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Abstract 

 

Potatoes are an expensive crop to grow, and many inputs such as fertilizers and 

pesticides are required to ensure that the product is marketable. With advancements in 

GPS technology over the last three decades, one technology that has come to the 

forefront in farming is Precision Agriculture (PA).  PA assumes that not all parts of a field 

are uniform, and that by tailoring management decisions to certain areas of a field, 

farmers can improve production and possibly reduce inputs. Adopting PA in the potato 

industry makes sense, as there is much to be gained in terms of increasing production as 

well as mitigating the environmental impacts of industrial farming.  

Two tools which fall under the umbrella of PA are the yield monitor and Small 

unmanned aerial systems (sUAS). sUAS have the ability to collect high resolution 

remotely sensed data for agriculture. When multi-spectral sensors are mounted to 

sUAS, algorithms (vegetation indices) can be applied to the data to assess spatial 

characteristics related to field health. Yield monitors are tools which measure the 

quantity or quality of production throughout the field. They are synced with GPS 

systems and can assist a farmer to identify which parts of a field produce higher or 

lower yields than others. The resultant yield data can be viewed as a report card of a 

field and used in informing management decisions. 

In this study the question was posed: are vegetation index maps derived from sUAS 

mounted multi-spectral sensors an accurate predictor of yield in potatoes? This study 

used sUAS to survey a 30 acre potato field in Indian River, PE, Canada four times 
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throughout the growing season (Once before planting for elevation mapping – May 7th 

2016; 39 days after planting – July 13th 2016; 67 days after planting – August 10th 2016; 

and 98 days after planting – September 10th 2016) . These dates equate to growth 

stages II, IV and late IV respectively (vegetative growth and tuber bulking) and were 

chosen at separate growth stages to determine which stage correlated greatest with 

yield. Growth stage I is considered pre emergence, while growth stage V is considered 

maturation where photosynthesis decreases and vines die off – these stages were not 

relevant for capturing imagery.  It was expected that the areas of the field that appeared 

healthiest early in the growing season would produce the greatest yield at harvest. The 

collected sUAS data were correlated with yield harvest data to examine relationships 

between in-season field health maps and actual yield in lbs/acre. Correlations between 

sUAS data collected in July, and yield data collected at harvest, indicate that the farmer 

can get an idea of which areas of a field will produce the highest yield early in the 

growing season, and use this data to make informed management decisions on their 

farm. 

sUAS technology is rapidly evolving and adoption of these analytical tools on the farm 

will be more common as they become more affordable and user friendly. As the large 

range of sUAS collected data becomes more manageable, farmers and agronomists will 

be able to apply this technology on their crops and thereby, improve the ways they farm 

in order to maximize yields and minimize inputs. 

 



4 
 

Acknowledgements 

 

This study was funded by the University of Prince Edward Island, and the Marine 

Environmental Observation, Prediction and Response Network (MEOPAR). Field 

assistance was provided by members of the UPEI Climate Research Lab with special 

thanks to Andy MacDonald, Andrew Clark and Derek Ellis.  

I would like to thank my thesis supervisor Dr. Adam Fenech (University of Prince Edward 

Island), my committee members – Dr. David Burton (Dalhousie University) and Dr. 

Michael van den Heuvel (University of Prince Edward Island), external examiner Dr. 

Anthony Shaw (Brock University), as well as Steve Watts (Genesis Crop Systems Inc.) for 

their input and assistance with this project.  I would also like to thank Oyster Cove Farms 

in Hamilton, PE for cooperating with me during this project and allowing me to use their 

field as a study site as well as providing yield data. 

I would not have been able to complete this project without the understanding and 

support from my family and employer. Thank you to my wife Stephanie for encouraging 

me to pursue my Masters and my daughter Quinn, who was only one week old when I 

began this project. Thanks to the Prince Edward Island Department of Agriculture and 

Fisheries, as well as Communities, Land and Environment for allowing me the flexibility 

to work on my Masters while holding a full time job.  

 

 

 



5 
 

Table of Contents 
 
Abstract .................................................................................................................... 2 
Acknowledgements.................................................................................................. 4 
List of Figures ........................................................................................................... 6 
List of Abbreviations ................................................................................................ 7 
Chapter 1: Introduction and Literature Review ....................................................... 8 

1.1 Precision Agriculture ...................................................................................... 9 
1.2 Traditional Methods of Collecting Remotely Sensed Data ............................ 10 
1.3 SUAS in Agriculture ........................................................................................ 15 
1.4 sUAS Collected Data and Vegetation Indices ................................................. 18 
1.5 Data and Image Processing ............................................................................ 20 
1.6 Objectives, Overview, and Structure of the Paper ........................................ 22 

Chapter 2: Methodologies ....................................................................................... 26 
2.1 Study Site ....................................................................................................... 26 
2.2 sUAS Equipment Used and Flight Planning .................................................... 28 
2.3 Field Data Collection ...................................................................................... 33 
2.4 Data Processing .............................................................................................. 36 
2.5 Yield data ....................................................................................................... 41 
2.6 Analysis .......................................................................................................... 46 

Chapter 3: Results .................................................................................................... 50 
3.1 Viewing the data ............................................................................................ 50 
3.2 Elevation Data ................................................................................................ 50 
3.3 NDVI Maps ..................................................................................................... 52 
3.4 Yield Data ....................................................................................................... 55 
3.5 Binning Analysis Results ................................................................................. 57 
3.6 Pixel by Pixel Analysis results ......................................................................... 60 

    3.7 Multivariate Analysis ...................................................................................... 64 
Chapter 4: Discussion ............................................................................................... 64 

4.1 Analyzing the Results ..................................................................................... 64 
4.2 Topographic Features and Weather – Effects on Yield.................................. 66 
4.3 Using Vegetation Index Classes as Management Zones ................................ 68 
4.4 Recommendations for Further Studies .......................................................... 70 
4.5 Conclusions .................................................................................................... 71 

References ............................................................................................................... 74 
Appendix .................................................................................................................. 80 
 

 

 

 
 

 

 

 



6 
 

List of Figures 
 

Figure 1: Example of Satellite vs sUAS imagery resolution.....................................14 

Figure 2: Growth Stages of the Potato....................................................................23 

Figure 3: Growth Stages of the Potato....................................................................24 

Figure 4: Study site in Indian River, PE....................................................................27 

Figure 5: 3DR IRIS+ and Canon S110 Camera..........................................................28 

Figure 6: Filter Transmission Data Graph for Canon S110 NGB Camera.................28 

Figure 7: Example of side and frontal overlap in sUAS survey................................30 

Figure 8: Mission Planner flight control software...................................................32 

Figure 9:  Image of GCP at one corner of the survey area......................................33 

Figure 10: Trimble Geo7X Centimetre grade GNSS system....................................34 

Figure 11: Event38 GeoTagging utility....................................................................37 

Figure 12: Pix4D GCP Manager...............................................................................37 

Figure 13: PC Hardware Specs................................................................................38 

Figure 14: Map showing field edge and cropped area boundaries .......................39 

Figure 15: ArcGIS Classification settings.................................................................40 

Figure 16: Natural Breaks vs Quantiles Classification .............................................. 40 

Figure 17:  Greentronics yield monitor controller and interface in the tractor ...... 42 

Figure 18: Greentronics yield monitor ..................................................................... 42 

Figure 19: Raw Yield data histogram before filtering .............................................. 44 

Figure 20:  Bilinear Interpolation vs Aggregated resampling method ..................... 47 

Figure 21: Fertilizer treatment regime map ............................................................ 51 

Figure 22: Digital Surface Model of Ramsay Field ................................................... 51 

Figure 23: NDVI Map from July ................................................................................ 52 

Figure 24: NDVI Map from August ........................................................................... 53 

Figure 25: NDVI Map from September .................................................................... 54 

Figure 26: Yield Map after filtering and before interpolation ................................. 55 

Figure 27: Yield Map after interpolation ................................................................. 56 

Figure 28: NDVI and Yield binning correlation for July ............................................ 57 

Figure 29: NDVI and Yield binning correlation for August ....................................... 58 

Figure 30: NDVI and Yield binning correlation for September ................................ 59 

Figure 31: Yield vs NDVI table sample after spatial join .......................................... 60 

Figure 32: NDVI and Yield scatter plot for July (2m resolution) .............................. 61 

Figure 33: NDVI and Yield scatter plot for July (6.5m resolution) ........................... 61 

Figure 34: NDVI and Yield scatter plot for August (2m resolution) ......................... 62 

Figure 35: NDVI and Yield scatter plot for August (6.5m resolution) ...................... 62 

Figure 36: NDVI and Yield scatter plot for September (2m resolution) ................... 63 

Figure 37: NDVI and Yield scatter plot for September (6.5m resolution) ................ 63 

Figure 38: Multivariate Analysis............................................................................... 64 

Figure 39: Map displaying 5 classes of elevation along with yield data .................. 67 

 



7 
 

List of Abbreviations 
 

CORS – Continuously Operating Reference System 

DSM – Digital Surface Model 

ENDVI – Enhanced Normalized Difference Vegetation Index 

ExG – Excess Green 

GAI – Green Area Index 

GCP – Ground Control Point 

GIS – Geographic Information Systems 

GNSS – Global Navigation Satellite System 

GPS – Global Positioning System 

LIPO – Lithium Polymer 

MODIS – Moderate Resolution Imaging Spectroradiometer 

MTCI – MERIS Terrestrial Chlorophyll Index 

N – Nitrogen 

NDVI – Normalized Difference Vegetation Index 

NGB – Near Infrared, Green, Blue 

NIR – Near Infrared 

PA – Precision Agriculture 

REIP – Red Edge Inflection Point 

RGB – Red, Green, Blue 

SUAS – Small Unmanned Aerial System 

UAV – Unmanned Aerial Vehicle 

VEG – Vegetative Index 

VI – Vegetation Index 

VTOL – Vertical Takeoff and Landing 

WDVI – Weighted Difference Vegetation Index 

 



8 
 

 

Chapter 1: Introduction and Literature Review 
 

The potato industry on Prince Edward Island is a polarizing one. It generates 

more than $1 billion for the provincial economy and creates over 8,000 jobs which 

represent 12.1 percent of total employment on Prince Edward Island (MacDonald, 

2012).   While being the largest economic driver, the agriculture industry has been 

blamed when fish kills have occurred due to “highly toxic” pesticides reaching 

waterways, and there have been many claims that chemicals used in the industry are a 

contributing factor in the province having some of the highest cancer rates in Canada. 

(MacDonald, M. 2013; Mittelstaedt, 2006; Canadian, 2013) 

Potato production dominates the landscape in P.E.I. with an average of 

approximately 90,000 acres planted per year and an annual output of 1.3 million tons in 

2016, which is the most in Canada (PEI, 2016). Potatoes are an expensive crop to grow, 

costing over $3,000 per acre (Trainor, 2009). They require costly inputs such as 

fertilizers, herbicides, and pesticides to be marketable. If not managed prudently, these 

inputs can put at risk the Island’s environment.  

Potato producers now have access to technologies that can benefit them in 

many ways, such as increasing production and reducing input costs. Global Positioning 

System (GPS) technology, yield monitoring equipment, soil quality monitoring tools and 

remotely sensed imagery all have the ability to influence farmers’ management 

decisions. With potatoes being such a costly crop to grow, farmers can now apply these 

available tools and data to produce their crops more efficiently and economically. 
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Technology will be vital in addressing the economic and environmental impacts 

of agriculture both in Canada and around the world. With global population expected to 

reach almost 10 billion by 2050, there will be increased pressure to produce more food 

while striving to be environmentally and economically sustainable (United Nations, 

2015).  

 

1.1 Precision Agriculture 
 

Finding a balance between economic gain and environmental sustainability can 

be a difficult task for farmers. One farming practice that aims to address these issues is 

Precision Agriculture (PA). PA can be defined as “a management strategy that uses 

information technology to bring data from multiple sources to bear on decisions 

associated with crop production” (National Research Council, 1997). “Precision 

agriculture comprises a set of technologies that combines sensors, information systems, 

enhanced machinery and informed management to optimize production by accounting 

for variability and uncertainties within agricultural systems” (Gebbers and Adamchuk, 

2010). One way to implement PA is to capture crop growth information in real-time 

(Zhang et al., 2002). Although information obtained from high-resolution satellite 

imagery has been used to reach this goal for a long time, the availability, often 

prohibitive costs, timing, and interpretation of such data limit its applications, which 

would suggest an alternative way for this application in precision agriculture (Yu et al., 

2013). Specifically, images taken by sUAS are shown to be a potential alternative given 
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their low-cost of operation in monitoring, high spatial and temporal resolution, and their 

high flexibility in image acquisition programming (Zhang and Kovacs, 2012). PA works 

under the assumption that not all parts of a field are uniform, and it has been practiced 

commercially since the 1990’s with over one third of US mid-western farmers already 

practicing some form of PA (Mulla, 2013).  

PA can be summarized in three steps: 1) Identify where, when, and how much 

variability is present within a field, 2) Apply agronomic expertise to analyze the within-

field variability in order to determine how best to manage it, and 3) Managing the 

within field variability to enhance productivity while minimizing environmental risks 

(Cambouris et al, 2014). One of the most efficient methods in identifying variability 

within a field is through remote sensing.  

 

1.2 Traditional Methods of Collecting Remotely Sensed Data 
 

Traditional platforms for gathering remotely sensed data for PA include 

satellites, manned aircraft, and handheld sensors.  Satellite imagery is steadily 

improving from 56 x 79m per pixel resolution acquired by Landsat 1 launched in 1972, to 

30cm per pixel resolution captured by WorldView satellites today (Mulla, 2013). The 

two largest limitations for satellite imagery are the presence of cloud cover, and 

temporal and spatial resolution.   

Satellite imagery is often used to predict yield in crops around the world. A study 

by Ferencz et al in 2004 examined the relationship between a newly developed 
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vegetation index – General Yield Unified Reference Index (GYURI) and yield data in corn 

fields in Hungary over an eight year span and found that there was a high correlation 

(R2 = 84.6-87.2). The authors deduced that this robust method would be useful for 

county, region and country level yield estimation (Ferencz et al, 2004). Considering the 

average field size in Prince Edward Island - county, region or country level yield 

estimates would not be useful for a farmer trying to make in season management 

decisions on their crops. Similarly, a study in France in 2008 by Cunha et al looked at the 

relationship between NDVI and yield in grapevine crops for the production of wine and 

found that NDVI was a strong predictor of yield on a regional scale at seventeen months 

before harvest. Statistical tests indicated that the wine yield forecast model explained 

77-88% of the inter-annual variability in wine yield (Cunha et al, 2008). Satellite imagery 

has proven to be valuable in estimating yield at regional scales, but for a farmer to 

address individual fields at the management zone level, higher resolution data is 

required. A study by David M. Johnson in 2016 looked at correlating multiple vegetation 

indices derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 

imagery with yield throughout a whole growing season among ten different crops, 

including potatoes. In reference to potatoes, he found that “NDVI is strongly positively 

correlated at over 0.9 in early summer and then swings negative at more than −0.7 late 

in the season.” (Johnson, 2016) 

Manned aircraft have been used to capture aerial images of crops as well. A 

study by R.N. Colwell in 1956 looked at the application of aerial imagery in assessing 

healthy and diseased wheat crops. The author determined that a photo interpreter 
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could detect healthy wheat, oats and barley and also identify diseases such as black 

stem rust in wheat and oats. The author also noted that by using only small scale black 

and white photos, disease could be detected early enough for appropriate treatment. 

Colour photos would allow the interpreter to estimate disease severity and yield 

deduction with reasonable accuracy (Colwell, 1956). 

Manned aircraft remain more feasible for capturing regional scale imagery 

rather than field scale analysis. The speeds at which a manned aircraft operate do not 

allow it to capture as many high resolution photos as a sUAS is able to at the field scale. 

Purchasing a manned aircraft and obtaining a license to fly and capture aerial imagery is 

not realistic for a farmer seeking individual field level data. Service providers often have 

expensive hourly rates. Some companies such as GeoVantage (North Andover, MA, USA) 

are taking advantage of groups of farmers in a region and capturing imagery over larger 

areas which enable them to keep costs down.  

Handheld optical sensors, such as the Greenseeker (Trimble Navigation Ltd., 

Sunnyvale, CA, USA), have been used to capture canopy reflectance information in crops 

as well. Typically used to take measurements at 0.5 – 0.6m above the crop, these 

sensors can give instant NDVI (Normalized Difference Vegetation Index) readings which 

indicate chlorophyll levels in the plant (Quebrajo et al, 2015). The challenge with 

handheld sensors is that it is manually intensive and not realistic to capture 

measurements across an entire field. Tractors have been outfitted with sensors, which 

eliminates manual input, but imagery is only captured where the tractor drives -and 
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farmers like to minimize the impact of driving they do in a field in order to reduce soil 

compaction issues and prevent yield losses. 

A relatively new tool for collecting remotely sensed data is the small unmanned 

aerial system (sUAS), commonly known as a drone. The affordability of these systems, 

along with their relative ease of use has made them an attractive option for those 

working in agriculture in the past few years. sUAS have major advantages over 

traditional methods of gathering remotely sensed data. These systems can be deployed 

at almost any time (depending on weather and local regulations), and capture high 

resolution data. Data collected by sUAS used in agriculture are typically ~3cm per pixel, 

in comparison to current satellite imagery which may be 30cm – 30m per pixel 

resolution (Digital Globe, n.d.).  

Traditional remote sensing platforms have not been widely utilized in the 

precision agriculture discipline due to several logistical challenges; (1) data acquisition 

can be costly from these platforms, and (2) they have limited flexibility in terms of 

temporal and spatial resolution of the data. Fine spatial and high temporal resolution 

data is required to monitor crops accurately through the growing season for biomass 

estimation, yield prediction, and early detection of harmful insects and disease. In this 

regard, advances in sUAS technology and sensor miniaturization can provide great 

opportunities to tackle the challenges encountered with the traditional remote sensing 

platforms (Anthony et al., 2014; Bendig et al., 2014; Rey-Carames et al., 2015). 

sUAS have the potential to be a superior tool than the previously mentioned 

methods of gathering remotely sensed imagery in agriculture at the field scale. Outside 
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of the benefits of affordability, freedom of operation, higher spatial and temporal 

resolution, sUAS can also be used to gather accurate elevation information by leveraging 

structure from motion (SFM) technology. SfM uses triangulation to recreate scene 

geometry and builds a 3D model of an object or surface based on multiple overlapping 

images (Westoby et al, 2012). This is one of the greatest advantages of surveying with 

sUAS, since highly accurate Digital Elevation Models (DEMs) can be useful in agricultural 

and environmental applications. 

 

Figure 1: Example of Satellite (left) vs sUAS (right) imagery resolution. Satellite imagery courtesy 
dronedeploy.com 
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1.3 SUAS in Agriculture 
 

There are two common types of sUAS: fixed wing, and multi-rotor, which are 

often referred to as VTOL (vertical take-off and landing). Fixed wing aircraft are 

generally meant for surveying large areas, and are popular in the Midwestern United 

States and Canadian Prairie Provinces where fields are typically 160 acres in size or 

larger. VTOL aircrafts have traditionally been used for close range inspection purposes, 

or for surveying small areas. LiPO (Lithium Polymer) battery improvements, and 

advanced lightweight design have led to the creation of VTOL aircraft that are capable of 

>30 minute flight times, and the ability to survey > 100 acres on a single battery (DJI, 

n.d.). VTOL aircraft are particularly useful in Prince Edward Island where fields are 

relatively small. Fixed wing aircraft requires long landing pathways and open areas for 

safe operation, whereas VTOL aircraft can easily be deployed and safely landed in tight 

areas near obstacles such as trees or buildings, if required.  

sUAS have the potential to transform agriculture.  The Association for Unmanned 

Vehicle Systems International (AUVSI) reported that UAS integration is expected to 

contribute $82.1 billion to the US economy by 2025, with 100,000 new jobs being 

created. About 80% of the commercial application of sUAS is expected to be in 

agriculture (AUVSI, 2013).  Adoption of sUAS in PA is in its early stages, but recently 

released studies have shown that these tools have the ability to be extremely valuable 

to farmers and agronomists. “Precision Viticulture is experiencing substantial growth 

thanks to the availability of improved and cost-effective instruments and methodologies 

for data acquisition and analysis, such as Unmanned Aerial Vehicles (UAVs), that 
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demonstrated to compete with traditional acquisition platforms, such as satellite and 

aircraft, due to low operational costs, high operational flexibility and high spatial 

resolution of imagery” (Matese et al, 2015).  

Scientific studies, such as the one performed by Zaman-Allah et al. in 2015, used 

multi-spectral images collected by sUAS to characterize experimental fields for spatial 

soil-nitrogen variability and derive indices for crop performance under low Nitrogen (N) 

stress in maize. The sUAS was able to effectively accomplish both tasks (Zaman-Allah et 

al, 2015).  Ground based studies, such as one by Evert et al in 2012, showed that using 

crop reflectance data could inform side-dress N rates in potatoes without having an 

impact on yield. “Side-dress applications supply nitrogen directly to crop roots. This 

minimizes potential for lost fertilizer due to run-off or leaching, while improving 

fertilizer uptake” (Hiniker, 2015). This particular study did not involve the use of sUAS, 

but mentions the tool as being viable for addressing crops. It was determined that the 

methods used in this study resulted in an average savings of 44kg n/ha and that yield 

was not negatively impacted. In the Netherlands, where this study was conducted, 

typical application rates are 250 kg N ha – indicating that a savings of almost 20% was 

possible, that would result in significant savings for a farmer, as well as minimizing the 

amount of N which enters the ground (Evert et al, 2012).  In a study by Aguera et al, that 

measured N status in sunflowers, it was found that Normalized Difference Vegetation 

Index (NDVI) readings derived from sUAS collected imagery, and those collected by 

ground based radiometer, were similar and proved  to be good indicators of N in the 

field (Aguera et al, 2012).  NDVI values derived from sUAS collected imagery represent 
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an entire field, not just random sample areas; therefore sUAS have the potential to be a 

more comprehensive and superior tool.  

A study by Bendig et al. in 2014 looked at using crop surface models derived 

from sUAS imagery to estimate above ground biomass in barley, which is indicative of 

yield. The high resolution crop surface models correlated well with plant height 

reference measurements from the field. Both the crop surface models and plant height 

measurements also correlated well with fresh and dry biomass and the authors 

determined that this method has potential for future application by farmers. The main 

limitation noted in this study was the influence of lodging cultivars in later growth 

stages which produced irregular plant heights (Bendig et al, 2014). 

            A study by J. Torres-Sanchez et al. in 2014 examined the use of low cost sUAS 

captured imagery from a visible spectrum camera and vegetation indices derived from 

that imagery to perform vegetation fraction mapping in wheat. The goals of the study 

were to determine which indices (out of 6 that were tested) performed best, and to 

study the influence of flight altitude on classification accuracy. The study concluded that 

ExG (Excess Green) and VEG (Vegetative Index) indices achieved the greatest accuracy in 

vegetation mapping while flight altitude (30m vs 60m) had little impact on the accuracy. 

With the ability to discriminate vegetation early in the growing season, PA applications 

such as site specific weed management are possible to implement based on sUAS 

captured imagery. This application is not possible with traditional forms of remotely 

sensed imagery since spatial resolution is not sufficient (Torres-Sanchez et al, 2014). 
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            sUAS technology adoption does not come without its own set of challenges. 

Learning to fly sUAS and process data can be challenging enough for a farmer; they then 

have to adhere to a national set of regulations and legislation that comes along with the 

threat of fines for non compliance. sUAS specific liability insurance is a requirement in 

Canada for any individual using these tools for commercial purposes (Transport Canada, 

2018). These factors, along with understanding how to manage and manipulate large 

quantities of data can be a deterrent for farmers looking to adopt sUAS technology. The 

benefits will have to vastly outweigh the challenges before sUAS become a common tool 

on the farm.  

 

1.4 sUAS Collected Data and Vegetation Indices 
 

While observing a robot flying around a field can often captivate a farmer or a 

scientist, it is the data that is most important. Using an autonomous sUAS to collect 

hundreds of images over a field is often the least challenging aspect of applying this 

technology in agriculture. Making use of the data, and getting results that will either 

increase revenues for the farmer and-or improve environmental sustainability (and 

hopefully both), are the two most important objectives. 

One of the most significant determining factors in the quality of data collected 

by sUAS is the camera. In agriculture, there are many different cameras being used to 

capture remotely sensed data. These cameras range from basic RGB spectrum (Red, 

Green, Blue) to multispectral and hyperspectral systems which can cost hundreds of 
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thousands of dollars. For characterizing field health in crops, multispectral cameras are 

most common today. Multispectral cameras range from consumer-grade, such as the 

Canon S110 NGB which has a modified filter designed to detect near-infrared light, to 

more specialized cameras such as the Parrot Sequoia (Parrot SA, Paris, FRA) which 

captures 4 separate bands of light – green, red, red edge, and near infrared as well as 

RGB. Capturing more bands of light simultaneously provides a greater opportunity to 

apply different Vegetation Indices (VIs) and examine plant characteristics (Parrot, 2016). 

Hyperspectral sensors such as the AISA-Eagle, which was used in a study by 

Nigon et al (2015) in detecting N stress in two potato cultivars, capture 63 narrowbands 

of light covering the visible and near-infrared portions of the spectrum ranging from 

401-982 nm.  These sensors are typically mounted to manned aircraft or satellites, but 

are becoming more compact for use with sUAS.  sUAS specific hyperspectral sensors 

such as the Micro-Hyperspec (Headwall Photonics, Fitchburg, MA, USA) cost over 

$50,000 USD (Micro Hyperspec, 2016).  Not long ago, it was either high spectral 

resolution + low spatial resolution or high spatial resolution + low spectral resolution, 

but it is becoming more common to see hyper-spectral imaging systems weighing less 

than 1kg mounted to sUAS and capturing high spatial resolution data (Zhang, 2016). The 

weight of a camera system (known as payload) on sUAS has a significant impact on 

battery life. A combination of smaller sensors, along with increased battery life will 

enable sUAS to cover more ground and make sUAS mounted hyperspectral cameras 

more usable in agriculture. Hyperspectral sensors have greater abilities in terms of 
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targeting and identifying specific diseases in crops due to the range of bandwidths they 

can capture, but require more intensive processing strategies (Adao et al, 2017). 

Manipulating the imagery captured by sUAS provides a way to gather 

information which may give indications of biomass, chlorophyll content, nitrogen 

content or other crop characteristics. “A common and simple way of extracting 

information about crops from digital images is through the estimation of vegetation 

indices (VIs)” (Rasmussen et al, 2016). NDVI, developed by NASA in 1979, is the ratio of 

near infrared (NIR) minus red divided by NIR plus red, and is one of the most common 

VIs used in agriculture. Other VIs such as REIP (Red Edge Inflection Point), ENDVI 

(Enhanced Normalized Difference Vegetation Index), WDVI (Weighted Difference 

Vegetation Index), GAI (Green Area Index), MTCI (MERIS Terrestrial Chlorophyll Index), 

and others have proven to be valuable in examining potato crop canopy (Nigon et al, 

2015; Evert et al, 2012, Geipel et al, 2016). The type of camera being used, and the 

bands of light it collects, will determine which VIs are possible to implement. Cameras 

that capture NIR light are commonly used in agriculture because plants reflect more NIR 

light when they have higher chlorophyll levels and are healthy. When plants are stressed 

they reflect lower levels of NIR light and this will be apparent in VI maps.  

 

1.5 Data and Image Processing 
 

Before VIs are applied to imagery, the individual pictures are stitched together 

into an orthomosaic using photogrammetry software such as Pix4D (Pix4D SA, Lausanne, 
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SWI).  The quality of the orthomosaic is determined by the camera’s specifications, as 

well as flight conditions, altitude, side-lap and overlap of the imagery and other factors 

(see figure 7). Attention to detail in preparation for the survey is vital, since results are 

determined by the quality of the data.  “Photogrammetry is the science of making 

precise measurements from photographs” (Photogrammetry, n.d.). Along with stitching 

2D images together to create an orthomosaic which can be measured and manipulated 

in Geographic Information Systems (GIS) software, Pix4D can also generate a Digital 

Surface Model (DSM) from the images that can be used to perform elevation analysis. 

Free software such as Microsoft ICE (Microsoft, Redmond, Washington, USA) can stitch 

imagery together, but georeferencing that imagery so that it can be integrated with 

ground based GPS, whether they are handheld or tractor based, is important for PA 

applications.  Today’s sUAS systems often involve a camera that is directly integrated 

with the sUAS autopilot where pictures are “geo-tagged” automatically, or the camera 

itself has built in GPS for recording positions during the flight. Geo-tagging of photos is 

important because it references the image to a place on the Earth’s surface. Built in geo-

tagging abilities are not very accurate for sUAS without built in real time kinematic (RTK) 

systems, and there is often a need to use ground control points (GCPs) that are 

referenced in processing software such as Pix4D. A typical sUAS GPS system may be 

accurate within 1-3m, whereas the accuracy of an RTK system connected to a local 

reference system or base station is accurate within 1-2cm.   A study by Gomez-Candon 

et al found that “a UAV flying at a range of 30 to 100 m altitude and using a moderate 

number of GCPs is able to generate ultra-high spatial resolution ortho images with the 
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geo-referencing accuracy required to map small weeds in wheat at a very early 

phenological stage” (Gomez-Candon et al, 2013). This locational accuracy is important 

for any PA application, specifically if the aim is to apply variable rate application (VRA) of 

inputs.  

Pix4D is capable of applying the vegetation index to the orthomosaic that can be 

transferred to GIS software where it is analyzed and compared with other spatial data 

sets such as soil health characteristics, yield data, input rates, and more. Detailed spatial 

statistics can be derived and correlations between data sets examined in programs such 

as ArcGIS (ESRI, San Diego, CA, USA), and this is where PA provides real value to farmers 

and agronomists. 

 

1.6 Objectives, Overview, and Structure of the Paper 
 

The objective of this study is to examine whether VI maps derived from sUAS 

collected imagery can be used to predict yield in potatoes. Researching this subject 

revealed that there were no specific studies that looked at this relationship in potatoes 

using similar, and cost effective sUAS. Moreover, there exist only a few studies using 

satellite images (Bala and Islam, 2009).  

When this project began in September 2015, the goal was to use a Parrot 

Sequoia multispectral sensor that was expected to be released in April 2016, a month 

before data collection would begin. The local dealer was not able to ship the unit until 

Late July 2016 due to a delay caused by a required “hardware modification”. 
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Consequently, it was necessary to use an alternative sensor. A Canon S110 NGB (Near 

Infrared, Green, Blue) camera, which is common for NDVI mapping in Agriculture, was 

used. Limitations of this camera in comparison with the Parrot Sequoia sensor are 

discussed later in this paper. 

The study site is a 30--acre commercial potato field located in Indian River, P.E.I.  

The field was surveyed four times in the spring/summer of 2016 – early May (before 

planting), early July, early August, and early September which correlate to growth stages 

II and IV (as seen in figures 2 and 3 below). The yield data were collected during harvest 

in October, 2016.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Growth Stages of the Potato. (Johnson, 2008) 
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Figures 2 and 3 show the growth stages of the potato. Surveys were performed 

at 39 days after planting, 67 days after planting and 98 days after planting (Growth 

stages II, IV, and late IV, respectively). These stages are important to understand 

because one of the goals in this study is to identify when the ideal time is to obtain yield 

estimates. 

Yield is characterized by many factors such as temperature, soil type, moisture 

levels, PH levels, crop variety, nutrient uptake and more. Due to limited time, resources, 

and expertise, this study only examined yield as a whole - in correlation with NDVI. 

Having an understanding of expected yield two or three months before harvest can help 

farmers in making decisions in terms of nutrient application, irrigation or applying other 

Figure 3: Growth Stages of the Potato.  Source:  Potato Irrigation Management, 
University of Idaho Extension System 
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management practices to their crops depending on which parts of the field are 

projected to yield higher or lower output than others.  

The results from this study, and the investigation into the relationship between 

NDVI and yield should provide potato farmers with valuable information at a time when 

sUAS are becoming more affordable and common as agricultural tools. The 

methodologies, equipment and analysis used in this study can be applied to other crops 

besides potatoes. A study by Kyle Miller, with AgEagle (AgEagle Aerial Systems Inc., 

Kansas, USA) looked at the relationship between NDVI and yield in soybeans and found 

that there was a strong correlation between the two (Miller, 2016). A farmer or 

agronomist may simply want to understand overall field health, without doing any 

analysis of the yield. As such, this study could provide some insights to facilitate the 

analysis of other related problems in PA. 

It is expected that the areas of the field that appear healthiest (high NDVI) early 

in the growing season will be the areas that are most likely to produce the highest yield 

in terms of lbs/acre. 

Chapter 2 examines the methodologies, equipment used, field descriptions, 

analytical techniques, etc. Pricing for each piece of equipment is noted in order to 

provide an understanding of the approximate costs of implementing sUAS technology in 

farm or business operations.  

Chapter 3 provides the results of this study along with maps, graphs and tables 

highlighting the relationships between NDVI and yield. Chapter 4 discusses the results 

and draws conclusions from the study, as well as addresses any limitations, and provides 



26 
 

suggestions to improve methods and analysis going forward.  sUAS and camera 

technology are developing at a rapid pace with engineering and design improvements 

leading to smaller sizes, longer flying times, better quality imagery and lower costs.  

 

 
 

Chapter 2: Methodologies 
 

2.1 Study Site  
 

In order to compare NDVI maps (of potatoes) with Yield maps, an appropriate 

location was selected based on the following criteria: the farmer/field owner had to 

have a yield monitor or another method of capturing yield data at harvest at a spatial 

resolution valuable for understanding relationships, and the farmer/field owner had to 

be permissive of research involving a sUAS used in that field. A field in Indian River, PE 

was chosen based on these criteria, and in addition to that, there was other ground-

based research being conducted at the site that could be useful in further analysis of 

this or other studies. (See Figure 4) 
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The average size of a potato field in Prince Edward Island is about 27 acres, 

therefore the acreage of the field chosen for this study of 30 acres is close to typical 

holding throughout the Province (PEI, 2010). The variety of potato was the Russet 

Burbank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4: Study site in Indian River, PE 
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            2.2 sUAS Equipment Used and Flight Planning 
 

           The sUAS used in this study was the 3DR IRIS+ (3D Robotics, Berkeley, CA, USA). 

This sUAS was mounted with a Canon S110 NGB camera, which was modified to “block 

red light and record near infrared light above 700nm wavelength” (see figure 6) (NDVI, 

n.d.). 

 

 

 

 

Figure 5: 3DR IRIS+ (left), and Canon S110 Camera (right) 

 

 

 

 

 

 

 

 

 
Figure 6: Filter Transmission Data Graph for Canon S110 NGB Camera. 

Source: event38.com 
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The sUAS and camera system were assembled by Event38, located in Akron, OH. The 

total cost of the system with sUAS, RGB and NGB cameras, extra batteries, and carrying 

case was approximately $3,000 (USD).   

 The Canon S110 NGB camera, although commonly used in agriculture, does have 

its limitations. It is a useful camera to get an overall perspective of field health across a 

field at one point in time, as long as the user ensures that lighting conditions are 

optimal. However, it is important to survey the crop only at certain times of the day; 

between 10am – 2pm is best since the Sun is high and shadows from trees, buildings, 

etc. are not as long as they are in the early or late hours of the day (DroneDeploy, 2017). 

Variable cloud poses issues to data collected by this sensor, especially when shadows 

from clouds can skew the NDVI measurements and healthy plants will appear to have 

lower readings than expected. 

 The main benefit of a sensor such as the Parrot Sequoia (the original preferred 

choice in this study) over the Canon S110 NGB is that the Sequoia is radiometrically 

calibrated, meaning that it accounts for the amount of incoming incident light radiation 

by use of an active “sunshine sensor” mounted on the top of the sUAS. This results in 

more accurate data that are calibrated and absolute, and gives the user the ability to 

compare datasets over time as well as the flexibility to operate the sUAS in varying light 

conditions and at different times of the day (Parrot, 2016). 

 The IRIS+ sUAS has a battery life of approximately 14 minutes (assuming light 

wind conditions, < 20 km/h). It is good practice to return the sUAS to the ground when 

battery levels reach 30%. With an expected survey time of 10 minutes, the IRIS+ is 
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capable of surveying ~20 acres when flying at an altitude of 90m and with frontal and 

side overlap set at 70%. Frontal overlap is determined by how much one image overlaps 

the next over the track that the sUAS is flying, while side overlap is determined by how 

much one image overlaps another in a parallel track. This concept can be seen in Figure 

7. Ensuring sufficient overlap along track and across track is important, since insufficient 

overlap can lead to issues with data processing and consequently, result the need to re-

fly the mission (Pix4d, n.d.) 

 

 

 

 

 

 

 

 

The flight control software used in this study was the freely available Mission 

Planner (Michael Oborne). In this software, the user can define an area they would like 

to survey by drawing a polygon and assigning the camera type, altitude, desired levels of 

overlap, flight speed, flight orientation and more. Mission Planner connects to the sUAS 

autopilot via telemetry radio. In this case, a 3DR radio antenna is connected to a laptop 

Figure 7: Example of side and frontal overlap in sUAS survey 
Source: pix4d.com 
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running Mission Planner software via USB. The range between the sUAS and laptop 

running Mission Planner software is 1km unobstructed. Transport Canada’s guidelines 

require the operator to maintain line of sight with the sUAS at all times, which in the 

case of the 55cm wide IRIS+, is approximately 600-700m. It is important to take this into 

account when planning a survey - to ensure that the sUAS can reach each end of a field 

while still remaining in line of sight. It is possible to set up at multiple locations if 

required for larger areas, but this is inefficient for small fields, and can be prevented 

with good mission planning.  

 Missions were planned for the study site in May 2016 and the same plans used 

for each survey throughout the spring/summer. The field was divided into two surveys 

since battery life of the IRIS+, and the area to be surveyed, would not permit flying the 

entire field at once. Images from each survey had to be “geotagged” and combined into 

one dataset before processing in Pix4D could occur. Geotagging refers to the assigning 

of a location to each image taken so that they can be referenced to a place on the 

earth’s surface. The camera itself did not have a GPS in this case, but the sUAS did, and 

the images and flight logs were combined using a geotagging utility developed by 

Event38. The accuracy of each photo after geotagging is within a few metres, which was 

sufficient in most cases when viewing relative crop health throughout a field. But in this 

case where the NDVI maps would be compared with another dataset (yield), it was 

important that both sets of data were accurately georeferenced. Using ground control 

points (GCPs) is one method of ensuring accuracy; this concept will be discussed later on 

in this chapter.  
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Figure 8: Mission Planner flight control software 

Before flying a mission it is important to understand and comply with local 

regulations regarding the use of sUAS. In this case, since the proposed use was for 

research, a SFOC (Special Flight Operator Certificate) had to be obtained from Transport 

Canada. The application process involves highlighting the proposed use of the sUAS, 

specifications of the sUAS, pilot experience, emergency measures to be taken in the 

case of an incident and more. The location in this study was a rural area and greater 

than 9km away from any airport, therefore coordination with NAV Canada and local 

flight towers was not required.  
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2.3 Field Data Collection 
 

            Before flying the first survey in May 2016, ground control points (GCPs) were 

placed in four corners of the field. These points consisted of 20” x 20” wooden X’s 

mounted on 2” x 2” posts which were placed in the ground approximately 18” deep. 

About 12” of the post was left above ground to ensure that grass would not interfere 

with the GCPs. In most cases where a location is only flown once, a GCP would be laid 

upon the ground, measured with a GPS unit, and gathered after the sUAS survey. In this 

case, where the same field was surveyed 4 times in the year, the GCPs were mounted 

on posts and only had to be measured once at the beginning of the first survey which 

saved time in the field.  

 

 

 

 

 

 

 

 

Figure 9:  Image of GCP at one corner of the survey area 
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The Global Navigation Satellite System (GNSS) system used to record the X,Y and 

Z positions of each GCP was the Trimble Geo7X. This unit has ~2cm accuracy and costs 

approximately $20,000. It was connected to a local CORS (Continuously Operating 

Reference System), Can-Net, and a yearly subscription is paid (~$1,500 per year) to 

achieve highly accurate spatial data. Each GCP was measured prior to the first survey 

and inspected throughout the summer to ensure grass did not obstruct the view of the 

GCP from above. These GCPs would later be referenced in Pix4D software to ensure that 

the orthomosaic and resultant NDVI map were accurately georeferenced. 

 

 

 

 

 

 

 

 

After the mission was properly planned in Mission Planner, the flight could be 

carried out. The first step is to ensure that the battery is fully charged. This could be 

checked by inserting the battery in the IRIS, powering it on, and connecting to it through 

Mission Planner software. Many indicators such as battery life, speed, distance to home, 

Figure 10: Trimble Geo7X Centimetre grade GNSS system 
Source: gps-boutique.com 
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altitude, and more can be viewed in Mission Planner. It is important to keep a close eye 

on these factors, as the sUAS must be returned to the home point, or at least a safe 

landing area if issues arise. When it is determined that there is sufficient battery life to 

carry out the mission, and there are no noticeable physical impediments to the sUAS, 

then the propellers could be attached. The waypoints were then written to the sUAS 

autopilot via telemetry radio. Waypoints are created at the initial planning stage and 

consist of Latitude/Longitude coordinates that the sUAS GPS system must follow. 

Takeoff consisted of powering up the motors and switching the mode to “AUTO” on the 

transmitter. The IRIS+ would rise straight up to 60m before heading to its first waypoint. 

It is important to set the takeoff altitude that the sUAS reaches before heading to the 

first waypoint to a safe height above any obstacles that may be in the area. The IRIS+ 

then proceeded to rise to the survey altitude of 90m on its way to waypoint 1.   

An altitude of 90m was chosen for this study because it is as high as Transport 

Canada would allow under the SFOC. Flying higher sacrifices image resolution, but 

results in a more efficient flight plan due to a wider field of view at higher altitude; thus 

allowing for less side-lap between images. This uses less battery, along with providing 

more “keypoints” in the images which improves the quality of the stitched orthomosaic. 

A flight at 90m over a small field may result in an image containing a hedgerow, road or 

other feature not seen in an image captured from 60m. These other features are useful 

in photogrammetric processing software such as Pix4D because the software has a more 

difficult time stitching homogenous imagery together due to the lack of recognizable 
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differences between images. The resultant resolution of the imagery in this study when 

captured at 90m was approximately 3.2cm per pixel.  

The image capturing process is automated, and begins when the sUAS arrives at 

its first waypoint. The Canon S110 camera used in this study has what is known as CHDK 

(Canon Hacker’s Development Kit) installed on the SD card. This allows the camera to 

take pictures at set time intervals determined by the desired frontal overlap which was 

set when planning the survey in Mission Planner. In this case a photo was taken about 

every 4 seconds and the IRIS+ flew at a speed of 6 m/s, resulting in one image being 

captured every 24m. 

When the final waypoint was reached, the IRIS+ flew back to the home position 

and landed automatically. The operator can shift the IRIS+ forward, backward, or side to 

side if necessary, but it is always recommended to ensure that the sUAS has a safe 

takeoff and landing area which is level and free from obstructions. 

 

2.4 Data Processing 

 

            Before the data could be processed in Pix4D, all of the images had to be 

geotagged. Event38 has a freely available geotagging utility that matches up the flight 

log from the IRIS+, with the images saved to the SD card. This provides each image with 

X, Y and Z coordinates, as well as information in regards to the yaw, pitch and roll of the 

aircraft. Since it took two flights to capture data across the field, two datasets had to be 

geotagged separately and then combined into one folder. 
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After a project was started in Pix4D, the 235 geotagged images could then be 

processed. The first dataset from May 7, 2016 was processed with the goal of achieving 

an accurate Digital Surface Model (DSM) of the field before planting. The following 

datasets (July 13, 2016, August 10, 2016, and September 10, 2016) were field health 

related, and required different processing settings. The desired outputs were selected 

before processing, and the next step was to use the “GCP/MTP Manager” to mark the 

images where a GCP was located. After all of the GCPs had sufficient marks (between 3 

and 8 is recommended by Pix4D), processing could begin. 

 

 

 

 

 

 

Figure9: Event38 GeoTagging utility 

Figure 11: Event38 GeoTagging utility 

Figure 12: Pix4D GCP Manager 
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Pix4D produces a quality report for every job that is processed. This report 

contains details about processing time, georeferencing accuracy, image calibration and 

much more. The initial processing time for the near infrared (NIR) datasets was 

approximately 30 minutes. Processing time is greatly determined by the specifications of 

the PC that runs the software. In this study, the hardware as seen in figure 13 was used.  

 

 

In processing the NIR datasets, the normalized difference vegetation index 

(NDVI) was chosen. NDVI is commonly used as a VI in agriculture. “This index is often 

referred to as a measure of biomass, chlorophyll content, nitrogen content or 

something else entirely, but it is primarily an indicator that correlates with biomass and 

other vegetation parameters” (Rasmussen et al, 2016). The typical NDVI formula is the 

ratio of NIR – Red / NIR + Red (Rasmussen, et al 2016). In this study, since the camera 

did not record red light, a variation of NDVI, BNDVI (Blue Normalized Difference 

Vegetation Index) was used. This formula is the ratio of NIR – Blue / NIR + Blue.  The 

camera filter used in this study blocks out red light (see Figure 6), which can be 

preferable since it prevents any leakage of NIR light in the red band from being picked 

up. A study by Yang et al examined correlation between BNDVI (from satellite imagery) 

and yield in cotton and found that it worked similarly and even better in some cases 

than NDVI (Yang et al, 2006). 

After the Index file was created in Pix4D, it was opened in ArcGIS (ESRI, 

Redlands, CA, USA), where it was then clipped to crop boundaries and analyzed further. 

Figure 13: PC Hardware Specs 
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All datasets, including the DSM were clipped to the field edge. The same boundary was 

used to clip the yield data, and this ensured that both variables in this study (NDVI and 

Yield) had similar extents. Along with clipping the data to the crop edge, the NDVI 

datasets were also clipped to only represent the consistent cropping area – meaning 

areas such as laneways, test strips with rye interseeding, and a section of the field which 

was planted later than the rest were not included in the analysis (see Figure 14). 

 

 

 

 

 

 

 

 

 

After clipping, the NDVI data was classified into 5 classes using the quantiles 

classification method. Quantiles is a classification method that creates classes with an 

equal number of features and is useful for showing relative rankings, which is what was 

desired in this case. Natural Breaks (also known as Jenks) is a classification method that 

creates classes based on “natural groupings inherent in the data” (ESRI, n.d.). This 

Figure 14: Map showing field edge and cropped area boundaries used for clipping data 

Different variety of 

potato 

Test strips 

interseeded 

with fall rye 

Laneway 
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method failed to show much variation, and NDVI differences were difficult to discern 

when viewing the whole field on a map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: ArcGIS Classification settings 

Figure 16: Natural Breaks vs Quantiles Classification 
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2.5 Yield data 
 

“If you can’t measure it, you can’t manage it” is a commonly used phrase when it 

comes to PA. Measuring yield is one of the single most important PA practices a farmer 

can implement on their farm. The farmer can collect and manage many types of data, 

whether it is soil sampling, crop health measurements, moisture level monitoring, etc., 

but if they are not correlating those data sets with yield at harvest then they will not 

understand how their practices are affecting rates of yield.  

 Yield data was collected during harvest on October 20th, 2016. The yield monitor 

used in this study was a Greentronics (Greentronics, Elmira, ON, CA) model. Oyster Cove 

Farms, the potato producers involved in this project, purchased this yield monitoring 

system in 2015 and had success in tracking yield for a number of their fields in that 

growing season. The system consists of a controller, an interface box, two load cells, and 

a speed sensor. In order to calculate yield, the weight of the crop is measured as it 

passes over sensors in the conveyor belt of the harvester as the potatoes are being 

loaded onto the truck, which transports them away for grading, storage and processing. 

Yield data is then combined with GPS data from the tractor’s RTK GNSS system to create 

a yield map (Greentronics, 2017). 
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Monitoring yield is more common in crops such as grain, and measuring it in 

potatoes presents some challenges. Calibrating the system is vital in order to get quality 

Figure 17:  Greentronics yield monitor controller and interface in the tractor 

Figure 18: Greentronics yield monitor load cells and speed monitor on the harvester 
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data. Even proper calibration will not prevent operator error from effecting yield results. 

During grain harvest, the combine will off load to the truck at either end of the field in 

most cases, which does not have an effect on the data. In potatoes, the harvester must 

come to a stop when the truck is full. If the operator of the tractor and harvester shuts 

off the belt too late when there are no potatoes on it, this can skew the yield data. 

Likewise, if the operator starts the belt when it is fully loaded and backed up with 

potatoes, the data may show that there was a greater yield in an area than what was 

there.  

These issues need to be taken into consideration when viewing yield data. In this 

case, filtering of the yield data was performed in GIS software, ArcGIS. The output file 

from the monitoring system was a shapefile with over 18,000 data points. These points 

followed the track of the harvester as it collected the potatoes throughout the field. 

Twelve rows of potatoes were windrowed into a strip that was picked up by the 

harvester. This particular farm used 34” rows (multiplied by 12 equals 34 feet wide). The 

34 foot value is known as the “swath width” and was accounted for in the data. If this 

value is not correct then yield values will be skewed.  

These data points had many attributes associated with them such as the speed 

of the tractor, GPS precision, elevation, time, and more. The main attribute of concern 

in this case was “Dry_Yield”. This measured the amount of potatoes harvested in 

lbs/acre.  

In order to filter the yield data, a histogram was viewed and used to identify 

anomalies in the data. The bottom five classes of the histogram (seen in figure 19) were 
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eliminated from the dataset. The remaining bottom 2.5%, as well as the top 2.5% (95% 

distribution remained) were clipped out which resulted in approximately 17,000 values 

that ranged between 17,098 and 40,072 lbs/acre. When viewed on a map it was clear 

that the filtered data had eliminated most of the anomalies that were due to operator 

error in the field. The filtered values were discussed with the farmer who verified that 

the filtered dataset was much more accurate than the original one that came straight 

from the yield monitor. Errors in yield data can be expected in most cases during potato 

harvest since the operator of the harvester is generally more concerned with other parts 

of the process, such as ensuring the potato truck is not overflowing and that the 

harvester and tractor are working properly and less concern paid to the yield data. 

 

 

 

 

 

 

After the points dataset was filtered and anomalies eliminated, it had to be 

interpolated throughout the field. The other variable in this project, NDVI, was in raster 

format, which meant that it was a continuous range of 3cm x 3cm squares across the 

Figure 19: Raw Yield data histogram before filtering 
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field, each representing a NDVI value. In order to do a proper correlation, each data set 

had to be in the same format.  

The yield data points were interpolated using the “kriging” tool in ArcGIS, 

available through the spatial analyst extension. Kriging is a geostatistical interpolation 

method which examines surrounding measured values to derive a prediction for an 

unmeasured location. “Kriging is a multistep process; it includes exploratory statistical 

analysis of the data, variogram modeling, creating the surface, and (optionally) exploring 

a variance surface. Kriging is most appropriate when you know there is a spatially 

correlated distance or directional bias in the data. It is often used in soil science and 

geology” (ESRI, n.d.). “Kriging is the geostatistical method of prediction. It is a best linear 

unbiased predictor on punctual or block supports; best in the sense that its prediction 

error variances are minimized. It is in practice a weighted moving average in which the 

weights depend on the variogram and the configuration of the sample points within the 

neighbourhood of its targets” (Oliver and Webster, 2015). 
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2.6 Analysis 
 

With yield and NDVI data both in the same format, comparison analysis was then 

performed. For this project, two methods were used to analyze relationships between 

NDVI and yield. The first was a “binning” analysis, which grouped the NDVI values into 5 

classes based on the Quantiles classification method. The second method was a pixel by 

pixel analysis of NDVI and yield data at two spatial resolutions: 2m and 6.5m. The third 

method was a multivariate analysis which included NDVI, elevation, and fertilizer 

treatment regime to see how these three variables correlated with yield.  

The binning analysis began with reclassifying the NDVI data into five classes 

using Quantiles. The “Raster to polygon” tool within ArcGIS was then used to convert 

each class to a polygon feature that could be measured. Acreage for each of the five 

classes was calculated and ranged from 5 -7 acres per class. The “Zonal Statistics as 

Table” tool was then used with the NDVI zones as the “feature” and Yield dataset as the 

raster to extract values from. This tool calculated values such as MIN, MAX, and MEAN 

yield for each of the five NDVI classes. The resulting table was opened in Excel where 

graphs were created to inspect relationships between NDVI and yield. This process was 

performed for all three datasets from July, August and September. Potato yield between 

the NDVI bins was examined using ANOVA followed by a Tukey's post-hoc test.  

The pixel by pixel analysis began with “resampling” the NDVI data to match the 

resolution of the yield data set. Yield data had a resolution of 2m, while the resolution 

of the NDVI data was much finer at 3cm. There are four main resampling techniques 

within ArcGIS: Nearest, Majority, Bilinear and Cubic. Each method consists of 
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interpolating values within a desired output cell size (in this case 2m). These methods 

produced non-satisfactory results, and appeared to skew the NDVI data by creating 

uncharacteristic linear features along the 2m x 2m grid (see figure 20).  

Another method of re-sampling - “Aggregate”, is a tool available in ArcGIS which 

multiples the cell size by a whole number (60 in this case to achieve a 2m x 2m pixel). 

This method averages all 60 cells within the desired 2m x 2m cell to create a value. This 

result was much more appropriate as it did not display any uncharacteristic linear 

features.  

 

 

 

 

 

 

The “Raster to Point” tool was then used to convert both NDVI and Yield 

datasets into individual points with single values. After the datasets were in points, the 

“Spatial Join” tool was used to combine both into one table of approximately 30,000 

points, each with a value for Yield and NDVI. The same methods were used to resample 

the data down to 6.5m resolution, which resulted in approximately 3,000 points. The 

use of lower resolution data was incorporated to determine whether limiting variability 

Figure 20:  Bilinear Interpolation (left) vs Aggregated resampling method (right) 
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(due to averaging of data across more pixels) would have an effect on the relationship 

with yield. 

Scatter plots and regression analyses were performed on the resultant tables. R-

Sq values, which measure how close data are fitted to a regression line and are defined 

as “the percentage of the response variable variation that is explained by a linear 

model”, were determined (Frost, 2013). 

The multivariate analysis included two other variables (besides NDVI) that were 

examined to determine their relationship with yield: elevation, and fertilizer treatment 

regime. The Digital Surface Model (DSM), collected in May before planting, was re-

sampled from the original 3cm resolution to 2m and 6.5m for analysis with yield and the 

other variables on a pixel by pixel basis. The study field had two separate fertilizer 

regimes applied in the 2016 growing season. One was grower standard practice (180 lbs 

of Nitrogen (N) per acre), which was applied to approximately 2/3 of the field (twenty 

acres). The other regime was part of the 4R nutrient stewardship program, representing 

the “Right source at the right rate, right time and right place ®” that aims to “increase 

production/profitability for farmers while ensuring the future of the agricultural 

industry” (Fertilizer Canada, 2017). This regime involved application of 60 lbs of N per 

acre before planting, 80 lbs per acre at planting, and 3 additional applications of 15 lbs 

per acre in season for a total of 185 lbs per acre. The nine acre area under the 4R 

program was represented on a pixel by pixel basis with a grid code of “0” assigned if the 

particular pixel did not have 4R treatment, or “1” if the particular pixel did have 4R 

treatment. The following map (Figure 21) shows the area for each treatment.  
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All statistics were performed using statistical software Statistica v13.3 (Dell, TX, 

USA) at an alpha value of 0.05 to examine relationships between variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 21: Fertilizer treatment regime areas 
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Chapter 3: Results 
 

3.1 Viewing the data 
 

In addition to graphs, the study used maps to display data from this project since 

all collected information has spatial attributes. Maps provide a way of visualizing data 

not possible in a spreadsheet, and are very important in PA to identify spatial patterns 

and trends in agricultural data. Agriculture can be improved through the 

implementation of GIS as a way to eliminate some of the guesswork involved in crop 

management, and to record farm specific spatial information year after year. 

 

3.2 Elevation Data 
 

The following map (Figure 22) was created from data collected during the May 7, 

2016 flight. The field was in bare soil at this time, and sUAS imagery was able to 

accurately capture elevation information through photogrammetric processing software 

Pix4D, along with the use of GCPs.  
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Figure 22: Digital Surface Model of Ramsay Field 

This Digital Surface Model (DSM) shows that the field goes from 66 feet above 

sea level in the northern corner, down to 12 feet above sea level in the southern corner. 

Rain water and spring melt would drain down to the lower southern section of the field. 

The contours clearly show a flat area at the southern portion of the field.  
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3.3 NDVI Maps 
 

The following maps from July, August and September show NDVI values 

(Aggregated to 2m resolution), clipped to crop area and classified in 5 classes using 

Quantiles method. For original NIR maps with 3cm resolution see Appendix. 

 

 

 

 

 

 

 

 

 

 

In the July NDVI dataset (Figure 23), the highest NDVI values can be seen in the lower 

southern area of the field along with a narrow strip on the Eastern boundary. 

 

 

Figure 23: NDVI Map from July 
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In the August dataset (Figure 24), highest NDVI values can be seen along the Eastern 

side of the field, as well as the lower southern portion. Lowest values can be seen along 

the Western side of the field and in the small strips located south of the residential 

property. 

 

 

 

 

Figure24: NDVI Map from August 
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The September dataset (Figure 25) shows highest NDVI values in the North-Eastern 

section of the field as well as a strip along the Western side of the field. Lowest values 

can be seen in the low, Southern portion of the field and in the areas surrounding the 

residential property. 

 

 

 

 

Figure 21: NDVI Map from September 
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3.4 Yield Data 
 

The following maps show yield data as points (filtered), and as an interpolated 

continuous surface. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Yield Map after filtering and before interpolation 
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The interpolated yield map shows highest values in the lower Southern portion of the 

field. Lowest values can be seen in the center of the field and along the Western field 

boundary (this was a different variety of potato), as well as a narrow strip near the 

Eastern field boundary. 

 

 

 

 

Figure 27: Yield Map after interpolation 
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            3.5 Binning Analysis Results 
 

The following graphs and charts show the results of the binning analysis. 

NDVI and Yield Correlation for July 13th, 2016 Dataset 

NDVI Class Area (acres) 
Mean Yield (lbs 

per acre) 
Min Yield (lbs 

per acre) 
Max Yield (lbs 

per acre) 

1) 0.192 - 0.257 5.6 29853.8 19071.6 38503.0 

2) 0.257 - 0.268 5.7 29887.5 18831.3 38298.7 

3) 0.268 - 0.279 5.6 29984.5 19246.6 38698.6 

4) 0.279 - 0.293 5.7 30215.0 19073.6 38711.7 

5) 0.293 - 0.452 5.6 31010.9 20732.7 38711.8 

 

 

 

 

 

 

 

 

                                                   

Figure 28: NDVI and Yield Correlation for July 

Binning analysis from July shows a good correlation between NDVI and yield. As NDVI 

values increase so too does yield. The difference between the mean yield for the highest 

and lowest NDVI class is approximately 1,160 lbs/acre. 
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NDVI and Yield Correlation for August 10th, 2016 Dataset 

NDVI Area (acres) 
Mean Yield (lbs 

per acre) 
Min Yield (lbs 

per acre) 
Max Yield (lbs 

per acre) 

1) -0.114 - 0.443 5.5 29774.3 18831.3 38698.4 

2) 0.443 - 0.465 5.3 29993.0 19002.1 38711.8 

3) 0.465 - 0.484 6.0 30220.9 19246.6 38698.6 

4) 0.484 - 0.507 6.1 30407.6 18964.2 38559.7 

5) 0.507 - 0.852 5.4 30530.9 20634.4 38447.8 

 

 

                                                            

 

 

 

 

 

 

 

 

 

  Figure 29: NDVI and Yield correlation for August 

Binning analysis for August also shows a good correlation between NDVI and Yield. As 

NDVI values increase so too does yield. The difference between the mean yield for the 

highest and lowest NDVI class is approximately 750 lbs/acre. 
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NDVI and Yield Correlation for September 10th, 2016 Dataset 

NDVI Area (acres) 
Mean Yield 

(lbs per acre) 
Min Yield (lbs 

per acre) 
Max Yield (lbs 

per acre) 

1) 0.291 - 0.519 4.9 29990.1 19248.3 38710.7 

2) 0.519 - 0.529 6.1 30030.6 19558.7 38711.8 

3) 0.529 - 0.538 5.4 30093.0 18831.3 38698.6 

4) 0.538 - 0.547 5.7 30266.4 18964.2 38711.7 

5) 0.547- 0.635 6.1 30530.2 20480.8 38480.1 

 

 

 

 

 

 

 

 

 

 

Binning analysis for September indicates a positive correlation between NDVI and Yield. 

As NDVI values increase so too does yield. The difference between the mean yield for 

the highest and lowest NDVI class is approximately 540 lbs/acre. 

 
 

 

 

Figure 30: NDVI and Yield Correlation for September 
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            3.6 Pixel by Pixel Analysis results 
 

The following table and graphs show an example of the NDVI/Yield table containing 

30,000 points as well as scatter plots for each of the datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

This table shows the results of the Spatial Join in ArcGIS and contains a Yield value 

(lbs/acre), and an NDVI value for each 2m x 2m cell across the field for a total of 

approximately 30,000 records. 

 

Figure 31: Yield vs NDVI table sample after spatial join 
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Figure32: NDVI vs Yield scatter plot for July (2m resolution) 

Figure 33: NDVI vs Yield scatter plot for July (6.5m resolution) 

r2 =.02 

r2 =.043 
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Figure 34: NDVI vs Yield scatter plot for August (2m resolution) 

Figure 35: NDVI vs Yield scatter plot for August (6.5m resolution) 

r2 =.096 

r2 =.012 
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Figure 36: NDVI vs Yield scatter plot for September (2m resolution) 

Figure 37: NDVI vs Yield scatter plot for September (6.5m resolution) 

r2 =.061 

r2 =.079 
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            3.7 Multivariate Analysis 
 

Multivariate Analysis Results (probabilities and RSq) 

Dataset (month) Resolution Elevation NDVI 4R RSq 

July  2m < 0.0001 < 0.0001 < 0.0001 0.0298 

  6.5m 0.027 < 0.0001 < 0.0001 0.0548 

August 2m 0.762 < 0.0001 < 0.0001 0.0346 

  6.5m 0.732 < 0.0001 < 0.0001 0.0467 

September 2m < 0.0001 < 0.0001 < 0.0001 0.0218 

  6.5m 0.0004 < 0.0001 < 0.0001 0.0318 

 

Chapter 4: Discussion 
 

            4.1 Analyzing the Results  
 

            The binning analysis shows a strong correlation between NDVI and Yield for the 

July 13th (Growth Stage II – vegetative growth) and August 10th (Growth Stage IV – early 

bulking) datasets, while the correlation for the September 10th (Growth Stage IV – late 

bulking/early senescence) dataset is not as strong. These results are reasonable 

expectations since the crop begins to lose its vegetative vigour at later growth stages 

while leaves turn yellow and die off (Johnson, 2008). 

            The pixel by pixel analysis displayed relatively flat regression lines that trended 

upwards as NDVI and yield increased. Both July datasets (2m and 6.5m) returned the 

strongest correlations across all collection dates. Pixel by pixel analysis introduces much 

more variability in each dataset in comparison to the binning analysis. It is not surprising 

to see that the coarser resolution data (6.5m), resulted in stronger relationships 

Figure 38: Multivariate analysis results 
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between NDVI and yield in every dataset due to a decrease in variability by way of 

averaging more pixels across the field. The August and September datasets had mainly 

full canopy closure across the field, therefore NDVI values were averaging pixels that 

contained mostly vegetation while July NDVI values were averaging vegetation as well 

as bare soil due to the earlier growth stage of the crop. The difference in canopy size in 

July had an impact on the relationship between NDVI and yield in a positive way. Other 

ways to decrease variability in each dataset would be to incorporate other VIs such as 

Leaf Area Index, which have been used as a predictor of yield, and only take into 

account the amount of foliage cover (Harris, n.d.). Other studies have incorporated 

random yield samples throughout a field to compare with remotely sensed imagery. 

This would limit the amount of variation seen in the pixel by pixel analysis and would 

ensure that the yield value being used in the comparison was real and not an 

interpolated value (Al-Gaadi et al, 2016). 

            The multivariate analysis showed that three variables: Elevation, NDVI and 

Fertilizer treatment regime all had significant predictive ability for yield although RSq 

values were low. The July dataset, once again, provided the strongest correlation with 

yield out of the three collection dates. Coarser resolution data for all three months 

resulted in higher RSq values than higher resolution data due to decreased variability. I 

believe that the stronger correlation from the July model could be due to residual soil 

moisture leftover from the spring, which had an impact on crop growth and canopy size 

that ultimately led to higher NDVI values for those lower elevation areas where more 

moisture was present. The fertilizer treatment regime had little impact on NDVI or yield 
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values. The next section includes additional discussion regarding elevation’s impact on 

yield. 

The stronger correlations between NDVI and Yield in three methods of analysis 

seen in the July 13th and August 10th datasets (crop age 39 days and 67 days 

respectively), indicates that capturing remotely sensed imagery between growth stage II 

and IV is best when attempting to predict yield in potatoes. This finding was also 

realized by Khalid A. Al-Gaadi et al. who observed that highest correlations between a VI 

from satellite imagery and yield was 60-70 days after planting in comparison with VI 

imagery from earlier and later crop growth stages (Al-Gaadi et al, 2016). 

It is important to note that the goal of this study was not to attempt to predict 

actual quantity of potato yield in terms of lbs/acre for every pixel, but to identify 

broader areas of the target field that performed better or worse relative to the rest of 

the crop areas through the use of NDVI. 

 

4.2 Topographic Features and Weather – Effects on Yield 
 

            The NDVI dataset that correlated greatest with Yield was from July 13th. The areas 

with highest NDVI values in that dataset were found in the Southern area of the field, 

which was also the lowest section in terms of elevation above sea level, as can be seen 

in the Digital Surface Model (figure 22).  A study by Kumhalova, Jitka et al. observed that 

there was a strong correlation between topography and yield, specifically in drier years 

(Kumhalova et al, 2011). Climate data from the UPEI Climate Lab showed that station 

AC1 in Baltic, PE, located 6.5 km Northeast of the project study site, had a very dry 
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month of July recording only 27.5mm of precipitation, approximately one third of the 

normal rainfall for the month of July for that area (Jardine, 2016). Climate data for 

August showed that there was less than average rainfall again with 76.9 mm (normal for 

August is 92.7mm) (Jardine, 2016). The farmer who manages the study site field 

acknowledged that this was a “very dry” summer and also observed that lower areas of 

the field seemed to produce the greatest at harvest.  

The following map breaks down the field into five areas based on elevation (see 

figure 22 for reference). This map shows that the lowest and flattest area of the field 

(labeled “1” on the map), produced approximately 1,250 lbs/acre more than average.  

 

 

 

 

 

 

 

 

 

 

Figure 39: Map displaying 5 classes of elevation along with yield data 
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There are many other factors that affect yields of field crops, such as soil 

temperature and health characteristics, but topography (slope and aspect) and soil 

moisture - specifically in a dry summer, play a more significant role in determining 

production. 

4.3 Using Vegetation Index Classes as Management Zones 
 

            One way to utilize the output vegetation index classes from a sUAS survey is to 

develop management zones (MZ). GIS and GPS play a key role, as the output classes can 

be accurately referenced to a place on the ground so that they can be combined with 

other important data layers such as soil health, topography, electrical conductivity, and 

past yield data to create distinct zones in a field with each zone receiving different 

amounts of nutrient input. These zones can then be used as an input file in a tractor 

with variable rate application capability and the farmer can let the system takeover 

while it applies appropriate rates of nutrients where they are needed. Nutrient 

application is not always reduced with the MZ approach versus uniform input 

application, but production can be increased since certain areas of a field do not require 

high amounts of input, and this excess can be redistributed to the areas which require 

more.  

            Identifying yield variation in crops is one of the first steps towards improving 

production. The difference between mean yield for the lowest and highest class of NDVI 

for the July dataset was 1,160 lbs/acre. The average price of potatoes in 2011 in P.E.I. 
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was 11.72 dollars per hundred weight (approximately 12c per lb) (P.E.I., 2016). This 

equates to a difference of approximately $139/acre in production between the lowest 

and highest classes of NDVI. Average farm size for P.E.I. in 2016 was 425 acres (StatsCan, 

2017). A $139 difference per acre between the lowest and highest classes of NDVI on 

the average P.E.I. farm equates to $59,075.  Eliminating yield variation altogether is not 

realistic since there are many factors involved, but improving production in the lower 

classes, and reducing inputs in the higher classes, or conversely - limiting inputs in 

consistently poor yielding areas and optimizing maximum yield potential areas is 

possible through PA management practices, and has the potential to positively effect a 

farmers’ income.  

            A study by Hunt and Daughtry in 2017 assessed the use of sUAS as a tool in 

agriculture and summarized surveys of farmers in the U.S. from 2010 and 2012 and 

found that “about 50% of farmers track yields spatially in a field with yield monitors, but 

only about 20% spread fertilizer using variable rate applicators” (Hunt and Daughtry, 

2017). These numbers would be largely influenced by wheat producers in the U.S., a 

sector of the agriculture industry where PA has seen more widespread adoption than in 

crops such as potatoes. These figures indicate that the full potential of sUAS in 

agriculture may not be realized until farmers make investments in other PA technologies 

such as variable rate applicators. 
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            4.4 Recommendations for Further Studies 
 

            Further studies should include the use of a more capable multispectral camera 

that is able to capture additional bands of light besides RGB and NIR. The additional 

bands of light would allow further investigation into many vegetation indices – that 

could potentially represent a stronger relationship with yield in potatoes. Recently 

released multispectral cameras for use with sUAS, such as the Parrot Sequoia, come 

with sensors that record the amount of sunlight being collected by each band. This 

allows for radiometric calibration of the imagery and more accurate data (Parrot, 2016).  

In addition to collection of yield data by a monitor mounted to the harvester, other 

methods of yield data collection could be performed, such as digging manual samples at 

several random locations throughout the field. This would give an idea of absolute yield 

at those locations, and eliminate the need to use interpolation to estimate yield in areas 

between rows of points. It would also eliminate any possible issues with yield monitor 

or tractor operator error.   

Studying multiple fields over a longer period of time would provide valuable 

information to understand the relationships between vegetation indices derived from 

sUAS captured imagery and yield. Following a potato crop through an entire rotation 

and comparing VIs with yield in rotational crops such as barley, soybeans, fall rye, winter 

wheat, etc. would provide information that could be compared between crops from one 

season to the next, and indicate the impact that variables such as topography, weather, 

soil moisture, or soil health have on yield.   
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4.5 Conclusions 
 

This paper described the steps involved in using sUAS technology including 

planning and carrying out a mission, processing data, manipulating data in a GIS, and 

analyzing data in GIS and statistical software packages. The goal of this project was to 

determine whether in season vegetation index maps derived from sUAS collected 

imagery were an accurate predictor of yield in potatoes. It was determined that the 

areas which appeared healthiest early in the growing season (Growth stages II to early 

IV) tend to correlate well with measured yield at harvest when looking at broad “zones” 

within a field. The correlation at the single pixel level does not display as strong a 

relationship between NDVI and yield. 

Satellite imagery still continues to be a viable option for gathering multispectral 

imagery of agricultural crops, especially over large areas. Multispectral satellite imagery 

as a yield prediction tool in potatoes has been successful in several studies, including 

those by Khalid A. Al-Ghaadi et al. (2016), and Johnson (2016). One of the main benefits 

of sUAS vs Satellite imagery is spatial resolution. For applications such as relative field 

health mapping and identification of yield variation, 1m to 2m resolution is sufficient. 

Limitations of satellite imagery are the potential presence of cloud cover and not having 

the flexibility to capture imagery at specific times as desired by the farmer or crop 

consultant. High resolution imagery from sUAS will be more important in applications 

such as disease, pest and weed detection. 

SUAS will play a role as a remote sensing tool in agriculture for years to come. 

Paired with multispectral cameras and flown between potato growth stages II and IV, 
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sUAS can be used to identify yield variations and help farmers and agronomists develop 

in-season management strategies to address issues and potentially improve production. 

Farmers’ uptake of sUAS technology will be slower than other more tangible 

technologies such as GPS. With GPS implemented for practices such as Auto-Steer, 

farmers see increased efficiency, and immediate results - which equals value.  They are 

willing to spend over $40,000 on equipment that will pay for itself quickly by allowing 

them to operate equipment at night, ensuring straight rows and maximizing field 

cropping area, or enabling them to focus on certain implements while the tractor is 

guided by satellite navigation. sUAS have limitations from factors such as weather - wind 

and rain can suspend or prevent operations. When the wind is light during days in July 

and August, a farmer is likely too busy spraying crops to have time to fly sUAS over their 

fields and then process the data into actionable information in order to make a time 

sensitive management decision.  

sUAS and data processing technology are advancing at such a rapid pace that 

certain methods and equipment used in this study could be considered “out of date” in 

the near future. To reproduce the methods used in this study, particularly in the data 

processing and analysis sections, would require at least an intermediate level of GIS 

knowledge and expertise. However, capturing and processing multispectral data for 

agriculture are becoming easier and more affordable. There are several online data 

processing platforms available where users can upload imagery and receive analysis, 

reports, maps and fertilizer recommendations back within 24 hours. These monthly fee 

subscriptions will be particularly attractive to farmers who cannot afford to spend time 
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processing imagery, and do not have the means to purchase or operate expensive 

processing software. Crop consultants and agronomists would benefit from becoming 

trained in sUAS operations as well as processing spatial information and adding this 

service to their toolkit.  

The yield monitor is an under-utilized tool and provides extremely valuable 

information that can be used as a report card for farmers’ fields. At a price of 

approximately $10,000 this tool is affordable in comparison to some of the other on 

farm expenses paid every year (Greentronics, 2017). These tools may tell a farmer which 

areas of a field consistently yield less than others, and this information can be used to 

determine whether it is worth planting an expensive crop in lower producing areas of a 

field, or whether that area of the field would be better left out of production altogether. 

If the average cost per acre to grow potatoes is $3,000 per acre, then a farmer must 

yield at least 25,000 lbs per acre at 12c/lb to break even (Trainor, 2009; P.E.I., 2016). 

Once again, one of the limitations keeping farmers from adopting yield monitoring 

technology is dealing with data in a timely fashion.  

There needs to be more collaboration between GIS and mapping professionals 

and those who work in agriculture such as farmers and agronomists. Each side has much 

to offer the other, and not only would the two sides involved benefit greatly from 

building relationships and cross-learning, but society as whole can gain from the growth 

and advancement of precision agriculture. 
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Figure A1: Table displaying Climate station data for July 2016 
Source: UPEI Climate Research Lab 
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Figure A2: Table displaying July 2016 Precipitation Data vs 30 year normals 
Source: UPEI Climate Research Lab 
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Figure A3: Table displaying Climate station data for August 2016 
Source: UPEI Climate Research Lab 
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Figure A4: Table displaying August 2016 Precipitation Data vs 30 year normals 
Source: UPEI Climate Research Lab 
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Figure A5: Pix4D Quality Report sample for July dataset 
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Figure A6: Near-Infrared Orthomosaic for July dataset 
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Figure A7: Near-Infrared Orthomosaic for August dataset 
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Figure A8: Near-Infrared Orthomosaic for September dataset 
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Figure A9: Original, Unfiltered Yield Data points clipped to study area 
 


