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Abstract

Potatoes are an expensive crop to grow, and many inputs such as fertilizers and
pesticides are required to ensure that the product is marketable. With advancements in
GPS technology over the last three decades, one technology that has come to the
forefront in farming is Precision Agriculture (PA). PA assumes that not all parts of a field
are uniform, and that by tailoring management decisions to certain areas of a field,
farmers can improve production and possibly reduce inputs. Adopting PA in the potato
industry makes sense, as there is much to be gained in terms of increasing production as

well as mitigating the environmental impacts of industrial farming.

Two tools which fall under the umbrella of PA are the yield monitor and Small
unmanned aerial systems (sUAS). sUAS have the ability to collect high resolution
remotely sensed data for agriculture. When multi-spectral sensors are mounted to
sUAS, algorithms (vegetation indices) can be applied to the data to assess spatial
characteristics related to field health. Yield monitors are tools which measure the
guantity or quality of production throughout the field. They are synced with GPS
systems and can assist a farmer to identify which parts of a field produce higher or
lower yields than others. The resultant yield data can be viewed as a report card of a

field and used in informing management decisions.

In this study the question was posed: are vegetation index maps derived from sUAS
mounted multi-spectral sensors an accurate predictor of yield in potatoes? This study

used sUAS to survey a 30 acre potato field in Indian River, PE, Canada four times



throughout the growing season (Once before planting for elevation mapping — May 7"
2016; 39 days after planting — July 13" 2016; 67 days after planting — August 10" 2016;
and 98 days after planting — September 10" 2016) . These dates equate to growth
stages Il, IV and late IV respectively (vegetative growth and tuber bulking) and were
chosen at separate growth stages to determine which stage correlated greatest with
yield. Growth stage | is considered pre emergence, while growth stage V is considered
maturation where photosynthesis decreases and vines die off — these stages were not
relevant for capturing imagery. It was expected that the areas of the field that appeared
healthiest early in the growing season would produce the greatest yield at harvest. The
collected sUAS data were correlated with yield harvest data to examine relationships
between in-season field health maps and actual yield in lbs/acre. Correlations between
sUAS data collected in July, and yield data collected at harvest, indicate that the farmer
can get an idea of which areas of a field will produce the highest yield early in the
growing season, and use this data to make informed management decisions on their

farm.

sUAS technology is rapidly evolving and adoption of these analytical tools on the farm
will be more common as they become more affordable and user friendly. As the large
range of sUAS collected data becomes more manageable, farmers and agronomists will
be able to apply this technology on their crops and thereby, improve the ways they farm

in order to maximize yields and minimize inputs.
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Chapter 1: Introduction and Literature Review

The potato industry on Prince Edward Island is a polarizing one. It generates
more than $1 billion for the provincial economy and creates over 8,000 jobs which
represent 12.1 percent of total employment on Prince Edward Island (MacDonald,
2012). While being the largest economic driver, the agriculture industry has been
blamed when fish kills have occurred due to “highly toxic” pesticides reaching
waterways, and there have been many claims that chemicals used in the industry are a
contributing factor in the province having some of the highest cancer rates in Canada.
(MacDonald, M. 2013; Mittelstaedt, 2006; Canadian, 2013)

Potato production dominates the landscape in P.E.l. with an average of
approximately 90,000 acres planted per year and an annual output of 1.3 million tons in
2016, which is the most in Canada (PEI, 2016). Potatoes are an expensive crop to grow,
costing over $3,000 per acre (Trainor, 2009). They require costly inputs such as
fertilizers, herbicides, and pesticides to be marketable. If not managed prudently, these
inputs can put at risk the Island’s environment.

Potato producers now have access to technologies that can benefit them in
many ways, such as increasing production and reducing input costs. Global Positioning
System (GPS) technology, yield monitoring equipment, soil quality monitoring tools and
remotely sensed imagery all have the ability to influence farmers’ management
decisions. With potatoes being such a costly crop to grow, farmers can now apply these

available tools and data to produce their crops more efficiently and economically.



Technology will be vital in addressing the economic and environmental impacts
of agriculture both in Canada and around the world. With global population expected to
reach almost 10 billion by 2050, there will be increased pressure to produce more food
while striving to be environmentally and economically sustainable (United Nations,

2015).

1.1 Precision Agriculture

Finding a balance between economic gain and environmental sustainability can
be a difficult task for farmers. One farming practice that aims to address these issues is
Precision Agriculture (PA). PA can be defined as “a management strategy that uses
information technology to bring data from multiple sources to bear on decisions
associated with crop production” (National Research Council, 1997). “Precision
agriculture comprises a set of technologies that combines sensors, information systems,
enhanced machinery and informed management to optimize production by accounting
for variability and uncertainties within agricultural systems” (Gebbers and Adamchuk,
2010). One way to implement PA is to capture crop growth information in real-time
(Zzhang et al., 2002). Although information obtained from high-resolution satellite
imagery has been used to reach this goal for a long time, the availability, often
prohibitive costs, timing, and interpretation of such data limit its applications, which
would suggest an alternative way for this application in precision agriculture (Yu et al.,

2013). Specifically, images taken by sUAS are shown to be a potential alternative given



their low-cost of operation in monitoring, high spatial and temporal resolution, and their
high flexibility in image acquisition programming (Zhang and Kovacs, 2012). PA works
under the assumption that not all parts of a field are uniform, and it has been practiced
commercially since the 1990’s with over one third of US mid-western farmers already
practicing some form of PA (Mulla, 2013).

PA can be summarized in three steps: 1) Identify where, when, and how much
variability is present within a field, 2) Apply agronomic expertise to analyze the within-
field variability in order to determine how best to manage it, and 3) Managing the
within field variability to enhance productivity while minimizing environmental risks
(Cambouris et al, 2014). One of the most efficient methods in identifying variability

within a field is through remote sensing.

1.2 Traditional Methods of Collecting Remotely Sensed Data

Traditional platforms for gathering remotely sensed data for PA include
satellites, manned aircraft, and handheld sensors. Satellite imagery is steadily
improving from 56 x 79m per pixel resolution acquired by Landsat 1 launched in 1972, to
30cm per pixel resolution captured by WorldView satellites today (Mulla, 2013). The
two largest limitations for satellite imagery are the presence of cloud cover, and
temporal and spatial resolution.

Satellite imagery is often used to predict yield in crops around the world. A study

by Ferencz et al in 2004 examined the relationship between a newly developed
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vegetation index — General Yield Unified Reference Index (GYURI) and yield data in corn
fields in Hungary over an eight year span and found that there was a high correlation
(R2 = 84.6-87.2). The authors deduced that this robust method would be useful for
county, region and country level yield estimation (Ferencz et al, 2004). Considering the
average field size in Prince Edward Island - county, region or country level yield
estimates would not be useful for a farmer trying to make in season management
decisions on their crops. Similarly, a study in France in 2008 by Cunha et al looked at the
relationship between NDVI and yield in grapevine crops for the production of wine and
found that NDVI was a strong predictor of yield on a regional scale at seventeen months
before harvest. Statistical tests indicated that the wine yield forecast model explained
77-88% of the inter-annual variability in wine yield (Cunha et al, 2008). Satellite imagery
has proven to be valuable in estimating yield at regional scales, but for a farmer to
address individual fields at the management zone level, higher resolution data is
required. A study by David M. Johnson in 2016 looked at correlating multiple vegetation
indices derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite
imagery with yield throughout a whole growing season among ten different crops,
including potatoes. In reference to potatoes, he found that “NDV!I is strongly positively
correlated at over 0.9 in early summer and then swings negative at more than -0.7 late
in the season.” (Johnson, 2016)

Manned aircraft have been used to capture aerial images of crops as well. A
study by R.N. Colwell in 1956 looked at the application of aerial imagery in assessing

healthy and diseased wheat crops. The author determined that a photo interpreter
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could detect healthy wheat, oats and barley and also identify diseases such as black
stem rust in wheat and oats. The author also noted that by using only small scale black
and white photos, disease could be detected early enough for appropriate treatment.
Colour photos would allow the interpreter to estimate disease severity and yield
deduction with reasonable accuracy (Colwell, 1956).

Manned aircraft remain more feasible for capturing regional scale imagery
rather than field scale analysis. The speeds at which a manned aircraft operate do not
allow it to capture as many high resolution photos as a sUAS is able to at the field scale.
Purchasing a manned aircraft and obtaining a license to fly and capture aerial imagery is
not realistic for a farmer seeking individual field level data. Service providers often have
expensive hourly rates. Some companies such as GeoVantage (North Andover, MA, USA)
are taking advantage of groups of farmers in a region and capturing imagery over larger
areas which enable them to keep costs down.

Handheld optical sensors, such as the Greenseeker (Trimble Navigation Ltd.,
Sunnyvale, CA, USA), have been used to capture canopy reflectance information in crops
as well. Typically used to take measurements at 0.5 — 0.6m above the crop, these
sensors can give instant NDVI (Normalized Difference Vegetation Index) readings which
indicate chlorophyll levels in the plant (Quebrajo et al, 2015). The challenge with
handheld sensors is that it is manually intensive and not realistic to capture
measurements across an entire field. Tractors have been outfitted with sensors, which

eliminates manual input, but imagery is only captured where the tractor drives -and
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farmers like to minimize the impact of driving they do in a field in order to reduce soil
compaction issues and prevent yield losses.

A relatively new tool for collecting remotely sensed data is the small unmanned
aerial system (sUAS), commonly known as a drone. The affordability of these systems,
along with their relative ease of use has made them an attractive option for those
working in agriculture in the past few years. sUAS have major advantages over
traditional methods of gathering remotely sensed data. These systems can be deployed
at almost any time (depending on weather and local regulations), and capture high
resolution data. Data collected by sUAS used in agriculture are typically ~3cm per pixel,
in comparison to current satellite imagery which may be 30cm — 30m per pixel
resolution (Digital Globe, n.d.).

Traditional remote sensing platforms have not been widely utilized in the
precision agriculture discipline due to several logistical challenges; (1) data acquisition
can be costly from these platforms, and (2) they have limited flexibility in terms of
temporal and spatial resolution of the data. Fine spatial and high temporal resolution
data is required to monitor crops accurately through the growing season for biomass
estimation, yield prediction, and early detection of harmful insects and disease. In this
regard, advances in sUAS technology and sensor miniaturization can provide great
opportunities to tackle the challenges encountered with the traditional remote sensing

platforms (Anthony et al., 2014; Bendig et al., 2014; Rey-Carames et al., 2015).

sUAS have the potential to be a superior tool than the previously mentioned

methods of gathering remotely sensed imagery in agriculture at the field scale. Outside
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of the benefits of affordability, freedom of operation, higher spatial and temporal
resolution, sUAS can also be used to gather accurate elevation information by leveraging
structure from motion (SFM) technology. SfM uses triangulation to recreate scene
geometry and builds a 3D model of an object or surface based on multiple overlapping
images (Westoby et al, 2012). This is one of the greatest advantages of surveying with

sUAS, since highly accurate Digital Elevation Models (DEMs) can be useful in agricultural

and environmental applications.

Figure 1: Example of Satellite (left) vs SUAS (right) imagery resolution. Satellite imagery courtesy
dronedeploy.com
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1.3 SUAS in Agriculture

There are two common types of sUAS: fixed wing, and multi-rotor, which are
often referred to as VTOL (vertical take-off and landing). Fixed wing aircraft are
generally meant for surveying large areas, and are popular in the Midwestern United
States and Canadian Prairie Provinces where fields are typically 160 acres in size or
larger. VTOL aircrafts have traditionally been used for close range inspection purposes,
or for surveying small areas. LiPO (Lithium Polymer) battery improvements, and
advanced lightweight design have led to the creation of VTOL aircraft that are capable of
>30 minute flight times, and the ability to survey > 100 acres on a single battery (DJI,
n.d.). VTOL aircraft are particularly useful in Prince Edward Island where fields are
relatively small. Fixed wing aircraft requires long landing pathways and open areas for
safe operation, whereas VTOL aircraft can easily be deployed and safely landed in tight
areas near obstacles such as trees or buildings, if required.

sUAS have the potential to transform agriculture. The Association for Unmanned
Vehicle Systems International (AUVSI) reported that UAS integration is expected to
contribute $82.1 billion to the US economy by 2025, with 100,000 new jobs being
created. About 80% of the commercial application of SUAS is expected to be in
agriculture (AUVSI, 2013). Adoption of sUAS in PA is in its early stages, but recently
released studies have shown that these tools have the ability to be extremely valuable
to farmers and agronomists. “Precision Viticulture is experiencing substantial growth
thanks to the availability of improved and cost-effective instruments and methodologies

for data acquisition and analysis, such as Unmanned Aerial Vehicles (UAVs), that
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demonstrated to compete with traditional acquisition platforms, such as satellite and
aircraft, due to low operational costs, high operational flexibility and high spatial
resolution of imagery” (Matese et al, 2015).

Scientific studies, such as the one performed by Zaman-Allah et al. in 2015, used
multi-spectral images collected by sUAS to characterize experimental fields for spatial
soil-nitrogen variability and derive indices for crop performance under low Nitrogen (N)
stress in maize. The sUAS was able to effectively accomplish both tasks (Zaman-Allah et
al, 2015). Ground based studies, such as one by Evert et al in 2012, showed that using
crop reflectance data could inform side-dress N rates in potatoes without having an
impact on yield. “Side-dress applications supply nitrogen directly to crop roots. This
minimizes potential for lost fertilizer due to run-off or leaching, while improving
fertilizer uptake” (Hiniker, 2015). This particular study did not involve the use of sUAS,
but mentions the tool as being viable for addressing crops. It was determined that the
methods used in this study resulted in an average savings of 44kg n/ha and that yield
was not negatively impacted. In the Netherlands, where this study was conducted,
typical application rates are 250 kg N ha — indicating that a savings of almost 20% was
possible, that would result in significant savings for a farmer, as well as minimizing the
amount of N which enters the ground (Evert et al, 2012). In a study by Aguera et al, that
measured N status in sunflowers, it was found that Normalized Difference Vegetation
Index (NDVI) readings derived from sUAS collected imagery, and those collected by
ground based radiometer, were similar and proved to be good indicators of N in the

field (Aguera et al, 2012). NDVI values derived from sUAS collected imagery represent
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an entire field, not just random sample areas; therefore sUAS have the potential to be a
more comprehensive and superior tool.

A study by Bendig et al. in 2014 looked at using crop surface models derived
from sUAS imagery to estimate above ground biomass in barley, which is indicative of
yield. The high resolution crop surface models correlated well with plant height
reference measurements from the field. Both the crop surface models and plant height
measurements also correlated well with fresh and dry biomass and the authors
determined that this method has potential for future application by farmers. The main
limitation noted in this study was the influence of lodging cultivars in later growth
stages which produced irregular plant heights (Bendig et al, 2014).

A study by J. Torres-Sanchez et al. in 2014 examined the use of low cost SUAS
captured imagery from a visible spectrum camera and vegetation indices derived from
that imagery to perform vegetation fraction mapping in wheat. The goals of the study
were to determine which indices (out of 6 that were tested) performed best, and to
study the influence of flight altitude on classification accuracy. The study concluded that
ExG (Excess Green) and VEG (Vegetative Index) indices achieved the greatest accuracy in
vegetation mapping while flight altitude (30m vs 60m) had little impact on the accuracy.
With the ability to discriminate vegetation early in the growing season, PA applications
such as site specific weed management are possible to implement based on sUAS
captured imagery. This application is not possible with traditional forms of remotely

sensed imagery since spatial resolution is not sufficient (Torres-Sanchez et al, 2014).
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sUAS technology adoption does not come without its own set of challenges.
Learning to fly sSUAS and process data can be challenging enough for a farmer; they then
have to adhere to a national set of regulations and legislation that comes along with the
threat of fines for non compliance. sUAS specific liability insurance is a requirement in
Canada for any individual using these tools for commercial purposes (Transport Canada,
2018). These factors, along with understanding how to manage and manipulate large
guantities of data can be a deterrent for farmers looking to adopt sUAS technology. The
benefits will have to vastly outweigh the challenges before sUAS become a common tool

on the farm.

1.4 sUAS Collected Data and Vegetation Indices

While observing a robot flying around a field can often captivate a farmer or a
scientist, it is the data that is most important. Using an autonomous sUAS to collect
hundreds of images over a field is often the least challenging aspect of applying this
technology in agriculture. Making use of the data, and getting results that will either
increase revenues for the farmer and-or improve environmental sustainability (and
hopefully both), are the two most important objectives.

One of the most significant determining factors in the quality of data collected
by sUAS is the camera. In agriculture, there are many different cameras being used to
capture remotely sensed data. These cameras range from basic RGB spectrum (Red,

Green, Blue) to multispectral and hyperspectral systems which can cost hundreds of
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thousands of dollars. For characterizing field health in crops, multispectral cameras are
most common today. Multispectral cameras range from consumer-grade, such as the
Canon S110 NGB which has a modified filter designed to detect near-infrared light, to
more specialized cameras such as the Parrot Sequoia (Parrot SA, Paris, FRA) which
captures 4 separate bands of light — green, red, red edge, and near infrared as well as
RGB. Capturing more bands of light simultaneously provides a greater opportunity to
apply different Vegetation Indices (VIs) and examine plant characteristics (Parrot, 2016).
Hyperspectral sensors such as the AISA-Eagle, which was used in a study by
Nigon et al (2015) in detecting N stress in two potato cultivars, capture 63 narrowbands
of light covering the visible and near-infrared portions of the spectrum ranging from
401-982 nm. These sensors are typically mounted to manned aircraft or satellites, but
are becoming more compact for use with sUAS. sUAS specific hyperspectral sensors
such as the Micro-Hyperspec (Headwall Photonics, Fitchburg, MA, USA) cost over
$50,000 USD (Micro Hyperspec, 2016). Not long ago, it was either high spectral
resolution + low spatial resolution or high spatial resolution + low spectral resolution,
but it is becoming more common to see hyper-spectral imaging systems weighing less
than 1kg mounted to sUAS and capturing high spatial resolution data (Zhang, 2016). The
weight of a camera system (known as payload) on sUAS has a significant impact on
battery life. A combination of smaller sensors, along with increased battery life will
enable sUAS to cover more ground and make sUAS mounted hyperspectral cameras

more usable in agriculture. Hyperspectral sensors have greater abilities in terms of
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targeting and identifying specific diseases in crops due to the range of bandwidths they
can capture, but require more intensive processing strategies (Adao et al, 2017).
Manipulating the imagery captured by sUAS provides a way to gather
information which may give indications of biomass, chlorophyll content, nitrogen
content or other crop characteristics. “A common and simple way of extracting
information about crops from digital images is through the estimation of vegetation
indices (VIs)” (Rasmussen et al, 2016). NDVI, developed by NASA in 1979, is the ratio of
near infrared (NIR) minus red divided by NIR plus red, and is one of the most common
Vls used in agriculture. Other Vls such as REIP (Red Edge Inflection Point), ENDVI
(Enhanced Normalized Difference Vegetation Index), WDVI (Weighted Difference
Vegetation Index), GAl (Green Area Index), MTCI (MERIS Terrestrial Chlorophyll Index),
and others have proven to be valuable in examining potato crop canopy (Nigon et al,
2015; Evert et al, 2012, Geipel et al, 2016). The type of camera being used, and the
bands of light it collects, will determine which Vls are possible to implement. Cameras
that capture NIR light are commonly used in agriculture because plants reflect more NIR
light when they have higher chlorophyll levels and are healthy. When plants are stressed

they reflect lower levels of NIR light and this will be apparent in VI maps.

1.5 Data and Image Processing

Before Vls are applied to imagery, the individual pictures are stitched together

into an orthomosaic using photogrammetry software such as Pix4D (Pix4D SA, Lausanne,
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SWI). The quality of the orthomosaic is determined by the camera’s specifications, as
well as flight conditions, altitude, side-lap and overlap of the imagery and other factors
(see figure 7). Attention to detail in preparation for the survey is vital, since results are
determined by the quality of the data. “Photogrammetry is the science of making
precise measurements from photographs” (Photogrammetry, n.d.). Along with stitching
2D images together to create an orthomosaic which can be measured and manipulated
in Geographic Information Systems (GIS) software, Pix4D can also generate a Digital
Surface Model (DSM) from the images that can be used to perform elevation analysis.
Free software such as Microsoft ICE (Microsoft, Redmond, Washington, USA) can stitch
imagery together, but georeferencing that imagery so that it can be integrated with
ground based GPS, whether they are handheld or tractor based, is important for PA
applications. Today’s sUAS systems often involve a camera that is directly integrated
with the sUAS autopilot where pictures are “geo-tagged” automatically, or the camera
itself has built in GPS for recording positions during the flight. Geo-tagging of photos is
important because it references the image to a place on the Earth’s surface. Built in geo-
tagging abilities are not very accurate for sUAS without built in real time kinematic (RTK)
systems, and there is often a need to use ground control points (GCPs) that are
referenced in processing software such as Pix4D. A typical sSUAS GPS system may be
accurate within 1-3m, whereas the accuracy of an RTK system connected to a local
reference system or base station is accurate within 1-2cm. A study by Gomez-Candon
et al found that “a UAV flying at a range of 30 to 100 m altitude and using a moderate

number of GCPs is able to generate ultra-high spatial resolution ortho images with the
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geo-referencing accuracy required to map small weeds in wheat at a very early
phenological stage” (Gomez-Candon et al, 2013). This locational accuracy is important
for any PA application, specifically if the aim is to apply variable rate application (VRA) of
inputs.

Pix4D is capable of applying the vegetation index to the orthomosaic that can be
transferred to GIS software where it is analyzed and compared with other spatial data
sets such as soil health characteristics, yield data, input rates, and more. Detailed spatial
statistics can be derived and correlations between data sets examined in programs such
as ArcGlIS (ESRI, San Diego, CA, USA), and this is where PA provides real value to farmers

and agronomists.

1.6 Objectives, Overview, and Structure of the Paper

The objective of this study is to examine whether VI maps derived from sUAS
collected imagery can be used to predict yield in potatoes. Researching this subject
revealed that there were no specific studies that looked at this relationship in potatoes
using similar, and cost effective sUAS. Moreover, there exist only a few studies using

satellite images (Bala and Islam, 2009).

When this project began in September 2015, the goal was to use a Parrot
Sequoia multispectral sensor that was expected to be released in April 2016, a month
before data collection would begin. The local dealer was not able to ship the unit until

Late July 2016 due to a delay caused by a required “hardware modification”.
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Consequently, it was necessary to use an alternative sensor. A Canon S110 NGB (Near
Infrared, Green, Blue) camera, which is common for NDVI mapping in Agriculture, was
used. Limitations of this camera in comparison with the Parrot Sequoia sensor are
discussed later in this paper.

The study site is a 30--acre commercial potato field located in Indian River, P.E.I.
The field was surveyed four times in the spring/summer of 2016 — early May (before
planting), early July, early August, and early September which correlate to growth stages

Il and IV (as seen in figures 2 and 3 below). The yield data were collected during harvest

in October, 2016.
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(1))

|
i)

|
|

GROWTH STAGE |
Sprout development

GROWTH STAGE Il
Vegetative growth

GROWTH STAGE Il
Tuber initiation

GROWTH STAGE IV
Tuber bulking

GROWTH STAGE V
Maturation

Sprouts develop from
eyes on seed lubers
and grow upward to
emerge from the soil

Roots begin to develop
at the base of emerging
sprouts

Leaves and branch
stems develop from
aboveground nodes
along emerged
sprouts

Tubers form at stolon
tips but are not yet ap-
preciably enlarging

In most cultivars the
end of this stage coin-
cides with early flow-
ering

Roots and stolons
develop at below-
ground nodes

Photosynthesis begins

Tuber celis expand
with the accumulation
of water, nutrients, and
carbohydrates

Tubers become the

dominant site for depo-

sition of carbohydrates
and mobile inorganic
nutrients

Vines turn yellow and
losa leaves, photosyn-
thesis decreases, tuber
growth slows, and vines
eventually die

Tuber dry matter con-
tent reaches a maxi-
mum, and tuber skins
set

Figure 2: Growth Stages of the Potato. (Johnson, 2008)
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Figure 3: Growth Stages of the Potato. Source: Potato Irrigation Management,
University of Idaho Extension System

Figures 2 and 3 show the growth stages of the potato. Surveys were performed
at 39 days after planting, 67 days after planting and 98 days after planting (Growth
stages Il, IV, and late IV, respectively). These stages are important to understand
because one of the goals in this study is to identify when the ideal time is to obtain yield
estimates.

Yield is characterized by many factors such as temperature, soil type, moisture
levels, PH levels, crop variety, nutrient uptake and more. Due to limited time, resources,
and expertise, this study only examined yield as a whole - in correlation with NDVI.
Having an understanding of expected yield two or three months before harvest can help

farmers in making decisions in terms of nutrient application, irrigation or applying other

24



management practices to their crops depending on which parts of the field are
projected to yield higher or lower output than others.

The results from this study, and the investigation into the relationship between
NDVI and yield should provide potato farmers with valuable information at a time when
sUAS are becoming more affordable and common as agricultural tools. The
methodologies, equipment and analysis used in this study can be applied to other crops
besides potatoes. A study by Kyle Miller, with AgEagle (AgEagle Aerial Systems Inc.,
Kansas, USA) looked at the relationship between NDVI and yield in soybeans and found
that there was a strong correlation between the two (Miller, 2016). A farmer or
agronomist may simply want to understand overall field health, without doing any
analysis of the yield. As such, this study could provide some insights to facilitate the
analysis of other related problems in PA.

It is expected that the areas of the field that appear healthiest (high NDVI) early
in the growing season will be the areas that are most likely to produce the highest yield
in terms of |Ibs/acre.

Chapter 2 examines the methodologies, equipment used, field descriptions,
analytical techniques, etc. Pricing for each piece of equipment is noted in order to
provide an understanding of the approximate costs of implementing sUAS technology in
farm or business operations.

Chapter 3 provides the results of this study along with maps, graphs and tables
highlighting the relationships between NDVI and yield. Chapter 4 discusses the results

and draws conclusions from the study, as well as addresses any limitations, and provides
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suggestions to improve methods and analysis going forward. sUAS and camera
technology are developing at a rapid pace with engineering and design improvements

leading to smaller sizes, longer flying times, better quality imagery and lower costs.

Chapter 2: Methodologies

2.1 Study Site

In order to compare NDVI maps (of potatoes) with Yield maps, an appropriate
location was selected based on the following criteria: the farmer/field owner had to
have a yield monitor or another method of capturing yield data at harvest at a spatial
resolution valuable for understanding relationships, and the farmer/field owner had to
be permissive of research involving a sUAS used in that field. A field in Indian River, PE
was chosen based on these criteria, and in addition to that, there was other ground-
based research being conducted at the site that could be useful in further analysis of

this or other studies. (See Figure 4)
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The average size of a potato field in Prince Edward Island is about 27 acres,
therefore the acreage of the field chosen for this study of 30 acres is close to typical
holding throughout the Province (PEI, 2010). The variety of potato was the Russet

Burbank.

Figure 4: Study site in Indian River, PE
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2.2 sUAS Equipment Used and Flight Planning

The sUAS used in this study was the 3DR IRIS+ (3D Robotics, Berkeley, CA, USA).
This sUAS was mounted with a Canon S110 NGB camera, which was modified to “block
red light and record near infrared light above 700nm wavelength” (see figure 6) (NDVI,

n.d.).

Figure 5: 3DR IRIS+ (left), and Canon S110 Camera (right)
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Figure 6: Filter Transmission Data Graph for Canon $110 NGB Camera.
Source: event38.com
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The sUAS and camera system were assembled by Event38, located in Akron, OH. The
total cost of the system with sUAS, RGB and NGB cameras, extra batteries, and carrying
case was approximately $3,000 (USD).

The Canon S110 NGB camera, although commonly used in agriculture, does have
its limitations. It is a useful camera to get an overall perspective of field health across a
field at one point in time, as long as the user ensures that lighting conditions are
optimal. However, it is important to survey the crop only at certain times of the day;
between 10am — 2pm is best since the Sun is high and shadows from trees, buildings,
etc. are not as long as they are in the early or late hours of the day (DroneDeploy, 2017).
Variable cloud poses issues to data collected by this sensor, especially when shadows
from clouds can skew the NDVI measurements and healthy plants will appear to have
lower readings than expected.

The main benefit of a sensor such as the Parrot Sequoia (the original preferred
choice in this study) over the Canon S110 NGB is that the Sequoia is radiometrically
calibrated, meaning that it accounts for the amount of incoming incident light radiation
by use of an active “sunshine sensor” mounted on the top of the sUAS. This results in
more accurate data that are calibrated and absolute, and gives the user the ability to
compare datasets over time as well as the flexibility to operate the sUAS in varying light
conditions and at different times of the day (Parrot, 2016).

The IRIS+ sUAS has a battery life of approximately 14 minutes (assuming light
wind conditions, < 20 km/h). It is good practice to return the sUAS to the ground when

battery levels reach 30%. With an expected survey time of 10 minutes, the IRIS+ is
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capable of surveying ~20 acres when flying at an altitude of 90m and with frontal and
side overlap set at 70%. Frontal overlap is determined by how much one image overlaps
the next over the track that the sUAS is flying, while side overlap is determined by how
much one image overlaps another in a parallel track. This concept can be seen in Figure
7. Ensuring sufficient overlap along track and across track is important, since insufficient
overlap can lead to issues with data processing and consequently, result the need to re-

fly the mission (Pix4d, n.d.)

image width
-— Area of interest

image
height

side
overlap

frontal
overlap T

Figure 7: Example of side and frontal overlap in SUAS survey
Source: pix4d.com

The flight control software used in this study was the freely available Mission
Planner (Michael Oborne). In this software, the user can define an area they would like
to survey by drawing a polygon and assigning the camera type, altitude, desired levels of
overlap, flight speed, flight orientation and more. Mission Planner connects to the sUAS

autopilot via telemetry radio. In this case, a 3DR radio antenna is connected to a laptop
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running Mission Planner software via USB. The range between the sUAS and laptop
running Mission Planner software is 1km unobstructed. Transport Canada’s guidelines
require the operator to maintain line of sight with the sUAS at all times, which in the
case of the 55cm wide IRIS+, is approximately 600-700m. It is important to take this into
account when planning a survey - to ensure that the sUAS can reach each end of a field
while still remaining in line of sight. It is possible to set up at multiple locations if
required for larger areas, but this is inefficient for small fields, and can be prevented
with good mission planning.

Missions were planned for the study site in May 2016 and the same plans used
for each survey throughout the spring/summer. The field was divided into two surveys
since battery life of the IRIS+, and the area to be surveyed, would not permit flying the
entire field at once. Images from each survey had to be “geotagged” and combined into
one dataset before processing in Pix4D could occur. Geotagging refers to the assigning
of a location to each image taken so that they can be referenced to a place on the
earth’s surface. The camera itself did not have a GPS in this case, but the sUAS did, and
the images and flight logs were combined using a geotagging utility developed by
Event38. The accuracy of each photo after geotagging is within a few metres, which was
sufficient in most cases when viewing relative crop health throughout a field. But in this
case where the NDVI maps would be compared with another dataset (yield), it was
important that both sets of data were accurately georeferenced. Using ground control
points (GCPs) is one method of ensuring accuracy; this concept will be discussed later on

in this chapter.
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Figure 8: Mission Planner flight control software

Before flying a mission it is important to understand and comply with local

regulations regarding the use of sUAS. In this case, since the proposed use was for

research, a SFOC (Special Flight Operator Certificate) had to be obtained from Transport

Canada. The application process involves highlighting the proposed use of the sUAS,
specifications of the sUAS, pilot experience, emergency measures to be taken in the
case of an incident and more. The location in this study was a rural area and greater
than 9km away from any airport, therefore coordination with NAV Canada and local

flight towers was not required.

32



2.3 Field Data Collection

Before flying the first survey in May 2016, ground control points (GCPs) were
placed in four corners of the field. These points consisted of 20” x 20” wooden X’s
mounted on 2” x 2” posts which were placed in the ground approximately 18” deep.
About 12” of the post was left above ground to ensure that grass would not interfere
with the GCPs. In most cases where a location is only flown once, a GCP would be laid
upon the ground, measured with a GPS unit, and gathered after the sUAS survey. In this
case, where the same field was surveyed 4 times in the year, the GCPs were mounted
on posts and only had to be measured once at the beginning of the first survey which

saved time in the field.

Figure 9: Image of GCP at one corner of the survey area
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The Global Navigation Satellite System (GNSS) system used to record the X,Y and
Z positions of each GCP was the Trimble Geo7X. This unit has ~2cm accuracy and costs
approximately $20,000. It was connected to a local CORS (Continuously Operating
Reference System), Can-Net, and a yearly subscription is paid (~$1,500 per year) to
achieve highly accurate spatial data. Each GCP was measured prior to the first survey
and inspected throughout the summer to ensure grass did not obstruct the view of the
GCP from above. These GCPs would later be referenced in Pix4D software to ensure that

the orthomosaic and resultant NDVI map were accurately georeferenced.

Figure 10: Trimble Geo7X Centimetre grade GNSS system
Source: gps-boutique.com

After the mission was properly planned in Mission Planner, the flight could be
carried out. The first step is to ensure that the battery is fully charged. This could be
checked by inserting the battery in the IRIS, powering it on, and connecting to it through

Mission Planner software. Many indicators such as battery life, speed, distance to home,
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altitude, and more can be viewed in Mission Planner. It is important to keep a close eye
on these factors, as the sUAS must be returned to the home point, or at least a safe
landing area if issues arise. When it is determined that there is sufficient battery life to
carry out the mission, and there are no noticeable physical impediments to the sUAS,
then the propellers could be attached. The waypoints were then written to the sUAS
autopilot via telemetry radio. Waypoints are created at the initial planning stage and
consist of Latitude/Longitude coordinates that the sUAS GPS system must follow.
Takeoff consisted of powering up the motors and switching the mode to “AUTO” on the
transmitter. The IRIS+ would rise straight up to 60m before heading to its first waypoint.
It is important to set the takeoff altitude that the sUAS reaches before heading to the
first waypoint to a safe height above any obstacles that may be in the area. The IRIS+
then proceeded to rise to the survey altitude of 90m on its way to waypoint 1.

An altitude of 90m was chosen for this study because it is as high as Transport
Canada would allow under the SFOC. Flying higher sacrifices image resolution, but
results in a more efficient flight plan due to a wider field of view at higher altitude; thus
allowing for less side-lap between images. This uses less battery, along with providing
more “keypoints” in the images which improves the quality of the stitched orthomosaic.
A flight at 90m over a small field may result in an image containing a hedgerow, road or
other feature not seen in an image captured from 60m. These other features are useful
in photogrammetric processing software such as Pix4D because the software has a more

difficult time stitching homogenous imagery together due to the lack of recognizable
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differences between images. The resultant resolution of the imagery in this study when
captured at 90m was approximately 3.2cm per pixel.

The image capturing process is automated, and begins when the sUAS arrives at
its first waypoint. The Canon S110 camera used in this study has what is known as CHDK
(Canon Hacker’s Development Kit) installed on the SD card. This allows the camera to
take pictures at set time intervals determined by the desired frontal overlap which was
set when planning the survey in Mission Planner. In this case a photo was taken about
every 4 seconds and the IRIS+ flew at a speed of 6 m/s, resulting in one image being
captured every 24m.

When the final waypoint was reached, the IRIS+ flew back to the home position
and landed automatically. The operator can shift the IRIS+ forward, backward, or side to
side if necessary, but it is always recommended to ensure that the sUAS has a safe

takeoff and landing area which is level and free from obstructions.

2.4 Data Processing

Before the data could be processed in Pix4D, all of the images had to be
geotagged. Event38 has a freely available geotagging utility that matches up the flight
log from the IRIS+, with the images saved to the SD card. This provides each image with
X, Y and Z coordinates, as well as information in regards to the yaw, pitch and roll of the
aircraft. Since it took two flights to capture data across the field, two datasets had to be

geotagged separately and then combined into one folder.
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Figure 11: Event38 GeoTagging utility

After a project was started in Pix4D, the 235 geotagged images could then be
processed. The first dataset from May 7, 2016 was processed with the goal of achieving
an accurate Digital Surface Model (DSM) of the field before planting. The following
datasets (July 13, 2016, August 10, 2016, and September 10, 2016) were field health
related, and required different processing settings. The desired outputs were selected
before processing, and the next step was to use the “GCP/MTP Manager” to mark the
images where a GCP was located. After all of the GCPs had sufficient marks (between 3

and 8 is recommended by Pix4D), processing could begin.

GCP/MTP Table (WGS84 f UTM zone 20N (egmos))

N X Y z Accuracy Accuracy
Lt Type [m] [m] [m] Horz [m] Vert [m]

H GCPL 3D GCP 446253960 5147674.740 18340 0020 0020
0 GCp2 3D GCP 446518.520 5147642.390 15730 0020 0.020
0 GCP3 3D GCP 446207720 5147135.080 3740 0020 0.020

0 GCPa 3D GCP 446000.580 5147236930 6190 0020 0020
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Pix4D produces a quality report for every job that is processed. This report
contains details about processing time, georeferencing accuracy, image calibration and
much more. The initial processing time for the near infrared (NIR) datasets was
approximately 30 minutes. Processing time is greatly determined by the specifications of

the PC that runs the software. In this study, the hardware as seen in figure 13 was used.

CPU: Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz

Hardware RAM. S2C8 - ) -
GPU: NVIDIA GeForce GTX680 (Driver: 9.18.13.1106), RDPDD Chained DD (Driver: unknown), RDP Encoder
Mirror Driver (Driver: unknown), RDP Reflector Display Driver (Driver: unknown)

Operating System Windows 7 Professional, 64-bit

Figure 13: PC Hardware Specs

In processing the NIR datasets, the normalized difference vegetation index
(NDVI) was chosen. NDVI is commonly used as a VI in agriculture. “This index is often
referred to as a measure of biomass, chlorophyll content, nitrogen content or
something else entirely, but it is primarily an indicator that correlates with biomass and
other vegetation parameters” (Rasmussen et al, 2016). The typical NDVI formula is the
ratio of NIR — Red / NIR + Red (Rasmussen, et al 2016). In this study, since the camera
did not record red light, a variation of NDVI, BNDVI (Blue Normalized Difference
Vegetation Index) was used. This formula is the ratio of NIR — Blue / NIR + Blue. The
camera filter used in this study blocks out red light (see Figure 6), which can be
preferable since it prevents any leakage of NIR light in the red band from being picked
up. A study by Yang et al examined correlation between BNDVI (from satellite imagery)
and yield in cotton and found that it worked similarly and even better in some cases
than NDVI (Yang et al, 2006).

After the Index file was created in Pix4D, it was opened in ArcGIS (ESRI,

Redlands, CA, USA), where it was then clipped to crop boundaries and analyzed further.
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All datasets, including the DSM were clipped to the field edge. The same boundary was
used to clip the yield data, and this ensured that both variables in this study (NDVI and
Yield) had similar extents. Along with clipping the data to the crop edge, the NDVI
datasets were also clipped to only represent the consistent cropping area — meaning
areas such as laneways, test strips with rye interseeding, and a section of the field which

was planted later than the rest were not included in the analysis (see Figure 14).

Field Edge LaneWay
| Cropped Area

Test strips
interseeded
with fall rye

Different variety of
potato

0 60 120 180 M

Figure 14: Map showing field edge and cropped area boundaries used for clipping data

After clipping, the NDVI data was classified into 5 classes using the quantiles
classification method. Quantiles is a classification method that creates classes with an
equal number of features and is useful for showing relative rankings, which is what was
desired in this case. Natural Breaks (also known as Jenks) is a classification method that

creates classes based on “natural groupings inherent in the data” (ESRI, n.d.). This
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method failed to show much variation, and NDVI differences were difficult to discern

when viewing the whole field on a map.
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2.5 Yield data

“If you can’t measure it, you can’t manage it” is a commonly used phrase when it
comes to PA. Measuring yield is one of the single most important PA practices a farmer
can implement on their farm. The farmer can collect and manage many types of data,
whether it is soil sampling, crop health measurements, moisture level monitoring, etc.,
but if they are not correlating those data sets with yield at harvest then they will not

understand how their practices are affecting rates of yield.

Yield data was collected during harvest on October 20”’, 2016. The yield monitor
used in this study was a Greentronics (Greentronics, Elmira, ON, CA) model. Oyster Cove
Farms, the potato producers involved in this project, purchased this yield monitoring
system in 2015 and had success in tracking yield for a number of their fields in that
growing season. The system consists of a controller, an interface box, two load cells, and
a speed sensor. In order to calculate yield, the weight of the crop is measured as it
passes over sensors in the conveyor belt of the harvester as the potatoes are being
loaded onto the truck, which transports them away for grading, storage and processing.
Yield data is then combined with GPS data from the tractor’s RTK GNSS system to create

a yield map (Greentronics, 2017).
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Figure 17: Greentronics yield monitor controller and interface in the tractor

Monitoring yield is more common in crops such as grain, and measuring it in
potatoes presents some challenges. Calibrating the system is vital in order to get quality
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data. Even proper calibration will not prevent operator error from effecting yield results.
During grain harvest, the combine will off load to the truck at either end of the field in
most cases, which does not have an effect on the data. In potatoes, the harvester must
come to a stop when the truck is full. If the operator of the tractor and harvester shuts
off the belt too late when there are no potatoes on it, this can skew the yield data.
Likewise, if the operator starts the belt when it is fully loaded and backed up with
potatoes, the data may show that there was a greater yield in an area than what was
there.

These issues need to be taken into consideration when viewing yield data. In this
case, filtering of the yield data was performed in GIS software, ArcGIS. The output file
from the monitoring system was a shapefile with over 18,000 data points. These points
followed the track of the harvester as it collected the potatoes throughout the field.
Twelve rows of potatoes were windrowed into a strip that was picked up by the
harvester. This particular farm used 34” rows (multiplied by 12 equals 34 feet wide). The
34 foot value is known as the “swath width” and was accounted for in the data. If this
value is not correct then yield values will be skewed.

These data points had many attributes associated with them such as the speed
of the tractor, GPS precision, elevation, time, and more. The main attribute of concern
in this case was “Dry_Yield”. This measured the amount of potatoes harvested in
Ibs/acre.

In order to filter the yield data, a histogram was viewed and used to identify

anomalies in the data. The bottom five classes of the histogram (seen in figure 19) were
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eliminated from the dataset. The remaining bottom 2.5%, as well as the top 2.5% (95%
distribution remained) were clipped out which resulted in approximately 17,000 values
that ranged between 17,098 and 40,072 Ibs/acre. When viewed on a map it was clear
that the filtered data had eliminated most of the anomalies that were due to operator
error in the field. The filtered values were discussed with the farmer who verified that
the filtered dataset was much more accurate than the original one that came straight
from the yield monitor. Errors in yield data can be expected in most cases during potato
harvest since the operator of the harvester is generally more concerned with other parts
of the process, such as ensuring the potato truck is not overflowing and that the

harvester and tractor are working properly and less concern paid to the yield data.
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Figure 19: Raw Yield data histogram before filtering

After the points dataset was filtered and anomalies eliminated, it had to be
interpolated throughout the field. The other variable in this project, NDVI, was in raster

format, which meant that it was a continuous range of 3cm x 3cm squares across the
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field, each representing a NDVI value. In order to do a proper correlation, each data set
had to be in the same format.

The yield data points were interpolated using the “kriging” tool in ArcGIS,
available through the spatial analyst extension. Kriging is a geostatistical interpolation
method which examines surrounding measured values to derive a prediction for an
unmeasured location. “Kriging is a multistep process; it includes exploratory statistical
analysis of the data, variogram modeling, creating the surface, and (optionally) exploring
a variance surface. Kriging is most appropriate when you know there is a spatially
correlated distance or directional bias in the data. It is often used in soil science and
geology” (ESRI, n.d.). “Kriging is the geostatistical method of prediction. It is a best linear
unbiased predictor on punctual or block supports; best in the sense that its prediction
error variances are minimized. It is in practice a weighted moving average in which the
weights depend on the variogram and the configuration of the sample points within the

neighbourhood of its targets” (Oliver and Webster, 2015).
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2.6 Analysis

With yield and NDVI data both in the same format, comparison analysis was then
performed. For this project, two methods were used to analyze relationships between
NDVI and yield. The first was a “binning” analysis, which grouped the NDVI values into 5
classes based on the Quantiles classification method. The second method was a pixel by
pixel analysis of NDVI and yield data at two spatial resolutions: 2m and 6.5m. The third
method was a multivariate analysis which included NDVI, elevation, and fertilizer
treatment regime to see how these three variables correlated with yield.

The binning analysis began with reclassifying the NDVI data into five classes
using Quantiles. The “Raster to polygon” tool within ArcGIS was then used to convert
each class to a polygon feature that could be measured. Acreage for each of the five
classes was calculated and ranged from 5 -7 acres per class. The “Zonal Statistics as
Table” tool was then used with the NDVI zones as the “feature” and Yield dataset as the
raster to extract values from. This tool calculated values such as MIN, MAX, and MEAN
yield for each of the five NDVI classes. The resulting table was opened in Excel where
graphs were created to inspect relationships between NDVI and yield. This process was
performed for all three datasets from July, August and September. Potato yield between
the NDVI bins was examined using ANOVA followed by a Tukey's post-hoc test.

The pixel by pixel analysis began with “resampling” the NDVI data to match the
resolution of the yield data set. Yield data had a resolution of 2m, while the resolution
of the NDVI data was much finer at 3cm. There are four main resampling techniques

within ArcGIS: Nearest, Majority, Bilinear and Cubic. Each method consists of
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interpolating values within a desired output cell size (in this case 2m). These methods
produced non-satisfactory results, and appeared to skew the NDVI data by creating
uncharacteristic linear features along the 2m x 2m grid (see figure 20).

Another method of re-sampling - “Aggregate”, is a tool available in ArcGIS which
multiples the cell size by a whole number (60 in this case to achieve a 2m x 2m pixel).
This method averages all 60 cells within the desired 2m x 2m cell to create a value. This
result was much more appropriate as it did not display any uncharacteristic linear

features.

Figure 20: Bilinear Interpolation (left) vs Aggregated resampling method (right)

The “Raster to Point” tool was then used to convert both NDVI and Yield
datasets into individual points with single values. After the datasets were in points, the
“Spatial Join” tool was used to combine both into one table of approximately 30,000
points, each with a value for Yield and NDVI. The same methods were used to resample
the data down to 6.5m resolution, which resulted in approximately 3,000 points. The

use of lower resolution data was incorporated to determine whether limiting variability
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(due to averaging of data across more pixels) would have an effect on the relationship
with yield.

Scatter plots and regression analyses were performed on the resultant tables. R-
Sq values, which measure how close data are fitted to a regression line and are defined
as “the percentage of the response variable variation that is explained by a linear

I”

model”, were determined (Frost, 2013).

The multivariate analysis included two other variables (besides NDVI) that were
examined to determine their relationship with yield: elevation, and fertilizer treatment
regime. The Digital Surface Model (DSM), collected in May before planting, was re-
sampled from the original 3cm resolution to 2m and 6.5m for analysis with yield and the
other variables on a pixel by pixel basis. The study field had two separate fertilizer
regimes applied in the 2016 growing season. One was grower standard practice (180 lbs
of Nitrogen (N) per acre), which was applied to approximately 2/3 of the field (twenty
acres). The other regime was part of the 4R nutrient stewardship program, representing
the “Right source at the right rate, right time and right place ®” that aims to “increase
production/profitability for farmers while ensuring the future of the agricultural
industry” (Fertilizer Canada, 2017). This regime involved application of 60 lbs of N per
acre before planting, 80 Ibs per acre at planting, and 3 additional applications of 15 lbs
per acre in season for a total of 185 Ibs per acre. The nine acre area under the 4R
program was represented on a pixel by pixel basis with a grid code of “0” assigned if the

particular pixel did not have 4R treatment, or “1” if the particular pixel did have 4R

treatment. The following map (Figure 21) shows the area for each treatment.
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All statistics were performed using statistical software Statistica v13.3 (Dell, TX,

USA) at an alpha value of 0.05 to examine relationships between variables.

180 Meters
]

- 4R Area (185 Ibs of N per acre applied at different times)

Grower Standard Practice Area (180 Ibs of N per acre)

Figure 21: Fertilizer treatment regime areas
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Chapter 3: Results

3.1 Viewing the data

In addition to graphs, the study used maps to display data from this project since
all collected information has spatial attributes. Maps provide a way of visualizing data
not possible in a spreadsheet, and are very important in PA to identify spatial patterns
and trends in agricultural data. Agriculture can be improved through the
implementation of GIS as a way to eliminate some of the guesswork involved in crop

management, and to record farm specific spatial information year after year.

3.2 Elevation Data

The following map (Figure 22) was created from data collected during the May 7,
2016 flight. The field was in bare soil at this time, and sUAS imagery was able to
accurately capture elevation information through photogrammetric processing software

Pix4D, along with the use of GCPs.
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Figure 22: Digital Surface Model of Ramsay Field

This Digital Surface Model (DSM) shows that the field goes from 66 feet above
sea level in the northern corner, down to 12 feet above sea level in the southern corner.
Rain water and spring melt would drain down to the lower southern section of the field.

The contours clearly show a flat area at the southern portion of the field.
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3.3 NDVI Maps

The following maps from July, August and September show NDVI values
(Aggregated to 2m resolution), clipped to crop area and classified in 5 classes using

Quantiles method. For original NIR maps with 3cm resolution see Appendix.

July NDVI (2m Resolution)
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[ 0.258-0.268
[ Jo269-0.279
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I 0.294-0.452

180 Meters
|

Figure 23: NDVI Map from July
In the July NDVI dataset (Figure 23), the highest NDVI values can be seen in the lower

southern area of the field along with a narrow strip on the Eastern boundary.
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August NDVI (2m Resolution)
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Figure24: NDVI Map from August

In the August dataset (Figure 24), highest NDVI values can be seen along the Eastern

side of the field, as well as the lower southern portion. Lowest values can be seen along

the Western side of the field and in the small strips located south of the residential

property.
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September NDVI (2m Resolution)
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Figure 21: NDVI Map from September

The September dataset (Figure 25) shows highest NDVI values in the North-Eastern
section of the field as well as a strip along the Western side of the field. Lowest values
can be seen in the low, Southern portion of the field and in the areas surrounding the

residential property.
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3.4 Yield Data

The following maps show yield data as points (filtered), and as an interpolated

continuous surface.

Yield (lbs/acre)
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Figure 26: Yield Map after filtering and before interpolation
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The interpolated yield map shows highest values in the lower Southern portion of the

field. Lowest values can be seen in the center of the field and along the Western field

boundary (this was a different variety of potato), as well as a narrow strip near the

Eastern field boundary.
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3.5 Binning Analysis Results

The following graphs and charts show the results of the binning analysis.

NDVI and Yield Correlation for July 13th, 2016 Dataset
Mean Yield (lbs ~ Min Yield (Ibs Max Yield (lbs
NDVI Class Area (acres) per acre) per acre) per acre)
5.6 29853.8 19071.6 38503.0
2) 0.257 - 0.268 5.7 29887.5 18831.3 38298.7
3) 0.268 - 0.279 5.6 29984.5 19246.6 38698.6
4)0.279-0.293 5.7 30215.0 19073.6 38711.7
5.6 31010.9 20732.7 38711.8
NDVI and Yield Correlation - July
Bars are One Standard Error from the Mean
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b
30900
o
% 30600
)
2
g
& 30300 b
>
a
30000 a
a
3
1 2 3 4 5
NDVI Class (July dataset)
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Figure 28: NDVI and Yield Correlation for July

Binning analysis from July shows a good correlation between NDVI and yield. As NDVI
values increase so too does yield. The difference between the mean yield for the highest

and lowest NDVI class is approximately 1,160 lbs/acre.
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NDVI and Yield Correlation for August 10th, 2016 Dataset
Mean Yield (lbs Min Yield (Ibs Max Yield (lbs
NDVI Area (acres) per acre) per acre) per acre)
5.5 29774.3 18831.3 38698.4
2) 0.443 - 0.465 5.3 29993.0 19002.1 38711.8
3) 0.465 - 0.484 6.0 30220.9 19246.6 38698.6
4) 0.484 - 0.507 6.1 30407.6 18964.2 38559.7
5.4 30530.9 20634.4 38447.8
NDVI and Yield Correlation - August
Bars are One Standard Error from the Mean
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Figure 29: NDVI and Yield correlation for August

Binning analysis for August also shows a good correlation between NDVI and Yield. As
NDVI values increase so too does yield. The difference between the mean yield for the

highest and lowest NDVI class is approximately 750 lbs/acre.
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NDVI and Yield Correlation for September 10th, 2016 Dataset
Mean Yield Min Yield (Ibs Max Yield (lbs
NDVI Area (acres)  (lbs per acre) per acre) per acre)
4.9 29990.1 19248.3 38710.7
2) 0.519 - 0.529 6.1 30030.6 19558.7 38711.8
3) 0.529 - 0.538 5.4 30093.0 18831.3 38698.6
4) 0.538 - 0.547 5.7 30266.4 18964.2 38711.7
6.1 30530.2 20480.8 38480.1
NDVI and YIELD Correlation - September
Bars are One Standard Error from the Mean
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Figure 30: NDVI and Yield Correlation for September

Binning analysis for September indicates a positive correlation between NDVI and Yield.
As NDVI values increase so too does yield. The difference between the mean yield for

the highest and lowest NDVI class is approximately 540 lbs/acre.



3.6 Pixel by Pixel Analysis results

The following table and graphs show an example of the NDVI/Yield table containing

30,000 points as well as scatter plots for each of the datasets.

POINTID  YIELD NDVI
1 26949.1 0.179
2 27350.2 0.242
3 28475.7 0.371
4 30053.8 0.264
5 29990.2 0.255
6 30030.0 0.214
7 30891.6 0.227
8 30101.0 0.228
9 29045.2 0.224
10 29048.4 0.203
11 29885.6 0.280
12 30652.0 0.365
13 31076.1 0.322
14 31625.8 0.273
15 31933.5 0.283
16 32639.1 0.430
17 32630.7 0.453
18 32623.5 0.405
19 32722.8 0.227
20 33159.4 0.293
21 34397.3 0.236
22 35045.7 0.230
23 26896.7 0.1685
24 26937.8 0.252

Figure 31: Yield vs NDVI table sample after spatial join
This table shows the results of the Spatial Join in ArcGIS and contains a Yield value
(Ibs/acre), and an NDVI value for each 2m x 2m cell across the field for a total of

approximately 30,000 records.



NDVI (JULY)

Scatterplot of NDVI vs YIELD (2m resolution July dataset)
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Figure32: NDVI vs Yield scatter plot for July (2m resolution)

NDVI (July)

Scatterplot of NDVI vs YIELD (6.5m resolution July dataset)
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Figure 33: NDVI vs Yield scatter plot for July (6.5m resolution)

61



NDVI (August)

Scatterplot of NDVI vs YIELD (2m resolution August dataset)
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Figure 34: NDVI vs Yield scatter plot for August (2m resolution)

NDVI (August)

Scatterplot of NDVI vs YIELD (6.5m resolution August dataset)
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Figure 35: NDVI vs Yield scatter plot for August (6.5m resolution)
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NDVI (September)

Scatterplot of NDVI vs YIELD (2m resolution September dataset)

0.63 ]
r’ =.061

0.60 -

0.57 -

0.54

0.51-

0.48

0.45-

0.42 -

039 - R
0.36 "

0.33-

0.30 -

20000 25000 30000 35000 40000
YIELD (Ibs/acre)

Figure 36: NDVI vs Yield scatter plot for September (2m resolution)
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Scatterplot of NDVI vs YIELD (6.5m resolution September dataset)
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Figure 37: NDVI vs Yield scatter plot for September (6.5m resolution)




3.7 Multivariate Analysis

Multivariate Analysis Results (probabilities and RSq)
Dataset (month) Resolution  Elevation NDVI 4R RSq
July 2m <0.0001 <0.0001 <0.0001 0.0298
6.5m 0.027 <0.0001 <0.0001 0.0548
August 2m 0.762 <0.0001 <0.0001 0.0346
6.5m 0.732 <0.0001 <0.0001 0.0467
September 2m <0.0001 <0.0001 <0.0001 0.0218
6.5m 0.0004 <0.0001 <0.0001 0.0318

Figure 38: Multivariate analysis results

Chapter 4: Discussion

4.1 Analyzing the Results

The binning analysis shows a strong correlation between NDVI and Yield for the
July 13" (Growth Stage Il — vegetative growth) and August 10™ (Growth Stage IV — early
bulking) datasets, while the correlation for the September 10" (Growth Stage IV — late
bulking/early senescence) dataset is not as strong. These results are reasonable
expectations since the crop begins to lose its vegetative vigour at later growth stages
while leaves turn yellow and die off (Johnson, 2008).

The pixel by pixel analysis displayed relatively flat regression lines that trended
upwards as NDVI and yield increased. Both July datasets (2m and 6.5m) returned the
strongest correlations across all collection dates. Pixel by pixel analysis introduces much
more variability in each dataset in comparison to the binning analysis. It is not surprising

to see that the coarser resolution data (6.5m), resulted in stronger relationships
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between NDVI and yield in every dataset due to a decrease in variability by way of
averaging more pixels across the field. The August and September datasets had mainly
full canopy closure across the field, therefore NDVI values were averaging pixels that
contained mostly vegetation while July NDVI values were averaging vegetation as well
as bare soil due to the earlier growth stage of the crop. The difference in canopy size in
July had an impact on the relationship between NDVI and yield in a positive way. Other
ways to decrease variability in each dataset would be to incorporate other Vis such as
Leaf Area Index, which have been used as a predictor of yield, and only take into
account the amount of foliage cover (Harris, n.d.). Other studies have incorporated
random yield samples throughout a field to compare with remotely sensed imagery.
This would limit the amount of variation seen in the pixel by pixel analysis and would
ensure that the yield value being used in the comparison was real and not an
interpolated value (Al-Gaadi et al, 2016).

The multivariate analysis showed that three variables: Elevation, NDVI and
Fertilizer treatment regime all had significant predictive ability for yield although RSq
values were low. The July dataset, once again, provided the strongest correlation with
yield out of the three collection dates. Coarser resolution data for all three months
resulted in higher RSq values than higher resolution data due to decreased variability. |
believe that the stronger correlation from the July model could be due to residual soil
moisture leftover from the spring, which had an impact on crop growth and canopy size
that ultimately led to higher NDVI values for those lower elevation areas where more

moisture was present. The fertilizer treatment regime had little impact on NDVI or yield
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values. The next section includes additional discussion regarding elevation’s impact on
yield.

The stronger correlations between NDVI and Yield in three methods of analysis
seen in the July 13" and August 10" datasets (crop age 39 days and 67 days
respectively), indicates that capturing remotely sensed imagery between growth stage |l
and IV is best when attempting to predict yield in potatoes. This finding was also
realized by Khalid A. Al-Gaadi et al. who observed that highest correlations between a VI
from satellite imagery and yield was 60-70 days after planting in comparison with VI
imagery from earlier and later crop growth stages (Al-Gaadi et al, 2016).

It is important to note that the goal of this study was not to attempt to predict
actual quantity of potato yield in terms of Ibs/acre for every pixel, but to identify
broader areas of the target field that performed better or worse relative to the rest of

the crop areas through the use of NDVI.

4.2 Topographic Features and Weather — Effects on Yield

The NDVI dataset that correlated greatest with Yield was from July 13", The areas
with highest NDVI values in that dataset were found in the Southern area of the field,
which was also the lowest section in terms of elevation above sea level, as can be seen
in the Digital Surface Model (figure 22). A study by Kumhalova, Jitka et al. observed that
there was a strong correlation between topography and yield, specifically in drier years
(Kumhalova et al, 2011). Climate data from the UPEI Climate Lab showed that station

AC1 in Baltic, PE, located 6.5 km Northeast of the project study site, had a very dry
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month of July recording only 27.5mm of precipitation, approximately one third of the
normal rainfall for the month of July for that area (Jardine, 2016). Climate data for
August showed that there was less than average rainfall again with 76.9 mm (normal for
August is 92.7mm) (Jardine, 2016). The farmer who manages the study site field
acknowledged that this was a “very dry” summer and also observed that lower areas of
the field seemed to produce the greatest at harvest.

The following map breaks down the field into five areas based on elevation (see
figure 22 for reference). This map shows that the lowest and flattest area of the field

(labeled “1” on the map), produced approximately 1,250 Ibs/acre more than average.

Mean yield for all 5 classes: 29, 745 Ibs/acre

Class 1 (Lowest Area): 30,996 |bs/acre
Class 2: 29,140 Ibs/acre
Class 3: 28,937 Ibs/acre
Class 4: 30,292 |bs/acre
Class 5 (Highest Area): 29,362 |bs/acre

Legend

D Elevation Classes

Yield

Lbs/Acre

Il 185405 -24,552.4
I 24,5525 -27,795.6
[]27.795.7 -30,485.1
[[77] 30,485.2 - 33,491

540 Feet I 33.491.1-38,711.8
——

Figure 39: Map displaying 5 classes of elevation along with yield data
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There are many other factors that affect yields of field crops, such as soil
temperature and health characteristics, but topography (slope and aspect) and soil
moisture - specifically in a dry summer, play a more significant role in determining

production.

4.3 Using Vegetation Index Classes as Management Zones

One way to utilize the output vegetation index classes from a sUAS survey is to
develop management zones (MZ). GIS and GPS play a key role, as the output classes can
be accurately referenced to a place on the ground so that they can be combined with
other important data layers such as soil health, topography, electrical conductivity, and
past yield data to create distinct zones in a field with each zone receiving different
amounts of nutrient input. These zones can then be used as an input file in a tractor
with variable rate application capability and the farmer can let the system takeover
while it applies appropriate rates of nutrients where they are needed. Nutrient
application is not always reduced with the MZ approach versus uniform input
application, but production can be increased since certain areas of a field do not require
high amounts of input, and this excess can be redistributed to the areas which require
more.

Identifying yield variation in crops is one of the first steps towards improving
production. The difference between mean yield for the lowest and highest class of NDVI

for the July dataset was 1,160 Ibs/acre. The average price of potatoes in 2011 in P.E.I.
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was 11.72 dollars per hundred weight (approximately 12c per Ib) (P.E.l., 2016). This
equates to a difference of approximately $139/acre in production between the lowest
and highest classes of NDVI. Average farm size for P.E.l. in 2016 was 425 acres (StatsCan,
2017). A $139 difference per acre between the lowest and highest classes of NDVI on
the average P.E.l. farm equates to $59,075. Eliminating yield variation altogether is not
realistic since there are many factors involved, but improving production in the lower
classes, and reducing inputs in the higher classes, or conversely - limiting inputs in
consistently poor yielding areas and optimizing maximum yield potential areas is
possible through PA management practices, and has the potential to positively effect a
farmers’ income.

A study by Hunt and Daughtry in 2017 assessed the use of sUAS as a tool in
agriculture and summarized surveys of farmers in the U.S. from 2010 and 2012 and
found that “about 50% of farmers track yields spatially in a field with yield monitors, but
only about 20% spread fertilizer using variable rate applicators” (Hunt and Daughtry,
2017). These numbers would be largely influenced by wheat producers in the U.S., a
sector of the agriculture industry where PA has seen more widespread adoption than in
crops such as potatoes. These figures indicate that the full potential of sUAS in
agriculture may not be realized until farmers make investments in other PA technologies

such as variable rate applicators.
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4.4 Recommendations for Further Studies

Further studies should include the use of a more capable multispectral camera
that is able to capture additional bands of light besides RGB and NIR. The additional
bands of light would allow further investigation into many vegetation indices — that
could potentially represent a stronger relationship with yield in potatoes. Recently
released multispectral cameras for use with sUAS, such as the Parrot Sequoia, come
with sensors that record the amount of sunlight being collected by each band. This
allows for radiometric calibration of the imagery and more accurate data (Parrot, 2016).
In addition to collection of yield data by a monitor mounted to the harvester, other
methods of yield data collection could be performed, such as digging manual samples at
several random locations throughout the field. This would give an idea of absolute yield
at those locations, and eliminate the need to use interpolation to estimate yield in areas
between rows of points. It would also eliminate any possible issues with yield monitor
or tractor operator error.

Studying multiple fields over a longer period of time would provide valuable
information to understand the relationships between vegetation indices derived from
sUAS captured imagery and yield. Following a potato crop through an entire rotation
and comparing Vls with yield in rotational crops such as barley, soybeans, fall rye, winter
wheat, etc. would provide information that could be compared between crops from one
season to the next, and indicate the impact that variables such as topography, weather,

soil moisture, or soil health have on yield.
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4.5 Conclusions

This paper described the steps involved in using sUAS technology including
planning and carrying out a mission, processing data, manipulating data in a GIS, and
analyzing data in GIS and statistical software packages. The goal of this project was to
determine whether in season vegetation index maps derived from sUAS collected
imagery were an accurate predictor of yield in potatoes. It was determined that the
areas which appeared healthiest early in the growing season (Growth stages Il to early
IV) tend to correlate well with measured yield at harvest when looking at broad “zones”
within a field. The correlation at the single pixel level does not display as strong a
relationship between NDVI and yield.

Satellite imagery still continues to be a viable option for gathering multispectral
imagery of agricultural crops, especially over large areas. Multispectral satellite imagery
as a yield prediction tool in potatoes has been successful in several studies, including
those by Khalid A. Al-Ghaadi et al. (2016), and Johnson (2016). One of the main benefits
of sUAS vs Satellite imagery is spatial resolution. For applications such as relative field
health mapping and identification of yield variation, 1m to 2m resolution is sufficient.
Limitations of satellite imagery are the potential presence of cloud cover and not having
the flexibility to capture imagery at specific times as desired by the farmer or crop
consultant. High resolution imagery from sUAS will be more important in applications
such as disease, pest and weed detection.

SUAS will play a role as a remote sensing tool in agriculture for years to come.

Paired with multispectral cameras and flown between potato growth stages Il and IV,
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sUAS can be used to identify yield variations and help farmers and agronomists develop
in-season management strategies to address issues and potentially improve production.

Farmers’ uptake of sUAS technology will be slower than other more tangible
technologies such as GPS. With GPS implemented for practices such as Auto-Steer,
farmers see increased efficiency, and immediate results - which equals value. They are
willing to spend over $40,000 on equipment that will pay for itself quickly by allowing
them to operate equipment at night, ensuring straight rows and maximizing field
cropping area, or enabling them to focus on certain implements while the tractor is
guided by satellite navigation. sUAS have limitations from factors such as weather - wind
and rain can suspend or prevent operations. When the wind is light during days in July
and August, a farmer is likely too busy spraying crops to have time to fly sSUAS over their
fields and then process the data into actionable information in order to make a time
sensitive management decision.

sUAS and data processing technology are advancing at such a rapid pace that
certain methods and equipment used in this study could be considered “out of date” in
the near future. To reproduce the methods used in this study, particularly in the data
processing and analysis sections, would require at least an intermediate level of GIS
knowledge and expertise. However, capturing and processing multispectral data for
agriculture are becoming easier and more affordable. There are several online data
processing platforms available where users can upload imagery and receive analysis,
reports, maps and fertilizer recommendations back within 24 hours. These monthly fee

subscriptions will be particularly attractive to farmers who cannot afford to spend time
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processing imagery, and do not have the means to purchase or operate expensive
processing software. Crop consultants and agronomists would benefit from becoming
trained in sUAS operations as well as processing spatial information and adding this
service to their toolkit.

The yield monitor is an under-utilized tool and provides extremely valuable
information that can be used as a report card for farmers’ fields. At a price of
approximately $10,000 this tool is affordable in comparison to some of the other on
farm expenses paid every year (Greentronics, 2017). These tools may tell a farmer which
areas of a field consistently yield less than others, and this information can be used to
determine whether it is worth planting an expensive crop in lower producing areas of a
field, or whether that area of the field would be better left out of production altogether.
If the average cost per acre to grow potatoes is $3,000 per acre, then a farmer must
yield at least 25,000 Ibs per acre at 12¢/lb to break even (Trainor, 2009; P.E.l., 2016).
Once again, one of the limitations keeping farmers from adopting yield monitoring
technology is dealing with data in a timely fashion.

There needs to be more collaboration between GIS and mapping professionals
and those who work in agriculture such as farmers and agronomists. Each side has much
to offer the other, and not only would the two sides involved benefit greatly from
building relationships and cross-learning, but society as whole can gain from the growth

and advancement of precision agriculture.
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Appendix

East Pt
St. Peters
Peters Rd
Harrington
Ch’town A
Elmwood

New
Glasgow
Maple
Plains
Summerside
A
North Cape

Baltic
(Prince Co.)

Map
1D

ECO
EC8
EC7
AC2
EC6
EC5
EC3

EC4

EC2

EC1
AC1

- *Missing data

Tmean
C

17.7
18.6
19.9
13.9
18.9
18.8
19.0

18.1

18.6

16.7
18.9

Tmax
C

27.4
29.5
29.5
28.8
28.1
28.8
28.5

29.9

28.9

29.7
29.3

Tmin

C

10.7
9.1
2.5
10.1
8.9
9.1
T

5.4

8.1

5.0
8.9

Ppt
mm

42.0
52.4
76.6
39.4
72.0
81.5
45.0

46.0

60.3

66.6
27.5

Table 3 — Other PEI Climate Recording Stations — July, 2016
Total

Total
Snow
Cm

(= =T = fall (=] falY =]

Max
Wind
Gust
(km/h)
54.0
56.0

59.0
56.0
33.8
28.5

82.0

91.0
38.6

Avg.
Wind
Speed
km/h

16.9
12.3

10.9

5.8

9.1

15.0

18.2
11.2

# of
Frost
Days
<=0°C

0

(= =T = faul =] ]

Source: UPEI Climate Research Lab

Figure Al: Table displaying Climate station data for July 2016
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Table 7 — Variation ofJuly2016 Total Precipitation Amounts from 1981-2010 Climate Normal

Climate Station

East Point - EC
Dingwells
St. Peters

Cardigan Head
Flat River

Orwell
Peters Rd/Alliston
Alliston CNP
Harrington
Charlottetown A
Winsloe South

Elmwood
St. Catherine’s
Borden - Carleton
Summerside A
Baltic
Foxley River
North Cape
Cape Egmont
Brockton
Hampton
Glen Valley
Fanning Brook
Arlington
East Point — UP16
New Glasgow
White Sands
Tignish
Maple Plains

Total PPT in mm
July 2016

42.0
56.9
52.4
30.0
66.5

48.5
76.6
64.8
39.4
72.0
56.4

81.5
62.0
64.2
60.3
275
64.3
66.6
26.7
29.5
72.6
19.6
50.3
44.0
57.0
45.0
51.8
47.8
46.0

30 Year Normal C
1981-2010

86.6
79.3
79.3
79.3
79.9

79.9
79.9
79.9
79.9
79.9
799

87.5
79.9
74.4
74.1
74.1
96.0
79.7
74.1
79.7
74.1
78.6
799
96.0
86.6
78.6
79.9
79.7
74.1

*_ Data not complete due to technical issues or no heater on unit

M — Missing data

Cal — Rain gauge requires calibration

Variation from Normal
mm

-44.60
-22.40
-26.90
-49.30
-13.40

-31.40
-3.30
-15.10
-40.50
-7.90
-23.50

-6.00
-17.90
-10.20
-13.80
-46.60
-31.70
-13.10

Cal
-50.20

-1.50

Cal
-29.60
-52.00
-29.60
-33.60
-28.10
-31.90
-28.10

Figure A2: Table displaying July 2016 Precipitation Data vs 30 year normals

Source: UPEI Climate Research Lab
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Table 3 — Other PEI Climate Recording Stations — August, 2016
Map Tmean Tmax Tmin | Total @ Total

ID C C C Ppt Snow
mm Cm
East Pt EC9 18.4 26.1 11.8 61.5

St. Peters EC8 18.9 28.6 10.0 74.9
Peters Rd EC7 19.4 28.0 125 1417
Harrington = AC2 18.7 27.8 10.6 | 1348
Ch’town A EC6 18.7 27.8 8.9 120.4
Elmwood EC5 18.4 27.5 7.9 71.4

New EC3 18.5 27.5 7.5 113.8
Glasgow
Maple EC4 17.8 27.4 49 101.4
Plains
Summerside EC2 19.0 284 8.2 82.8
A
North Cape EC1 17.5 28.3 7.5 85.3
Baltic ACl 18.8 28.1 9.3 76.9
(Prince Co.)

- *Missing data

Max
Wind
Gust
(km/h)
72.0
56.0

59.0
67.0
38.6
24.4

61.0

65.0
32.9

Avg.
Wind
Speed
km/h

18.6
13.7

12.6

6.6

9.2

16.2

21.2
q5%S

# of
Frost
Days
<=0"C

0

(=] el =] (=) =] =]

Figure A3: Table displaying Climate station data for August 2016

Source: UPEI Climate Research Lab
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Table 7 — Variation of August 2016 Total Precipitation Amounts from 1981-2010 Climate Normal

Climate Station

St. Peters
Cardigan Head
Flat River

Orwell
Peters Rd/Alliston
Alliston CNP
Harrington
Charlottetown A
Winsloe South

Elmwood
St. Catherine’s
Borden - Carleton
Summerside A
Baltic
Foxley River
North Cape
Cape Egmont
Brockton
Hampton
Glen Valley
Fanning Brook
Arlington
East Point — UP16
New Glasgow
White Sands
Tignish
Maple Plains

M — Missing data

Total PPT in mm
August 2016

74.9
25.6
100.6

92.7
141.7
115.3
134.8
120.4
115.8

71.4
76.2
106.6
82.8
76.9
68.8
85.3
94.0
59.4
82.4
84.8
83.8
55.4
78.2
113.8
79.8
64.3
101.4

30 Year Normal C
1981-2010

88.9
88.9
95.7

95.7
95.7
95.7
95.7
95.7
95.7

87.5
95.7
92.7
92.7
92.7
87.7
79.7
92.7
79.7
92.7
87.5
95.7
87.7
103.6
87.5
95.7
79.7
92.7

Variation from Normal
mm

-14.00

4.90

-3.00
46.00
19.60
39.10
24.70
20.10

-16.10
-19.50
13.90
-9.90
-15.80
-18.90
5.60
1.30
-20.30
-10.30
-2.70
-11.90
-32.30
-25.40
26.30
-15.90
-15.40
8.70

Figure A4: Table displaying August 2016 Precipitation Data vs 30 year normals
Source: UPEI Climate Research Lab
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Figure A6: Near-Infrared Orthomosaic for July dataset
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Figure A7: Near-Infrared Orthomosaic for August dataset
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Figure A8: Near-Infrared Orthomosaic for September dataset
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