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ABSTRACT

The first objective o f this research was to develop and evaluate an approach to analyze 
and eommunieate the results of a large number o f simulated outbreaks of highly pathogenic 
avian influenza (HPAI) to decision-makers and policy-makers, using the North American 
Animal Disease Spread Model (NAADSM), and to make recommendations on the most effective 
HPAI control policy for Ontario, Canada, specifically, on the effect of stamping-out and ring- 
culling strategies on the magnitude of an HPAI outbreak. Negative binomial regression analysis 
was used to identify significant predictors of the number of farms infected for each scenario. 
Interaction plots were developed from the output o f the negative binomial regression analysis, to 
facilitate communication of simulation results to policy-makers and to analyze the relationship 
between movement restrictions and destruction strategy. Negative binomial regression analysis 
was appropriate for handling the right-skewed count data of the simulated HPAI outbreaks in 
Ontario, while interaction plots were an appropriate visualization tool for communication to 
policy-makers. For policy development, the modeling results suggested that stamping-out of the 
infected/detected flocks, without ring-culling, in combination with movement restrictions on 
direct and indirect contacts, would be the most appropriate policy for Ontario.

The second objective was to compare the results of simulated outbreaks of HPAI using 
randomly generated point locations and flock sizes and compare the results to those obtained 
when real data, for Ontario, Canada, were used. The NAADSM requires farm point locations and 
flock sizes; however, real location data are often unavailable. Therefore random location and 
flock size datasets are typically used. Three datasets were developed consisting of: 1) a real- 
industry dataset - real flock size and location data; 2) a “random-industry” dataset - using 
industry data for random point locations and flock sizes; and 3) a “random-census” dataset - 
using Statistics Canada agricultural census data for randomly generated point locations and 
industry data for flock sizes. Four production types were used (commercial chicken meat, 
commercial eggs, commercial turkey, and hobby poultry) for the analyses. Four outbreak 
scenarios were investigated for comparison of the real data versus both sets of randomly 
generated data, considering both a weighted median and weighted maximum number of contacts 
per day between farms, including various control strategy options (e.g. movement restrictions 
and destruction strategies). Negative binomial regression analysis and a Kolmogorov-smimov 
(K-S) equality-of-distributions test were carried out to determine if any significant difference 
existed between the three datasets. For both tests, in the majority o f the scenarios, there were 
significant differences between the datasets. The main difference was the real data had a larger 
maximum number of farms infected compared to the two random datasets, when a median 
contact structure was used but not when a maximum contact structure was used. Overall, under 
the conditions set in this particular study, randomly generated flock size and location data were 
found to be a suitable replacement for real-industry data.
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Chapter 1: GENERAL INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The Canadian poultry industry generated an annual farm gate value of $560.5 million for 

eggs destined for human consumption, and $1.55 billion and $278 million for chicken and turkey 

meat products, respectively, in 2006 (Agriculture & Agri-food Canada, 2007). In recent years, 

highly pathogenic avian influenza (HPAI) outbreaks have had devastating effects on the poultry 

industry around the world (Pozza et al., 2008), and the evolution o f new antigenic strains has 

been impacting human health as well. Currently in Canada, the control policy for notifiable avian 

influenza, consisting of all HPAI and low pathogenic avian influenza (LPAI) with the H5 and H7 

subtypes in domestic poultry, is to eliminate the disease through pre-emptive slaughter at a I km 

radius around an infected farm and through the implementation of effective movement 

restrictions (CFIA, 2009a). Due to recent avian influenza (AI) outbreaks in British Columbia in 

2004 and 2009 and in Saskatchewan in 2007, experts have begun to question the effectiveness of 

the current control policy in Canada. Policy can be defined as plans, positions or guidelines of 

government which influence decisions by government (Office of the Auditor General, 2003). 

There are many forms o f policy including a broad policy which includes government-wide 

direction; more specific policy that is developed for more specific sectors; and operational policy 

that guides decisions on programs and project selection (Office of the Auditor General, 2003).

Due to past outbreak experiences and HPAI virus spread research, different approaches 

and methodologies have been developed to guide policy development to improve animal health. 

Simulation modeling is one approach which has proven an important tool for identifying 

effective control strategies for outbreaks of foreign animal diseases, such as HPAI (Kobayashi et 

al., 2007). Various platforms have been developed to simulate the spread of contagious diseases,

I



such as AusSpread (Ward et al., 2009), Interspread Plus (Halderen et al., unpublished), and the 

North American Animal Disease Spread Model (NAADSM; Harvey et al., 2007).

Various issues are encountered when using disease modeling to inform policy 

development and decision making for incursions o f foreign animal diseases. Firstly, most o f the 

models currently used require specific farm-point locations (latitude, longitude) with farm type 

and number of animals present. In some cases, it is difficult to obtain exact farm-point locations 

for use in outbreak-simulation modeling; therefore, alternative methods need to be explored to 

accurately represent the real location. Limited research has been conducted to compare real-point 

location data and random-point location data for use in outbreak simulations. Secondly, the 

process of analyzing disease simulation modeling results and communicating these results in a 

way that can be easily grasped by decision makers and incorporated into policy can represent a 

major challenge. An approach has not previously been attempted.

The purpose of this literature review is to provide the reader with the background and 

rationale behind this thesis. We start with a review of avian influenza including its pathogenicity, 

its modes of transmission and recent outbreak history and control strategies. The various 

modeling platforms used for policy generation, such as the NAADSM, are then introduced 

followed by the approaches used to date to generate random point locations to represent the 

poultry population in these modeling platforms.

1.2 Avian influenza
1.2.1 Aetiology o f  the disease

In 1878, a disease of high mortality, defined as ‘fowl plague’, infected fowl in Italy. The 

association of this disease with influenza viruses, however, was not confirmed until 1955, when 

it was classified as HPAI (Alexander, 2000). Avian influenza viruses are negative-sense.



segmented RNA viruses in the family Orthomyxoviridae, which has several members, including 

types A, B, and C influenza viruses (Swayne & Suarez, 2000). Type A influenza viruses include 

all avian influenza viruses and can infect a variety of animals including wild birds, domestic 

poultry, swine, horses, mink, seals, and humans. Types B and C influenza viruses mainly infect 

humans (Swayne & Suarez, 2000). Type A influenza viruses have eight RNA segments, 

encoding ten different proteins, which are either surface proteins or internal proteins (Swayne & 

Suarez, 2000). The two surface (virus envelope) proteins o f interest are haemagglutinin (HA) 

and neuraminidase (NA), which have large antigenic variation, with 16 HA and 9 NA subtypes 

used to characterize the Influenza A virus (Swayne & Suarez, 2000).

HPAI viruses are not virulent for all bird species, and disease severity in any host species 

varies with bird species and virus strain (Alexander, 2007). In 2002, disease outbreaks o f HPAI 

H5NI associated with live poultry markets and chicken farms resulted in the deaths of wild birds 

and resident waterfowl, including little egret (Egretta garzetta), grey heron (Ardea cinerea), 

black-headed gull (Larus ridibundus), feral pigeon (Columba livid), and tree sparrow {Passer 

montanus) in 2 waterfowl parks in Hong Kong (Tanimura et ah, 2006).

Research has shown that primary spread of LPAI viruses into poultry is a result of wild 

bird activity, which may or may not involve direct contact with infected waterfowl (Alexander, 

2007). The evidence for the introduction o f LPAI viruses carried by wild birds into poultry can 

be summarized as follows: (1) there is a higher prevalence of infection in poultry located on 

migratory waterfowl routes; (2) there is a higher prevalence of infection in poultry kept outside, 

such as free range turkeys; (3) surveillance studies in areas with LPAI in poultry have shown 

similar variation in virus subtypes as those in waterfowl outbreaks; (4) influenza outbreaks have 

a seasonal occurrence in high-risk areas, which coincide with migratory activity; and (5) in some



documented outbreaks, there is evidence of contact with infected waterfowl at the initial 

infection site (Alexander, 2007).

Secondary spread of AI other than by wild bird activities among and between poultry 

premises is typically by mechanical transfer of feces. Spread by personnel and fomites was the 

most strongly suspected mechanism of spread in the 1983-1984 Pennsylvania outbreak 

(Alexander, 2007).

In South-east (SE) Asia, the emergence o f HPAI H5NI, in 1996, and its later spread in 

domestic poultry and wild birds across Asia and into Europe occurred from infection of 

commercial geese in Guandong province, China (Alexander, 2007). Figure 1 displays outbreaks 

in domestic poultry, as well as cases reported in wild birds in SE Asia between November 2009 

and May 2010.
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Figure 1 : Confirmed cases of avian influenza HPAI H5 outbreaks among domestic poultry and wild birds between November 2009 

and May 2010 (Courtesy of the World Health Organization).



1.2.2 Pathogenicity and affected species

1.2.2.1 Pathogenicity

Alexander (2007) states that Influenza A viruses can be divided into two groups; the 

highly virulent viruses causing highly pathogenic avian influenza (HPAI), with 100% mortality 

in domestic poultry and all other viruses causing a milder, mainly respiratory disease called low 

pathogenic avian influenza (LPAI). The HPAI viruses are restricted to subtypes H5 and H7, 

although not all H5 and H7 viruses cause HPAI. Furthermore, it appears that HPAI viruses 

typically arise through mutation o f LPAI viruses that have been introduced into poultry 

(Alexander, 2007). The mutation o f LPAI to HPAI phenotype occurs through the introduction of 

basic amino acids at the hemagglutinin cleavage site. This facilitates systemic virus replication in 

the host which causes an acute generalized disease in poultry with a mortality approaching 100% 

(Munster & Fouchier, 2009).

LPAI typically causes mild to no respiratory disease in poultry, though when combined 

with other infections or environmental conditions; it can cause more serious disease (Alexander, 

2000). Chickens and turkeys are not natural hosts for AI viruses, but can easily become infected 

by the virus. Swayne & Suarez (2000) state that, overall, mortality rates from LPAI are low, 

compared to HPAI, unless accompanied by a secondary infection or unfavorable environmental 

conditions.

1.2.2.2 Affected species

1.2.2.2.1 Wild birds

Wild birds are frequently infected with influenza viruses, with birds from the Orders 

Anseriformes and Charadriiformes being the most likely carriers. Influenza viruses have been 

isolated from untreated lake water, where large numbers of waterfowl are found. Bird-to-bird



transmission o f the vims via the fecal-oral route from surface waters has been shown to occur 

(Reeth, 2007). Though some wild bird species are capable o f carrying AI between countries or 

even continents, surveillance studies have found that some wild birds, namely the water birds 

and shore birds, in North America and Europe have a high prevalence of vimses of low vimlence 

for poultry, though this depends on the bird species and season (Reeth, 2007). Generally, wild 

waterfowl and shore birds are reservoirs for LPAI where the vims replicates and then is shed in 

their feces, respiratory tract and G1 tract, the respiratory tract has been shown to be a site of 

replication mainly for HPAI (Reeth, 2007; Parmley et al., 2011). Observations from a 

surveillance study by Yee et al. (2008) show differences in clinical signs among wild birds from 

the same taxonomic order, infected with HPAI H5N1, which is a highly vimlent strain. Mallard 

ducks (Anas platyrynchos) have been found to carry and shed HPAI H5N1 without clinical signs 

for long periods of time, whereas geese (Anser anser), mute swans (Cygnus olor) and herons, 

such as the great blue heron (Ardea herodias), die from infection (Yee et al., 2008). This was 

contradicted in a Canadian experiment by Neufeld et al. (2009) where the adult geese did not get 

sick.

It is generally thought that LPAI vimses typically do not cause disease in wild birds, 

though this information is based mainly on experimental inoculations rather than information on 

natural infections in wild migratory birds. If the birds are infected, it is possible they may 

reallocate some of their resources to boost their immune system, impacting their migratory 

ability (Gils et al., 2007). In a study by Gils et al. (2007), migratory swans were fitted with a 

GPS-collar and tracked to obtain information about their feeding and migratory performances. 

Out o f 25 birds, 3 were infected with a LPAI vims, and showed reduced feeding and migratory 

performance.



1.2.2.2.2 Domestic poultry

Galliformes, such as chickens {Gallus gallus), turkeys (Melleagris gallopavo), peafowl 

(Phasianidae) and Japanese quail (Coturnix coturnix japonica), have been found to be highly 

suseeptible to influenza viruses (Reeth, 2007; Swayne & Suarez, 2000). Quail experimentally 

inoculated with HPAI H5N1 died within 2-3 days. Dueks experimentally inoeulated with LPAI 

had no clinical signs, and HPAI H5N1 infection yielded mixed results, depending on the strain of 

virus used. One HP strain resulted in no elinical signs, while another HP strain resulted in 

neurologieal signs (Yee et al., 2008). Birds infected with HPAI are typically found dead with few 

clinieal signs observed other than depression, recumbency and a comatose state (Swayne & 

Suarez, 2000).

1.2.2.2.3 Humans

Four HPAI subtypes, H5N1, H7N3, H7N7, and H9N2, with the vast majority being 

H5N1, have been identified in humans (Reeth, 2007). HPAI H5 and H7 virus strains have eaused 

sporadic infections in humans in close contact with poultry, namely those that had visited a live 

poultry market the week prior to the onset of illness. The mortality rate associated with human 

infection from HPAI H5N1 is high, though infection with other HPAI viruses have has lower 

mortality rates (Uyeki, 2008). The first known ease of HPAI H5N1 in humans was an infection 

in a 3-year-old child in Hong Kong in May 1997. In December 1997, 17 additional human cases 

were identified (Uyeki, 2008). Figure 2 demonstrates the number o f human cases o f HPAI H5N1 

worldwide between 2003 and 2010. Reeth (2007) reports that although infection has occurred in 

millions of birds, HPAI H5N1 does not spread easily to humans. The World Health Organization 

reported 48 cases and 24 deaths in humans in 2010 and 46 cases and 23 deaths in 2011 

(http://www.who.int/).
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1.2.2.2.4 Other animals

Other species, aside from humans, domestic poultry and wild birds, can also be host 

species o f HPAI, including; canines, felines, swine, Mustelidae, and raccoons (Procyonidae)

(Yee et ah, 2008). Virus transmission to felids has been repeatedly documented, with disease 

found in tigers in Thailand fed infected poultry carcasses, through experimental inoculation of 

influenza A virus (H5N1) in cats, and in cats in close contact with infected poultry 

(Keawcharoen et ah, 2004; Leschnik et al., 2007; Rimmelzwaan et al., 2006). Keawcharoen et al. 

(2004) reported that during the outbreak in Thailand in December 2003, 2 tigers and 2 leopards 

at a zoo showed clinical signs, including fever and respiratory distress, and died unexpectedly. 

These tigers had been fed fresh poultry carcasses from a slaughter house later confirmed to be 

infected with the H5N1 virus. In October 2004, another H5N1 outbreak was confirmed in tigers 

in a zoo in Thailand, where 147 tigers died or were euthanized. Yee et al. (2008) determined that 

tiger-to-tiger transmission occurred and the likely initial infection was caused by ingestion of AI- 

infected chicken carcasses. Furthermore, canines have been identified as a potential host for 

HPAI H5N1 from surveillance studies in Thailand, as well as experimental infection and natural 

contact studies (Yee et al., 2008; Giese et al., 2008). Songserm et al. (2006) found one dog 

infected with avian influenza H5N1 after ingestion of duck products obtained from an area with 

reported HPAI H5N1 infections in ducks. The dog had been reported as having developed high 

fever, panting and lethargy 5 days after ingestion before dying.

In 1979-80, 20% of harbor seals on the northeastern coast of the United States (US) died 

from infection with influenza A virus subtype H7N7. From 1982-83 and again in 1991-92 

isolates o f H4N6 and H3N3, respectively, were isolated on the New England coast from seals 

that had died of pneumonia (Callen et al., 1995; Horimoto & Kawaoka, 2001). The 1991-92
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finding was the first isolation o f an H3 subtype in seals, though it has been repeatedly seen in 

humans, poultry, pigs and horses (Callen et ah, 1995). These viruses were antigenically and 

genetically related to avian viruses, indicating that transmission of AI to seals was not rare 

(Callen et ah, 1995; Horimoto & Kawaoka, 2001).

1.2.2.3 Modes o f  transmission

Transmission between and within farms can occur in a variety of ways. Within farm 

spread refers to spread o f disease agents directly between birds or indirectly by fomites on the 

same farm. Between-farm spread refers to spread of the disease from an infected farm to a naïve 

farm, but not from infected farm to infected farm as the virus is already present on the farm. 

Previous attempts have been made to evaluate the transmissibility of LPAI and HPAI viruses in 

domestic poultry experimentally. Alexander (2007) determined that transmission was dependent 

on the virus strain, species of bird, and environmental factors. In order for the virus to spread 

easily, a sufficient amount of virus must be released by the respiratory or intestinal route 

(Alexander, 2007). Large quantities o f virus can be excreted in the feces, contaminating lake or 

drinking water, which may then lead to infection by the fecal-oral route as a result of ‘cloacal 

drinking’ also known as ‘cloacal drop’, or by direct ingestion o f drinking water contaminated 

with feces (Alexander, 2007). Cloacal drinking occurs when the dorsal lip of the vent of birds, 

which possesses a medial protuberance, becomes activated and material on the lip is taken inside 

the cloaca by induced contractions (Hu et ah, 2004). Tsukamoto et ah (2007) looked at the 

effects of direct spread as well as indirect spread through airborne dissemination. Their study, 

along with field observations, suggested that chicken house type, number of infected chickens, 

and the amount of environmental contamination may have affected the virus transmission 

efficacy during an outbreak (Tsukamoto et ah, 2007). Sedlmaier et ah (2009) looked at the risk
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of airborne spread through investigation o f the particulate matter size within bams. They found 

that humans working within the bam or living nearby can inhale up to lO'* infectious AI particles 

a day, putting themselves at a high risk of infection. Also, animals on nearby poultry farms could 

become exposed and potentially infected by inhalation of about 300 infectious AIV particles per 

day.

Two studies evaluated environmental transmission in wild birds through the use of 

simulation modeling. Rohani et al. (2009) found that a combination of direct contact and indirect 

environmental contact, such as shared water sources or airbome dissemination, played 

significant roles in the spread of an outbreak in wild waterfowl. Similarly, Breban et al. (2009) 

found that in addition to direct fecal-oral transmission, uptake o f the vims persisting in the 

environment could also lead to infection. Furthermore, modeling showed that environmental 

transmission played a significant role in the persistence of AI and its inter-annual epidemics in 

wild birds (Breban et al., 2009).

Nazir et al. (2011) evaluated the persistence o f the AI vims in the environment and found 

that AI vimses can remain infectious in duck feces for periods of time ranging from a few days 

(at 30 and 20 degrees) or a few weeks (at 10 degrees) to several months (at 0 degrees).

1.2.3 Recent outbreak history
1.2.3.1 International outbreak experience in domestic poultry

Since the first reported outbreak of AI in Scotland in 1959, there have been 28 reported 

outbreaks in poultry outside of North America, half of them being reported in the past 10 years 

(Capua et al., 2000; Horimoto & Kawaoka, 2001). Notable outbreaks in poultry include the 

Mexican and Pakistan outbreaks in 1994 and the Italian outbreak in 1999. In Mexico, in 1994,
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LPAIH5N2 was isolated from chickens. The virus was not eradicated by slaughter and over 

several months the virus mutated to an HP AI strain. After this mutation vaccination was 

implemented which controlled the HP AI strain, however an LPAI H5N2 strain continued to 

circulate. Control in Mexico relied heavily on vaccination and not on accompanying measures 

such as monitoring and quarantine (Lupiani & Reddy, 2008).

In Pakistan an outbreak of HP AI H7N3 in poultry farms resulted in the death of 3.2 

million birds and was brought under control through vaccination only. However, in 2001, 2003 

and 2004, LPAI and HP AI H7N3 outbreaks continued to re-emerge, despite vaccination, 

resulting in the deaths o f approximately 10 million birds (Lupiani & Reddy, 2008). Also in 2003, 

an outbreak of H7N7 occurred in the Netherlands poultry sector and resulted in human infection 

with reports of conjunctivitis (Beest et al., 2010). One other notable outbreak was the H7N1 

outbreak in Italy in 1999, with a reappearance o f the LPAI H7N1 in 2000, which was controlled 

and eradicated by 2002 (Lupiani & Reddy, 2008).

I.2.3.2. American Experience

In the US, outbreaks have occurred in Pennsylvania (1983; 1996-1998), Virginia (2002), 

California (2000-2002) Connecticut (2003), Delaware (2004), Maryland (2004), and Texas 

(2004). In the Pennsylvania H5N2 outbreak in 1983, 2.5 million layer chickens from 47 flocks 

on 24 premises were infected, resulting in the slaughter o f 17 million birds from these 24 

premises. This outbreak began with an LPAI H5N2 strain that mutated into a more virulent 

(HPAI) strain that differed by one nucleotide (Capua et al., 2000; Horimoto & Kawaoka, 2001). 

Approximately 25% of the birds exhibited clinical signs of respiratory disease and a decrease in 

egg production (Capua & Alexander, 2004). It was believed to have originated from contacts
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with live-bird markets in New York. Control was with strict biosecurity measures and 

depopulation of infected flocks (Capua & Alexander, 2004).

In 2000-2002, an LPAI H6N2 strain of the virus was isolated from chickens in 12 

different locations in California, with the chickens showing a drop in egg production and an 

increased mortality (Woolcock et al., 2002). In 2002, an LPAI H7N2 virus, from a live bird 

market, began to spill over into the industrial poultry population in the Shenandoah Valley in 

Virginia (Capua & Alexander, 2004). Farms in North Carolina and West Virginia were also 

affected. A total o f 197 infected farms were diagnosed, mainly in turkeys with a total o f 5 

million birds destroyed, costing approximately $149 million (Capua & Alexander, 2004).

In 2003, there were 2 outbreaks of LPAI H7N2 virus in New London County, 

Connecticut, affecting 2.9 million table-egg layer hens (Capua & Alexander, 2004). Recovered 

hens and replacement pullets were vaccinated. Both of these outbreaks occurred as a result of 

spread from live bird markets. In February 2004, 2 farms in Delaware were confirmed infected 

with LPAI H7N2 (Capua & Alexander, 2004). One farm was a quasi-backyard flock o f 11,000 

chickens that primarily supplied live-bird markets, while the other farm was a commercial broiler 

operation with 85,800 birds (Capua & Alexander, 2004). In March 2004, a flock of 118,000 6- 

week-old broilers and a farm close to it with 210,000 2-week-old birds in Maryland were also 

confirmed infected. Both of the infected flocks were destroyed (Capua & Alexander, 2004).

In Gonzales County, Texas, in 2004, an HPAI H5N2 subtype was confirmed in a broiler 

flock of 6,608 birds (Capua & Alexander, 2004). The farm was depopulated with the source of 

infection being related to the Mexican H5N2 virus (Capua & Alexander, 2004).

1.2.3.3. The Canadian Experience
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Canada has had limited experience with avian influenza. The first documented outbreak 

was a LPAI H7N1 subtype in 2000, in a flock of turkeys in Ontario (Capua & Alexander, 2004). 

This flock showed slightly elevated mortality and a drop in egg production. The flock fully 

recovered (Capua & Alexander, 2004). Other notable outbreaks include an HPAI H7N3 strain in 

the Fraser Valley, British Columbia (2004) (Pasick et al., 2009; Bowes et al., 2007) and 

Saskatchewan (2007), an LPAI H5N2 strain in Abbottsford, British Columbia (2009) and an 

LPAI H5N2 strain in Manitoba in 2010. During the British Columbian outbreak in the Fraser 

Valley in 2004, infected premises included 42 commercial flocks and 11 backyard flocks, with a 

total of 1.3 million birds, which were depopulated along with non-infected birds from an 

additional 410 commercial farms (14.9 million birds) and 553 backyard flocks (18,000 birds), 

within a 3km radius of each infected premise, in an effort to control the spread o f the disease 

(Skowronski et al., 2007). This outbreak prompted the development and implementation of 

Canada’s Inter-Agency Wild Bird Influenza Survey as the virus was believed to have originated 

from wild birds but the viruses circulating in wild bird populations were unknown (Bowes et al., 

2004; Parmley et al., 2008). In 2007-08, an infected broiler hatching operation in Saskatchewan 

was depopulated (approx. 53,000 birds) after it was confirmed to be infected with HPAI H7N3, 

and an “infected zone” was put in place at a 3km radius of the infected farm, and a “movement 

restriction zone” was established at a 10km radius of the infected farm (CFIA, 2004). All 

restrictions were lifted as of October 31, 2008. On January 29^, 2009, a turkey farm in 

Abbotsford, British Columbia was infected with an LPAI H5N2 strain. The farm was 

quarantined and approximately 60,000 turkeys were destroyed (CFIA, 2009b). Another farm, a 

specialty bird breeding operation, was detected shortly after and was destroyed, with no other 

confirmed farms detected, leading to a total o f 12,000 birds destroyed. In November 2010, LPAI
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H5N2 was detected on a commercial poultry operation in Manitoba. All birds on the premise 

were humanely destroyed with precautionary quarantine placed on farms identified through 

trace-out investigation, with one hatchery also being destroyed. All restrictions were lifted in 

February 2011 (CFIA, 2011).

From these past outbreaks it can be said that vaccination is not the most effective method 

for eradicating AI in a population. The virus strains mutate easily where continuously circulating 

LPAI strains in wild bird populations could easily mutate to a more virulent strain that may be 

different from the already circulating HPAI strain. It seems that one o f the most effective 

methods in controlling an outbreak o f AI is through movement restrictions. Once the virus is 

detected in a population, immediate movement restrictions on direct and indirect contacts should 

be put into place.

1.2.4 Control strategies

Specific control strategies, such as proper biosecurity, or limiting the probability of 

transmission through indirect contact, should be in place at all times. The Canadian Food 

Inspection Agencies (CFIA) document called “Notifiable Avian Influenza (NAI) Hazard Specific 

Plan” (http://www.inspection.gc.ca/) states that AI viruses can survive for extended periods of 

time outside the host and can be spread through contact with other birds and fomites on vehicles, 

equipment, and people. Swayne & Suarez (2000) also emphasize that enhanced biosecurity is an 

important part of any A1 prevention and control program. In Canada, detection of an H5 or H7 

variant, regardless o f whether it is LPAI or HPAI, will lead to eradication measures, due to the 

potential for mutation into HPAI.
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The main options for control and eradication of an AI outbreak consist of one or a 

combination o f quarantine, establishment o f disease control zones to enforce movement 

restrictions, surveillance to determine the strains of AI present in the poultry population and to 

determine if the control strategies are effective and tracing of direct and indirect contacts 

originating from infected farms, culling o f infected and exposed animals, and in some cases, 

vaccination. Surveillance within the commercial poultry industry allows for more effective 

detection o f the virus if  a farm becomes infected leading to a quicker response. In the wild bird 

population surveillance provides you with an idea of the strains circulating in the population that 

may pose a threat to the commercial poultry industry. Continuous surveillance during an 

outbreak may indicate other farms that are infected which leads to a quick response. One control 

strategy, stamping-out, includes culling animals that are 1) infected with the disease agent, 2) 

have been in contact with the infected animals or premises; or 3) are located within a 

predetermined distance from an infected premise (Yee et al., 2008). Movement restrictions of 

poultry within and outside restricted zones can be difficult to enforce in some countries due to 

illegal practices to satisfy the demand for meat and, as seen with the outbreaks in Canada, it was 

difficult to enforce due to the value of some specialty breeds of birds. Vietnamese authorities 

estimated that up to 70% of poultry illegally transported to China goes undetected. Quantifying 

these practices and the association with outbreaks in any country, however, has not been 

documented (Yee et al., 2008) but investigation into quantification is currently being undertaken 

by the CFIA and USD A. Movement restrictions on direct contacts, defined as movement or 

shipment of birds between flocks where one flock is infected, leading to direct contact (e.g. 

fecal-oral route) between infected and naïve birds, are often easier to enforce than those on
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indirect contacts. Indirect contacts can encompass such things as fomites on vehicles and 

personnel (Yee et ah, 2008).

Various countries have implemented different control strategies, though no one strategy 

alone has been reported to eradicate the disease. AI control in the European Union, as 

implemented in the Italian outbreak (1999-2001), consisted of prompt identification o f infected 

and at-risk farms, immediate movement restrictions and eradication measures (stamping-out) on 

infected farms, and enforcement of restrictive policies to restocking and movement of live birds, 

vehicles, and staff in areas at risk (Ehlers et al., 2003). During the 2003 outbreak of H7N7 in the 

Netherlands, infected flocks were culled with pre-emptive slaughter of any neighboring flocks 

(Bavinck et ah, 2009).

Pozza et ah (2008) suggests that pre-requisites for successful control o f an outbreak of 

HPAI include proper disease investigation, tracing suspect contacts, implementing proper 

movement control strategies, and prompt stamping-out after the disease has been confirmed. In 

some cases, such as in the policy in Canada, pre-emptive slaughter o f contact flocks or high risk 

flocks have also occurred as part of a more robust control program (Pozza et ah, 2008).

The primary control policy in Canada involves quarantine, stamping out of the infected 

farm, establishment of disease control zones and movement restrictions, tracing and surveillance 

and possible use of a pre-emptive slaughter program (CFIA, 2009a). In most situations, the 

overall purpose of an effective stamping-out initiative includes: (1) rapidly identifying all 

exposed premises; (2) applying strict movement control; (3) tracing and destroying all infected 

or potentially infected animals, products and materials; (4) decontaminating infected premises 

and vehicles to avoid further spread; and (5) regaining country freedom status for notifiable
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avian influenza without delay (CFIA, 2009a). Due to the recent Canadian outbreaks, it is 

important for policy-makers to determine whether this strategy is the most effective method for 

minimizing disease impacts and eradicating the disease, as this has not been previously explored. 

In order to be more effective during an outbreak policy-makers want to ensure everything is 

being done to efficiently and effectively eradicate the virus with a minimum cost to the industry. 

One o f the main challenges faced in these outbreaks was compliance from owners in applying 

movement restrictions and following with the depopulation protocols. Due to the value of some 

of these birds it was difficult to enforce movement restrictions and breeder of birds with valuable 

genetics did not want to depopulate their flocks.

1.3 Disease modeling

1.3.1 Simulation model applications and previously used modeling tools

Modeling of simulated data can be used as a tool to determine the most effective control 

strategies in the event of an outbreak (Taylor, 2003). Kleijnen et al. (2005) reported that there are 

three basic goals in simulation analysis: 1) developing a basic understanding of a particular 

model or system; 2) assist with identifying important features of an outbreak that could then 

inform the development of robust decisions or policies; and 3) comparing the merits of various 

decisions or policies. In some situations, simulation modeling is used when the underlying 

mechanisms o f a situation are not well understood, and when real-world data are limited or non­

existent (Kleijnen et al., 2005).

Disease modeling, used for the study of foreign animal diseases such as Foot-and-Mouth 

disease (FMD), Classical Swine Fever (CSF), and HPAI in both real and simulated outbreaks, 

aids our understanding of a disease. Models have provided information on important elements of 

a foreign animal disease outbreak, though with some limitations, which depend greatly on the
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model being used. Simulation modeling can help identify potential risk factors for the 

introduction and/or spread of a contagious foreign animal disease, and can help predict the 

effects of implementing various control strategies during an outbreak, driving policy decisions. 

One key component for the use of models for policy is the ability to communicate the models 

and their outputs to policy-makers. One example o f disease spread models that can be used as a 

tool during an outbreak is the stochastic model, used by Tsutsui et al. (2003), for evaluation o f a 

FMD outbreak in Miyazaki, Japan in 2000. Japan had been free o f FMD for 92 years until this 

partieular outbreak. Once FMD was confirmed on the index farm, all animals on the farm were 

destroyed and the premise was disinfected. A control zone and a surveillance area were 

established at a 20km and 50km radius around the infected farm, respectively. From within the 

surveillance area, two more infected herds were detected at distances of 2km and 7km from the 

index farm. Once movement control measures were implemented, serological and clinical 

surveys were carried out on the premises that were depopulated and under surveillance. A 

Monte-Carlo method was used to evaluate the survey results in combination with a Reed-Frost 

model that simulated the spread of the disease, based on the number o f days from the infection 

(Tsutsui et ah, 2003). The model results found that herd-level sensitivity in the survey exceeded 

80%, despite the conservative assumptions in the input parameters. From the detection o f two 

infected herds by this model it was thought that the survey significantly contributed to the early 

eradication of FMD in Miyazaki, although the herd-level sensitivity was greatly influenced by 

the time o f sampling post-infection. One o f the main limitations o f the model was that 

transmission between herds after imposing movement control was not considered. Animal 

movement in the control area was strictly prohibited for 21 days after destruction of the infected 

herd.
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de Vos et al. (2006) used a scenario tree model for CSF, a highly contagious viral disease 

affecting both domestic and wild (feral) pigs, to evaluate the impacts of 257 uncertain factors. 

Limited data availability, low frequency o f epidemics, variations in virus strains, and changes in 

preventive measures and control strategies resulted in a model with substantial limitations. The 

scenario tree model itself was used to calculate the probability o f introduction o f CSF into 

member states of the European Union so to gain more insight into the main risk factors for CSF 

introduction (de Vos et al., 2006).

Schoenbaum et al. (2003) compared the epidemiologic and economic consequences of 

different slaughter and vaccination strategies based on hypothetical outbreaks of FMD in the US. 

They looked at the consequences of four specific stamping-out strategies and three vaccination 

strategies, compared under varying conditions o f herd density/sizes and rates o f disease spread.

A stochastic simulation model was used that allowed incorporation of other outbreaks for a 

variety o f contagious diseases through adjustment of specific input parameters. They found that 

the best strategy depended on the speed of spread of FMD virus and the demographics o f the 

susceptible population, but it is uncertain what effects were in influencing policy decisions. 

Furthermore, depopulation of herds in contact with infected herds was less costly than only 

depopulating infected herds, with depopulation in 3km rings being more costly compared to 

other depopulation strategies, such as stamping out only.

Sharkey et al. (2008) evaluated the consequences of introducing HPAI H5N1 into Great 

Britain using a spatially explicit, detailed stochastic simulation model. They successfully 

investigated the variation in the risk with respect to species, industry and geographical location, 

and determined the efficacy of the control strategies used by the British Government.
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InterSpread Plus (Halderen et al., unpublished) simulates the spread o f infectious diseases 

in populations and is an enhanced version of InterSpread (Halderen et al., unpublished), which 

was used extensively in the 2001 FMD outbreak in Great Britain. Interspread is a fully spatial, 

state-transitional model where the spread mechanisms and control options act directly on the 

epidemiological units. Sanson et al. (2006) developed an InterSpread Plus parameter set to 

evaluate FMD in New Zealand, where they found that local spread played a significant role in 

the spread of the disease, and movement restrictions had an impact on reducing this spread.

Another model that had been used for Johne’s disease was a simulation model developed 

using Visual Basic v6.0® (Sergeant, 2003). This model simulated spread of Johne’s disease in 

flocks of sheep either through local spread or through movements of replacement sheep. Control 

measures were also simulated using this model, such as surveillance, quarantine, and vaccination 

in various combinations (Sergeant, 2003). This model has potential for use for an outbreak of AI, 

however there was no mention of including destruction as a possibility. As destruction is a very 

important control factor for reducing the spread o f AI the model may not be appropriate, 

however further investigation into the model’s usefulness is required.

1.3.2 The North American Animal Disease Spread M odel (NAADSM)

The NAADSM (Harvey et al., 2007) is a model framework developed to assess foreign 

animal disease risks, and to set up contingency plans and preparedness strategies in the event of 

an outbreak. NAADSM is a spatially explicit, stochastic, state-transition (moving from one 

disease state to the next) model developed for policy formulation in North America (Harvey et 

al., 2007). Although the NAADSM was developed for use in North America it has been
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developed with a great level o f flexibility so it can be applied to any geographical area (Rivera 

2009 -  see ISVEE proceedings).
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Figure 3: States and transitions simulated by the North American Animal Disease Spread 

Model. Without intervention, units will follow the state progression indicated in the outer loop. 

Upon implementation o f disease control measures, intervening actions may alter the normal 

disease cycle, as shown inside the loop. (Provided with permission from Elseveir).

The model runs in terms of an animal aggregated unit, such as a herd or flock. These 

units move from one disease state into the next in a predictable cycle over a period of time 

(Figure 3). The cycle can be interrupted by the implementation of disease control measures 

(Figure 3, Harvey et al., 2007). The model contains user-established parameters that define 

model behavior in terms o f disease progression. This involves disease spread from animal-to-
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animal contact; contact with contaminated personnel and equipment; airbome dissemination; and 

implementation of control measures such as destruction, movement restrictions, and vaccination 

(Harvey et ah, 2007).

Production types are defined hy the user and contain a group o f units with similar within- 

herd disease transmission and similar rates of animal shipments, indirect contacts, and local 

spread. The production type can either be a single kind of livestock or a mixed type. When a 

susceptible unit is infected, it makes the transition from one disease state to the next. Direct 

contact spread is defined as movement or shipment of animals among units. Indirect contact 

spread is defined as movement of people, materials, vehicles, equipment, and animal products 

and is simulated in a similar manner as direct contact. A baseline rate o f contact from one 

production type to another is independently specified for movement in each direction between 

each pair of production types. Similar to baseline contact rates, movement control functions are 

specified for each pair o f source and recipient production types. An adjustment to the baseline 

rate of contact is based on the number of days since the initial case o f disease was detected. This 

allows the model to mimic the implementation of movement controls over the course o f an 

outbreak response.

Two probabilities contribute to disease detection: the probability o f clinical signs being 

observed by the producer or veterinarian; and the probability of reporting to the authorities. Both 

of these probabilities can be defined for each production type. The reporting probability is a 

function of the number of days since the first detection in the population. The model user can 

then simulate the impact of improved awareness o f a disease situation as an outbreak progresses.
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Five disease control measures can be simulated by NAADSM (Version 3.1); quarantine, 

tracing, movement controls, destruction, and vaccination (Harvey et al., 2007). Units can be 

quarantined through various mechanisms: 1) a diseased unit is quarantined on the day 

immediately following detection; 2) units identified hy trace-out investigations (direct/indirect) 

are quarantined; and 3) those units awaiting prioritized destruction are quarantined. Once the 

first infected farm is detected, the model can also simulate a destruction program, defined hy the 

user, which includes the number of days from the initial detection until the destruction program 

begins and can he applied to detected farms only, trace-outs of detected farms or to farms in a 

specified vicinity of detected farms. Movement restrictions can he applied at the same time to all 

the farms in the study region.

The NAADSM limits the number o f units that can he destroyed per day, known as the 

destruction capacity, based on the parameters built into the model. However, this destruction 

capacity does not consider the number of animals in units to he destroyed (Harvey et al., 2007). 

If a unit is designated for destruction hut cannot he destroyed immediately, due to the maximum 

capacity o f destruction being reached, the unit is quarantined and placed on a prioritized waiting 

list for destruction (Harvey et al., 2007). Three specific criteria are used to prioritize destruction, 

which the user ranks hy importance: the production type; the reason for destruction o f the 

particular farm; and the number of days a farm has been waiting in the destruction queue 

(Harvey et al., 2007). Vaccination can also he included in NAADSM hut was not included in this 

study, as it was not of interest to the policy-makers. Briefly, a trigger is required in order to 

initiate vaccination in NAADSM. This trigger is based on the number of flocks detected, decided 

hy the user. Many policies address the fact that long-live birds and flocks with high genetic
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values should be targeted (Dube, unpublished). In NAADSM a vaccination ring can also be 

incorporated and typically varies with species. Finally a vaccination capacity is assumed.

The user-developed models can be run thousands of times, generating a distribution and a 

set of descriptive statistics for various outcomes, such as the median, range, standard deviation, 

and selected percentiles for the duration o f the outbreak and number of farms infected (Harvey et 

al., 2007). A more detailed description of the NAADSM parameters can be found in Chapter 2.

1.4 Generating geo-location data in the absence of exact farm point locations

Mapping farm locations of animals has proven beneficial in disease outbreak control, as it 

provides a tool to evaluate various strategies to prevent disease spread (Norstrom, 2001). The 

Geographical Information System (GIS) has an advantage over a more standard database 

management system in that it has a concept o f spatial neighborhood, so that determination of 

spatial proximity between individual herds and animals ean be obtained (Durr & Gatrell, 2004).

Numerous studies have looked at outbreaks by comparing the locations of infected farms 

with the locations of all farms at risk in the area (Ehlers et al., 2003; Ward, et al., 2008). Ehlers et 

al. (2003) analyzed the AI outbreak in Italy in 1999-2000, using the geographic coordinates of 

the farms and storing them in GIS. The analysis provided them with information to formulate 

contingency plans for control and eradication of AI. Spatiotemporal studies of foreign animal 

diseases, using GIS, can provide additional knowledge leading to detection of spatiotemporal 

clusters of disease, and identification o f key explanatory variables and geographic areas of 

concern (Oyana et al., 2006).

In order to simulate outbreaks using a stochastic and spatial model, such as NAADSM, 

for policy generation, the models require known farm locations and how many and what type of
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animals are on each farm. In some instances, exact farm location is mostly unknown, as in the 

United States, or strictly confidential, as in Canada (Riley, 2010). There are many questions 

surrounding the most appropriate way to geo-reference a farm point location. In some areas, the 

actual farm boundaries for geo-referencing have been used, such as in New Zealand, where a 

database has been created for national disease outbreak planning (Durr & Froggatt, 2002). Some 

geo-referencing methods that have been explored include: (1) deriving a point approximation of 

a discrete farm from the farm centroid calculated from digitized boundaries; (2) using the farm 

postal address postcode; (3) using a three-digit agricultural parish code that is assigned to each 

new farming enterprise upon registration with Department o f Environment, Food and Rural 

Affairs (DEFRA); and (4) using farm building locations, defined as a main building or collection 

of buildings contained within or near the farm boundaries and used to house either the farmer, 

employees or animals (Durr & Froggatt, 2002). Durr & Froggatt (2002) found that the farm 

building was the single best practical geo-referencing point for discrete farms, in a study using 

data from Cornwall, England.

Tildesley et al. (2009) generated simulation experiments to help with early-outbreak 

decisions for FMD in the US through estimating the locations of farms for a handful o f counties 

in the US using satellite imagery and other data sources. Their results relied on 2 weeks of 

outbreak data. They concluded that in the absence of location data, their methods would be used 

only to refine policy (Tildesley et al., 2009). Other researchers have used satellite imagery, 

which resulted in a large number of false positive identifications (Bruhn et al., unpublished).

Bruhn et al. (unpublished), using data from the 2002 US census of agriculture, generated 

farm locations using specific characteristics, such as locations in areas where actual operations of 

a particular size and type have a high probability of occurring. They compared their randomly
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generated point locations to “truth” data for Lancaster County, PA. They found it was possible to 

generate rudimentary poultry-operation locations nationwide using US census of agriculture data 

and GIS (Bruhn et al., unpublished).

With randomly generated point locations, comparisons to real data point locations can be 

made to determine if  the size of an outbreak, based on specific scenarios, is comparable. This 

will allow countries that lack the point locations o f their farms to confidently use randomly 

generated point locations to determine the potential size o f an outbreak based on different control 

measures.

1.5 Simulation output analysis techniques

In a complex model, a large number o f simulated scenarios can have many input parameters 

that have a highly significant impact on the outcome. This creates numerous significant 

interactions, which are difficult to interpret (Kleijnen, 1995b). Fraedrich et al. (2000) suggests 

using a typical statistical ‘goodness of fit’ test, including t-tests, chi-square tests, and regression 

analysis, as methods for analyzing the output from a simulation model. Fraedrich et al. (2000) 

also suggests that using a t-test on the differences between the measured and predicted results of 

a linear regression versus the sums will improve the power o f the study more than other 

regression tests. Identifying the non-informative variables can be done by evaluation of 

insignificant correlation coefficients between the exogenous variables and the residuals, using 

both parametric and non-parametric methods (Fraedrich et al., 2000).

Regression analysis can generalize results from a simulation, characterize the 

input/output behavior, provide an estimate of the effects o f the parameters in the regression and 

give a good estimate of the main effects and interactions among factors (Kleijnen, 1995a). The
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influence of key model parameters on the model output is of great interest, as this may indicate 

specific threshold points or particular parameters that may have a great impact on the outcome 

(Harvey et al., 2007).

When deciding which analysis technique is most appropriate for a particular analysis of 

the output from a simulation model, it is important to consider all possible methods and their 

associated assumptions that need to he met. In linear regression, the specific assumptions 

include: homoscedasticity, normality of residuals, and linearity of the outcome-predictor 

association. Homoscedasticity implies constant variance of predictors at different levels of the 

outcome variable (Dohoo et al., 2003). With outbreak data consisting of an outcome of counts, 

from ‘rare’ events, that are strongly right-skewed due to a large number of outbreaks with 1 or 2 

farms infected, but occasional large numbers o f farms infected, a linear regression is not 

appropriate because most o f its assumptions are violated. The next possible option is a Poisson 

distribution typically used to model counts o f ‘rare’ events (Dohoo et al., 2003). Poisson 

distributions are evaluated by analysis of the residuals, assessing the overall fit o f the data to the 

distribution, evaluating overdispersion, and checking for influential points or outliers. The 

assumption behind the Poisson model is that the mean and the variance of the number of events 

are equal, after taking into account the effects of the predictors in the model (Dohoo et al., 2003). 

If there is overdispersion, it can be dealt with by fitting a model that allows the variance to be 

larger than the mean, such as a negative binomial regression model (Dohoo et al., 2003).

Negative binomial regression fits models of count data, with strongly skewed outcomes.

1.6 Model communication and visualization

Policy-makers typically create a robust policy, using the worst case scenario that is useful 

across a broad range of scenarios. Kleijnen et al. (2005) state that to communicate results from a
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simulation effectively to policy- and dccision-makcrs, graphical tools allow multi-dimensional 

visualization of the results and are generally more informative than tables and equations.

Graphical methods, such as scatter plots, illustrate whether a factor has a positive or 

negative effect on the outcome. Scatter plots are also appropriate for studying interactions. By 

definition, if  the predicted line for factor A and an outcome for one level of factor B is not 

parallel to that o f another level o f factor B, an interaction is present and should be explored 

further (Kleijnen, 1995a). Graphical visualization is very subjective when determining if the 

lines are parallel. This limitation is removed through the use o f regression analysis (Kleijnen, 

1995a). Scatter plots can show how two responses are related, though they are not as useful with 

large datasets, because with numerous data points, the scatter plot will not necessarily show 

where the majority of the data are clustered, due to overlapping points (Kleijnen et al., 2005). 

Non-parametric visualization methods, for presentation to policy-makers, include contour and 

surface plots and non-parametric methods of ranking. Contour and surface plots are typically 

used to represent 3-dimensional surfaces, using geographical coordinates. Non-parametric 

methods, such as ranking, have the advantage that there are no assumptions that need to be met 

and it can sometimes be used to obtain a quick answer. One o f the main disadvantages o f this 

method is that it is difficult to make quantitative statements about the actual differences between 

populations (Dohoo et al., 2003).

1.7 Objectives of research

The research in this thesis focuses on two primary objectives. The first objective is to 

develop and evaluate an approach to analyze and communicate the results of a large number of 

simulated outbreaks of HPAI to decision-makers and policy-makers, using the NAADSM, in
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order to make recommendations on the current HPAI control policy in Canada, specifically, on 

the effect o f stamping-out strategies on the magnitude o f an HPAI outbreak. The second 

objective is to compare the results of simulated outbreaks of HPAI using randomly generated 

point-locations (latitude, longitude) and flock sizes versus real-point location and flock size data 

for the poultry industry in Ontario, Canada.
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Chapter 2: Analysis of a large number of simulated outbreaks of highly pathogenic avian 
influenza in Ontario, Canada, from the North American Animal Disease Spread Model

Lewis, N* (1), Sanchez, J (1), Dube, C (2), Vanleeuwen, J (1),
(1) Department o f Health Management, Atlantic Veterinary College, University o f Prince 
Edward Island, 550 University Avenue, Charlottetown PE, Canada CIA  4P3. Telephone: (902) 
566-0995 Email: nllewis@upei.ca. (2) Canadian Food Inspection Agency, 59 Camelot Dr., 
Ottawa, Canada K1A 0Y9

2.1 Abstract

The North American Animal Disease Spread Model (NAADSM) is a model framework 

developed to simulate the spread o f highly contagious diseases of livestock and poultry such as 

foot-and-mouth disease (FMD) and highly pathogenic avian influenza (HPAI). The objectives o f 

this paper were to develop and evaluate an approach to analyze and communicate the results of a 

large number o f simulated outbreaks o f HPAI to decision-makers and policy-makers, using the 

NAADSM, and to make recommendations on the most effective HPAI control policy for 

Canada, specifically, on the effect o f stamping-out and ring-culling strategies on the magnitude 

of an HPAI outbreak. The current control policy for HPAI in Canada consists of quarantine of 

infected/detected farms, establishment of disease control zones to impose movement restrictions, 

tracing of the movements to and from infected/detected farms, stamping-out the 

infected/detected flock while pre-emptively culling those flocks with exposed birds which may 

include all neighboring flocks within a I km radius (ring-culling). Locations and production data 

for 2487 commercial and 7140 non-commercial poultry farms were provided by industry and 

provincial government sources in Ontario, Canada. A total of 21,060 scenarios, defined as 

different combinations of parameters for various epidemiological conditions and control 

measures, were created to simulate the number of poultry farms that would become infected as a 

result of an incursion of HPAI. Each scenario was parameterized in NAADSM and replicated 

1000 times, generating the mean and 95* percentile for the number o f farms infected at the end
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of the outbreak for each scenario. Negative binomial regression analysis was used to identify 

significant predictors o f the number of farms infected for each scenario. Interaction plots were 

developed from the output of the negative binomial regression analysis, to facilitate 

communication of simulation results to policy-makers. Three parameters were selected for the 

interaction plots: the probability of transmission through indirect contact, farm density, and 

detection rate. Each selected parameter was stratified at various levels. Negative binomial 

regression analysis was shown to be appropriate for handling the right-skewed count data o f the 

simulated HPAI outbreaks in Ontario, Canada, while interaction plots developed from the 

negative binomial regression analysis, were an appropriate visualization tool for communication 

to policy-makers. From a policy development perspective, the modeling results suggested that 

stamping-out of the infected/detected flocks, without ring culling, in combination with 

movement restrictions on direct and indirect contacts, would be the most appropriate policy for 

Ontario.

Keywords

Highly pathogenic avian influenza; simulation modeling; control strategies; validation; 

NAADSM; policy

2.2 Introduction

Highly pathogenic avian influenza (HPAI) has become exceedingly important world­

wide due to the economic losses it has caused the poultry industry and the human disease arising 

from the development of new antigenic strains, such as HPAI H5N1 (Pozza et al., 2008). Control 

of foreign animal diseases, like HPAI, requires that policy be in place in order to respond quickly 

and effectively in the event of an outbreak. The current control policy for HPAI in Canada
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consists of quarantine of infected/detected farms, establishment of disease control zones to 

impose movement restrictions, tracing of the movements to and from infected/detected farms, 

stamping-out the infected/detected flock while pre-emptively culling those flocks with exposed 

birds which may include all neighboring flocks within a 1km radius (ring-culling).This policy 

has been developed following an outbreak in British Columbia, in 2004 in the Fraser Valley, 

caused by the highly pathogenic strain H7N3 (Bowes et al., 2004; Lupiani & Reddy, 2008).

Since then, outbreaks have taken place in Saskatchewan in 2007, also caused by an HPAI H7N3 

strain (CFIA, 2008), and in Abbottsford, British Columbia in January 2009 (CFIA, 2009) and 

Manitoba in November 2010 (CFIA, 2011), caused by a LPAIH5N2 strain.

Simulation modeling has become an important tool for identifying effective control 

strategies for outbreaks o f foreign animal diseases, such as HPAI (Kobayashi et al., 2007).

Taylor (2003) stated that “models aid our understanding of complex systems, assisting in 

predictions o f the effect of changing or modifying different components in a system, analyzing 

and explaining the behavior of a complex system, and determining the importance of various 

elements of a system”. A study by Sharkey et al. (2008) used a spatially explicit, detailed 

stochastic simulation model to investigate the variation of risk in an outbreak of HPAI in Great 

Britain and to re-evaluate the policy of the British government.

The North American Animal Disease Spread Model (NAADSM) is also a spatially 

explicit, stochastic, state-transition model developed for contingency plans and preparedness 

strategies in the event o f an outbreak of a foreign animal disease in North America (Harvey et 

al., 2007). In this model, a herd or flock moves from one disease state into the next in a 

predetermined cycle over a period o f time, which can be interrupted by disease control measures 

(Harvey et al., 2007). The model contains many user-established input parameters that define: I)
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model behavior in terms of disease progression; 2) disease spread from flock to flock via direct 

contact; 3) indirect and localized dissemination; and 4) implementation of control measures such 

as tracing, surveillance, destruction, movement restrictions, and vaccination (Harvey et al.,

2007). Each scenario or combination o f input parameters can potentially produce a different 

number of infected farms.

With a large number of possible scenarios from a complex model, that has many input 

variables, such as the NAADSM, analysis o f input factors associated with the output would lead 

to complex and numerous significant interactions, which are difficult to interpret, because of the 

relationship between the variables. Kleijnen (1995) suggested that regression analysis should be 

used for analysis of the output from the simulation models, as well as scatter plots, for a better 

understanding of these interactions.

The objectives of this research were to develop and evaluate an approach to analyze large 

numbers of NAADSM simulated HPAI outbreak scenarios in Ontario, Canada, for 

communication to policy- and decision-makers, and to make recommendations about the current 

HPAI control policy in Canada, specifically, the effect of a stamping-out destruction strategy on 

the potential size of an HPAI outbreak.

2.3 Materials and methods

2.3.1 Model description

2.3.1.1. Population dataset and model scenarios

Farm identification, production type, number of birds and location (latitude, longitude) 

data were provided by the Ontario Livestock and Poultry Council (OLPC) for all commercial 

poultry operations in Ontario in 2006. The Ontario Ministry of Agriculture, Food and Rural 

Affairs (OMAFRA) provided the farm identification, production type, location (latitude,
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longitude) data, number of bams and number of birds for each non-commercial and turkey farm, 

also for 2006. A total of 2,487 commercial and 7,140 non-commercial poultry farms were 

included in each scenario (all provided by Dube, unpublished).

Using NAADSM Version 3.1 (www.naadsm.org), 1000 iterations of each of the possible 

21,060 disease outbreak scenarios were conducted, to generate the expected mean number of 

farms infected during an outbreak for each scenario in Ontario, Canada (Dube, unpublished). 

Each scenario represented a different combination of the input parameters (Table 1). An 

explanation of the 21, 060 scenarios is provided below.

From Table 1, 540 scenarios were generated by multiplying 10 categories o f probabilities 

of transmission through indirect contact, 3 detection speeds, 3 destruction strategy methods, 3 

movement restriction levels based on percent of contact rate by day, and 2 subclinical spread 

levels. These 540 scenarios were multiplied by 34 different randomly selected flocks (which 

consisted of a mixture o f different production types and densities) where the infection began, 

giving a total 18,360 scenarios. However, multiple flocks could become infected simultaneously 

at the beginning o f the simulation. Therefore the level of initial infection could be a single farm 

initially infected (described above) or multiple farms, increasing in increments of 5 up to 50 

(Table 1). Therefore 2700 additional scenarios were generated by multiplying the 10 additional 

categories o f initial infection hy 10 probability levels of transmission through indirect contact, 3 

detection speeds, 3 destruction strategy methods, and 3 movement restriction levels. For these 

additional scenarios, only 1 level of subclinical spread was assumed, that the subclinically 

infected flocks could spread the disease, to allow for multiple farms to be initially infected at the 

start of the simulation. Combining the 18,360 and 2700 scenarios gave 21,060 total scenarios. 

Additional detail of each of these parameters is provided below.
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Table 1: Variables used to build various infection outbreak simulation scenarios for HPAI in 
Ontario, Canada, based on poultry farm data from 2006

Factor Description Levels

Transmission
Probability

Probability of transmission 
following an indirect contact 

with an infected flock

1 = 1-10%
2 = 11-20% 
3=21-30%
4 = 31-40%
5 = 41-50%
6 = 51-60%
7 = 61-70%
8 = 71-80%
9 = 81-90% 

10 = 91-100%
Detection Rate Categorized time period to 

detect a first case in the 
population

1 = slow detection = 15-21 days
2 =moderate detection = 8-14 days
3 = fast detection = within 7 days

Destruction Strategy Categories of destruction 
methods where stamping-out 

means destruction of 
infected/detected herds and 

tracing of direct contacts, and 
ring-culling means destruction 

of herds within a specific 
distance from infected/detected 

herds (1km and 3 km)

1 = Stamping-out
2 = Stamping-out & ring-culling 1km
3 = Stamping-out & ring-culling 3km

Movement
Restrictions

Categories of movement 
restrictions intended to reduce 
contact rates o f direct/indirect 

contact

0 = no restrictions 
1 = less effective restrictions on 

indirect contacts 
2 = effective restrictions on indirect 

contacts
Subclinical Spread Ability o f subclinically infected 

flocks to spread infections 
through direct/indirect contact

O=cannot spread 
l=can spread

Initial Infection Number of infections starting 
the NAADSM simulation

1 = single infection
2 = 5 infections
3 = 10 infections 
4 = 1 5  infections
5 = 20 infections
6 = 25 infections
7 = 30 infections
8 = 35 infections
9 = 40 infections
10 = 45 infections 
1 1 = 5 0  infections
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*Type of initially 
infected flock

Poultry production groups of 
units with similar within-flock 

disease transmission and 
similar rates o f animal 

shipments, indirect contacts, 
and airborne dissemination.

1 = chicken meat multiplier breeder
2 = chicken meat multiplier breeder

pullets 
3 = chicken meat broiler 

4 = meat spikers (roosters)
5 = turkey meat multiplier breeder
6 = turkey meat multiplier breeder

pullets 
7 = turkey meat broilers 

8 = egg multiplier breeder 
9 = egg multiplier breeder pullets 

10 = table egg producer 
11= mixed

1 = Very low < 2 5 ^ percentile
2 = Low 25* to 49* percentile
3 = Moderate 50* to 75* percentile 

4 = High > 75* percentile
5 = Mixed

*Farm Density 
(where the initially 
infected flock(s) is 

located)

Categories of density 
calculated through the number 
of commercial farms per sq-km 

for each county.

*Note: Variables were used to produce probability of transmission
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2.3.1.2. Simulation o f  disease transition and animal movement and contact

Farm units were classified into one of a number of specific disease states, where a unit 

consists of a production type, defined by the user, which encompasses a group of units with 

similar within herd disease transmission and similar rates of animal shipments, indirect contacts, 

and airborne dissemination (when applicable). The incubation period for the disease was varied, 

ranging from a few hours up to 7 days, depending on the production type (Dube, unpublished). A 

flock was considered infectious as soon as the first bird began shedding and was therefore 

capable of spreading the infection to other flocks through direct and indirect contact (Dube, 

unpublished).

Disease spread was assumed to be a function of frequency o f contact by both direct and 

indirect routes. Direct contact was defined as movement o f birds from one farm to another and 

probability of transmission with direct contact was assumed to be 100%, while the probability of 

transmission from indirect contact ranged from 1 to 100%, and included movement of 

equipment, people and other fomites from farm to farm. A direct contact rate was calculated for 

each production type to represent the frequency of movements of birds off of the premises. This 

rate was calculated on a per day basis, required by the NAADSM, using the length of the 

production cycle by production type and the number of bams per farm, estimated by expert 

opinion from the industry, government, veterinarians and poultry specialists. For example, direct 

contact between table egg producers would be calculated as follows. One contact was assumed 

per bam per production cycle with table egg producers having 1 bam per premise, as provided by 

the Egg Farmers of Ontario. So, 1 contact/bam/production cycle was divided by the 18 week 

production cycle length for birds o f a table egg producer, giving 0.056 contacts per week (1/18)
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or 0.0079 contacts per day (1/126). On a yearly basis, the contact rate would be 2.9 

010079*365^

A list of all possible indirect contacts was generated and experts were consulted, using 

surveys, to classify each contact into 3 risk categories: low, medium and high. High-risk indirect 

contacts were included in the simulations, which involved direct contact between people and 

birds or the inside of the bams in which they were housed, or other activities that were expected 

to lead to vims transmission, such as catching crews and vaccination crews. Medium and low- 

risk indirect contacts were not included because they were thought to have a low probability of 

transmission and most likely had a lower number of contacts than high-risk indirect contacts. 

Examples of medium-risk indirect contacts included govemment inspectors, processing 

representatives, and maintenance workers, who might enter the bam but do not have contact with 

the birds. Examples o f low-risk indirect contacts included marketing board representatives and 

service people including gas, power and electric companies, who would not likely enter the bird 

housing component of the bams.

Frequency of high risk indirect contacts between flocks was also calculated using the 

length o f the production cycle, by production type, and the number o f bams per farm. For this 

calculation to be done, expert opinion was solicited through a poultry expert committee 

composed of veterinarians with a solid knowledge of the poultry industry. High risk indirect 

contact values allocated by the experts for chicken multiplier breeders, chicken meat broilers, 

and chicken table egg layers were later validated by a questionnaire to producers (data not 

shown).

45



A third spread option included was localized spread. This option consisted of unidentified 

mechanisms (either direct or indirect) that could act locally to spread infection, assuming a 

probability of infection of 0.01 at 1km from an infected premise, decreasing exponentially 

(Dube, unpublished). As direct contact from the infected farm to a naïve farm was assumed to 

always result in transmission of the infection and localized spread was held constant in the 

NAADSM analysis, they were not included in the negative binomial regression analysis.

2.3.1.3. Simulation o f  disease detection

In the NAADSM, disease detection represented both the probability o f a veterinarian or 

producer detecting the presence of HPAI on the premise, based on clinical signs, and the overall 

awareness of the producers in the study region to HPAI (Dube, unpublished). Once the first case 

was detected, it was assumed that other producers were informed, and were therefore more likely 

to inspect their flocks for suspicion of HPAI, increasing awareness. Based on these assumptions, 

speed of disease detection was identified as a categorical variable, outlined in Table 1.

2.3.1.4. Simulation o f  movement controls and destruction

The control strategies investigated included movement restrictions (on direct and indirect 

contacts) and destruction strategies, which were applied to all premises in the study region once 

HPAI was confirmed in a flock (Dube, unpublished). Movement restrictions were defined as 

reducing contact rates during an outbreak as compared to “normal” days (pre-outbreak) of direct 

and indirect contacts (Table 1). These restrictions were categorized as: 1) no restrictions on 

direct and indirect contacts (100% movement); 2) less effective restrictions on indirect contacts 

with restrictions on direct contacts; and 3) effective restrictions on indirect contacts and direct 

contacts. Less effective and effective movement restrictions on indirect contacts referred to the
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decrease in the percent o f movement over time. With less effective movement restrictions at day 

0 there was 100% movement, on day 2 there was 90% movement, on day 5 there was 75% 

movement, day 7 there was 60% movement and on day 10, 30% movement. For effective 

movement restrictions at day 0 there was also 100% movement, day 1 had 65% movement, day 2 

had 35% movement, day 4 had 15% movement, and only 5% movement by day 5.

Three destruction strategies were also included: 1) stamping-out of the infected/detected 

farms and tracing/testing of direct contacts; 2) stamping-out with ring-culling o f flocks within 1 

km from infected/detected farms; or 3) stamping-out with ring-culling of frocks within 3 km 

from infected/detected farms. Based on the HPAI and low pathogenic avian influenza (LPAI) 

outbreaks in British Columbia (BC), as stated in the Notifiable Avian Influenza Hazard Specific 

Plan by the Canadian Food Inspection Agency (CFIA), it is critical that slaughter decisions be 

made to allow clinical and pre-clinical frocks to be destroyed within 24 hours of detection 

(CFIA, 2007). Therefore, a 1 day delay was utilized in the NAADSM to start destruction o f the 

first infected frock (Dube, unpublished).

2.3.2. Statistical analysis

An initial descriptive statistical analysis was carried out on the 2 outcomes o f interest, 

mean number and 95* percentile o f farms infected at the end of the outbreak, as well as 

correlation coefficients among the predictor variables. Input parameters from the scenarios were 

used as predictors in the statistical analysis (Table 1). All predictors were initially assessed for 

unconditional association with the outcomes. Predictors were deemed unconditionally associated 

with the outcomes if  they had a p-value <0.15, and were then eligible for inclusion in the 

multivariable model building. Using Stata 10.0 (www.stata.com/statalO/), negative binomial
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regression analysis was used to determine significant predictors for the outcomes. Comparable to 

linear regression models, negative binomial regression models are suitable for analysis of 

strongly right-skewed count data. All predictors were assessed for confounding and all possible 

two-way interactions. Confounding was considered present if  the coefficient of the risk factor of 

interest changed more than 20% when the potential confounder was added to the model.

The stepwise forward selection process o f the significant explanatory variables for 

model-building followed the methodology described by Dohoo et al. (2003), and was validated 

using a backward elimination process to further test the association of the predictors with the 

mean number and 95* percentile o f farms infected.

The negative binomial model was validated through overdispersion analysis and a 

deviance chi^ goodness-of-fit test, using the deviance residuals.

2.3.3 Interaction plot analysis

Predictive values were obtained from the negative binomial models to visualize the 

interaction between movement restrictions and destruction strategies. The interaction plots were 

stratified on a low (40%), moderate (60%) and high (90%) probability of transmission through 

indirect contact, low, moderate, and high farm density, and slow, moderate and fast detection to 

gain a better understanding of the effects o f the probability o f transmission through indirect 

contact, farm density, and detection as well as the interaction between movement restrictions and 

destruction strategies. The stratified plots were also compared to each other to determine if there 

were any major differences present, such as differences between a low and a high probability of 

transmission.
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The values chosen for the probability of transmission through indirect contact were from 

the initial baseline scenarios developed by Dube (unpublished), chosen to represent high, 

moderate and low probability of transmission via indirect contact.

2.4 Results

2.4.1. Statistical Analysis

The outcomes had a strong right skew and consisted o f a large number o f scenarios 

resulting in zero, one, and two farms infected (Figures 1 & 2). The distribution for the outcomes, 

mean number o f farms infected and 95* percentile had medians of 8 and 28, ranges of 0 to 3308 

and 1 to 3530.05, and interquartile ranges of 112 and 203.45, respectively.

For both the unconditional and multivariable analyses, all predictors were significantly 

associated with the outcomes, and there was no significant correlation among the predictors. The 

final models (n=2 for the 2 outcomes) included the following predictors: flock type initially 

infected, farm density within the county where the initially infected flock was located, 

probability of transmission through indirect contact, subclinical spread of the infection, number 

of initially infected flocks, speed of detection, and a two-way interaction between destruction 

and movement restrictions.

Due to the categorical nature of the predictors investigated, reference levels for each 

predictor were needed for interpretation. For example, with density of farms in a given area there 

were 4 levels, or categories, including very low density, low density, moderate density and high 

density. In order to evaluate these levels a reference level, in this case a very low density area, 

was used for comparison. Thus the count ratios in the final models are relative to a baseline 

model consisting o f a single chicken broiler farm initially infected and located in a moderate
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density area in Ontario, where there was subclinical spread of the disease and the premise had a 

moderate probability of transmission through indirect contact, with a moderate rate of detection.
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Figure 1 : Histogram of the distribution o f the mean number of farms infected
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Figure 2: Histogram of the distribution of the number of farms infected at the 95* percentile
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In the final models, compared to introduction into a chicken broiler farm, introductions 

into any other production types generally reduced the mean number o f farms infected, with count 

ratios below 1, with the exception o f the mixed type group, which was a mixture o f farm types 

with mixed densities and multiple farms initially infected (Table 2). When the infected farm 

could not subclinically spread the disease through direct and indirect contact, fewer farms were 

infected compared to being able to subclinically spread the disease. For example, if  30 farms 

were infected because the initially infected farm could subclinically spread the disease, when the 

infected farm could not subclinically spread the disease, only 26 farms become infected. It was 

expected that the mixed farm type group and mixed density would have had a significant impact 

on the size o f the outbreak as they were a combination of flock types with various densities 

within counties. The type and density were unknown for some areas, therefore they were 

assumed to be mixtures.

The data were tested for overdispersion and goodness o f fit as well as an analysis of the 

residuals completed. The likelihood ratio test had a chi-squared value of 2.3 x 10°^, with a p- 

value of <0.05. This indicates that a Poisson model was not a good fit for the data and a negative 

binomial regression analysis corrected the problems o f overdispersion, making it a better fit.

2.4.2. Interaction plot analysis

Because of the interaction between movement restrictions and destruction, 

interaction plots were necessary for the interpretation of these variables (Figures 3&4). The 

interaction plots, developed from the negative binomial regression analysis, were found to be an 

appropriate visualization tool for communication to policy-makers, as described below.
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Table 2: Count ratios, standard errors, p-values, and confidence intervals for the predictors used in the determination of the association 
among the mean (and 95‘̂  percentile) number of farms infected and various control strategies

Variable Count Ratio Standard Error P-Value Confidence Intervals

Mean 95*% Mean 95*% Mean 95*% Mean 95*% Mean 95*%

Farm Type

Chicken meat broilers Reference - - - - - - - - -

Chicken meat multiplier breeders 0.191 0.333 0.033 0.032 <0.05 <0.05 0.179 0.313 0.203 0.355

Chicken meat multiplier breeder pullets 0.165 0.348 0.038 0.037 <0.05 <0.05 0.153 0.323 0.178 0.374

Chicken meat spikers 0.073 0.147 0.037 0.035 <0.05 <0.05 0.068 0.138 0.079 0.158

Table egg layers 0.232 0.416 0.033 0.032 <0.05 <0.05 0.217 0.391 0.247 0.443

Egg layer multiplier breeders 0.965 0.859 0.026 0.026 0.176 <0.05 0.917 0.816 1.016 0.905

Egg layer multiplier pullets 0.224 0.342 0.052 0.049 <0.05 <0.05 0.203 0.311 0.248 0.377

Turkey broilers 0.379 0.698 0.054 0.050 <0.05 <0.05 0.341 0.633 0.421 0.771

Turkey multiplier breeders 1.027 0.965 0.024 0.024 0.272 0.139 • 0.980 0.921 1.076 1.012

Turkey multiplier pullets 0.888 0.760 0.038 0.038 <0.05 <0.05 0.825 0.707 0.956 0.818

Mixed type 17.187 5.527 0.060 0.064 <0.05 <0.05 15.269 4.873 19.345 6.269

Cannot subclinically spread the disease 0.130 0.168 0.017 0.016 <0.05 <0.05 0.126 0.163 0.135 0.174
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Figure 4- Interaction plots between movement restrictions and destruction strategies (p<0.05) for a high, moderate and low probability 
o f transmission from indirect contact, low, moderate and high density, and slow, moderate and fast detection from the final negative 
binomial model of associations with the number of farms infected at the 95**" percentile

58



2.4.2.1 Probability o f  transmission through indirect contact

The trends between the mean number o f farms infected and the 95* percentile were 

found to be similar. In Figure 3, the model demonstrates that a high probability o f transmission 

through indirect contact resulted in a larger outbreak and the presence of movement restrictions, 

compared to the baseline parameters, consisting o f a low probability o f transmission through 

indirect contact, in a moderate density area, with a single chicken farm initially infected, with a 

moderate detection rate, no movement restrictions, and a stamping-out only destruction strategy. 

For instance, a high probability of transmission resulted in 50.8 (46.0, 56.3) farms infected at the 

end o f the outbreak, compared to the baseline (same as above) with a low probability of 

transmission through indirect contact, which resulted in only 30.8 (28.6, 33.2) farms infected 

(Table 3; Figure 3). The trend was similar for the 95* percentile, although the number of farms 

infected at the end of the outbreak was substantially larger (Table 4; Figure 4).

With stamping-out only, scenarios with a high probability of transmission through 

indirect contact, and effective movement restrictions on indirect contacts and restrictions on 

direct contacts, resulted in a reduction in the mean number o f farms infected by 48.5 (44.0, 53.6) 

farms (Table 3; Figure 3), compared to the baseline (as above) with no movement restrictions. 

Under the same conditions, for the 95* percentile, the number o f farms infected would be 

reduced by 1192.1 (1087.3, 1308.3) farms (Table 4; Figure 4). There was no significant 

difference between the destruction strategies found, therefore a stamping-out only strategy (no 

ring-culling) would be an appropriate control strategy in this situation (Figures 3 & 4).
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Table 3; Summary of the reduction in the mean number of farms infected from 1000 iterations based on the probability of 
transmission through indirect contact, farm density area where the initially infected flock resided, and detection speed for less 
effective and effective movement restrictions on indirect contacts and restrictions on direct contacts with stamping-out only

Parameter

No movement restrictions on 
direct or indirect contacts

Number of farms infected

Less effective movement restrictions on 
indirect contacts with restrictions on direct 

contacts

Effective movement restrictions on 
indirect contacts with restrictions on 

direct contacts

Probability o f transmission

Low 30.8 (28.6,33.2) 3.3 (2.9, 3.8) 1.4 (1.3, 1.6)

Moderate 36.3 (33.3,39.7) 3.9 (3.4, 4.5) 1.7 (1.5, 2.0)

High 50.8 (46.0, 56.3) 5.5 (4.7, 6.4) 2.4 (2.0,2.8)

Farm Density

Low 55.8 (48.2, 64.2) 6.0 (4.9, 7.3) 2.6 (2.1,3.2)

Moderate 59.0 (50.7,68.8) 6.4 (5.2, 7.8) 2.7 (2.2,3.4)

High 78.4 (66.0, 93.2) 8.4 (6.7,10.6) 3.6 (2.9,4.6)

Detection Speed

Slow 139.1 (129.2,149.8) 15.0(13.2, 17.1) 6.4 (5.6, 7.4)

Moderate 122.6(112.9,133.1) 13.2(11.5, 15.2) 5.7 (4.9,6.6)

Fast 108.1 (99.9, 117.0) 11.7(10.2, 13.3) 5.0 (4.4,5.8)
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Table 4: Summary of the reduction in the mean number of farms infected (at the 95 '̂’ percentile level) from 1000 iterations based on 
the probability of transmission through indirect contact, farm density area where the initially infected flock resided, and detection 
speed for less effective and effective movement restrictions on indirect contacts and restrictions on direct contacts with stamping-out 
only

Parameter
No movement restrictions 

on direct or indirect contacts

Number of farms infected 
Less effective movement restrictions on 

indirect contacts with restrictions on direct 
contacts

Effective movement restrictions on 
indirect contacts with restrictions on 

direct contacts
Probability of transmission

Low 864.4 (803.5,929.8) 109.3 (95.9, 124.6) 51.4(45.0, 58.7)
Moderate 970.1 (891.4, 1056.6) 122.7 (106.4, 141.6) 57.7 (49.9,66.7)

High 1267.5 (1151.7, 1396.6) 160.3 (1 3 7 .4 ,187.1) 75.4 (64.5, 88.2)
Farm Density

Low 1324.9 (1154.8, 1524.8) 167.5 (137.8, 204.3) 78.7 (64.6, 96.3)
Moderate 1416.5 (1219.6, 1649.8) 179.1 (145.5, 221.1) 84.2 (68.3,104.2)

High 1758.3 (1486.5, 2085.4) 222.3 (177.4, 279.4) 104.5 (83.2, 131.7)
Detection Speed

Slow 2721.7(2527.5, 2933.6) 344.1 (301.6, 393.1) 161.7(141.5, 185.3)
Moderate 2418.9 (2228.2,2629.9) 305.9 (265.9,352.4) 143.8 (124.7, 166.1)

Fast 2138.0(1975.5, 2317.0) 270.3 (235.7, 310.5) 127.1 (110.6, 146.4)
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2.4.2.2. Farm density

In Figure 3, the model demonstrated that when the initially infected farm was located in 

higher farm density areas, it resulted in a larger outbreak, compared to the baseline consisting of 

a very low density area, with a moderate probability of transmission through indirect contact, a 

single chicken farm initially infected, a moderate detection rate, with no movement restrictions, 

and a stamping-out only destruction strategy. For instance, in a high density area where the 

initially infected farm was located, 78.4 (66.0, 93.2) farms were infected at the end of the 

outbreak compared to a low density area with 55.8 (48.2, 64.2) farms infected (Table 3; Figure 

3). The trend was similar for the 95^ percentile, although the numbers are substantially larger 

(Table 4; Figure 4).

Again, there was no significant difference between destruction strategies, therefore a 

stamping-out only strategy was an appropriate control strategy in this situation. With stamping- 

out only and either a low or moderate farm density, and effective movement restrictions on 

indirect contacts and restrictions on direct contacts, the number of farms infected was reduced by 

53.2 (46.1, 61.0) and 56.3 (48.4, 65.4) farms, respectively (Table 3; Figure 3), compared to no 

movement restrictions. In high farm density areas, with effective movement restrictions on 

indirect contacts and restrictions on direct contacts, the number of farms infected was reduced by 

74.7 (63.1, 88.6) farms (Table 3; Figure 3), compared to no movement restrictions.

2.4.23 Speed o f  detection

A smaller outbreak resulted when HP AI was detected quickly (within 7d), compared to 

the baseline, which consisted of a slow detection rate, and a moderate farm density area, with a 

moderate probability of transmission through indirect contact, a single chicken farm initially
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infected, with no movement restrictions, and a stamping-out only destruction strategy (Figure 3). 

For instance, when the disease was detected quickly only 108.1 (99.9, 117.0) farms were infected 

at the end of the outbreak, compared to the baseline (as above) with a slow detection rate 

resulting in 139.1 (129.2, 149.8) farms infected (Table 3; Figure 3). The trend was similar for the 

95* percentile though the numbers were once again more substantial (Table 4; Figure 4).

When the initially infected flock was detected slowly, moderately or fast, effective 

movement restrictions on indirect contacts and restrictions on direct contacts, resulted in a 

reduction in the number of farms infected by 139.1 (123.5, 142.4), 116.9 (108.0, 126.6), and

103.1 (95.6, 111.3) farms, respectively, compared to no movement restrictions (stamping-out 

only) (Table 3; Figure 3). For the same conditions, for the 95* percentile, for slow, moderate and 

fast detection, the number of farms was reduced by 2559.9 (2386.1, 2748.3), 2275.2 (2103.5, 

2463.8), and 2011.0 (1865.0, 2170.6) farms, respectively (Table 4; Figure 4).

2.4.3. Multiple initially infected flock analysis

A separate model (data not shown) was fitted using multiple farms initially infected as a 

predictor. This predictor represented mixed farm types and different density values, which were 

collinear with multiple farms initially infected, therefore farm type and density, were removed 

from the model. Briefly, results show that as the number o f farms initially infected increased, at 

the start of the simulation, the resulting number o f farms infected at the end of the outbreak was 

also higher, compared to only a single farm initially infected. For instance, five farms initially 

infected caused 3.16 times more farms to he infected at the end of the outbreak simulation, 

compared to a single farm initially infected, when there were no movement restrictions, a 

stamping-out-only destruction strategy, subclinically infected farms could spread the disease, a
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moderate probability o f transmission through indirect contact (60%), and a slow detection rate 

(21 days). For example, compared to the baseline with, for instance, 30 farms infected at the end 

of the outbreak, having 5 farms initially infected would result in 95 farms infected at the end of 

the outbreak. The rest of the model was similar to the model with only one farm initially 

infected, and therefore it is not described here further.

2.5 Discussion

The negative binomial regression model was an appropriate tool for analysis o f a large 

number o f simulated outbreaks, with the right-skewed outcome closely fitting the negative 

binomial distribution. Results show that all production types, when compared to chicken broilers, 

generally reduced the mean number o f farms infected. This result was most likely due to the 

contact structure defined in the NAADSM for each production type. Chicken broilers tend to 

have higher direct and indirect contact rates than other production types due to their short 

production cycles, which may increase the likelihood of infection. This is different from chicken 

layers because layers remain on one farm for the duration o f their life until they are no longer 

high egg producers, in which case this would result in slaughter. In the model by Sharkey et al. 

(2008), the key risk factor for a wide-scale outbreak was the presence of infection in high-risk 

sectors such as meat duck farms, similar to the current study with chicken broilers. This 

emphasizes that identifying these high-risk sectors and preventing transmission to them is 

essential for reducing the risk of such large-scale outbreaks (Sharkey et al., 2008).

The ability o f the infected flock to spread the disease without detection from clinical 

signs (subclinically) through direct and indirect contact resulted in a larger outbreak than if  the 

infected premise could not subclinically spread the disease. Most likely undetected transmission
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is occurring in this case, leading to an increased mean number of farms infected, as unaware 

infected farmers do not restrict bird movement. Realistically, during an outbreak, subclinical 

farms would be a source o f spread of the disease, due to the inability to detect disease 

transmission from a lack o f clinical signs.

Separate analysis of the effect of the number o f initially infected farms on the outcome 

showed that as the number o f initially infected farms increased, the number o f farms infected at 

the end of the outbreak also increased. This was expected, though it is unlikely that in an 

outbreak of HPAI, multiple farms would be initially infected, such as 5 farms or more, 

depending on the time of detection. Also, the appropriate control strategies (effective movement 

restrictions and a stamping-out only strategy) for resolving the outbreak remained the same 

regardless o f the number of farms initially infected.

The probability o f transmission through indirect contact was influential to virus spread. A 

higher probability o f transmission through indirect contact resulted in a larger number of farms 

infected. As previously stated, this form of transmission occurs through things like fomites from 

movement o f people and vehicles between farms, which can be controlled through proper 

biosecurity measures. The notifiable avian influenza (NAI) hazard specific plan, put forth by the 

CFIA, specifically states that an outbreak can be spread due to poor biosecurity measures (CFIA, 

2007). These suggestions coincide with the findings in the current study. It was also suggested 

that the introduction of the virus in Saskatchewan (2007) was caused by transmission through 

either wild bird contact, contaminated drinking water from a nearby dug-out, or farm workers 

(CFIA, 2008). The current study and insights gained fi-om previous outbreaks indicated that 

transmission from indirect contacts is extremely important for virus spread and therefore 

warrants more stringent regulations.
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Initiating outbreaks in areas o f higher density in a given area resulted in an increase in the 

number o f farms infected, though the increase was not as large as expected. Previous outbreaks 

show that high density areas are more susceptible to disease spread due to a higher potential for 

direct and indirect contacts (Nishiguchi et ah, 2007). Conversely, Sharkey et al. (2008) found 

that some high farm density areas of Great Britain had a relatively low risk of infection while 

other high farm density areas produced large scale outbreaks, providing variable results. The 

results from the current study and results from previous studies could be due to many factors, 

such as the extent of local spread in the current study. Localized spread represented unknown 

spread mechanisms, direct or indirect, such as contact with wild birds, which depended on the 

type o f production facility. A probability of infection of 0.01 at 1km was used, which may not 

encompass all possible unknown spread mechanisms. Sharkey et al. (2008) used a similar 

localized spread value, as well as a range of other probabilities up to 0.5 at 1km. They found 

similar results, also indicating the difficulty in defining the level of localized spread, as it is not 

easy to quantify spread by wild birds or other animals, vehicles and people. Sharkey et al. (2008) 

states that other contributing factors may include species on farm, distance between farms, 

locality o f feed mills and slaughter houses, and the industry structure, as well as other 

geographical, demographical and epidemiological factors for a given area. These factors would 

need to be considered when determining the contact structure o f industry for movement 

restrictions.

There was a reduction in the number of farms infected when the speed o f detection 

changed from slow through moderate to fast. Previous studies demonstrated that earlier detection 

resulted in more effective use o f the control strategies (Pozza et al., 2008). In the NAADSM, it
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was assumed that baseline awareness was moderate or good, and that clinical signs caused 

farmers to detect the disease quickly.

Movement restrictions on direct and indirect contacts were found to have the largest 

impact on the size o f the outbreak, compared to the other parameters in the model. Increasing 

movement restrictions on indirect contacts referred to restricting movement of people and 

vehicles from infected premises to naïve premises. Restrictions on direct contacts referred to 

restricted movement of birds from farm to farm. Both contacts were found to play an important 

role in the size of an outbreak, and through the use o f movement restrictions, the number of 

farms infected were greatly reduced. Pozza et al. (2008) states that pre-requisites for a successful 

control intervention include prompt restriction measures on suspected flocks, indicating the need 

to involve movement restrictions in any outbreak control program.

Stamping-out of the infected/detected flock was an appropriate destruction strategy (no 

ring-culling required). Many countries have a stamping-out policy in place in the event of an 

outbreak, however, containment of the infection on individual farms or in zones is also extremely 

important (Swayne & Suarez, 2000). The guidelines put forth by the World Animal Health 

Organization (OIE) state that the basis o f HPAI eradication through stamping-out is to 

immediately impose movement restrictions on the infected area followed by slaughter o f all 

infected and potentially infected birds (Martin et al., 2006). This is highly dependent on the area, 

as demographics, geography and epidemiological considerations need to be taken into account 

(Sharkey et al., 2008). Current Canadian policy states that a stamping-out strategy and pre­

emptive slaughter of neighboring flocks with ring-culling at 1km in combination with effective 

movement restrictions, is the best method for control and eradication of virus spread between 

flocks (CFIA, 2004). The results o f the current study indicate that, in the event o f an outbreak,
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stamping-out o f the infected/detected flock, with no ring-culling, combined with effective 

movement restrictions on direct and indirect contacts, would be the most effective control policy.

The main limitation in simulations, such as this, is they depend on various assumptions 

for each variable. In order to make these assumptions, information is required from the industry, 

which may be difficult to obtain. The main limitation o f the current study was the difficulty in 

covering all aspects of a potential outbreak, as each outbreak is unique and some parameters are 

difficult to quantify. This study was the first of its kind on an Ontario poultry population using 

the NAADSM, making comparisons difficult. While the NAADSM has been used for modeling 

FMD outbreaks, little work has been completed on avian influenza, and therefore further 

research is required to refine model assumptions and gain a better understanding of HPAI virus 

movement. Newer versions of NAADSM have resulted in various errors being corrected and 

slight modifications to the model, therefore it would be o f interest to see if  there are any 

differences in the results between the version o f NAADSM used in the current study and a newer 

version of the model.

Future directions of this research should include analysis of other outcomes, such as the 

duration of an outbreak, comparison to randomly generated farm location data, and analysis 

involving other provinces and states.

2.6 Conclusion

The outcomes, mean number o f farms and 95̂ *’ percentile, had a strong right skew, 

consisting o f a large number of scenarios with only I -2 farms infected at the end of the outbreak, 

making a negative binomial regression analysis the most appropriate analytical tool. Interaction 

plots, developed from the negative binomial regression analysis, were appropriate for use as a

68



visualization tool for communication of results to policy-makers. This was determined from 

presentation of the results to policy-makers, which was well received with the concepts being 

easily understood.

This novel approach revealed that, from a policy development perspective, destruction of 

the infected/detected flocks only was appropriate, in combination with effective movement 

restrictions on direct and indirect contacts (no ring-culling required). This finding, however, may 

be subject to change, depending on the geography and demographics o f an area.
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Chapter 3: Comparison of randomly generated location and flock size data versus real data 
for outbreak simulations of highly pathogenic avian influenza using the North American 
Animal Disease Spread Model

Lewis, N* (1), Sanchez, J (1), Vanleeuwen, J (1), Dubé, C (2)
(1) Department O f Health Management, Atlantic Veterinary College, University O f Prince 
Edward Island, 550 University Avenue, Charlottetown PE, Canada C IA  4P3. Email: 
nllewis@upei.ca
(2) Canadian Food Inspection Agency, 59 Camelot Dr., Ottawa, Canada K1A 0Y9

3.1 Abstract

The purpose o f this research was to compare the results o f simulated outbreaks o f highly 

pathogenic avian influenza (HPAI) using randomly generated point locations and flock sizes and 

compare the results to those obtained when real location and flock size data, for Ontario, Canada, 

were used. Farm identification, point locations (latitude, longitude), number of birds, number of 

bams, and production types were provided by the Ontario Livestock and Poultry Council 

(OLPC) regarding all commercial poultry production, including all chicken and egg production 

types, in Ontario (2006). The Ontario Ministry o f Agriculture, Food and Rural Affairs 

(OMAFRA) provided the farm identification, production type, location (latitude, longitude), 

number o f bams and number o f birds for the commercial turkey farms, and the same data were 

provided from the Ontario Farm Business Registry (OFBR) for the hobby producers. Three 

datasets were developed consisting of: 1) the real-industry dataset - real flock size and location 

data (from Chapter 2); 2) the “random-industry” dataset - using OLPC and OMAFRA data for 

random generation o f point locations and flock sizes; and 3) the “random-census” dataset - using 

Statistics Canada agricultural census data for 2006 for randomly generated point locations and 

OLPC and OMAFRA data for flock sizes. Farms were categorized into 4 production types 

(commercial chicken meat, commercial eggs, commercial turkey, and hobby poultry) for the 

analyses, because the census data were recorded in this manner. Four outbreak scenarios were
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investigated for comparison of the real data versus both sets of randomly generated data, 

considering both a weighted median number of contacts per day between farms, and a weighted 

maximum number o f contacts per day, including various control strategy options (e.g. movement 

restrictions and destruction strategies). Negative binomial regression analysis and a 

Kolmogorov-Smimov (K-S) equality-of-distributions test were carried out, to determine if  any 

significant difference existed between the three datasets. For the negative binomial regression 

analysis, in the majority o f the scenarios, there were significant differences between the datasets. 

This was most likely due to the large number o f iterations, suggesting a significant difference 

even if  that difference was very small, as seen in the current study. For the K-S test there were 

significant differences between the 3 datasets in all scenarios. The significant differences found 

in the K-S test may be due to a small difference in only one part of the curve. The real data 

tended to produce larger outbreaks as compared to the two random datasets. However, these 

discrepancies were considered minimal from a policy development perspective, as a robust 

policy is typically created. Overall, under the conditions set in this particular study, both the 

random-census and random industry datasets were suitable replacements for the real-industry 

data. The findings in this study were only for an outbreak o f HPAI in Ontario, due to data 

availability, and therefore further simulations should be done for other provinces.

Keywords

Highly pathogenic avian influenza; simulation modeling; random allocation; NAADSM; policy

3.2 Introduction

Highly pathogenic avian influenza (HPAI), a negative-sense RNA virus, has been 

impacting poultry production systems throughout the world, and transmission to humans has also
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been occurring, leading to increased public concern for its control (Yee et al., 2008). The 

outbreak experience in North America in the past has been limited, but it has raised awareness 

about the potential impact o f a serious outbreak, and therefore governmental organizations have 

developed contingency plans and policies in preparation for an outbreak. Under this context, 

simulation modeling has become an extremely important tool for predicting potential 

consequences in the event of an outbreak, and for providing insight into the most important 

methods of control and eradication of the virus (Harvey et ah, 2007).

The North American Animal Disease Spread Model (NAADSM) was developed for 

particular use in North America to assist in policy development and decision-making around 

disease incursions. NAADSM is a herd-based, spatially explicit, state-transition simulation 

model for the spread of highly contagious diseases of animals (Harvey et ah, 2007). Harvey et ah 

(2007) describes NAADSM as having user-established parameters that define the model’s 

behavior in terms of: disease progression; disease spread through animal-to-animal contact; 

contact with contaminated personnel or equipment; airhome dissemination; and the 

implementation of control measures such as movement restrictions, destruction and vaccination 

strategies. In the current version of NAADSM, the unit of concern is a herd dr a flock, and this is 

represented by a production type (e.g. broilers) and a given size (e.g. number o f birds), which is 

geographically represented by its latitude and longitude.

In Canada, the exact location o f the farm and the number o f birds on each farm is 

confidential and this information is usually not accessible by regulatory agencies, except when 

facing an outbreak situation. Three specific studies looked at appropriately generating data when 

farm information is unavailable, though no comparisons were made to real data. This type of 

random point generation has never been compared to real location data, in Canada. Freier, et al.
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(2007), used summarized data provided by the United States Department of Agriculture (USD A) 

Census of Agriculture to randomly generate farm locations for simulations. The summarized data 

contained county-level information about the number of farms and animals per farm for each 

commodity. Dot density maps that showed the location of randomly placed farms were created, 

utilizing exclusion zones for areas where a farm was unlikely to be situated, such as lakes and 

urban areas.

Tildesley et al. (2010) explored the use o f estimated farm locations and spatial clustering 

for disease transmission in place o f real location data in the United Kingdom (U.K.) for foot-and- 

mouth disease (FMD). They concluded that parameterizing the model to match epidemic 

behavior, and using aggregate county-scale data were appropriate methods for determining 

optimal control measures in the event of an outbreak of FMD. They also noted that clustering of 

farms played a significant role in the model parameterization (Tildesley et al., 2010).

Bruhn et al. (unpublished) derived the number, type and size of farms in the USA from 

the USD A Census o f Agriculture’s county totals. These authors stated that the USD A has 

simulated farm and animal populations for North Carolina in the past, using six spatial 

constraints that were not mentioned in the paper. However, the authors o f that study reported that 

their approach only achieved moderate success, due to inaccuracies in the public domain lists of 

farms, and because o f difficulties in converting rural route addresses to geocodable locations. 

Bruhn et al. (unpublished) also found that it was possible to generate rudimentary poultry- 

operation locations nation-wide, using the USD A Census of Agriculture data and geographic 

information systems (CIS) which were reasonable substitutes for actual farm locations, and with 

further customization of poultry subtypes and sizes, the data would be more realistic (Bruhn et 

al., unpublished).
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For the NAADSM model, flock size is another input parameter that requires investigation 

when randomly generating a dataset to be used in the absence o f real data. It is important to 

ensure that random allocation of flock sizes to the flock locations is done accurately. In the study 

by Bruhn et al. (unpublished), the farms in Delaware were mostly broiler farms, and the authors 

estimated the number of birds for each farm based on the size and number of poultry houses on 

each Delaware farm from the 2002 USD A Census of Agriculture. However, difficulties in 

producing appropriate flock sizes for the different types of poultry were encountered due to the 

fact that numerous farms raised multiple types of poultry, such as broilers, layers and pullets.

This made it difficult to give point locations to individual production types. This specific 

challenge was not encountered in the current study as it was assumed that there was only one 

production type on each farm.

The main objective of this manuscript was to compare the number o f flocks affected 

under simulated HPAI outbreak scenarios when randomly generated point locations and flock 

size data were used versus real locations and flock size data provided by the poultry industry in 

Ontario, Canada.

3.3 Materials and Methods

3.3.1 Data sources and generation o f  random locations andflock sizes

Three datasets representing Ontario in 2006 were created for comparison, as described below.

3.3.1.1 Real-industry dataset

Farm identification, production type, flock size and point location (latitude, longitude) 

data were obtained from the Ontario Livestock and Poultry Council (OLPC) for the commercial 

poultry production, from the Ontario Ministry o f Agriculture, Food and Rural Affairs 

(OMAFRA) for the commercial turkey farms, and from the Ontario Farm Business Registry
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(OFBR) for the hobby farms. A total o f 8,773 commercial (n=2,186) and non-commercial farms 

(n=6,587) were included in the simulations (Table 1).

The real-industry dataset used in the current study was modified from the dataset used in 

Chapter 2 which consisted of 10 production types. To generate a dataset that was comparable to 

the random location datasets, these 10 production types were collapsed into 3 specific types: 

commercial chicken meat (including chicken meat multiplier breeder pullets, chicken meat 

multiplier breeders, meat spikers used to stimulate the hens and chicken broilers), commercial 

turkey meat (including turkey multiplier breeder pullets, turkey multiplier breeders, and turkey 

broilers), commercial chicken egg (including egg multiplier breeder pullets, table egg multiplier 

breeders, table egg layer pullets, and table egg producers (layers)), plus a 4* production type 

called hobby farms, which consisted of all backyard hobby farms in the province. The main 

characteristics o f the 3 main production types are the commercial chicken meat consist of those 

chicken production types used in meat production, the commercial chicken egg type are those 

used specifically in the production of eggs and the turkey meat type consists of those production 

types that produce turkey meat. The real point locations (latitude, longitude) and flock sizes were 

maintained from the original dataset (as described in Chapter 2) and entered into NAADSM 

Version 3.1 (http://www.naadsm.org/download/versions).
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Table 1 : Summary of flock number and flock size range for each production type in each of the 3 datasets
Random-census Random-industry Real-industry*

Broiler chicken meat Number of farms 1387 1387 1387

Flock size range 46,195358 1,188646 1,188646
Egg Number of farms 528 528 528

Flock size range 246,279890 687,396883 687,396883
Turkey Number of farms 6587 6587 6587

Flock size range 410, 148186 286,158382 286,158382
Hobby Number of farms 271 271 271

Flock size range 75, 75 75, 75 75,75
*The real-industry data consisted of 10 commercial production types (4 chicken types, 3 egg types, and 3 turkey types) where each of 
those types had its own range of flock sizes
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3.3.1.2 Random-industry dataset

From the real-industry dataset of 8773 farms, the total number of flocks for each o f the 4 

-production types within each census division in Ontario was determined (Table 1). These data 

were entered into Quantum GIS, and random points representing the location of a specific type 

o f farm were generated using the FTools extension, which is a widely used advanced set of 

spatial tools used to extend the functionality of Quantum GIS (http://www.ftools.ca/). These 

points were randomly generated within the known census divisions, and were constrained by 

agricultural land use only (Statistics Canada, 2011). A minimum distance between farms of 

0.5km was assumed as a constraint as well. Geographic coordinate values (latitude, longitude) 

were then added to these randomly generated farm location points to allow for data input into 

NAADSM.

Flock sizes for these farm location points were the same flock sizes used in the real- 

industry dataset.

3.3.1.3 Random-Census dataset

The total numbers of commercial chicken meat, commercial chicken egg, and turkey 

meat farms, within each census division, were obtained from the Statistics Canada website 

(www.statcan.gc.ca/). However, though the data were from 2006 as well, the number o f farms 

provided by Statistics Canada was different from the real data; therefore in order to make the 

datasets as comparable as possible, the total number of farms within each census division in the 

census dataset was adjusted to reflect the true data based on production type. This ensured that 

there were 2186 commercial farms in both the real, random-industry, and random-census 

datasets (Table 1). The differences may be due to the method of data collection, as Statistics
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Canada typically rounds the number o f farms to the nearest five. The farm locations generated 

for the random-industry dataset were also used for the random-census dataset.

Since hobby farm information was not provided by Statistics Canada, the total number of 

farms and minimum and maximum flock sizes of those farms were taken from the real-industry 

dataset. Locations for these hobby farms were also randomly generated within the given census 

divisions, using the same methods mentioned above in the random-industry dataset section.

Random flock sizes were again generated using the minimum, mode, and maximum 

number o f birds for each o f the 4 production types within each census division, as provided by 

OLPC and OMAFRA, assuming a Pert distribution, in ModelRisk (www.vosesoftware.com/). 

Random flock sizes were generated from this distribution and randomly assigned to each farm 

location, for all four production types, across all census divisions.

3.3.2 Simulation modeling and input parameters

Each dataset was entered into NAADSM, and 1000 iterations of outbreak simulations 

were conducted, using the following scenarios, to determine the total number of farms infected 

with HPAI when the outbreak was finally eradicated.

3.3.2.1. Outbreak scenarios

For ease of interpretation o f results among datasets, only four outbreak scenarios, with 

two stochastic contact structures each, were investigated for each dataset (Table 2). The 

scenarios were developed so that all input parameters related to each scenario remained the same 

throughout the 1000 iterations. The control parameters used in these scenarios were adapted from 

the parameters created by Dubé (unpublished) and found to be important in Chapter 2, when no 

movement restrictions were in place. Details are provided below.
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Table 2: Summary of the 4 outbreak scenarios of HPAI used for comparison of the real-industry, random-industry, and random-census 
datasets
Scenario Initially 

infected flock
Census division location 
of initially infected flock

Movement restrictions* Destruction strategy**

l.T -E ff-lkm Turkey 3531 Effective restrictions Stamping-out with 1km ring- 
culling

2. CM-N-lkm Chicken Meat 3531 No restrictions Stamping-out with 1km ring- 
culling

3. T-Eff-3km Turkey 3529 Effective restrictions Stamping-out with 3km ring- 
culling

4. CM-N-3km Chicken Meat 3529 No restrictions Stamping-out with 3km ring- 
culling

* Effective restrictions indicate that on day 0, there is 100% contact between farms and indirect contacts, but by day 5 of the outbreak, 
there is only 5% contact occurring between farms and with indirect contacts.
** Stamping-out is defined as depopulation of the infected/detected flock with pre-emptive ring-culling of either 1 or 3km.
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In the assembly of the 4 scenarios, by design, only one farm was initially infected at the 

start of each simulation, from a census division with high study farm density, for each of the 

datasets. We purposively chose one of two different production types to initiate the outbreak, a 

commercial chicken meat farm or a commercial turkey meat farm, to allow us to see whether 

type o f production made any difference in the results among the datasets.

Regarding control strategies, the rate o f direct and indirect contacts can be affected when 

movement restrictions are applied. Once HPAI is confirmed in a flock, movement restrictions 

can be applied to all farms in a study region (Dubé, unpublished). In NAADSM, movement 

restrictions can be modeled by reducing the baseline contact rate specified by each production 

type combination for direct and indirect contacts. For example, if  there was a rate o f 1 direct or 

indirect contact per farm per day prior to implementation of movement restrictions, it would go 

down to 1 *0.4=0.4 if  movement restrictions were deemed to be reduced to 40% of their original 

value (Dubé, unpublished). In the current study, for ease o f interpretation (because we were more 

interested in comparing datasets for certain control strategies than comparing control strategies 

themselves), and based on Chapter 2 results, one of two levels o f movement restrictions (none or 

effective restrictions on direct and indirect contacts) were applied to all premises in the study 

regions, for a given scenario, once HPAI was confirmed in a flock (Table 2).

Culling detected flocks and 1) flocks in direct contact with an infected flock, 2) flocks 

within a specified distance around an infected flock, and/or 3) flocks that had indirect contact 

with an infected flock were all options for the destruction strategies for the model input 

parameters, as described in Chapter 2. In the current study, again for ease o f interpretation, only 

two levels of destruction strategies were included here, stamping-out with a 1 km ring-cull or 

stamping-out with a 3 km ring-cull (Table 2).
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Other variables held constant regardless of the scenario included a moderate probability 

o f transmission through indirect contact (50%), one farm initially infected to start the outbreak, 

the farm can subclinically spread the disease through shedding the virus in the feces, moderate 

farm density in the area where the initially infected flock was located, and a moderate speed of 

detection (14d), as described in Chapter 2 (Figure 1).
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* Subclinical infection is the ability of a farm to subclinically spread the infection
** Initial infection is the number of farms initially infected with the virus at the start of the simulation
***Biosecurity is equivalent to the probability of transmission via indirect contact

Figure 1 : Conceptual diagram depicting the suspected interactions and associations between all input parameters used in the 
NAADSM model for HPAI
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3.3.2.2. Frequency o f  contacts (weighted contact)

For each of the three datasets and scenarios, two sets of contact frequency structures were 

developed for input into NAADSM, a weighted median value and a weighted maximum value, 

for each production type, calculated from the direct and indirect contact structures used by Dubé 

(unpublished). The direct contact structure used by Dubé (unpublished) was calculated as the 

frequency of contacts per day, which required the following information: length of production 

cycle by production type, and number o f bams per farm. For example, the original dataset 

consisted of 5 different turkey production types, but in the current study, these 5 types needed to 

be collapsed into one commercial turkey type. For turkey multiplier breeders, from the original 

dataset, there were 0.015 direct contacts/d/farm and 28 turkey multiplier breeder farms total. The 

weighted average was calculated using the 0.015 contacts/d/farm multiplied by the total number 

of turkey multiplier breeder farms (28 farms) divided by the total number of turkey farms in 

Ontario, which was 302 total turkey farms (0.015* (28/302)). The weighted average in this 

example was 0.0014 contacts/d/farm. The weighted median and maximum was then calculated 

using the weighted average.

For the indirect contacts, only different types of high risk indirect contacts were included, 

such as, catching crews, vaccination crews, and feed representatives. For example, movement of 

catching crews was assumed to be divided into breeders and non-breeders, and a catching crew 

could start in the morning on a table egg multiplier breeder pullet farm and also go to a meat type 

multiplier breeder later on the same day. The daily rates of indirect contacts per source farm was 

then determined. The number o f bams per premises was again used in the calculation o f these 

rates. The weighted indirect contact frequencies were calculated the exact same way as the 

example given above for the direct contacts.
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The total number of scenarios included in this study was 24: 3 datasets*4 outbreak 

scenarios*! contact structures and a total o f 1000 iterations were run for each scenario.

3.3.3. Descriptive and Statistical Analysis

For the 1000 iterations of each scenario and dataset, the minimum, 5* percentile, median, 

95* percentile and maximum number o f farms infected were determined. These descriptive 

statistics were determined for both the weighted median and the weighted maximum contact 

structures.

For each of the three datasets, cumulative probability plots for the 1000 iterations were 

generated for comparison of the outcomes, number o f farms infected, for the four scenarios and 

two contact structures. The K-S equality-of-distributions test was applied to aid in the 

determination of any existing significant differences among these distributions. This test is often 

used to decide if  a sample comes from a population with a specific distribution, by testing the 

similarities between two distributions, the specific distribution in question, and another 

distribution.

In addition, a negative binomial regression analysis was used to determine if  a significant 

difference existed between the 3 datasets for the 4 scenarios and 2 contact structures. An initial 

descriptive analysis was carried out on the outcome o f interest, number o f farms infected at the 

end of the outbreak, as well as correlation coefficients among the predictor variables, which 

included random-census, random-industry and real-industry.

All predictors were initially assessed for unconditional association with the outcome. 

Predictors were deemed unconditionally associated with the outcomes if they had a p-value 

<0.15, and were then eligible for inclusion in the multivariable model building. Using Stata 10.0, 

a negative binomial regression analysis was used to determine significant predictors for the
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outcomes. All predictors were assessed for confounding and all possible two-way interactions. 

Confounding was considered present if  the coefficient of the risk factor o f interest changed more 

than 20% when the potential confounder was added to the model. The stepwise forward selection 

process of the significant explanatory variables for model-building followed the methodology 

described by Dohoo et al. (2003), and was validated using a backward elimination process to 

further test the association of the predictors with the number o f farms infected. Overall, 8 models 

were developed for the 4 scenarios and the two contact structures, and each model consisted of 

3000 iterations (1000 iteration for each o f the 3 datasets).

The negative binomial model was validated through overdispersion analysis and a 

deviance chi2 goodness-of-fit test, using the deviance residuals.

3,4 Results

The kernel density maps depicted in Figure 2 display the spatial distribution o f the real 

and randomly allocated farms for all four production types used in this study. It was observed 

that the total number of farms was spread out over a larger area in the randomly generated point 

locations compared to the real-industry data.
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into Quantum GIS
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industry) as the locations o f the two datasets were similar

Figure 2: Kernel density maps for comparison of the real-industry, random-census and random- 
industry farm locations
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3.4.1. Weighted median and maximum frequency contacts

The results indicate a vast difference in number of infected farms between the two types 

of contact structures, with the weighted maximum contact structure resulting in many more 

farms becoming infected at the end of the outbreak compared to the weighted median contact 

structure.

For the weighted median contact structure, comparison of the 1000 iterations between the 

random-census, random-industry and real-industry datasets showed similar minimum and 

median counts for the number of farms infected at the end of the outbreak (Table 3). However, 

the maximum count in the real-industry dataset was approximately 2-3 times larger than the 

random-census and random-industry datasets, across all scenarios (Table 3). Overall, the 

random-census and random-industry datasets had similar maximum counts. The 5*̂  percentile 

was zero in nearly every situation for each dataset; while the 95* percentile counts were overall 

much lower than the maximum counts.

For the weighted maximum contact structure, again similar minimum and median counts 

for the number o f farms infected at the end of the outbreak was observed within all datasets 

(Table 4), even though scenarios 2 and 4 (CM -N-lkm & CM-N-3km) had higher median counts 

than scenarios 1 and 3 (T-Eff-lkm & T-Eff-3km) for all datasets. For scenarios 1 (T-Eff-lkm) 

and 3 (T-Eff-3km), where there were effective movement restrictions on direct and indirect 

contacts, there were more than double the maximum number of farms infected in the real- 

industry dataset, compared to the random-census and random-industry datasets, which were 

similar. The 5* percentile was again zero in nearly every situation for each dataset, however the 

95* percentile counts were only slightly lower than the maximum counts for scenarios 2 and 4
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(CM -N-lkm & CM-N-3km), while scenarios 1 and 3 (T-Eff-lkm & T-Eff-3km) were % to V2 the 

maximum eounts.

90



Table 3: Ranges and percentiles of the number of farms infected with HPAI, from 1000 iterations, for scenarios 1-4, for the real- 
industry, random-industry, and random-census datasets using a median contact structure

Scenario Dataset Minimum 5*̂  percentile Median 95^ percentile Maximum
1. T-Eff-lkm Real-industry 0 0 1 5 12

Random-industry 0 0 0 1 4
Random-census 0 1 1 4 8

2. CM-N-lkm Real-industry 0 0 0 6 14
Random-industry 0 0 0 1 5
Random-census 0 0 0 1 4

3. T-Eff-3km Real-industry 0 0 0 1 17
Random-industry 0 0 0 1 4
Random-census 0 0 0 1 6

4. CM-N-3km Real-industry 0 0 0 2 18
Random-industry 0 0 0 1 6
Random-census 0 0 0 1 5
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Table 4; Ranges and percentiles of the number of farms infected with HPAI, from 1000 iterations, for scenarios 1-4, for the real-

Scenario Dataset Minimum 5“̂  percentile Median 95^ percentile Maximum
1. T-Eff-lkm Real-industry 0 0 5 39 126

Random-industry 0 0 2 14 33
Random-census 0 1 7 29 66

2. CM-N-lkm Real-industry 0 0 1830 1885 1923
Random-industry 0 0 1636 1716 1764
Random-census 0 0 1600.5 1686 1741

3. T-Eff-3km Real-industry 0 0 2 37 165
Random-industry 0 0 2 12 41
Random-census 0 0 2 17 51

4. CM-N-3km Real-industry 0 0 1789 1877 1918
Random-industry 0 0 1566 1693 1747
Random-census 0 0 1540.5 1665 1745
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3.4.2. Weighted median and maximum cumulative ascending probability

The cumulative ascending probability plots show the percentage of iterations with a 

number of infected farms equal or less than a specific number. For example, in Figure 3, scenario 

1 (T-Eff-lkm), for the random-census dataset, 100% of the iterations contained 8 or less infected 

farms at the end o f the outbreak, while 50% of the iterations (the median) bad 1 or less infected 

farms at the end o f the outbreak. For the random-industry dataset, 100% of the iterations 

contained 4 infected farms or less, while the real-industry dataset showed 100% of iterations 

consisted o f 12 infected farms or less at the end o f the outbreak. Meanwhile, 90% o f the 

iterations, for the random-industry, and 50% of the iterations (the median), for the real-industry, 

bad 1 or less infected farms at the end of the outbreak.

For the weighted median contact structure, scenario 1 (T-Eff-lkm) shows similar patterns 

between the real-industry and random-census datasets, with 50% of the iterations consisting of 1 

farm or less infected at the end of the outbreak, while the random-industry dataset bad 90% of 

the iterations with 1 farm or less infected at the end o f the outbreak. In scenario 2 (CM-N-lkm), 

the random-industry and random-census datasets show similar patterns, but the real-industry data 

was different. In scenarios 3 (T-Eff-3km) and 4 (CM-N-3km), all three datasets show very 

similar patterns, though the real-industry dataset had 3-4 times more farms infected at the end of 

the outbreak compared to the random-industry and random-census datasets (Figure 3).

For the maximum contact structure, scenarios land 2 (T-Eff-lkm & CM-N-lkm) show 

similar patterns between all three datasets in the cumulative ascending probability plots. For 

scenario 3 (T-Eff-3km), the random-industry and random-census datasets show very similar 

patterns (Figure 4). The real-industry dataset shows a similar pattern but has an approximately 3- 

4 times larger maximum number of farms infected compared to the random-census and random-
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industry datasets. For scenario 4 (CM-N-3km), the random-industry and random-census datasets 

have very similar patterns, whereas the real-industry dataset had approximately 200 more farms 

infected.

94



r~

0 10 155
N um ber farm s infected

1

8

6

4

2

0

150 5 10
N um ber farm s infected

— ----- R andom -industry — -------  R andom -census ------ Random -interm ediate -------  R andom -census
—  Real-industry —  Real-industry

1 -

T-Eff-lkm

10
Number farm s infected

15 20

......— Real-industry
K 3 n Q o m - C 6 n s u s

1 -

6 -

CM-N-lkm

10
Number farm s infected

15 20

Random-industry
Real-industry

R andom -census

T-Eff-3km CM-N-3km
Figure 3: Cumulative ascending probability plots of HPAI outbreaks comparing the real-industry, random-industry and random-census 
datasets for the weighted median contact structure of the 4 scenarios
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3.4.3. Statistical analysis
3.4.3.1. Kolmogorov-Smirnov equality-of-distribution test

The K-S equality-of-distribution test further demonstrates that the random-census and 

random-industry datasets were significantly different from the real-industry dataset (p<0.05), for 

every scenario, for both the median and maximum contact structure. Therefore, one portion of 

the curve showed a difference for the number o f farms infected between the datasets.

3.4.3.2 Negative binomial regression analysis

The outcome, number of farms infected at the end of the outbreak, had a strong right 

skew and consisted o f a large number o f iterations resulting in zero and one farms infected 

(Figure 5 & 6). The distribution for the outcome had means of 0.507 (for the median contact 

structure) and 532.017 (for the maximum contact structure), medians of 0 and 8, respectively, 

and ranges from 0 to 18 and 0 to 1923, respectively. All predictors were significantly associated 

with the outcome. The eight final models, for the 4 scenarios and 2 contact structures, contained 

the outcome, number o f farms infected, and three predictors, which was the 3 datasets (Real- 

industry, Random-census and Random-industry).

For the median contact structure, the random-census and random-industry datasets were 

found to be significantly different (p<0.05) from the real-industry dataset in all scenarios except 

scenario 3 (T-Eff-lkm), where the random-census dataset was not significantly different from 

the real dataset (p=0.899). The magnitude o f the differences in the scenarios where a significant 

difference was found ranged from 0.107 (95%CI: 0.089, 0.129) to 1.468 (95%C1: 1.357, 1.587), 

seen in scenario 1 (CM-N-lkm). Therefore the random-census and random-industry datasets 

resulted in an outbreak that was between 0.107 and 1.468 times that of the real-industry dataset 

(Table 5).
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Table 5: Negative binomial regression count ratios and confidence intervals for comparison of the 2 random datasets to the real-
industry dataset (baseline), across each scenario, for the weighted median contact structure

Real-industry
Scenario 1 (T-Eff-lkm) Count ratio (Cl) P-Value
Random-census 1.468(1.357,1.587) <0.05
Random-industry 0.107 (0.089, 0.129) <0.05
Scenario 2 (CM-N-lkm)
Random-census 0.135 (0.106, 0.172) <0.05
Random-industry 0.118 (0.092, 0.151) <0.05
Scenario 3 (T-Eff-3km)
Random-census 0.983 (0.755,1.279) 0.899
Random-industry 0.636 (0.480, 0.841) <0.05
Scenario 4 (CM-N-3km)
Random-census 0.344 (0.255, 0.465) <0.05
Random-industry 0.410 (0.306, 0.549) <0.05

100



For the maximum contact structure, the random-census and random-industry datasets 

were found to be significantly different (p<0.05) from the real-industry dataset in all scenarios 

except in scenario 1 (CM-N-lkm), where the random-census dataset was not significantly 

different from the real dataset (p=0.921). The magnitude of the differences in the scenarios 

where a significant difference was found was consistently less than 0.7 (Table 6). Therefore the 

size of the HPAI outbreak in the random-census and random-industry datasets were 0.7 times 

that of the real-industry dataset.

The data were tested for overdispersion and goodness o f fit, as well as an analysis o f the 

residuals, for the two contact structures. The data did not fit the Poisson model well, with 

evidence o f overdispersion, as seen with the likelihood ratio test where the chi-squared value was 

2704.00 for the median contact structure, and 5.7e+06 for the maximum contact structure, with a 

p-value o f <0.05 for both. The problem of overdispersion has therefore been corrected by using a 

negative binomial regression model in place of a Poisson model.
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Table 6; Negative binomial regression count ratios and confidence intervals for comparison of the 2 random datasets to the real-
industry dataset (baseline), across each scenario, for the weighted maximum contact structure

Real-industry
Scenario 1 (T-Eff-lkm) Count Ratio (Cl) P-Value
Random-census 0.995 (0.901, 1.098) 0.921
Random-industry 0.339 (0.306, 0.376) <0.05
Scenario 2 (CM-N-lkm)
Random-census 0.630 (0.537, 0.739) <0.05
Random-industry 0.657 (0.560, 0.771) <0.05
Scenario 3 (T-Eff-3km)
Random-census 0.540 (0.473, 0.617) <0.05
Random-industry 0.401 (0.350, 0.469) <0.05
Scenario 4 (CM-N-3km)
Random-census 0.691 (0.586,0.813) <0.05
Random-industry 0.690 (0.586, 0.812) <0.05
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3.5 Discussion

With the increasing use o f spatially explicit models to inform policy decisions, it is 

important to have the most accurate and realistic population data as possible. USDA researchers 

have simulated farm and animal populations in areas such as North Carolina, using specific 

spatial constraints, but have had only moderate success, due to inaccuracies in the public domain 

lists and because of difficulties in converting rural route addresses to geocodable locations 

(Bruhn et al., unpublished). Bruhn et al. (unpublished) created spatial data with generated point 

locations of animal operations from publicly available data, using the number and type of 

operations from the 2002 USDA Census of Agriculture. Similarly, the current study obtained the 

number and type of operations from the 2006 Statistics Canada Census of Agriculture to aid in 

the generation of random point locations within each census division in Ontario. It was specified, 

in the current study, that poultry operations could not be located in water, in the middle o f cities, 

or on public land, and were constrained within areas of agricultural land use, similar to other 

studies that generated estimated farm locations (Bruhn et al. 2007; Freier et al., 2007).

The kernel density plots showed more farm spread across census divisions in the random 

location dataset (which was the same for both the random-census and random-industry dataset) 

eompared to the real-industry dataset (Figure 2). This may have resulted in a decreased number 

of farm-to-farm contacts resulting in an underestimation in the size of the outbreak, because 

naïve farms would not be as likely to come into contact with infected farms. Tildesley et al. 

(2010) stated that for infectious diseases to occur, where transmission is over short distances, 

spatial structure plays three specific roles: 1) hosts that are far from sources of infection are at 

very little risk; 2) local transmission and depletion of susceptible hosts can dramatically reduce 

the speed of epidemic growth; and 3) local control measures can be applied using spatial 

proximity as a method of targeting at-risk hosts. In the current study, a minimum distance of
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0.5km was enforced between farms during the random generation of farm locations. This may 

have also affected the spread of disease between farms, resulting in an underestimated maximum 

number of farms infected at the end of the outbreak. Previous studies have shown that farms 

located closer to infected premises are more likely to become infected with the disease, as well 

as farms that are in direct contact with infected farms (Nishiguchi et al., 2007). Allowing for this 

type of spatial dynamic may make the random location and flock size dataset more comparable 

to the real dataset. One way of achieving more accurate spatial distribution of randomly 

generated farm locations is to use a higher resolution spatial area o f farm location to start the 

random generation process. Therefore, we suggest that in future simulations, the census 

subdivision be used as opposed to the census division, as an attempt to correct the density 

distribution problems seen in the current study.

Bruhn et al. (unpublished) found that it was possible to generate poultry-operation 

locations nationwide using USDA Census o f Agriculture data and GIS, but without formal 

assessment of the locations’ suitability. The current study showed that by using Statistics Canada 

census data, random farm locations and flock sizes could be generated, and these locations 

supplied a reasonable surrogate for actual farm locations through statistical analyses; however 

the kernel density maps showed differences that may have had a big impact on the results. The 

generalizability o f successfully generating point locations should be strengthened by comparing 

random and real datasets for other Canadian provinces and jurisdictions, where real data are 

available for comparison.

Any differences seen between the random and real datasets was likely due to the random 

distribution of farms within census divisions, as demonstrated in Figure 2. It can be difficult 

selecting the most appropriate method for geo-referencing data. Durr & Froggatt (2002) states
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that the most critical piece of data for any outbreak is the location where that outbreak began, 

which is most effectively represented as a point location. When addressing the question o f how 

to effectively generate farm locations when data are absent, all possible avenues need to be 

explored. Farms could be identified in a number of ways, such as: 1) farm centroids calculated 

from digitized boundaries; 2) farm postal code; 3) the three digit agricultural parish code; or 4) 

farm building locations from satellite imagery (Durr & Froggatt, 2002). In the current study, 

farm locations were generated as a random farm point location within agricultural land use, in 

each census division for Ontario, and it was assumed that each farm point location was an entire 

farm, not individual buildings on the farm, based on the source of the data. Durr & Froggatt 

(2002) found that the farm building was the single best practical geo-referencing point for 

discrete farms, if  possible, but only if  the type o f farm is not essential. In the current study, farm 

type was important, because different farm types would have different contact structures.

The weighted minimum and maximum contact structures were found to have some 

differences in the magnitude of the outbreak. For the weighted median contact structure, the 

maximum number o f farms infected was approximately two times larger in the real-industry data 

compared to the random-census and random-industry datasets (Table 3). The maximum weighted 

contact frequency had more comparable maximum number o f farms infected between the real- 

industry and the two random datasets in scenarios 2 (CM-N-lkm) and 4 (CM-N-lkm), however 

in scenarios 1 (T-Eff-lkm) and 3 (T-Eff-3km) the maximum number of farms infected in the 

real-industry dataset was approximately double the number for the random-census and random- 

industry datasets (Table 4). In the 4 scenarios chosen, this indicates that the median contact 

structure is more likely to underestimate an outbreak than the maximum contact structure. This 

requires further investigation through simulation o f more scenarios.
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Overall, the random-industry and random-census datasets produced quite similar 

outbreak results to the real-industry dataset, as shown by the cumulative probability plots and 

Tables 3 and 4. The similarity between the random and real datasets in all aspects o f the 

outbreaks, with the exception of the maximum number o f farms infected, is useful for the 

generation of a robust policy, as most policies are built on the overall outbreak picture 

(minimum, mean, maximum number of farms infected, etc.) and with a robust policy the 

differences in the maximum number o f farms infected is not as important. This overall picture 

was similar to the real-industry dataset and therefore is useful when real data is unavailable. 

However, policy makers will have to realize that this approach would not provide an evaluation 

o f the worst case scenario.

From the regression analyses, the outbreak results from the randomly generated data were 

significantly different than from the real-industry dataset, showing an underestimation o f the 

maximum number of farms infected. The significant difference was most likely due to the large 

number of iterations/observations. The main reasons for the differences in the datasets are most 

likely related to the way the random points were generated and the density o f the farms, within 

census divisions. As previously mentioned, the use of the census subdivision may create a more 

similar density distribution to the real-industry data. The K-S equality-of-distributions test also 

showed that there was a significant difference (p<0.05) between all three datasets, in all 4 

scenarios, for both the median and maximum contact frequencies. This test, however, is not 

without its limitations, as (1) it only applies to continuous distributions; (2) it tends to be more 

sensitive near the center of the distribution than at the tails; and (3) the most serious limitation is 

that the distribution must be fully specified (NIST/SEMATECH e-Handbook of Statistical 

Methods, 2010). As this test compares two distributions, the significant differences seen between
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the datasets, may be attributed to a small portion of distribution of the outcome from the random- 

census or random-industry datasets being different from the distribution o f the outcome from the 

real-industry datasets. The rest of the graph may be the same for both datasets.

Another limitation of this study, aside from obtaining an appropriate spatial distribution, 

included the difficulty in generating the most appropriate flock size for each farm using Statistics 

Canada data, as there was a large amount of data missing. To adjust for this large amount of 

missing data the minimum, mode and maximum values from the real-industry data were used, 

generating a distribution where flock sizes could be randomly selected and assigned to each 

flock, as seen with the random-industry data. The random-industry dataset consisted of the same 

number o f farms and the same census divisions as the real dataset, and the flock sizes were 

estimated from the industry provided information. By randomly selecting flock sizes for each 

flock, within each production type, by individual census divisions, it was thought that the 

random-industry dataset would be more comparable to the real dataset as all the parameters were 

the same except the farm location, distance between farms, and flock size. However, in general 

census data is more readily available than industry data, which is considered confidential.

3.6 Conclusions

Generation o f the random-census and random-industry data resulted in a larger farm 

spread across the province resulting in a difference in farm density within the census divisions 

compared to the real-industry data. This could have bad a major impact on the size o f the 

outbreaks seen in the 4 outbreak scenarios. It is therefore suggested that the use of the census 

subdivision, which is a smaller land parcel than the census division, be investigated in future 

simulations instead o f the census division, as it may correct some of the differences in the
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density of farms in each area resulting in more comparable outbreaks and greater similarity with 

the real-industry data. Differences were seen between the random-census and random-industry 

datasets compared to the real-industry dataset for the maximum number o f farms infected for 

most scenarios, with the random-census and random-industry datasets underestimating the 

maximum size of the outbreaks. A robust policy is created for outbreak preparedness and 

therefore relies more on the entire outbreak picture than the maximum number o f farms infected. 

As seen in this study, all other aspects of the outbreak (minimum, 5* percentiles, median, and 

95* percentiles) were comparable in all 3 datasets. Therefore, random-census and random- 

industry point location data and flock sizes were found to be an appropriate representation of the 

real-industry dataset for simulation o f an outbreak of HPAI in Ontario, making them useful in 

policy generation when real data is unavailable. However, due to data availability, the use of 

census data may be more practical as industry data is typically considered confidential. The 2 

contact frequencies assessed showed that the median contact frequency more often 

underestimated the outbreak than the maximum contact frequency, therefore it may be more 

appropriate to use a maximum contact frequency in future simulations. However, this theory 

requires further investigation with the evaluation of more outbreak scenarios. The results apply 

specifically to Ontario, Canada, as other provinces have different demographics, geography and 

epidemiological conditions; therefore further research is required to determine if  this random 

generation approach has a potential use in other areas.
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Chapter 4 

Summary and Conclusions

4.1 Introduction

As each outbreak of highly pathogenic avian influenza (HPAI) is unique, pre-outbreak 

preparedness is important. The World Organization for Animal Health (OIE) focuses on such 

factors as early detection through wild bird and domestic poultry surveillance, and a rapid 

response through disease surveillance and specific control strategies to quickly and effectively 

eradicate the disease (Martin et ah, 2006). The appropriateness of control strategies that are 

implemented in an outbreak are dependent on various demographic, geographic and 

epidemiological factors, therefore each country should develop its own outbreak policy. No one 

control strategy alone has proven effective at eradicating a disease (Yee et al., 2008). The current 

policy for controlling an outbreak of highly pathogenic avian influenza (HPAI) in Canada 

consists o f destruction o f the infected/detected flock, with pre-emptive ring-culling o f exposed or 

high-risk flocks within a 1km radius of the infected/detected flock (CFIA, 2009).

Disease spread simulation modeling can help identify potential risk factors for the 

introduction and/or spread of a contagious foreign animal disease, and can help predict the 

effects o f implementing various control strategies during an outbreak, driving policy decisions. 

For HPAI, these risk factors include the proximity to an infected flock, sharing of farm 

equipment, movement of birds and fomites between farms, and contact with wild birds 

(Nishiguchi et al., 2007).

One key component for the use o f animal disease spread models for policy is the ability 

to communicate model study results and the model themselves and their outputs to policy­

makers. Due to the complexity o f these models, finding the most effective method of presenting
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outputs from modeling studies can be very difficult to achieve. In order to have an effective 

policy, decision makers must fully understand findings o f simulation studies as well as the 

models themselves. A disease spread model developed to simulate the spread o f highly 

contagious diseases o f animals is the North American Animal Disease Spread Model 

(NAADSM). This stochastic, spatial, state-transition model is comparable to previously 

developed outbreak models, such as InterSpread Plus (Harvey et ah, 2007). However, this model 

was developed to specifically support policy development and decision-making for potential 

disease incursions in North America (Harvey et ah, 2007). NAADSM requires, among other 

input parameters, point locations (latitude, longitude) and farm sizes in order to run a simulation, 

which can be limiting, depending on data availability. Some research has been done to test the 

efficacy of randomly generated point locations compared to real farm locations, with limited 

success (Bruhn et ah, unpublished).

The main objectives of this thesis were 1) to find an appropriate method for analysis o f a 

large number o f outbreak scenarios for HPAI, in order to determine which control strategies 

were most important to minimizing the number o f farms infected during the outbreak; 2) to 

identify an effective way to communicate those results to decision-makers for use in policy 

generation; and 3) to determine if census data are comparable to industry based data in 

simulation models of HPAI, so that it may be used in the absence o f real location and flock size 

information.

4.2 Analysis of a large number of simulated outbreaks (Chapter II)

The specific objectives of this chapter were to develop an approach to analyze large 

numbers of NAADSM simulated HPAI outbreak scenarios in Ontario, Canada, and communicate 

these results effectively to policy-makers. Information included in the analysis was provided by
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the Ontario Livestock and Poultry Council (OLPC) and Ontario Ministry of Agriculture, Food 

and Rural Affairs (OMAFRA) for a total o f 2,487 commercial and 7,140 non-commercial 

poultry farms, respectively.

A total of 21,060 disease outbreak scenarios were developed, which were entered into 

NAADSM and run 1000 times each, to obtain the mean number of farms infected and 95* 

percentile at the end of the simulated outbreak scenario for Ontario, Canada. Each scenario 

represented a different combination of input parameters, with movement restrictions (e.g. no 

movement restrictions) and destruction strategies (e.g. stamping-out with ring-culling at a 1km 

radius) being the primary focus. The outputs from the scenarios were analyzed using a negative 

binomial regression model to determine which input parameters were most effective at reducing 

the size o f an outbreak. Predictive values were obtained from the negative binomial regression 

analysis to generate interaction plots o f the control measures and the outcome (mean number of 

farms infected). Interaction plots were stratified on a low (40%), moderate (60%) and high (90%) 

probability of transmission through indirect contact, and on a low (between the 25*-49* 

percentile), moderate (between the 50*-75* percentile), and high (>75* percentile) farm density, 

and slow (15-2Id), moderate (8-14d) and fast (<7d) detection speed to gain a better 

understanding of the effects of transmission via indirect contacts, speed of detection, and farm 

density in the area where the initially infected flock was located, as well as the interaction 

between movement restrictions and destruction strategies. These plots were generated as a 

method of presenting the results of the model for communication to policy-makers.

Due to the shape o f the distribution of the outcome, a negative binomial regression 

analysis was found to be the most appropriate analytical tool as a large number of the outbreak
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scenarios ended with just 0-1 farms infected (right-skewed data) and did not fit a normal, 

Poisson, or other type o f distribution.

Scatter plots have also been used in other studies, but as an alternative, the interaction 

plots, developed from the negative binomial regression analysis, were used instead and found to 

be an appropriate and better visualization tool for communication of these results to policy­

makers, as these results were presented to policy-makers and were well received. These 

interaction plots provided a simple and effective way to show the significant difference between, 

for example, no movement restrictions compared to effective movement restrictions on direct 

and indirect contacts, and the effect these control measures had on the outcome. They also 

provide important information on the effectiveness of various control strategies during an 

outbreak of Al.

4.3 HPAI Policy in Canada (Chapter II)

Due to the lack of previous HPAI outbreak experience, there has not been a lot of 

research challenging the current control policies for HPAI in Canada and elsewhere. A large 

portion of studies have been conducted on data from previous outbreaks to determine if  the 

control strategies used at the time of that past outbreak were the most effective methods. 

Simulations based on previous outbreaks are one tool that may be used to determine the 

effectiveness of various control strategies on potential future outbreaks. Using the negative 

binomial regression analysis and interaction plots, the most appropriate outbreak policy for 

Ontario, Canada was determined in the current study. As mentioned, the current HPAI control 

policy in Canada states that effective movement restrictions (on direct and indirect contacts) and 

destruction of infected/detected flocks, within a 1km radius, are required.
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Using the mean number of farms infected from the 21,060 scenario outputs and a 

negative binomial regression analysis, destruction strategies and movement restriction (on direct 

and indirect contacts) were specifically investigated. Movement restrictions were defined as 

reducing contact rates during an outbreak, as compared to “normal” days (pre-outbreak) o f direct 

and indirect contacts. These restrictions were categorized as: 1) no restrictions on direct and 

indirect contacts (100% movement); 2) less effective restrictions on indirect contacts with 

effective restrictions on direct contacts; and 3) effective restrictions on indirect and direct 

contacts. Less effective and effective movement restrictions on indirect contacts referred to the 

decrease in the percent of movement over time. Three destruction strategies were included: 1) 

stamping-out (destruction) o f the infected/detected farms and tracing/testing of direct contacts; 2) 

stamping-out with ring-culling o f flocks within 1 km from infected/detected farms; or 3) 

stamping-out with ring-culling of flocks within 3 km from infected/detected farms. Other studies 

have also included vaccination programs in their outbreak analysis but that was not the focus of 

this study, as the current Canadian outbreak policy does not include vaccination in its control 

program.

The results from this study showed that the current Canadian policy is not necessarily the 

best solution. The most appropriate strategy was destruction of the infected/detected flocks only 

(i.e. no ring-culling required), in combination with effective movement restrictions on direct and 

indirect contacts. Without effective movement restrictions on direct and indirect contacts, in the 

case with slow, moderate and fast detection speeds and a low, moderate and high probability of 

transmission, there was a significant difference found between the destruction strategies used. 

Therefore, if  effective movement restrictions on direct and indirect contacts could not be

114



achieved the recommendation for the current Canadian policy would be similar to the current 

policy.

Some o f the issues with the use o f effective movement restrictions is the compliance from 

the farmers. Farms with valuable genetic stock or show breeds do not want to restrict movement 

on their farms and do not want to lose valuable genetics from depopulation. This is not 

something that is easily modeled. Another issue is this may not be the most appropriate policy 

for other provinces, whose province and industry demographics may be completely different 

from Ontario. For instance, Prince Edward Island does not have a large poultry industry and the 

majority o f their stock is shipped to other provinces, instead of staying within the province, 

which could result in the outbreak spreading to other provinces. This must be taken into 

consideration, therefore simulation scenarios may need to be evaluated for each province 

individually.

Also, being able to subclinically spread the infection led to a larger number o f farms 

infected than when farms could not subclinically spread the disease, though the ability to 

subclinically spread could potentially be affected if  vaccination were implemented. Poultry farm 

density in the area o f the initially infected flock did not affect the number o f farms infected at the 

end of the outbreak, but the level of transmission from indirect contacts, reflecting the level of 

biosecurity in the flock, did. This may have been due to the uncertainty with the level of local 

spread, such as from unknown sources like wild birds and airborne transmission. Numerous 

factors cause each outbreak to be unique, making accurate predictive simulations difficult 

because it is hard to predict what will be the primary contributing factor in an outbreak. Policies 

in other countries consist of slightly different methods o f control of an outbreak of HPAI, as each 

country has a different industry structure, with different demographics and environment;
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therefore it is inappropriate to compare the results from the current study to other studies. Other 

findings from the final model indicated that initial infection o f other poultry operation types, 

compared to chicken broilers, and resulted in fewer total farms being infected. The assumptions 

and information applied in the models for policy generation would vary greatly between 

countries.

Findings from this study were specific to Ontario, Canada; results may differ between 

provinces within Canada, therefore one policy for all of Canada may not be appropriate. It may 

be more appropriate to develop a policy for each province, as they all differ in their 

demographics, although the industry structure is very similar. Further research is required to 

determine if this model provides similar results across all provinces, as each province has its own 

specific geography, demographics and productions systems/types, which may cause simulation 

results to vary.

4.4 Randomly generated point locations and flock sizes vs. real data in Ontario (Chapter 

III)

With the determination that NAADSM is useful in policy generation and may be used for 

other foreign animal diseases, the specific parameter requirements for the development of 

scenarios for HPAI were considered. NAADSM requires specific flock locations (latitude, 

longitude) and flock sizes. The majority o f previous simulation studies used available location 

and flock size data stored from earlier outbreaks, or randomly generated data when no detailed 

data were available. Little comparison has been made between real location data and randomly 

generated data to ensure that the use of randomly generated location and flock size data are 

appropriate in the absence of real data. The specific objective of this part of the project was to 

compare the NAADSM results o f 4 simulated HPAI outbreak scenarios using 2 datasets with

116



randomly generated point locations and flock sizes, based on information from Statistics Canada 

census data and industry data versus a third dataset consisting of real industry data for Ontario, 

Canada, to determine if  random location and flock size data could be used in the absence o f real 

location and flock size data for policy development.

The real-industry data were obtained from the Ontario Livestock and Poultry Council 

(OLPC) and the Ontario Ministry o f Agriculture, Food and Rural Affairs (OMAFRA), which 

consisted o f 2,186 commercial farms, while the 6,587 non-commercial poultry farm data were 

obtained from the Ontario Farm Business Registry (OFBR). This dataset was the same dataset 

used in Chapter 2 which consisted of 10 production types, hut was collapsed into 3 specific 

commercial production types (chicken meat, egg, and turkey) plus a 4* type, which included all 

non-commercial backyard hobby farms. The collapsing was to ensure that the farms for the real 

industry-based dataset were comparable to the random-census and random-industry datasets. The 

real point locations (latitude, longitude) and flock sizes were maintained in this dataset.

The random-industry dataset was formed from the same farms seen in the real-industry 

dataset hut with randomly generated point locations and flock sizes, within known census 

divisions, constrained by agricultural land use. A minimum distance between farms o f 0.5km 

was also assumed. Geographic coordinate values (latitude, longitude) were then added to these 

randomly generated farm locations to allow for data input into NAADSM. The flock sizes used 

in this dataset was the same as those in the real-industry dataset.

The random-census data were obtained from the Statistics Canada Census o f Agriculture 

for 2006 (www.statcan.ca), with farm locations for the chicken meat, egg, and turkey production 

types being randomly generated within known census divisions, constrained by agricultural land
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use, and a minimum distance between farms of 0.5 km. Hobby farm information was not 

provided by Statistics Canada, therefore information on those farms were taken from the real- 

industry dataset. Random flock sizes were generated in a similar fashion to that of the random- 

industry dataset.

Four scenarios were selected based on the results from the original dataset used in 

Chapter 2, using two separate stochastic frequency contact structures developed from the original 

dataset (weighted median and weighted maximum) and were each run 1000 times in NAADSM. 

In the assembly of the 4 scenarios, only one farm was initially infected at the start of each 

simulation, from a census division with high study farm density, a commercial chicken meat 

farm or a commercial turkey farm. In the scenarios, for ease o f interpretation, only 2 destruction 

strategies were compared, stamping-out with 1km ring-culling or stamping-out with 3km ring- 

culling, as destruction is one of the main control strategies o f interest from a policy development 

perspective. The diameters used for ring culling were based on data collected from previous 

outbreaks, though any size ring-culling can be included. Only two types of movement 

restrictions were included; no restrictions or effective movement restrictions (on direct and 

indirect contacts). All other parameters identified as important in Chapter 2, were held constant.

The output from these simulations were then compared, between the three datasets, using 

cumulative ascending probability plots, a Kolmogorov-Smimov equality-of-distributions test and 

a negative binomial regression analysis. Differences between the two contact frequencies were 

also investigated.

Differences were seen between the two weighted contact frequencies used. The 

maximum contact frequency, which would be the worst case scenario, resulted in a much larger
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outbreak than the median contact frequencies, which was more comparable to the real-industry 

data. This suggests that in future simulations, where contact data is unavailable, the weighted 

maximum contact frequencies may be more appropriate than the median contact frequency. By 

using the worst case scenario, for the number of direct and indirect contacts between farms a 

more robust policy can be formulated to ensure preparedness if  the number of contacts were the 

maximum possible.

The cumulative ascending probability plots, for the weighted median contact structure, in 

scenario 1 (T-Eff-lkm) showed similar patterns between the real-industry and random-census 

datasets, while the random-industry dataset showed a different pattern. In scenario 2 (CM-N- 

1km), the real-industry dataset looked different than the random-industry and random-census 

datasets. In scenarios 3 (T-Eff-3km) and 4 (CM-N-3km), all three datasets had very similar 

patterns. For the maximum contact structure, scenarios land 2 (T-Eff-lkm & CM-N-lkm) 

showed similar patterns between all three datasets in the cumulative ascending probability plots. 

For scenarios 3 (T-Eff-3km) and 4 (CM-N-3km), the real-industry dataset had a similar pattern 

to the random-census and random-industry datasets but a larger maximum number of farms 

infected. In the 4 scenarios chosen, this indicates that the median contact structure is more likely 

to underestimate an outbreak than the maximum contact structure. This requires further 

investigation through simulation of more scenarios.

The differences may also be attributed to the random location of the flocks. Differences 

were seen between the kernel density maps for the real-industry and two randomly generated 

datasets in the spread of the farms and the randomly generated point locations. The kernel 

density plots showed a wider distribution of farms across census divisions in the random location 

dataset (which was the same for both the random-census and random-industry dataset) compared
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to the real-industry dataset. This may have resulted in a decreased number of farm-to-farm 

contacts resulting in an underestimation in the size o f the outbreak, because naïve farms are less 

likely to come into contact with infected farms.

The negative binomial regression model found significant differences between the 

datasets in the majority o f the scenarios, with few exceptions, and the Kolmogorov-Smimov 

equality-of-distributions test showed a significant difference between all three datasets, in every 

scenario. The significant differences seen in the negative binomial regression analysis was most 

likely due to the large number of simulations done, making it more likely to find a significant 

difference between datasets, even when these differences were very small. For the median 

contact structure, in scenario 1 (T-Eff-lkm), there were significant differences seen between the 

random-census and real-industry dataset as well as between the random-industry and real- 

industry dataset. The random-census data had 1.468 (1.357, 1.587) times more farms infected at 

the end of the outbreak compared to the real-industry dataset. In scenario 3 (T-Eff-3km), there 

was no significant difference between random-census and real-industry datasets (p=0.899). For 

the maximum contact stmcture, in scenario 1 (T-Eff-lkm), there were no significant differences 

between the random and real datasets (p=0.921). In scenario 3, there were significant differences 

between the real and random datasets (p<0.05). The random-census dataset resulted in 0.540 

(0.473, 0.617) times more farms infected than the real-industry dataset.

The significant differences from the Kolmogorov-Smimov equality-of-distributions test 

was most likely due to a discrepancy observed in one part of the curve but the rest o f the curve 

was the same. Due to the inaccuracies of these tests, caused by the large amount o f data, and the 

need for a robust policy a visual examination may be more appropriate in the comparison of 

datasets for use in policy decisions. The differences between the datasets were in the maximum
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number of farms infected, and using a maximum contact structure this difference was only by a 

couple of hundred farms. This is not a large difference when considering a robust policy.

There were similarities between the datasets for the 5*, median and 95* percentile of the 

number o f farms infected, for each scenario (for both o f the contact structures), as well as with 

the patterns in the cumulative ascending probability plots. The current study showed that by 

using Statistics Canada census data, random farm locations and flock sizes could be generated, 

and these locations supplied a reasonable surrogate for actual farm locations through statistical 

analyses; however the kernel density maps showed differences that may have had a big impact 

on the results. Therefore, it is recommended to investigate the use of the census subdivision as a 

means of random point location generation in future studies. Also, the random-census is more 

applicable for use as it is more readily available to the public, but if  industry data is available the 

farm sizes and number o f flocks is more closely reflective of the true data. The generalizability 

of successfully generating point locations should be strengthened by comparing random and real 

datasets for other Canadian provinces and jurisdictions, where real data is available for 

comparison.

4.5 Conclusions

Kleijnen et al. (2005) reported that there are three basic goals in simulation analysis: 1) 

developing a basic understanding of a particular simulation model or system; 2) using the results 

o f the model to develop robust decisions or policies; and 3) comparing the merits o f various 

decisions or policies. In some situations, simulation modeling is used when the underlying 

mechanisms o f a situation are not well understood, and when real-world data are limited or non­

existent (Kleijnen et al., 2005).
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With the current threat posed by various foreign animal diseases, simulation modeling 

has become the key to enhancing our understanding of how an outbreak operates, and how 

Canada and other countries can regain their disease-free status in the event of an outbreak. 

Without simulation modeling, we would have to rely solely on previous outbreak experience. By 

relying solely on previous experience, we would be making the major assumption that all 

outbreaks act the same no matter where in the world they occur. This does not take into 

consideration the geography, epidemiological factors, and demographics o f each individual area. 

Therefore a national policy for Canada may not be appropriate as we are not considering any 

regional differences that may exist. With disease spread simulation modeling, we can input a 

large number o f potential scenarios to develop a more robust policy, and make more informed 

guesses as to the control measures needed in the event of an outbreak. The difficulty, however, 

lies in presenting these results to policy-makers. The interaction plots provide another 

communication tool, and can be used in place of other types o f plots, and have proven to be 

effective, as the results have been presented to policy-makers and were well received. NAADSM 

has been specifically developed for North America in order to aid in policy generation, and the 

current study has shown that, although data access may be difficult, NAADSM may be useful for 

determination o f the best methods for control and eradication for a more robust policy. One o f 

the main things that should be changed in order to better represent real life situations is the use of 

census subdivisions to ensure adequate generation of farm locations.

With little experience in avian influenza outbreaks, the results o f this study will be useful 

for the Canadian Food Inspection Agency (CFIA), as well as the United States Department of 

Agriculture (USDA). Exploration into the most effective way to generate random data, however, 

will initially be required before using NAADSM for simulations o f HPAI in each area if  real
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location and flock size data are unavailable. While most differences in the number of infected 

farms between datasets were small, it cannot be assumed that randomly generated location and 

flock size data provide a robust outcome, as seen in the current study, where the maximum 

number o f infected farms could be 3-4 times larger in the real data compared to the randomly 

generated data, particularly when a weighted median contact structure is applied. NAADSM can 

however provide information for the formulation o f a robust policy for North America, 

specifically Canada, when location and flock size data are available.

The use o f NAADSM to produce a large number o f potential outbreak scenarios 

reinforces those control strategies previously thought to have an impact in an outbreak situation, 

as well as introduces the idea that maybe “less is more”, as seen with the destruction strategies. 

Determining the most appropriate control strategies for an outbreak, is the most important part o f 

the planning involved in outbreak preparedness and policy. Applying movement restrietions may 

seem to be common sense, but showing that destruction with no ring-culling is just as effective 

as destruction with ring-culling at a 1km radius saves on resources and reduces the amount of 

deaths resulting from the outbreak. The model also indicates other, possibly not as obvious 

parameters that are important, such as the density o f farms within the area where the outbreak 

started, and the transmission from indirect contacts, such as fomites from catching crews and 

vaccination crews.

Though useful in simulation of foreign animal disease outbreaks for policy and 

preparedness, simulation models are not without their limitations. Simulation models, including 

NAADSM, require the user to make several assumptions in regards to a potential outbreak. This 

requires information from industry, government, and experts on the disease. Though great efforts 

are made to ensure the model is as realistic as possible, no outbreak is the same, and unforeseen
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impacts may occur. NAADSM cannot cover all possible avenues of disease spread, including 

wildlife inputs, abattoirs, and markets, though every effort is made to include as many different 

scenarios as possible. These other sources could have major implications in disease spread and 

may need to be taken into account when building scenarios for simulation. Common sense 

dictates that if  you reduce the contacts between farms, there is less o f a chance o f disease spread; 

therefore people may argue against the need for simulating an outbreak at all. However, as 

previously mentioned, there are many parameters that play a role in an outbreak and a simulation 

model may implicate a specific parameter that may not have been previously considered as 

important. Simulation modeling provides the user with a starting point in terms of understanding 

virus spread and important methods of control.

As with simulation modeling, generation of random locations and flock sizes have their 

limitations and assumptions. It is important to use information about locations and flock sizes 

that are appropriate and from a reliable resource. Though Statistics Canada does not provide 

specific data about farm location and flock size, in the province of interest, it does provide an 

excellent and reliable overall picture o f the industry, making it an appropriate choice for use in 

simulations in NAADSM. Generation of random locations in smaller geographic areas (such as 

census subdivisions) is another avenue that requires exploration, as the findings in this study 

show that there was a noticeable difference between the density distribution o f farms for the real 

and random location datasets. This is specific for Ontario, Canada, and therefore should be tested 

with other Canadian provinces.

In the future, simulations should be completed in other provinces, as well as analysis with 

other outcomes, such as duration of an outbreak. Also, other methods of generating random flock 

locations and distances between farms need to be explored and compared to real data in other
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areas. Using smaller land parcels, such as census subdivisions, also available from Statistics 

Canada, for the random generation o f data may also provide a more comparable dataset.

Overall, the use o f NAADSM simulations for preparedness against the potential threat of 

an HPAI outbreak has proven valuable when real data were available, as well as when data were 

absent (mostly) and we were relying on random locations and flock sizes. However, it is 

important to obtain as much information as possible from the industry, government and experts 

in the area o f interest to ensure the simulations are as realistic and useful as possible.
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