functions (1s, 2s, 2p,, 2p,, and 2p,). The electronic configuration is ignored when
considering the number of orbitals for a specific atom. Thus, although Be has an electronic
configuration of 1s? 252, a minimal basis set for the Be atom would still contain functions
for the three 2p orbitals. The most commonly used minimal bases are those of the STO-nG
set developed by Pople. These basis sets consist of a set of n contracted Gaussian functions
which are used to approximate an STO. For example, a 1s orbital, ¢'¢, in an STO-3G basis

set is given by

¢"(r) = dyr (v) + dagpo(r) + daps(r)  where ¢;(r) = ne™"" (1.98)

where d; is a contraction coefficient defining the contribution of each Gaussian to the full
basis function, ¢'*. When contracted basis sets are used, the contraction coefficients are
predefined and the contribution of ¢'° is controlled entirely by a single coefficient, c. There-
fore, to represent a molecular orbital for a beryllium atom using an STO-3G basis set, one

would have the following:

UBe = 19" + 207" + 3™ + 4¢P + c5¢P (1.99)

where the coefficients ¢; would be determined through an SCF procedure for each molecu-
lar orbital and each ¢ is given by a form analogous to (1.98).

As valence orbitals are often those that participate in the bonding of molecules, these
orbitals are often represented by more than a single orbital. Such basis sets are referred to
as split-valence. Bases employing two basis functions to describe each orbital are referred
to as split valence double-zeta (DZ), those employing three functions per valence orbital
are split valence triple zeta (TZ) basis sets, etc.” In these cases, the core orbitals are still
represented by a single basis function but as in the STO-nG bases, they are often comprised

of a linear combination of contracted Gaussians. However, one can have a case where the
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core is also split into the same number of functions as each valence orbital. In these cases,
the basis sets are simply denoted as double-zeta, triple-zeta, etc.

Two of the most common types of bases are split valence and are known as the Pople
basis sets and the Dunning’s correlation consistent basis sets.>!!7 We will denote the Pople
basis sets as k-lmG (DZ) or k-lmnG (TZ) where k denotes the contraction of the core
orbitals, while the indices {, m, and n, denote the contraction of each basis function for the
split valence, and G simply indicates that Gaussian functions are employed. For instance,
the 3-21G basis set uses a contraction of 3 Gaussians to describe each core orbital, and
is a split valence DZ basis where the first basis function describing the valence is given
by a contraction of two Gaussians, and the second basis function is described by a single
Gaussian primitive. Similarly, the 6-311G basis is a split valence TZ basis with a set of
3, 1, and 1 Gaussians for the three basis functions describing each valence orbital and a
contraction of 6 functions for the basis functions describing the core orbitals.

For different types of systems, one might prefer to add different types of Gaussians
to obtain a more accurate description. For example, in anionic systems, where electron
densities tend to be more dispersed, it is common to add diffuse functions to improve
accuracy. These diffuse functions account for electron density in far out regions and are
denoted by + symbols. Thus, the 6-311G basis set with diffuse functions on heavy atoms
(all but H and He, which are the light atoms) would be denoted 6-311+G while the same
basis with diffuse functions on both heavy and light atoms is given by 6-311++G.

Similarly, it is common to use functions of higher angular momenta, ¢, than are nor-
mally associated with a particular atom. For example, one could add a set of d-orbitals
to a carbon atom to more effectively describe the system. These higher angular momenta
functions are referred to as polarization functions and their notation is similar to that of
the diffuse functions. For polarization functions on heavy atoms, one can write 6-311G(d)
which indicates the addition of a set of d-orbitals to each heavy atom, or 6-311G(d,p) refers

to the addition of a set of d-orbitals to heavy atoms and a set of p-orbitals to the light atoms.
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In older literature one might see these notations given by 6-311G* and 6-311G**, respec-
tively. However, one can add any type of polarization functions such as 6-311G(3df,pd)
where 3 sets of d-orbitals and 1 set of f-orbitals are added to the heavy atoms while 1 set
of both p- and d-orbitals are added to hydrogen and helium atoms. Thus, the first number
in brackets refers to the polarization functions added to the heavy atoms and the number
after the comma (if present) refers to those added to the light atoms. It is quite common
to use both diffuse and polarization functions in a basis set and this can be indicated by
6-311++G(d,p).

We previously mentioned the Dunning’s correlation consistent (cc) basis sets. These
bases are denoted by cc-pVXZ where pV refers to polarization of valence orbitals, and
XZ refers to the level of valence splitting (i.e. DZ, TZ, etc).'® These basis sets are often
used in extrapolation schemes as they were designed to converge to the complete (infinite)
basis set limit. There are also augmented versions of these bases which are denoted by
aug-cc-pVXZ where the augmentation refers to the addition of diffuse functions. !’

Any type of basis set can be used in a quantum chemical calculation; however, the
quality of the basis is reflected in the accuracy of the results. Nonetheless, when performing
a calculation, one can define their own basis set, modify an existing basis set, or simply use
one of the many predefined basis sets that are included in the many programs that perform

quantum mechanical calculations. '8

1.7 Correlation and Correlated Methods

It was mentioned in a previous section that the Hartree-Fock method does not account for
Coulombic electron correlation. Instead, it considers repulsions between electrons in an
average way rather than accounting for interactions between individual electrons. The HF
method does, however, include what is known as Fermi correlation which is neglected in
the Hartree method. ! This correlation is included as the Pauli exclusion principle prohibits

two electrons with the same spin from occupying the same spatial orbital. Thus, as the HF
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method satisfies the Pauli principle, there is a small region of space, known as the Fermi
hole, surrounding an electron where there is zero probability of finding another electron of
the same spin.

However, when most theoreticians refer to electron correlation, they are referring to the
Coulombic type. For this reason, we will simply refer to Coulombic correlation as corre-
lation for the remainder of this thesis. The omission of this correlation between electrons
in the HF model leads to erroneous results that represent approximately 0.5-1.0% of the
total electronic energy of the system.! One might scoff at an error of only 1%; however, it
has been noted that this error is often on the same order of magnitude as reaction energies.
Consider the example of the dissociation of Cl,. The true bond dissociation energy is 239.3
kJ/mol; however, at the HF/6-311+G(d) level of theory, this energy is predicted to be 50.27
kJ/mol. This represents an error of nearly 80%. Thus, although the correlation energy may
only be as low as 1.0% of the total system energy, this error causes major problems in
determining the energies of chemical reactions.

To overcome the deficiencies in the HF model, methods which include electron corre-
lation have been developed and due to the expanding capabilities of modern technologies,
such calculations are becoming feasible for increasingly large systems. Many of the tradi-
tional correlated methods are not employed in this study due to the availability of simpler
models with equivalent accuracy; however, we will give a brief mention of these theories
to show how correlation is included.

Hartree-Fock theory is considered the standard for a non-correlated method. Thus,
Lowdin defined the correlation energy, E,,,.., for a system as the difference between the
exact non-relativistic energy, Fezq, and the energy at the HF limit, Fgp.!® This is ex-
pressed by

Ecorr = Eezact — Enr (1.100)

Many correlated models are known as post-Hartree-Fock methods as they incorporate the

HF wave function but add corrections at the end to account for the electron correlation.
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These methods include the commonly used Moller-Plesset perturbative theory (MPPT:
MP2, MP3, MP4, etc.),?° configuration interaction (CI),?! and coupled cluster (CC)? tech-
niques. Each of these methods accounts for correlation in different ways; however, they all
incorporate excited state determinants in addition to the HF ground state wave function to
include correlation effects. It has long been noted that correlation often pushes electrons
farther apart and thus the inclusion of these excited states accounts for this by allowing
electrons to increase their separations.

Density functional theory (DFT) is becoming one of the most popular correlated meth-
ods today due to its lower computational cost compared to the aforementioned theories. !
Unlike MPPT, CI, and CC, as well as HF, DFT is not a wave function based theory. In-
stead, it uses the electron density, p(r), to determine the energy of a system.?*->> DFT,
as the name suggests, employs functionals to determine each of the energy components.
The functionals for the kinetic energy, electron nuclear attraction energy and electron re-
pulsions in a mean field are used for all types of DFT methods; however, the functional
that accounts for exchange and correlation takes many different forms. 2% This functional
often contains empirical parameters obtained by fitting results to extensive sets of exper-
imental data. Nonetheless, with careful parameterization, one can obtain highly accurate
results from DFT. Finally, since DFT simplifies a wave function problem which contains
3N coordinates to one involving the density and thus only 3 coordinates, this simplifica-
tion greatly reduces computational times and is one of the major reasons that its use is so
widespread today.

MPPT, CI, CC, and DFT all have one thing in common: they account for correlation
implicitly. A separate class of correlated methods are those that are explicitly correlated
and these are the methods that have been employed throughout this research project. These
explicitly correlated methods were first described in the seminal paper by Hylleraas in
1929.%0 In this paper, Hylleraas included a linear r;, term in the wave function of the helium

atom. In 1957, Kinoshita reported the development of a similar wave function with this
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same form of explicit correlation.*! Each of these methods will be discussed in more detail
in the results and discussion chapters of this thesis. In recent years, explicit correlation
has been developed further and is often combined with the previously mentioned implicitly
correlated methods to improve the results. These combined methods are referred to as the

R12 methods (e.g. MPPT-R12).3233

1.8 Two-Electron Probability Distributions

From the solution of the Schrodinger equation, whether it is through exact or approximate
methods, one obtains the wave function. The wave function contains all of the information
required to physically describe a system, but one cannot visualize such a function. It simply
requires too many' dimensions to be plotted in any discernible form. Therefore, the function

is often manipulated to a form which can be displayed.

1.8.1 The Electron and Pair Densities

In the discussion of the Roothaan-Hall equations, the electron density, p(r), was briefly
introduced. It is one of the most common probability densities as it provides information
regarding the distribution of electrons within a system. A more rigorous definition of the

electron density is given by

p(r) =N/.../\Il*('r,rz,...,'rN)‘IJ(r,rz,...TTN)drz...der (1.101)

One can see that this density is obtained by integrating the squared modulus of the wave
function over all but one of the electronic coordinates. Integration of the resulting density

over the angular components of r

o(r) = /p(r)dQT (1.102)
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Figure 1.1: Spherically averaged a) electron density, and b) pair density, for the ground state of He.

where d(}, denotes the integration over the angular components of u, yields the spherically
averaged electron density, p(r), which is easily represented in two-dimensions. An example
of this density is provided in Figure 1.1 along with the spherically averaged pair density,
p(r1,72), which will be discussed shortly. In some instances, p(r) is plotted despite the
requirement for four-dimensions. This fourth dimension is obtained either through the use
of colours to denote different values of the density, as in electrostatic potential maps, or by
plotting specific values (slices) of the density as a function of the three spatial coordinates.
The latter method will be employed in Chapter 5 when exploring electron densities of
molecules in an analysis of the effects of adding polarization functions to basis sets.

More useful than the electron density is the pair density, p(71,72). Similar in nature
to the electron density, it is obtained from the squared modulus of the wave function while

integrating over all but the first two electronic coordinate vectors as shown below. !

N(N -1
p(’l"l,’l‘g)=—-—(—2—)/.../‘I/*(’f'l,’l"2,’l"3,...,’l"N)

X U(ry,re,73,...,7N)drg ... dry (1.103)

As this density depends on the coordinates of two electrons, the pair density requires seven

dimensions for graphical representation. As this is not possible, the most common sim-
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plification is to integrate over all angular components of the r; and 7, vectors to obtain
p(r1,72). This density is highly useful as, unlike the electron density, it provides informa-
tion regarding the simultaneous distances of two electrons from a reference point. Since
the majority of chemistry is dependent on interactions between pairs of electrons, this den-
sity provides useful insight into electronic behaviour. However, ideally one would like to
explore the full pair density including angular components to not only know how far elec-
trons are from the nucleus, but also where they are in position space. This deficiency has
led to the development of many probability densities, which are obtained by manipulating
p(rq, T2) in order to obtain different pieces of information regarding electronic structure.
Some of these densities will be discussed in this chapter, while development of new densi-

ties will be detailed throughout the results and discussion chapters of this thesis.

1.8.2 Intracule Densities

Although the spherically averaged pair density, p(r1,73), provides positional information
regarding two electrons simultaneously, due to the required integration of the angular com-
ponents, no information is obtained regarding the distance between the two electrons.
However, as previously mentioned, this information is contained in the full pair density
p(ry, 72); the only question is how to manipulate the function in order to obtain it.

The variable describing the separation of electrons is the interelectronic coordinate vec-
tor u. This vector is given by

U=T13=T1 T (1.104)

while the scalar u is simply the length of the u vector (i.e. u = |r; — r3|. Using this

information, a probability density containing u can be obtained from the pair density by

I(w) = / / p(r1,72)8(u — (r1 — 73))dridrs (1.105)
where () is a three-dimensional Dirac delta function. This function acts by substituting
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Figure 1.2: The intracule density, P(u), of the ground states of the a) He atom, and b) Be atom.

u for r; in this expression through the equality, u — (71 — r2) = 0. This yields

I(u) = /p(r + u,7)dr (1.106)

As this expression contains a single electron position vector, 72, this variable is replaced
by a general position vector, r. In each of these expressions, /(u) is the position intracule
density, which describes the probability of finding two electrons separated by the vector
u.>*35 Most often, the position intracule is integrated over the angular coordinates to obtain
the spherically averaged position intracule, P(u). This spherically averaged density is often
calculated directly from the pair density or equivalently from the squared modulus of the

wave function by

P(u) = //p('rl,rg)é(u — |r1 — ro|)dridradQ,

= / I\I/(’l"l, Tro,... ,’I’N)|26(’U, — |’I"1 — 7'2|)d’l"1d’l"2 ce d’l"NdQu (1107)

As we will only be dealing with P(u) throughout this thesis, it will simply be referred to as
the position intracule, or in some cases, the intracule, unless specification is required. This
density, as shown in Figure 1.2, is highly informative as it provides information regarding

the separation of electrons in chemical systems. The intracule has been studied intensively
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Table 1.2: Variously commonly studied intracules

Intracule Notation  Description of Probability

Wigner*-52 W(u,v) Electrons having separation of, u and relative momenta, v
Position 374 P(u) Electrons being separated by a distance, u.
Momentum*-® M (v) Electrons having relative momenta, v

Dot 3433 D(z) Electron pair with z = u - v = uv cos[f]

Action®3155  A(w) Electrons having scalar product w = uv

since its development in 1961 by Coulson and Neilson.3¢6* These intracules are often
compared for different chemical systems or in systems treated with and without correlated
models to determine the effects of electron correlation on interelectronic distances.

There are a number of other types of intracules that have been studied over the years.
These include densities describing the relative momentum variable, v = |p; — p2| (Where
p: is the momentum vector for electron %), and others which combine position (u) and
momentum variables. A list of commonly studied intracules is given in Table 1.2.

It should be noted that the Wigner intracule is a quasi probability density. This density
provides information regarding both the momentum and position of electrons despite the
fact that the Heisenberg uncertainty principle states that we cannot know both parameters
simultaneously with high accuracy. Each of the intracules listed here provides valuable
information for comparing properties of electrons simultaneously and they continue to be

studied today.

1.8.3 The Extracule Density

The position intracule provides information regarding the separation of electrons; hence, it
provides relative position information; but the question remains, where in space do these
electrons reside? This question can be answered by the extracule density which is a function

of the centre-of-mass vector, R.%%%" The centre-of-mass vector (R) and scalar (R) of two

40



electrons with position vectors 7y and 72 with the nucleus fixed at the origin are defined as

_7‘1+’I‘2 R:|r1+r2|

R 2 2

(1.108)

Unlike the intracule where the position of electrons in space is unknown, the extracule does
provide information as to where they reside by providing the absolute position information
through the centre-of-mass coordinate. The determination of the spherically averaged ex-

tracule, F/(R), is similar to that of the position intracule and can be given by
1
E(R) = //p(’l"l,Tz)(S(R - 5[7‘1 + Tgl)d’f‘ldT‘deR (1109)

where the only difference lies in the different form of the one-dimensional Dirac delta
function. One can also derive a form dependent on the vector R as shown previously with
the intracule, but again, these forms are generally not used in analyses.

Extracules are not investigated as often as intracules; nonetheless, they do provide an-
other unique way of studying electron pairs (Figure 1.3). Neither the intracule, the extrac-
ule, nor any of the other densities that have been discussed thus far are complete in nature.
Due to the complexity of a problem involving two electrons, there will always be some

information which is averaged over (through integration) in order to provide a graphical
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Figure 1.3: The extracule density, E(R), of the ground states of the a) He atom, and b) Be atom.
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representation of the information. Nonetheless, by manipulating the wave function and
pair densities in specific ways, one can gain valuable information regarding electron struc-
ture. The discussion of this thesis will involve the development of new densities in order to

provide different perspectives of the information contained in the wave function.

1.8.4 The Coulomb Hole

As previously noted, due to the use of the mean-field approximation in the Hartree-Fock
method, the effects of electron correlation are neglected. In 1961, Coulson and Neilson
published a now famous paper3® detailing not only the previously described, position in-
tracule, P(u), but also the Coulomb or correlation hole. This Coulomb hole is the result
of the difference between position intracules obtained from exact (i.e. correlated) and HF

wave functions as given by

AP(u) = PPaact(y) — PHF(y) (1.110)

The Coulomb hole demonstrates the effect that correlation has on interelectronic sepa-
rations in a system. From the figure of the Coulomb hole (Figure 1.4), the initial negative
region followed by the positive region indicate that correlation decreases the probability
that electrons will be close together. 36374148 Therefore, it is concluded that by allowing in-
dividual electrons to "see" one another, they are pushed further apart. This suggests that the

mean field approximation underestimates electron repulsion energies in chemical systems.

1.8.5 The Secondary Coulomb Hole

It was long believed that the effects of correlation on interelectronic separations were ac-
curately described by a universal contraction of electrons. However, in 2009, Pearson et
al. described a new phenomenon that they referred to as the secondary Coulomb hole.*® In

this work, the correlation hole was analyzed at large values of u (i.e. where the function
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Figure 1.4: The Coulomb hole and the secondary Coulomb hole (inset) for the ground state of He atom.

approached zero) through the use of highly accurate HF and correlated wave functions.
They detected the presence of a secondary negative region in the correlation hole (Figure
1.4). This phenomenon had been noted before but it had been considered to be an artefact
of inaccurate wave functions.“®>%% However, these researchers demonstrated that the sec-
ondary Coulomb hole did not occur with the less accurate HF wave functions, but instead
only became evident as the accuracy of the wave functions increased.

The occurrence of this secondary Coulomb hole suggests that correlation decreases the
probability that electrons will be far apart. This is counterintuitive as previous evidence
suggested that correlation universally pushed electrons further apart. This idea has been
behind the development of correlation methods such as configuration interaction (CI) which
incorporates higher energy orbitals to allow for the electrons to separate further than a
HF treatment would allow. Furthermore, it is commonly stated in introductory text books
describing quantum chemistry that correlation increases interelectronic separations. !

Since the seminal paper on this topic, there have been reports detailing the secondary
Coulomb hole in different systems including the H, molecule and the fictional system de-
scribing two electrons confined to the surface of a sphere (spherium).5? These systems will

be discussed in more detail throughout this thesis as we provide more evidence regarding

this newly discovered effect.
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1.9 Project Goals

The focus of the first half of this research project is two-fold. First of all, we aimed to
develop new tools for the analysis of electronic structure. The motivation for the develop-
ment of these tools was to gain a further understanding of the secondary Coulomb Hole
with the hopes of determining its exact origin. We examined various methods in an attempt
to explain the source of this phenomenon including the development of a new probability
density, the study of fictional two-electron systems with varying differences from real two-
electron systems, and finally the study of the relationship between the size of the secondary
hole and the properties of the particular system.

As previously mentioned, the intracule density provides relative position information.
Thus, it contains information concerning how far apart two electrons are within a system,
but it affords no details regarding where the electrons are in the system with respect to the
nucleus. The extracule density does provide this absolute position information but is lack-
ing in terms of interelectronic separation data. Thus, it is obvious that a probability density
that could provide both relative (intracule) and absolute (extracule) position information
would be highly beneficial. This novel probability density, which we have coined the in-
tex distribution, was to be determined for a series of atomic systems in order to provide a
greater understanding of the secondary Coulomb hole.

There are a number of fictional systems that have been studied through the use of quan-
tum mechanics to determine how they relate to real systems. Two such systems, are the
Hooke’s Law atom, or hookium, and ballium. Hookium is analogous to the helium atom
being a two-electron system; however, the two electrons are bound to the nucleus by a har-
monic potential instead of the more physical Coulombic potential. Ballium, on the other
hand, has a constant or zero potential inside the sphere. By modifying the state of exis-
tence of these nuclear potentials, we can determine what role, if any, the nucleus plays in

the existence of the secondary hole.
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Finally, we examined the size, or strength, of the secondary hole to determine whether it
could be related to a measurable property of the HF intracule. This relationship was studied
for the helium isoelectronic series with respect to properties related to the diffuseness of
the electron density.

In a related electronic structure study, we analyzed the effects of polarization functions
on interelectronic separations. Much like the recently observed secondary Coulomb hole,
it had been noted in a recent paper>* that the introduction of polarization functions into a
basis set led to an overall contraction of electron pairs. We aimed to determine the origin of
this effect by conducting more thorough analyses involving intracules, energy components,
and electron densities.

Deviating from electronic structure studies, the second part of this research project
focussed on the development of a reaction optimization program. This introductory chapter
did not contain information directly aimed at this project; however, all of the discussion
regarding QM methods and calculations is pertinent. A more detailed description of the
theory will be discussed in the chapter describing the project which should be more than
sufficient for the required understanding of the reader.

The idea behind this project was to create a program with the capability to optimize
any chemical or biochemical process. The concept was to target a functional site within
a reactant complex such as a drug or drug precursor, which could be optimized to make
the drug work more efficiently or make it easier to synthesize. The foundation for the
optimization is to superimpose a large series of functional groups at this one site in the
molecule. The algorithm would then sort through this set of functional groups to determine
which one would be best in order to optimize the specific reaction process with respect
to reaction or activation energies. The goal of this program is not to be a stand-alone
system, but to work in conjunction with experimental chemistry to streamline these types

of processes.
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2 A Simultaneous Probability Density for the Intracule

and Extracule Coordinates

This chapter was reproduced in part with permission from Proud, A. J.; Pearson, J.K. J

Chem. Phys. 2010, 133, 134113. Copyright 2010, American Institute of Physics.

2.1 Introduction

In the previous chapter, we discussed the intracule, P(u), and extracule, E(R), densities
which describe the distribution of electrons within a system with respect to the interlec-
tronic separation variable, u, and the centre of mass radius, R. These densities, especially
the intracule, are highly useful in the study of electronic structure and in determining the
effects of electron correlation. The previously mentioned Coulomb hole, which again is
given by

AP(u) = PP (y) — PP (u) 2.1

was initially used to show that correlation causes electrons to separate; however, the sec-
ondary Coulomb hole that was discovered by Pearson et al. elucidates a richer behaviour of
electronic structure differences between the HF and correlated models. This secondary hole
indicates that at large interelectronic separations, correlation actually leads to a contraction
of the electron pairs. This counterintuitive effect requires further study to be properly un-
derstood and in the present chapter as well as the following two chapters, data will be

presented which sheds more light on the origins of the secondary Coulomb hole as well as
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evidence suggesting the potential cause of the effect.

It would be invaluable to know more about the spatial distribution of electrons in the
case that correlation causes a contraction of their distribution. This information is impos-
sible to obtain from the spherically averaged intracule density alone, as it only measures
relative distances between electrons and not their absolute location.*”*° The location of
an electron pair however may be probed using its centre of mass vector R = %('rl + 7r3)

described by the extracule density,>*>’

and thus it would be advantageous to develop a
simultaneous probability density for both of these coordinates. In the current work, we
will be concerned with deriving such a density for the ground state of the helium atom
and helium-like ions. Thus, we need only consider the radial component of the extracule
coordinate R = %|r1 + 73| due to the spherical symmetry of such systems.

The simultaneous probability of finding two electrons separated by a distance v and

with their centre of mass located at R is described by

X (R, u) = (U|6(R ~ Ly + ma])o(u — |71 — m])| D), 2.2)

where U is the wave function and 4(z) is a one-dimensional Dirac delta function. Because
this density combines both relative (intracular) and absolute (extracular) position infor-
mation to more completely describe the spatial distribution of electron pairs, we refer to
X (R, u) as the intex density.

As this chapter will involve a great deal of interpretation with regards to the R and u
coordinates, these vectors as well as those describing the positions of electrons 1 and 2 are
represented graphically in Figure 2.1.

The purpose of this chapter is to introduce the intex density and subsequently deter-
mine the intex correlation holes of the ground states of the helium atom and helium-like
ions, defined as the difference between the exact and HF intex densities. This provides the

opportunity to obtain a deeper understanding of the phenomenon of electron correlation;
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Figure 2.1: Schematic representation of a two-electron atom with electronic coordinate vectors r1, 72, R.
Z indicates the nuclear charge at the origin.

more specifically, it will allow for a more complete description of the secondary Coulomb
hole, 3> which demonstrates the high utility of this novel probability density. Atomic units

are used throughout.

2.2 Hartree-Fock Intex Density
For an N-electron (N > 2) system, the pair density

N(N -1)

2 (I6(r, = r)6(r — ) T) @3)

p(r1,r2) =

gives the probability that one electron will be found at 7; and another at r, simultaneously.
As mentioned in the previous chapter, one can obtain the intracule and extracule densities

from p(r1, 73) by

P(u) = ///p(rl, r9)0(u — [r — 7o) dry dr2 dQ2,, (2.4)
and
E(R) = ///p(’l’l, TQ)(S(R - %[7'1 + 7'2]) d'r1 d’l"2 dQR (25)
respectively, where d€2; denotes integration over the angular components of vector <.
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Similarly, one can also obtain an expression for the intex distribution directly from the

pair density by

X(R,u)=////p(rl,7'2)5(R—%{'r1—|—r2])6(u—[7'1—7'2])d’rl dry dQ2, dQg. (2.6)

and subsequent integration over the R and u variables will yield the intracule or extracule

density, respectively, as shown below

/ " X(R,u)dR = P(u) @2.7)

/ " X(R,u)du = E(R) (2.8)
0

If the two-particle density is obtained from a restricted HF wave function for a closed shell

system, the intex density may be expanded as

X" (R, u) Z T (uvAo)x, 2.9)

uvio
where '}, represents the usual HF two-particle density matrix element,’ which is ob-

tained from the density matrix elements, P, of (1.83), by

(2Pp,1/P)\a - PyaP)\u) (210)

|

r Hrio =

and (uvAo)x are the intex integrals over atomic orbital basis functions denoted by u, v, A,

and o. These integrals are given by

(w)x = [ [ Gi(R=3) 6B~ D6(R+3) 6. (R+J) e Q1D

For the concentric cases of two-electron systems where all of the basis functions are
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Gaussians of s-type symmetry, equation (2.11) may be integrated analytically as

(R2+u2/4)] Slnh[Ru(a + 5 -7 — 5)]
Ru(a+pB—~v—46) ~’

(ssss)x = 16m2 R2u2elle+F+1+9) (2.12)

where «, 3, v, and § represent the exponents of the Gaussian functions and sinh(z) is the
hyperbolic sine function. Alternatively, one may pursue other forms for ¢ such as Slater
functions to enforce the nuclear-electronic cusp conditions; however, these are significantly
more difficult to implement and have been shown to have a minimal effect on intracules
when compared to an appropriately chosen set of Gaussians.®*® Thus far, only calcula-
tions of intracules involving s-type Gaussians have been performed; however, determining
these intex integrals for p- and d-orbitals would be of great interest to be able to calculate
intracules for larger atoms and molecules. Although, this chapter will highlight the use of
the intex distribution to develop a greater understanding about the features of the Coulomb
hole, it must be stressed that this probability density presents a novel way of describing
electron pairs in atomic and molecular systems.

In order to construct accurate HF intex distributions, we employed a series of even-
tempered basis sets proposed by Schmidt and Ruedenberg, which utilize Gaussian prim-

itives with exponents given by

Go=af (k=1,2,...,K), (2.13)
where,
InlnB=blnK + V¥, (2.19)
and
lna=aln(B-1)+d. (2.15)

The coefficients (a, a’, b, b') for all atoms from helium through argon are available in the

literature® and thus, it is straightforward to construct a basis set containing any number of
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Figure 2.2; a) HF intex density of the helium atom, b) Correlated intex density of the helium atom. Con-
tours have magnitudes of 5n x 10~2, where n=1,2,3,...,20.

Gaussian functions, K. Coefficients for the atomic orbitals were then determined using the
Q-CHEM package. '8

We have calculated X" ( R, u) with basis sets up to K = 40 and found that the largest of
these is satisfactorily converged for the purposes of this investigation. This is demonstrated
by comparing the K = 39 and K = 40 intex densities and calculating the maximum
difference between the two as max,so, g>o | Xi8 (R, u) — X}F(R,u)| = 1.0 x 1077, which
we interpret as a measure of the maximum basis set incompleteness error (BSIE) in the
K = 40 intex density. This level of accuracy is more than sufficient to study fine correlation
effects at large values of u.®

The HF intex density for the ground-state of the helium atom is shown in Figure 2.2a.
The distribution has a global maximum at v = 0.891 and R = 0.446 and monotonically
decays in all directions away from it. Interestingly, one can see that the distribution is
symmetric about the u = 2R line.

Inspection of equation (2.12) reveals that X™F(R,u) = X" (u/2,2R), confirming
that the distribution is exactly symmetric. This demonstrates a rigorous relationship be-

tween the HF intracule and extracule densities for spherically symmetric systems in ac-
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Table 2.1: Coordinates (Rmax, Umax) and magnitude of the maxima in the HF and correlated
intex densities for the helium isoelectronic series.

HF Exact

Ton Z (Rimax> Umax) X (Rmax; Umax)  (Rmax, Ymax) X (Riax Umax)
He 2 (0.446,0.891) 1.031 (0.468, 0.978) 1.045
Lit 3 (0.282,0.564) 2.680 (0.290,0.598) 2.711
Bet 4 (0.206,0.413)  5.099 (0.210,0.430) 5.147
B3+ 5 (0.163, 0.325) 8.291 (0.165,0.336) 8.355
C4 6 (0.134,0.268) 12.253 (0.136,0.275) 12.334
NSt 7 (0.114,0.228)  16.987 (0.115,0.234) 17.084
o+ 8 (0.099, 0.199) 22.492 (0.100, 0.203) 22.605
F+ 9 (0.088,0.176) 28.769 - (0.089,0.179) 28.898
Neb+ 10 (0.079, 0.158) 35.817 (0.079,0.160) 35.962

cordance with the isomorphisms for intracule and extracule densities reported in the liter-
ature.®7! From an empirical relation, Koga found the approximate isomorphism d(R) =
8h(2R) for the spherically averaged extracule and intracule densities,®"° where d(R) =
E"F(R)(4mwR?)7! and h(u) = PHF(u)(4nu?)~!. Romera later confirmed that this expres-
sion was exact for systems with two-electron densities of even parity.”! Integrating our
intex distribution (2.12) appropriately (equations (2.7) and (2.8)) provides a simple alter-
native derivation for this isomorphism.

In addition to the ground state of the helium atom, we have computed the HF intex
densities for the ground states of the helium-like ions with atomic numbers Z = 3 to 10.
As in several previous studies of this series,>®’? the hydride ion, H-, was omitted due
to the difficulty in obtaining adequately converged results. As expected, the maxima in
the intex densities shift to lower values of R and u as the charge on the ions increased.
The coordinates and magnitude of the maxima in the intex densities are listed in Table
2.1. Despite the contraction towards the origin, the intex density for each ion of the He

isoelectronic series is qualitatively similar.
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2.3 Correlated Wave Function/Intex Density

In a previous paper,>® Pearson et al. employed explicitly correlated wave functions of the
Hylleraas type”® to produce correlated intracules and the corresponding Coulomb holes.
Unfortunately however, variationally optimized exponents and coefficients of the Hyller-
aas expansions are not available in the literature’ for all of the ions in the isoelectronic
series presented here and thus we have also explored a series of explicitly correlated wave

functions based on those first described by Kinoshita in 1957:3!

K m, "
TRy 1p) = 70 Y ¢, sh/2 (f) (3) ” (2.16)

u L)
=1

where s, ¢, and u are the Hylleraas coordinates defined as
s = |ry] + |7of L= |r] — |re u=|r; — 2.17

and the exponents, [,, m,, and n, are non-negative integers. These exponents, along with
the nonlinear parameter ¢, and the linear parameters ¢, may be variationally optimized and
this has been reported previously 7 for a variety of expansion sizes, K. The Kinoshita wave
function employed here uses half-integer powers, which was demonstrated to significantly
improve the accuracy of the expansion.” Using an expansion of K = 100 terms, the
wave function reproduces an energy for the ground-state of the helium atom to within
1 picohartree (pE}) of the exact value’”> which exceeds the accuracy of the previously
reported Hylleraas wave functions.”*

With the u variable already incorporated into the wave function, the extracule variable,

R, may be related to these expressions by the equality

4R? = % + 2 — 2. (2.18)
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Switching from Cartesian coordinates to Hylleraas coordinates and integrating over the
three external angles (fg, ¢r, ¢,,) requires the inclusion of the Jacobian resulting in the

following
4m*Ru(4R? + u? — 2t2)
VAR? 4+ y? — t2

Substituting this equality into (2.6) where the pair density is obtained from the Kinoshita

dr; dry, —

dtdRdu (2.19)

wavefunction (expressed in terms of R, ¢, and v) and integration of the resultant expression
over ¢ affords the intex density. These expressions were integrated numerically using the
built-in numerical integrator in the Mathematica package.’¢

Figure 2.2b illustrates the intex density obtained using the 100-term Kinoshita wave
function. Although, as in the case of HF, the correlated intex density appears symmetric
about the u = 2R line, close inspection of (2.16) shows that the intex density obtained from
these correlated functions will not possess this exact symmetry. This asymmetry is more
clearly evident in the intex correlation hole (vide infra) and in the data provided in Table
2.1. From this data, it is clearly seen that, in addition to other effects, correlation causes a

deviation in the maxima from this line of symmetry.

2.4 Intex Correlation Hole

The intex density is a valuable quantity to describe correlation effects in atomic and molec-
ular systems due to its inherent relative (intracule density) and absolute (extracule density)
position information. Figure 2.3 displays the intex correlation hole for the ground state of

the helium atom, A X (R, u), which is given by

AX(R,u) = X®*YR,u) — X"F(R, u), (2.20)

As previously noted, the intracule can be derived from the intex density by integrating over

the R variable. Similarly, the usual Coulomb hole, A P(u), can be calculated by
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Figure 2.3: a) The intex correlation hole, AX (R, u), for the ground state of the helium atom. Contours
have values of £2 x 10™", £4 x 10™™, and £8 x 10~ where n=2,3,4,5 and m=2,3,4,5,6. Positive contours
are denoted by solid lines whereas negative contours are denoted by dashed lines. b) The Coulomb hole,
AP(u) for the ground state of the helium atom.

/ " AX(R,w)dR = AP(u) 221)
0

From Figure 2.3 we observe two negative regions intersected by a positive region in
the correlation hole. A negative value of AX (R, u) indicates a decrease in probability due
to the effects of electron correlation whereas a positive value of AX (R, u) indicates an
increase in probability. Because each intex density is normalized to the number of electron
pairs, the integral

//AX(R, u)ydRdu =0 (2.22)

vanishes and thus the size of both negative regions is exactly proportional to that of the
positive one. The positive region reaches a maximum value of 0.092 at R = 0.520 and
u = 1.417 and this area extends along the © = 2R line, creating a ridge. The first negative
region, which mainly occurs at small u, reaches a minimum value of 0.109 at R = 0.344
and uv = 0.562 (Min I) . The second negative region is far more shallow than the first and

reaches a minimum value of 0.0008 at R = 0.886 and u = 3.786 (Min II).
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The correlation hole for the helium atom>® (see Figure 2.3) has roots at v = 1.1 and
u = 3.6 and the conclusion is that the effects of correlation make it less favorable for
electrons to be closer than 1.1 atomic units or farther apart than 3.6 atomic units. While
the former is more intuitive than the latter, the results are clear and the intex density offers
additional insight into this phenomenon. However, from the intex correlation hole, it would
appear as though the relative separation of an electron pair does not universally indicate
whether correlation will act to separate or contract the pair. The absolute position (/2) of
the electron pair is an important quantity, as is evidenced by the rich topology of the intex
correlation hole in both the « and R dimensions. Evidently, correlation can increase the
probability of finding electrons separated by large distances (u > 3.6) so long as their centre
of mass is close to %u Additionally, when © < R, which implies that the electron pair is
on the same side of the nucleus, the intex correlation hole is always negative. This feature
indicates that in such cases correlation will always act to either separate the electrons or
move their centre of mass closer to the origin (or both).

The intex correlation holes were also determined for the helium isoelectronic series
up to Ne®" and as expected, the features of AX (R, u) contract toward the origin as the
atomic number and nuclear charge increase. As with the case of the Coulomb holes of this
series,>® the intex correlation holes are all qualitatively similar and each system bears the
same topological features. Table 2.2 summarizes the extrema of the correlation holes and

lists the strengths of the secondary Coulomb holes defined by

S = / oolAP(u)[du (2.23)

where @, is the second root of AP(u). S is well defined for all of the systems under
investigation in the current work because all exhibit a second root %, and it appears as
though such secondary Coulomb holes may be ubiquitous in two-electron systems.3>%%77
S has been reported previously for Z-scaled intracules>® for He, Lit, Be?t, B3*, and Ne®*

and all are in exact agreement with those in Table 2.2 upon introduction of the scaling
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Table 2.2: Coordinates (R, u) of the extrema in intex correlation holes and secondary hole

strength for the helium isoelectronic series.

Ion Z MinI (R, u) Max (R, u) MinII (R, u) S

He 2 (0.344, 0.562) (0.520,1.417) (0.886, 3.786) 6.30x 1074
Lit 3 (0.227, 0.286) (0.316, 0.873) (0.570, 2.399) 3.54x10™
Be?™ 4 (0.170, 0.207) (0.227, 0.632) (0.421, 1.759) 2.33x1074
B3+ 5 (0.136, 0.162) (0.177, 0.495) (0.333, 1.389) 1.71 x 1074
Ctt 6 (0.113, 0.134) (0.146, 0.407) (0.276, 1.149) 1.34x 1074
N+ 7 (0.097, 0.114) (0.123, 0.346) (0.235,0.979) 1.09x 1074
0%+ 8 (0.085, 0.099) (0.107, 0.300) (0.205, 0.852) 9.20x 107°
Ft 9 (0.076, 0.087) (0.095, 0.265) (0.182, 0.756) 7.94x107°
Ne®t 10 (0.068, 0.078) (0.085, 0.238) (0.163, 0.677) 6.97x 107°

factor, Z. The additional data for C**, N°t, O%* and F'* confirms the trend that the

proportion of the secondary Coulomb hole diminishes with increasing Z.

2.5 Z-Scaling

It was mentioned earlier that the intex density for each of the ions in the helium isoelec-
tronic series is qualitatively similar. However, it would be interesting to have a quantitative
assessment of the similarities between each of the densities. In various reports, Coulson,
Curl and Boyd detailed the scaling of intracule densities by a factor, Z — §, where Z is the
atomic number of the ion and ¢ is a screening constant.”®8 This approach was also em-
ployed by Pearson et al. in their paper detailing the secondary Coulomb hole. We employ
an analogous approach here for the intex density. These screening factors are introduced
to demonstrate that the distribution of electrons in different systems can be correlated with
respect to the effective nuclear charge that is approximated by Z — 4. In the past, these
factors have also been useful in comparing the effects of screening between the ground and
78-80

excited states of atoms.

These new functions, X'(R’, ') are obtained by first scaling the R and u coordinates
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by Z —d to give R’ = (Z — §)R and v/ = (Z — d)u. Using these scaled coordinates in the
intex distribution, X (R’,u'), and dividing by the square of the scaling constant yields the

Z-scaled intex density, X'(R’, ') as follows:

X(R', )

X(R ) = 55

(2.24)

In order to determine the optimal value for the screening constant, §, we minimized the

following expression with respect to &

Ion

A% () = / / [XHF(R o) — XHF (R v')] dRdu (2.25)

through brute force analysis using numerical integration methods. As we were looking
for a single screening constant for each tested system of the helium isoelectronic series,
the ion that was used in this minimization scheme was Ne®* as it represented the great-
est difference from the intex density of the reference Helium atom. Through this process,
the optimal value was determined to be § = 0.339. Using this value, we also determined
AX' (0.339) for the remaining ions in the isoelectronic series as a quantitative assessment
of the differences between the scaled densities. These values as well as other measures

including the coordinates of the extrema and scaled hole strengths are tabulated in Table
2.3. In the determination of the optimal value of §, we also looked at the use of differ-
ent values of screening constants for the R, dg, and u ,d,, coordinates, but it was de-
termined that the best correlation between the He and Ne8' intex densities was obtained
when ép = 6, = 0.339. Figure 2.4 displays the scaled intex correlation holes for each of
the systems studied here. One can note that the correlation holes are very similar and each
show the same type of trend in terms of configurations where correlated or HF treatments
are favoured. The values of S that are given in the table indicate that even when multiplied

by the scaling constant, Z — 4, the size of the hole decreases suggesting that the effect is

more complex than simply being related to the distance of the electrons from the nucleus.
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Figure 2.4: The Z-scaled intex densities, AX (R’,u’)/(Z—§)?, for the ground states of the He 1soelectronic
series (Z = 2to 10) Contours have values of £2 x 10™", £2x 10™", and +2 x 10~" where n = 2, 3,4, 5,6
and m = 3,4,5,6 As Z 1ncreases the following contours are excluded c) to 1)— +2 x 102 and g) to
1)— 8 x 10~2 Positive contours are denoted by solid hnes whereas negative contours are denoted by
dashed lines

In Chapter 4, we will explore the strength of the secondary Coulomb hole with respect to

other properties of the position intracule, but for now, we note that we can obtain reason-
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Table 2.3: Assessments of the similarities between the Z-scaled intex densities and corre-

lation holes.

Ion AF MinI (R',v') Max (R, u) Min Il (R,v) (Z-46)S

He ---- (0.572,0.768)  (0.865,2.354) (1.471,6.288) 1.01x1073
Lit 00303  (0.605,0.760) (0.840,2.323) (1.518,6.383) 9.41x 10~*
Be?t  0.0433 (0.622,0.758)  (0.831,2.315) (1.540,6.438) 8.54x107*
B3t 0.0505 (0.634,0.757)  (0.827,2.309) (1.553,6.472) 7.96x10~*
c4t 0.0551 (0.642,0.756)  (0.824,2.306) (1.562,6.502) 7.56x107*
N5+ 0.0583 (0.647,0.756)  (0.822,2.303) (1.568,6.521) 7.27x107*
05t 0.0606 (0.651,0.756)  (0.821,2.301) (1.571,6.525) 7.05x10~*
F+ 0.0624 (0.655,0.756)  (0.819,2.297)  (1.575,6.543) 6.88x 1074
Ne®*+  0.0638 (0.657,0.756)  (0.819,2.300) (1.577,6.543) 6.73x 104

ably overlapped functions by scaling the position intracules of each of the ions by a factor

involving the atomic number and a screening constant.

2.6 Concluding Remarks

In this chapter, we have introduced the development of a novel electron pair distribution, the
intex density, which is defined by (2.2). This new density employs both the intracular and
extracular coordinates to more completely describe the probability distributions of electron
pairs in position space. Using even-tempered basis sets of 40 s-type Gaussians, we have
calculated the HF intex distribution of the ground state helium-like ions from He to Ne3*.
In all of these cases we note that the intex distribution is symmetrical about the line u = 2R,
implying the previously described®-"! relation 2P(2R) = E(R).

A correlated treatment of the intex density was performed using Kinoshita type wave
functions. Unlike the HF intex density, the correlated intex density is not symmetric about
the v = 2R line. Using the correlated intex densities, we were able to determine the

intex correlation hole for the ground state of the helium atom and the helium isoelectronic
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series. The intex correlation hole provides a more complete picture of the effects of electron
correlation on the spatial distribution of electron pairs in an atomic system. Specifically,
we observe that the secondary Coulomb hole is not universal; it does not occur at all large
values of u, but instead is dependent on the centre of mass of the electron pair. We conclude
that the probability of observing an electron pair with a very large interelectronic separation
increases with the inclusion of correlation only when their centre of mass radius is close
to half of their separation. It would be reasonable to conjecture that in such cases, one
electron remains close to the nucleus while the second is far away as such configurations
would lead to favourable interactions between the electron and the nucleus. However, to
accurately determine the most probable configurations, one must consider the probability
distribution of the angle between the interelectronic separation and centre-of-mass vectors.
This can be achieved through selective integration over the angular components of the two
vectors and will be explored in detail in the ensuing chapter. Additionally, it has been
shown that part of the effects of correlation in these systems are to decrease the probability

of observing u < R (i.e. both electrons on the same side of the nucleus).
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3 Angular Dependence of the Two-Electron Intex Distri-

bution

This chapter was reproduced in part with permission from Proud, A. J.; Pearson, J.K. Chem.

Phys. Lett. 2012, 520, 118. Copyright 2010, American Institute of Physics.

3.1 Introduction

Two-electron atoms have been the focus of a wide range of theoretical research.!:82 There
is value in understanding the pair-wise interactions of electrons in such simple systems as
this can usually be extrapolated to better understand even the most subtle correlation effects
in arbitrarily large systems.?! Even the correlation energy of the helium atom still garners
attention from the chemical physics community.®*-3¢ Furthermore, the subtle (and coun-
terintuitive) correlation effects that have been observed within the context of the Coulomb
hole 38878 have yet to be satisfactorily explained (i.e. the secondary Coulomb hole).

In the previous chapter, we introduced the intex density to describe the spatial dis-
tribution of electron pairs in terms of the intracular (u) and extracular () coordinates

simultaneously. The intex density is, as previously mentioned, given by
X(R, U) = <\I/(’l"1, T2)|6(R - %'1’1 + ’l"2|) (5(’(1/ — |’f'1 - 7‘2')"1/(7'1,7'2)) (31)

and describes the probability that a pair of electrons will be separated by a distance u and

simultaneously have their centre of mass located at a distance R from a reference point.
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Figure 3.1: Schematic representation of a two-electron atom with electronic coordinate vectors 7y, 2, R,
u, and the angular coordinates §g,,, and ;5. Z indicates the nuclear charge at the origin.

The intex density has proven to be quite useful in providing a clearer picture of the
effects of electron correlation and the spatial distribution of electron pairs owing to the
fact that it contains information regarding the relative separation of electrons and their
absolute position in space. In the present chapter, we aim to expand the development of the
intex density by studying its dependence on the angle, 6, between the coordinate vectors
R and u. Figure 3.1 is an expansion of Figure 2.1 illustrating the angular separation of
the R and u vectors as well as that between the electron position vectors, 7y and 7. In
spherically symmetric systems such as the ground states of two-electron atoms, the set of
scalar coordinates r1, r2, and 6,5 represent a complete description. Analogously, the scalar
intracular coordinate, u, extracular coordinate, R, and angle g, also represent a complete
set. As such, we will focus on the ground states of the helium isoelectronic sequence in
this work for the purposes of simplifying the initial implementation of this new probability
density.

89-107 and

Probability densities of interelectronic angles have been studied extensively
are intimately related to angular correlation, which is the result of electrons increasing their
angle of separation (f,5) in order to avoid one another. This differs from radial correlation,

which is the result of electrons avoiding one another by adopting different radii with re-
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spect to the nucleus. Such probability distributions still garner much attention today from
well-respected theoreticians as evidenced by the recent work by Koga et al. !9 The inter-
electronic angle density describes the probability of finding two electrons with an angle of

61, separating their respective position vectors and are generally of the form

p(ry,r2) dry drs
A = 2
(912) / sin(912) d012 (3 )

where dr; dry/df;2 denotes the integration over all spatial and angular components of r;
and 7 with the exception of #;5. Here, p(r;1,72) is the previously mentioned pair density

function given by

N(N -1
p(ry,ra) = (—2——2/|\I!(r1,...,rN)|2dr3 coodry (3.3)

In an alternative approach to studying angular correlation phenomena, we have calculated
the contributions of the angle 6y, to the intex density and observe what effects correlation
has on the optimal angle between the R and w vectors. This probability distribution may

also be obtained from the two-electron density by

X(R,u,0p,) = //// (r1,m2) {R— —(r +T2)] Slu—(r1—mrs)] dry dr, dfiz;iﬂ
(3.4)

where 0, is an angular component of the vector u with the R vector acting as the principal
axis and again, d€2,dQ2r/dfg, denotes integration over all angular components of the R
and u vectors with the exception of g,. The angular component may then be isolated by

integrating over the radial R and u components as follows

A(fpy) = / / X(R, u,0r,)dRdu. (3.5)

Throughout this chapter we will refer to X (R, u, fg,) as the angular-dependent intex



density and to A(fg,) simply as the angular intex density. The form of our expression
differs slightly from that in equation (3.2) in that we retain the sin(6) factor of the Jacobian
so that we may maintain the normalization of the probability distribution, which in the
case of such two-electron densities is the number of electron pairs, or N(N — 1)/2. This
resembles the approach of Boyd and co-workers for interelectronic angle densities. *>°

A primary and immediate application of these angular densities is to better understand
the spatial distributions of electron pairs and how this gives rise to the anomalous secondary
Coulomb hole. These quantities are also important for the fundamental understanding of
electron-electron interactions in our test systems because for probable configurations of
u and R, there exists two very different extremes whereby 6p, = 7/2 or 0g, = (0, 7)
and these represent cases where the electrons are equidistant from the nucleus and where
the pair of electrons and the nucleus are colinear, respectively. Therefore the influence of
the nuclear potential may be probed using this technique. Also, X (R, u,fg,) allows one
to understand the distribution of fp, for specific values of u and R. For a more general
application to larger atoms and molecules, the vectorized extracular coordinate may be
considered, R, which will allow for the localization of such an analysis.

In the present chapter, we study the features of these probability distributions and con-
sequently learn about the restrictions that correlation imposes upon the spatial distribution
of electron pairs. Along with the intex density, it is shown that this novel density provides a
clearer picture of the effects of electron correlation and more details concerning the nature

of the secondary Coulomb hole. Once again, atomic units are used throughout the chapter.

3.2 Theory

3.2.1 Hartree-Fock Wave Function

The angular and angular-dependent intex densities may be obtained from equations 3.5 and

3.4, respectively. If one uses a HF wave function to generate the two-particle density, the
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angular dependence function may be expressed as an expansion

K
X(R,u,0p) = Y Thin, (wvAo)x,, (3.6)
nvAo
where FES,\U is the usual HF two-particle density matrix described in Chapter 2, while

(uvAo)x, are the angular intex integrals over the set of K atomic orbital basis functions
denoted by y, v, A, and 0. One can note the similarities between the present expression
and that given by (2.9) for the intex distribution where the intex integrals, (uvAo)x, are

replaced by the angular intex integrals, (4~ Ao ) x,. These new integrals are given by

u d(]u,dflfg'

5) R 3.7

(), = [ [(R=3)6.R= 5 65(R+ ) 0u(R+

and for spherically concentric systems utilizing Gaussian basis functions of s-type symme-

try, these integrals may be expressed analytically as

(ssss)XA — 82 R2 42 sin(GRu) e—(R2+u2/4)(a+ﬂ+’y+6)—Ru(a+[3—'y—6) cos(ORry) : (3.8)
where the exponents of the Gaussian primitives are denoted by «, 3, v, and é. From expres-
sions (3.8) and (3.5), it is straightforward to obtain A(fg,) through numerical integration
over R and u and we have employed the numerical integrator implemented in the Mathe-
matica package’® for this purpose.

For the purposes of constructing accurate HF wave functions, we employed the same
set of even-tempered basis sets proposed by Schmidt and Ruedenberg that were used for
the study of the intex distribution in the previous chapter. Thus, the K exponents of the
Gaussian primitives can be determined from expressions (2.13)-(2.15). The atomic orbital
coefficients were once again determined using the Q-CHEM package. '®

We have determined that basis sets consisting of K = 30 Gaussians produce intex

densities that are more than adequately converged for the current work. This determination
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is based on a calculation of the maximum BSIE for the K = 30 Gaussian helium-like ion

- HF _ xHE _ -7
basis set as Joax | X P s0(R, u) Kosg(R,u)| =23 x107".

3.2.2 Kinoshita Wave Function

Kinoshita wave functions have long been considered as high-accuracy benchmarks for cal-

31,73

culations on atomic systems.>!"’3-"> For the construction of our exact wave functions we

have once again chosen a series of Kinoshita expansions given by

Kin _ ,—(s - l,/2 E " E /2
U™ (py, ) = chs () , (3.9)

=1 [ $

The accuracies of these Kinoshita wavefunctions are more than adequate for the purposes
of this study as was mentioned in Chapter 2.

To obtain the angular intex density, a function solely dependent on fg,, s and ¢ was
substituted using the definitions of s (s = r; 4+ 73), and £ ({ = r; — r3), containing r; and

9 after which these variables were replaced by the identities

2 2
r = \/R2 + uz — Rucos(0gy) ro = \/R2 + uz + Rucos(bry) - (3.10)

The angular-dependent intex density may then be obtained by using the resultant wave

function, dependent on R, u, and fg, in equation (3.4).

3.3 Results and Discussion

The HF and Kinoshita angular intex densities for the ground state of the helium atom are
shown in Figure 3.2(a). This figure demonstrates that there is very little dependence on the
angle between the vectors R and u over most of the range from 0 to 7. Due to the inherent
symmetry in the definition of 8g,, A(fg,) is symmetric about 7/2. The density displays

maxima at g, ~ 0.749 and 2.393 under the HF approximation whereas the maxima occur
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at 0p,, =~ 0.574 and 2.568 for the correlated treatment. The local minima for both methods
occur at 6, = /2. Figure 3.2(b) displays the angular intex correlation hole, AA(6r,),
which is given by

AA(Bry) = AN (0r,) — A (OR,) (3.11)

We observe a minimum at 7/2 radians in AA(fg,) indicating, as expected, that HF has
a preference for configurations where the electrons are equidistant from the nucleus in
comparison to exact treatments. This is not to say that systems under the HF approximation
are most probable to have configurations where 0g, = 7/2, as that would contradict what is
shown in Figure 3.2(a). Intead, this angle represents where the HF and correlated treatments
differ the greatest in favour of HF. Similarly, the maxima are much closer to 0 and 7, which
signifies a greater preference in correlated systems for configurations where one electron is
closer to the nucleus than the other.

Due to the spherical symmetry of the systems in the helium isoelectronic series, one
might expect that the most probable configuration would be that of the electrons being
equidistant from the nucleus (i.e. fp, = 7/2). However, with local minima occurring
where the R and u vectors are perpendicular to one another (i.e. electrons equidistant from
the nucleus), the plot of A(6g,) confirms that this is not the case. The angular-dependent

intex density may be used to explore this further (vide infra).
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Figure 3.2: a) A(fr,) for HF and Kinoshita wave functions of the ground state of the helium atom, b)
A A(Og,) for the ground state of the helium atom.
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Table 3.1: Coordinates of the maxima in the angular intex density (§%2*) in radians and the
relative angular dependence of A(fg,) for the helium-like ions, Ay (defined in the text).

HF Exact

Ion Z opax Ay opax Ay

He 2 0.749 0.0494 0.574 0.142
Lit 3 0.828 0.0317 0.686 0.0779
Be?" 4 0.868 0.0272 0.748 0.0544
B3t 5 0.891 0.0215 0.789 0.0426
Cctr 6 0.907 0.0194 0.818 0.0357
N+ 7 0.919 0.0180 0.840 0.0312
o8+ 8 0.928 0.0170 0.856 0.0281
F™* 9 0.934 0.0163 0.869 0.0258
Ne8+ 10 0.940 0.0157 0.880 0.0240

The angular intex densities were determined for the series of helium-like ions from He
to Ne®t and the coordinates of the maxima are indicated in Table 3.1. Also included in the
table is a measure of the relative angular dependence (Ag) of A(fg,) for each of the ions

defined by
A _ Amax(eRu) _ Amin(HRu)
o Ama,x (eRu)

(3.12)

where A™"(0p,,) and A™#*(fp,) correspond to the value of A(fg,) at the local minimum
and maximum, respectively. The value of Ay demonstrates the relative difference in prob-
abilities of the local minima and maxima in densities where a local minimum is observed
and thus provides a measure of how greatly the density of the system is affected by changes
in this angle.

Table 3.1 demonstrates that as the nuclear charge increases, the angle of the global
maxima steadily increases in addition to an apparent decrease in the relative angular de-
pendence, Ay4. With the only difference in these systems being that of the differing nuclear

charges, these trends can be attributed to the electrons being drawn closer to the nucleus in
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Figure 3.3: Intex correlation hole, AX (R, u), for the ground state of the helium atom. Contours have
values of £2 x 107", £4 x 107", and 8 x 10" where n = 2 — 5 and m = 2 — 6. Solid lines denote
positive contours whereas dashed lines denote negative contours.

the systems containing more protons. Consequently, when the electrons are closer to the
nucleus, the positions of the electrons are more limited.

In addition to these trends, which are common to both HF and correlated cases, there
are some significant differences between the two approaches, themselves. From the tabu-
lated data, it can be noted that %2 is lower in correlated systems suggesting a preference
for angles closer to O (or 7), as discussed previously. Furthermore, the relative angular
dependence is significantly greater in correlated systems, especially for the ions with lower
nuclear charges. Therefore the data demonstrates that correlated treatments favour con-
figurations where one electron is closer to the nucleus in comparison to HF theory. This
idea is neither surprising nor new as correlation causes the position of one electron to be
dependent on the positions of the remaining electrons in the system while the motions
of opposite-spin electrons under the HF model are statistically independent; however, the

angular intex density gives us a brand new way of looking at this effect.
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To investigate the properties of the intex correlation hole®” we can take slices of the
angular-dependent intex distribution, X (R, u,fr,), at fixed values of R and u. This will
afford an analysis of the probability distribution of g, for specific configurations of the
electron pair relevant to the Coulomb and secondary Coulomb holes. To try and yield
more information regarding these holes, we have chosen to examine the extrema of the
intex correlation hole (AX (R, u) = XX"(R, u) — X®F(R,u)) and these are shown in Fig-
ure 3.3. There are two minima occurri;xg at (Ry, 1) = (0.344,0.562) and (Ry, i) =
(0.886,3.786) and a maximum at (R,7) = (0.520,1.417). Appropriate slices of the
angular-dependent intex density are then studied using these coordinates.

The HF and Kinoshita angular-dependent intex densities at the coordinates of the ex-
trema of the intex correlation hole are displayed in Figures 3.4(a)-(c) while their respec-
tive angular-dependent intex correlation holes, AX (R, u, g, ), are represented in Figures
3.4(d)-(f). As expected, the probability for HF systems is greater in (2) and (c) which rep-
resent the two minima in the intex correlation hole. Conversely, the correlated density is
greater in the system described in (b), which is taken from the coordinates of the maximum
in the intex correlation hole. From the plots of AX (R, u,fg,), we see that a minimum oc-
curs at fg, = 7/2 in all cases. This again confirms that this configuration is more greatly
favoured in relation to other angles for HF systems regardless of the value of R and u.

The main point of interest here is the trend that is observed when we progress from (a)
to (c). As we progress from the coordinates of (a) to the coordinates of (c), the values of R
and u both increase. From Figure 3.4, we see that in (a), the density reaches a maximum at
/2 for both HF and correlated systems, whereas in (b) and (c), 7/2 represents a minimum
and the level of dependence on g, is increasing. This reveals the explanation behind the
overall form of the angular intex density in Figure 3.2. In the case where both R and u
are very large values, two extremes would be possible: the first case being that where both
electrons are far from the nucleus (and each other) with #g, = 7/2 and the second case

being the configuration where one electron is near the nucleus while the other is very far

71



a)

X(Ry,i1,0R4)

ozl T
// \‘\
I' \\
025f Vs \‘
lll \\
oo} \
II ‘\
/ X
4 .
01s J/ — Kinoshita Y
010 - HF
005
" e ak
o T T 37 m 5x 3z Iz x “
8 4 8 2 8 4 8
b) R
X(R,4,0Rr.)
030}
025 /,/ ____________________________ ~ \
l, \\
o2 [/ \
Il ‘I
i h\
oist ff . X \
i — Kinoshita Y
3 1
010 - HF
005
6,
o & & 3 & 5x 3z Ix i
8 4 8 2 8 4 8 T
<)
X(RZa ’il27 0Ru)
00030}
00025}
00020
00015 .
— Kinoshita
00010 ---- HF
00005
s 6,
o z x 3z m S5z 3z Iz r e
8 4 8 2 8 4 8

d .
AX (R, U1, 0r4)

002+

-0 04}

AX(R,4,05,)

004
0031
002r

001

NIy

g

=I$

ool;'

[e )

f)
AX(Ry, i, 0r,)

00001

wlg

ag

-0 00011

-0 0003

-0 0005

-0 0007

O

Figure 3.4: HF and Kinoshita angular-dependent intex densities, X (R, u, g, ), and the corresponding
correlation holes AX (R, u,fg,,) at values of R and u corresponding to the extrema of the intex correlation
hole for the ground state of the helium atom shown in Fig. 3.3. The coordinates (R, u) are as follows:
a) and d) - (Ry, %) = (0.344,0.562); b) and e) — (R, d) = (0.520,1.417); ¢) and f) — (Rg,@ig) =

(0.886,3.786)

away corresponding to 8z, ~ 0 or 7. In the first case, we effectively have three separate

one-particle systems, where neither electron has significant interaction with the nucleus

nor each other, whereas in the second case, one electron is interacting favourably with

the nucleus while the other is far enough away to be considered an isolated system. It is

obvious that the latter is the more favourable configuration and thus it is expected that as
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we increase both R and u, the level of angular dependence will increase and the optimal
angle will approach 0 and 7 with the angular intex density consisting of two sharp peaks in
these regions.

The relevant question then becomes, how large must R and u become before we observe
such an inflection in the curvature of the angular-dependent intex density with respect to
Or. (i.e. alocal minimum at 6, = 7/2)? From Figure 3.4, we know that a maximum
in X(R,u,0g,) at O, = m/2 does occur for small values of R and u, so by gradually
increasing each of these variables until an inflection is observed we are able to isolate
the critical values of R and u for which the inflection takes place. These analyses were
conducted for both the HF and Kinoshita densities and the results are shown in Figure
3.5. The dashed line in this figure divides the regions where the angular-dependent intex
density at fixed R and u is a minimum or a maximum with respect to g, at 7/2. The
region below this line (low R and/or u) are the sets of coordinates where a maximum
occurs at 7/2, whereas the majority of the density which lies above the line represents
the coordinates where a minimum is observed. Figure 3.5(a) demonstrates that the critical

coordinate line for the HF system is symmetric about the u = 2R line, as expected from
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Figure 3.5: Critical coordinate lines for the inflection of the angular-dependent intex density at 7/2 for the
ground state of the helium atom with a) HF, and b) Kinoshita wave functions.
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Figure 3.6: Critical coordinate line comparison for HF and correlated treatments for the ground state of the
helium atom.

the known symmetry of the intex density for two-electron systems consisting solely of s-
type orbitals of even parity.?” The differences in this critical coordinate line for the HF
and Kinoshita densities are fairly minimal but the region corresponding to configurations
where the angular-dependent intex density reaches a maximum at 6, = 7/2 is larger
in HF systems. This is more evident in Figure 3.6 which displays the critical coordinate
lines for both treatments overlaid. Approximate numerical integrations were performed
to determine the percentage of the intex density that lies below this critical coordinate
line. It was determined that for HF densities, configurations where § = 7 /2 represents a
maximum in probability are roughly 31% of the density whereas this percentage decreases
to approximately 23% for Kinoshita densities. This figure highlights some key differences
about correlated systems. The critical line for the correlated system is extended towards
both the R and u axes. Furthermore, the correlated critical line deviates from the HF line
to a greater extent with respect to the u values than for the R values. This result is intuitive
as one would expect correlation to have a greater effect on the interelectronic separation

variable, u, than on the centre-of-mass variable, R.
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With regards to the secondary Coulomb hole, it was noted in the previous chapter that
the effects of correlation on the intex density are to increase the probability that electron
pairs will be found with R = u/2 while systems treated with the HF method have greater
probabilities for configurations with combined small » and large R values or large » and
small R values. But these observations are limited by the fact that they were obtained by
integration over the angular components of the R and u vectors. As we stated previously,
R, u, and Op, represent a complete set of coordinates for spherically symmetric systems;
therefore, integrating over this angle leads to a loss of information. For this reason, we have
explored the angular-dependent intex density, X (R, u,f0g,), by taking\slices at different
values of 4 Rulmuch like we did previously for specific R and u values.

In the previous case, when we observed slices of X (R, u,fg,) at predefined R and u
values, we chose to study the extrema of the intex correlation hole as there are countless
possibilities of R and u coordinates that could have been chosen, but those were the main
areas of interest. Here we have chosen to study X (R, u, fg,) using slices at every interval
of 10° from 10° to 90°. As previously mentioned, the angular density is symmetric about
R, = 7/2 by definition, and thus this range adequately represents all possible orientations
of the R and u vectors. Contour plots of each of these slices are provided in Figure 3.7.

The information provided by these slices of the angular-dependent intex density are
highly informative. Previously, we noted that correlation favours orientations where the
centre of mass radius, R, is roughly twice the value of the interelectronic separation, u.
This information was provided by the intex density which was previously unknown due
to the limited information of the intracule density. However, from the data in this figure,
we can see that this idea is also limited by the omission of the angular component in the
intex density. These contour plots demonstrate that correlation only favours configurations
where R is twice u at angles less than 30°. In fact, there are very few configurations that
are favoured in correlated treatments when g, is greater than 30° which is consistent with

electrons trying to avoid one another in correlated treatments. However, in every contour
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Figure 3.7: Slices of the angular-dependent ntex correlation hole, AX (R, u,0g,), at specific values of
Or.,) for the ground state of the helium atom. Contours have values of +2 x 107", +4 x 107", and +8 x

107™ where n = 2~ 5and m = 2 — 6 Solid lines denote positive contours whereas dashed Iines denote
negative contours Shces were chosen 1n 10° intervals starting at 10° 1n a) up to 90° 1n 1)
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plot, a positive region at moderate u (roughly 0.8 < u < 3.2) and small R values, indicate
a preference for such configurations in correlated treatments. With these relative values of
R and u, the electrons would likely be situated on opposite sides of the nucleus regardless
of the value of 0g,, which is consistent with what would be expected in a correlated model
due to angular correlation.

The information generated by these slices of the angular-dependent intex density are
useful, but can we use it to gain more insight into the secondary Coulomb hole? In the com-
parison of correlated and HF treatments, the data indicate that under the HF approximation,
there is a greater probability of having configurations with large values of v and small val-
ues of R regardless of the value of 0g,. However, at the larger angles (i.e. 0r, > 35°),
systems treated with HF theory demonstrate greater probabilities of having distant electrons
at all values of R. Therefore, these configurations appear to contribute more substantially
to the occurrence of the secondary Coulomb hole. Nonetheless, all configurations do con-
tribute to some extent to this effect as evidenced by the negative contours at large u in every

contour plot presented in Figure 3.7.

3.4 Conclusion

We have introduced the angular-dependent intex density X (R, u, fg,, ), isolated the angular
component of this distribution, A(fg,), and used it to explore correlation effects in two-
electron atoms. We have determined that exact treatments of these quantities favour angles
closer to 0 or m between the R and u vectors while a HF treatment favours orientations
where the angle is closer to 7/2. Using the angular-dependent intex density to explore areas
of interest in the intex correlation hole, it was noted that as R and u increase, the favoured
angles for both HF and exact densities approach 0 and #. This reflects the fact that as R
and u grow, the electrons and the nucleus can behave like three independent particles and
thus 6, will approach 0 or 7 to allow for one of the electrons to approach the nucleus and

create a lower-energy configuration. In terms of the secondary Coulomb hole (which exists

71



at large ), given that correlation favours orientations where R ~ u/2 (see Figure 3.3)%” we
may conclude that it is also likely that the intex angle (0, ) approaches 0 and 7 for these
configurations and thus one electron remains relatively close to the nucleus while the other
is far. We have demonstrated that the most probable angles can depend significantly on the
values of R and u. Both the HF and near-exact Kinoshita densities predict that electrons
will generally be equidistant from the nucleus at small R and/or u values. The angular intex
density has proven to provide a more complete picture of electron-electron interactions and

the effects of electron correlation.

78



4 Correlation Effects on Interelectronic Separations

4.1 Introduction

As mentioned previously, the simplest way to explore electron correlation effects is through
the study of two-electron systems. Such systems have been studied extensively in the past

19.36,58,6281,109-111 Coylson and Neilson’s work

and continue to be an area of focus today.
clearly demonstrated that correlation pushes electrons further apart and this was consid-
ered to be an accurate description until the discovery of the secondary Coulomb hole. Prior

to the paper by Pearson et al.*®

detailing this phenomenon, there were a few reports noting
the presence of a secondary negative region in A P(u), but they were considered to be arte-
facts resulting from inaccurate wavefunétions.48’59’6° However, the paper detailing this hole
clearly indicated that the secondary negative region did not appear until the HF intracules
reached a certain level of accuracy.

In Chapter 2, we described the intex density, X (R, u), which again, details the elec-
tronic distribution with respect to the centre of mass radius, R, and the interelectronic
distance, ».%” Using this density to analyze the correlation hole, it was noted that correla-
tion does not universally contract distant electron pairs. This contraction with respect to
HF treatments was found to be dependent on the R variable (Figure 2.3a). In the previ-
ous chapter, we sought to expand our understanding of the secondary hole by studying the
dependence of the intex distribution on the angle between the R and u vectors.

Although Chapters 2 and 3 did shed more light on correlation effects and the nature

of the secondary Coulomb hole, they did not elucidate the origin of this counter-intuitive
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effect. Other studies on systems such as the Hy molecule’>!12

and spherium (a system
where the movements of two electrons are confined to the surface of a hollow sphere)’!!
have noted that when you increase the probability that the electrons will be far apart (i.e.
lengthening the bond in H; or increasing the radius, R, in spherium), one eventually reaches
a point where there is a complete reversal in the trend of the Coulomb hole. Thus, the
primary and secondary negative regions decrease and increase in size, respectively, until the
primary region vanishes entirely. At this point, HF treatments cause electrons to separate
at all values of u.

In this chapter, we will discuss our studies regarding the correlation hole, AP(u), in
systems containing traditional Coulombic potentials (real systems) and others containing
alternative external potentials (fictional systems) to determine what effect, if any, the form
of the potential has on the strength and/or existence of the secondary Coulomb hole. For
the purposes of the study, HF energy and intracule calculations for the real systems were

carried out using the Q-CHEM package '® while Mathematica’® was used to develop code

for the fictional systems and for the exact real systems. Atomic units are used throughout.

4.2 Results

4.2.1 Real Systems

The study of correlation holes for the helium isoelectronic series has been well documented

in the literature‘”’58’74’75'80’87’1 13-116

as well as in the previous two chapters. With only two
electrons in the system, the ground state electron configuration is given by 1s? and thus,
only s-type orbitals are required to accurately describe these systems. For the construction
of the HF wave function, we employ the same set of even-tempered basis sets developed by
Schmidt and Ruedenberg that were used in Chapters 2 and 3. Here, we have employed the

same basis set consisting of 60 s-type Gaussians as that which was employed by Pearson

and coworkers in their seminal paper on the secondary Coulomb hole.>® The accuracy of
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Figure 4.1: a) Exact and HF intracules and b) Coulomb hole, for the ground state of the Helium atom.

the intracules obtained from these basis sets is more than adequate for the requirements
of this study. It should be noted that a basis set containing 30 or 40 Gaussian functions
would be sufficient for these purposes; however, as intracule calculations can be performed
rapidly relative to intex and angular intex calculations, a larger basis set was used to obtain
a wave function closer to the HF limit.

Figure 4.1 displays both the Coulomb hole and the secondary Coulomb hole of the
ground state of the helium atom. The Coulomb hole was also calculated for each of the
ions of the helium isoelectronic series from Z = 3 to 10. Table 4.1 lists the strength of
the secondary hole for each of these ions as well as three measures used to indicate how
diffuse the electrons are within these systems (u;,qz,(¢), and (u2)) in addition to the two-
electron energy of the system ((u!)). The first measure, tqs, is the value of u where
the intracule density reaches a maximum. The last three measures are the moments of the

position intracule which are given by
(u™) = / u"P(u) du 4.1
0

The three moments listed in the table each have a clear physical interpretation: (u) is

defined as the average or mean value of u, (u2) can be related to the standard deviation, o,
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of the probability distribution by
o= (u?) — (u)? 4.2)

while (u™!) is exactly equal to the sum of the Coulomb and exchange components of the
HF energy. The values for all of these measures were obtained from the HF intracule. From
the data listed in the table, it can be noted that as the atomic number increases, the first and
second moments decrease indicating contracting electron density while the first negative
moment increases which is indicative of stronger electronic repulsions as the electrons
are drawn inward. Additionally, the size of the secondary hole decreases concomitantly.
These measures provide a more quantitative measure of how the strength of the secondary
Coulomb hole is related to the diffuseness of the electrons within the system.

We have attempted to develop a relationship between the size of the secondary Coulomb
hole and these tabulated properties of the HF intracule. By developing such an empirical
relationship, we can gain insight into what factors lead to the existence of the hole which

allows for a more concrete understanding of the deficiencies of the HF model. Displayed

Table 4.1: Extrema/moments of the HF intracule and secondary Coulomb hole strengths
for the He isoelectronic series.

Ton Z Umae (u) (u?) (u™h) Strength (S)
He 2 1.097 1.362 2.370 1.026 6.11x10*
Lit 3 0.664 0.838 0.891 1.652 3.54x107*
Be2*+ 4 0.475 0.606 0.464 2271 2.33x10™
B3t 5 0.370 0.474 0.284 2.902 1.71x 10™*
Cctr 6 0.303 0.390 0.191 3.527 1.34x 10~
N5+ 7 0.256 0.331 0.138 4.153 1.09x 107*
o8+ 8 0.222 0.287 0.104 4.778 9.20x 107°
F'+ 9 0.196 0.245 0.0811 5.403 7.94x107°
Neb+ 10 0.176 0.228 0.0651 6.028 6.97x107°
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Figure 4.2: Linear (a and b) and power (c and d) function relationships between the strength of the sec-
ondary Coulomb hole and a) Uq., b) the first moment, (u), c) the second moment, (u2), and d) the first
negative moment, (u~!).

in Figure 4.2 are four of the relationships that were developed between the strength of the
hole and each of the four quantitative measures listed in Table 4.1. There was no theoretical
reasoning for choosing the type of trend line to employ for each of these relationships; they

were simply chosen on a case by case basis to provide the best possible agreement with the
results obtained from the calculations. However, polynomial fits were avoided whenever
possible as one can easily fit any curve to a high order polynomial function. In addition to
the relationships presented here, others were developed as well and these can be found in

Appendix A.

This figure clearly demonstrates a strong correlation between the secondary Coulomb
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hole and the properties studied here. Each of the R? values indicate very little deviance
from the fit line suggesting that these models would be useful in predicting the size of
secondary Coulomb holes. For the two linear plots, if one looks closely at the data points
nearest the origin, it can be noted that there is a slight curvature of the data suggesting that
the relationship is not exactly linear. Nonetheless, for the systems studied here, a linear
relationship proves to be an accurate predictive model. However, one must keep in mind
that each of these systems are single atoms containing two electrons. To determine the true
value of these relationships as predictive models, one would have to include data involving

atomic and molecular systems containing varying numbers of electrons.

4.2.2 Hookium

Hookium, Hk, is a well-documented*®10%117-125 fictional system that is very similar to the
He atom. It contains two electrons which are attracted to the centre of the system by
an external potential (i.e. the nucleus). However, whereas in He, the two electrons are
attracted to the protons contained within the nucleus, in Hk, the two electrons are bound to
the “nucleus” by a harmonic potential. Thus one can think of the two electrons as being
bound to springs, with force constants k, that emanate from the centred origin. From
Hooke’s Law,! we know that

F = —kEAF (4.3)

where the negative sign simply indicates that the direction of the force, F,is opposite that
of the displacement, A7. The potential energy, V/, stored in the spring is then given by the

integral of the force expression over the distance which gives us
1, 2
V= ikr 4.4)

In terms of the quantum mechanical representation of Hk and He, the potential energy

operator is the only difference between the two systems. The Coulombic potential of He is
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replaced by the harmonic potential of hookium. Therefore, the Hamiltonian for Hk is given

by
~ 1 1 1 1 1
H=-2V?~--V2+ “kr?+ —kra + — 4.5
2V1 2V2+2T1+2T2+T12 4.5)
where the Coulombic potential of He, V' = — (27"1_ Ly ory 1) , is replaced by the harmonic

potential expression given by (4.4).

It has been noted that when k = 1/4, the Schrodinger equation for hookium is exactly
solvable with an energy of exactly 2 Ej,.!'7 The exact wave function obtained from this
solution is

‘I’(’l"l, 7‘2) =

1 T19 r? 412
1+ 22 exp (- 46
2\/87r5/2+57r3( i exp( 1 (4.6)
From this wave function, a simple closed-form expression of the position intracule,

P(u), can be derived which is given by

2

1 2 u\ 2 U
P =55 (1+3) oo (‘ 1 ) @7

There have been a number of methods reported in the literature of different types of

basis functions used to construct the HF wave function.*®11%122 The most accurate HF

energy to date was reported by Ragot!'!® who proposed the use of a HF orbital expansion
of the form
k(3 81
HHE (1) =, ; &(~1)' 5 exp(-ar?) (4.8)

where ¢, is the scaling orbital coefficient for each term of the expansion and 7, is the

normalization constant given by

n

1 o e @ 1
n%—ZZczc]( 1) e 95 \axd) 4.9)

=0 y=0

In the previous two expressions, « and [ are the Gaussian exponents. In this case, both o

and 3 were chosen to be i. Using this expansion with n = 11, the author noted a HF energy

85



of 2.0384388718 E; with a convergence on the order of 1071°. The problem remains
to calculate a HF intracule from this expansion which is not trivial; however, the author
also suggested a closed form approximation to the previous expansion. This proposed HF

orbital was given by

Y7 =, exp(—ar?)\/r2 + B2 (4.10)
where o and 3 are both parameters to be optimized and the normalization constant g is

2(2/m)¥ 40/

T Aap?

By optimizing the energy with respect to the two parameters, this HF orbital led to an

@.11)

energy of 2.0384394491 FE,; where the parameters were optimized at o = 0.251117376
and B = 2.711087898.1!° This energy value is only 5.8 x 10~7 E), greater than the HF
limiting energy given by the aforementioned orbital expansion.

With no definitive way of determining the accuracy of the intracule obtained from the
latter method employed by Ragot, we also explored the approach used by O’Neill and Gill
in their study of Hookium.* This group considered two different types of basis functions
to develop accurate HF wave functions. The first method involved the use of harmonic-

oscillator eigenfunctions which are comprised of Hermite polynomials. 126

bu(r) = Hgk_l(r/ﬂ) exp(—r?/4)
¢ %, /(2 — 1)ir/v2 (2m)%*

4.12)

Here, Hy(x) is the k** Hermite polynomial given by

k

k! | d
Hi(z) = 37 fexp(—t2 +2tz)t 1 dt = (—1)* exp(xz)d—xk exp(—z%) (4.13)

where § is a contour integral, 4 is the imaginary unit (; = v/—1), and k! denotes the factorial
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of k. Using this set of basis functions, the HF orbital is given by the expansion

N

P(r) =Y i di(r) (4.14)

k=1

With a basis set comprised of N = 7 basis functions, the authors determined that the energy
of hookium was E = 2.03843887 E), with the determined convergence of the energy to
be on the order of 1078. However, due to the relatively complicated nature of the basis
functions, they instead employed an expansion of Gaussian basis functions to obtain a
good approximation for the wave function. The exponents of the Gaussian functions that
were used appear to be based on a randomly selected geometric series with a few exponents
in the middle of the set optimized to obtain a more accurate energy. The exponents used
were the set, {0.0375, 0.0750, 0.23185, 0.30241, 0.37297, 0.6000, 1.2000, 2.4000}, which
produced an energy of 2.0384390 E,.*

Here we employ a similar strategy as the latter approach by O’Neill et al.*® Using a
method analogous to that developed by Schmidt and Ruedenberg® for the development of
even-tempered basis sets, we generated lists of K exponents for s-type Gaussian primitives
and determined which exponents produced the lowest energy for a given set of K basis
functions. The formula used to generate the exponents is that which is given by (2.13). The
Gaussian exponents, (, were obtained simply by optimizing o and 3 through brute-force
analysis for each different expansion size, K. We initially attempted to determine values
for the parameters for a, a’, b, and b’ as done by Schmidt and Ruedenberg (equations (2.14)
and (2.15)); however, this method did not yield good results, and it was abandoned in favour
of optimizing the values of o and /3 for each individual case. Using an expansion of only 7
Gaussians, an energy of £ = 2.03843887175 E}, was obtained with a convergence on the
order of 10719, This energy is of the same accuracy as the most accurate report to date by
Ragot ! but uses a simpler and more conventional basis set. Using the obtained Gaussian

exponents, the HF position intracule was then calculated as per normal methods. Expan-
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Table 4.2: Optimized parameters for s-type Gaussians of Hookium for basis set size, K.

K a B E (Ep)

3 0.19436 1.24033 2.038 438 879

4 0.16115 1.20012 2.038 438 875

5 0.15281 1.24221 2.038 438 874

6 0.14990 1.26600 2.038 438 871 76
7 0.15554 1.24550 2.038438 87175

sions of K = 3,4, 5,6 Gaussians were also used to determine the level of convergence of
the energy as well as the accuracy of the position intracule. The maximum error associated

with the intracule, F.,, was assessed by the following expression
Par = [P ) = YT (@] @.15)
0

where PZ¥ (u) is the position intracule obtained from the HF wave function using a basis
set consisting of K Gaussian functions and |z| denotes the absolute value of the enclosed
functions. It was determined that P.,, = 1.65 x 10~% which was deemed sulfficient for the
purposes of the study. Table 4.2 describes the values of the optimal « and 3 parameters for
each basis set expansion as well as the associated energy.

Figure 4.3 displays the intracules for the exact and HF wave functions in a) while the
correlation hole and an inset of the secondary Coulomb hole are shown in b). Relative to
the secondary Coulomb holes for the He isoelectronic series, the strength of the hole in Hk
is only on the order of 1078, The reasons for this significantly weaker secondary hole will

be explored in the discussion section of this chapter.

4.2.3 Ballium

The particle-in-a-box (PIB) model is well known to both theoreticians and non-theoreticians

in the fields of chemistry and physics. ! It effectively restricts the movement of a particle
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Figure 4.3: a) Exact and HF intracules and b) Coulomb hole, for the ground state of the Hookium atom.

to within the confines of a specific area by imposing an infinite external potential at the

walls of this region (box). For a one-dimensional box of length ¢, the external potential,

V (z), can be expressed by
0 O<z <t
(4.16)

V(z) =
otherwise

where z is the position coordinate of the electron along the length of the box. From this

expression, it is clear that there is a zero or constant potential exerted on the particle within

the box, unlike the cases with Coulombic potentials in real systems or the harmonic po-

tential in the case of Hookium. Therefore, the electron or electrons move freely within the

boxed area.

For the simple case of a single particle in a box, there is a very well known solu-
tion. !> However, in recent years, there has been a focus on systems of interacting particles

(i.e. two electrons) in boxes of varying shapes and numbers of dimensions. Such sys-

and spherical

tems are far more complicated as they involve the interelectronic interaction term which
makes the Schrodinger equation inseparable. The two-particle systems studied to date in-
128,129

clude cylindrical boxes,!?” 2-D rectangular (or 3-D cuboidal) boxes,
boxes 10130-135 t5 name a few. For the purposes of this study, we have focussed on the
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spherical boxes which are commonly referred to as D-ballium, where D represents the
dimensionality of the system. For the sake of comparison with the He and Hk cases, 3-
ballium was analyzed in this study.

The Hamiltonian operator for the 3-ballium system!!? is defined as
H=—--Vi--V;+V(r)+V(r)+— 4.17)
2 2 712

where the one-electron potential energy operators, V' (r;), much like those defined for the

PIB model are given by

0 O<r, <R
Viry) = 4.18)

00 otherwise
When dealing with ballium, it is convenient to define the wave function in terms of
a scaled coordinate vector t = r/R in order to effectively scale all radii to unity.''® For
the HF wave function, the chosen basis functions must obey the condition that ¥(ry, R) =
U(R,ry) = 0 where R is the radius of the ball, and the wave function should vanish for any
electronic scalar coordinates greater than R. The two most accurate results to date for this
system have been published by Thompson and Alavi!**> who used a basis set consisting of

spherical Bessel functions and Loos and Gill '

who employed an even-degree polynomial
basis. Here, we employed the basis designed by Loos and Gill as it has demonstrated
higher accuracy with greater numbers of basis functions. As we were uncertain what level
of accuracy would be required for studies of the secondary Coulomb hole, we opted for the
most accurate description that has been published to date.

The basis functions of Loos and Gill are given by '

K-1

$(t) = (1- 1)) cxt™ (4.19)

k=0
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where K is the number of basis functions in the expansion and ¢ is the aforementioned
scaled electronic coordinate. One can note the presence of the (1 — ¢2) factor in the ex-
pression which forces the function to be equal to zero when ¢ = 1 (i.e. » = R). In order
to account for the piecewise definition of the one-electron potential energy operator, these
same restraints were placed on the wave function using the Mathematica package.”® With
a constant (zero) potential acting on the electrons within the sphere, it can be shown that

the energy of the system is given as

U Y
Eprp = ﬁ(ﬂ + EU) (4.20)

where (T) and (J) are the expectation values of the kinetic energy and Coulomb operators,

respectively, and 7 is the normalization constant given by

1 A& G+ -1+ 3]
7? 8; ;Czcﬂ [2(i 45 +2) + 3] @20

In the previous equation, the values of 3 represent the number of dimensions of the ball and

[x]!! denotes the double factorial ' of x which is a piecewise function defined as

z-(r—2)-(r—4)...5-3-1 ifz > 0and odd ,
oM=< r-(z-2)-(x—4)...6-4-2 if z > 0 and even , (4.22)
1 ifr=-1lorz=0

The scaling coefficients, c,, for the basis functions were determined variationally through
built-in minimization algorithms in the Mathematica’ package by minimizing (4.20) with
respect to the coefficients.

Unlike hookium, there is no exact solution to the Schrodinger equation for 3-Ballium.

However, Loos and Gill devised a wave function much like those developed by Hylleraas
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in the late 1920s.3%"> The wave function, which is explicitly correlated, is of the form!!°

w 1

U(ri,ra,u) =D Y > (1 + Pra)uyi(ry, ra, u) (4.23)
1=0 j=0 k=0
where Py, is the previously described permutation operator which ensures antisymmetry of

the wave function. The basis functions in this expression, 1,,, are defined by

VYo = (1 — 22)(1 — y?)zy¥ 2 (4.24)
where z, y, and z are scaled coordinates representing respectively, rq, 79, and u, as

Z =

(4.25)

. _ u
=R vy= R

T2
R
Two of the sums in (4.23) are up to w, which is a value used to control the number of basis
functions in the expansion. The relationship between w and the number of basis functions,

K, isllO
(w+ 14w +2)
2

K = (4.26)

Once again, the reader can note that the correlated wave function contains the factor of
(1 — z%)(1 — y?) which forces the wave function to vanish when either electron is at the
boundary of the sphere.

One may recall from the introduction, that the orbital energies in the HF method are
given from the eigenvalues of XTFX where X is as described in the introduction (i.e.
X = §~'/2). Similarly, for correlated wave functions of this form, the ground state energy

of the system is given by the lowest eigenvalue ''° of

XY T+ X 4.27)

where T and J are the kinetic and electron repulsion matrices, respectively. Furthermore,
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Figure 4.4: a) Exact and HF intracules and b) Coulomb hole, for the ground state of the 3-Ballium atom.

the coefficients of the basis functions, c,x, are given by the eigenfunctions of this product
of matrices.
When determining the position intracule from the correlated wave function, since the u

variable is incorporated explicitly, one simply integrates over the x and y coordinates. How-

ever, as before, since this is a confined system, one must impose the following restraints on

each of the variables:

-yl <z<az+y (4.28)

0<y<l1

Performing such actions would yield the intracule with respect to z, i.e. P(z); however, one

can obtain the true intracule, P(u), by simply replacing z with its definition from (4.25).

Using this methodology, and that described for the HF treatment, we obtained the posi-
tion intracules for a number of 3-ballium systems with varying radii, R (1, 3, 4.5, 5, 10, 20).
An example is shown in Figure 4.4 with the Coulomb hole displayed on the right-hand side.

As noticed by the magnified inset of the Coulomb hole, there is no detectable secondary
negative region for these systems. We also performed analyses with UHF wave functions
with the same set of basis functions but these results were identical to those obtained using

the RHF wave functions. However, there are issues associated with using the present basis

functions for UHF analyses and these will be discussed in the next section.
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4.3 Discussion

From the results shown in Figures 4.1-4.3, it is obvious that the type of external potential
involved in a system has a significant effect on the strength and/or presence of the secondary
Coulomb hole. We explored three distinct two-electron cases in this study: 1) helium with
a traditional Coulombic potential, 2) hookium with a harmonic potential, and 3) 3-ballium
with a potential of zero inside of the sphere and an infinite potential at the boundaries. The
strength of the secondary hole in each of these cases is summarized in Table 4.3 below.
Additionally Figure 4.5 details the one-electron external potential for each of the cases and
the accompanying secondary Coulomb holes.

The data suggest that as the form of the external potential is modified, there is a notice-
able change in the secondary hole. From the Coulombic potential in helium to the harmonic
potential in hookium, the secondary hole strength decreases by four orders of magnitude.
Moreover, employing a potential of zero inside the bounds of the system, the secondary
hole ceased to exist.

The results obtained for 3-Ballium at a number of radii suggest that the secondary
Coulomb hole may not exist in the absence of a non-zero potential or restoring force.
However, for spheres with larger radii, the RHF approximation becomes increasingly inac-
curate. Thompson and Alavi ! have noted that the RHF and UHF solutions begin to differ

at r, = 6 where r, is defined as

Ts = 57 (4.29)
Table 4.3: Relating the strength of the secondary hole to the external potential.
System Potential Secondary Hole Strength (S5)
Helium Coulombic Yes 6.1 x 1074
Hookium Harmonic Yes 3.1x1078

3-Ballium Constant (Zero) No N/A
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Therefore, using the RHF method beyond radii of approximately 4.8 au yields inaccurate
descriptions of the wave function, and in turn, the position intracule. However, with a radius
of 4.8 au, the electrons can separate by nearly 9.6 au in this system. If we consider ballium
to be comparable to the real systems with Coulombic potentials, it would be somewhat
analogous to the case when Z = 0. Since, the occurrence of the secondary Coulomb
hole shifts to higher values of u with lower nuclear charges, the secondary hole in ballium
would be furthest out compared to the systems of the helium isoelectronic series studied
here. However, the secondary Coulomb hole does begin at 3.4 au in helium, and thus one
might expect that it would occur at some point in the ball with a radius of 4.8 au where the
RHF model provides an accurate description.

As noted previously, we have used the UHF method to analyze the 3-ballium system
but our results did not differ from those obtained using the RHF method at all values of
R. This is due to the spherical symmetry of the basis functions employed in the study
which prevents the breaking of this form of symmetry required to allow for a different
UHF solution. The basis set employed by Thompson and Alavi does allow for symmetry
breaking and they noted more accurate (i.e. lower) energies for the UHF systems for r, > 6.
Analyses using this same basis set should be performed in the future to determine the true
nature of long range correlation effects in ballium.

Regardless, there is still a great deal of information suggesting that the secondary hole
will not exist for the ballium system. When considering ballium, there are two extreme
scenarios that can be considered. The first is that it follows the series of the helium isoelec-
tronic series. From Table 2.2, it can be noted that the strength of the hole increases with
decreasing atomic number Z. In this case, ballium could be considered to be similar to the
Z = 0 case and one would expect the secondary hole to be the largest of any of the systems
studied here. However, this is obviously not observed in this study.

The second extreme is the scenario that we did observe. With no potential drawing

these electrons centrally, the secondary Coulomb hole does not exist. This suggests that an
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attractive external potential is the origin of the secondary hole and our theory is that it is
caused by an inadequate description of screening in the HF method.

Consider the cases which have been studied in the literature thus far. The first report de-
tailed the secondary Coulomb hole in the helium isoelectronic series with the hole strength
decreasing as the nuclear charge increased.”® As we increase the atomic number, the elec-
trons contract towards the nucleus and in order to avoid one another, they are more likely
to move to opposite sides of the nuclei even under the HF approximation. Such configura-
tions would minimize the effects of screening since the two electrons would no longer be
interfering with the respective attraction to the nucleus or origin.

The second case published in the literature was the study of the Hy molecule and the
effect on the secondary hole as the bond length was stretched. 35 In this case, the size of
the secondary negative region actually surpassed that of the primary negative region as the
bond length increased beyond 3.0 au. More recently, Hollett et al. !'2 noted that as the bond
length increases past 3.6 au, one observes a complete reversal of the correlation hole, i.e.
HF pushes electrons further apart at all values of «. This is indicated by an initial positive
region followed by a negative region in the graph of AP(u). The authors claimed that
this is due to overlocalization of the molecular orbitals in the UHF approach. However,
consider what this could mean in the context of screening. If the HF method overestimates
screening on distant electrons, the two electrons will likely reside near their respective
nuclei shielding one another strongly from the opposite nucleus. This would likely cause
an overlocalization of the UHF orbitals compared to the exact system where the electrons
would reside more in the bonding region.

The most recent study that has been published focussed on the fictional atom, spherium, !!!
In this system, the motions of the two electrons are confined to the surface of a sphere of
radius R. Much like the H, molecule, a reversal of the correlation hole was noted at large
values of R. As this system does not have a non-zero attractive external potential, one can

say that this is obviously not the defining factor for the presence of a secondary Coulomb
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hole. However, remember that the electrons in this system are confined to move on the
surface of the sphere. Therefore, they will always be the same distance from the centre of
the system and even if there were a “traditional” nucleus at the origin, the electron nuclear
attraction energy would be a constant. Recall from Chapter 1 that the expectation value of
a constant operator does not affect the eigenfunctions of the full operator (i.e. nuclear re-
pulsion operator as part of the Hamiltonian operator) but simply adds said constant to each
of the eigenvalues. This is effectively the same scenario that we are faced with here. Even
if we place a nucleus with protons at the centre of this system, the wave function will not
change. The energy of the system will change, but the wave function will remain the same.
The spherium system simply differs to much from the other systems to draw significant
conclusions from these results. However, it should be noted, that due to the unorthodox
nature of this system, the presence of the secondary Coulomb hole in spherium does not
necessarily contradict the hypothesis that screening is the cause.

Another piece of evidence suggesting that the secondary Coulomb hole will not exist
in the true UHF solution of ballium stems from the fact that all other systems which have
demonstrated this phenomenon have shown it when studied using the RHF model. For the
real atomic/ionic systems in the He isoelectronic series, the RHF solution is the only solu-
tion (i.e. UHF is identical), but for H, and spherium, at relatively small bond lengths/radii,
correlation holes calculated with the RHF solution demonstrate the secondary Coulomb
hole and these holes remain at large separations where RHF theory provides an inadequate
description. The fact that ballium does not demonstrate this hole even with radii of 4.5 au
suggests that even when treated at the UHF level of theory, this effect will not be present.

This idea that HF systems have a greater probability of having distant electrons is not
a new one; but it is new for ground states. The Coulomb holes of excited states have been

well documented in the literature 36-140

and they all express significant negative regions at
large values of u. These systems can be considered an extreme case for shielding of valence

electrons by electrons in inner shells, which is much greater than that by electrons in the
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same shell. In fact, Thakkar'*® stated the following in a paper detailing the Coulomb hole

for excited states of helium:

Counter-intuitive effects such as an increase in interelectronic repulsion upon
inclusion of electron correlation occur for helium and smoothly disappear as

the atomic number increases.

This quote demonstrates that even in excited states, it was unexpected. But as discussed,
as the atomic number increases, the size of the negative region decreases as there would be
less shielding as the electrons are drawn closer to the nucleus. In a separate report, Ugalde

138

et al.>° identified the cause of this effect in excited states as shielding as noted below:

Electron correlation is shown to reduce the nuclear shielding provided by the
K-shell distribution and as a consequence, to lead to a relative shrinking of the

outer shell density

This describes the exact effect that we are observing here. Shielding would not be nearly
as great for electrons in the same shell, but it would still be present. This provides a logical
explanation as to why the secondary hole is large in excited states and largely unnoticeable
in the ground state. To be certain that shielding is the cause of the secondary hole, we must
obtain the results using the true UHF intracule for ballium; however, based on the evidence

presented here, it is hypothesized that the secondary Coulomb hole is a nuclear effect.

4.4 Conclusion

We have analyzed the effect of the external potential on the shape of the Coulomb hole.
It has been noted that the secondary Coulomb hole is most strongly expressed in real sys-
tems with Coulombic potentials and while it is still presént for Hookium with its harmonic
potential, the strength of the hole decreases significantly. The results obtained thus far for

3-ballium have indicated that this phenomenon does not occur; however, further studies
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need to be conducted for confirmation. Nonetheless, based on the evidence presented here,
and past work reported in the literature, it is anticipated that the secondary Coulomb hole

will not be present in ballium or any other system lacking an attractive potential.
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5 Polarization Effects on Interelectronic Separations in

Atoms and Molecules

5.1 Introduction

The previous three chapters focussed on the development of novel tools for the study of
electronic structure and their application to the study of correlation effects in two electron
systems. In this chapter, we change gears and focus not on correlation effects but the effects
of the addition of polarization functions to a basis set.

As discussed in Chapter 1, the variational theorem states that by using a normalized
trial wave function, ¢¢, the ground state energy obtained will always be greater than or
equal to the exact ground state energy for a particular system.> As it is often impossible
to solve the Schrodinger equation exactly, this theorem is highly useful since it acts as a
measure of the accuracy for a given ¢, as improvements in the trial wave function would
be evidenced by lower ground state energies for the system.

Recently, Pearson et al. reported their studies on basis set effects on position, P(u),
and dot, D(z), intracules.>* This report explored the HF intracule, P™F(u), using wave
functions expanded in a variety of basis sets. These intracules were then compared to a large
reference basis (in that case 6-311++G(3df, 3pd)) to detect any differences between the
intracules of the large, highly polarized, reference basis and those obtained from the smaller
basis sets. This difference was denoted A P(u), not to be confused with the Coulomb hole*®

which is traditionally defined as AP(u) = PE<(y) — PHF(y). AP(u) in this instance is
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given by
AP(u) = PR(u) — PP (u) 6.1

where PR(u) is the intracule obtained using the reference basis set and PP:(u) is the
intracule obtained from using any of the other basis sets employed in the study. The work
indicated that upon the inclusion of polarization functions into the basis sets for the systems
of the G1 test set, AP(u) displayed a so-called “basis antihole". This is opposite to the
effect that is seen for the Coulomb hole 36 as polarization causes electron pairs to contract,
whereas correlation often causes electrons to be further apart. This basis antihole implies
that incorporating polarization functions leads to an increase in electron repulsion energy
(denoted by E;), by drawing electrons closer together. One might expect that due to the
presence of the higher angular momentum orbitals and an increased flexibility in the basis
set, the electrons would move more freely and the electron-electron repulsion energy would
decrease; however, this is not the case.

Here, we examine why systems studied with polarized basis sets display the basis an-
tihole and greater two-electron energies (F..) compared to their respective unpolarized
counterparts. From the variational theorem, we know that as the basis set improves, the
energy must decrease and thus we also explore the other components of the energy to de-
termine which ones compensate for this decrease in F.. For the purposes of this study, all
energy and intracule calculations were performed using Q-CHEM. '® Atomic units are used

throughout this chapter.

5.2 Results and Discussion

5.2.1 Basis Set Dependence in Intracules

Expanding the HF wave function in a one-electron basis set, the position intracule P(u)

can be expressed as
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P(u) =" Tuno v, 0]p (5.2)

pvo
where [u, v, A, o p are the intracule integrals and Iy, is the usual two-particle density
matrix.* The [ssss]p integrals are well-known, while the integrals containing orbitals of
higher angular momenta can be obtained either through differentiation as suggested by
Boys,!*! or by using the recurrence relation recently developed by Hollet ef al.'*> These
intracule integrals have also been implemented into the Q-CHEM package'® for orbitals
with angular momenta up to ¢ = 3.

For the purposes of this study, position intracules were calculated for each of the atoms
and molecules of the G1 test set!? with the exception of the hydrogen atom as it con-
tains only a single electron. These intracules were constructed from HF wave functions
expanded from basis sets of increasing complexity. The basis set comparisons employed in

this study are as follows:

(1) 6-31G vs 6-31G(d,p)

(2) 6-311G vs 6-311G(d,p)

(3) 6-311++G vs 6-311++G(d,p)

(4) 6-311++G(d,p) vs 6-311++G(3d,3p)

(5) 6-311++G(3d,3p) vs 6-311++G(3df,3pd)
(6) cc-VDZ vs cc-pVDZ

(7) cc-VTZ vs cc-pVTZ

where cc-VDZ and cc-VTZ are the non-polarized parts of the respective Dunning’s corre-
lation consistent basis sets. %44 From this set of comparisons, with the exception of cases
(4) and (5), it can be noted that each set contains basis sets with and without polarization
functions. In cases (4) and (5), the comparisons were performed to explore the effects of in-

creasing levels of polarization within the basis sets. Thus, in contrast to the earlier work>*
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Figure 5.1: (Color) Averaged difference intracules, A P(u) normalized to unity for the atoms (left) and
molecules (right) for the G1 test set. The case defined in the legend corresponds to the basis set comparison
as described in the text.

where a single reference basis set was used in all cases, here the difference intracule is
expressed by
AP'(u) = PR (u) — PP (u) (5.3)

where 7 denotes the comparison case number and the remaining terms are as previously de-
scribed. From the cases listed above, the second basis set in the list denotes the reference.
Results of the averaged difference intracules are shown in Figure 5.1. These intracules
represent an average for all of the atoms (left) or molecules (right) in the G1 test set which
were all normalized to unity. From the plot of the atomic difference intracules, it is appar-
ent that for the most part, polarization functions have no consistent effect on interelectronic
separations in atoms. However, upon looking at the averaged difference intracule for the
molecular systems, a basis antihole is clear and the magnitudes of the resulting functions
are much greater than those obtained for the atomic systems. This suggests that the differ-
ences in atomic systems are essentially noise. Atomic intracules aside, this figure demon-
strates that the basis antihole is a property of molecular systems. As previously mentioned
both here and in the paper by Pearson et al.,> the antihole is indicative of electrons being

closer together in the reference (i.e. polarized) systems, which is a counterintuitive effect.
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5.2.2 Basis Set Dependence on Energy Components

Based on the different results obtained for atomic and molecular systems, all components of
the energy were explored for these seven basis set comparisons. Table 5.1 lists the energy
differences for the kinetic, AE,E,? ), electron nuclear attraction, AE(E?@, and two-electron,
AE(EE), components of the energy as well as the total energy difference, AEt(ft) , for basis set
comparison (2). For a comprehensive list of the difference in energy components between
the basis and its polarized reference, the interested reader is directed to the Supplementary
Information. In the final two columns of this table, AE&E) is partitioned further into the
Coulomb, AESg), and exchange components, AE}?). Herein, it can be noted that AE,,
tends to be positive for molecular systems indicating a decrease in the two-electron energy,
while the sign of AFE,, for atomic systems is dependent on the particular element. This
correlates well with the results shown in Figure 5.1 as the basis antihole for molecules cor-
responds well to the trend for molecular two-electron energy differences. There are some
exceptions for these molecular trends within the G1 test set, but these instances represented
a small percentage of the total number of test cases. Systems containing the electropositive
Li and electronegative F atoms where often those problematic cases that demonstrated a
decrease in AES.

Close observation of the AE?2 values for atomic systems in Table 5.1 reveals one in-
teresting note. For systems containing filled or half-filled valence shells (He, Li, Be, N,
Ne, Na, Mg, P, and Ar), the addition of polarization functions has no effect. This is most
likely due to the symmetry of these systems. Having a half-filled or filled shell leads to
the incorporation of a single electron or pair of electrons, respectively, into each valence
atomic orbital, by Hund’s rule. The subsequent addition of one more electron to any of
these orbitals would disrupt the symmetry and thus polarization of said orbitals would be

beneficial.
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Table 5.1: Energy differences for basis set comparison (2)

System  AEZ) AE{ AE®) AESD AEY AE®
Al -0.00213 000814  -0.03512  0.02485  0.03170  -0.00685
Ar 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
B -0.00308  0.00536  -0.00687  -0.00158  0.00658  -0.00816
Be 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
C -0.00302  0.00505  -0.00573  -0.00234  0.00496  -0.00731
Cl -0.00356  0.00847  -0.02004  0.00800  0.01642  -0.00842
F -0.00272  0.00493  -0.00569  -0.00195 0.00432  -0.00627
He 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
Li 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
Mg 0.00000 000000  0.00000  0.00000  0.00000  0.00000
N 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
Na 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
Ne 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
-0.00272  0.00463  -0.00568  -0.00166 0.00478  -0.00644
P 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
-0.00319  0.00844  -0.02425 001262  0.02085  -0.00823
Si -0.00257  0.00882  -0.02947  0.01808  0.02502  -0.00694
BeH -0.00403  0.00538  -0.02246  0.01305  0.02072  -0.00767
CH -0.01540  -0.00319  -0.04260  0.03039  0.04634  -0.01595
CHy('4;) -0.02333  -0.01322  -0.07093 006082  0.07739  -0.01657
CH,(B;) -0.01410  -0.00990  -0.03552  0.03132  0.04638  -0.01506
CHj -0.01817  -0.01469  -0.03934  0.03587  0.05753  -0.02166
CH;Cl  -0.04320 -0.07913 -0.10776 0.14369  0.17137  -0.02768
CH;SH  -0.06255  -0.08676  -0.21907  0.24328  0.28666  -0.04338
CH, -0.02091  -0.01789  -0.03814  0.03512  0.06121  -0.02609
Cl -0.04678  -0.17659  -0.13461  0.26441 026247  0.0019%4
CIF -0.03658 - -0.13091  -0.06743  0.16176  0.16129  0.00048
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Table 5.1: (Continued.)

System  AEQ) AEY AE®) AEY AEP AED
CIO 005844  -0.19780  -0.09446 023382 023591  -0.00210
CN -0.04257  -0.10480  -0.12726  0.18949  0.18892  0.00056
Co -0.06857  -0.06952 -0.28497 028592 031774  -0.03183
CO, -0.11849  -0.09924  -0.54085 0.52160 058603  -0.06442
Ccs 006517  -0.11710  -0.35027 040220 043004  -0.02784
Fy 001817  -0.05463  -0.06147  0.09792  0.09802  -0.00010
H, -0.00450  0.00415  -0.01559 0.00694  0.01387  -0.00694
H,CCH, -0.03434 003422  -0.10053 009942  0.14077  -0.04135
H,CO  -0.05882 -0.06940 -021199 022257 026365  -0.04108
H,NNH, -0.05938 -0.06109 -0.17348  0.17519 020704  -0.03185
H,0 -0.03704  -0.02611  -0.10374  0.09282  0.10693  -0.01412
H,S -0.04679  -0.03825  -0.21351 020498 023280  -0.02782
H;CCH;  -0.04006 -0.03720 -0.07886 007600  0.12301  -0.04700
H;COH  -0.05583  -0.06351 -0.13564 0.14332  0.17888  -0.03555
HCCH  -0.02955 000438  -0.14987 011594  0.15077  -0.03482
HCI -0.02856  -0.02179 -0.12280 0.11612  0.12928  -0.01316
HCN -0.04916  -0.04086 -0.21345 020514 024235  -0.03721
HCO 006275 007557 -021313 022595 025967  -0.03373
HF -0.02477  -0.01730  -0.06472  0.05725  0.06488  -0.00764
HOCI -0.05408 -0.13372  -0.13917 021881 022656  -0.00775
HOOH  -0.05983  -0.08140 -0.18122 020279 021998  -0.01719
Li, -0.00018  0.00056  -0.00250 0.00177  0.00213  -0.00036
LiF -0.00661  -0.02145 0.03261  -0.01777 -0.02358  0.00581
LiH -0.00113 000157  -0.00957 000687  0.00910  -0.00223
N, 007527  -007752 031241 031466 035249  -0.03784
Nay -0.00032  0.00087  -0.01123 0.01004 001041  -0.00037
NaCl 000723 -0.00405 -0.13930 0.13612  0.13806  -0.00194
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Table 5.1: (Continued.)

Sysem  AEQZ) AE® AE®) AED AE® AE®

NH -0.01867  -0.01096  -0.05040  0.04268  0.05645  -0.01377
NH, -0.03176  -0.01863  -0.09152  0.07838  0.09811  -0.01973
NH; -0.03218  -0.02272  -0.09035 008089  0.10012  -0.01923
NO -0.06952  -0.16052  -0.16704  0.25803  0.26098  -0.00294
0, -0.05875  -0.13201  -0.14914 022240 023364  -0.01124
OH -0.02364  -0.01282 006356  0.05274  0.06762  -0.01499
P, -0.06938  -0.13313 059634  0.66010  0.69314  -0.03304
PH, -0.04001  -0.01483  -0.23035 020517 023842  -0.03325
PH, -0.05384  -0.02342 030050 027008 031376  -0.04368
Ss -0.07515  -0.20359 036533 049377 051042  -0.01665
Siy -0.03514  -0.04325 037625 038436 041286  -0.02850
Si;Hg -0.09221  -0.00722  -0.63157  0.54658  0.65622  -0.10963
SiHy(*4;) -0.03042  -0.00879  -0.20851  0.18688  0.21151  -0.02463
SiHy(®By) -0.02605  -0.00019  -0.15941  0.13355  0.16402  -0.03047
SiH, -0.04064  0.00290 024702 020348 025265  -0.04917
SiH, -0.05288  -0.00324  -031094 026130 032346  -0.06216
SiO -0.06417  -0.08018  -0.48996  0.50596  0.53286  -0.02689
SO -0.08707 022143 -0.29901 043337 045720  -0.02383
SO, -0.24128  -0.58339  -0.85288  1.19499 124007  -0.04508

The variational theorem states that as the accuracy of the wavefunction improves, the

energy for the system decreases. Since polarization functions cannot have a detrimental

effect on the wavefunction, these increases in two-electron energies, must be offset by

greater decreases in the kinetic and electron nuclear attraction components of the energy.

The question that needs to be answered is which component of the energy factors more

prominently in the reduction of the energy. From the set of data displayed in Table 5.1, it
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Figure 5.2: (Color) Electron density differences, Ap(2)(r), for a representative group of molecules from
the G1 test set. a) Methane, CH,4, b) ammonia, NH3, ¢) water, H>O, d) hydrogen fluoride, HF, ¢) methanol,
CH3O0H, f) ethene, CoHy. Green and red areas in the density difference indicate positive (+0.004) and nega-
tive (-0.004) values, respectively. All other colors present are indicative of atoms within the molecules.

is apparent that in majority of molecular systems, the stabilizing energy resulting from the
attraction between the electrons and nuclei plays the major role in reducing the total energy
of the system. This indicates that the electrons are attracted more strongly to the nuclei
in the system but still does not provide a clear explanation as to why the introduction of

polarization functions leads to a contraction of electrons in molecular systems.

5.2.3 Basis Set Dependence in the Electron Density

To develop a more complete picture as to what is occurring in these systems upon inclusion
of polarization, we looked at the differences in electron densities for the seven previously

mentioned basis set comparisons.

Api(r) = g (r) = pP(r) 5.4
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Examples of these difference electron densities, Ap? (r), are displayed in Figure 5.2. Once
again, the basis set comparison chosen for this display was case (2) as previously done in
Table 5.1. In these density plots, the isovalues that are shown are +0.004. There was no
theoretical reasoning for the choice of these particular values; they were simply chosen to
provide a good visual representation of the positive (green) and negative (red) regions of
Ap(r). From the figure, it is evident that once the polarized functions are included in the
construction of the wavefunction, an increase in the electron density within the bonding
regions occurs. This is consistent with results obtained for the small subset of systems
studied by Roos and Sigbahn amongst others. -1 However, herein, we have provided a
great deal of evidence supporting this theory through the use of a wide range of basis set

comparisons

5.24 Summary

Although these electron density differences do not tell the whole story, they provide a great
deal of evidence as to why the electron repulsion energy is increasing in the molecules of
the G1 test set. The inclusion of polarization functions allows for more accurate descrip-
tions of the bonding regions and thus instead of increasing interelectronic separations with
the inclusion of higher angular momenta orbitals, these orbitals overlap more effectively,
providing a more accurate description of the electronic structure within a chemical bond.
A great example of this is shown in Figure 5.2 (f), the ethene molecule. For the 7-bond
in this system, the p-orbitals would have to bend to effectively describe this type of bond;
however, this is not possible. Therefore, once d-orbitals are incorporated into the basis set,
they can combine with the p-orbitals to more effectively describe the overlap in the 7-bond.

The idea that polarization functions increase electron density in bonding regions has
been known for some time, at least for the small set of systems that have been described in
the literature. However, to explore the validity of analyzing the origins of the basis antihole

using electron densities, we separated the position intracule, P(u), into its Coulomb, J(u),
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and exchange, K (u), components. These fragments of the total intracule can be defined as

J(u) = %//p(r)p('r + u)drdS2, (5.5)

and

K =333 [ [xtrhomn +wpr+wird, 66

where p(r) is the electron density, x;(r) is the ™ spin orbital and €2, denotes integration
over the angular components of the vector w. It is clear from these expressions that the
Coulomb intracule is directly related to the electron density. It can be shown that the zeroth

moment of the Coulomb and exchange components of the intracule are given by 464’

/ u’J(u)du = lN2 / K (u)du = —lN (5.7)
0 2 0 2

where N is the number of electrons. With the position intracule given by the sum of the
Coulomb and exchange intracules (P(u) = J(u) + K(u)), the ratio of the contribution of

each of the components is

Iy J(u)du B
e _N (5.8)

Thus, the contribution to the total intracule from the Coulomb component is /V times greater
than that of the exchange component. Therefore, as the number of electrons within a system
increases, the Coulomb intracule becomes the dominating factor, and because this compo-
nent is directly related to the electron density, using the differences in electron density to
study the basis antihole is reasonable.

Ideally one would look at the difference in the pair density for these comparisons; how-
ever, visualization of this function is not possible. Nonetheless, the electron density dif-
ference does an adequate job of explaining all of the observations in this study and from
the evidence involving the Coulomb and exchange intracules above, this form of analysis

is completely valid. The idea that atoms and molecules behave differently with molecules
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showing increases in electron repulsion energy and atoms showing no obvious trend fits
perfectly with this explanation. In molecules, the polarization functions improve the de-
scription of bonding regions leading to increases in electron density in the bond and the
concomitant increase in repulsion energy and the presence of the basis antihole; whereas,
in atomic systems which tend to be relatively symmetric, polarization functions would not
cause significant differences. Any effect on an atomic system would be highly dependent
on the electronic configuration of the specific atom as noted by the values of AE,, in Table
5.1.

With the increase in the two-electron energy, the one-electron components of the energy
must compensate for this decrease in order for the wavefunction to satisfy the variational
theorem. The identity of the major contributor to this decrease was found to be the electron
nuclear attraction component of the energy. However, the kinetic energy also demonstrated
slight decreases. This suggests that since the electron density within the bonding region is
increasing, the electron nuclear attraction would increase in magnitude (i.e. become more
negative) as the electrons are being drawn closer to additional nuclei. In the case of the
difference in kinetic energy, two competing effects would be observed. First, as electrons
are drawn closer to nuclei as they appear to be based on the results in Figure 5.2, kinetic
energy tends to increase which would result in a positive A Er. But second, as the electrons
are localizing in the bonding regions, the stronger attraction to two separate nuclei may
compete with one another leading to a decrease in kinetic energy. These two competing
effects could result in a A E smaller in magnitude than the corresponding A E, . One can
consider an object with external potential forces being exerted on it in opposing directions;
these opposing forces would lead to a hindrance of the kinetic energy of said object. There
are some exceptions to this trend as noted by the data in Table 5.1 and more in-depth studies
would have to be carried out to confirm or deny this hypothesis.

For the molecules in Figure 5.1 (left), as we move from case (3) to case (4) and finally

to case (5), it is noted that the difference intracules become far more similar to their refer-
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ence basis. These comparison cases involve increasing levels of functionalization starting
with the 6-311++G basis. In cases (4) and (5), the ‘unpolarized’ bases actually contain
polarization functions, but do not contain the same level of polarization as their respective
reference basis sets. Thus, slight improvements are noted upon the inclusion of further
polarization functions, but the initial introduction of the higher angular momenta orbitals

makes the most significant difference in improving the quality of the bond description.

5.3 Conclusion

The discovery of the basis antihole was somewhat surprising as it was believed that the
addition of polarization functions to a system would lead to a decrease in repulsion energy
and a concomitant separation of the electrons. However, as the basis antihole demonstrates,
this is not the case in most molecular systems. We have shown here how the polarization
functions improve the quality of the description of the bonding region. As the intracule
can be directly related to the electron density through the Coulomb component, this in
turn causes the electrons to get closer together leading to this increase in repulsion energy.
To compensate for this increase in electron repulsion energy, and to obey the variational
principle, it was determined that the electron nuclear attraction energy provides the greatest
contribution in terms of decreasing the overall energy.

There have been some exceptions to the trend of increases in electronic repulsion and
greater compensation by the electron nuclear attraction component, but these cases are
rare (representing less than 1% of the cases studied). They appear to be most prevalent
in systems containing atoms which are highly electronegative or electropositive such as
fluorine, chlorine, and lithium. Regardless, this work demonstrated that there is a strong
relationship between the occurrence of the basis antihole and increased electron density in
the bonding regions due to the more accurate description of the bond through the inclusion

of the polarization functions.
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6 Optimizing Reaction Energetics Through the Linear Com-

bination of Functional Groups (LCFG) Method

6.1 Introduction

This chapter diverges from the previous studies on electronic structure and focusses on
a concept more broadly applicable to theoretical chemistry and the field of chemistry as a
whole. Since the advent of the field in the 1920s, there have been a number of advancements
in quantum chemistry which have led to highly accurate approximations to the solution of
the Schrodinger equation. These include the development of the previously mentioned
correlated methods such as configuration interaction (CI), coupled cluster (CC), Mgller
Plesset perturbation theory (MPPT), and density functional theory (DFT). These methods
are commonly used today in the field of computational chemistry but their application
is limited by an exponential increase in computational cost with system size. Therefore,
highly accurate calculations on large molecules are still not feasible due to this scaling
problem.

Regardless, experimental chemists often use computational chemistry as a supplement
to their work. For instance, chemists involved in drug discovery and development often
use computational techniques to determine what types of drugs to focus on in order to save
time and money in the lab. For these same reasons, pharmaceutical companies often employ
teams of theoreticians to enhance productivity and fiscal responsibility. Nonetheless, due to

the high cost of accuracy in computational models, there are limitations to the advantages
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that can be provided by theoretical work.

In this project, we aim to develop a program that is capable of optimizing reaction
energetics with respect to substituents in a given reactant complex. Similarly, in 2006
Yang et al. reported their work on designing molecules through the optimization of atomic
potentials.'*® In that report, they demonstrated the utility of the method by using it to
determine the most polarizable molecule from a set of 25 constructed by linking all possible
combinations of two identical sets of 5 substituents (-CHjs, -OH, -NH,, -F, -Cl, and -SH).
The method accurately predicted HS-SH as the most polarizable molecule of the 25. This
results in significant time savings as the polarizability of each of the individual molecules
need not be determined. These results provided the motivation behind the work that will be
reported in this chapter. However, instead of optimizing a single state in terms of atomic
potentials, we focussed on optimizing the energy difference, A E, between two states with
respect to a set of substituents through a process that we refer to as a linear combination of
functional groups (LCFG). It should be noted that the Rothlisberger group also performed
similar calculations prior to those by Yang ef al. that were applied in the design of a

nonpeptidic anticancer drug candidate. *°

6.2 Methodology

The aim of this project is to optimize reaction energetics of a particular reaction with re-
spect to a functional group at a designable site in a molecule. Figure 6.2 shows a reaction
coordinate showing the reactant state S; and two possible states for Ss: the transition state
(S3,) or the products (Sa). Now, consider any process involving a reactant complex with
a site that can be modified without affecting the type of reaction that occurs. To deter-
mine what functional group would optimize the energetics of such a reaction (minimize
or maximize either AF, or AF), one would have to perform calculations on the reactant
and product (or transition) states of the molecule for each functional group. If one was

interested in testing a wide range of functional groups, calculations of the highest accuracy
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TS (S22)

Reactants (S1)

Products (Sa)

Reaction Coordinate

Figure 6.1: Reaction coordinate diagram for a general reaction defining the states of interest in the LCFG
process.

would require an enormous amount of time for reactions involving molecules comprised
of more than 5 or 6 heavy atoms. However, consider a large catalytic complex where the
sizes of the functional groups are significantly smaller than the full molecule. In this case,
recalculating all of the integrals involved in the fixed part of the system (which we will
refer to as the reference system) would comprise the majority of the total calculation time
despite the fact that these integrals are redundant. Thus, instead of performing separate
calculations for each individual functional group, it would be far more efficient to perform
a single calculation where all of the desired functional groups are superimposed at the same
position in the molecule.

To develop such a method, one must allow each substituent to interact with the reference
system while prohibiting interactions between the different functional groups. To achieve
this, the energy expression can be partitioned into separate components for the reference
system, E.,.f, and the designable site (i.e. superimposed functional groups), > E,, for both

states of interest, 57 and S,. This can be represented mathematically as

2 S S1 —
AE = (Esf +) bES ) ~ (Ergf +) boE: ) , S be=1 (61)
a=1 a=1 a=1
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where b, is a coefficient defining the fraction of the energy contributed by individual func-
tional groups. We may then minimize or maximize AF with respect to the linear coeffi-
cients, b,; hence, the functional group pertaining to the largest coefficient would be that
which optimizes the specific energetics of the process.

Since the reference system is fixed, the only components of the energy incorporated
in Efjf and Efelf are those that only involve the atoms of the reference system. All other
interactions, be they between the reference system and the functional group or between
different orbitals within the functional group, would be included in E5? or E5'. Every
optimization performed in this study was carried out at the HF level of theory using the
STO-3G basis (denoted by HF/STO-3G) as a reasonable ab initio starting point. Upon
expanding the molecular orbitals in a basis of atomic orbitals, the HF energy, previously

given by (1.12) and (1.56), can be expressed as

K
E=

K K K K 7
PHFT +Viy)+zzzzruw uw\a"'zz 247z (6.2)

1 v=1 p=1 v=1 A=1 o=1 A=1B>A

Mw

u

where T, and Vj,fv are elements of the kinetic and electron nuclear attraction integral

matrices, respectively, while represents an element of the electron repulsion integral

uVAo

matrix. Finally, PH F and T'EE are elements of the previously described charge density

nvAo

and two-particle density matrices. In order to separate the components of the energy, we

can define the energy of the reference system as

Kot Krer Kiet Kref Kret Kref Mies Mt

Fur= 33 PEF(Tei ety 4 3 33 pHE yeewi  §0 3 248 5

R
p=1 =1 p=1 v=1 x=1 o=1 A—1B>A AB

where K, and M, refer to the set of basis functions describing the reference system and
the set of nuclei in the reference system, respectively. For the energy pertaining to each

of the functional groups, we must construct individual one- and two-electron matrices for
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each functional group. These are given by

O’ 1< /’L& v < Kref
X = A 6.4)
(6ulO14.), otherwise

for the matrices of one-electron integrals, where O is the appropriate operator, and

0, 1< p&rv&r&o < K
(6.5)

;Z/)\a =
2(uv|Ao) — (uo|iv), otherwise

for the two-electron integral matrix. Using these definitions, the energy contribution for

each of the functional groups is given by

K, K. Ko Ko Ko Ka
Ba=2 D Ful(Tu+Veh+> 3.2 ) TV
u=1 v=1 p=1 v=1 A=1 o=1
M M, Mret Mies
ZAZB ZAZB
+ — (6.6)

where K, and M, are the full set of basis functions and nuclei in the full chemical system
with functional group, a. It should be noted that by using the indices Ki.s and My, it is
assumed that the components of the matrices and the ordering of the nuclei are in such a
way that these sums only run over the components that are associated with the reference
system.

The one- and two-electron integral matrices are assembled according to (6.4) and (6.5)
while the values of each of the integrals can easily be calculated using one of the many
programs that performs quantum chemical calculations. '® Where the problem lies, is in how
to define the molecular orbital (MO) coefficient matrices, C to determine the contribution
of each basis function to every molecular orbital. In order to discuss how the coefficients
are determined, we must first introduce the concept of localized molecular orbitals (LMOs)

versus the more traditional canonical molecular orbitals (CMQOs). CMOs are the orbitals
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Figure 6.2: Comparison of the a) canonical, and b) localized molecular orbitals for the ground state of the
water molecule calculated at the HF/STO-3G level of theory.

that are obtained as the eigenfunctions of the Fock operator. In general, these orbitals are
delocalized over the entire chemical system and are highly dependent on the composition
of the given molecule. LMOs, on the other hand, are far more conceptual; one can easily
imagine what these orbitals would look like for any given system as they represent the
bonds, lone pairs, and core orbitals within a molecule. Figure 6.2 shows the differences
between CMOs and LMOs for the ground state of the water molecule at the HF/STO-3G
level of theory.

The most important feature of LMOs is that they are highly transferable from one
molecule to another, whereas with a CMO treatment, the molecular orbitals change drasti-
cally from one compound to the next. Figure 6.3 demonstrates the non-transferable nature
of CMOs versus the high transferability of LMOs. The CMOs that are depicted in the figure
range from the HOMO-3 up to HOMO whereas the displayed LMOs are the four orbitals
that are contained in both the H,O and HOF molecules (oxygen 1s core, O-H bond, and two
oxygen lone pairs). Such localization allows for the transfer of atomic orbital coefficients
from one molecule to the next for a specific LMO (e.g. lone pair of an oxygen atom).

As mentioned at the beginning of the discussion on molecular orbitals, the CMOs are

obtained interatively by solving the Roothaan-Hall equations in an SCF procedure. In
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a) H,0 HOF b) H.0 HOF

Figure 6.3: Comparison of the transferability of a) CMOs, and b) LMOs using the water molecule and
hypofluorous acid as examples.

contrast, the LMOs are obtained by adding linear combinations of CMOs to obtain the
most localized orbitals possible. This is possible due to the property of determinants that
states that if one adds a multiple of column A to column B, the determinant will not change.
Thus, for a two-electron system with a wave function given by a single Slater determinant

as

U(ry, 1) = xa(rs) xa(ry) 6.7)

x1(r2) Xxa2(rz2)

we can modify the columns by adding a multiple of column 1 to column 2 as follows

k
U(ry, ) = x1(r1) xe(ri) + kxi(ry) 6.8)

x1(r2) Xxa(r2) + kx1(r2)
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without changing the wave function (where & is simply a coefficient denoting the addition
of a multiple of column 1). One can work out the determinant above to prove the validity
of this claim. This idea that one can combine different CMOs in various ways without
affecting the accuracy of the wave function is the basis for the construction of LMOs.
However, as one can imagine, there are countless ways to mix the CMOs to obtain new sets
of molecular orbitals, especially in larger systems.

Lennard-Jones and Pople originally theorized that one could obtain localized orbitals

by minimizing the interorbital repulsions which are given by 131152

t XY [ [1araP- 2o, ra)drs ars (69)

T 3>t

where the factor of 4 stems from the fact that there are four interorbital repulsions from
the electrons in a pair of molecular orbitals. This idea was the basis for the Edmiston and
Ruedenberg (ER) localization method. > More correctly, in the ER localization scheme,
the repulsions within a single orbital are maximized, but in doing so, one effectively mini-
mizes the repulsions between different orbitals.

The ER localization method is one of the most popular today though there have been a
number of other localization schemes 357 developed over the years such as that of Boys
et al. , which maximizes the distance between centroids of charge in a molecule. 5415
However, this method does fail to yield properly localized orbitals for some molecules. !
For this reason, we have chosen to use the ER scheme; however, it should be noted, that

the Boys method as well as the Pipek-Mezey method !*’

were studied in the initial stages
of the project but no significant differences in the LMOs were noted.

With the introduction to CMOs and LMOs complete, we now return to the discussion
concerning the MO coefficient matrix. The LMOs of these partitioned systems can be di-

vided into three categories: 1) the LMOs describing the core orbitals, lone pairs, and bonds

within the reference system, 2) the LMO(s) describing the bond between the designable
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site functional group and the reference system, and 3) the LMOs describing the core or-
bitals, lone pairs, and bonds within the designable site functional group. Describing the
exact form of the coefficient matrices as well as where each piece of data is obtained either
by written descriptions or through the use of mathematical expressions is non trivial, and

thus we will instead demonstrate this pictorially in Figure 6.4.

I -

1

Figure 6.4: Fragmentation of the MO coefficient matrix. (A)-(C) Atomic orbital basis functions describing
the reference system, the reference system atom attached to the functional site, and the functional group
atoms, respectively. (1)-(3) LMOs describing reference system orbitals, reference system/functional group
bond, and functional group orbitals, respectively.

Illlj;ll

The simplest, and perhaps, most efficient way to define the MO coefficients of the
reference system (Region Al in Figure 6.4), is to perform a calculation on the reference
system with the empty valence being capped with a hydrogen atom. Hydrogen is likely
the least biased choice for a capping agent as it is not electron withdrawing or electron
donating and its small size allows for a simple description of the atom in terms of basis set
size. This is similar to the method employed in QM/MM and ONIOM calculations in order
to complete the valence of any bonds that are broken in the partitioning process. 18160

All coefficients pertaining to the reference system basis functions that are used in the

description of the LMOs (Region A1) for the reference system are obtained through this
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initial calculation using the hydrogen capping agent. The remaining LMO coefficients will
either be supplied through a pre-built library of coefficients or set to zero. As the orbitals in
these systems are localized, the contribution of atoms (and thus their basis functions) that
are not involved in the bond or lone pair that the orbital is describing is often negligible
anyway. This suggests that omitting the orbital contribution from distant atoms will not
result in large energetic errors.

Two different approaches of assembling the MO coefficient matrices were employed in
this study and they are represented in Figure 6.5 with regions shaded in light green denoting
MO coefficients that are provided by the initial SCF calculation. The regions shaded in dark
green denote those that are provided from a predefined library and white regions indicate
the coefficients that are set to zero. These two methods, Method I (MI) and Method II
(MII), will be compared in the results and discussion section of this chapter. Ideally, one

would prefer to use Method II as it requires less information to be included in the library.

Method I Method 11

L L

I I

Figure 6.5: Pictorial representation of the two methods for constructing the coefficient matrices. Shaded
regions indicate the origin of the coefficients as follows:  — coefficients provided from initial calculation
on reference system capped with H atom, B — coefficients provided from the predefined library, and O —
coefficients set to zero.

The results presented in the next section are obtained using the energy expressions
from (6.1)-(6.6) where the density and two-particle density matrices are formed from the

two aforementioned methods of constructing the MO coefficient matrix. Recall that in HF

123



theory, these two matrices can be related to the MO coefficients by

N/2
Pu =2 ctu (6.10)
a=1
1
Pw/)\a = Z(QP;WP)\U - P/.La'P/\V) (611)

The construction of the library of coefficients is a huge undertaking. Thus, instead
of focussing on the development of this library, the focus of this project was to develop
the fundamental process for these optimizations. Thus, for the two methods displayed in
Figure 6.5, any coefficients that are specified as being provided by the library were instead
obtained from a calculation on the true molecule. One might suggest that this introduces
an advantageous bias; however, one must remember that these orbitals are localized and
demonstrate very little differences from one molecule to the next. This reaction affords
the opportunity for a proof-of-concept investigation whereby we can determine the level of
accuracy retained by truncating the MO coefficient matrix.

For the purposes of this study, the GAMESS software package '¢' was used to calculate
all of the one- and two-electron integrals while the optimization procedures were carried out
using Mathematica.”® All of the calculations presented in the next section were performed

using the STO-3G basis set. Atomic units are used throughout unless otherwise stated.

6.3 Results and Discussion

The LCFG method has been tested on the deprotonation of the HO-X molecule, where
X denotes the designable site containing the superimposed functional groups. This pro-
cess was chosen as it represents a reasonably simple test case to determine the validity of
the method. As this reaction is a simple deprotonation, one cannot specify a transition
state, and thus, the optimization was carried out with the goal of maximizing the differ-

ence between the energies of the product (Sy) and reactant (S;) states as a function of the
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substituent in the X position.

In reality, one would often want to maximize AFE for an exothermic reaction or mini-
mize it for an endothermic process to obtain an estimate of the most stable product; how-
ever, the choice of minimizing or maximizing may in principle be left to the user. We have
used our code to predict the order of reaction energies, AE, from highest to lowest. When
a large number of functional groups is superimposed at the designable site, one would
not care about the exact order of reaction energies; however, it would likely be of interest
to determine the functional groups that would lead to a few of the highest or lowest AE
values.

For this optimization, a set consisting of five functional groups was superimposed at
the X site in the O-X bond. These substituents include -H, -F, -Cl, -CHj3, and -NH, which
were chosen to give a set of functional groups with varying electronegativities. The energy
results for this optimization are summarized in Table 6.1 where HF, MI and MII refer to
calculations obtained from a full HF benchmark calculation and the LCFG calculations
using MO coefficient matrices based on Methods I and II, respectively. From this data,
it can be noted that the energy values obtained from these LCFG optimizations contain
a significant amount of error compared to the actual HF calculations. However, as all of
the systems contain significant errors, the only concern is whether or not the errors are
relative and lead to a retention of the order of AE values. One must realize that the sole
purpose of this program is to determine the optimal substituent(s) for a given reaction.
Thus, quantitative energetics are not required for a successful application.

From the data listed in Table 6.1, it can be noted that for each of the three methods, the

order of the reaction energies from lowest to highest is as follows:

HF -Cl < -F < -NH; < -CH3 < -H
Ml -Cl < -H <« -F <« -NH; < -CH;

Ml -F < -CH3 < -NH; < -C1 < -H
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Table 6.1: Results of the LCFG optimization for the deprotonation of HO-X

Order of AE
Substituent (X) AFEHF AEM AEMI HF MI MII
-Cl 0.72076  -0.46596 0.13137 1 1 4
-F 0.82116  -0.39085 0.72762 2 3 1
-NH, 0.83662 0.10802 0.25630 3 4 3
-CH; 0.84283 0.13143 0.26460 4 5 2
-H ‘ 0.90088  -0.46523 -0.46523 5 2 5

Comparing the results from Method II to those from the true HF calculations, it is clear
that this method is ineffective in the prediction of the optimal substituent(s), at least for
this particular reaction. This is not an unexpected result as this method does not provide as
much information as the coefficient matrix used in Method 1.

At first glance, it may appear as though Method I also performed poorly in terms of
predicting the best substituents to minimize/maximize the reaction energetics; however,
one must consider how the coefficients for these systems were obtained. All of the atomic
orbital coefficients for the functional group LMOs (that are not set to zero) were obtained
directly from calculations on the specific compound (HO-X), while those for the fixed
reference were obtained from a calculation involving the reference system, ~-OH, capped
with a hydrogen atom. Thus, the MO coefficients used in the optimization of the HOH
complex are exact (with the exception of the omitted coefficients). This leads to a strong
bias for the -H substituent in the optimization and results in a spurious placement of it
within the ordering in Table 6.1 for MI and MIL

When considering the results of the optimization without the biased -H substituent, one

can note that the reaction energies obtained from the LCFG/MI calculations are identical
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to those obtained from the true HF calculations.

HF -Cl < -F <« -NH,; < -CH;

MI -Cl < -F < -NH; < -CHj;

These findings demonstrate great promise for the idea of algorithmically optimizing a re-
actant complex for a specific reaction process and serve as an important proof-of-concept

for the idea.

6.4 Future Work and Conclusions

Despite the simplicity of the test case studied here, the LCFG method of optimizing re-
action energetics appears to merit further study. Obviously, we would like to expand the
applications of this code to be suitable for any type of reaction. But first, there remains
work that can be performed to optimize the code.

Presently, much of the work carried out in these optimizations is done manually. The
integrals as well as the localized molecular orbitals for the reference system are initially
calculated in GAMESS %! after which they are imported into Mathematica’ where the
optimization is conducted. Additionally, as LMOs are not automatically arranged accord-
ing to the schematic in Figure 6.3, one must manually modify the coefficient matrices to
arrange the molecular orbitals in the proper order. For efficient use of this program, each
step of this process should be automated. In the future, we plan to develop this code as a
stand alone program in Fortran to maximize the cost savings for the method; however, the
method as is was deemed sufficient for this proof-of-concept project.

As previously mentioned, the predefined library of coefficients must be carefully con-
structed. This library will be formed in such a way to remove the bias for the reactant
complex containing a hydrogen atom at the designable site. The exact method for deter-

mining the MO coefficients for this library needs to be explored. Some possible options
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include performing calculations on a wide range of molecules containing the substituent of
interest after which an average or weighted average of the MO coefficients would be used
to determine the appropriate values of the library to minimize error. Alternatively, one
could simply optimize these coefficients in order to minimize the difference between the
actual HF energy and that which is obtained through the LCFG method. These optimiza-
tions could be carried out for a given substituent in a wide range of chemical environments
to obtain coefficients that would be unbiased to a particular class of molecules. The con-
struction of said library is a major undertaking and will require a great deal of time and
effort.

The end goal of this project is to have a fully functional program that can optimize
a reactant complex with respect to functional groups present at multiple designable sites
within the molecule. In a multiple site optimization, cost savings of the method would
increase dramatically making for the most efficient use of this code.

Finally, as mentioned in the introduction, the correlation energy, which is not included
at the HF level of theory, is often on the same order of magnitude as reaction energies. The
results reported here have been on HF calculations using minimal basis sets; however, in
order for this method to be useful as a complement to experimental chemistry, it must be
adapted in the future for use with a correlated metilod. Kohn-Sham (KS) density functional
theory (DFT) is a method which we see as a potential candidate for an accurate method as,
much like HF, an SCF routine is used to determine the contribution of éach basis function
to the KS orbitals. Although KS orbitals technically have no physical meaning since DFT
is not a wave function theory, it is still possible to obtain localized KS orbitals to use
in this method. Alternative correlated methods, such as the MPPT, CI, and CC levels
of theory are post-HF methods which employ the HF wavefunction as well as additional
corrections. The implementation of these methods would likely be more complicated than
with DFT; however, if this program is deemed successful, these post-HF methods could

also be incorporated.
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Herein, we have described the development of a novel method known as the linear com-
bination of functional groups and its application in optimizing reaction energetics. For the
simple test case of the deprotonation of the HO-X molecule, this optimization scheme has
performed surprisingly well. Although this test case is simplistic due to the small size of
the reactant, it does pose problems as the products introduce a charge on the atom neigh-
boring the functional groups. In later applications of this code, reaction sites would likely
be separated from the designable site by more than a single bond. It would be interesting
to study a series of reactions to determine the maximum distance that the designable site
can be separated from the reaction site where the method can still accurately predict the
optimal substituent.

It must be reiterated that this project is still in the stages of infancy. There is a great deal
of work that can still be done in this area; however, the results that have been obtained thus
far have demonstrated great potential for the idea. There will always be some adjustment to
the method that can be made to improve the predictive accuracy, but it is essential to begin at
the simplest starting point to avoid the addition of any unnecessary, time-consuming steps.
This is the point to which the program has been described in this chapter; however, if,
upon the inclusion of the library coefficients, the accuracy proves to be inadequate, one can
always modify the method of fragmenting the energy expression or allow for relaxation of
the predetermined LMOs of the functional group. Nonetheless, further research is essential

to determine what methods will prove most effective and which ones need reconsidering.
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7 Conclusion

This thesis has highlighted the details of two separate research projects: the first, which
was covered in Chapters 2-5, involved the study of electronic structure while the second,
described in Chapter 6, pertained to the development of a novel method for the optimization
of reaction processes. This chapter will serve to summarize the major conclusions that
were drawn from the data generated in this research and discuss future avenues of research

involving these projects.

7.1 Summary

Chapters 2 and 3 detailed the development of new probability densities that provide novel
ways of studying electronic structure. The intex and angular intex densities have been
developed for s-type orbitals and have been used to study the distribution of electrons in
two-electron systems. These two densities have each been employed to elucidate informa-
tion regarding correlation effects and the nature of the secondary Coulomb hole in addition
to the general electronic structure of such systems.

In order to make these densities applicable to the study of the electronic structure of
molecules, the expressions for the intex and angular intex integrals must be expanded for
the use of orbitals with higher angular momenta. Once these expressions are obtained, the
intex density and angular intex densities can be used for analyses of a wide range of atomic
and molecular systems. It would be interesting to observe the intex correlation hole of

molecules and use it to analyze the secondary Coulomb holes in these molecular systems
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and note how they compare to those of atomic systems.

The intex density, described in Chapter 2, demonstrated that HF methods do not favour
large electronic separations in all configurations as the Coulomb hole, AP(u), suggests.
Instead, the intex correlation hole demonstrates that this probability is intrinsically linked
to the centre of mass variable, R, and correlated treatments appear to favour large values of
u for electronic configurations where u ~ 2R.

However, from Chapter 3, we know that this assessment is also incomplete. When av-
eraging over all angles in the system, it does provide an accurate description of the effects
of correlation; however, the angular-dependent intex density, X (R, u,fg,) has demon-
strated that this observation is dependent on the angle between the R and u vectors. When
this angle is equal to #/2 (or 90°) and the electrons are equidistant from the nucleus,
HF treatments are more probable both when averaging over all values of R and u (i.e.
AHF(7/2) > AF=act(1/2)), but also at all configurations with large u regardless of the
value of the centre of mass radius. However, as 0z, is decreased towards O (or increased
towards ), the probability in correlated treatments becomes greater on average and we
begin to see a preference in correlated treatments of the configurations where u ~ 2R.
Nonetheless, it has been noted that at small values of R and large values of u, there is
a greater probability of systems having these configurations under the HF method than a
correlated treatment, regardless of the value of fg,. Thus, this angular work has not only
provided a new way of looking at electron pairs, but has demonstrated that the secondary
Coulomb hole results from all possible relative configurations of the R and u vectors; how-
ever, the largest contributors to the effect are those configurations where the angle between
said vectors is approaching 7 /2 radians.

Chapter 4 acted as a final and summary chapter for the studies on the secondary Coulomb
hole. By studying the effect of the external potential on the secondary Coulomb hole, we
were able to determine the dependence of the hole on the form of the nuclear potential.

From the data obtained thus far, it appears that an attractive external potential is required
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for correlation to lead to the contraction of distant electrons. With a very noticeable sec-
ondary negative region present for excited states of two electron systems, it is believed
that the secondary hole is a result of nuclear screening. All of the data obtained thus far
supports this theory; however, it remains to determine the intracule for 3-ballium at the
UHF level of theory. If the secondary Coulomb hole does exist for this system, it would
contradict this hypothesis concerning shielding; however, as previously explained, it is not
expected that the hole will exist for ballium. Understanding the secondary Coulomb hole
is essential for a more accurate understanding of the HF model and its deficiencies. Having
a complete understanding of the method could potentially lead to the development of more
efficient correlated methods. As current correlated methods such as CI and CC are purely
mathematically motivated, this greater understanding of the HF and exact position intrac-
ules could lead to the determination of the correlation energy through physically motivated
methods such as intracule functional theory.

In Chapter 5, we detailed the analysis of an effect similar to the Coulomb hole which
results from the comparison of the effects on interelectronic separations using basis sets
with and without polarization functions. It had been previously noted that polarization
functions led to a contraction of electron pairs, but there was no explanation as to why
this occurs. One might expect that the addition of polarization functions would provide
more flexibility for electronic motion and lead to a concomitant increase in interelectronic
separations. However, through the study of each component of the energy in polarized and
unpolarized basis sets as well as the Coulomb hole and differences in the electron density
Ap(r), it was determined that by incorporating polarization functions, these orbitals cause
electrons to shift towards the bonding regions to improve the description of chemical bonds
in molecules. For this reason, this effect appears to be a feature of molecular systems while
there appears to be no such trend for the atomic systems. Through this study, we were
able to correlate the behaviour in the position intracule (basis antihole) with the increase in

electron density in the bonding regions of molecules.
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While the first four results and discussion chapters focussed on the analysis of elec-
tronic structure, Chapter 6 focussed on a separate project involving the development of a
program capable of optimizing reaction energetics with respect to a set of functional groups
superimposed at a designable site within the molecule. We have demonstrated the utility
of this program through the optimization of a deprotonation reaction of an HO-X molecule
where X represents the functional site which is optimized. Although this reaction is very
simple, the theory involved in this code should apply to a reactant complex of any size. As
mentioned in that chapter, the foundation for this program has been established but there
are still many areas which can be explored to expand the applicability of the code and

improve its predictive capabilities.
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Appendix A

In Chapter 4, we developed correlations between the strength of the secondary Coulomb
hole and different properties of the intracule that are related to the diffuseness of said den-
sity. The correlations presented in that chapter could essentially be applied to any atom
or molecule while maintaining their relevance. Here, we present two new correlations, the
first of which is really only relevant for atoms, while the second would only apply to a set
of ions in an isoelectronic series.

For one of the previous correlations, we had noted that the first moment of the position
intracule, (u), yielded the average value of u in that system. For a system with two elec-
trons, when both of the electrons are considered simultaneous, they tend to adopt different
radii in order to avoid one another. Thus, we can consider two new moments which give
the average inner radius, (r.), and the average outer radius, (r- ). These values have been

previously defined by Koga as 62

(re) = / / p(r1,72) X Min(ry,r5) dry dry (N
o Jo

(rs) = / / p(r1,72) X Max(ry, ry) dry dre )
o Jo

We will denote the difference between these two radii as Ar;, given simply by
Ario = (r5) — (r<) 3

This new variable describes the average radial separation of the two electrons in the system.
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Figure A.1: Correlation between a) the average radial separation and the strength of the secondary Coulomb
hole, and b) the formal charge (FC) of the ion and the inverse of the secondary hole strength.

The relationship between Ar,, and the strength of the secondary Coulomb hole is given in
Figure 1a. One can see that the trend is linear and indicates that as the electrons increase
their radial separation, the size of the secondary hole increases. These data substantiate the
idea that HF theory overestimates screening when the electrons are far apart.

As mentioned earlier, the second correlation that will be discussed here is only relevant
for a given isoelectronic series. This relationship concerns the formal charge (FC) on the
ion with the inverse of the strength of the secondary hole (i.e. S~!). The formal charge is
expressed in atomic units in terms of the elementary charge e which in ST units is equal to
1.602 x 1071°C. The results of this correlation are given in Figure 1b. This relationship
is analogous to those that were explored in Chapter 4 as the electron density would be less
diffuse as the ionic charge is increased. Thus, as there is a much smaller probability that
the electrons will be far apart, the strength of the secondary Coulomb hole decreases as was

noted in the previously studied relationships.
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Appendix B

In the study of polarization effects presented in Chapter 5, all contributors to the energy
were analyzed to determine which components compensated for the increase in electron
repulsion energy to lead to the overall decrease in the total energy required by the varia-
tional theorem. Tabulated below are all of the energy differences for the seven basis set
comparisons for each individual element of the energy.

Table B.1: AE,,; for the seven basis set comparisons.

AEltot

System  Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Al -0.00279 -0.00213 -0.00213 -0.00170 -0.00003 -0.00337 -0.00391
Ar -0.00159 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
B -0.00255 -0.00308 -0.00304 -0.00072 -0.00001 -0.00322 -0.00374
Be -0.00018 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C -0.00302 -0.00302 -0.00300 -0.00067 -0.00001 -0.00314 -0.00365
Cl -0.00502 -0.00356 -0.00356 -0.00097 -0.00200 -0.00385 -0.00645
F -0.00410 -0.00272 -0.00270 -0.00077 -0.00115 -0.00279 -0.00453
He 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Li -0.00014 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mg -0.00039 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
N -0.00435 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Na -0.07491 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Ne -0.00053 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0] -0.00362 -0.00272 -0.00265 -0.00079 -0.00115 -0.00283 -0.00453
P -0.00120 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
S -0.00454 -0.00319 -0.00319 -0.00119 -0.00198 -0.00375 -0.00631
Si -0.00335 -0.00257 -0.00256 -0.00154 -0.00004 -0.00364 -0.00418
BeH -0.00477 -0.00403 -0.00393 -0.00044 -0.00010 -0.10138 -0.10103
CH -0.01560 -0.01540 -0.01520 -0.00206 -0.00040 -0.01852 -0.02128
CHy(*4,) -0.02314 -0.02333 -0.02312 -0.00288 -0.00041 -0.02278 -0.02664
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Table B.1: (Continued.)

Afatot

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

CH(®B;) -0.01374 -0.01410 -0.01418 -0.00153 -0.00064 -0.01362 -0.01661
CH; -0.01781 -0.01817 -0.01823 -0.00219 -0.00089 -0.01821 -0.02163
CH;Cl1 -0.04410 -0.04320 -0.04230 -0.00569 -0.00281 -0.04706 -0.04775
CH;SH  -0.06323 -0.06255 -0.06199 -0.00755 -0.00328 -0.06310 -0.06809

CH, -0.02118 -0.02091 -0.02072 -0.00266 -0.00076 -0.02242 -0.02435
Cly -0.05111 -0.04678 -0.04547 -0.00811 -0.00836 -0.05404 -0.06021
CIF -0.04455 -0.03658 -0.03678 -0.01137 -0.00610 -0.03608 -0.05322
ClO0 -0.06385 -0.05844 -0.05785 -0.01084 -0.00808 -0.05780 -0.07172
CN -0.04205 -0.04257 -0.04210 -0.00414 -0.00268 -0.04228 -0.04977
CO -0.07011 -0.06857 -0.06811 -0.00604 -0.00388 -0.07003 -0.07651
CO, -0.11789 -0.11859 -0.11873 -0.00961 -0.00824 -0.11782 -0.13630
CS -0.06486 -0.06517 -0.06464 -0.00782 -0.00302 -0.06532 -0.07262
Fy -0.02774 -0.01817 -0.01777 -0.00630 -0.00446 -0.01880 -0.02728
H, -0.00454 -0.00450 -0.00451 -0.00055 -0.00001 -0.00414 -0.00499

H,CCH, -0.03432 -0.03534 -0.03534 -0.00431 -0.00265 -0.03458 -0.04383
H,CO -0.06104 -0.05882 -0.05976 -0.00616 -0.00388 -0.06021 -0.06809
HoNNH, -0.06433 -0.05938 -0.06004 -0.00612 -0.00242 -0.07228 -0.06513
H,O -0.03814 -0.03704 -0.03779 -0.00414 -0.00172 -0.04629 -0.04061
H,S -0.04814 -0.04679 -0.04668 -0.00562 -0.00190 -0.04355 -0.05081
H;CCH; -0.04072 -0.04006 -0.03979 -0.00486 -0.00160 -0.04282 -0.04644
H;COH  -0.05914 -0.05582 -0.05657 -0.00661 -0.00326 -0.06159 -0.06300
HCCH -0.02869 -0.02955 -0.02969 -0.00337 -0.00295 -0.02862 -0.03770

HCl -0.02924 -0.02856 -0.02835 -0.00361 -0.00160 -0.02745 -0.03185
HCN -0.04799 -0.04916 -0.04850 -0.00456 -0.00309 -0.04858 -0.05716
HCO -0.06357 -0.06275 -0.06307 -0.00625 -0.00395 -0.06357 -0.07177
HF -0.02795 -0.02477 -0.02484 -0.00308 -0.00172 -0.03090 -0.02718

HOC1 -0.05987 -0.05408 -0.05368 -0.00987 -0.00620 -0.05900 -0.06677
HOOH -0.06720 -0.05983 -0.05988 -0.00771 -0.00416 -0.07035 -0.06558

Li, -0.00068 -0.00018 -0.00017 -0.00001 -0.00001 -0.00009 -0.00012
LiF -0.01331  -0.00661 -0.00427 -0.00379 -0.00018 -0.01246 -0.01072
LiH -0.00192 -0.00113 -0.00114 -0.00028 -0.00004 -0.00233 -0.00164
N, -0.07491 -0.07527 -0.07503 -0.00682 -0.00322 -0.07534 -0.08800
Na, -0.00028 -0.00032 -0.00031 -0.00033 -0.00010 -0.00017 -0.00022
NaCl -0.00858 -0.00723 -0.00712 -0.00289 -0.00066 -0.00800 -0.00944
NH -0.01960 -0.01867 -0.01831 -0.00226 -0.00039 -0.16107 -0.02051
NH, -0.03238 -0.03176 -0.03169 -0.00386 -0.00075 -0.11049 -0.03524
NH; -0.03393 -0.03218 -0.03267 -0.00267 -0.00027 -0.04060 -0.03583
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Table B.1: (Continued.)

AEtot

System  Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

NO -0.07253  -0.06952 -0.06930 -0.00684 -0.00430 -0.07337 -0.08029
0, -0.06921 -0.05875 -0.05811 -0.00807 -0.00470 -0.30773 -0.06690
OH -0.02494 -0.02364 -0.02367 -0.00293 -0.00153 -0.02732 -0.02647
Py -0.06901 -0.06938 -0.06842 -0.01443 -0.00382 -0.07323 -0.08059
PH, -0.04294 -0.04001 -0.04005 -0.00521 -0.00132 -0.03781 -0.04414
PH; -0.05810 -0.05384 -0.05383 -0.00594 -0.00128 -0.04929 -0.05728
S, -0.07843 -0.07515 -0.07395 -0.01615 -0.00900 -0.23349 -0.09399
Siy -0.02620 -0.03514 -0.03398 -0.01296 -0.00131 -0.02126 -0.03560

SioHg -0.09872 -0.09221 -0.09155 -0.00914 -0.00241 -0.07941 -0.09628
SiH,(*A;) -0.03276 -0.03042 -0.03028 -0.00340 -0.00061 -0.02727 -0.03221
SiH,(®*By) -0.02799 -0.02605 -0.02597 -0.00445 -0.00081 -0.02381 -0.02936

SiHj -0.04390 -0.04064 -0.04061 -0.00508 -0.00104 -0.03497 -0.04399
SiH,4 -0.05724 -0.05288 -0.05267 -0.00525 -0.00109 -0.04370 -0.05508
Si0 -0.07734 -0.06417 -0.06557 -0.01306 -0.00329 -0.05908 -0.07967
SO -0.09578 -0.08707 -0.08810 -0.01927 -0.00881 -0.08291 -0.10749
SO, -0.26486 -0.24128 -0.24080 -0.04580 -0.01806 -0.22806 -0.28326
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Table B.2: A E7 for the seven basis set comparisons.

AEr
System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Al -0.08343 0.00814 0.00818 -0.00410 0.00006 0.00807 0.00372
Ar -0.33576  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
B -0.00372 0.00536 0.00587 -0.00182 0.00003 0.00568 0.00374
Be -0.00196 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C 0.00549 0.00505 0.00538 -0.00145 0.00003 0.00527 0.00361
Cl -0.29022 0.00847 0.00847 -0.00299 0.00399 0.00846 0.00871
F -0.19701 0.00493 0.00511 -0.00134 0.00178 0.00573 0.00537
He 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Li 0.00463 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mg -0.04042 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
N -0.08240 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Na 0.00053 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Ne -0.11270 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000
0] -0.14661 0.00463 0.00501 -0.00127 0.00183 0.00527 0.00513
P -0.21532  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000
S -0.24823 0.00844 0.00844 -0.00348 0.00375 0.00796 0.00787
Si -0.12944 0.00882 0.00891 -0.00445 0.00005 0.00818 0.00397
BeH -0.00372 0.00538 0.00472 -0.00020 0.00081 0.09114 0.09273
CH -0.00336 -0.00319 -0.00166 -0.00236 -0.00032 -0.02098 -0.00216
CHy(*4;) -0.02014 -0.01322 -0.01107 -0.00219 -0.00143 -0.03913 0.00868
CH,(®B;) -0.05282 -0.00990 -0.01017 0.00316 -0.00459 -0.03244 0.01384
CH; -0.06179 -0.01469 -0.01443 0.00495 -0.00392 -0.04587 0.02189
CH;C1 -0.47581 -0.07913 -0.07256 -0.00700 -0.01004 -0.17653 -0.03800
CH3;SH  -0.46683 -0.08676 -0.08226 -0.00806 -0.01011 -0.21867 -0.04743
CH, -0.06402 -0.01789 -0.01521 0.00837 -0.00287 -0.06149 0.03332
Cl, -0.86124 -0.17659 -0.17194 -0.05284 -0.01428 -0.26833 -0.24268
CIF -0.71928 -0.13091 -0.13387 -0.05708 -0.01488 -0.14834 -0.21393
ClO -0.76687 -0.19780 -0.19656 -0.06779 -0.02480 -0.26294 -0.26937
CN -0.20272 -0.10480 -0.10092 -0.00979 -0.00790 -0.12377 -0.07186
CO -0.22360 -0.06952 -0.06994 -0.00507 -0.00692 -0.09716 -0.02562
CO, -0.42445 -0.00924 -0.10992 -0.01896 -0.01178 -0.19627 -0.08192
CS -0.43968 -0.11710 -0.11130 -0.01860 -0.00767 -0.21935 -0.10384
) -0.50506 -0.05463 -0.05430 -0.00476 -0.00592 -0.05074 -0.08725
H, 0.00314 0.00415 0.00453 0.00097 -0.00013 0.00344 0.00499
H,CCH, -0.11991 -0.03422 -0.03303 0.00373 -0.00181 -0.09061 0.03318
H,CO -0.26588 -0.06940 -0.07357 -0.00863 -0.00504 -0.14340 -0.02177
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Table B.2: (Continued.)

Ay

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

H,NNH, -0.29085 -0.06109 -0.06422 -0.01341 -0.00357 -0.17172 0.03339
H,O -0.18602 -0.02611 -0.02834 -0.01484 0.00204 -0.07870 0.00664
HoS -0.37452  -0.03825 -0.03697 -0.00865 -0.00179 -0.12820 -0.04201
H;CCH3; -0.13620 -0.03720 -0.03340 0.00958 -0.00612 -0.12779 0.05759
H;COH -0.27405 -0.06351 -0.06431 -0.01208 -0.00489 -0.14304 0.00453
HCCH -0.10815 0.00438 0.00461 -0.00992 -0.01430 -0.06900 -0.02314

HCl1 -0.37973 -0.02179 -0.02073 -0.00827 -0.00360 -0.08213 -0.02479
HCN -0.13413  -0.04086 -0.03671 -0.00390 -0.00783 -0.08517 -0.02314
HCO -0.25845 -0.07557 -0.07771 -0.01051 -0.00612 -0.12867 -0.03628
HF -0.22976 -0.01730 -0.01800 -0.01473 -0.00110 -0.04266 -0.00868

HOC1 -0.66075 -0.13372 -0.13325 -0.04772 -0.01524 -0.19021 -0.17698
HOOH -0.43554 -0.08140 -0.08259 -0.04233 -0.00313 -0.15202 -0.05830

Liy 0.00293  0.00056 0.00050 -0.00033 -0.00010 -0.00149 0.00014
LiF -0.19178 -0.02145 -0.00477 -0.00393 -0.00107 -0.03243 -0.04733
LiH 0.00673  0.00157 0.00148 0.00011 0.00004 -0.00441 0.00326
Ny -0.25661 -0.07752 -0.07548 -0.01333 0.00209 -0.13794 -0.03058
Na, 0.00789  0.00087 0.00088 0.00096 0.00099 0.00697 0.00973
NaCl -0.28767 -0.00405 -0.00737 -0.00687 0.00279 -0.00277 -0.01481
NH -0.08900 -0.01096 -0.00925 -0.00609 0.00187 0.10219 -0.00074
NH, -0.09861 -0.01863 -0.01790 -0.00781 0.00163 0.05831 0.01057
NH; -0.11813  -0.02272 -0.02404 -0.00041 0.00156 -0.07815 0.03153
NO -0.45017 -0.16052 -0.16282 -0.02723 -0.00734 -0.24078 -0.12917
) -0.55703 -0.13201 -0.12788 -0.04406 -0.00842 -0.67596 -0.11104
OH -0.16367 -0.01282 -0.01265 -0.01335 0.00273 -0.04040 0.00002
Py -0.68117 -0.13313 -0.12530 -0.05494 -0.01125 -0.29387 -0.16110
PH, -0.27689 -0.01483 -0.00779 0.00075 -0.08812 -0.12829 -0.03290
PH3 -0.31334 -0.02342 -0.02252 -0.00429 -0.00045 -0.12829 -0.03290
Sa -0.88673 -0.20359 -0.19534 -0.06919 -0.02111 -0.55062 -0.26344
Si -0.38593 -0.04325 -0.03706 -0.04049 -0.00642 -0.30412 -0.06558
SioHg -0.45735 -0.00722 -0.00311 -0.00963 0.00336 -0.19714 -0.01318

SiHy(*A;) -0.16707 -0.00879 -0.00758 -0.00502 0.00067 -0.05150 -0.01013
SiH,(®B;) -0.18378 -0.00019 0.00053 -0.00681 0.00175 -0.04122 -0.00511

SiHj -0.18446 0.00290 0.00364 -0.00533 0.00304 -0.05846 -0.00074
SiH, -0.19887 -0.00324 -0.00112 -0.00381 0.00347 -0.08305 -0.00522
SiO -0.38220 -0.08018 -0.09134 -0.04157 -0.00377 -0.08206 -0.13815
SO -0.72189 -0.22143 -0.23172 -0.08270 -0.02005 -0.29361 -0.31366
SO, -1.33445 -0.58339 -0.58478 -0.14535 -0.03904 -0.77499 -0.73453
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Table B.3: AE,y for the seven basis set comparisons.

AEeN

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Al 0.05600 -0.03512 -0.03558 0.01887 -0.00018 -0.02327 -0.01247
Ar 0.35105 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
B 0.00360 -0.00687 -0.00860 0.00532 -0.00001 -0.00632 -0.00298
Be 0.00722  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C -0.01067 -0.00573 -0.00683 0.00405 -0.00165 -0.25209 -0.25533
Cl 0.29334  -0.02004 -0.02003 0.00860 -0.00862 -0.01560 -0.01802
F 0.19474  -0.00569 -0.00648 0.00361 -0.00225 -0.00604 -0.00497
He 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Li -0.00357 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mg 0.03288  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
N 0.08751  0.00000 0.00000 0.00000 0.00000 0.00000 . 0.00000
Na -0.00121 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Ne 0.11165 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
o 0.15256  -0.00568 -0.14619 0.00389 -0.00260 -0.00555 -0.00518
P 0.22724  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
S 0.24735  -0.02423 -0.02417 0.01117 -0.00945 -0.01564 -0.01873
Si 0.11347  -0.02947 -0.03011 0.01660 -0.00009 -0.01908 -0.01070
BeH -0.01537 -0.02246 -0.02170 -0.00088 -0.00165 -0.25209 -0.25533
CH -0.04475 -0.04260 -0.04609 0.00146 -0.00029 -0.02148 -0.05172
CHy(*4;) -0.05931 -0.07093 -0.07545 -0.00662 0.00069 -0.03878 -0.10751
CH,(®B;) 0.01617 -0.03552 -0.03300 -0.00726 0.00322 -0.00593 -0.06835
CH; 0.01870 -0.03934 -0.03786 -0.01054 0.00155 -0.00107 -0.08793
CH;Cl1 0.32388 -0.10776 -0.11545 -0.02803 -0.00280 -0.04422 -0.18763
CH;SH 021117 -0.21907 -0.22544 -0.03800 -0.00521 -0.08996 -0.30249
CH, 0.01775 -0.03814 -0.04272 -0.01715 0.00106 0.00799 -0.10427
Cl, 0.57235 -0.13461 -0.13388 -0.03565 -0.04534 -0.01549 -0.22294
CIF 0.51010 -0.06743 -0.04740 -0.01842 -0.01515 -0.04397 -0.08028
ClO 0.50315 -0.09446 -0.07891 0.01207 -0.01148 -0.02676 -0.09061
CN -0.02695 -0.12726 -0.13255 -0.01296 -0.00373 -0.10706 -0.19345
CO -0.13948 -0.28497 -0.27155 -0.02720 -0.01499 -0.26967 -0.36420
CO, -0.19679 -0.54085 -0.48628 -0.03042 -0.03187 -0.47403 -0.62947
CS 0.00485 -0.35027 -0.36962 -0.03745 -0.01829 -0.23562 -0.44689
F, 0.29190 -0.06147 -0.04853 -0.02274 -0.01194 -0.07660 -0.09789
H, -0.01403 -0.01559 -0.01614 -0.00205 0.00007 -0.01388 -0.01745
H,CCH, 0.00582 -0.10053 -0.09950 -0.02159 -0.00991 -0.04292 -0.20507
H,CO 0.00053 -0.21199 -0.18740 -0.01837 -0.01300 -0.13948 -0.28788
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Table B.3: (Continued.)

AE@N

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

H,NNH, 0.05684 -0.17348 -0.15255 -0.01466 -0.00602 -0.12159 -0.29617
H,0O 0.07013  -0.10374 -0.08990 0.00590 -0.00856 -0.08459 -0.14308
H,S 0.16931 -0.21351 -0.21708 -0.02505 -0.00728 -0.08710 -0.24271
H;CCH; 0.03840 -0.07886 -0.08652 -0.02967 0.00168 0.00628 -0.20193
H;COH  0.08957 -0.13564 -0.11982 -0.01282 -0.00627 -0.07792 -0.22574
HCCH -0.02547 -0.14987 -0.15024 -0.00550 0.00281 -0.07468 -0.14645

HC1 0.27663  -0.12289 -0.12338 -0.00870 -0.00303 -0.04216 -0.14256
HCN -0.11803 -0.21345 -0.21843 -0.02471 -0.00716 -0.17481 -0.26848
HCO -0.02229 -0.21313 -0.19555 -0.01213 -0.01368 -0.16238 -0.28101
HF 0.14956  -0.06472 -0.05457 0.00717 -0.00446 -0.07130 -0.07131

HOC1 040143  -0.13917 -0.11746 -0.01899 -0.01249 -0.12324 -0.17717
HOOH 0.14490 -0.18122 -0.15379 -0.00657 -0.01301 -0.17415 -0.23275

Lio 0.00203  -0.00250 -0.00244 0.00037 -0.00015 -0.00084 -0.00108
LiF 0.18878 0.03261 -0.01444 -0.02191 -0.00032 0.12396 0.07409

LiH -0.01983 -0.00957 -0.00937 -0.00288 -0.00041 -0.01193 -0.01410
N» -0.12363 -0.31241 -0.31798 -0.02232 -0.01935 -0.25463 -0.42637
Na, -0.01727 -0.01123 -0.01154 -0.00526 -0.00093 -0.02293 -0.02575
NaCl 0.15251  -0.13930 -0.12250 -0.01662 -0.01833 -0.08268 -0.14987
NH 0.03843  -0.05040 -0.05338 0.00358 -0.00295 -0.20267 -0.06368
NH, 0.00446 -0.09152 -0.09152 0.00003 -0.00386 -0.15557 -0.13124
NH; 0.01762 -0.09035 -0.08391 -0.00975 -0.00470 -0.05573 -0.16066
NO 0.12296  -0.16704 -0.15678 -0.00598 -0.01154 -0.10230 -0.24613
O, 0.23968 -0.14914 -0.14619 -0.00269 -0.01314 0.34515 -0.22421
OH 0.10383  -0.06356 -0.05959 0.01072 -0.00623 -0.04859 -0.07578
P, 0.02632 -0.59634 -0.62523 -0.09065 -0.03384 -0.48214 -0.76372
PH, 0.04940 -0.23035 -0.23372 -0.01994 -0.00486 -0.11553 -0.23509
PH3 0.06193  -0.30050 -0.30484 -0.04487 -0.00356 -0.14328 -0.31772
Ss 0.40438 -0.36533 -0.38258 -0.03473 -0.05340 -0.23419 -0.48611
Siy 0.15724  -0.37625 -0.39770 -0.04719 -0.01201 0.19795 -0.34860

SipHg -0.14636  -0.63157 -0.64723 -0.07256 -0.02074 -0.28199 -0.66490
SiH,(*A;) -0.06323 -0.20851 -0.21313 -0.01931 -0.00281 -0.13299 -0.21849
SiHo(®B;) 0.03143  -0.15941 -0.16146 0.20919 -0.00589 -0.06939 -0.13655

SiHj -0.06226 -0.24702 -0.24843 -0.00664 -0.00885 -0.11268 -0.24276
SiH4 -0.12677 -0.31094 -0.31902 -0.03602 -0.01035 -0.14573 -0.32874
Si0 -0.30890 -0.48996 -0.44031 -0.05593 -0.02614 -0.40936 -0.51458
SO 0.19488 -0.29901 -0.24780 0.01461 -0.02997 -0.17556 -0.26583
SO, -0.21171  -0.85288 -0.76423 -0.15915 -0.07968 -0.60523 -0.97211
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Table B.4: AFE,, for the seven basis set comparisons

AEee

System  Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Al 0.02465 0.02485 0.02527 -0.01648 0.00009 0.01183 0.00484
Ar -0.01688 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
B -0.00243 -0.00158 -0.00031 -0.00422 -0.00003 -0.00257 -0.00450
Be -0.00543 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C 0.00216 -0.00234 -0.00155 -0.00328 -0.00003 -0.00334 -0.00483
Cl -0.00814 0.00800 0.00799 -0.00657 0.00263 0.00329 0.00286
F -0.18339 -0.00195 -0.00132 -0.00304 -0.00069 -0.00247 -0.00493
He 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Li -0.00119 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mg 0.00714 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
N -0.00554 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Na 0.00068  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Ne 0.00051  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
O -0.00957 -0.00166 -0.00007 -0.00341 -0.00037 -0.00255 -0.00448
P -0.01312  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
S -0.00366 0.01262 0.01255 -0.00888 0.00371 0.00392 0.00455
Si 0.01262 0.01808 0.01864 -0.01369 0.00000 0.00725 0.00255
BeH 0.01097 0.01305 0.01304 0.00064 0.00074 0.05957 0.06158
CH 0.03251 0.03039 0.03255 -0.00115 0.00021 0.02393 0.03260
CHy(*4;) 0.05631 0.06082 0.06340 0.00593 0.00033 0.05514 0.07219
CH,(®B;) 0.02291 0.03132 0.02899 0.00257 0.00071 0.02475  0.03790
CH; 0.02528 0.03587 0.03405 0.00341 0.00148 0.02874 0.04441
CH;Cl1 0.10782 0.14369 0.14571 0.02934 0.01002 0.17369 0.17789
CH3SH  0.19244 0.24327 0.24571 0.03851 0.01205 0.24552  0.28183
CH, 0.02508 0.03512 0.03720 0.00613 0.00106 0.03108 0.04660
Cl, 0.23777 0.26441 0.26035 0.08039 0.05126 0.36916 0.40541
CIF 0.16462 0.16176  0.14450 0.06413 0.02392 0.15623 0.24100
ClO 0.19987 0.23382 0.21763 0.04487 0.02820 0.23189 0.28827
CN 0.18762 0.18949 0.19137 0.01861 0.00895 0.18856 0.21554
CO 0.29298 0.28592 0.27338 0.02623 0.01804 0.29681 0.31332
CO, 0.50334 0.52160 0.47747 0.03977 0.03541 0.55248 0.57508
CS 036997 0.40220 0.41628 0.04823 0.02294 0.38966 0.47810
| % 0.18542 0.09792 0.08506 0.06120 0.01340 0.10853  0.15790
H, 0.00635 0.00694 0.00709 0.00054 0.00005 0.00631 0.00748
H,CCH, 0.07977 0.09942 0.09718 0.01355 0.00907 0.09894  0.12805
H,CO 0.20431 0.22257 0.20121 0.02084 0.01416 0.22267 0.24156
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Table B.4: (Continued.)

AE,,

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

H,NNH, 0.16967 0.17519 0.15673 0.02195 0.00717 0.22103  0.19765
H,O 0.07675 0.09282 0.08044 0.00480 0.00481 0.11701  0.09583
H,S 0.15707 0.20498 0.20737 0.02808 0.00717 0.17175 0.23391
H;CCH; 0.05708 0.07600 0.08013 0.01523 0.00283 0.07869  0.09790
H;COH  0.12534 0.14333  0.12756 0.01828 0.00789 0.15937 0.15821
HCCH 0.10494 0.11594 0.11594 0.01205 0.00855 0.11507 0.13189
HCl 0.07387 0.11612 0.11677 0.01336 0.00503 0.09684 0.13550
HCN 0.20417 0.20514 020664 0.02405 0.01190 0.21140 0.23446
HCO 0.21717 0.22595 0.21018 0.01639 0.01584 0.22748  0.24553
HF 0.05225 0.05725 0.04773 0.00447 0.00384 0.08306 0.05281
HOCI 0.19946 0.21881 0.19703 0.05684 0.02153 0.25445 0.28138
HOOH 0.22344  0.20279 0.17650 0.041219 0.01190 0.25582  0.22547

Liy -0.00564 0.00177 0.00177 -0.00005 0.00024 0.00224 0.00082
LiF -0.01031 -0.01777 0.01494 0.02204 0.00120 -0.10399 -0.03747
LiH 0.01118 0.00687 0.00674 0.00250 0.00024 0.01401 0.00920
N2 0.30533 031466 0.31843 0.02883 0.01404 031721 0.36895
Na, 0.00909 0.01004 0.01035 0.00396 -0.00016 0.01579 0.01581
NaCl 0.12659 0.13612  0.12275 0.02060 0.01487 0.07745 0.15523
NH 0.03097 0.04268 0.04432 0.00025 0.00069 -0.06059 0.04391
NH, 0.06178 0.07838 0.07773  0.00393  0.00148  -0.01323 0.08544
NH; 0.06658 0.08089 0.07528 0.00748 0.00287 0.09329  0.09330
NO 0.25467 0.25804 0.25030 0.02637 0.01457 0.26971 0.29501
0} 0.24813  0.22240 0.21596 0.03869 0.01686 0.02308 0.26835
OH 0.03490  0.05274 0.04857 -0.00030 0.00197 0.06167 0.04930
Py 0.58584 0.66010 0.68211 0.13116 0.04127 0.70279  0.84423
PH, 0.18455 0.20517 0.20778 0.02252 0.00279 0.16584 0.21443
PH; 0.24904 0.27008 027354 0.04323 0.00274 0.22228 0.29334
So 0.40392 0.49377 0.50396 0.08777 0.06551 0.55133 0.65556
Sip 0.20249 0.38436 0.40078 0.07471 0.01713 0.08491 0.37858

SipHg 0.50499 0.54658 0.55879 0.07305 0.01497 0.39972 0.58180
SiHo(*A4;) 0.19754 0.18688 0.19042  0.02093 0.00153  0.15722 0.19641
SiH,(®B;) 0.12436  0.13356  0.13496 -0.01856 0.00333  0.08681 0.11229

SiHj 0.20283 0.20348 0.20418 0.00689 0.00478 0.13617  0.19951
SiH, 0.26841 0.26130 0.26747 0.03458 0.00579 0.18509  0.27888
SiO 0.61375 050597 0.46608 0.08444 0.02662 0.43234 0.57306
SO 0.43124 0.43337 0.39142 0.04882 0.04121 038626 0.47201
SO, 1.28130  1.19499 1.10820 0.25870 0.10066 1.15216  1.42337
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Table B.5: AFE); for the seven basis set comparisons.

AEJ

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Al 0.02953 0.03170 0.03216 -0.01309 0.00047 0.02098 0.01530
Ar -0.02483  0.00000  0.00000 0.00000 0.00000 0.00000 0.00000
B 0.00391 0.00658 0.00811 -0.00324 0.00016 0.00553 0.00508
Be -0.00507 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C 0.00734  0.00496 0.00590 -0.00236 0.00016 0.00384 0.00370
Cl -0.00692 0.01642 0.01641 -0.00488 0.00497 0.01207 0.01514
F 0.00136  0.00432 0.00498 -0.00153 0.00019 0.00384 0.00359
He 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Li -0.00030  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mg 0.00699  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
N -0.01051 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Na 0.00079  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Ne -0.00069 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6] -0.00778 0.00478 0.00639 -0.00167 0.00060 0.00404 0.00442
P -0.01852 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
S -0.00175 0.02085 0.02079 -0.00638 0.00622 0.01312 0.01756
Si 0.01621 0.02502 0.02563 -0.01120 0.00057 0.01587 0.01247
BeH 0.01976  0.02072 0.02068 0.00124 0.00101 0.10939 0.01120
CH 0.04693 0.04634 0.04891 -0.00066 0.00094 0.05045 0.06566
CHz(*4;) 0.07190 0.07739 0.08081 0.00457 0.00072 0.06865 0.09020
CH,(®B;) 0.03597 0.04638 0.04353 0.00390 0.00127 0.03978  0.05604
CH; 0.04470 0.05753 0.05545 0.00553 0.00247 0.04976  0.07098
CH;Cl1 0.12545 0.17137 0.17377 0.03071 0.01086 0.20050  0.20979
CHsSH  0.22541 0.28666 0.28924 0.04010 0.01373 0.28559  0.32897
CH, 0.04896 0.06121 0.06371 0.00864 0.00169 0.05565 0.07827
Cl, 0.22093  0.26247 0.25899 0.07600 0.05033  0.36838  0.40022
CIF 0.15029 0.16129 0.14297 0.06170 0.02277 0.15273 0.23832
Cl0 0.18469 0.23591 0.21841 0.03838 0.02944 0.23010 0.28506
CN 0.18447 0.18892 0.19106 0.01965 0.00959 0.19093 0.21862
60) 0.32227 031774 0.30391 0.02906 0.02168 0.33015 0.35024
CO, 0.56286 0.58603 0.53723 0.04346 0.04190 0.62199 0.64705
CS 0.38019 0.43003 0.44587 0.05024 0.02614 0.41649 0.51305
F, 0.18072  0.09802 0.08418 0.06028 0.01195 0.10841 0.15600
H, 0.01270  0.01387 0.01419 0.00108 0.00009 0.01261 0.01496
H,CCH:, 0.11650 0.14076 0.13836 0.01769 0.01175 0.13953 (.18073
H,CO 0.23925 0.26365 0.23991 0.02421 0.01714 026276 0.28858
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Table B.5: (Continued.)

AE;

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

HoNNH,; 0.19273  0.20704 0.18674 0.02150 0.00857 0.25940 0.23164
H,Q 0.08634 0.10693 0.09269 0.00381 0.00572 0.13880 0.10881
H,S 0.17776  0.23280 0.23526 0.02818 0.00821 0.19651 0.26190
H;CCH3 0.09994 0.12301 0.12766 0.01939 0.00426  0.12315 0.15488
H;COH 0.15358 0.17888 0.16116 0.01966 0.00551 0.19547 0.19751
HCCH 0.13725 0.15077 0.15070 0.01478 0.01069 0.15348 0.17213
HCl1 0.07931 0.12928 0.12990 0.01320 0.00551 0.10920 0.14888
HCN 0.23862 0.24235 0.24465 0.02766 0.01478 0.25096 0.27852
HCO 0.24623 0.25967 0.24260 0.01940 0.01938 0.26232  0.28525
HF 0.05709 0.06488 0.05387 0.00450 0.00457 0.09666 0.05872
HOC1 0.19312  0.22655 0.20333 0.05328 0.02170 0.26436 0.28575
HOOH 0.23097 0.21998 0.19067 0.03915 0.01252 0.28159 0.23828

Lis -0.00412 0.00213 0.00213 -0.00009 0.00022 0.00239 0.00100
LiF -0.02101 -0.02358 0.01466 0.02377 0.00152 -0.12584 -0.04707
LiH 0.01547 0.00910 0.00895 0.00286 0.00041 0.01805 0.01219
Ny 0.33541 0.35249 035734 0.03169 0.01731 0.35589 0.41634
Nay 0.01038 0.01041 0.01074 0.00405 -0.00039 0.01678 0.01748
NaCl 0.12116  0.13806  0.12388  0.02099 0.01537 0.07331  0.15635
NH 0.03954 0.05646 0.05802 0.00037 0.00151 -0.02342 0.05839
NH, 0.07628 0.09811 0.09731 0.00307 0.00282 0.02861 0.10631
NH; 0.08093 0.10012 0.09399 0.00727 0.00373 0.11663 0.11431
NO 0.25017 0.26098 0.25192 0.02609 0.01681 0.27621  0.29982
0O, -0.00778 0.23364 0.22707 0.04105 0.01954 -0.05137 0.28349
OH 0.04389 0.06762 0.06261 0.00028 0.00335 0.07999 0.06484
Py 0.60454 0.69314 0.71700 0.13905 0.04581 0.74086 0.89172
PH, 021329 0.23842 0.24120 0.02515 0.00551 0.19650 0.25074
PH;4 0.28874 0.31376  0.31720 0.04541 0.00453 0.25992 0.33720
So 040501 051042 052193 0.09289 0.07331 0.53035 0.68754
Siy 0.20958 0.41286 0.43078 0.08331 0.01964 0.05455 0.41168

SizHg 0.61038 0.65622 0.66851 0.07979 0.01940 0.49859 0.69613
SiHo(*A4;) 022190 021151 021543  0.02153 0.00236 0.17936  0.22069
SiHo(®B;) 0.15193  0.16402  0.16558  -0.01225 0.00497 0.11854 0.14952

SiHj 025146  0.25265 0.25361 0.01300 0.00690 0.18313  0.25447
SiHy4 0.33262 032346 032995 0.03877 0.00760 0.24116 0.34314
Si0 0.63872  0.53286 0.48933 0.08902 0.02962 0.45190 0.60407
SO 0.44457 0.45720 0.41221 0.05468 0.04787 0.40861  0.50568
SO, 1.31330 1.24010 1.14690 0.26041 0.11142 1.19350 1.47770
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Table B.6: AEx for the seven basis set comparisons.

AFg

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Al -0.00488 -0.00685 -0.00689 -0.00339 -0.00037 -0.00915 -0.01046
Ar 0.00795 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
B -0.00633 -0.00816 -0.00841 -0.00098 -0.00019 -0.00810 -0.00958
Be -0.00036 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C -0.00518 -0.00731 -0.00745 -0.00092 -0.00018 -0.00718 -0.00853
Cl -0.00121 -0.00842 -0.00842 -0.00169 -0.00233 -0.00878 -0.01228
F -0.00320 -0.00627 -0.00630 -0.00151 -0.00088 -0.00631 -0.00852
He 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Li -0.00090 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mg 0.00015 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
N 0.00497  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Na -0.00011 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Ne 0.00120 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(0] -0.00179 -0.00644 -0.00646 -0.00174 -0.00097 -0.00659 -0.00891
P 0.00540 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
S -0.00191 -0.00823 -0.00824 -0.00250 -0.00250 -0.00920 -0.01302
Si -0.00359 -0.00694 -0.00699 -0.00249 -0.00047 -0.00862 -0.00991
BeH -0.00878 -0.00767 -0.00764 -0.00060 -0.00027 -0.04982 -0.05037
CH -0.01442  -0.01595 -0.01636 -0.00049 -0.00073 -0.02652 -0.03306
CHy(*4;) -0.01559 -0.01657 -0.01741 0.00135 -0.00039 -0.01352 -0.01801
CH,(®*B;) -0.01306 -0.01506 -0.01453 -0.00133 -0.00056 -0.01504 -0.01814
CH; -0.01942 -0.02166 -0.02140 -0.00212 -0.00100 -0.02102 -0.02657
CH3Cl -0.01763 -0.02768 -0.02807 -0.00138 -0.00084 -0.02681 -0.03191
CH3SH  -0.03298 -0.04338 -0.04353 -0.00159 -0.00168 -0.04008 -0.04714
CH, -0.02387 -0.02609 -0.02651 -0.00251 -0.00064 -0.02457 -0.03167
Cl, 0.01684 0.00194 0.00136 0.00439 0.00093 0.00077 0.00519
CIF 0.01434 0.00048 0.00153 0.00244 0.00115 0.00350 0.00268
ClO 0.01518 -0.00210 -0.00079 0.00659 -0.00124 0.00179 0.00321
CN 0.00315 0.00056 0.00031 -0.00104 -0.00064 -0.00237 -0.00308
CO -0.02929 -0.03183 -0.03054 -0.00283 -0.00364 -0.03335 -0.03693
CO, -0.05952 -0.06443 -0.05976 -0.00368 -0.00649 -0.06951 -0.07196
CS -0.01921 -0.02784 -0.02960 -0.00202 -0.00320 -0.02683 -0.03495
F, 0.00470  -0.00010 0.00088 0.00092 0.00145 0.00012 0.00190
H, -0.00635 -0.00694 -0.00709 -0.00054 -0.00005 -0.00631 -0.00748
H,CCH, -0.03673 -0.04135 -0.04118 -0.00414 -0.00267 -0.04059 -0.05268
H,CO -0.03494 -0.04108 -0.03870 -0.00337 -0.00299 -0.04009 -0.04702
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Table B.6: (Continued.)

ALy

System Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

H;NNH, -0.02306 -0.03185 -0.03001 0.00045 -0.00141 -0.03837 -0.03399
H,O -0.00959 -0.01412 -0.01223 0.00099 -0.00091 -0.02180 -0.01299
H,S -0.02069 -0.02782 -0.02788 -0.00010 -0.00104 -0.02476 -0.02798
HsCCH3  -0.04286 -0.04700 -0.04754 -0.00415 -0.00143 -0.04446 -0.05698
H;COH  -0.02824 -0.03555 -0.03360 -0.00138 -0.00177 -0.03610 -0.03930
HCCH -0.03231 -0.03482 -0.03476 -0.00274 -0.00215 -0.03842 -0.04024

HC1 -0.00544 -0.01316 -0.01304 0.00016 -0.00048 -0.01237 -0.01338
HCN -0.03445 -0.03721 -0.03801 -0.00361 -0.00288 -0.03957 -0.04406
HCO -0.02907 -0.03373 -0.03241 -0.00301 -0.00343 -0.03484 -0.03973
HF -0.00484 -0.00764 -0.00614 -0.00003 -0.00073 -0.01360 -0.00591

HOC1 0.00634 -0.00775 -0.00630 0.00356 -0.00017 -0.00991 -0.00438
HOOH -0.00753 -0.01719 -0.01418 0.00204 -0.00053 -0.02577 -0.01281

Lio -0.00152 -0.00036 -0.00037 0.00004 0.00002 -0.00015 -0.00018
LiF 0.01071  0.00581 0.00028 -0.00173 -0.00031 0.02186 0.00960

LiH -0.00429 -0.00223 -0.00221 -0.00036 -0.00007 -0.00404 -0.00299
N2 -0.03008 -0.03784 -0.03891 -0.00285 -0.00327 -0.03867 -0.04739
Na, -0.00129 -0.00037 -0.00039 -0.00009 0.00023 -0.00099 -0.00167
NaCl 0.00542 -0.00194 -0.00113 -0.00039 -0.00049 0.00414 -0.00112
NH -0.00857 -0.01377 -0.01370 -0.00012 -0.00082 -0.03717 -0.01448
NH; -0.01450 -0.01973 -0.01958 0.00085 -0.00134 -0.04184 -0.02087
NH; -0.01434 -0.01923 -0.01871 0.00021 -0.00087 -0.02334 -0.02101
NO 0.00450 -0.00294 -0.00163 0.00028 -0.00223 -0.00650 -0.00481
0O, -0.00338 -0.00124 -0.01112 -0.00237 -0.00268 0.07445 -0.01514
OH -0.00899 -0.01488 -0.01403 -0.00058 -0.00138 -0.01832 -0.01554
P, -0.01870 -0.03304 -0.03490 -0.00789 -0.00454 -0.03807 -0.04749
PH, -0.02874 -0.03325 -0.03342 -0.00263 -0.00272 -0.03067 -0.03630
PH;3 -0.03969 -0.04368 -0.04367 -0.00218 -0.00180 -0.03764 -0.04386
Sz -0.00108 -0.01665 -0.01798 -0.00511 -0.00781 0.02098 -0.03198
Sip -0.00709 -0.02850 -0.02999 -0.00859 -0.00251 0.03036 -0.03310

SipHg -0.10539 -0.10963 -0.10972 -0.00674 -0.00443 -0.09887 -0.11433
SiH,(*A;) -0.02436 -0.02463 -0.02501 -0.00059 -0.00083 -0.02213 -0.02428
SiH,(3B;) -0.02758 -0.03047 -0.03062 -0.00631 -0.00163 -0.03173 -0.03723

SiHj -0.04863 -0.04917 -0.04944 -0.00612 -0.00212 -0.04696 -0.05497
SiHy4 -0.06422 -0.06216 -0.06249 -0.00419 -0.00181 -0.05608 -0.06427
SiO -0.02497 -0.02689 -0.02326 -0.00457 -0.00300 -0.01956 -0.03102
SO -0.01333  -0.02383 -0.02079 -0.00586 -0.00666 -0.02235 -0.03368
SO, -0.03196 -0.04508 -0.03871 -0.00171 -0.01075 -0.04131 -0.05437
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