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Abstract

The “Lewis Pair” is a ubiquitous phenomenon in chemistry and is often used as
an intuitive construct to predict and rationalize chemical structure and behaviour.
Concepts from the very general Valence Shell Electron Pair Repulsion (VSEPR)
model to the most esoteric reaction mechanism routinely rely on the notion that
electrons tend to exist in pairs and that these pairs can be thought of as being local-
ized to a particular region of space. It is this localization that allows one to intuit
how these pairs might behave, generally speaking, so that reasonable predictions
may be made regarding molecular structure, intermolecular interactions, property
trends, and reaction mechanisms, etc. Of course, it is rather unfortunate that the
Lewis model is entirely qualitative and yields no information regarding how any
specific electron pair is distributed.

Herein, we demonstrate a novel electronic structure analysis technique that pre-
dicts and analyzes precise quantitative details about the relative and absolute distri-
bution of individual electron pairs. This Single Electron Pair Distribution Analysis
(SEPDA) reveals important quantitative details about the distribution of the well-
known Lewis pairs, such as how they are distributed in space and how their relative
velocities change in various chemical contexts. We show that such an analysis may
be used to quantify and classify a wide range of interactions including chemical
bonding and non-covalent interactions. The nature of non-covalent interactions (as
well as indications of their strength) may also be gleaned from such distributions

and SEPDA can be used as an important tool to differentiate between interaction
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types. Specifically, we use the SEPDA package to analyze covalent compounds in
terms of their electron behaviour and electronegativity properties, as well as non-
covalent interactions such as hydrogen bonding.

We anticipate that SEPDA will be of broad utility in a wide variety of chemical
contexts because it affords a very detailed, visual and intuitive analysis technique
that is generally applicable. The development of a user-friendly, publicly available
software package should only further prove the wide applicability and significance

of SEPDA.

iii



Acknowledgements

It has been a long road for me at the University of Prince Edward Island having
completed an Honour’s thesis, a Master’s thesis and now a Ph.D. thesis. I definitely
could not have accomplished this without the help of countless people.

Dr. Jason Pearson has been my mentor and supervisor since for the past 8 years.
Under his tutelage, I have grown exceptionally as a researcher and I cannot thank
him enough for everything he has done for me over the course of my two graduate
degrees. For this, Jason, I sincerely thank you.

I would also like to thank my graduate supervisory committee: Dr. Barry Linklet-
ter, Dr. Sheldon Opps, and Dr. Brian Wagner. You all provided me with significant
feedback and helped guide me through my doctoral studies. I greatly appreciate all
of the help that each of you has provided me over the years.

Throughout my time in the Pearson group, many students have come and gone. I
would like to thank you all (Brendan Sheppard, Zosia Zielinski, Dalton Mackenzie,
Dylan Hennessey, Meagan Oakley, Ellen O’Connor, Simon Sirois-Lecain, Andrew
Cameron, Qammar Almas, Ben Keefe, Trevor Profitt, Mat Larade, and Trevor Profitt)
for being friends, for being supportive, and always being there if I ever needed
anything. In terms of my actual research, I would specifically like to thank Brendan,
Zosia, and Dalton for contributions to this research.

The Chemistry Department at UPEI is small, but very strong. Faculty, staff, and
students make up the best department on campus. I cannot begin to express my

thanks to everyone in this department for all that they have done for me throughout

iv



my tenure at UPEI Specifically, I would like to thank Dr. Rabin Bissessur for being
a strong mentor to me over the years from a teacher, to a supervisor, and finally as
a strong role model and colleague.

Much of this research was made possible my existing recurrence relations devel-
oped by Dr. Ajit Thakkar and by Dr. Peter Gill and Dr. Joshua Hollett. I would like
to thank each of these scientists for insightful discussions regarding their research,
and especially, Dr. Hollett, for being a part of my thesis defence.

None of this research would have been possible without funding from UPEI,
the Natural Sciences and Engineering Research Council of Canada, and ACENet.
Further, the millions of hours of computational time required for this project were
provided by Compute Canada (specifically ACENet and WestGrid).

Finally, and possibly most importantly, I would like to thank my friends both at
UPEI and outside, my family, specifically, Ryan and Adrienne, my parents, Mike and
Anne, and my girlfriend Courtney for all of their love and support. These past 4
years have been some of the most difficult of my life. I don’t know where I would
be without you all in my life. Thank you for always being there for me, especially

when I needed you the most.



To Nana Lawlor

vi



Contents

[Abstract

IAcknowledgements|

IList of Figures|

IList of Tables|

[List of Abbreviations and Symbols|

[1_Introduction|

(1.1 Quantum Mechanics| . . . .. ..

--------------------

(1.2 Born-Oppenheimer Approximation| . . . . .. .. ... ........

(1.3 Solutions to the Schrodinger Equation| . . . . ... ... .......

[1.4 Variational Theorem| . ... . . .

(1.5 Hartree Productf. . . ... .. ..

[1.6 Hartree-Fock Theory| . . ... ..

(1.7 Hartree-Fock Equations|. . . . . .

[1.8 Unrestricted Hartree-Fock Theory]

vii

....................

....................

ii

iv

xvii

xXxi



[1.9 Basis Sets| . . . . . . . . e e e e e e e e e e e e 33

(1.9.1 Minimal Basis Sets| . . . . . . .. ... .. .. ... ... 34
[1.9.2 Split-Valence Basis Sets| . . . . ... ... ... ........ 35
1.9.3 Polarization and Diffuse Functions| . . ... .. ... ... .. 36

1.1 rrel Methodsl. . . . . . . . .. . 38
(1.10.1 Post HF Methods| . . . . . .. ... ... .. ... ... .... 39
(1.10.2 Density Functional Theory|. . . . . .. .. ... ... ..... 40
[1.11 Electron Pair Descriptors| . . . . . . . . v v v v v v it e e 51
(1.11.1 Intraculesl . . . . . . .. . .. L 53
1.11.2 Extraculesl . . . . . . . . . . ... . 61
(1.12 Localized Molecular Orbitals|. . . . . . . ... ... ... ... .... 65
(1.13 Project Goals| . . ... .. .. .. .. .. .. . e 70
2 SEPDA software package| 72
[2.1 Capabilities] . . . . . . . ... 72
2.2 Contents|. . . . . . . . . . L e e e e e e e 73
[2.2.1 sepda.csh| . . . ... ... ... ... ... 73
[2.2.2  Main Fortran Programs|. . . . . . . ... ... ... ...... 75
[2.2.3 Fortran Subroutines - Recurrence Relation| . . . . ... .. .. 78

3 Revealing Electron-Electron Interactions within Lewis Pairs in Chemical |

79
3.1 Introduction|. . . . . . . . . . v i i i e e e e e e 79
[3.2 Computational Methods| . . . ... .. ... ... ........... 81




[3.3.1 CovalentBonding|. . . . .. ... ... ... .......... 86
3.3.2 Non-Covalent Interactionsl . . . . .. .............. 88
[3.3.3 3-centre 2-electronBonds| . . . . ... ... .. ... ..... 96
[3.3.4 Interpreting Reaction Mechanisms| . . ... ... ....... 98
3.4 Conclusion| . . ... ... ... . ... e 101

4 Exploring Electron Pair Behaviour in Chemical Bonds Using the Extrac- |

| ule Density| 103
4.1 Introductionl. . . . . . . . . . . e e e e 103
[4.2 Computational Methods| . . . ... .. ... ... ... ........ 105
4.3 Results and Discussion| . . . . . . . . . oot i e e e 109

[4.3.1 CovalentBondingl. . . . . ... ... ... ........... 109
4.3.2 Bond Strain| . . . . . .. ... 118
4.3.3 Non-Covalent Interactions| . . . . . . . .. ... ... ..... 120
4.4 Conclusions| . . . . . .. . ... . e 125

[5 Developing a Theoretical Model for Quantifying Electronegativity based |

__on the Position Extracule| 127
[5.1 Introductionl. . . . . . . . . . . . i e 127
[5.2 Computational Methods| . . . ... .. ... ... .. ......... 131

[5.2.1 Extracule and Intracule Analysis| . .. ... .......... 133
[5.3 Results and Discussion| . . . . . .« . v o vt e i e e e 135
[5.3.1 Hartree-Fock Method|. . . . . . ... ... ........... 135

ix



[5.3.2 Density Functional Theory|. . . . . . ... ... ........ 143

5.4 Conclusions| . . . . . . . .. e e e e e e e e 147

6 Using the Single Electron Pair Distribution Analyzer to Describe the Na- |

|  ture of the Hydrogen Bond| 148
6.1 Introduction|. . . . . . . . . . . .. 149
[6.2 Computational Methods| . . . ... ... ... ... ... ....... 150
[6.3 Resultsand Discussion] . . . . . . . . ... ... ... 155

[6.3.1 Extracule densities for ox;y LMOs| . . . . . . . . ... .. ... 155
[6.3.2 Extracule densities for ny LMOs| . . . . . . . ... .. ..... 162
[6.3.3 SubsetsofDatal . . . . ... ... ... 164
[6.3.4 Scaling Metrics| . . . . . . . . ... e 166
[6.3.5 Bivariate Analysis|. . . . . . . ... ... 167
[6.3.6 Intracule Analysis|[. . . . ... ... ... ... ... . ... 168
6.4 Conclusions| . . . . . . . . .. e 171

|Z__Conclusions & Future Workl 172
[Z.1 Conclusions| . . . . . .. ... 172
(7.2 Future Work|. . . . . ... ... ... 174

I/A__SEPDA - User’s Manuall 176
A.1 Introductionl. . . . . . . . . . v v it e e e e e e 177

A.1.1 Section Summaries| . . . . . . . .« ..t e e e e 177
I; PDA Features|. . . . . . . . . . . . e 177



[A.1.3 SEPDA Literature| . . . . . . . v v v v v v e e e e e e e e e 178

IA.2 Installation and General Program Instructions| . . . . . ... ... .. 179
IA.2.1 Installation Requirements| . . . . ... .. ... ........ 179

IA.2.2 Installing SEPDA| . . . . . . . . ... ... ... ... ... 179

[A.2.3 Running SEPDA|. . . . . . . ... . ... ... ... .. ..., 181

IA.2.4 SEPDA Compatibility| . . . . . ... ... .. ... ... .... 182

A.2.5 Testing SEPDA| . . . .. ... ... .. ... ... ... ... 182

|A.3 Input File Structure and Variables|. . . . . ... ... ... ...... 182
IA.3.1 Description of Input Variables| . . . . ... ... ........ 183

IA.4 Examples of Input File Structures| . . . . .. ... .. ... ...... 189

IB_ Derivation of Hollett and Gill Recurrence Relation| 193

[C Supplementary Information for the Analysis of Hydrogen Bonding Com- |

204

xi



List of Figures

[1.1 Depiction of each of the relevant interactions from the Hamiltonian |

| OPETALOT] « v v v v v v e e e e e e e e e e e e e e e e e e e e e e 6

[1.2 Position intracule for the ground state of a) the He atom, and b) the |

[ methane molecule. . . . . . . . . .. . . . o 54

(1.3 Momentum intracule for the ground state of a) the He atom, and b) |

[1.4 Posmom intracule for the ground state of the He atom in a) Cartesian |

| space, and b) Fourier space.| . . . . . .. .. ... ... ... ... .. 60

[1.5 Possible combinations of u, v, and w and the resulting values of = = u- |

| v. Adapted from the original version with permission from Molecular |

| Physics.M . . . . . . 61

(1.6 a) Scalar, £(R), and b) vectorized, £/(R), position extracules for the |

| ground state of HOF.| . . . . . . . . . .. .. ... .. ... ..... 63

(1.7 Momentum extracule for the ground state of a) the He atom, and b) |

[ the methane molecule. . . . . . . . . . . . ... . . . . ... . ... 64

xii



(1.8 A depiction of the a) CMOs, and b) LMOs for the water molecule. |
Core orbitals are omitted.] . . . .. ... ... ... ... ... ... 67

[1.9 A depiction of the LMOs of a) H,O, and b) HOF. Core orbitals are |

| omitted. . . . ... 68

[2.1 A general overview of the architecture of the SEPDA software package. 74

B.1

Depiction of calculated P(u), £(R), and M (v) for the first and second

row hydrides at the HF/6-311G(d,p) level along with the first inverse

moment, (') (where z = u, R, or v) and experimental bond disso-

ciation energies (BDE)22] . . . . ... ... ...

B2

Depiction of a) the oo.y and nog ER LMOs of the water dimer cal-

culated at the M06-2X/6-311G(d,p) level of theory, along with the

=

b) AP(u) and c,d) AE(R,,) for each. Solid and dashed lines in

the AE(EUZ) plots denote positive and negative contours, respec-

=

tively. Red contour lines correspond to AE(R,.) for no and blue

=

contour lines correspond to AE(R,,) for oo.y. Contours are plotted

for £n x 107° where n = 4,8,16,32,64.f. . . . . . .. ... ... ...

xiii

90



B3

The deformation densities of the position intracules, AP(u), and 3-

=

D position extracules, AE(R,.), for the oxy and ny LMOs in the

a) water dimer, b) water-methanol, and c) water-methylamine hy-

drogen bonding complexes. Solid and dashed lines in the AE(R,.)

plots denote positive and negative contours, respectively. Red con-

=

tour lines correspond to AE(R,,,) for no and blue contour lines corre-

spond to AE (ﬁyz) for 0o.y5. Contours are plotted for 4=n x 10~3 where

n = 4,8,16,32,64. All data is calculated at the M06-2X/6-311G(d,p)

levelof theory| . . ... ... ... .. ... ... ... ... ...

B4

The deformation densities of the position intracules, AP(u), and 3-D

=

position extracules, AF(R,.), for the participating LMOs in the a)

water dimer hydrogen bonding complex, b) FBr-HCN halogen bond-

ing system, and c) the ethene dimer, m-interaction system. Solid

and dashed lines in the AE(ﬁuz) plots denote positive and nega-

tive contours, respectively. Contours are plotted for +n x 10~ where

=

n = 4,8,16,32,64. Red contour lines illustrate AF(R,.) for the non-

bonding electron pair in a) and b) as well as the 7 bonding electrons

in ¢). Blue contour lines indicate the o bonding pair of electrons in

parts a) and b). All data is calculated at the M06-2X/6-311G(d,p)

level of theory| . . . ... .. . ... . .. ...

Xiv



B5

Depiction of a) the oppp and op.y LMOs of diborane with the as-

sociated b) P(u) and c,d) E(R,.). Contours are plotted for F(R,.)

values of 0.01, 0.02, 0.04, 0.08, and 0.016 atomic units. All data is

calculated at the HF/6-311G(d,p) level of theory| . . . . . ... ...

97

3.6

=

P(u) and AE(R,.) for the nucleophile and leaving group LMOs of

an Sy2 reaction as it progresses from reactants (A) to transition state

(D). The reaction profile depicts the four states (A-D) modeled for

P(u) along with depictions of the LMOs of the nucleophile and leav-

ing group. Structures and energies were calculated at the OLYP/6-

311G(d,p) level of theory based on the benchmark studies.* Solid

and dashed lines in the AE(ﬁW) plots denote positive and negative

contours, respectively. Contours are plotted for +n x 10~ where

= DA, 800,820 « o e e e e e e

A1

a) Depiction of £(0, R,, R.) for the C-H bond in CH, with an overlay

of the LMO for the bond and b) AE“"*!(0, R, R,) for the X-H bond

LMO. Contour values were chosen as m x 10", where m = 2,4 and

8 and n = 3,2, and 1 (the dashed lines signify negative contours).| . .

42

Pictorial representation of CH, to demonstrate the positions of each

atom within the molecule combined with an inset of the positions

of the maxima of £(0, R,, R.) for the C-H bond in methane and its

fluorinated derivatives, CH,,F5_,,, where n = 1 — 3 (the dashed line

signifies the bond axis).| . . ... ... ... ... ... ........

XV



(4.3 Depiction of F(R) for representative C-C bonds in the cyclic systems |

ranging from cyclopropane to cyclohexane. Models of the appropri- |

ate molecule are inlayed in the top left hand corner of each graph |

to provide the reader with insight as to the spatial orientation of |

[ each molecule. The dashed line traces the curve of slowest descent |

in E(R,, R,) to illustrate the deviation from the bond axis. Contour |

values were chosen as 0.02 x nwheren=1—16.J . . . .. ... ... 119

|4.4 Depiction of AEf(R) for the oyr bond LMO in H-F (left) and the ny |

lone pair LMO in MeNH, (right) for the HF-MeNH, hydrogen bonded |

complex at various distances of separation, x X by, between the donor |

and acceptor. Contours were chosen as +0.003 x 1.5" where n = 1—38. |

Negative contours are denoted by dashed lines.| . . . ... ... ... 122

[5.1 Localized extracule densities for the A—H bond in saturated a) first |

row hydrides, and b) second row hydrides with insets of the A—H |

bond LMO of F—H and CI—H for illustrative purposes.| . . . ... .. 135

[5.2 Correlation between Pauling electronegativities and a) (R)¢, and b) |

Ry™ for the first and second row hydrides.{. . . . .. ... ... ... 139

[5.3 Localized intracule densities for the A—H bond in saturated a) first |

row hydrides, and b) second row hydrides.|. . . . .. ... ... ... 142

[5.4 TLocalized extracule densities for the A—H bond in saturated first row |

(left) and second row (right) hydrides calculating using a) BLYP, b) |

B3LYP, c) B3PW91, and d) M06-2X.|. . . . . . . ... ... ... ... 145

XVi



6.1

Pictorial representation of the various geometries for each of the hy-

drogen bonding complexes.| . . . . . . ... ... .. .. 0.,

6.2

Classification of hydrogen bonding systems based on (R, ) of the

oxy LMO and hydrogen bonding strengths. | . . . . ... ... ....

6.3

Contour plot of ALY, (R,.) and AET),, (R,.) in MeNH,;-MeOH

depicting the change in the extracule density in the presence of the

proton acceptor, MeOH (dashed lines signify negative contours while

solid lines signify the positive contours).| . . . . . .. ... ... ...

158

6.4

Contour plot of AET™(R,,.) and AE (R, )for the HE-MeNH, com-

plex demonstrating the diminishing effect on AF(R) as the complex

separates (dashed lines signify negative contours while solid lines

signify the positive contours).| . . . . . . . .. ... ... ... ...,

160

6.5

Relationship between 0g, (R, .), R™, and (R.) versus hydrogen

bond strength for H,O-H,0, H,O-MeNH,, and H,O-MeOH.|. . . . . .

161

6.6

Relationship between hydrogen bond interaction strength, Fi, ver-

sus a) dg, and b) the density at the bond critical point, p(r.), for all

systems at equilibrium.|. . . . .. ... oo o Lo

162

6.7

The deformation density of the position intracule for a) the 0o bond

and b) the np lone pair, LMOs for the water dimer.| . . . . ... ...

[C1

AP(u) for the oxy bond LMOs of hydrogen bonding complexes.| . . .

xvii

223



List of Tables

1.1 Definition of atomic units| . . . . .. .. ... ... ... ... .. .. 4
(1.2 Angularmomental . ... ... ... ... . ... ... ... . ..., 34
[3.1 The scope of pair distributions available in the SEPDA software pack- |
T UAGE] . e e e e e 84
4.1 Moments of £(0, R,, R,) for the X-H bond LMO in first row hydrides.| 113

[4.2  Analysis of the X;-X, and X;-H bond LMOs in small first and second row compounds.[115
(4.3 Properties of £(0, R,, R.) for halogenated derivatives of methane,. . 118
4.4 Properties of £(0, R,, R.) for the C-C bonds in cycloalkanes.| . . . . . 120
4.5 Properties of E9" ""2(0, R,, R.) and AE%(0,R,, R.) for the HF |
| bond (our) and the MeNH, lone pair (ny) LMOs.| . . . . .. .. ... 124
(5.1 Metrics of F(R) for the A—H bond LMO in saturated hydrides.|. . . . 137
[5.2 Metrics of E(R) for the A—H bond LMO in truncated hydrides.|. . . . 138
[5.3  xipum of the first and second row atoms| . . . . .. ... ... ... .. 141
[5.4 R? values for metrics of P(u) for the A—H bond LMO in saturated |

hydrides.| . . . . . . . . . .. . . 141

XViii



[5.5 Accuracy metrics for the four DFT methodsand HF.|. . . . . . . . .. 144

[5.6 Coefficient of determination comparison for each computational method.146

6.1 (R,.) for the op_y in MeOH-Y complexes| . . . . ... ... .. ... 156
6.2 (R, for the oxy bond in a few select systems| . .. ... . ... .. 157
6.3 R for ¢ = 0oy in the H,O—Y subset of systems.| . . . . ... ... .. 159

[6.4 Summary of the various metrics for each hydrogen bonding complex |

at equilibrium and the coefficient of determination for the relation- |

ShIDtO Eine. « - v v v o e e e e e e e e e e e 164

[6.5 Coefficients of determination for the relationship between each of |

the metrics and E, for subsets of the full dataset.| . .. ... .. .. 165

[6.6 Coefficients of determination for the relationship between each of |

the scaled metricsand Fiy..| . . . ... . . .. .. o .. 167

|6.7 Coefficients of determination for the relationship between each of |

the scaled metrics and Fy, for oxy bond LMO.[. . . . . ... ... .. 170

|6.8 Coefficients of determination for the relationship between each of |

the unscaled/scaled metrics for P(u) and Ei, for ny LMO.| . . . . .. 170
ICT Spforthe ox g IMO|. « o v o e e e e e e e 205
IC2 (R,,)fortheox_gIMO|. . . ... ................... 206
[C3 R for the ox g IMO| .« o o v o vee e e e e e 207
C4 E(R™)fortheox g LMO| . . ... ... ... ... .. .. ..... 208
C5 (R,)fortheox_y LMO|. .. ... ... ... ... ... .. ..... 209
[C.6 dpfortheny LMO| . . . . . . . . . . . i it 210

Xix



IC7 (R, ) fortheny LMO| . ... ... ... ................. 211

[C.8 RM*fortheny LMO| . .. ... ... ... ... ... ... . .... 212
[CO E(R™)fortheny LMO|. . ... ... .. ... ... ......... 213
[CI0 (R, ) forthe iy IMO| . . . . vve e e e e e 214
[C11 6, fortheox y LMO|. . . . . . . . . . o e 215
[C.12 (u ') forthe ox_y LMO| . . . . . . . o it 216
[C.13 upay forthe ox g LMO|. . . . . 0 . 0 0o 0 o e 217
(C.14 (u) forthe ox_yp LMO| . . . . . . ... oo oo oo oo 218
[C.15 9, fortheny LMO| . . . . . . . . . . . . . 219
[C.16 (u!) forthe ny LMO|. . . . . . . . . . . o i i ittt e e 220
[C.17 upax for the ny LMO| . . . . . . . . o o o o e 221
[C.18 (u) forthe ny LMO| . . . . . . . . . .. 222




List of Abbreviations and Symbols

Abbreviations

AO Atomic orbital

CMO Canonical molecular orbital

DFT Density functional theory

ER Edmiston-Ruedenberg

HF Hartree-Fock

LCAO Linear combination of atomic orbitals

LMO Localized molecular orbital

MO Molecular orbital

MPPT Mgller-Plesset perturbation theory

NBO Natural bond orbital

RHF Restricted Hartree-Fock

SCF Self consistent field

UHF Unrestricted Hartree-Fock
Symbols

1 Molecular wavefunction

Y Spatial molecular orbital

X Spin molecular orbital

10) Basis function/atomic orbital

H Hamiltonian operator

T Kinetic energy operator

1% Potential energy operator

Felec Electronic Hamiltonian operator
Feore Core Hamiltonian operator

H, Two-electron Hamiltonian operator
f%-j Permutation operator

XXi



NIZETI 4 A®>

AB

N

AN

QTR Z =

Sy
S

=2
EE

= U2 >
IAIZIE=E

TR S O

o
=

Coulomb operator

Exchange operator

Gradient operator (V = 8‘1 4 ay + 8z)

2 0?

Laplacian operator (V* = 5 + ayg + 822

Position vector for electron i

Momentum vector for electron i

Position-spin vector for electron i

Distance between electrons ¢ and j

Distance between nuclei A and B

Atomic number of nucleus A

Number of electrons

Number of nuclei

Number of basis functions

Element y, v of the overlap matrix

Element y, v of the Fock matrix

Element 1, v of the charge density matrix

Fock matrix

MO coefficient matrix

Overlap matrix

Overlap transformation matrix

MO energy matrix

Energy

AO coefficient p for MO ¢

Basis function contraction coefficient

Spin-up function

Spin-down function

Dirac delta function

Electron density

Two-electron density or pair density

Position intracule density

Momentum intracule density

Posmom intracule density

Position extracule density

3-D Position extracule density

Momentum extracule density

P(u) coordinate, equal to |r; — 73]
M (v) coordinate, equal to |p; — p2|
X (x) coordinate, equal to |u - v|
E(R) coordinate, equal to |r; 4 ra|/2
E(R)
E(P)

coordinate vector
P) coordinate, equal to |p; + p2|/2
Integration over all angular components of vector 7

xXXii



Chapter 1

Introduction

It was long assumed that Newton’s laws of motion® governed the motion of ev-
erything. By knowing the initial position, 7y, and velocity, vy, of an object along
with its mass, m, and the net force acting on it, F', one could determine the future

position, r(t) of said object at any time, ¢, through the equation

F
r(t) = %t2+vot+r0 (1.1)

This relationship is easily obtained through integration from the more common
form of Newton’s second law of motion: F' = ma. Obviously not all situations are as
simple as those that are adequately described by this equation since most objects do
not have constant forces acting on them. Complicating the issue even further is the
many-body problem. Consider the problem of planetary motion. While the planets
in a given solar system typically revolve around the sun based on the gravitational

force, one also has to consider the interaction between the planets themselves. It



is this many-body interaction that greatly complicates the situation, and it is one
that we are faced with in all chemical species with the exception of one-electron,
one-nucleus systems (e.g. the hydrogen atom).®®

The other major issue with applying Newton’s laws of motion to chemical sys-
tems can be explained by the Heisenberg uncertainty principle.” It states that “The
more precisely the position is determined, the less precisely the momentum is
known in this instant, and vice versa" (translation by the American Institute of
Physics). More simply, one cannot know both the momentum and position of a par-
ticle, simultaneously. There is an uncertainty principle associated with these terms.

Mathematically, Heisenberg’s uncertainty principle is given by

AxAp > h/2 (1.2)

where Ax and Ap denote the uncertainty in the position and momentum, respec-
tively. This uncertainty applies to all objects, even those that behave by the laws of
classical mechanics. However, when one considers the size of the uncertainty (on
the order of 1073° kg-m?2-s~1), the uncertainty in either the position or momentum
of an object even on the nanogram scale would be negligible. When, however, we
consider the size of sub atomic particles with masses on the order of 1073! kg, the
uncertainty in momentum is rather substantial. Instead, these microscopic systems

must be treated with quantum mechanics which is probabilistic in nature.



1.1 Quantum Mechanics

Much like Newton’s laws of classical mechanics are instrumental in understanding
the motion of objects we see in our everyday lives, the Schrédinger equation? is at
the heart of quantum mechanics and understanding systems at the electronic level.

The time-dependent Schrodinger equation is given by
mgmf) = H|D) (1.3)
ot ’

where |¥) is the molecular wavefunction and H is known as the Hamiltonian opera-
tor. The wavefunction contains all of the information needed to completely describe
a chemical system, while the Hamiltonian is the operator, which when applied to
the wavefunction, yields the total energy of the system. Fortunately, for nearly all
applications in chemistry, the time-dependent Schrédinger equation is unnecessary
and we can simplify to the time-independent form, which from this point forth, we

will simply refer to as the Schrédinger equation.® This form is written as
H|U) = E|T) (1.4)

The Hamiltonian operator consists of two types of operators, those pertaining to
potential energy and those pertaining to kinetic energy. The Hamiltonian is given

by®

(r) (1.5)



where the first two terms correspond to the kinetic energy of the N electrons which
have mass m and the M nuclei with mass M4, respectively. The third term is
the potential energy operator; however, before proceeding with its definition, it
is much simpler to introduce a new set of units, known as atomic units. Atomic
units are frequently used in computational chemistry to express everything from
lengths to masses and energies. By using atomic units'! one can greatly simplify
the mathematical form of the Hamiltonian operator, especially the terms pertaining
to potential energy. The list of atomic units relevant in this thesis are given below

in Table

Using this new set of units, we can define the potential energy operator as

NNy NM, MM 7
ZaZp
— — 1.6
=20 XY Y g (1.6)
=1 j> i=1 A=1 A=1B>A
with the first and third terms defining the electron-electron and nuclear-nuclear
repulsions, respectively, which are dependent on the interelectron, r;; and inter-

nuclear, R,p, distances. The nuclear-nuclear repulsion is also dependent on the

nuclear charges of atoms A and B (Z4 and Zp). The second term describes the

Table 1.1: Definition of atomic units

Measure Unit  Value in atomic units  Value in SI Units
Length ag 1 bohr 5.2918x107'' m
Mass Me 1 9.1095x1073! kg
Charge e 1 1.6022x10719 C
Energy E 1 hartee (£}) 4.3498x10718 J

E 1 hartee (£}) 27.211 eV

E 1 hartee (E}) 627.51 kcal mol~!
Angular momentum A 1 1.0546x1073* J s
Vacuum permittivity — 4mgy 1 1.113x107° C2J ' m~!




electron-nuclear attraction which is dependent on charge of nucleus A as well as
the distance between the nucleus and electron 7, ;4. Combining this equation with

(1.5) yields the expression for the total Hamiltonian

N

M 1 ‘ N N 1 M
DI AR DI DN

i=1 j>i Y =1

i

M M 7.7
ZZ 2 @)
S~ Ra

7,

Thus, in its full form, the Schrodinger equation is given by

DI (zz——z:z

=1 j>i T riA
VA
+Z Z 4 B) (r,R) = E¥(r,R) (1.8)
A=1 B>A “

For the sake of clarity, the terms in the Hamiltonian are colour coordinated with
the visual representation of the terms in Figure In this form, the Schrodinger
equation looks quite daunting. However, the equation can be simplified further by

invoking the Born-Oppenheimer approximation.

1.2 Born-Oppenheimer Approximation

Consider that the mass of a proton is approximately 1840 times that of an electron.
Even for this smallest of atomic systems, the electrons would be moving far faster
than the nuclei. This only amplifies as we study systems containing nuclei larger
than that of hydrogen. Thus, to a very good approximation, it can be assumed that
the electrons in a molecule move in a field of fixed nuclei. This is known as the Born-

Oppenheimer approximation.*# Physicists tend to use a slightly more complicated



Figure 1.1: Depiction of each of the relevant interactions from the Hamiltonian
operator

interpretation, and state that the electronic and nuclear motions are separable and

thus, the wavefunction can be written as

U(ry, Ra) = Ul(r;; RA)U™(R,) (1.9

For most chemical applications, we can ignore the nuclear wavefunction, ¥"*(R4),
and simply concern ourselves with the electronic wavefunction, V¢ (r;; R4). How-
ever, notice there is a semicolon in between the r; and the R 4. This form designates
everything before the semicolon as a variable of the function, and anything after it

to be a parametric dependence. By envoking the Born-Oppenheimer approxima-



tion, the wavefunction now only deals with the positions of the fixed nuclei, and
thus, these vectors are now parameters of the electronic wavefunction.

Returning to equation (1.8), there are simplifications that can be made. Since
the nuclei have fixed positions, their kinetic energy would be null, and thus the
second term in the Hamiltonian operator vanishes. Furthermore, the nuclear repul-
sion term (fifth and final term) is now comprised solely of constants. A constant
operator does not affect the eigenvectors of an eigenvector/eigenvalue problem.
It simply adjusts the eigenvalues by that constant, and thus, it can be dealt with
after the eigenvectors and eigenvalues are determined. By making these two ad-
justments, we can simplify the Hamiltonian operator to its electronic counterpart,

He as

1 N N N 1 N M Z
I ED 9 SE ) PEL (110
=1

’r’.. T‘
i—1 j>i Y =1 A=1 A

By solving the electronic Schrédinger equation
HY (ry; Ry) = B0 (r;; Ra) (1.11)

the electronic wavefunction, U®(r;; R, ) and electronic energy, £, are determined.
To obtain the total molecular energy, however, the nuclear repulsion energy must
be considered. Thus, following the solution to the electronic Schrédinger equation,

E*¢ must be combined with the nuclear repulsion component as follows:®



MM 7.7
o 1 ALB
E=p+3"% oy (1.12)
A=1B>A

As we will only be concerned with the electronic versions of the wavefunction and
Hamiltonian operator, from this point forward we will drop the ‘e’ designation and
it can be assumed that all references to the wavefunction or Hamiltonian operator

are referring to the electronic components, unless otherwise stated.

1.3 Solutions to the Schrodinger Equation

By applying the Born-Oppenheimer approximation, the Schrodinger equation was
greatly simplified by removing the nuclear position variables. However, solving the
equation remains a daunting task, one that is unachievable in principle for nearly
all chemical systems. While the solution of the hydrogen atom has been known
for many years, its solution would still involve several pages of derivations and re-
quires a familiarity with advanced mathematical functions. Nonetheless, this is the
only true chemical system for which there is an exact, closed form solution to the
Schrodinger equation. Thus, much of the early work in computational chemistry
was focused on the development of methods for obtaining approximate solutions
to the Schrodinger equation. Even today, many theorists focus on the development
of novel theoretical models to obtain more accurate solutions to the Schrodinger
equation. The next few sections will highlight those methods that were fundamen-
tal in the development of more accurate models as well as those which are applied

in the work presented in this thesis.



1.4 Variational Theorem

In a situation where the exact answer is unachievable, approximations must be
made. But without knowing the true answer, how can one assess the accuracy of
said approximation? For many methods in computational chemistry, the variational
theorem is the tool used for this assessment. The variational theorem states that for
any normalized approximate wavefunction, ¥, that satisfies all boundary criteria
of the problem, the total energy of that wavefunction, F, will always be greater
than or equal to the exact ground state energy of that system, £,.* Mathematically,
this is written as

(V6|H|Vg) = Eq > Ey (1.13)

Thus, for any method to which the variational theorem applies, it can be certain
that out of a series of trial wavefunctions, ¥, the one that yields the lowest energy
is that which is a better approximation to the true wavefunction. Furthermore, one
can be certain that the energy of any variational method will never be lower than
the true energy. Thus, the error in energy for a variational method will always be

positive.

1.5 Hartree Product

The Hartree self-consistent field method, or more simply, the Hartree method was
proposed by Douglas Hartree in the 1920s."#1% While very rarely mentioned outside

of introductory theoretical chemistry courses, it is the predecessor of the far more



commonly utilized process, the Hartree Fock (HF) method.
The Hartree method utilizes the Hartree Product wavefunction, W*, This meth-
od assumes that we can approximate the complete wavefunction as a product of

single particle functions, or orbitals. This can be expressed as

N
U (xq,... 2N) = sz(azz) (1.19

i=1
where y; denotes a spin orbital for electron i with its combined position-spin coor-
dinate vector, x; = (7;,w;) (Where w; is the spin coordinate). The sum goes over
N orbitals which is the total number of electrons in the system. One is commonly
taught that orbitals describe up to two electrons. That type of statement, however,
is referring to spatial orbitals, 1. A spin orbital describes a single electron with ei-
ther spin up, a(w), or spin down, 3(w). The following equations demonstrate how

the first four spin orbitals can be related to spatial orbitals. This trend continues for

all other N spin orbitals.

x1(®@) = ¥ (r)a(w) = ¢5(r) (1.15)
Xao(@) = Ui (r)Bw) = ¢y (r) (1.16)
Xs(®@) = Pa(r)a(w) = ¥5(r) (1.17)
Xa(@) = ¥o(r)B(w) = ¥4 (r) (1.18)

While spin functions have no mathematical form, there are a few properties that

should be identified. First and foremost, the spin functions are normalized and

10



orthogonal to each other. This is expressed mathematically as

(ala) = (BIB) =1 Normalization (1.19)

(a]B) = (Blay =0 Orthogonality (1.20)

As the spin components are typically integrated out for most purposes, these identi-
ties greatly simplify expressions as they will nullify many components or make the
spin components equal to unity.

There are two major problems with the Hartree method. Neither are obvious
from a classical perspective; however, in quantum mechanics, there are two impor-
tant properties that are being violated here. The first is that the wavefunction of
fermionic particles must be antisymmetric.®®' More simply, if the positions of two
electrons are swapped, the resulting wavefunction must be the negative of the first.
In other words

U(xs, x1,...,2N) = =V (X1, X2,...,TN) (1.21)

There is nothing that guarantees that this antisymmetry principle holds true with
the Hartree-Product wavefunction. The second principle of quantum mechanics
that is being violated here is that electrons are indistinguishable. While one can
easily label and distinguish classical objects, this is simply not possible for electrons.
The Hartree-Product wavefunction specifies in which orbital each electron resides

which violates the need for indistinguishable particles.

11



1.6 Hartree-Fock Theory

Following the development of the Hartree method, Fock sought to modify the met-
hod to satisfy these two quantum mechanical properties.'® His solution, while still
utilizing single-particle orbitals, was to consider every possible permutation of elec-
trons within each of those orbitals. Mathematically, the simplest way to do that

16l17) are used to

was by using a determinant. These so-called Slater determinants
construct Hartree-Fock (HF) wavefunctions, W, for any N-electron system. The
following equation demonstrates the expression of an HF wavefunction for a 2-
electron system.
1 X1(®1) x2(®1) 1| xalz1) xo(x1)
yHF _ - 1.22
(x17 w2) m \/5 ( )

X1(x2) x2(z2) X1(x2) xa(x2)

where the (N!)~'/2 is a normalization constant dependent on the number of elec-
trons in the system. In this determinant, each column corresponds to a specific
spin orbital while each row corresponds to a specific electron. By working out the

determinant, momentarily ignoring the normalization constant, we get

xi(@1) xa(@1) = x1(x1)x2(x2) — x2(®1)x1(22) (1.23)

Xl(iEz) Xz(wz)

From the right hand side of this expression, one can note that every electron is

now occupying every orbital. Thus, UHF satisfies the idea that electrons must be

12



indistinguishable. It remains that this wavefunction must be antisymmetric. This is

confirmed as follows

X1(x2)x2(x1) — xa(z2)x1(21) = —(xa(z1)x2(22) — Xo(®1) X1 (22)) (1.24)

and thus

U (g, 1) = — U (24, x5) (1.25)

Expressing the wavefunction as a Slater determinant has a number of useful
properties. First and foremost, it addresses the issues in the Hartree-Product wave-
function.’*1% However, consider a few important properties of determinants. If two
columns of a determinant are identical, the determinant is equal to zero. In this
context, two equivalent columns corresponds to two identical orbitals which vio-
lates the Pauli Exclusion principle. Secondly, by interchanging two columns in a
determinant, the resulting determinant is equivalent but multiplied by a factor of
-1. This property ensures that the wavefunction will be antisymmetric.

While these two properties were demonstrated using a wavefunction for a two

electron system, they hold true for any general system. The general N-electron

13



Hartree-Fock wavefunction is given by

xi(z1)  xe(x1) o xw(w1)

HF 1 xi(®2)  Xa(x2) 0 xn(®2)
1% (a:l,zcz,...,wN):ﬁ (1.26)

xi(@n) xe(zn) -0 xnv(TN)

While the HF method does address the two previously described issues with
the Hartree method, there remains an issue that has yet to be discussed. This
issue is known as electron correlation.® There are two types of correlation: Fermi
correlation and Coulomb correlation. The HF method addresses the issue of Fermi
correlation which is the concept that two electrons with the same spin will never
be at the same point in space at the same time. This type of correlation is absent in
the Hartree method, but is addressed exactly in HF theory by preventing two spin
orbitals from being identical (determinant would equal zero).

However, the HF method does not account for Coulomb correlation. This form of
correlation energy is the result of electrons interacting and avoiding one another.®
Hartree-Fock theory applies a mean field approach, where each individual electron
does not see each other electron, but simply feels the mean electric field generated
by all other electrons in the system. While Coulomb correlation only accounts for
approximately 1% of total electronic energies, it is on the same order of magnitude
as many reaction energies. Thus, to study reaction energetics using Hartree-Fock

theory and expecting great results would be like buying a lottery ticket and expect-

14



ing to win. It is possible; however, it is not overly probable.

The full derivation of the Hartree-Fock equations is outside of the scope of this
thesis. The interested reader is directed to the works of Szabo and Ostlund! as
well as Levine.® However, the basics of the method will be explained herein with
the example of a two-electron system. The equations will then be generalized to
the N-electron case.

Expectation values were briefly introduced, although not referenced by name,
in the discussion of the Variational Theorem and equation (1.13). An expectation

value or average value of an operator, O, is given by

([O|W) [ U*(x)0 U(z)dx

N EE e (127

However, in the event that the wavefunction is normalized, the denominators are

equal to unity, and the equation simplifies to
(W[O|T) / ()0 U (x)dz — (O) (1.28)

In the event that the operator is the Hamiltonian, the expectation value or (H)
would be equal to the ground state energy of the chemical system. Applying this

theory to the Hartree-Fock problem yields
EMF — (WHF| 7| @ HFy (1.29)

The problem can be simplified by separating the Hamiltonian into two separate

15



pieces. After applying the Born-Oppenheimer approximation, recall that we are left

with
N Mo, N
——fZVQ ZZ 4 sz (1.30)
=1 A=1 TiA =1 j>i Tij

The components in green are the one-electron operators and can be labelled H,

which is defined as

N
Hy =) He (1.31)
=1

where the core Hamiltonian, H"¢, is given by

1 2z
AP =—_vi-) 22 (1.32)
2 TiA
A=1
The two-electron Hamiltonian, H, is then simply
N Ny
Hy=) > — (1.33)
i=1 j>i Tij

Using these new definitions, the Hartree Fock energy defined in equation (1.29) can

be rewritten as

B = (UM L | UHF) 4 (UHF| [T (1.34)

N
EHF _ <\I’HF’ Zgicore|quF> + <\I/HF‘1T:[2‘\IJHF> (135)

=1

Considering that electrons are indistinguishable particles,® the energy of a single

electron should be 1/N times of the total one-electron energy. Using this logic,

16



(1.35) is simplified to
EHF _ N<\IJHF|ﬁfore|\I/HF> + <\I/HF|H2|\I/HF> (136)

To solve for the first term in this expression, we can substitute the right hand side

of equation (1.23)) into (1.32)) to obtain

eaeeu) — o (e - e @)

[jjfore [Xl ($1)X2(m2) — Xz(ml)Xl (mz)]dmldmz (1.37)

where we have reintroduced the normalization constant. Expanding this expression

by multiplying everything out will yield four separate integrals as follows

(HE | eore| Py _ % / / I (@) (@2) B\ (1) o ()] dr ds
_ %//[XI(fvl)XZ(wz)[{T§OreX2(zc1)Xl(a;2)]dmldw2
_ %//[Xz(ml)XT(diz)[:[fOreXl(ml)xg(m2)]dmld$2

+%//[X;(CIh)X){(wz)ﬁfOreXQ(wl)Xl(wz)]dmldwz (1.38)

As H™ only contains terms that operate on electron one, any terms involving
@2 can be factored out and integrated separately. For the sake of simplicity, we

will now replace x; with 2. This will yield the following four terms based on the

17



previous expression:

1 - 1 .
5 [T [vee@dz = [nErad 1)

2
1 A

-5 [ miTaa [ xepedz-o (1.40)
1 .

-5 [rowaeama [ ez -o (1.4

1 - 1 .
5 [owimama [xien@dz = [unirend  142)

The orthonormality of the spin functions,™ a(w) and §(w), and the spatial or-
bitals themselves were utilized to simplify these four terms. In the first and fourth
terms, the same spin function is involved in the integral over electron 2 and thus,
the integral equates to unity due to the normalization. For the second and third
terms, however, the opposite spin functions are involved in the electron 2 integral
which causes the integral the vanish and the full term to equal zero.

The terms that were not nullified through integration can be simplified further
by separating the spin orbitals, y(x), to their spatial orbital, ¢(r), and spin function

components. By doing so, the following expressions are obtained

%//w;(rl)a*(wl)Iflforewl(rl)a(wl)drldwl = (1.43)
5 [ it )dn [ o @)oo -

1 .
§/¢I(r1)Hfore¢1(T1)dT1 = Hn
An analogous procedure can be done for term 4 which would yield another Hi,

18



term. It should be noted that when working with spatial orbitals, said term would
be considered the H,, term; however, recall that there are two spin orbitals per
spatial orbital. Thus, We can now succinctly express the expectation value of the

one-electron Hamiltonian (i.e. the one-electron component to the energy) as

N/2

(| | W) = / 5 () HiY(ry)dry =2 Hy (1.44)

=1

Based on this result, the closed-shell HF energy can now be expressed as

N/2
E™ =2 H; + (U7 Hy|UH) (1.45)

=1

Thus, it remains to determine how to calculate the two-electron component of the
energy. As previously noted, the full derivation of the HF equation will not be
conducted here. The one-electron component was fully derived as it is quite simple;
however, only the highlights of the two electron component will be shown.

Recall that the two-electron component to the HF energy is given by

(UHF| f, | OHFy = \IJHF|ZZ |\11HF (1.46)

T
i=1 j>1 ij

After substituting the full form of the HF wavefunction, and integrating out the spin
components of the spatial orbitals, only two types of integrals remain. These are

known as the Coulomb integrals, J;;, and exchange integrals K;;. The Coulomb

19



integrals are given by

5y = [ [ um@ae
Jw://’¢i(1)|2a|¢j(2)|2d1d2 (1.47)

As |¢;]* describes the electron density of a molecular orbital i, .J;; represent
the interaction between the electron density of two separate molecular orbitals.
Thus, one can interpret the Coulomb integrals as the Coulombic repulsion between
electrons, hence the name. The other type of integral remaining are exchange

integrals, which are calculated by

K, / / Ui (1)05(2); 0, (1) (2)d1dz2 (1.48)

Comparing the terms on the left of the operator and those to the right of the op-
erator, one can notice that the only difference is that the electrons are switched or
exchanged which provides an explanation for the name. The presence of these inte-
grals is due to the antisymmetry of the wavefunction. While the Coulomb integrals
can be interpreted as the Coulombic repulsion between electrons, there is no phys-
ical interpretation for the exchange integrals.®! They are a quantum mechanical
effect with no classical interpretation, but are an important part of the two-electron
energy nonetheless.

Exchange is a phenomenon that only occurs between same spin electrons,®

where-as Coulombic interactions occur between every single pair of electrons. In
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terms of these two components, the two-electron energy can be described by

N/2 N/2

(U H |0 = YN 27 — K (1.49)

i=1 j=1

Combining equations (1.44) and (1.49) yields the full expression for the closed-

shell Hartree-Fock energy

N/2 N/2 N/2
1=1 1=1 j=1

The only issue with this expression is that the identity of the molecular orbitals, v,
are unknown. Solutions to this were proposed separately by Roothaan® and Hall.**

By approximating each molecular orbital as a linear combination of atomic orbitals

K
Yilr) = cuitu(r) (1.51)
pn=1

where ¢, ; is the amount of each of the K basis functions, ¢,(r), that is used to
approximate each molecular orbital, ¢;(r). The functional form of these basis func-
tions will be explored in a later section. For now, we will use these functions to
rewrite the HF energy in a usable form.

Substituting (1.51)) into (1.50]), eventually yields the final expression for the HF

energy, LHF:
K K 1 K K K K
EHF — Z PMVH,ICI,OVre + 5 Z Z Z Z P;WPAU[(/“/P‘U) — %(udp\y)] (1.52)
p=1 v=1 p=1v=1 \=1 o=1
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But how do we get to this final expression? Let’s first consider the 1-electron

component to the energy:

A N/2 N/2 A
(U E UMY = 2) " Hyg = 2> (03| Heore| 1) (1.53)
=1 =1

Using the LCAO representation for the molecular orbitals, equation (1.51) can

be rewritten as:

N/2 N/2 K . K
2 Z ¢Z|Hcore|¢z =2 Z Z C,u,z’¢,u|Hcore| Z Cu,z’¢u> (154)
i=1 p=1 v=1

Since the coefficients are not affected by the core Hamiltonian operator, they can

be brought outside of the inner product expression as such:

N/2 N2 K K
22 ¢2|Hcore|¢z = QZZ ZCZ iCui ¢M|Hcore|¢u> (1-55)
i=1 p=1 v=1

To simply this expression further, we introduce the density matrix,™" P,,, which

is defined as

P}U/ =2 Z Cz,icy,i (156)

Applying this definition of P,, to equation (1.55) gives

N/2
2Z<wi|f{core|wl ZZ ¢M‘Hcore|¢zx> (157)
i=1 p=1 rv=1

Now we have an expression for the 1-electron HF energy in terms of atomic orbitals,
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¢,,, and their respective coefficients, ¢, ;. The form of these atomic orbitals and how
these coefficients are obtained will be discussed in the coming sections. For now,

we turn our attention to the 2-electron component of the energy.

N/2 N/2

(U H |0 = N 2T, - K (1.58)

i=1 j=1

Let us first consider the Coulombic portion (J;;) of the two-electron energy. By

once again applying the LCAO expansion to the Coulombic portion this time, we

obtain
N/2 NJ/2 N/2 N/2
3327, =3 S 2w r—w )b;(2)) (1.59)
=1 j=1 =1 j=1

N/2 N/2

_ZZ ZCMZ¢M )Zcu,iqbl/(l”/rim‘ZCA,j¢A(2)ZCJ,j¢U(2)>

=1 j=1 pn=1

(1.60)

This can be simplified, as before, by bringing the coefficients outside of the inner

product:
N/2 N/2 N/2N/2 K K K K 1
Z Z 2J; = Z Z 2 Z Z Cp,iCuyi Z Z Cx,jCo.j (Pu(l (1)|r_12|¢’\(2)¢0(2>>
i=1 j=1 i=1 j=1 p=1 v=1 A=1 o=1

(1.61)
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Using the definition of the density matrix given in equation (1.56)), this simplifies

to

N/2 N/2 K K K K 1
DD =233 3 > 3PuwiPelou)o, () —1ex(2)6s(2))  (1.62)
i=1 j=1 p=1 v=1 A=1 o=1

Often times, chemists will use a shorthand notation to simplify the expression for

the two integrals.*! In this shorthand, the inner product is shown as:

(Ou(10u(1)]-=16x(2)60(2)) = (v]3) (1.63)

Applying this shorthand to equation (1.62) yields a compact expression for the

Coulombic portion of the HF energy

N/2 N/2 K K K K

SN 2= 5SS S S PP (ulao) (1.64)

i=1 j=1 p=1 v=1 A=1 o=1

The only remaining portion of the HF energy is the exchange component (kX;).

Recall that the exchange energy is given by

N/2 N/2 N/2 N/2 1
=D D K== D Wi (2= (1)wi(2) (1.65)
i=1 j=1 i=1 j=1

Replacing the molecular orbitals with the LCAO expansion one last time gives

N/2 N/2 N/2 N/2 K K | X K
DI ILIEED I BERCHUD BEVNCI D BN PEHCAC)
i=1 j=1 i=1 j=1 p=1 A=1 o=1 v=1

(1.66)
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By bringing all of the coefficients outside of the inner product and applying the

definition of the density matrix, we obtain

N/2 N/2 K K K K 1
=22 Ky==22 2.2 PPl —16.(16,(2)  (167)
i=1 j=1 p=1rv=1 \=1 o=1

or with the shorthand notation defined in equation ([1.63))

N/2 N/2 | KK K K
_ K =—- P, Py (no|\ 1.68
;; ) 4;;;; w Pao (o |Av) (1.68)

Combining all of the components of the HF energy expressed in equations (1.57),

(1.64), and (1.68)) yields the final expression for the Hartree-Fock energy

ZP,W Oul Heorel b)) + = Z VProl (| Ao) — L(po|Av)] (1.69)

MVAU

where the summations are combined into one for the sake of simplicity. This is iden-
tical to equation (1.52) which was shown at the start of this discussion regarding

the introduction of the atomic orbital basis set.

1.7 Hartree-Fock Equations

While equation describes how to obtain the Hartree-Fock energy, it does not
tell us how to determine the atomic orbital coefficients, ¢, ;, for the LCAO expan-
sions. These are determined through the Hartree-Fock equations. The complete
derivation of the HF equations will not be included herein, but for the interested

reader, a thorough derivation is provided by Szabo and Ostlund.™
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The basis for determining the atomic orbital coefficients is taking the first deriva-
tive of the energy with respect to the coefficients, ¢, ; and setting it equal to zero.
As with any function, this will determine the minimum of the function (or in some
cases the maximum). The Hartree-Fock equations are the result of performing this
operation on the energy expression while requiring that the set of orbitals remain
orthonormal, i.e. orthogonal to one another and normalized. By representing our
molecular orbitals in the HF equations using the LCAO approach, we obtain the

Roothaan-Hall equations?®!? which is commonly expressed as
FC =SCE (1.70)

where F, C, S, and E are the Fock matrix, the coefficient matrix, the overlap
matrix, and the energy matrix, respectively. The energy matrix, F, is a diagonal
matrix in which the diagonal elements correspond to the energies of the molecular
orbitals, ¢;. The form of each of the remaining matrices will be discussed in the
coming paragraphs.

The Fock matrix, F, is a K x K matrix comprised of elements, F),, which are
given by

K K
Fu =HZ®+ ) > Pal(uv|ro) = 3(uA|vo)]] (1.71)

A=1 o=1

where H 7 is an element of the core Hamiltonian matrix which are calculated from

o = / 6 () FI%6, (1) (1.72)
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In this equation, %" is the core Hamiltonian operator that was defined in equation
(1.32).

The overlap matrix, S, is another K x K matrix where the elements S, (i.e. the
diagonal elements) are equal to unity. As the name suggests, it measures the level of
overlap between two basis functions. The emphasis on basis functions is important,
as were these molecular orbitals, S would be equal to the identity matrix due to
the requirement that the MOs be an orthonormal set. The elements of the overlap

matrix are determined from'!

Sy = / 07 (r)6 (1) dr (1.73)

Finally, the coefficient matrix, C, details the contribution of each atomic orbital
or basis function to the molecular orbitals of the system. In this matrix, the rows
describe the basis functions, while the columns represent the molecular orbitals.

For instance, in the following matrix for a chemical system with K basis functions

Ciq1 C2 -+ CLK
Co1 C22 -+ CK

C = (1.74)
Ck1 Ck2 ' CKK

21 1is the coefficient describing how much of basis function 2, ¢,, contributes to
molecular orbital 1, ¢, while ¢; » would describe how much of basis function 2, ¢,

contributes to molecular orbital 2, 1.
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While the Roothaan-Hall equations appear to be a simple eigenvalue problem,
the Fock matrix is dependent on its own eigenfunctions, and thus, this problem
must be solved iteratively. This process is known as a self-consistent field model
as the process is continued iteratively until the the orbital energies converge, or
become self-consistent.

In the self-consistent field method, the first step involves the transformation of
the overlap matrix, S, into the identity matrix, 1. There are a few different ways to
achieve this which are described by Szabo and Ostlund,* but the approach that will
be covered here is that of symmetrical orthogonalization. This involves taking the
inverse square root of the overlap matrix, denoted by §~'/2, but is often represented

as X. X is defined such that

XTS§X =1 (1.75)

where X7 is the conjugate transpose of X . Using this new matrix, X7, it is multi-

plied on the left of the Roothaan-hall equations to give

X'FC = XTSCE (1.76)

Taking advantage of the fact that a matrix multiplied by its inverse is equal to the

identity matrix, as summarized below,

XX 1'=1 (1.77)

we can insert this anywhere in equation (1.76]) without changing either side of the
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equation. By multiplying F and S in (1.76)on the right by X X ! gives

[XTFX)(X™'C)=XTSX(X'C)E (1.78)

By applying the property of X described in (1.75)), this can be simplified to

[XTFX](X'C)=(X"'C)E (1.79)

Introducing two new matrices, F’ and C’, which are defined by the terms in square

and round brackets, respectively, this equation simplifies further to

F'C'=C'E (1.80)

Using this new form of the Roothaan-Hall equations, the new pseudo-coefficient
matrix, C’ as well as the energy matrix, can be determined through the diagonal-
ization of F'. C' and FE are then the eigenvectors and eigenvalues, respectively, of
the diagonalized F’ matrix.

As noted previously, C’, is not the true MO coefficient matrix. As C’ is deter-
mined from

c'=X'C (1.81)

The new coefficient matrix, C, is then determined by multiplying this equation by
X on the left as follows:

X C' = Chew (1.82)
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This new set of coefficients can then be used to calculate a new Fock matrix, F,

which in turn is used to calculate another new set of coefficients. This process is

repeated until the new coefficients are identical to the previous set within a specified

level of convergence. Thus, in summary, the SCF method consists of the following

procedure®!:

1.

10.

Choose an appropriate set of atomic orbitals
Calculate all required integrals for S,,,, H)%, (uv|Ao), and (uA|ov)

Determine the inverse square root of the overlap matrix, X

Obtain a “guess" at the molecular orbital coefficients to determine C

. Use C to calculate P,, using equation (1.56)

Obtain the Fock matrix, from equation (|1.71]

Calculate the transformed Fock matrix, F/, from F' = XTFX

Diagonalize F’ to determine C’ and FE

Calculate the new coefficient matrix, C\, from equation (1.82)

Repeat steps 5-9 until adequate convergence is achieved

The first step of this process requires the choice of an appropriate set of atomic or-

bitals. These atomic orbitals or basis functions will be discussed in a later section.

In the fourth step, a coefficient matrix must be constructed from a “guess". There
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are a number of different ways in which to make this guess but they will not be dis-
cussed herein. Many different types of guesses are available in the various different

quantum chemical software packages.2%*%2

1.8 Unrestricted Hartree-Fock Theory

The discussion regarding Hartree-Fock theory thus far has focused on closed-shell
systems (i.e. systems with no unpaired electrons). This is referred to as the re-
stricted HF method (RHF). For systems with unpaired electrons, such as radicals,
transition metal complexes, or excited states, this type of analysis does not generally
apply.

Earlier in this chapter, we discussed the difference between spin, , and spatial,
1, orbitals. Spin orbitals contain a single electron while spatial orbitals contain
two-electrons with differing spin components. The unrestricted HF method (UHF)
does not restrict a pair of electrons to be contained within the same spatial orbital.
Instead, each spin orbital contains a single electron and are not restricted to be
localized in the same region of space. Consider the example of an H, molecule.™!
At small internuclear distances, the two electrons in the system are likely interact-
ing with both nuclei and form a covalent bond between the two hydrogen atoms.
For this system, the RHF model is completely accurate; however, as the distance
between the two nuclei increases, this description becomes less and less accurate,
which demonstrates the importance of the UHF model, not only for systems with

unpaired electrons, but those that would behave as such.
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The differences between the RHF and UHF methods can be explained by

7

¥ (r)a(w)

x(x) = or (1.83)

Yo(r)B(w)

\

In the RHF model, it is required that 1*(r) = ¢°(r); however, this restriction is not
imposed under UHF theory. This is possible by not restricting the contributions of
each basis function, ¢, to be the same for the 1® and «? orbitals. This leads to a
new form of the Roothaan-Hall equations known as the Pople-Nesbet equations4®
which are expressed as

FeC* = S*C*E*~ (1.84)

FBCP = SPCPE®” (1.85)

These equation are interdependent as the «-Fock matrix, F* depends on the set of
¥ and vice-versa. In the event of a closed-shell system at or near the equilibrium
geometry, the sets of coefficients, C® and C?, would be equal and this method
would yield the same answer as the RHF method.

An alternative to the UHF method for open-shell systems is the restricted open-
shell HF (ROHF) method?* which employs doubly occupied spatial orbitals where
possible before using singly occupied spin orbitals for any unpaired electrons. This
approach is far less common than the UHF method due to its more complicated

nature and lesser accuracy.®
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1.9 Basis Sets

With the HF energy now expressed in terms of basis functions or atomic orbitals, a
brief overview of basis sets and the basis functions they contain is necessary. From
the Schrodinger equation solution for the hydrogen atom, it would appear that
Slater orbitals would be a wise choice for basis functions for any atom. A Slater

type orbital (STO)*” is defined as

FOr) = (= Ay — A" (= — Ae oA (1.86)

where |r — A| = /(z — A,)? + (y — 4,)%> + (= — A,)? describes the position of an
electron with respect to the nucleus, « is the Slater exponent which controls the
breadth of its distribution, and the set of /, m, and n are the angular momenta in
the z, y, and z directions, respectively. The sum of /, m, and n are equal to the
orbital angular momentum which defines the shape of the orbital.

While Slater orbitals are very convenient to work with as results tend to con-
verge with fewer numbers of Slater orbitals, they are very difficult to integrate.™
This difficulty has led to Slater orbitals being used very rarely in computational
chemistry and has led to the use of other types of basis functions. The most com-
monly used type for chemical systems are Gaussian functions. These Gaussian type

orbitals (GTOs)?® are defined very similarly to STOs and are expressed as

TO(r) = (2 — A,)!(y — A" (= — Ao oA (1.87)
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The main issue with GTOs is that it takes many Gaussian functions to approximate a
single Slater function, which leads to the need to utilize far more Gaussian orbitals
to construct molecular orbitals.*! This increase in the number of atomic orbitals
leads to increases in computational time. However, the added expense of more
atomic orbitals is less than the cost of the integral calculations involving Slater
orbitals.

As [, m, and n control the angular momentum, these are specified for different

types of orbitals. For example

Table 1.2: Angular momenta

,m,n) Atomic Orbital Designation
(0,0,0) S

(1,0,0) Pz

(0,1,0) Py

(0,0,1) p-

(2,0,0) d,»

Thus, the only unknown quantity in the definition of the GTOs is the . Fortunately,
there are many basis sets in the literature that have predefined values of « for
different orbital types of various different atoms. While some basis sets are designed
for all atoms on the periodic table, others are more specific to the more commonly

used elements or for a group of atoms for which the basis set was intended.

1.9.1 Minimal Basis Sets

The smallest basis sets, which utilize a single basis function per atomic orbital in the
given atom, are known as minimal basis sets. Thus, a basis set for hydrogen and

helium would contain a single basis function to approximate the 1s orbital. Any
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element from Li to Ne would use a set of 5 basis functions, one for each of the 1s,
2s, 2p,, 2p,, and 2p, atomic orbitals. While these types of basis sets are quite rare,
contracted minimal basis sets are used on occasion. In a contracted minimal basis
set, a contracted set of Gaussian orbitals is used to approximate a single atomic
orbital. For the H, molecule, we have two atomic orbitals, so a minimal basis set
would require two basis functions. This can be achieved using the STO-3G basis set
byl

5" = iy + da ™0 + dyo§™ (1.88)

where d; are the contraction coefficients and are predefined. The molecular orbital

would then be given by

Y = ¢1,07"" + c2,, 05" (1.89)

Thus, while the molecular orbital technically only consists of two basis functions
with weighting coefficients requiring optimization, each basis function is comprised
of 3 Gaussian functions with predefined contraction coefficients. The STO-nG basis

20722 ywhere n

sets are incorporated into most quantum chemical software packages
denotes the number of contracted Gaussians that are used to describe each atomic

orbital. However, due to their minimal nature, they leave significant room for im-

provement.

1.9.2 Split-Valence Basis Sets

As core orbitals are not often involved in any interesting chemistry, when computa-

tional cost is a concern it seems reasonable to want to describe valence orbitals with
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more accuracy than those in the core. This can be achieved using a split valence
basis set.! Examples of these would be the Pople basis sets, X-YZG, or X-YZWG. X-
YZG bases are known as split-valence double-zeta basis sets and X-YZWG are known
as split valence triple-zeta basis sets, etc. To describe how these bases work, an X-
YZG basis set (e.g. 3-21G) would utilize a contracted set of X Gaussian primitives
to describe each core orbital. It would then use a contracted set of Y GTOs and a
contracted set of Z GTOs to describe each valence orbital. These Pople basis sets
are among the most commonly used basis sets in quantum chemical software pack-
ages. There are ways to improve these basis sets further through the addition of
polarization and diffuse functions that will be discussed in the next section.

In addition to the Pople basis sets, there are numerous other split valence basis
sets. These include the cc-pVXZ set developed by Dunning and coworkers,27=0 the
SVP, TZP, and QZP bases from Alrichs,*! and the pc-n sets developed by Jensen et

al.,®23% to only name a few.

1.9.3 Polarization and Diffuse Functions

As the exact form of molecular orbitals is not known, it is common to add func-
tions of higher angular momentum to increase the flexibility of the basis set.® For
instance, for a molecule such as methane, CH,, one could add a set of d-orbitals
to the basis set despite neither carbon nor hydrogen possessing occupied d-orbitals.
These orbitals of higher angular momentum are known as polarization functions
and are denoted in a few different ways. For polarization functions, it is common

to treat heavy and light atoms differently. Light atoms refer to those in period 1 of
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the periodic table (i.e. H and He), while heavy atoms refer to any other element
on the periodic table. We previously discussed split valence basis sets of the form
X-YZWG. One of the most common triple-zeta basis sets is the 6-311G basis. Adding

polarization functions to this basis set can be expressed in a few different forms.

Heavy Atoms Light Atoms
6-311G(d,p) 1setofd 1setof p
6-311G** 1set of d 1setof p
6-311G(d) 1 setofd None
6-311G* 1 set of d None
6-311G(3df,2pd) 3setsofd + 1setof f 2 sets of p and 1 set of d

While newer literature tends to favour notations using letters specifying the
types of polarization functions added, the asterisk notation may be observed in
some older literature.® Any time that a single asterisk, or a single letter (or set of
letters) are used in this notation, this means that the specified functions are added
to heavy atoms and no additions are made to the light atoms in the system.

When adding polarization functions to a specific atom, they are always added in
sets. Thus, the addition of a set of p-orbitals requires the addition of a p,, a p,, and
a p, orbital. While this may not seem noteworthy as it is what one might expect,
the d-orbitals are slightly different. In chemistry undergraduate courses, students
typically deal with a set of 5 d-orbitals, (d.2, d,2_,2, d,y, d,., and d,.); however, in
computational chemistry, we most often deal with a total of 6 d-orbitals, obtained
from every Cartesian combination (i.e. d,2, d,2, d.2, dyy, d,, and d,..). Similarly, for
f-orbitals, theorists typically deal with all 10 Cartesian f-orbitals as opposed to the

set of 7 that are dealt with in experimental chemistry.®
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Diffuse functions are simply basis functions that have small exponents, «.*? This
small exponent causes the the distribution of the function to be very wide, or dif-
fuse. This feature makes diffuse functions useful for conjugated systems or more
importantly, anions.

The notation for diffuse functions is dealt with much in the same way as polar-
ization functions. One can add diffuse functions to both heavy and light atoms, or
just to the heavy atoms. However, there is not as much flexibility in the addition of
diffuse functions. In the case of the 6-311G basis set, one could add a set of diffuse
functions to both the heavy and light atoms to yield the 6-311+ +G basis or simply
to the heavy atoms in the case of the 6-311+G basis. A diffuse s-orbital and a set of
diffuse p-orbitals are added to every heavy atom in the molecule, whereas a single

diffuse s-orbital is added to each and every light atom in the system.

1.10 Correlated Methods

While the HF method typically determines absolute electronic energies to within 1%
of the exact answer, that error is typically very important when it comes to the de-
termination of any property of chemical reactions. Thus, trying to draw meaningful
results from HF calculations is naive.

The main issue with the Hartree-Fock method lies in its neglect of what is re-
ferred to as Coulombic electron correlation. In essence, the HF method treats
electron-electron interactions in an overly simplistic manner. An electron under
the HF model does not ‘see’ the other electrons in the system, but instead, an av-

erage distribution of charge from the remaining electrons in the system. Based on
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the Lowdin definition,*® this Coulombic electron correlation energy, £, or simply

electron correlation energy is defined as:

ET = Eexact - ECHEI:S (190)

where Efig refers to the energy obtained from a HF calculation using a Complete
Basis Set (or infinite basis set) and Fey.( is the exact non-relativistic energy.

A significant portion of the field of quantum chemistry is dedicated to the de-
velopment of different methods to accurately determine this correlation energy.®
Much like mathematicians strive to determine the most decimal points of 7, com-
putational chemists strive for accurately determining the energy of the He atom.

There are two separate approaches to determine the correlation energy: implicit
methods and explicit methods.® Explicit methods actually contain terms involving
the distance between an electron pair, 75, but are far less common for molecules.
Implicit models are the only ones that will be discussed herein. Within implicit
models, there are two separate approaches: Post Hartree-Fock Methods and Density
Functional Theory (DFT). DFT was the only correlated method used throughout this

thesis and will be discussed in far more detail than the Post HF methods.

1.10.1 Post HF Methods

As the name suggests, Post Hartree-Fock methods use the HF wavefunction and
add corrections to it to try and determine the correlation energy. There are numer-

ous Post HF methods, but the most commonly used are Mgller-Plesset Perturbation
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Theory (MPPT),*? Configuration Interaction (CI),* and Coupled Cluster (CC) The-

41

ory.

Each of these methods add components to the HF wavefunction by considering
different configurations of electrons in the occupied and unoccupied (or virtual)
orbitals. The main difference between these methods is how these other configura-
tions are determined.

CCSD(T) which refers to Coupled Cluster Singles, Doubles, and iterative Triples,
is regarded as the gold standard in computational chemistry and is used in Chapter
4 as a reference for the exact energy. Singles, doubles, and triples simply refers to

how many electrons are excited to the virtual orbitals in each added configuration.

1.10.2 Density Functional Theory

Unlike the Post HF methods, density functional theory does not use the Hartree-
Fock wavefunction; in fact, it doesn’t use a wavefunction at all.® DFT, instead, uses
only the electron density, p(r), which is a 3-variable function (r = (r,,7,,7,)) as
opposed to the 4N variables involved in the wavefunction, ¥V (x1, 2, ..., Ty).
Hohenberg and Kohn demonstrated that the exact ground state energy of a sys-
tem, and thus, numerous other properties, can be determined from the electron
density, p(r).%# This raises the question of why anyone would ever deal with the far
more complicated V(x, @2, ...,xy) if p(r) can tell us the same information. The
answer lies in the fact that while Hohenberg and Kohn demonstrated that the exact
energy can be determined from p(r), no one has yet to determine how. For this

reason, there are numerous different DFT methods that have been developed over

40



the years in an attempt to accurately describe chemical systems. This section will
describe the evolution of DFT from its Hohenberg and Kohn origins to where it is
today.

Before we get into the math of DFT, let us first consider the name. As previously
mentioned, DFT is a theory that deals with the density, p(r). But what is a func-
tional? Much like a function, a functional takes an input and outputs a number.
However, while functions take a variable, z, as an input (i.e. f(z)), a functional,
F[f(z)], takes a function, f(x), as an input in order to output a number. The square
brackets denote a functional relationship. In the case of DFT, the input function is
the electron density.

Much like in the case of HF theory, the DFT electronic energy (under the Born-
Oppenheimer approximation'?) can be broken down into three components as

shown®

A~

Eolpo) = (T[po]) + (Venlpo]) + (Veelpo]) (1.91)

where <T>, (Ven), and (Vee) are the expectation values of the kinetic energy, electron-
nuclear attraction, and electron repulsion operators, respectively. The subscript 0,
denotes that these refer to properties of the ground state. Each of these components
of the energy, much like the total energy, are functionals of the ground state electron
density, po(r).

The electron-nuclear attraction component is easily expressed in terms of the

density. This operator is often expressed in terms of the external potential, v(r;), as
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follows®

N
Vo = Z v(r;) (1.92)
i—1
where v(r;) is given by
2z
v(r) =—>_ T—A (1.93)
A—q o

The electron-nuclear attraction energy is then given by

Vonlpal) = (0] Y ()|} = [ pu(rv(r)ar (194)

where the indistinguishable nature of electrons allows for the simplification of ex-
pression to the final integral form. Using this new definition, we can rewrite the

electronic DFT energy as

&wzjﬂwwmw+@mwu%mn (1.95)

Here is where the problems with DFT begin. While we have a simple functional
for the electron-nuclear attraction term, there are not simple forms for the kinetic
energy and electron repulsion components. In 1965, Kohn and Sham devised a
method, now known as the Kohn-Sham (KS) method or Kohn-Sham DFT, to de-
termine the electron density, py, without first having a wavefunction, and how to
determine the energy from that density.*® In theory, KS DFT is exact; however, the

unknown exchange-correlation functionals prevent this exactness.
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KS DFT is developed around a reference system of non-interacting electrons
that move throughout the external potential, v,.;(r).® The external potential for
the reference system is defined such that the electron density for the reference,
pref(T), 1S equal to the exact ground state density, po(r). As the electrons do not

interact with one another in the reference system, the Hamiltonian is given by

N N

N 1 ~
Her = Z |:_§Vz2 + Vref(ri>:| = Z hfs (1.96)

i=1 =1

where 1K represents the one-electron Kohn-Sham Hamiltonian and is given by the
terms in square brackets above. Much like the Hartree-Fock equations that were
described previously, the spatial KS orbitals, ¢X5, are the eigenfunctions of the very

similar, Kohn-Sham equations*:
Y = ey (1.97)

In this equation, as before, ¢;, represents the energy of the i molecular orbital. But
unlike HF theory, KS orbital energies do not signify the amount of energy required
to remove an electron from that orbital. These values are essentially meaningless.
The physical significance of the orbitals themselves has been debated, but there is
significant evidence demonstrating their utility, especially considering how similar
they are to those obtained from the HF method.

Based on equation (1.95), (T[po]) and (V..[po]) still need to be determined in

order to find the DFT energy. From the reference system, Kohn and Sham defined
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these values as

(Tpo]) = (Tretlpo]) + A(T[po)) (1.98)
Vee[pol) = (Veeretlpol) + A(Veelpo)) (1.99)

This equation states that the exact energy component is that of the reference system,
(Aret[po]), plus some small correction for electron correlation, A(A[po]). Substituting

these definitions into equation (1.95) gives

E()[po] = /pO( ) ( )d’l" + < ref[p0]> + < Aee,ref[p0]> + A<T[,00]> + A(Vee[poD (1100)

These two corrections for electron correlation are typically combined into one term,

known as the exchange-correlation energy, E,.[po]. This simplifies (1.100)) to

Eolpo] = / po(r)v(r)dr + (Tre[po]) + (Veeretlpo]) + Erelpo] (1.101)

As the name suggests, this term contains corrections for not only correlation, but
also exchange energy (which stems from the antisymmetric wavefunction) and any
kinetic energy not accounted for in a system of non-interacting electrons.

In equation (1.101)), there remain 3 components that are unknown. To define
the first, (Tie¢[po]), the kinetic energy for the reference system, we must first define

the electron density in terms of the KS orbitals, 1/X5:
IOO(T) = N< ref|6(r -7 |\Ilref Z WJKS 2 (1102)
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where §(z) is the Dirac delta function and V., is the “wavefunction” for the refer-

ence. Wavefunction is in quotations as DFT does not deal with a wavefunction.
From this definition of the ground state electron density, the kinetic energy can

now be determined. Realizing that much like HF, the KS “wavefunction" is a single

Slater determinant, (T}e¢[po]) can be described by

N
(Tretlpo]) = =5 (Wref Z Vi Wrer) = Z<w§S<1>|V%rw§S<1>> (1.103)

=1

The second term, <Vee,ref[p0]>, can be defined with respect to the density itself
based on the classical equation for repulsion in an averaged electric field. This is
given by

(Vo repo]) = = / Poro)o(a) 4. gy, (1.104)

2 12

Using these new definitions for the kinetic and electron repulsion energies for

the reference system, equation (1.101)) can be rewritten as

1 N
Bl = [ mirvtride =5 SO HE0)
1
+5 / dedrz + Euelpo] (1.105)

or using the definition of the external potential, as

N

S W)

=1

M
_ZZA
A=1

+ % / Mdrldm + E:cc[pO] (1.106)
12
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The only remaining component to the energy is F,.[p]. The exact form of
this functional is not known and this is the reason why there are countless DFT
methods that have been developed over the years. There have been numerous
approaches proposed to accurately determine E,.[p], with the B3LYP functional**
being amongst the most popular. The difficulty in DFT is that there is no systematic
way to improve the accuracy as there is going from HF theory to a post-HF method.
While one functional may work very well for a certain class of compounds, it may
fail spectacularly for a different class. For this reason, DFT benchmark studies are
very common to determine the best functional for a specific class of molecules for
which accurate energies are known.® In this way, the top performing methods can
then be applied to other molecules of that class for which energies or other prop-
erties are not known. For a good review of the existing functionals, the reader
can consult the cited reviews.**” The remainder of this chapter will focus on the
different types of functionals that have been developed.

One of the first models used for the exchange-correlation functional was the
Local Density Approximation (LDA) method. The LDA model is based on the theory
of the uniform electron gas in which the charge density is equivalent at all points
throughout the gas. Hohenberg and Kohn showed that for a system, such as where

the electron density changes slowly with position, that E£P4[p,] is equal to42

ELPpo] = / po(T)e[po]dr (1.107)

where ¢,. is the exchange-correlation energy density of each electron in a uniform
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electron gas with density, po. This energy is typically broken up into separate ex-

change and correlation components as such

Exelpo] = €z[po] + &c[po] (1.108)

A very simple form exists for the exchange component and it is given by

1/3
Exlpo] = 3 (ﬁ) po(r)/3 (1.109)

For the LDA method, the correlation component is far more complicated. It was

developed by Vosko, Wilk, and Nusair, and is denoted by ¢V"¥ 48 [ts functional

C

form is as follows:®

A 2 b
e "N po] = Bl [111 (Xa;x)) + 2atam_1 (21’%— b)

ci (n () ¢ g e (5%)] aa

which consists of the following set of definitions:

3 1/6
r=|——— , X(x) =2* +br +c, = (4¢ — b*)'/?
(WO(T)) (x) Q= (de— 1)

A =0.0621814, xo = —0.409826, b= 13.0720, c=42.7T198 (1.111)

As seen here, the expression for ¢, is far from trivial. Both ¢, and ¢. are negative

numbers; however, ¢, is typically much larger than ¢.. This fact is exploited by the
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Xa method which omits the correlation component and scales the exchange energy
by a factor, «, to account for this omission. While the correlation component is
smaller than exchange, it is highly important as highlighted by the accuracy of the
HF method. Further, it is not easily captured by scaling the exchange component.
For this reason, the Xa method is rarely used today.

While the LDA model accurately describes metallic and carbon networks where
the electron density does not change rapidly through space, it performs quite poorly
for many other systems. Far more common are the functionals that use the gener-
alized gradient approximation in full (GGA) or in part (meta GGA, hybrid GGA,
hybrid meta GGA).

Unlike the LDA method, GGA methods are also concerned with changes in the
electron density. For this reason, they are not only functionals of the density, but
also of the gradient of the density, Vpo(r). Much like there exists restricted and
unrestricted Hartree-Fock calculations, analogous treatments are available in DFT.
Many GGA functionals are expressed in terms of an unrestricted treatment and thus
involve the density for each of the o and § electrons (p(r) and pf(r)). Thus, the

general expression for the exchange-correlation energy for a GGA method is®

ESEA00), p0) = /f[pé‘“(r%pg(r),vf)%(?“),Vpg(?“)}d'r (1.112)

where f is a functional of the listed functions. The actual functional form varies
depending on which GGA method is used. Some of the more accurate exchange

functions have been developed by Becke*?*" as well as Perdew and Wang>*°2. For
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instance, the B88 (also referred to as Bx88 and simply B) exchange functional has

the form42=0

EBSS[pa pﬁ] — ELSDA —b Z / (pg)4/3¢g d'f' (1.113)
e b bl = B2 2 [ TG00, log T (62 7

where b is an empirical parameter equal to 0.0042 atomic units and

_ Vet

1.114
IO (114

Do

The functional also contains the exchange energy from the LSDA method, ELP4
which is the unrestricted version of the LDA method.® The energy expression is
similar to that in (1.109). Purists tend to dislike the use of an empirical parameter
in this functional; however, most commonly used functionals currently contain a
number of empirical parameters.

As for the correlation functional, one of the most commonly used in GGA meth-
ods is the LYP functional which was developed by Lee, Yang, and Parr.*>** Others
include the Pc86°>¢ and PWc91 (more commonly denoted simply as PW91), where
P and W, once again, denote Perdew and Wang.># In theory, one can combine any
exchange functional with any correlation functional; however, in practice there are
common combinations that are used and these are incorporated into many quantum
chemical software packages.??*%2 To name a given DFT method, the name of the ex-
change functional is typically combined with that of the correlation functional. For

instance, a calculation that used the B88 or B exchange functional and the LYP ex-
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change functional would be referred to as a B8SLYP or, more commonly, a BLYP
calculation.

In an attempt to improve upon GGA functionals, meta-GGA functionals were
created. In addition to the gradient of the density, these functionals incorporate the
second derivatives of p, and/or something referred to as the kinetic energy density,

7,. This property is defined as
— —Z|V0KS c=a,f (1.115)

where 6% is a KS spin orbital. The kinetic energy density can be incorporated
into the exchange and/or correlation functional. A commonly utilized meta-GGA
correlation functional is Becke’s B95°7 which again, contains empirical parameters.

The final common type of functionals are the hybrid functionals.®® There are
hybrid GGA and hybrid meta-GGA functionals. These hybrids contain components
from either hybrid GGA or meta-GGA functionals as well as from Hartree-Fock.
Specifically, the exchange energy is borrowed from Hartree-Fock. This is commonly
referred to as the exact exchange energy, EE¥, For hybrid functionals, it is defined

in terms of the KS orbitals

EExact

> > 2) |t [0S (1) (2) (1.116)

i=1 j=1

»-lkl>—‘

B3LYP, as previously noted, is by far the most commonly used functional in

existence.4 The method has been cited in the literature over 50,000 times since its
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development in the early 1990s. The exchange correlation energy for the B3LYP

method is given by®

EPY = (1—ag—a,) EfSP 4 +ag B+ a, EP* + (1—a) EY Y +a, EFYP (1.117)

The 3 in B3LYP corresponds to the 3 empirical parameters included in the expres-
sion, ap = 0.20, a, = 0.72, and a. = 0.81. The remaining components of this
equation have already been discussed earlier in this section.

As discussed, there is no functional that works better than all others. While hy-
brid methods tend to be more accurate than meta-GGA and GGA methods which
tend to be better than the LDA method, this is not universally true. Benchmark
studies for DFT are essential to determine which functional will work well on the
class of molecules of interest. Throughout this thesis, for the purposes of accu-
racy, specific functionals were chosen for different applications based on previously

conducted benchmark studies.

1.11 Electron Pair Descriptors

While Hohenberg and Kohn demonstrated that all properties could be determined
from py, determining properties regarding electron pairs from a function that only

deals with a single electron is far from trivial.*2
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Remember from earlier that the electron density can be obtained from the wave-

function by
p(r) = N/ U (zy, To, X3, . .., zn)|[*ds dxades . .. deN (1.118)

Why not, instead, integrate over all but two electron position vectors, r; and ry?
This way, we obtain a function of two-electrons where extracting electron pair in-
formation is far simpler. This function, known as the pair density, p(r1, 72), is given

by®
N(N —1
p(ry,ra) = % / (U (xy1, To, X3, ..., zN)|[*ds dsydes . .. dzy (1.119)

where N(N — 1)/2 represents the number of pairs of electrons in the system. To
rationalize this, consider the binomial coefficient or the permutation formula:

() n! _ (N _N(N—l)
WP = (k) - conP = (2> = —5 (1.120)

Unfortunately, the pair density, while far simpler than the wavefunction, is still too
complex for visual representation. This suggests the need to simplify this function
further. Consider the important properties of electron pairs. Things that come to
mind are their separation, the position of their centre-of-mass, their relative veloci-
ties, etc. What do each of these properties have in common? They are all dependent

on single scalar quantities that encompass electron pair information.
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1.11.1 Intracules

Intracules represent a specific type of simplification of the pair density. They are
probability densities that describe relative properties of electron pairs. For the pur-
pose of this discussion, we will focus on 3 types of intracules: position, momentum,

and posmom.
Position Intracule, P(u)

Let us first consider the easiest to conceptualize, the position intracule.*® The po-
sition intracule, denoted as P(u), describes the probability that any two electrons
in a system will be separated by a distance u = |r; — r3|. The importance is of this
function is obvious in that it describes interelectronic separations which are at the

heart of repulsion between electrons. P(u) can be obtained from the pair density as
P(u) = /p(rl,r2)5(u — |T’1 — T2|)d7’1d’l"2dQu (1121)

Herein, (2, denotes the angular components of w and (x) is the 1-dimensional
Dirac delta function. This function is equal to zero everywhere except x = 0. Fur-

thermore, the following equality holds true for é(x):
/ d(z)dx =1 (1.122)

This acts to define this new variable, u, as zero everywhere except where it is equal

to separation between the two electron position vectors, r; and r,.
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Figure 1.2: Position intracule for the ground state of a) the He atom, and b) the
methane molecule.

Figure depicts the position intracules for the ground states of the helium
atom (left) and the methane molecule (right), both calculated at the HF level of
theory. For helium, P(u) is a simple unimodal distribution with a maximum at
around 1.0 bohr or 0.53 A. For a system as simple as helium with only 2 electrons,
interpretation of P(u) is rather simple as the function is describing the only electron
pair in the system.

Considering the methane example now, one can see that the distribution is more
complicated. While there is still a clear trend of an increased likelihood of electrons
being further apart until a separation of approximately 2.2 bohr (1.16 A), after
which the probability decreases, it is a bimodal function. What leads to this much
more complicated nature? Consider how many pairs of electrons exist in methane.
As previously discussed when discussing the number of electron-electron interaction
terms, any N electron system has N(N — 1)/2 different pairs of electrons. For
methane, a 10-electron system, this equates to 45 different pairs of electrons that

are being described by P(u) which explains why the function is more complex. The
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issue with considering so many pairs of electrons is that some valuable information
can be lost in all of the data. This is one of the main focuses of the present research
and will be discussed further in the Project Goals section.

Of all probability distributions that describe electron pairs, the position intracule
is the most studied. The reason for this is its inherent association to electron repul-
sion energies. In fact, the two-electron energy for any system is exactly determined
by

u

Eee:/lP(u)du (1.123)

Gill and co-workers have used the position intracule (amongst other types of
intracules) to study the effects of electron correlation.****% Intracule functional the-
ory, a two-electron analogue of density functional theory, attempts to extract the
correlation energy from an intracule by applying different correlation kernels. The
effects of correlation will not be considered in great depth herein; however, previ-

ous research in the Pearson group has focussed on this.>°

Momentum Intracule, M (v)

Thus far, the discussion in this chapter has focussed on position space. However,
one can just as easily consider momentum space. Analogous to the pair density
which describes the probability of finding electron 1 at r; and electron 2 at 75,
the two-electron momentum density, 7(py, p2) describes the probability of finding

a pair of electrons with momenta p; and p., simultaneously. This is obtained from
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Figure 1.3: Momentum intracule for the ground state of a) the He atom, and b) the
methane molecule.

the momentum space wavefunction, ®(p1, p2, ps, . ..,pn) as follows:

7T<p17p2):/‘(I)(p17p27p37---apN)‘zdp3'--de (1.124)

The momentum space wavefunction, ®, is the Fourier transform of the position
space wavefunction, W. Again, as intracules deal with relative properties, we are
more interested in the scalar difference between p; and p, than the vectors them-

selves. The momentum intracule, M (v), then, is obtained by®’

M(v) = /W(p17p2)5(v — |p1 — p2|)dridrdQ, (1.125)

As before, the ground state momentum intracule of both the helium atom and
methane are shown above (Figure[1.3)). Unsurprisingly, the same type of behaviour
is seen as before where M (v) for the helium atom is a simple unimodal function
while that for methane is again, more complicated. In both cases, the probability of

the electrons having similar momenta is low as is the likelihood of v>5.
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Posmom Intracule, X ()

In the late 1990s, Rassolov suggested the importance of both u and v for proper
understanding of electron correlation energies.®® This problem was uniquely tack-
led by Bernard and Gill in their development of both the posmom density®®!
and the posmom intracule.r Posmom refers to the dot product of the position and
momentum vectors (for the posmom density) and their relative analogues (for the
posmom intracule). For the purposes of this discussion, we will only focus on the
intracule, X (z). The origin of the posmom intracule (and in theory, all intracules)
is the Wigner distribution.”? Violating the Heisenberg Uncertainty Principle,” the
Wigner distribution describes the simultaneous position and momentum of all elec-
trons in the system. Although forbidden by quantum mechanics, there is nothing
preventing the construction of this function, mathematically. It is determined from

¥ as follows:

W(Tla--'7TN7p17"-7pN) _/\I]*(Tl—i_qla-"?IrN—i_qN)

XxWU(ry —qu,..., TN — qN)ezi(pl'q1+"'+pN"m)dq1 ...dgn (1.126)

There are a few notes regarding the Wigner distribution that should be discussed
before proceeding further. First, it is not a true probability density as, although it
is a real function, it does contain negative regions. For this reason, it is commonly
referred to as a quasi-probability density. This does not, however, mean that it

cannot be used to generate useful functions. Simplification of the function can be
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achieved, as before, by averaging over all but a pair of electrons. This yields the

second order Wigner distribution, W (ry, 72, p1, p2), as

W(’l"l,’f'z,pl,p2) :/W('I‘l,...,TN,pl,...,pN)d’l“3...d’I°Ndp3...pN (1127)

An important property of this function to highlight is that it yields the exact pair

density and two-electron momentum density:
/W(T1>”'27P17P2)dp1dp2 = p(ry1,72) (1.128)

/W(Tl,""zapbpz)d?“ld?“z = 7(p1,P2) (1.129)

Hence, both P(u) and M (v) can be obtained exactly from the second order Wigner
distribution by substituting into and into (1.125)), respec-
tively.

This demonstrates that the second order Wigner distribution contains all of the
information that is present in both p(71,r2) and 7 (p1, p2). Analysis of said function
should thus, contain all information required for the posmom intracule, i.e. the dot
product of v and v. To transform this function into something with direction in-
formation regarding relative positions and momenta of electrons, W (ry, 72, p1, p2)

must first be transformed into the Omega intracule, Q(u, v,w), as follows:

Qu,v,w) :/W('rl,rz,pl,p2)5(u—7’12)5(7}—p12)5(w—Huv)drldrzdpldpz (1.130)
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The Omega intracule is the intracule from which all other intracules (with the
exception of the posmom intracule) are derived. The dot intracule, D(x), is a first

order approximation to the posmom intracule. It is easily obtained from the Omega

/ / (u, Z/“ Ol 2/1,9) 4 q,, (1.131)
uzsm

intracule by

where

Z=uv and T=U-v (1.132)
As for the Posmom intracule, X (z), it can be derived from the second order
density matrix, ps(rq, 7], 72, 75) as follows:

1 A
X(z) = %/pg(r,r +usinhk,r + we®, r + wcoshk)e*drdudk  (1.133)

However, when using the recurrence relation developed by Hollett and Gill (HG
RR)“4, it has been show to be much easier to calculate the Fourier space analogue

of X (x). The Fourier space density, X (k), is given by
X(k) = /pg(’l", r + usinhk,r + ue”, r + ucoshk)drdu (1.134)

From a quick comparison of equations ((1.133) and (1.134), it can be seen that
once X (k) is known, performing an inverse Fourier transform will yield X (z) as

shown below:

_ 1 Y ikx
_ 27T/X(k:)e dk (1.135)
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Figure 1.4: Posmom intracule for the ground state of the He atom in a) Cartesian
space, and b) Fourier space.

In Figure (1.4} both X (k) and X (z) are shown. These functions require more
in-depth analysis to determine what the information is describing. Figure be-
low shows the different combinations of magnitudes for « and v and how the angle
between them, w, affects the resulting dot product, . Nonetheless, the function
contains more information than either the position intracule or momentum intrac-
ule on their own, and could provide the basis for strong predictions of experimental

properties.
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Figure 1.5: Possible combinations of u, v, and w and the resulting values of z = u-v.
Adapted from the original version with permission from Molecular Physics."

1.11.2 Extracules

Unlike the family of intracules, extracules contain absolute information instead of
relative information. Whereas the position intracule describes the interelectronic
separation of the electron pair, which is essential in determining electronic repul-
sions, the same cannot be said for the position extracule. It is, perhaps, for this

reason that the family of extracules are far less studied than their intracular coun-
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terparts. Nonetheless, they do contain valuable and complementary information.
Throughout this research, there were 2 main types of extracules that were studied
and that will be discussed in depth in this section: the position extracule, F(R), and

the momentum extracule F(P).
Position Extracule, £(R)

The position extracule describes the probability that the centre-of-mass of an elec-
tron pair will be at a distance R from a predefined origin.”#”> For atomic systems,
this origin is typically defined as the nucleus, whereas for a molecular system, a
number of different points could be considered depending on why the system was

being studied. Much like P(u), F(R) can also be obtained from the pair density by
E(R) = /p(rl,rz)é(R — tr2lydpy dry dQp (1.136)

While in the case of interelectronic separations, the angle of the vector isn’t overly
informative, this is far from true in the case of the extracular coordinate, R. Thus,
in addition to the scalar version, E(R), the vectorized or 3-D form can also yield
important information F(R) and is perhaps even more useful. The 3-D extracule is
obtained by

E(R) = /p(rl,rz)é(R— ntr2)dry dry (1.137)
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Figure 1.6: a) Scalar, F(R), and b) vectorized, F(R), position extracules for the
ground state of HOF.

where ¢(x) is now the 3-dimensional Dirac delta function. If E(R) is known, E(R)

can be obtained through integration of the angular components of R as follows:
2m ™
E(R) = / / R?sinf E(R)dfd¢ (1.138)
0 0

To highlight the differences between F(R) and E(R), both were calculated for the
ground state of HOF and are shown in Figure This molecule was chosen as it is
one of the simplest asymmetric molecules with more than one bond. Atomic systems
as well as those displaying high symmetry around the origin would not adequately
demonstrate the differences between the vectorized and scalar forms of the position
extracule. From F(R), it can be noted that that the most probable values of R are
1 and 2 bohr. While one could theorize which pairs of electrons would result in
these values for the electron centre-of-mass, the 3-D (or in this case, 2-D) position

extracule can shed some light on the situation. The benefit provided by E(R) only
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grows as the molecule gets larger and the number of electrons continues to increase.
Momentum Extracule, F(P)

The momentum extracule, F(P), is a probability density describing the average
momentum, P, of an electron pair.”° It can be obtained from the two-electron mo-
mentum density, 7(p1, p2), in a similar fashion to the momentum intracule. Instead,

we consider the Dirac delta function containing a descriptor for P as shown here:

E(P) = /7(191,P2)5(P— M)dpl dp, (1.139)

An example of E(P) is given below, again for the ground state of the helium atom
and methane. The average momenta, P, has a smaller global maximum in the case
of the larger methane molecule; however, due to the larger number of electron
pairs, the probability of higher values of P are still significant. In comparison to the
momentum extracule, the average momenta, P, displayed here are approximately

half of the value of the relative momenta, v, shown in Figure
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Figure 1.7: Momentum extracule for the ground state of a) the He atom, and b) the
methane molecule.
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1.12 Localized Molecular Orbitals

As previously noted, for systems with many pairs of electrons, it can be difficult
to extract all relevant pieces of information from the intracule or extracule for the
full molecule. While in theory, there are N (/N — 1)/2 pairs of electrons in a system,
chemists typically only care about specific pairs, namely the N/2 pairs representing
bonds, lone pairs, and to a lesser extent, core orbitals of the atoms within the
molecule.

How then can we consider these N /2 pairs instead of every possible permutation
of electrons in the system? The answer lies in the fact that the set of orbitals that
are obtained by solving the Hartree-Fock or Kohn-Sham equations are not a unique
solution. These orbitals are known as the canonical molecular orbitals, CMOs, and
are delocalized over the full system. For any single determinant method, of which
both HF and KS DFT are, a unitary transformation of the orbitals will not affect
the molecular wavefunction. Thus, there exist other representations for molecu-
lar orbitals that will not affect the properties of the molecule as a whole. As the
“wavefunctions" in these methods are based on a single determinant, let’s consider

a simple example. If, for a two electron system, the wavefunction, V is given by

U = = ad — bc (1.140)
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Now, consider what happens if column 2 is added to column 1 (i.e. redefining
orbital 1 as the sum of orbitals 1 and 2):

a+c c
U= =(a+c)d— (b+d)c=ad+cd — bc—cd = ad — be (1.141)

b+d d
While the molecular orbitals do change, the wavefunction remains the same. Al-
though this is an overly simplistic example that ignores corrections for normal-
ization, it does demonstrate the ability to utilize different representations for the
molecular orbitals without changing the properties of the system.

278 were the first to suggest a method by which a

Lennard-Jones and Pople
set of localized orbitals that represent chemically intuitive orbitals (i.e. bonds and

lone pairs) could be obtained. They noted that these orbitals could be obtained by

minimizing the interorbital repulsions that are described by

422/!@(m)\zr—y%(rz)!?drl dry (1.142)

i >t

The 4 accounts for the four different interorbital interactions that occur between
the electrons in a pair of orbitals.

This idea was considered by Edmiston and Ruedenberg (ER)” when they pre-
pared the first method for obtaining localized molecular orbitals (LMOs). Other
commonly used methods include that which was developed by Foster and Boys
(Boys)®” as well as the Pipek-Mezey (PM)®! method. A comparison of the CMOs

and LMOs of water is shown below in Figure
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Figure 1.8: A depiction of the a) CMOs, and b) LMOs for the water molecule. Core
orbitals are omitted.

Both of these methods tend to be much faster than the time-intensive ER method.
The Boys LMOs tend to be very similar to those obtained from the ER method. The
Boys method, unlike the ER method, is designed to maximize the squares of the
distance between the centroids of charge of the occupied LMOs. The centroid of
charge is defined as the point (z.,y.,2.) where each of these coordinates is defined

as

Te = (ilzlhs)  ye= (Wilylhs) 2o = (Wilz|) (1.143)

Thus, the interpretation of the centroid of charge is the average position of each
coordinate for the electron density of that orbital. If the distance between the
centroids of charge is described by d;;, the goal of the Boys localization method

is to maximize
N/2—1 N/2

D0 dip (1.144)

i=1  j>i
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Figure 1.9: A depiction of the LMOs of a) H,O, and b) HOF. Core orbitals are
omitted.

Both of these methods treat double and triple bonds in a non-intuitive fashion.
Instead of being comprised of o and = bond(s), both the Boys and ER LMOs predict
two (double bond) or three (triple bond) equivalent bonding LMOs that are equally
spaced from one another.”

For a more intuitive treatment of covalent bonds of order greater than 1, the
Pipek-Mezey method works quite well.® In the PM method, a double bond consists
of a o-bond LMO and a n-bond LMO. The main issue with the PM method is the
representation of lone pairs. Unlike what one would expect for a lone pair orbital,
those predicted by the PM method tend to resemble p-orbitals more than lone pairs.

One of the main benefits of LMOs is their transferability between different mole-
cules. While HOH and HOF both contain an OH bond (two in the case of water), the
set of molecular orbitals for these two molecules are significantly different. How-

ever, under the LMO representation, they are far more comparable (Figure [1.9).
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Thus, by using these LMOs in place of their delocalized counterparts, it affords the
opportunity to examine the effects on electron pair behaviour through the modifi-
cation of the surrounding chemical environment.

When Lennard-Jones and Pople first theorized the development of LMOs, they
discussed their potential to account for electron correlation. A set of LMOs should,
in theory, represent a minimum of interorbital correlation making the intraorbital
correlation the major component. LMOs are in fact utilized in a specific type of
MPPT*? calculations on larger molecules to speed up calculations.® Instead of using
the CMOs to generate the HF reference, LMOs are used instead.

In their seminal paper on the extracule density, Thakkar and Moore?> stated:

E(R) deals with all the N(N — 1)/2 electron pairs present in a N-electron
molecule, but the chemist usually is interested only in N/2 ‘chemical pairs’.
[. .. ] For RHF wavefunctions of systems with an even number of electrons,
perhaps the ‘chemical NSGs’ can simply be taken to be det|p;a; 3| where

the ¢; are localized molecular orbitals defined in one of the usual ways.

While this statement was made in the context of extracules, it applies equally to
any form of electron pair analysis. This approach of analyzing electronic structure
with respect to localized molecular orbitals was first explored in our lab using the

intracule density.®4#¢> and will be expanded upon greatly throughout this thesis.
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1.13 Project Goals

As previously alluded to, electron pair distributions can be rather difficult to in-
terpret for larger systems. This is caused by the vast number of electron pairs
(N(N —1)/2) in systems even as small as methane (N = 10 — 45 pairs of elec-
trons). This leads to potentially valuable information being lost in the immense
amount of electron pair data.

Also, since chemists typically only care about bonds, and lone pairs, why con-
sider every electron in the system? Why not consider a single pair of electrons?
For instance, how does the electron pair in an OH o-bond behave in the water
molecule? How does that compare to its behaviour in HOF, in MeOH, or in EtOH.
While this information wouldn’t be readily accessible in the full electron pair dis-
tribution as it would be lost in the sea of information, it can be easily accessed
by considering a single electron pair at a time. Due to the transferability of LMOs
between molecules, it makes for the comparison of certain types of bonds or lone
pairs between molecules trivial.

The goal of this thesis research was to provide a tool to answer these questions.
The idea was to develop a software package that was capable of calculating each
of the aforementioned electron pair distributions. This programming represents a
significant portion of the research; however, one that won’t be addressed in too
much detail in this thesis as it is not of great interest to the field. Instead, this
thesis will focus on the applications of this software package. While the potential

applications of the software will only continue to grow as future users have new,
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interesting questions that could be answered by this program, a few more general
examples of the applications will be provided throughout this thesis. Much of the
focus is on the underexplored position extracule density as previous work in the
Pearson lab has focused primarily on the position intracule.

Chapter 2 will highlight the basics of the code and how it can be used to cal-
culate these electron pair distributions (along with the User’s Manual provided in
Appendix A). Chapter 3 will present a broad overview of the potential applications
of the software package while Chapters 4-6 will highlight specific examples, some
of which were briefly addressed in Chapter 3. Finally, Chapter 7 will summarize the

work and provide a vision for the future applications of this work.

71



Chapter 2

SEPDA software package

As mentioned in Section 1.12, a significant part of this research was the develop-
ment of a software package capable of calculating intracules and extracules for a
single electron pair. This software package is available at https://j_pearsong@
bitbucket.org/aproud/sepda.git. The purpose of this chapter is to describe
the capabilities of the code and provide some details as to how it works. For more

details about how to use the program, the reader can consult Appendix A.

2.1 Capabilities

While the intended purpose of the SEPDA package is to calculate electron pair prop-
erties for a localized molecular orbital, there are numerous other electron pair rep-
resentations that can be considered. For instance, the natural bond orbital method
devised by Weinhold and coworkers is an alternative localization procedure devised
to provide the most accurate picture of a molecule based on the Lewis structure

model. These NBOs can be calculated using the NBO software package, or through
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the NBO add-on that is incorporated into more recent versions of the Gaussian soft-
ware package.

Similarly, while CMOs are not localized, they do represent a description for a
single electron pair. The SEPDA package is capable of dealing with all three types
of orbitals: LMOs, NBOs, and CMOs. The focus of the research presented in this
thesis, however, will be on the use of LMOs. CMOs present difficulty through their
delocalized nature while NBOs, though popular, do not always possess occupations

of 2.00 electrons.

2.2 Contents

SEPDA consists of three main components: the main code (sepda.csh), the main
fortran programs, and the fortran subroutines. Additional components include files
describing various predefined basis sets and numerous scripts in order to read in

this information. A summary of the program architecture is given in Figure

2.2.1 sepda.csh

The main program, sepda.csh, was written in C shell. A user prepares an input
file for the program (as described in Appendix A) to tell the program what type of
calculation is requested and where the necessary information for this calculation
can be found. For instance, this input file would specify what type of orbital to
analyze (LMO, NBO, or CMO), what type of electron pair density to calculate (P(u),
M(v), X(z), E(R), E(R), or E(P)), the basis set that was used, and where to find

the MO coefficients.
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input.inp

basisset.bas

v info.wfn + | MOcoefs.coef
sepda.csh (
N

info.tmp

~
—

basisreader.py

subroutine.f90

output.out

Figure 2.1: A general overview of the architecture of the SEPDA software package.

While it is most common to use pre-defined basis sets, a user has the flexibility
to define their own basis set if desired. This program requires the specification of
the basis set to determine whether it is pre-defined or user defined (BASIS=UD).
In the case of a user-defined basis set, the program searches the input file to verify
that the user did, in fact, provide a basis set definition (formatting is described in
Appendix A). Using either the definition provided by the user or the pre-defined
basis, this program can then verify that the number of basis functions expected is
equal to the number of basis functions described by the MO coefficients. This takes

into account any contraction of the basis sets and the contraction coefficients.
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As the formatting of the MO coefficients for LMOs, NBOs, and CMOs all differ
significantly, sepda.csh deals with each case separately and calls a script to read
in the coefficients storing them in a temporary file in the appropriate format for
reading by the main fortran program. All other necessary information is also copied
to this file including any information regarding the basis functions (type, center,
and exponent) as well as the coordinates of all atoms in the system.

Once all necessary information to calculate these electron pair distributions is
known, the program reads in information regarding the calculation itself. This
includes the type of calculation ((P(u), M(v), X(z), E(R), E(R), or E(P))), the
number of the molecular orbital of interest, and optional parameters regarding how
dense the grid is for the calculation and how far from the origin this grid should
extend.

Finally, using the information provided, sepda.csh calls the main fortran pro-

gram and provides the necessary inputs in order to do the required calculation.

2.2.2 Main Fortran Programs

The main fortran programs (posInt.f90, momInt.f90, posmomInt.f90, posExt.f90,
posvExt.f90, and momExt.f90) are based on earlier versions written by Zielinski®
and then by Mackenzie for the position intracule, P(u). For the purposes of this
discussion, this code will be referred to as main.f90.

Based on the information provided by sepda.csh, the appropriate variant of
main.f90 is called and supplied with information regarding the molecular orbitals.

This information is read into a single mega array. Earlier versions of the code uti-
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lized separate vectors/matrices for each piece of information. Comparisons were
conducted on timing for these two separate approaches, and it was determined that
small, but significant, enhancements were observed using the single mega array.
This approach was then utilized for all variants of main.f90.

After this information is collected in the mega array, the MO coefficients are nor-
malized except in the case of CMO coefficients which are output with normalization
already included.

As the recurrence relation for these electron pair distributions calculates more
than a single integral simultaneously, it is advantageous to have main.f90 break up
the required integrals into classes. For instance, there are 21 separate classes for

position space due to the 8-fold symmetry of the integrals:

[ssss] [psss] [ppss] [psps| [PPPs] [PPPP] [dsss]
[dpss] [dsps] [dsds| [ddss| [dpps] [dspp] [ddps]
[dpds] [ddds] [dppp] [ddpp] [dpdp] [dddp] [dddd]

In momentum space and combined posmom space, the 8-fold symmetry of posi-
tion space is reduced to 4-fold symmetry. This results in the introduction of 6 new
classes of integrals. Thus, in addition to the original 21 classes, the following 6

classes must be considered as well:

[pssp) dssp] [dssd] [dpsp] [dpsd] [dppd]

The number of s, p, and d type orbitals are determined based on the information

provided in the .WFN file. From this, the number of different sets of p and d orbitals
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can be determined. A single set of p type orbitals contains 1 p,, 1 p,, and 1 p, while
a set of d type orbitals contains 1 d,», 1 d,2, 1d,2, 1d,,, 1d,., and 1 d,.. The sets
of d orbitals include all Cartesian possibilities. Thus, the number of sets of each can

be determined as:

t t
pCoun dSets — dCoun

pSets = (2.1)

where pCount and dCount are the total number of p and d type orbitals, respec-
tively.

After determining the number of s type orbitals as well as pSets and dSets, it can
be determined not only how many integrals of each class need calculation, but all
combinations of basis functions that correspond to each class. With this information
in hand, the recurrence relation can be called to calculate all the required integrals.

These integrals can then be multiplied by the appropriate coefficients as follows:

Z CuCuCACo (V| ATy (2.2)

2.

where = corresponds to the specific type of electron pair distribution that is being
calculated by main.f90. The summation goes over all integrals and this obtains a
single point on the grid over which the distribution is calculated. This is repeated for
every single point along the grid to obtain a series of points that can be interpolated

to obtain the actual electron pair distribution of interest.
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2.2.3 Fortran Subroutines - Recurrence Relation

As described in the last section, main.f90 makes calls the the appropriate subrou-
tine where the integrals are actually calculated. For all scalar distributions, these
integrals are calculated using the recurrence relation (RR) developed by Hollett
and Gill (although the RR was adapted for the extracule calculations). The code
for these calculations was also graciously provided by Hollett and Gill. As for the 3-
Dimensional position extracule, these integrals were obtained using the recurrence
relation developed by Thakkar and Moore. The code for this recurrence relation
was written in house.

As much of this code was written by other researchers, a brief summary will sim-
ply be provided here. In these recurrence relations, all other integrals are obtained
from the basic [0000] or [ssss] integral. The recurrence relation is then applied to
this integral to obtain all others in iterations. The subroutine is broken down into
each class of integral required for the specific electron pair distribution, and calcu-
lates the specific class of integrals based on the call from main.f90. For a derivation

of the Hollett and Gill recurrence relations, the reader should consult Appendix B.
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Chapter 3

Revealing Electron-Electron
Interactions within Lewis Pairs in

Chemical Systems

This chapter has been reproduced with modifications with permission from Proud,
A.J.; Sheppard, B.J.H.; Pearson, J.K. J. Am. Chem. Soc. 2018, 140, 219-228. All of
the work presented in this chapter was performed by Proud; however, some early

work on position intracules for hydrogen bonding was conducted by Sheppard.

3.1 Introduction

It has now been over 100 years since Gilbert Lewis published his famous account
of the electron pair in "The Atom and the Molecule" within this very journal.®* In
that article and a subsequent book®®, he eloquently laid out the details of his gen-

eral theory of chemical bonding, from which he proposed that atoms form chemical
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bonds by sharing pairs of electrons. A century later, the so-called “Lewis pair” is
now entrenched in the lingua franca of modern chemical practice and the value of
its predictive power is perhaps matched only by its remarkable simplicity. Chemists
routinely employ Lewis’s pioneering ideas about electron pairs to interpret molecu-

86187 intermolecular interactions,®®®? property trends, and even the in-

lar structure
tricate mechanisms of chemical change.®? Given the ubiquitous nature of the “Lewis
pair” throughout chemistry, it is rather remarkable that we have not sought a defini-
tive representation of such individual Lewis pairs that rigorously adheres to the
quantum mechanical model of matter. Electron dot diagrams, as they are known,
leave much to be desired in terms of quantitative information. To gain a more ac-
curate understanding of electronic structure however, theoreticians will generally
tout one of two alternatives for the fundamental variable in interpretive computa-
tions of electronic structure. There is, of course, the many electron wave function
(¥), accounting for the spin and spatial variables of all electrons in the chemical
system or the comparatively simple (yet no less informative) electron density (p),
which usually describes the spatial one-electron probability distribution.*? Neither
¥ nor p however, explicitly makes use of Lewis’s notion of a localized electron pair
in electronic structure. While the electron density does completely describe radical-
based processes, these mechanisms do not possess the same level complexity as
those involving the electron pair.

Highly intuitive questions are thus left unanswered in modern applications of
electronic structure prediction. If we are so enamoured with the notion of sev-

eral localized pairs of electrons dictating how we interpret molecular structure and
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chemical behaviour, how is a single “Lewis” electron pair distributed in space? How
fast do these electrons move relative to one another? How do such distributions
differ from one pair to the next, and how might we exploit that information to gain
insight into chemical systems, their properties, and the nature of chemical change?
These are the questions we seek to answer herein.

To do so, we present a Single Electron Pair Distribution Analysis (SEPDA) tech-
nique that is both generally applicable and richly informative. We begin by defining
a Lewis pair from a quantum mechanical perspective in terms of localized molecular
orbitals.®? Subsequently, we determine a series of interelectronic distribution func-
tions for these orbitals from first principles and apply these techniques to a wide
range of chemical contexts®**1°2 including covalent bonding, non-covalent inter-
actions, reaction coordinate diagrams, and more exotic 3-center 2-electron bonds,
some of which will be addressed in more detail later in this thesis. We show that
these distributions can yield highly useful and insightful information for interpret-

ing electronic structure and predicting experimental behaviour.

3.2 Computational Methods

The SEPDA code, along with technical documentation and test cases is available
from our code repository (j_pearson@bitbucket.org/aproud/sepda.git).
The SEPDA program is designed to calculate the distribution of single electron pairs
described by a given molecular orbital within position, momentum, or the combined
“posmom”™ space. As noted in the introduction, the starting point for an explicit

discussion of electron pairs in position space is the spin-reduced two-electron den-
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sity, po(71,72), which is obtained from the molecular wave function by

,02(7°1,T2):/|\I/*($1,$2,£B3,...,il?N)|2d81d82dﬂ33...dCBN (31)

To analyze electron pairs in momentum space, the spin-reduced two-electron mo-
mentum density, 7 (p1, p2), can be obtained in an analogous fashion from the mo-

mentum space wave function by

7r2(p17p2)=/\@*(pl,p2,p3,..-7pN)I2dp3.--de (3.2)

However, since we are interested in the distribution of a specific pair of electrons,
we must first determine the wave function for such a pair, which is conveniently
achieved using any one of the well-known localization algorithms. /12327 Though
one has many choices when adopting a localization scheme (LMOs, NBOs, or even
the delocalized CMOs) we have consistently employed the Edmiston-Ruedenberg
(ER) localization technique for the work in this chapter. As previously noted, these
so-called “chemically intuitive” orbitals quite naturally represent localized features
of chemical structure such as bonds and lone pairs, and rigorously adhere to the
quantum mechanical model of matter as they are obtained from a unitary transfor-
mation of the canonical molecular orbitals (CMOs). These are consequently an ideal
starting point for our analysis and constitute our definition of a quantum mechan-
ical “Lewis Pair" throughout this work. Constructing a two-electron determinant

wavefunction in both position and momentum space from a single localized molec-
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ular orbital (;) and substituting them in equations and (3.2)), respectively,
yield the spin-reduced two-electron density in position, p5(r;, r,), and momentum
space, 75 (p1, p»), specifically for an electron pair described by ;.

From these two-electron densities, we can obtain the desired electron pair distri-

bution by applying the appropriate operator, O, as shown in the following equations

<O> = /P§<T1,T2)O(T1,T2)d7‘1d7'2 (3.3)

(0) = /W'z“(pl,pz)é(pl,m)dpldpz (3.4)

The explicit dependence of these distribution functions on electron pair densi-
ties distinguishes SEPDA from other well-known localized electron density analysis
techniques such as the electron localization function (ELF)®® and the quantum the-
ory of atoms in molecules (QTAIM).??

In the case of the relative separation of an electron pair, for example, O =
d(u— |1 — r3|) produces the position intracule density, P(u), which, again, measures
the probability of finding an electron pair separated by a scalar distance, u. The
position extracule density describes the location of the centre-of-mass of a particular
pair of electrons (1) and therefore allows us to track the motion of Lewis pairs using
O = (R - 047,

Conversely, as disucssed, we may also calculate these quantities in terms of mo-
mentum, where the momentum intracule would yield the probability of observing

a particular pair of electrons with a given relative momenta (v). The form of the

operator required to obtain each type of analogous electron pair distributions are

83



defined below in Table SEPDA has the ability to calculate all of these pair dis-
tributions for individual molecular orbitals: including the typical canonical molecu-
lar orbitals (CMOs), but also localized molecular orbitals (LMOs)?7*8l, and natural
bond orbitals (NBOs).?**7 Of course, one should expect quite different results if
using delocalized CMOs instead of chemically intuitive LMOs owing to their very
different spatial distribution. These would necessarily require a different interpre-
tation but it is of course true that the cumulative distribution of all possible electron
pairs would be identical regardless of the orbital type used to construct the full wave
function. It should be noted that the program is also capable of calculating these
electron pair densities for the full molecule/atom, but this feature was added simply
due to the simplicity of the required coding and is not novel.

In the table, the operator for the posmom intracule is denoted by *** as this
probability distribution is obtained neither from the two-electron density nor the
two-electron momentum density. Instead, it is obtained from the second order den-
sity matrix, po(r1, 71, 72, 74), as described by equations (1.134)-(1.136).

SEPDA employs recurrence relations to calculate the necessary two-electron in-

tegrals of arbitrary angular momentum for each of these pair distributions. While

Table 3.1: The scope of pair distributions available in the SEPDA software package.

Pair Distribution Notation O References

Position intracule P(u) O(u— |7y — Th|)  [58l059, 82 B3, 1001201
Momentum intracule M (v) (v — |py — pa|) (670171194141
Posmom intracule X(x) i [

Position extracule E ‘r””l) [74, [75) (100, [117.1119} [142-148]

(R
3-D Position extracule E(R
Momentum extracule E/(

) (R
) ( — O- ”) 175,011
) o(P

P |p1+p2‘) [76, [117, [119} [131} [134} [135} [139} [140} [148]
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the scalar densities utilize the recurrence relations for intracules developed by Hol-
lett and Gill”? with modified versions developed for the extracule counterparts, the
3-D position extracule employs the relation developed by Thakkar and Moore.”>
All of the optimized geometries and molecular orbitals utilized herein have been
generated with the GAMESS suite of quantum chemistry programs. The level of
theory employed in the current work to produce reliable structures and orbitals
changes according to the chemical context of the applications. For example, when
studying orbitals of isolated molecules it is perfectly reasonable to use a standard
molecular orbital approach (i.e. Hartree-Fock theory) with a moderate basis set. In
many cases however, such an approach is well known to fall outside the bounds of
acceptable levels of error due to the absence of Coulomb correlation, which hap-
pens to be a highly relevant component when predicting most chemical properties.
As such, Kohn-Sham density functional theory is arguably a more suitable start-
ing point for generating structures and localized orbitals. Kohn-Sham DFT is well
suited to this purpose as we have previously shown.*® Additionally, Stowasser and
Hoffmann have demonstrated that the Kohn-Sham orbitals can be reliably used to
rationalize chemical phenomena and seem to be the orbitals a qualitative, chemical
analysis needs.'* As such, our choice of theoretical model for generating our struc-
tures and orbitals is governed by the chemical context and any relevant benchmark
data available (vide infra).

For these calculations, the value of the desired pair distribution is determined at
specific intervals along a grid defined by Mura and Knowles?*", The breadth or scale
of the grid as well as the number of grid points are user-defined with appropriate
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defaults established for each pair distribution type.

For 3-D position extracules, we have chosen specific planes within 3-D space for
simplicity of presentation and analysis. In such cases, the molecule of interest is
positioned appropriately in the yz-plane and instead of denoting this function as
E(0, Ry, R.), we will simply use E(R,.). Atomic units are used throughout unless

otherwise stated.

3.3 Results and Discussion

3.3.1 Covalent Bonding

We begin by considering one of the most fundamental of chemical features, the co-
valent bond. Figure illustrates P(u), E(R), and M (v) for X-H bonds in the set
of first and second row hydrides as a simple model system to observe the effect on
Lewis pair distribution of altering the heavy atom, X, within an X-H bond. As X is
modified from the group 14 carbon to group 17 fluorine, we observe the bonding
electron pairs contracting as they are drawn more strongly towards the heavy atom
due to the associated increase in electronegativity. This same trend is seen with the
second row hydrides.®# Consequently, as these electrons are drawn closer together,
they must move faster relative to one another, as is evidenced by the concomitant
broadening of the momentum intracule, M (v). Likewise, the centre-of-mass of the
electron pair, R, migrates towards the heavy atom (which is positioned at the Carte-
sian origin), further confirming the nature of the contraction observed in P(u). The

SEPDA technique gives us both a qualitative and a quantitative picture of exactly
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Figure 3.1: Depiction of calculated P(u), E(R), and M (v) for the first and second
row hydrides at the HF/6-311G(d,p) level along with the first inverse moment,
(x~ 1) (where x = u, R, or v) and experimental bond dissociation energies (BDE)“=,

how these bonding electron pairs are distributed and affords a unique opportunity
to distinguish subtle but important chemical differences between these species.

As an interesting illustrative example, we have performed a linear least squares
regression to show the strong predictive capacity that the distribution of bonding
electron pairs have with respect to the experimentally determined strength of the
bond itself. Shown in the figure are the first inverse moments, (z~!) (where z =
u, R, or v), of each variable correlated with the experimentally measured bond

dissociation energy of the X-H bond, where (z~!) is determined by:
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(x71) = /000 f(z) 27 'dx (3.5)

Moments of a function are a convenient and compact metric for broadly character-
izing the distribution as a whole, and the first inverse moment is a natural choice
in our case as (u~!) corresponds exactly to the electron repulsion energy within the
given orbital. From MO theory we would expect that an increase in the electroneg-
ativity of X would cause the HOMO to both be stabilized and more localized on the
X atom. As such, one could expect to observe patterns in P(u) (and consequently
M (v) and E(R)) that correlate to experimental BDE. Coefficients of determination,
R?, of approximately 0.95 were obtained for each of the three distributions. This
indicates that by analyzing these pair densities for covalent bonds, we can gain
significant insight into the strength of these specific interactions using any of the
various tools available within the SEPDA package, and indeed this has been previ-

ously demonstrated in predicting acid dissociation constants as well.®?

3.3.2 Non-Covalent Interactions

Extending our application of the technology to non-covalent interactions, we ana-
lyzed the water dimer using the breadth of tools available in the SEPDA package.
In particular, we focused on the donor 0.y bond and the acceptor ng lone pair in
the water dimer relevant for the H-bonding interaction, as shown in Figure Un-
like the hydrides where we simply calculated the pair distribution, here it is more

instructive to present the deformation of the position intracule, AP(u), and the 3D
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position extracule, AE(ﬁyz). These deformation densities are obtained as the dif-
ference between the relevant distribution for the hydrogen bonding complex and
that of the isolated hydrogen bond donor (X-H) or acceptor (Y~). The result indi-
cates how the pair distributions change due to the formation of the hydrogen bond.
In cases where the deformation densities are presented, we also indicate the total
content of the deformation density, d} », which is the integral of the magnitude of
AP(u) or AE(R,.) for a particular orbital k. This is a concise, scalar representation
of the total difference between any two pair distributions.

Weinhold’s resonance-covalency model®®®? describes hydrogen bonding as res-

onance between

() _
LH Ty ~

X + Y-H (3.6)

with the amount of the Y-H species dependent on the strength of the hydrogen bond.
Based on this model, one expects a migration of the electrons from the no lone pair
of Y~ to the hydrogen atom of X-H forming a weak ‘covalent’ bond between the
oxygen and hydrogen (H-Y species). In doing so, the electron pair in the donor oo.y4
bond of X-H would migrate towards the oxygen atom within that o-bond. These
two electron migration processes are indeed observed within AP(u) and AE(Z-?W).
First, for the electrons within the no lone pair, we see an increase in interelectronic
separation from AP(u) and a shift in the electron pair centre-of-mass, R, towards
the hydrogen within the hydrogen bond donor species. Second, as the hydrogen

bond forms we see a contraction of the o-bond (X-H) electron pair from AP(u) and
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Figure 3.2: Depiction of a) the oo.y and no ER LMOs of the water dimer calcu-
lated at the M06-2X/6-311G(d,p) level of theory, along with the b) AP(u) and c,d)

— —

AE(R,,) for each. Solid and dashed lines in the AE(R,,) plots denote positive and

—

negative contours, respectively. Red contour lines correspond to AE(R,.) for ng

—

and blue contour lines correspond to AE(R,.) for oo.y. Contours are plotted for
+n x 1073 where n = 4, 8, 16, 32, 64.

a concomitant shift in the centre-of-mass of this electron pair towards the oxygen
atom of the donor species from AE(ﬁyz). These two changes in absolute and rel-
ative electron pair positions agree very well with the resonance-covalency model
of Weinhold and provide a far richer suite of quantitative information than a tradi-

tional Lewis interpretation.
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We would like to highlight at this point that AE (ﬁyz) is an explicit two-electron
distribution, as it maps the change in the distribution of the centre-of-mass of a
localized electron pair. Though it resembles a traditional one-electron difference
density, they are not directly related.

To further explore the effects of hydrogen bonding, we analyzed other hydro-
gen bonded complexes from Hobza’s S66x8 data set.*>!' In Figure we show
AP(u) and AE(EW) for the three hydrogen bonding systems: water-water, water-
methanol, and water-methylamine. In each of these systems, the hydrogen bond
donor is water, while the identity of the acceptor is systematically modified. How-
ever, when considering the three atoms directly involved in the interaction, we
have: O-H-O (water-water), O-H-O (water-MeOH), and O-H-N (water-MeNH,). In
these first two hydrogen bonded complexes, the three atoms involved in the inter-
action are identical. Upon analysis of AP(u) and AE(R,.) for these two systems,
it is clear that they are very similar qualitatively. The main differences are seen
in the extracule where the presence of the methyl group causes some distortions
to the centre-of-mass of the electrons of the lone pair. In comparison to the water-
methylamine system, significant differences are observed, especially in the intracule
density. While the deformation density for the lone pair is very similar, there is an
inversion of the relative heights of the maxima in the bimodal distribution at large
u. In the case of the o-bond, the deformation densities are very similar qualitatively;
however, in the water-methylamine system, the magnitude of AP(u) increases by
40%. When one considers that of these three systems, water-methylamine has the

151

strongest interaction energy,*>* this suggests the possibility of approximating inter-
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action energies based on these deformation densities. Work in this area is currently
underway in our research group on numerous hydrogen bonding systems within the
S66x8 data set and the predictive properties have shown to be on par with or bet-
ter than those obtained with bond critical points from Bader’s Atoms in Molecules
Theory, 1521153

These techniques can be applied to other forms of non-covalent interactions as
well, such as w-interactions, halogen bonding, etc. Figure depicts AP(u) and
AE(f{yz) for other types of non-covalent interactions: a) hydrogen bonding, b)
halogen bonding, and c) n-interactions. While the hydrogen-bonded and halogen-
bonded systems are very similar in nature, 7-interactions are significantly different.
In w-interactions, the electrons in the two 7-orbitals donate electron density towards
each other. The fundamentally different nature of this interaction is clearly visible
in Figure Both the position intracule and extracule are markedly different than
those of the hydrogen and halogen bonding systems. They do however, exhibit
the trends we would expect. P(u) clearly shows that the relevant electron pair
is separating when the w-interaction occurs and this is accompanied by a shift in
the centre-of-mass towards the other ethene monomer within the dimeric system.
The comparison of the results for the hydrogen and halogen bonding systems is
interesting as these types of interactions are so similar. In both instances, a o-
bond with an uneven distribution of charge can lead to an interaction with a highly
electronegative atom either inter- or intramolecularly. The key difference stems

from the identity of the atom with a partial positive charge in the first molecule. In

hydrogen bonding, this atom is hydrogen; however, in halogen bonding, the atom is
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Figure 3.3: The deformation densities of the position intracules, AP(u), and 3-D

—

position extracules, AE(R,.), for the oxy and ny LMOs in the a) water dimer, b)
water-methanol, and c) water-methylamine hydrogen bonding complexes. Solid

—

and dashed lines in the AFE(R,.) plots denote positive and negative contours,
respectively. Red contour lines correspond to AE(R,.) for no and blue contour

lines correspond to AE(R,.) for oon. Contours are plotted for +n x 10-* where
n = 4,8,16, 32, 64. All data is calculated at the M06-2X/6-311G(d,p) level of theory.
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one which is typically associated with partial negative charges: a halogen. However,
in the presence of electronegative substituents with the halogen bond donor, the
electron withdrawing substituents can reveal an electron-deficient region on the
halogen atom known as the o-hole.1>#15%/]t is this highly-localized electron-deficient
spatial region which interacts with the electronegative atom of the acceptor to form
the halogen-bonded interaction. Since the halogen of the donor also has electron
rich regions, this results in differences in the intracule and extracules in comparison
to hydrogen-bonding systems.

When analyzing AP(u) for these two systems, the overall trends are the same:
the electrons of the o-bonds contract while those of the lone pairs separate, again
in accord with the resonance-covalency model of intermolecular interactions. How-
ever, more fine analysis of the topology yields some differentiating features. The
deformation densities for the Y lone pairs do exhibit differences at large u though
this may simply be due to the differences between no and ny. The differences in
AP(u) for the o-bonds are quite significant as the maximum value for AP70#(u)
is roughly half of that for AP (u), suggesting that the differences are much less
likely due to the identities of the atoms. Furthermore, in hydrogen bonding, A P(u)
for the o-bond is very simple, being unimodal both above and below the axis. In the
halogen-bonding complex, it is primarily unimodal above the axis; however, at neg-
ative values of AP(u), the function is bimodal. This bimodal distribution is likely
due to the more complicated nature of the atom with the partial positive charge.
While the intracules can help to distinguish between these three different types of

non-covalent interactions; only the 7-interaction system demonstrates distinguish-
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Figure 3.4: The deformation densities of the position intracules, AP(u), and 3-
D position extracules, AE(EyZ), for the participating LMOs in the a) water dimer
hydrogen bonding complex, b) FBr-HCN halogen bonding system, and c) the ethene
dimer, w-interaction system. Solid and dashed lines in the AE(ﬁyz) plots denote
positive and negative contours, respectively. Contours are plotted for +n x 1073
where n = 4, 8, 16, 32, 64. Red contour lines illustrate AE(EW) for the non-bonding
electron pair in a) and b) as well as the 7 bonding electrons in c). Blue contour lines
indicate the o bonding pair of electrons in parts a) and b). All data is calculated at

the M06-2X/6-311G(d,p) level of theory.
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able features for AE(ﬁyz). Regardless, the wealth of tools within the SEPDA pack-
age has the ability to quantitatively and qualitatively distinguish between different

types of non-covalent interactions.

3.3.3 3-centre 2-electron Bonds

In addition to typical covalent bonds, we decided to study the distribution of Lewis
pairs in more exotic species such as the 3-centre 2-electron bonds present in the
B,Hg complex. Diborane represents a unique bonding environment, and as shown
in Figure our results for this system are rather interesting.

Based on the chemical environment, one would expect that the behaviour of the
bridging hydrogens would be markedly different from that of the more typical ter-
minal B-H bonds. However, the P(u) for both the op 1 and op 5 bonds are nearly
indistinguishable (Figure [3.5). There are only minor differences at large u that are
noticeable by visual inspection. This is remarkable, considering the significant dif-
ferences observed in the covalent bond intracules (above) for bonds that would only
be considered marginally different. Because the B-H bond distance for the bridging
hydrogens is 1.321 A, while that of the terminal B-H bond is only 1.204 A, and
because the op 1.3 spans three centres (and 1.750 A between the two boron atoms),
one would expect a much greater difference in the interelectronic separations of the
electron pairs within the two orbitals. The extracule density however was indeed
significantly different for the two bond types and provides evidence as to why the
intracules are so similar. Despite the qualitatively different extracules, the spatial

extent of the area covered by each is not drastically different. In other words, the
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Figure 3.5: Depictiog of a) the op..p and op.y LMOs of diborane with the associated
b) P(u) and c,d) E(R,.). Contours are plotted for E(R,.) values of 0.01, 0.02, 0.04,
0.08, and 0.016 atomic units. All data is calculated at the HF/6-311G(d,p) level of
theory.

op.u and op.p localized electron pairs are distributed throughout a spatial region
that is similar in size. This would allow for similar interelectronic separations, and
means that the op . pair is somewhat more localized to the inner bridging region
than one might initially expect. This interesting result is supported by the relative
weakness of the op p bond relative to the op.y bond and provides evidence as to

why the intracules are so similar.
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3.3.4 Interpreting Reaction Mechanisms

Monitoring the progress of chemical reactions is often of significant interest when
modelling chemistry and Lewis diagrams are a ubiquitous tool for chemists to intuit
how reactants proceed to transition states and products via the reaction mechanism.
Again though, SEPDA is an invaluable tool to gain additional qualitative and quanti-
tative insight into how Lewis pairs migrate throughout a chemical reaction. An “ar-
row pushing” representation of a mechanism generally presumes that an electron
pair is being spread over two atoms or condensed to one as the reaction progresses
and the explicit two-electron treatment from SEPDA is a unique and intuitive tool
to employ. For example, one could easily track the migration of a centre-of-mass of
the pair with F(R) while testing to see whether the inter electronic separation is
increasing/decreasing with P(u).

Utilizing an intrinsic reaction coordinate (IRC) calculation, whereby the elec-
tronic structure of a reaction complex is determined at a series of points from re-
actants to the transition state to products, one can employ the SEPDA package to
monitor the change in the distribution of Lewis pairs throughout the course of the

reaction. To demonstrate this application, consider the theoretical Sy2 reaction:

Cl” + CH;Cl — CICH; + C1™

P(u) and £ (Z-?yz) were calculated at various points along the reaction coordinate

between the reactant state and the transition state. Structures and energies were
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calculated at the OLYP/6-311G(d,p) level of theory based on the benchmark stud-
ies performed by Bento et al.* Though it is certainly true that a single-determinant
Kohn-Sham DFT model for non-equilibrium structures along a reaction coordinate
will not yield the same degree of accuracy as other multi-determinantal model
chemistries designed to capture static correlation effects, DFT has been readily ap-
plied to model reaction coordinate profiles in a large number of studies. To the
extent that a single-determinant Kohn-Sham DFT approach is valid, so too will be
the SEPDA electronic structure analysis technique.

As the reactants and products are identical in this case, only one side of the
reaction coordinate was sampled. For the purposes of visual representation, we
chose to define the deformation density of E(ﬁyz) as the difference between the
extracules of the transition state, D, and the reactant state, A. As the atoms within
the system are moving throughout the course of the reaction, the extracule figures
display overlaid structures of the reactant and transition states.

Our E(R,.) surfaces illustrate in precise detail how the centre-of-mass of the
relevant electron pairs migrate i) toward the reaction centre in the case of the nu-
cleophilic chloride lone pair (top), and ii) away from the reaction centre for the
leaving group (bottom) as the reaction progresses from reactants (A) to transition
state (D) (Figure [3.6). Additionally, the results observed from P(u) afford a quanti-
tative picture of the relative distribution of each Lewis pair. In the case of the chlo-
ride ion nucleophile, as the reaction progresses, the electrons do begin to separate
to facilitate the interaction between the nucleophile and the electrophilic carbon

centre. We can see this both in the shift of the maximum in P(u) to larger v and in
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Figure 3.6: P(u) and AE(R,,) for the nucleophile and leaving group LMOs of an
Sn2 reaction as it progresses from reactants (A) to transition state (D). The reaction
profile depicts the four states (A-D) modeled for P(u) along with depictions of the
LMOs of the nucleophile and leaving group. Structures and energies were calcu-
lated at the OLYP/6-311G(d,p) level of theory based on the benchmark studies.®

Solid and dashed lines in the AE(R,.) plots denote positive and negative contours,
respectively. Contours are plotted for +n x 10~2 where n = 2,4, 8, 16, 32.
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the concomitant broadening of the overall curve. The difference between each P(u)
curve is subtle however, which indicates that the formation of the covalent bond is
more the result of the through-space migration of the localized pair of electrons, as
opposed to the “spreading out” of the electron pair to form the bond.

In the case of the leaving group, the behaviour observed in P(u) for the elec-
tron pair in the breaking bond is markedly different and not monotonic. Initially
(A—B), the interelectronic separation of the leaving group Lewis pair expands as is
evidenced by the broader P(u) distribution and the shifted maxima; subsequently
however, the maxima in P(u) recedes to smaller u despite a continually broadening
distribution overall. This very detailed picture of the evolution of a bond breaking
process is indicative of the accumulation of the electron pair at the chlorine centre
(as the maximum in P(u) recedes to smaller interelectronic separation) coinciding
with the lengthening of the breaking bond (corresponding to a broader distribution
overall).

We suspect that this very detailed, visual and intuitive analysis technique will be

of broad utility in a wide variety of chemical contexts.

3.4 Conclusion

In the current chapter, we outlined a novel technique for predicting and interpret-
ing chemical structure and behaviour by resorting to a fully quantum mechanical
depiction of the familiar Lewis electron pair. By predicting a series of interelectronic
distribution functions of individual pairs of electrons within an arbitrary chemical

system we have shown that a wide range of chemical properties and phenomena
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may be studied and interpreted using this technique. This Single Electron Pair
Distribution Analysis (SEPDA) is a novel approach to answering key quantitative
questions about the distribution of the well-known Lewis pairs, such as how they
are distributed in space and how their relative velocities change in various chemical
contexts.

We have shown that SEPDA may be used to quantify and classify myriad in-
teractions including chemical bonding and non-covalent interactions. The nature
of non-covalent interactions (as well as indications of their strength) may also be
gleaned from such distributions and SEPDA can be used as an important tool to
differentiate between interaction types.

Though we have chosen to focus our presentation on the so-called ‘intuitive’
chemical orbitals of Edmiston and Ruedenberg, it should be noted that the SEPDA
technique may be readily applied to any orbital type.

While this chapter has focused on a couple of different examples of many differ-
ent types of interactions with various electron pair densities, the remaining chapters

will discuss specific applications in detail.
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Chapter 4

Exploring Electron Pair Behaviour in
Chemical Bonds Using the Extracule

Density

This chapter has been reproduced with modifications with permission from Proud,
A.J.; Mackenzie, D.E.C.K.; Pearson, J.K. Phys. Chem. Chem. Phys. 2015, 17, 20194-
20204. The majority of the work was done by Proud; however, the early coding of

main.f90 was completed by Mackenzie.

4.1 Introduction

The molecular wavefunction contains a vast array of information; however, the
Schrodinger equation? consists solely of one and two-electron operators. Thus,
much of the information contained in the wavefunction is superfluous. As noted

in Chapter 1, Hohenberg and Kohn*? demonstrated that the energy of a chemical
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system can be obtained, using only the electron density, p(r),

P(r)—/|‘1’(I'1,I‘2,..-,I'N)|2dr2...drN 4.1)

While one may be able to determine the energy from p(r), extracting useful infor-
mation regarding electron-electron interactions is inherently non-intuitive.
Instead, we can focus on the numerous electron pair densities that have been
previously described. While the position intracule and intracules of a whole have
been extensively studied, this is not as true of the extracule family. The main de-
ficiency in P(u) is the absence of any absolute position information. It provides
no insight as to where in the molecular system the electrons are most likely to re-
side.®> One way we can extract such information is through the extracule density,

E(R).7319 Recall that this density can be obtained from the pair density by:

E(R) = /,o(rl, r2)0 (R — 3%2) drydr, (4.2)

The extracule density was first described by Coleman in the late 1960s7%; how-
ever, it wasn’t until the early 1980s when the first calculations of F(R) were car-
ried out.”” Since the seminal paper by Thakkar and Moore, studies regarding the
topology of F(R) have largely been focused on the spherically averaged extracule
density, F(R), defined as

E(R) = /E(R) dQr (4.3)
or a single dimension of E£(R).1001Z1I8I1424148 wWhile this scalar form may be useful
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for linear systems, the complexity of the interpretation for large systems is readily
apparent. Knowing only the distance of the centre-of-mass from a specified origin
is not generally very informative in a three-dimensional molecule. For this reason,
we have focused on the more topologically rich, £(R) for the purposes of the study
presented in this chapter.

While E(R) does offer more clarity into the distribution of the centre-of-mass,
difficulty still arises in its interpretation when one considers arbitrarily large 3D
structures. SEPDA offers the ability to analyze a single pair of electrons. We demon-
strate in this chapter the utility of this tool as we examine, in depth, the information

present in F(R).

4.2 Computational Methods

If the pair density is determined from a RHF wavefunction, equation (4.2 for a

single molecular orbital may be expressed as

K

ER) = Z CuCCACo (AT ) 4.4

2.

where ¢; describes the contribution of atomic orbital ¢, to the molecular orbital of
interest and (uv\o)g are the extracule integrals evaluated over the basis functions

1, v, A, and o. These integrals are described by

(uvAo)p = /(bz (r) ¢, (r) 5 (2R —r) ¢, (2R — r)dr 4.5)
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Herein, ¢; denotes basis function i. Thakkar and Moore developed a series of formu-
lae for the determination of the extracule integrals, which are summarized below.”>
These equations were utilized to calculate the necessary integrals for the evaluation
of E(R) for a specific LMO. For a basis set consisting of Gaussian-type orbitals, the

basic integral over four s-type Gaussians is given by

(4.6)

3/2 _P_0)2
(ss0)z = <<4+7Tn> =P {_WRC +Pn b ]
« exp [_ ozB(AC— B)® 75(077— D)?

where A, B, C, and D define the centres on which the Gaussian primitives, with
exponents «, 3, v, and J, respectively, are centred. These exponents comprise { =

a + 8 and n = v + 0. The variables P and Q are defined as follows:

P:% “4.7)
C+6D
Q:L
n

For integrals containing orbitals of higher angular momenta, these new integrals
can be determined by multiplying the basic integral by the angular factors, 7, T,
and 7:

(uvXo)g = (ssss)pT,T,T. (4.8)

To define the angular factors (we will define the variables with respect to the angu-

lar factor in the z-axis, T, but these can easily be adapted to determine the y and =
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directional angular factors by using the respective components for those directions),

we must first introduce the following three variables:

k
+ 1
hi = (Py + Qo — 2R, x % (4.10)
1 k/2 '
S = — Zgjhk—Qj (411)
L

where 0 < k < [, + 1, + I\ + [, in which /; denotes the angular momentum of
Gaussian primitive 7, in the z-axis. Using these newly defined variables, T, can be

computed using

Lty

T, =Y Aillyly, Py — Ay, Py — By, () (4.12)
=0
Ix+ls

X Z si—i—jAj(l)\a lav Qx - Oa:v QI - D:w 77)
=0

where

(lit+l2—3)/2

(2k + j)!
Aj(l, g, a,0,¢) = % forj (I, la; a, b)m (4.13)
Herein, f; can be defined as the polynomial coefficients obtained from:
li+l2 A
> fillly,a,b)2 = (x + ) (2 + b)" (4.14)
=0
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As the three angular factors are equal to unity for a set of four s-type Gaus-
sians, equation (4.8]) is a general formula that can be used in the evaluation of all
extracule integrals.

To calculate the extracule densities, a Mura-Knowles grid**? was utilized to de-
termine the value of E(R,, R,, R.) at each grid point which was succeeded by in-
terpolation to yield the required functions. This grid was adapted for the inclusion
of negative values by incorporating grid points in both the positive and negative
directions to ensure that all relevant spatial regions of the chemical system were
adequately described. In order to obtain grids that were sufficiently dense to con-
verge the resulting extracules, 201 points (100 points in each of the positive and
negative directions in addition to the origin) were used in two of the three dimen-
sions. These calculations would scale as (K*) x (n{) where d indicates the number
of dimensions sampled and n, defines the number of grid points in each dimension.
As one dimension would necessarily be averaged through integration for purposes
of visual representation, the benefit of sampling all three dimensions was deemed
to be insufficient to warrant the computational cost. Thus, for the extracule den-
sity analysis of all molecular systems, the atoms important to the analysis were
positioned in the yz-plane over which the grid was constructed.

All calculations were performed at the RHF/u6-311G(d,p) level of theory where
u indicates that the basis set was completely uncontracted. HF calculations are ad-
equate for these systems as the goal is to demonstrate the utility of the extracule
density in the LPM as an interpretive tool in chemistry; however, should an alterna-
tive approach be desired, Kohn-Sham orbitals*® could be employed in an identical
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fashion. All geometry optimizations and LMO determinations were performed using
the GAMESS software package.’ Vibrational frequency analyses were conducted to
ensure that the geometry represented an energy minimum. After computing the ex-
tracule densities using the Mura-Knowles grid, the data was analyzed using the

Mathematica 8 software package.’*® Atomic units are used throughout.

4.3 Results and Discussion

4.3.1 Covalent Bonding

We begin with the hydrides of first row elements, i.e. LiH to HF. Two sets of analyses
were carried out for this set. In Case 1, full geometry optimizations were performed
on the molecules and these optimized structures were used in the analysis. For
Case 2, the average bond length for the X-H (X = Li — F) bonds from Case 1 were
determined and the optimized structures were then modified to include this average
bond length solely for the bond to be analyzed. Thus, for NH;, two of the N-H
bonds would remain at the length determined through the geometry optimization,
and only the one bond that was to be analyzed was adjusted to the average X-H
bond length determined from the set of hydrides. Case 2 allows for a convenient
comparison of the bond extracule densities as the nuclei involved in the hydride-
bond LMO are at the same positions in Cartesian space.

Figure [4.1p) depicts the extracule density for the C-H bond in methane. One
might expect that the maximum in the density would occur closer to the carbon

atom considering its slightly more electronegative nature; however, one must con-
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Figure 4.1: a) Depiction of E(0, R,, R,) for the C-H bond in CH, with an overlay
of the LMO for the bond and b) AE™F(0, R,, R,) for the X-H bond LMO. Contour
values were chosen as m x 107", where m = 2,4 and 8 and n = 3,2, and 1 (the
dashed lines signify negative contours).

sider the structure of the molecular orbital. As observed from the overlaid orbital
representation, the C-H bond LMO largely resembles depictions of sp* orbitals com-
mon in freshman and organic chemistry textbooks.?%1>7 Much of the density of the
orbital extends out from the carbon atom beyond the hydrogen atom. This results
in the electrons in the orbital being shifted more towards the hydrogen atom than
one might initially expect.

What is more enlightening is observing the shift in the maximum as one changes
the heavy atom from the highly electropositive Li atom to the highly electronegative
F atom. These results are tabulated in Table For all systems, the bond midpoint
is positioned at (0,0,0) in Cartesian space. For the purposes of this discussion,
the only coordinate listed is that which occurs along the bond axis, k.. The R,

coordinate was close to O for all cases, but the small deviations can be explained by
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the asymmetric inductive effects caused by the other atoms within the molecules.
As the heavy atom in the molecule is modified from Li to F, the maximum in the
extracule density shifts toward the heavy atom. What may be less obvious is the
extent to which the centre-of-mass is shifting. This becomes far more evident as we
examine RT for Case 2. For all molecules in Case 2, the two nuclei are positioned
at R, = £1.08646 with the heavy atom residing in the positive direction. For the
case of the Li atom, the maximum in £(0, R,, R.) occurs at R, = —1.028, which is
very close to the hydrogen nucleus. As we change our heavy atom from N to O,
the centre-of-mass maximum shifts beyond the bond midpoint towards the heavy
atom. In the most extreme case, HF, the maximum in the extracule density is found
nearly halfway between the bond midpoint and the heavy F atom at R, = 0.500.
These same trends of the centre-of-mass shifting towards the electronegative atom

are observed in the average R, value, (R,), which is given by

R x E(0,R,,R,)dR,dR, (4.15)

where (R).) is the zeroth moment in the bond plane (defined below in equation
[4.16). As we consider only a slice of E(R), (R.) must be scaled by this value to
obtain an accurate value for the average R.. While the shift in the centre-of-mass
towards the heavy atom as the electronegativity of that heavy atom increases is
not surprising, it does demonstrate that the localized extracule density displays the

effects one would expect based on chemical intuition. Less obvious is the trend
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observed in (R;,), which is defined as
(R).) = / / E(0,R,, R.)dR,dR, (4.16)

Because slices of the extracule density were chosen as opposed to averaging over

one coordinate, the zeroth moment is not normalized to N(]\;_l), as it otherwise
would be. Instead, we obtain information regarding the amount of extricable den-
sity that resides within the given slice. Specifically, (R).), is the value of E(R,)
where R, = 0 and the remaining Cartesian coordinates have been averaged through
integration. We note that (R).) is not bounded by 1 (as can be confirmed in Table
[4.1), as a probability normally would be because it is not evaluated over a range
in the x coordinate. One clear trend emerges as we change the identity of the
heavy atom. The introduction of the more electronegative heavy atoms causes a
contraction of the centre-of-mass to the bonding plane. While (R).) = 0.512 in the
case of LiH, this value nearly doubles to 0.982 upon replacing Li with the highly
electronegative F. This observation is in strong agreement with the tendency of the
electron-electron counterbalance density1°%1%2 for the helium isoelectronic series
(from He to Ne®") to increase as the nuclear charge, and thus electronegativity,
is increased.®® Equivalent analyses were performed on the second row hydrides
which are not shown as all of the trends were identical to those shown here.

The major benefit offered by the equidistant bond lengths analyzed in Case 2 is

that one can accurately assess the extracule deformation density, AE*1*2(0, R,, R,),
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Table 4.1: Moments of £(0, R,, R.) for the X-H bond LMO in first row hydrides.

Case 1 Case 2

System (Ry.) (R.) RT™ (Ry.) (R.) R
LiH 0.473 -1.280 -1.453 0.512 -1.022 -1.028
BeH, 0.557 -0.848 -0.996 0.595 -0.764 -0.836
BH; 0.664 -0.579 -0.600 0.674 -0.570 -0.592
CH,4 0.743 -0.353 -0.383 0.728 -0.356 -0.385
NH; 0.832 -0.181 -0.219 0.791 -0.157 -0.221
OH, 0.932 -0.046 0.055 0.872 0.024 0.294
FH 1.047 0.091 0.272 0.982 0.218 0.500
which is given by

AEY*(0 R, R,) = E¥*0,R,, R,) — E*"(0,R,, R.) (4.17)

where X;-H represents the LMO describing the hydride bond in the system of in-
terest. With the positions of the two nuclei involved in the bond LMO fixed for all
systems, all changes in AE**2(0, R,, R,) can be attributed to the changing chemi-
cal environment. An example is shown in Figure [4.1|(b) where X; =CH; and X,=F.
As expected, the negative contours are present near the heavy atom indicating the
greater presence of the electron pair centre-of-mass near the heavy atom in the HF
system compared to CH,. Likewise, positive values of AE“"3F(0, R,, R,) are present
near the hydrogen atom as the electron density and consequently the centre-of-mass
of the electron pair are drawn towards the fluorine atom in HF.

Following the analysis of the hydrides, the localized pair model was used to an-
alyze compounds consisting of the -CH3, -NH,, -OH, and -F fragments from the first

row and the -SiH;, -PH,, -SH, and -Cl fragments from the second row. Forming
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covalent compounds from any two of these moieties results in 10 compounds from
each of the first and second row and 16 compounds from the combination of build-
ing blocks from separate rows. Thus 36 compounds were constructed and analyzed
in terms of the extracule densities for the bond between the two heavy atoms as
well as the X-H bond for both heavy atoms in each fragment. As for the first and
second row hydrides, the bond midpoint is positioned at (0,0,0) in Cartesian space
with the heavy atom (or in the case of the X;-X, bond, the X; atom) positioned in
the positive R, direction.

The results for these systems are listed in Table For the LMO describing the
bond between the two heavy atoms, X; and X,, the same trends described in the
previous section are evident for most species. We observe a substantial migration
of the centre-of-mass into the bond plane as we increase the electronegativity of
either heavy atom. Furthermore, the more obvious shifting of the centre-of-mass
towards X, is evident as the electronegativity of X, increases. When considering
a substitution from first row to second row heavy atoms, a significant decrease in
(Ry).) is observed universally. This is indicative of a lower likelihood of observing
R in the yz bond plane. Considering the significant size disparity between these
rows, one might expect such a trend as the electrons in second row atoms would
accommodate a larger volume outside of the selected bond plane leading to this
observed decrease in (R.).

Once we shift to the X;-H bond LMO, X; is no longer directly part of the LMO of
interest, but is instead separated by one bond. As LMOs are, by definition, localized,

the changes in the extracule density are expected to be minimal when the two atoms
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Table 4.2: Analysis of the X;-X, and X;-H bond LMOs in small first and second row compounds.

X1-X5 Bond X;-H Bond X5-H Bond
System  (RD) (R) R (RL) (R) R (RL) (R.) R
CH5CH3 0.752 0.000 0.000 0.749 -0.362 -0.386 0.749 -0.362 -0.386
CH3NH», 0.828 -0.183 -0.111 0.750 -0.384 -0.388 0.841 -0.189 -0.220
CH3;0OH 0.928 -0.348 -0.493 0.759 -0.357 -0.370 0.950 -0.047 0.025
CH3F 1.037 -0.477 -0.686 0.760 -0.365 -0.365 --- --- ---
CHj3SiHg 0.636 0.488 0.487 0.742 -0.335 -0.382 0.609 -0.865 -0.968
CHsPH, 0.661 0.298 0.284 0.749 -0.340 -0.374 0.651 -0.672 -0.771
CH3SH 0.686 0.063 0.173 0.754 -0.331 -0.369 0.692 -0.465 -0.592
CH3Cl 0.722 -0.154 -0.036 0.761 -0.333 -0.357 --- --- ---
NH>NH, 0.885 0.004 0.000 0.843 -0.199 -0.217 0.843 -0.199 -0.217
NH,OH 0.958 -0.174 -0.064 0.852 -0.190 -0.205 0.956 -0.057 0.030
NHsF 1.054 -0.358 -0.630 0.858 -0.184 -0.195 --- --- ---
NH,SiH3? 0.743 0.736 0.848 0.830 -0.209 -0.204 0.612 -0.888 -0.974
NH,PH,? 0.750 0.532 0.655 0.834 -0.181 -0.200 0.654 -0.702 -0.778
NH,SH 0.764 0.333 0.323 0.842 -0.182 -0.199 0.695 -0.469 -0.583
NH,Cl 0.775 0.102 0.188 0.854 -0.183 -0.194 --- --- ---
OHOH 1.011 0.008 0.000 0.963 -0.044 0.060 0.963 -0.044 0.060
OHF 1.093 -0.197 -0.044 0.970 -0.036 0.080 --- --- ---
OHSiH3 0.872 0.791 0.893 0.939 -0.020 0.047 0.613 -0.881 -0.962
OHPH, 0.872 0.678 0.843 0.946 -0.026 0.048 0.656 -0.700 -0.771
OHSH 0.863 0.532 0.798 0.954 -0.033 0.053 0.697 -0.473 -0.582

OHCI 0.857 0.343 0.283 0.960 -0.030 0.067 --- --- ---
FF 1.152 0.000 0.000 --- --- --- ---
FSiHj3 1.008 0.857 0.953 --- --- --- 0.615 -0.860 -0.940
FPHjy 0.998 0.788 0.942 --- --- --- 0.659 -0.678 -0.751
FSH 0.978 0.693 0.939 --- --- --- 0.700 -0.458 -0.569
FCl 0.965 0.556 0.919 --- --- --- --- --- ---

SiH3SiH3  0.502 0.000 0.000 0.608 -0.837 -0.962 0.608 -0.837 -0.962
SiHsPH,  0.544 -0.251 -0.033 0.611 -0.838 -0.952 0.647 -0.644 -0.765
SiH3SH 0.594 -0.489 -0.458 0.613 -0.838 -0.943 0.687 -0.443 -0.589
SiH3Cl 0.652 -0.673 -0.652 0.615 -0.829 -0.930 --- --- ---
PH,>PH, 0.574 0.002 0.000 0.652 -0.649 -0.757 0.652 -0.649 -0.757
PH,SH 0.612 -0.274 -0.031 0.655 -0.652 -0.750 0.690 -0.447 -0.582

PH,Cl 0.662 -0.519 -0.541 0.658 -0.644 -0.739 --- --- ---
SHSH 0.642 -0.011 0.000 0.694 -0.448 -0.576 0.695 -0.313 -0.576
SHCI 0.678 0.270 0.024 0.698 -0.438 -0.566 --- --- ---
CICl 0.710 0.000 0.000 --- --- --- --- --- ---

8 The LMO for this X;-X, bond showed significant distortion relative to the others. The maximum in
E(0, Ry, R,) deviated from the bond axis, R, by > 0.050 a.u.

comprising the bond LMO remain the same. In these cases, the trends appear to

vanish; however, there are a number of competing factors at play. First, we have
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the aforementioned enhancement of the inductive effect caused by the increasing
electronegativity of X, drawing the electron density, and thus the centre-of-mass
towards X,. Other related effects include the effect that X, has on the shape of
the localized orbital in question as well as its effect on the bond lengths between
X;-H and X;-X,. Considering all of these factors, it is not surprising that there is
no obvious trend in (R!) and R™* for the X-H bonds in these systems. However,
the increase in (R}, ) is still evident as the electronegativity of the non-participating
heavy atom is increased.

To further explore the effects of electronegativity on the extracule density, we
analyzed methane with varying levels of halogenation. Both the C-X and CH bonds
of CH,_,,F,, and CH,_,Cl, (where n = 0 — 4) were explored. Figure depicts the
position of the maximum in the case of the C-H bond extracules for the CH,_,,F,, sys-
tems. The introduction of the fluorine atoms cause an obvious shift in R,,x within
the C-H bond plane and away from the internuclear axis. The quantitative measures
for these halogenated systems as well as those containing Cl are summarized in Ta-
ble and indicate that the extracular LPM has the capabilities to discern small
but significant anisotropies in the topology of electron-electron interactions within
the chemical bond.

With the overlaid structures depicting the positions of halogenation in Figure
the positioning is explained based on the inductive effects of the newly in-
troduced electronegative atom. Upon the addition of the three halogens for the
analysis of the C-H bond, the maximum returns to the bond axis due to the symme-

try around the tetrahedral carbon, but it is significantly shifted towards the three
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Figure 4.2: Pictorial representation of CH, to demonstrate the positions of each
atom within the molecule combined with an inset of the positions of the maxima of
E(0, Ry, R,) for the C-H bond in methane and its fluorinated derivatives, CH,,F5_,,
where n = 1 — 3 (the dashed line signifies the bond axis).

halogen atoms. These same trends can be observed for the C-H bonds in the chlo-
rinated systems as well as the C-X bonds in both sets of halogenated molecules.
Close analysis of the positions of the maxima reveals that the chlorine atoms tend
to have a greater pull on the centre-of-mass in the C-H bonds than do the fluorine
atoms. Due to the higher electronegativity of the fluorine species, this is rather sur-
prising. The effect appears to be largest upon the introduction of the first chlorine
atom. For the C-H bond, the change in R, for CH5F is -0.018 a.u. while the analo-
gous value for CH5Cl is -0.026 a.u. However, further halogenation does not lead to
significant differences in the shift of the maxima between the fluorinated and chlo-
rinated species. This same trend is seen for the C-X bond, but is less apparent due
to the significant difference in the original position of the maxima. In fact for CHX;
and CX, the shift in the maxima due to the substitution of an additional halogen is

approximately three-fold greater in the case of X=F.
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Table 4.3: Properties of £(0, R,, R.) for halogenated derivatives of methane.

C-H Bond C-X Bond
System (R).) (R,, R.) of Max (R).) (R,, R.) of Max
CH, 0.745 (0.000, 0.383) --- ---
CH3F 0.760 (0.013, 0.365) 1.037 (0.000, 0.686)
CH,F, 0.782 (0.005, 0.346) 1.053 (0.009, 0.651)
CHF; 0.797 (0.000, 0.324) 1.065 (0.004, 0.618)
CF,4 --- --- 1.070 (0.000, 0.589)
CH, 0.745 (0.000, 0.383) --- ---
CH;Cl 0.760 (0.015, 0.357) 0.722 (0.000, 0.036)
CH,Cl, 0.772 (0.007, 0.337) 0.732 (0.016, -0.116)
CHCl3 0.783 (0.000, 0.320) 0.736 (0.007, -0.127)
CCl, --- --- 0.743 (0.000, -0.136)

4.3.2 Bond Strain

An ideal tetrahedral carbon has sp?® hybridization with bond angles of 109.5°. How-
ever, for some cycloalkanes, this conformation is simply not possible. For instance,

1637165] contains significant amounts of

cyclopropane, a well documented example,
strain due to its triangular conformation deviating significantly from the optimal
configuration around a tetrahedral carbon. This strain causes the formation of “bent
bonds” or “banana bonds”. This bending is clearly observed in the extracule density
of not only cyclopropane but also to some extent, in cyclobutane (Figure [4.3]). The
bending in E(R) effectively vanishes in the densities calculated for cyclopentane
and cyclohexane. A quantitative analysis can be performed by determining the po-
sition of the maximum in F(R) outside of the bond axis, i.e. R,. This measure is
tabulated in Table The maximum for cyclopropane is observed at R;** = 0.349

but migrates towards the bond axis as the ring strain decreases and essentially re-

sides in the bond axis for the “strainless" cyclohexane.
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Figure 4.3: Depiction of E(R) for representative C-C bonds in the cyclic systems
ranging from cyclopropane to cyclohexane. Models of the appropriate molecule are
inlayed in the top left hand corner of each graph to provide the reader with insight
as to the spatial orientation of each molecule. The dashed line traces the curve of
slowest descent in E(R,, R,) to illustrate the deviation from the bond axis. Contour
values were chosen as 0.02 x n where n =1 — 16.

To accommodate the smaller angles involving the C-C bonds in the smaller cy-
cloalkanes, the orbitals take on significantly more p-character than a typical C-C
bond between tetrahedral carbons. In the case of cyclopropane, the carbon atoms

participating in the C-C bonds are considered to be sp® hybridized with respect to
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Table 4.4: Properties of £(0, R,, R.) for the C-C bonds in cycloalkanes.

System (R).) Ry
Cyclopropane (C3Hg) 0.750 0.349
Cyclobutane (C4Hyg) 0.751 0.099
Cyclopentane (CsHio) 0.755 0.017
Cyclohexane (CgH;») 0.757 -0.004

that orbital.2®% As the size of the ring in the cycloalkane increases, the strain is re-
lieved and the amount of p-character in the bonds decrease. As p-orbitals are less
electronegative than s-orbitals, progressing from cyclopropane to cyclohexane, we
would expect the electronegativity of the carbon involved in the C-C bond to in-
crease, leading to an increase in the proportion of F(R) present in the bond plane.

This prediction is confirmed by the values of (R).) provided in Table

4.3.3 Non-Covalent Interactions

While LMOs are largely local in nature, as demonstrated above, they are influenced
in characteristic ways by their neighbouring chemical environments. This suggests
that the LPM has utility in analyzing non-covalent interactions. For example, hy-
drogen bonding may be interpreted as the interaction between an electron rich
lone pair of a donor species with an electron deficient acceptor species. The extent
and/or character of the interaction may then be probed by observing changes in the
distributions of localized electron pairs on either the donor or acceptor species (or
both). Here, we have modelled the hydrogen bonding interaction between HF and
MeNH, through the oyr bond LMO of HF and the ny lone pair LMO on the MeNH,

nitrogen. Accurate geometries for the hydrogen bonding complex were obtained
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from the S66x8 data set.*>! Extracule calculations were performed on the H-F bond
in the absence of MeNH, (and vice versa) and with varying separations between the
HF and MeNH; molecules. The b, separation indicates that the distance between the
hydrogen bond donor and acceptor is that which is obtained from the geometry op-
timization carried out at the MP2/cc-pVTZ level. Systems denoted by x x by indicate
that the distance between the two species, d, is scaled proportionally to x. Thus,
the HF-MeOH complex where d = 2.0b, contains an H-bond distance that is twice
the value obtained in the geometry optimization. All other geometrical parameters
remain the same. For the HF bond, the bond midpoint was positioned at the origin
in Cartesian space, while for the lone pair, the nitrogen atom in methylamine was
positioned at (0,0,0.945) while the H in hydrogen fluoride was positioned along the
R, axis at positions relative to the separation of the two species. The positioning of
the nitrogen atom was chosen to allow for adequate sampling of £(0, R, R.) using
the previously described grid points.

Our goal in analyzing the extracule density of these LMOs was to observe the
effect on the extracule density as the hydrogen bond formed and how those ef-
fects varied as the distance between the two species grew. Thus we analyzed the

extracule deformation density of orbital ¢, AES(R), which we define in this case as

AES(R) = EFC™PN(R) — pomelecie(R) (4.18)

which parametrically depends on d, the distance between the species in the molec-

ular complex.
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Figure 4.4: Depiction of AE(?(R) for the oyr bond LMO in H-F (left) and the ny
lone pair LMO in MeNH, (right) for the HE-MeNH, hydrogen bonded complex at
various distances of separation, x x by, between the donor and acceptor. Contours
were chosen as £0.003 x 1.5™ where n = 1 — 8. Negative contours are denoted by

dashed lines.
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These results are depicted in Figure For the HF bond, the figure clearly
shows an increase in £(R) near the F atom as the hydrogen bond forms. This effect
diminishes significantly as the distance separating the species varies from d = 0.9b
to d = 2.0by (0.9by not shown). This change can be concisely rationalized by the
migration of electrons during the formation of a hydrogen bond. In this case, the
H atom in H-F would interact with the electron density of the donor lone pair in
MeNH,. Interacting with the nitrogen allows the electrons within the H-F bond to
migrate towards the F atom resulting in the increase in the likelihood of the centre-
of-mass of that electron pair to be close to fluorine. Conversely, when considering
the lone pair in MeNH,, we observe a decrease in the extracule deformation den-
sity near the nitrogen atom and an increase in the internuclear region between N
and the HF molecule. Unlike the H-F bond where the hydrogen-fluorine interac-
tion was weakening, here the nitrogen-hydrogen interaction is becoming stronger.
Thus, the electrons are migrating toward the hydrogen and consequently shifting
the centre-of-mass away from the nitrogen atom resulting in the observed deple-
tions in the extracule density in this area. This observed migration of electrons
from the hydrogen to the fluorine in the H-F bond combined with the donation of
electrons from nitrogen to the electron deficient hydrogen is in excellent agreement
with the resonance-covalency®®? interpretation of hydrogen bonding (or any non-
covalent interaction) as opposed to the more traditional dipole-dipole interaction
interpretation.

To quantify the differences between the extracule densities of oyr and ny before
and after complexation, we have employed similar measures as noted previously in-
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Table 4.5: Properties of £ ™" (0, R, R.) and AE$(0, R,, R.) for the HF bond
(our) and the MeNH; lone pair (ny) LMOs.

Ej,HF—MeNHg AEZ?
Molecule, ¢ (RY).) Rmax dyz Rmax
HF (d = 0.9by), our 1.074 -0.305 0.148 -0.386
HF (d = 1.0by), our 1.067 -0.298 0.108 -0.384
HF (d = 1.5by), our 1.051 -0.283 0.027 -0.381
HF (d = 2.0by), our 1.047 -0.279 0.010 -0.381
HF (no complex), oyr 1.045 -0.277 0.000 ---
MeNH, (d = 0.90), nn 0.771 0.241 0.080 -0.439
MeNH, (d = 1.0by), nn 0.759 0.248 0.067 -0.566
MeNH, (d = 1.5by), nn 0.751 0.262 0.035 -0.837
MeNH, (d = 2.0by), nn 0.755 0.265 0.013 -0.756
MeNH, (no complex), ny 0.759 0.268 0.000 ---

cluding the zeroth moment (RY.) of EF™ ™ N2(0, R R.)and EJ*™MN(0, R, R.)
as well as RT® of both the extracules and the extracule deformation densities. For
AE(‘;(O, R,.R.), we also define a new measure, J,, referring to the magnitude of

the difference between the extracules:
5,0 = / / ABS(0. R, R.)| dR, dR. (4.19)

These metrics are all listed in Table As before, the introduction of an electroneg-
ative species (N in MeNH,) caused an increase in (R).) for the HF bond LMO. This
effect is even present in the case where d = 2.0by; it is small, but still significant.
However, no trend is apparent in the zeroth moment for the lone pair. When ob-
serving the position of the maxima, as noted in the discussion of Figure the
maxima shift toward the F atom for the HF bond, while they shift away from the
nitrogen atom, towards the acceptor species (HF) in the case of the MeNH, lone

pair.
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d,. provides us with an absolute measure of the variation in the extracule density
for each LMO as a function of the intermolecular interaction. It is relatively large
when d = 0.9by (6,. = 0.148 and ¢,, = 0.080 for oyr and ny, respectively) and
decreases as the methylamine and hydrogen fluoride are separated. At d = 2.0by, J,.
reduces to 0.010 (oyr) and 0.013 (ny) suggesting that the strength of the hydrogen
bonding interaction is related to §,,. Observing these changes in §,, can provide
an indication of the strength of the interaction between the donor and acceptor
species, especially when weighted against the energetic cost of nuclear repulsion
with decreasing d. Further work to elucidate relationships between intermolecular
interaction energies and electron pair distributions (intracular and/or extracular)

in position and momentum spaces is ongoing in our laboratory.

4.4 Conclusions

Herein, we have introduced a novel tool for the analysis of electronic structure.
While the extracule density has been studied in the past, the breadth of systems
studied has been very limited. This could be due in part to the complexity involved
in interpreting a probability density for N(N — 1)/2 pairs of electrons. By access-
ing localized regions of chemical space through the use of ER localized molecular
orbitals, we not only simplify the interpretation of the extracule density, but also
afford a quantum mechanical interpretation of “chemically intuitive" features of
electronic structure.

While this study only involved calculations performed at the HF level of the-

ory, the general trends in chemical behaviour observed are not expected to change
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through the use of correlated models. Regardless, the localized pair model does
offer the capability to perform analyses using Kohn-Sham orbitals to account for
correlation.*® Studies are presently under way in our lab detailing the effects of
correlation within localized chemical bonds for intracule densities and could easily
be implemented for the study of extracule densities.

This study has demonstrated the types of information that can be extracted from
the localized extracule density for simple systems, but one can extend these calcu-
lations to larger systems. The main obstacle to the study of large chemical systems
is the time required for such calculations. However, through the use of LMOs, this
barrier can be partially overcome by the inclusion of only atomic orbitals in close
proximity to the molecular orbital under scrutiny. While this study was conducted
with ER LMOs, one can apply the technique in an identical fashion to other local-
ized orbitals, such as the previously mentioned NBOs, IBOs, and ALMOs, as well as

any canonical molecular orbital of interest.
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Chapter 5

Developing a Theoretical Model for
Quantifying Electronegativity based

on the Position Extracule

This chapter has been reproduced (plus significant additions) with permission from

Proud, A.J.; Pearson, J.K. Can. J. Chem. 2016, 94, 1077-1081.

5.1 Introduction

Electronegativity is a ubiquitous chemical concept that is used to explain many
periodic trends from polarity and partial charges to atomic size. Additionally, an
intuitive grasp of electronegativity is paramount for the understanding of elec-
trophilic/nucleophilic regions which help guide synthetic procedures, among many
other important applications in chemistry. Interestingly, an actual definition of elec-

tronegativity has historically been somewhat elusive and there remains an appetite
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for a simple, yet theoretically rigorous definition based on quantum mechanical
properties.’®® The development of the concept of electronegativity is commonly
attributed to Pauling; however, the idea is a perennial favourite among the chemi-
cal literature and has been discussed since the late 18th century.2671°8 Regardless,
Pauling was the first to quantify the property and his electronegativity scale is still in
common use today.1>21%? Pauling’s definition of electronegativity, y, was based on
differences in bond dissociation energies (F;) of two homonuclear diatomics, A—A
and B—B, compared to that of the heteronuclear diatomic, A-B. This was expressed

mathematically as

1
eV

1
X4 —XB = \/ EqP = SlE + EZP (5.1)

where the dissociation energies are expressed in terms of electron volts (eV). Since
this initial quantification of electronegativity, there have been numerous differ-
ent scales developed in an attempt to accurately quantify this highly useful prop-
erty. 179180 These scales are based on various physical properties including bond
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force constantst’?, effective nuclear charge/covalent radii”*17>, jonization poten-

tials/electron affinities1?2

, etc. Aside from these empirical approaches, Simons et
al. developed the first purely theoretical approach to quantifying electronegativ-
ity.18Y This model was based on the positions of floating spherical Gaussian orbitals.
However, Boyd and coworkers were the first to develop a theory for quantifying

electronegativity based on the topology of the electron density, p(r), despite what

could be considered an intuitive relationship between the two.182183 Their work re-
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vealed a power series relationship between the Pauling electronegativity of atom or
group A (when bonded to H, thereby forming the system A—H) and a parameter,

the electronegativity factor, /'y, which they define as

TH

L
4 Nap(re)ran

(5.2)

Herein, r. is the position of bond critical point of the A—H bond, 74y is the bond
length, ry is the distance between the bond critical point and the hydrogen atom,
and N, is the number of valence electrons associated with atom/group A. While
this form of analysis worked quite well for both atomic and group electronegativi-
ties, it is a somewhat convoluted relationship, especially considering the deceptive
simplicity of the electronegativity concept itself. A more simple and intuitive ap-
proach would be ideal. Boyd and others recently commented on how a topological
approach would be highly useful in the determination of various properties, one of
which, was electronegativity. Boyd specifically stated the need for a more rigorous
theoretical basis for electronegativity, noting that the most likely avenue for this
basis would be through a topological approach.1®

One way to approach this is to examine the topology of localized electron pair

distributions. 26321

The tools available in SEPDA should represent a suitable tech-
nique for the analysis of the topology of localized electron pairs in a chemical sys-
tem from a purely theoretical standpoint. The LPM was developed specifically to

analyze electron pair behaviour within covalent bonds and lone pairs (though it is

generally applicable) and we are now beginning to demonstrate the wide range of

129



applications of such a technique.

In considering a localized electron pair approach, the most obvious way to ob-
serve the migration of an electron pair as a result of electronegativity differences is
through the extracule density, £(R). This way, we can monitor the change in the
centre-of-mass of the electron pair from an arbitrarily chosen origin (in the current
work, this origin corresponds to the position of the heavy-atom nucleus of the A—H

bond). Recall that this can be obtained from the LMO of interest, v, by

E(R) = (p|6(R — m2372l)j) (5.3)

These localized extracules can model the change in position of the electron pair
centre-of-mass as a function of the two atoms involved in the bond, thereby pro-
viding a quantitative measure of the tendency for each atom to attract a specific
electron pair to itself.

While monitoring the absolute position of the electron pair through the position
extracule may be a more intuitive approach to modelling electronegativity, analyz-
ing the relative positions of the electron pair through the position intracule could
prove fruitful as well. Much like the extracule, the position intracule for the A—H

bond can be determined from

P(u) = (¥|6(u — |r1 — ra|)[¢)) 5.4)

The main focus of the study presented in this chapter is on the relationship between
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electronegativity and the extracule density; however, the intracular analysis is also
provided to demonstrate that while less intuitively related to electronegativity, it
can yield significant insight as well.

For the purposes of this study, hydrogen was bonded to the atom of interest
(as it is considered to be neither electron donating, nor electron withdrawing),
thereby forming the system A—H, and representing a unique way of quantifying
the electronegativity of atom A, based purely on topological properties of electron
pairs. The systems of interest in this study are those where X is any first or second
row atom, excluding noble gases.

While the main goal is not to exactly match existing electronegativity scales, con-
sidering that most existing scales agree well with one another, strong correlations
to existing models would provide evidence for the validity of this model. Perfect
agreement with existing models is not necessary however, as existing models do
not even perfectly agree with one another. Considering so many different models
have been developed, this points to the absence of a fundamentally strong defini-
tion of electronegativity. The model presented herein represents a very simple and
intuitive model of electronegativity as it explores the purely quantum mechanical

topology of electron pair distributions.

5.2 Computational Methods

The extracule densities for the systems involved in this study were calculated us-
ing a modified version of the recurrence relation developed by Hollett and Gill for

position intracules”®. Before we can describe the recurrence relation, we must first
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introduce a few variables. The recurrence relation is developed for a set of Gaussian

functions where a Gaussian primitive, a, with exponent «, is given by
@) = (z — A,)"™ (y — Ay)" (2 — A.)"e oA (5.5)

where the angular momentum of a = (a,,a,,a.) and the function is centred on
A = (A, A, A,). Likewise, the Gaussian primitives, |b), |c), and |d) are centred at
B, C, and D with exponents f, «, and §, respectively. Using these Gaussian type

orbitals, we can define the following variables:

po @B+ o g [ oSIA-BP 1dC-DP?

5.6
at+B+y+9 a+f v+6 (5.6)

UE:ozA—l—ﬁB_i_vC#—(SD UP_aA+5B_'yC+5D

= 5.7
a+ 3 v+6 a+f vH+6 (5.7

The recurrence relation for both the position extracule is given by the following

8-term recursive formula:

et = BB Do B g
z(aaj} 5= 10bed W 4 m[(a — 1;)bed] ()
+ ﬁ[a(b — 1;)ed]® + W[a(b ~ 1p)ed]D)
2T BC)"(V T gylab(e — 1)
2(a + ﬁd)i(v gy labeld - 1))+ 5.8)
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while that for the position intracule is:

B(Bi — Ai) Ul

[(a+ 1;)bed]? = P [abed]® + - + B[abcd](l“)
+ ﬁ[(a — 1;)bed]® + W[@ ~ 1;)bed] (Y
+ z(ab—j_ﬁ)[a(b —1;)ed]® + m[a(b ~ 1;)ed]HD)
~ s A Fay bl 1
C2(at Bd)i(’y Fayabetd L) e

These recurrence relations describe how to obtain the integral for augmenting the
angular momentum of the i coordinate (i = z,y, or z) by one (1;). In order to
determine the required integral [(a+1;)bcd]?), one needs the fundamental integral
[0000]! which will be outlined for each electron pair density in the next section. The

derivation of this recurrence relation is provided in detail in Appendix B.

5.2.1 Extracule and Intracule Analysis

The fundamental integral for the scalar position extracule density is given by

_ 327°2R2e R, ( 0

!
) —2U2 2
[0000]" = @il 750" 8U2) e io(4v°UR)] (5.10)

Similarly, for the position intracule density, the fundamental integral is

[0000]®) =

475/2 2= V0’ Sab ( 0

l
(a+ B+ +0)32 8U2> [ io(20°Uw)] (5.11)
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where iy(z) is the modified spherical Bessel function of the first kind defined as
io(z) = sinh(x)/x.

Two quantitative metrics describing the location of the electron pair centre-of-
mass, R, were chosen for the purposes of this study. They are the position of the
maximum of the extracule density, R™**, and the first moment, or average value of

R for a particular E(R), (R), which is defined as
(R) = / R x B(R)dR (5.12)
0

As defined, these metrics can be problematic as they are bond length dependent.
Thus, for comparative purposes, they were determined as a fraction of the bond
length and are denoted R** and (R)y. Since both metrics are determined as a ratio
with respect to the bond length, all quantities expressed throughout are unitless.

Similarly, for P(u), three metrics were explored. The two intracular analogues
of the extracular metrics were chosen, i.e. the position of the maximum of the
intracule density, v™®, and the average value of u, given by (u). The intracule also
possesses another easily obtained metric with great significance. The first inverse

moment of the intracule density is given by
(u™) = / —P(u)du (5.13)
0

which is equivalent to the electron repulsion energy in the system. Due to the

physical significance of the moment, it was included in the analysis as well.
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For the first part of this study, all chemical systems were optimized at the Re-
stricted open-shell Hartree-Fock level of theory (ROHF for radicals) with a u6-
311G(d,p) basis set where the u indicates that the basis set was completely un-
contracted. In the second part of the study, various density functionals are assessed
to determine whether the agreement to existing electronegativity scales improve

upon the introduction of electron correlation energy.

5.3 Results and Discussion

5.3.1 Hartree-Fock Method

Extracule densities were determined for the A—H bond in each of the saturated first
and second row hydrides. Each geometry was optimized at the same level of theory
and the extracule was determined for the bond LMO describing said bond. The
extracules for these hydrides are shown in Figures a) and b). As expected,
as we move across the periodic table from left to right, the electron pair centre-

of-mass migrates from the H atom (i.e. R = 100%) towards the heavy atom (i.e.

a) b)

E(R) — LiH ER) — NaH
— BeH
— BH3

CHa
—— NHj3
— OH;
L — FH
04+

02l

2 4 6 8 1b é 4 6 8 lb
Figure 5.1: Localized extracule densities for the A—H bond in saturated a) first row

hydrides, and b) second row hydrides with insets of the A—H bond LMO of F—H
and Cl—H for illustrative purposes.
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R = 0%) due to the increase in electronegativity. This is clearly demonstrated in the
two aforementioned metrics (R5™ and (R)y) which are tabulated below in Table
As the heavy element changes from Li to F in the first row, the position of the
center-of-mass of the electron pair migrates substantially from the H to the heavy
atom and this is captured very clearly within E(R).

A second set of calculations were carried out on a set of truncated hydrides
(i.e. the full molecular system was A—H). The remaining valence sites were left
empty and the multiplicity was adjusted accordingly. This set of truncated hydrides
was analyzed in order to determine what effect, if any, the presence of additional
hydrogen atoms had on the extracule density of the A—H bond LMO, thereby differ-
entiating between group and atomic electronegativities where the “group" consists
solely of H substituents on the heavy atom of interest (Table[5.2)).

Five separate electronegativity scales were chosen for comparison in this study.
They are the Sanderson scale ()74, the Pauling Scale (I)!¢°, the Allred-Rochow
scale (II1)17°, the Allen Scale (IV)*8%, and the Mulliken relation (V)79 These partic-
ular scales were chosen to cover a wide range of varying definitions for electroneg-
ativity. As previously noted, Pauling’s scale was based on the dissociation energies
of homo and heteronuclear diatomics. Alternatively, Sanderson utilized a measure
of compactness of an atom while the Allred-Rochow method related electronega-
tivity to effective nuclear charge and covalent radius. The Allen Scale is based on
configuration energies, which were defined as the average one-electron energy of
a valence-shell electron in a single atom whereas Mulliken defined it simply as the
arithmetic mean of the ionization potential and the electron affinity.
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Table 5.1: Metrics of F(R) for the A—H bond LMO in saturated hydrides.

x of atom A

System RI™  (R)y I il il vV V

LiH 0.977 0.978 0.886 0.980 0.970 0.912 0.970
BeH, 0.895 0.873 1.810 1.570 1.470 1.576 1.540
BH; 0.835 0.805 2.275 2.040 2.010 2.051 2.040
CHy4 0.745 0.732 2.746 2.550 2.500 2.544 2.480
NH;3 0.450 0.664 3.194 3.040 3.070 3.066 3.040
OH, 0.378 0.607 3.654 3.440 3.500 3.610 3.680
FH 0.322 0.537 4.000 3.980 4.100 4.193 4.300
NaH 0.984 0.968 0.835 0.930 1.010 0.869 0.910
MgH, 0.943 0.909 1.318 1.310 1.230 1.293 1.370
AlH; 0.912 0.880 1.714 1.610 1.470 1.613 1.710
SiH, 0.882 0.833 2.138 1.900 1.740 1.916 2.280
PH; 0.842 0.772 2.515 2.190 2.060 2.253 2.410
SH, 0.790 0.712 2.957 2.580 2.440 2.589 2.860
CIH 0.723 0.653 3.475 3.160 2.830 2.869 3.340
R?: Rg™ --- --- 0.775 0.853 0.914 0.888 0.810
R?: (R)y --- --- 0.992 0.993 0.973 0.981 0.975

As previously noted, one might expect that the centre-of-mass of the electron
pair within a bond LMO would provide an indication of electronegativity. Thus,
using the two aforementioned metrics, correlations between each of the given scales
and the two metrics were sought. The data for both the saturated and truncated
hydrides are presented in Tables and respectively.

For both the saturated and truncated molecular systems, R$* did not exhibit
particularly compelling correlations with established electronegativity values, as is
evident based on the coefficients of determination (R?) being as low as 0.775. Vi-
sual evidence for this is provided in Figure a) which depicts the relationship
between Pauling electronegativities, xpauling and Rg®™. This graph clearly demon-

strates the presence of three outliers which represent the F—H, O—H, and N—H
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Table 5.2: Metrics of E(R) for the A—H bond LMO in truncated hydrides.

x of atom A

System RI™  (R)y I il il vV V

LiH 0.977 0.978 0.886 0.980 0.970 0.912 0.970
BeH 0.896 0.885 1.810 1.570 1.470 1.576 1.540
BH 0.826 0.795 2.275 2.040 2.010 2.051 2.040
CH 0.734 0.717 2.746 2.550 2.500 2.544 2.480
NH 0.434 0.656 3.194 3.040 3.070 3.066 3.040
OH 0.373 0.604 3.654 3.440 3.500 3.610 3.680
FH 0.336 0.552 4.000 3.980 4.100 4.193 4.300
NaH 0.984 0.968 0.835 0.930 1.010 0.869 0.910
MgH 0.935 0.898 1.318 1.310 1.230 1.293 1.370
AlH 0.924 0.890 1.714 1.610 1.470 1.613 1.710
SiH 0.878 0.828 2.138 1.900 1.740 1.916 2.280
PH 0.834 0.766 2.515 2.190 2.060 2.253 2.410
SH 0.786 0.708 2.957 2.580 2.440 2.589 2.860
CIH 0.723 0.653 3.475 3.160 2.830 2.869 3.340
R?: Rg™ --- --- 0.776 0.851 0.913 0.886 0.809
R?: (R)y --- --- 0.989 0.987 0.968 0.975 0.969

bonds. These outliers are present for all 5 electronegativity scales and are the ma-
jor factor for the poor relationships. Upon the removal of these outliers from the
dataset, the R? value for the relationship with xpauing improved from 0.853 to 0.965,
along with substantial improvements in the fits for the other four scales.

As the average value of R is more indicative of the full distribution than simply
the maximum, one might expect that the relationship between this property and
electronegativities would be better. This is strongly supported by the data as when
considering (R)¢, the correlation between it and established electronegativity met-
rics increased significantly and the F—H, O—H, and N—H bonds were no longer
outliers. For this metric, the R? values ranged from 0.969-0.993, with the relation-

ship for xpauing depicted in Figure b). As evidenced by this plot, there are no
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Figure 5.2: Correlation between Pauling electronegativities and a) (R)¢, and b)
Rg* for the first and second row hydrides.

points within the dataset that deviate significantly from the linear relationship.
What is more enlightening is to look at the differences between the metrics for
the saturated and truncated hydrides. While systems with formulae A—H and A—H,
are obviously very similar between these two sets, molecules with more valence
sites begin to differ significantly in terms of our two metrics. This suggests that this
method would be highly useful for defining group electronegativities, and based on
the strong correlations with current electronegativity scales, the accuracy of such an
approach would be quite high. One might be surprised that better correlations were
obtained for the saturated molecular systems as opposed to the truncated hydrides
despite the presence of additional hydrogen atoms that could distort the extracule
density. However, as hydrogen atoms are considered as the reference for electron
donating versus electron withdrawing, they would be expected to have minimal
effects on the extracule density. They simply serve to saturate all valence sites on
the heavy atom. Furthermore, the presence of radicals and or paired electrons that

would otherwise be involved in bonding interactions is sure to introduce some error
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into the modelling of the systems. Thus, we propose that saturating all valence sites
of atom A with hydrogen atoms is a more accurate way to model the electronega-
tivity for said atom. Conversely, if one were to substitute the hydrogen substituents
with other functional groups, one could easily extend this method to determine
electronegativities for the corresponding chemical group (e.g. -CH3 vs -CH,OH or
-CH,F).

In comparison to the topological method of Boyd and Edgecombe, which had
a correlation coefficient of 0.991 (for xpauing) Using the power series relationship
between Yy, and F,, our approach works very well (R?> = 0.993). Considering
its simplicity, as one only need consider the average distance of the electron pair
centre-of-mass from the atom of interest, this model is a simple, intuitive, and accu-
rate approach to quantifying, perhaps even defining, electronegativity from a purely
theoretical standpoint.

As the Pauling scale is so popular, many other electronegativity methods are
modified to conform to the values of this scale. This is often done by scaling the
electronegativity values of the new method to fit within the upper and lower bounds
of the Pauling method (F as the upper bound and Cs or Fr as the lower bound). Ap-
plying a similar approach here, we use the linear relationship between xpauing and
(R)y (as shown in Figure b) to develop our own electronegativity scale, xipm-
The electronegativity values obtained from this approach are compiled below in Ta-
ble The largest deviations in the ypy values with respect to the Pauling values
were for fluorine and sulfur at approximately 0.14 while the smallest deviation was

observed for sodium (0.001). Regardless, the mean absolute deviation for the set of
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Table 5.3: xipm Of the first and second row atoms

X1pm by group
System 1 2 13 14 15 16 17

First row 0.866 1.596 2.069 2.577 3.050 3.447 3.833
Second row 0.929 1.341 1.548 1.876 2.297 2.721 3.130

14 atoms was only 0.054. Furthermore, considering we have strong agreement be-
tween our model and the five electronegativity scales (that are significantly different
in origin) studied herein, our model demonstrates strong potential for considera-
tion as a novel, purely theoretical, method for describing electronegativity based on
a novel topology of the electron pair density of single electron pairs.

As the truncated hydrides did not correlate as well as the saturated systems,
only the saturated systems were analyzed with respect to the position intracules.
As before, all first and second row hydrides were geometry optimized at the HF/u-
6-311G(d,p) level of theory and the localized molecular orbitals were determined
using the Edmiston-Ruedenberg model. P(u) was then calculated for each of the
saturated hydrides for the A—H bond LMO. The results of these calculations are

tabulated below in Table

Table 5.4: R? values for metrics of P(u) for the A—H bond LMO in saturated hy-
drides.

Metric I il i vV V
= 0.949 0.960 0.965 0.972 0.931
(u) 0.925 0.911 0.895 0.925 0.887
(u™1) 0.888 0.938 0.973 0.971 0.912
ul 0.005 0.003 0.000 0.003 0.024
() 0.001 0.000 0.001 0.000 0.006
(u)y 0.808 0.875 0.933 0.915 0.826
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The data demonstrates that better correlations to existing electronegativity scales
were observed for the extracule densities. As discussed, this is not overly surprising
considering that the extracule describes more absolute position information while
the intracules only contain relative position information. Nonetheless, strong cor-
relations are still observed for each of the metrics studied for the intracule density.

Unlike for F(R), the metrics for P(u) perform far better when they are not scaled
by the bond length. One possible reason for this is the relative nature of the posi-
tion information. With the extracule density, observing how far the density shifts
towards the electronegative atom will be significantly affected by the distance be-
tween the two bonded atoms; however, it should not be surprising that the relative
positions of the electrons are not affected by this bond distance. Thus, scaling these
metrics by this bond distance appears to remove any correlation between the met-

rics (especially the average and maximum positions of «) and the electronegativity

scales.
a) P ' b) pw) Nl
— a
04l — MgH>
— AlH3
03l —— SiH4
= PHj
3 — SH:
0.2 — CIH
0.1f
8 0" [ R 8 0"

Figure 5.3: Localized intracule densities for the A—H bond in saturated a) first row
hydrides, and b) second row hydrides.
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5.3.2 Density Functional Theory

As discussed in the introductory chapter of this thesis, density functional theory
(DFT) is a method that utilizes the one-electron density, p(r) as opposed to the
molecular wavefunction, ¥(ry,...,rn). Theoretically, this method is exact is the
proper functional is known; however, this is clearly not the case and there have
been numerous functionals developed over the years to try and obtain better re-
sults by obtaining the exchange and correlation energies to greater accuracy. In
the remainder of this study on electronegativity, we decided to explore the effects
of using density functional theory to observe whether greater correlations to elec-
tronegativity scales were obtained by using these more accurate methods.

For the purposes of this study, four separate DFT methods were chosen: BLYP,
B3LYP, B3PW91, and M06-2X. While any of the countless DFT methods could have
been studies, these four were specifically chosen due to the availability of electronic
energies for each of the first and second row hydrides in the NIST database®* and
compatibility with the GAMESS software package which is used to calculate the
LMOs.

To assess the accuracy of each of the four DFT methods, two separate metrics
were used, both related to electronic energies. First, the mean absolute error (MAE)
of each method was determined by comparing the energy of each hydride calculated
by that method to the exact energy (defined as CCSD(T)/cc-pCVTZ). Second, as it
is important to accurately describe the entire set under investigation (in this case,

all of the first and second row hydrides), a second metric was employed that con-
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Table 5.5: Accuracy metrics for the four DFT methods and HF.

Metric HF BLYP B3LYP B3PW91 MO06-2X
MAE (FE}) 0.4183 0.0717 0.0519 0.0596 0.0556
MAE, .. (E}) 1.1224 0.2117 0.1612 0.1645 0.1773
s (Ep) 0.2003 0.0587 0.0429 0.0430 0.0478
RSD 47.89% 81.81% 82.53% 72.12% 86.06%

sidered the largest absolute error encountered for each method. This metric, which

we will call MAE,,,,..., is defined as

MAE, ., = MAE + Max(|Ef® — EPFT) (5.14)

where i is an index relating to each of the hydrides in the set.

The results of the accuracy tests on each of the DFT methods (as well as those
from the HF method) are provided in Table Also in this table are the stan-
dard deviation, s, and the relative standard deviation, RSD, which will be discussed
later in this section. Based on both MAE and MAE,,,.., B3LYP is the most accurate

functional on this test set. Based on MAE, the accuracy decreases in the order

B3LYP > M06-2X > B3PW91 > BLYP > HF

This order is slightly different when considering the alternative metric, MAE,,,.,
where B3PW91 exhibits a lower max error resulting in a lower MAE, ... The rest of
the set remains in the original order.

The extracules for all of the saturated hydrides were then calculated and the

results are displayed in Figure Visually, there are no noticeable differences
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Figure 5.4: Localized extracule densities for the A—H bond in saturated first row

(left) and second row (right) hydrides calculating using a) BLYP, b) B3LYP, c)
B3PW91, and d) M06-2X.
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Table 5.6: Coefficient of determination comparison for each computational method.

Metric Scale HF BLYP B3LYP B3PW91 MO06-2X
I 0.775 0.785 0.785 0.756 0.788
II 0.853 0.861 0.862 0.833 0.864

R%ax I11 0.914 0.920 0.922 0.902 0.924
1\ 0.888 0.895 0.896 0.879 0.898
\Y 0.810 0.822 0.823 0.795 0.823
I 0.992 0.984 0.986 0.973 0.991
I 0.993 0.983 0.987 0.975 0.988

(R)y% 111 0.973 0.958 0.963 0.966 0.963
\Y 0.981 0.967 0.972 0.982 0.975
\Y% 0.975 0.978 0.980 0.970 0.980

for the position extracules for each of the DFT methods. However, there are some
minor quantitative differences. As before, R;** and (R)y were calculated for each
of the extracules. The coefficients of determination between these metrics and the
five electronegativity scales are tabulated below in Table In the table, the
electronegativity scale (rows) and computational method (columns) that had the
strongest overall correlation to each metric are highlighted in green.

Based on the methods that correlate best with existing electronegativity scales
(M06-2X for Ry*™ and HF for (Ry)), there does not appear to be a connection
between the accuracy of the model for predicting electronic energies and the rela-
tionship to electronegativity. One could point to the lower RSD for the HF method
to suggest why it performs so well, but this would be a loose connection. Further
investigation is required to determine why certain methods perform better than
others. Nonetheless, all of these relationships are based off data from existing elec-
tronegativity scales, which, based on the number of different scales in existence,

are flawed in their own right. Thus, even though these DFT methods did not agree
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with existing scales better than did the HF method, this is not to say that they do not

provide a more accurate theoretical description of the property of electronegativity.

5.4 Conclusions

We have applied a localized position intracule and extracule analysis to the set of
first and second row hydrides in an attempt to develop a relationship between the
topology of electron pair distributions and the concept of electronegativity. The
localized extracule density was an obvious choice for application to electronega-
tivities based on the absolute electronic position information contained within the
distribution. We have demonstrated excellent correlations to several pre-existing
electronegativity scales and thus, propose that the aforementioned approach could
be used as a novel method for defining electronegativity in a simple, intuitive, and
accurate way based on topological properties of the electron pair density. While the
results obtained from P(u) weren’t quite as good as those from E(R), strong cor-
relations were still obtained. Analysis with various DFT functionals did not appear
to increase the relation to existing electronegativity scales despite the increased
accuracy of the models. This specific study illustrates another useful application
of the SEPDA package in addition to those that we have highlighted in previous

reports, 826321
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Chapter 6

Using the Single Electron Pair
Distribution Analyzer to Describe the

Nature of the Hydrogen Bond

This chapter has been reproduced with modifications with permission from Proud,
A.J.; Sheppard, B.J.H.; Pearson, J.K. Phys. Chem. Chem. Phys. 2015, 17, 20194-
20204. All work reported in this chapter was performed by Proud; however, some
of the intracule calculations had been a repetition of work conducted by Sheppard.

It was repeated to ensure consistency between the extracule and intracule data.
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6.1 Introduction

‘... under certain conditions an atom of hydrogen is attracted by rather strong forces
to two atoms, instead of only one, so that it may be considered to be acting as a bond
between them. This is called the hydrogen bond.” - Linus Pauling!®>

While our understanding of the hydrogen bond has improved significantly since
it was defined by Pauling, his original definition does accurately describe the unique
interaction. A hydrogen atom, while covalently bound to one electronegative atom,
may interact with a second atom within a separate molecule or a separate moiety
within the same molecule. The strength of this interaction depends on various
factors including molecular geometries and electrostatics but can vary from 0.5-45
kcal/mol.®®

Hydrogen bonding is highly prevalent in nature through its extensive involve-
ment in the secondary structure of proteins, the stabilization of the double helix
structure of DNA, and in many of the remarkable properties of H,O. It was first
described in the 1920s and its definition continues to change as our understanding
of the interaction improves.®? While it was once largely considered an electrostatic
interaction, recently a resonance-covalency model has begun to emerge as a more
complete characterization. %88

As hydrogen bonding involves the through-space interaction of a lone pair of
electrons of a heavy atom (Y) with an electron deficient neighbouring hydrogen
(H-X), observing the changes in electron positions and electron pair separations

represent intuitive ways to analyze and further characterize hydrogen bonding in-
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teractions. While the wavefunction contains all necessary information regarding
the positions of all N electrons for this purpose, dealing with such vast amounts of
information is not generally tractable. However, as noted, hydrogen bonds primar-
ily involve interactions between two localized sets of electron pairs: those involved
in the covalent X—H bond, oy, of the hydrogen bond donor and those in the
lone pair of atom Y, ny, of the hydrogen bond acceptor. Thus, this interaction can
be simplified by analyzing individual electron pairs. To do so, we can utilize the
SEPDA package, notable the position intracule and extracule. For the purposes of
this hydrogen-bonding analysis, it would be fruitful to study the 3-D (or 2-D) po-
sition extracule as opposed to the scalar counterpart. While this does significantly
increase the computational cost of the calculations, it should afford a richer analysis
of the hydrogen bonding interaction making this added time worthwhile.

By using LMOs, we can directly analyze the electron pair behaviour in molecu-
lar systems, and specifically the hydrogen bonding interaction (i.e. the oxy and ny
orbitals) within the present work to observe how the centre-of-mass of the electrons
described by these LMOs changes as the hydrogen bonding complex forms. Subse-
quently, we may also explore how such a density differs within different hydrogen

bonding environments.

6.2 Computational Methods

Localization algorithms can be applied to any single determinant method, such

as Hartree-Fock theory, which we explored in previous work describing the use

91

of extracules in localized space,”" or as will be explored here, Kohn-Sham (KS)
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DFT. What remains to be seen is whether analyzing a property of electron pairs is
feasible using a technique which only considers the one-electron density, p(r). The

traditional electron density is defined as

p(r) = / W (x, Xz, ...,%XN)|*dsdx, . .. dxn (6.1)

A two-electron, single determinant wave function can be obtained from a single
localized molecular orbital, ;.. Using this definition in place of the molecular wave
function in equation (6.1]), one obtains the spin-reduced two-electron density for
the pair of electrons described by that specific LMO, p*(ry,r2). For a single localized
molecular orbital, no exchange interactions exist. In this scenario and defining the
electron density for the specific LMO, k, as was done for p*(ry,r3), the localized
pair density is given by:

pk(rl,rz) = Pk(l‘l)Pk(I‘z) (6.2)

In doing so, Coulombic electron correlation effects are being ignored. This omission
is implicitly accounted for to a certain extent through the correlation functional, but
it is still an approximation.

Recall that the extracule density is obtained from the pair density by the follow-

ing relationship:

E(R) = / o1, 72)8(R — TE72) dpy iy 6.3)
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Substituting equation (6.2)) into (6.3)) yields
ER) = /pk(r)pk(QR —r)dr (6.4)

If we define the molecular orbitals as a linear combination of Gaussian primitives,

we obtain:
K

ER) = Z CukCukCAkCok (HVAT) (6.5)

Ao

where ¢, ;. is the atomic orbital coefficient describing how the contribution of basis
function ¢, to the LMO of interest, 1,. These integrals can be determined from
the recurrence relation developed by Thakkar and Moore”> and the fundamental

integral which was previously defined as

3/2
Ad)s = <<4+7Tn) P [‘CU(ZRc_fn_ Q)Q] (00)
< exp [_ aB(AC— B)? B 76(077— D)? LI,

The value of the extracule density was calculated at various points defined by
the Mura-Knowles grid that was adapted to extend in the negative directions of the
Cartesian coordinates. The grid was overlaid on the yz-plane and consisted of 151
points (75 in each direction as well as the origin). For the purposes of this study,
the two atoms involved in the bond (X-H) containing the hydrogen atom as well
as the atom containing the lone pair (Y) that will participate in hydrogen bonding
are all positioned in the yz-plane to ensure adequate sampling of the environments

around these atoms.
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To quantify the extracules, there were a number of metrics employed. Since
slices were chosen as opposed to all of 3-D space, the extracule did not integrate to
unity (i.e. number of electron pairs; a necessary condition for single orbitals), and
instead is equal to the value of E(R,,) integrated over the full slice. We define this

metric as the zeroth moment, (RJ_), which is defined as

<R;y:/m/mﬁmemRmRz 6.7)

Similarly, as was done previously, we can look at the first moment of R, to deter-

mine the average value in the bond axis direction (z-axis). This is evaluated as

(R,) = <R10 > / / R. x E(R,.)dR,dR. (6.8)
Yz —00 J —oo

The final quantifiable properties of interest in this study are the position of the
extracule density maximum in the bond axis, R, and the value of the function at
this maximum, E(R™).

Each of these properties can be calculated for a hydrogen bonding complex with-
out needing the extracule density for either the X—H or Y molecule by itself. How-
ever, one can imagine that comparing these complexes to the molecules in the ab-
sence of the hydrogen bonding interaction would be rather insightful. To do this, we
explore the extracule deformation density, AE%(R), for orbital ¢ which is defined
as

AEJ(R) = Ey©™¥(R) — pomelecie(R) (6.9)
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The deformation density is useful in demonstrating the effect on the extracule den-
sity as the hydrogen bonding interaction forms and how it changes as the distance
between the two molecules increases. The main property of interest involving the
deformation density is Jr which is the magnitude of the difference between the

complex and single molecule. This is defined as

Op = / / IA’E(R,.)|dR,dR. (6.10)

All geometries for the hydrogen bonding complexes were obtained from Hobza’s
X40x10 and S66x8 data sets.>118 Single-point energy and orbital localization cal-
culations were performed on each of these geometries at the M06-2X/u6-311G(d,p)
level of theory (u indicates that the basis set was completely uncontracted) using
the GAMESS software package.? The Mathematica 8 software package was utilized
to interpolate the data obtained from grid-point evaluation for visual representation
and further analysis.'>® Atomic units are used throughout this chapter unless oth-
erwise stated.

Additional calculations utilizing the "Atoms in Molecules" (AIM) technique were
carried out on these systems to compare the capabilities of extracules in the lo-
calized pair model to AIM theory with regards to interpreting hydrogen bonding
interactions. Past research1°21531875190 hag shown the utility of AIM theory in the
study of hydrogen bonding interactions and thus, it should represent a good case

for comparing the results of our novel approach.

154



6.3 Results and Discussion

For the purpose of this study, 28 hydrogen bonding complexes were chosen from the
X40x10 and S66x8 data sets. 12118 For each of the systems the extracule, F(R,.),
density was calculated for the oxy; LMO of the proton donor individually and in the
X—HY hydrogen bonding complex at H+Y separations of 0.90d,, 0.95dy, 1.00dy,
1.05dy, 1.10dy, 1.25dy, 1.50d,, and 2.00d,, where d, is the geometry optimized dis-
tance between the two atoms (see Figure . Likewise, for ny, E(R,,.) was calcu-
lated for the complex at each of the separations listed above, as well as that for the

isolated proton acceptor, Y.

d

X-H---Y d=090d,-2.00d,

Figure 6.1: Pictorial representation of the various geometries for each of the hydro-
gen bonding complexes.

6.3.1 Extracule densities for oxy LMOs

When a hydrogen bond forms, the ny LMO interacts with the electron deficient H
atom in the X—H molecule. In doing so, one expects that the electron pair, and thus
the centre-of-mass, within the X—H bond would migrate towards the X atom due
to the donation of election density from the lone pair to the hydrogen. This effect
can be observed through both (R,) and RT*. In the present molecules, the X—H
bond midpoint is placed at the origin, with X in the negative z-direction and the
hydrogen in the positive direction. The data presented in Table clearly show
that as Y approaches the X—H molecule, the average value of R, shifts towards the
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Table 6.1: (R,,) for the oo_py in MeOH-Y complexes

System 0.90d, 0.95dy 1.00d, 1.05dy  1.10dy 1.25d, 1.50dy, 2.00dy

MeOH-CH;Cl 0.0184 0.0223 0.0253 0.0275 0.0291 0.0319 0.0345 0.0359
MeOH-CH3F 0.0102 0.0151 0.0190 0.0220 0.0244 0.0287 0.0324 0.0349
MeOH-MeNH, -0.0278 -0.0194 -0.0123 -0.0063 -0.0012 0.0098 0.0195 0.0274
MeOH-MeOH 0.0043 0.0117 0.0178 0.0229 0.0271 0.0355 0.0424 0.0478
MeOH-Peptide  -0.0091 -0.0008 0.0061 0.0120 0.0170 0.0275 0.0375 0.0461
MeOH-Pyridine -0.0273 -0.0184 -0.0109 -0.0027 0.0019 0.0121 0.0216 0.0283
MeOH-H,O 0.0044 0.0111 0.0166 0.0211 0.0247 0.0321 0.0384 0.0435

0.0365
0.0365
0.0323
0.0511
0.0495
0.0329
0.0469

X atom, as predicted. This effect is seen universally across the data set as shown in
the table and in the Electronic Supplementary Information (ESI). The presence of
the Y lone pair causes a small but significant migration of the centre-of-mass in the
ox.u bond towards the X atom. This effect is also observed in R?®* which is included
in the ESI.

In our previous work introducing the localized extracule, we noted a few trends
in (R),).”! First, the primary effect was that by introducing electronegative species
to the neighbouring chemical environment, increases in (R;,) were observed in
nearly all cases. This signifies that the value of the extracule density, £(R), in
the plane of the hydrogen bond increases as the electronegativity of neighbouring
substituents increases indicating a migration of the centre-of-mass density towards
the bonding region. The only exceptions were observed in systems where a second
row element was bonded to a first row element. A similar trend is observed for these
hydrogen bonding systems (Table . All systems exhibit an increase in (RJ_) as
the proton acceptor Y is drawn closer to the donor species, with the exception of
systems where the donor contains an X—H bond with X=CLBr.

Within the context of AIM theory, an electron density analysis technique, values

of the electron density at bond critical points (p(r.)) have yielded direct relation-
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Table 6.2: (RY),) for the oxy bond in a few select systems

System 0.90d, 0.95d, 1.00d, 1.05d, 1.10d, 1.25d, 1.50d, 2.00d, 00

HBr-MeOH 0.6620 0.6632 0.6640 0.6646 0.6651 0.6663 0.6674 0.6679 0.6682
HCl-MeNH, 0.7176 0.7191 0.7205 0.7217 0.7227 0.7247 0.7262 0.7272 0.7271
HCl-MeOH 0.7340 0.7347 0.7351 0.7353 0.7356 0.7368 0.7368 0.7368 0.7368
HF-MeNH, 1.0749 1.0712 1.0681 1.0655 1.0631 1.0576 1.0526 1.0498 1.0480
HF-MeOH 1.0724 1.0697 1.0673 1.0652 1.0634 1.0597 1.0572 1.0553 1.0541
MeNH,-MeNH, 0.8417 0.8408 0.8401 0.8395 0.8391 0.8385 0.8380 0.8374 0.8371
MeNH,-MeOH  0.8413 0.8406 0.8401 0.8397 0.8394 0.8389 0.8384 0.8378 0.8375

ships to hydrogen bond strengths. This led us to explore whether any of the metrics

employed herein would show similar predictive capacity. Figure depicts the

relationship between hydrogen bond strengths to (R} ) for each of the systems at

equilibrium (i.e. d = 1.00d,). While there does not appear to be any mathematical

relationship, the graph clearly classifies the systems into 5 separate classes where

the interaction energy may vary, but the zeroth moment is effectively unchanged.

0
[ )
. .
= 7 e : H |
2 X=Br ° ° .
=~ ° e
g . L
=
£ -10¢ X=N *
&
¢ X=0
X=Cl
[ ]
—-15+ X—F"
0.6 0.7 0.8 09 1.0 1.1
0
<Ryz>

Figure 6.2: Classification of hydrogen bonding systems based on (R ) of the oxy
LMO and hydrogen bonding strengths.
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Each class corresponds to a particular X atom in the X—H bond. In increasing order
of (RY.), these classes represent Br—H, Cl-H, N—H, O—H and F—H bonds. This
ordering agrees with the previously noted relationship between <R2z> and elec-
tronegativity. The lone system containing Br (the lowest electronegativity) falls at
the lower end of (RY,) values, while increases in electronegativity lead to an in-
crease in the value of the metric.

The extracule deformation density is a useful visual tool as it highlights all of
the trends that have been discussed thus far. Figure illustrates AEY 00do (Fyz)
for the on.g bond and ny LMOs in the MeNH,-MeOH hydrogen bonding complex at
its equilibrium geometry. This figure clearly demonstrates that the centre-of-mass
in the oy.g bond migrates away from the hydrogen atom towards the X atom. This

migration is caused by the shift in the centre-of-mass from the lone pair, no towards

3f AETGoa, (Ryz) | 3l ABTSE (Ry2)

~1F 1 -1t 1
2L ] 2L ]
3L ] 3L ]

[ R R B T [ R R R B T

Figure 6.3: Contour plot of AETYH, (R,.) and AEYG, (R,.) in MeNH,-MeOH de-
picting the change in the extracule density in the presence of the proton acceptor,
MeOH (dashed lines signify negative contours while solid lines signify the positive
contours).
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the hydrogen in X-H during the formation of the hydrogen bond. This agrees with
the previous observation that both (R,) and RT* shift towards X when the hydrogen
bond forms and as the hydrogen bonding distance decreases.

In comparing Figures [6.4/(a) and (b), it is noted that as the two molecules in-
volved in the hydrogen bonding interaction separate, the extracule of the complex
begins to resemble that of the single molecule in the absence of hydrogen bonding.
The degree to which the extracules differ can be measured using dz. This property
is tabulated in Table for the complexes where water is the donor species (data
for all systems can be found in the ESI). These data clearly show that a greater
difference in the extracule density is observed when the two species are in close
proximity. This difference tails off significantly as the systems reach a separation
of 2.00d,. This again suggests a propensity for the localized extracule to offer, at
minimum, qualitative insight into the strengths of the non-covalent interactions.

For a given complex, analysis of each quantitative metric described in the com-
putational section demonstrates a strong quadratic relationship with respect to in-
teraction energy (Figure [6.5). While it is expected that this relationship would not
hold for larger separations, encountering such interactions in real chemical sys-

tems would be rare. Over the 28 systems analyzed, coefficients of determination

Table 6.3: i for ¢ = 0o in the H,O—Y subset of systems.

System 0.90dy 0.95dy 1.00dy 1.05dy 1.10dg 1.25dy 1.50dy 2.00d
H,O-MeNH, 0.0866 0.0735 0.0626 0.0535 0.0459 0.0298 0.0162 0.0060
Hy0-MeOH 0.0677 0.0564 0.0472 0.0397 0.0336 0.0213 0.0114 0.0043
HyO-Peptide 0.1205 0.1109 0.1036 0.0981 0.0938 0.0860 0.0811 0.0795
HyO-Pyridine 0.1156 0.1057 0.0983 0.0927 0.0885 0.0812 0.0772 0.0762
H>0-H»0 0.0149 0.0137 0.0108 0.0093 0.0081 0.0055 0.0031 0.0011
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Figure 6.4: Contour plot of AEJ™(R,,) and AE¥(R,.)for the HF-MeNH, complex

demonstrating the diminishing effect on AF(R) as the complex separates (dashed
lines signify negative contours while solid lines signify the positive contours).

(R?) values ranged from 0.9113-0.9999. However, with the exceptions of H,O-
Pyridine (R?*=0.9113), H,O-Peptide (R?=0.9257), and Peptide-H,O (R*=0.9717)
complexes, all other systems had R? values greater than or equal to 0.9941. In the
case of the first two complexes, there may be some other form of interaction that
is occurring in these systems that is causing these deviations from the quadratic

relationship while the fit of the third appears to be distorted by a single data point.
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Figure 6.5: Relationship between dz, (R} ), R?™, and (R.) versus hydrogen bond

As in the case of (R] ), we also explored the possibility of a relationship existing

between 0y for each of the systems when d = 1.00d,. This relationship is depicted

in Figure The two points in red represent the H,O-Pyridine and H,O-Peptide

complexes. When these two points are removed, the coefficient of determination
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Figure 6.6: Relationship between hydrogen bond interaction strength, Ej,. versus a)
dr, and b) the density at the bond critical point, p(r.), for all systems at equilibrium.

improved from 0.7137 to 0.8411. While this may not appear to have much pre-
dictive power, it is on par with bond-critical-point (BCP) density analysis of AIM
theory (R?=0.8282). Figure b) demonstrates this analysis. Unlike the case of
the extracules, there are no distinct outliers in this analysis that could lead to an
improvement in the R? value. Past studies have shown that BCP densities are strong
predictors for hydrogen bonding12#1231875120 g g0esting that the variability in this
data set makes predictions rather difficult. The fact that our technique performs as
well as it does for this data set is a strong indicator of its potential in the analysis of

hydrogen bonded complexes and non-covalent interactions in general.

6.3.2 Extracule densities for ny LMOs

As previously noted, there are two pairs of electrons involved in the hydrogen bond-
ing interaction: the oxy bonding pair and the ny lone pair. The same analyses that

were carried out in the previous section were also performed on the lone pair LMOs.
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While analyses were carried out for both the geometry optimized structures and
the varying separation distances between the hydrogen bond donor and acceptor,
only the former will be discussed here as nothing of significance was obtained from
the latter that hasn’t been previously discussed.

The results of this analysis are tabulated below in Table As before, the
two outliers, H,O-Peptide and H,O-Pyridine were omitted from the analysis. Much
like for the oxy bond LMO, the only metric that had any reasonable correlation to
hydrogen bond interaction strengths, E,., was dz. For the lone pairs, the coefficient
of determination decreased to 0.5705 down from 0.8411 from the X-H bond LMOs,
representing a significant decrease in predictive potential.

Unfortunately, these localized lone pairs proved to be far less predictive and thus
we conclude that it is the oxy bond that is most important when characterizing
the hydrogen bonding interactions. All other data, including those for the various
separation distances, are tabulated in Appendix C with other relevant information

from this chapter.
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Table 6.4: Summary of the various metrics for each hydrogen bonding complex at
equilibrium and the coefficient of determination for the relationship to Ei.

System Or (R).) Rmax E(RY™) (Ry.)

AcNH,-AcNH, 0.0534 0.8742 0.4259 0.8134 0.4152
AcOH-AcOH 0.0806 0.8803 0.4263 0.8056 0.3958
CCI30H-H,0 0.0700 0.8775 0.4255 0.8204 0.3814
CF;0H-H,0 0.0577 0.8783 0.4484 0.8288 0.4158
HBr-MeOH 0.0116 0.3683 0.8641 0.2706 0.7525
HCI-MeNH, 0.1073 0.7585 0.3142 0.4800 0.2210
HCI-MeOH 0.0122 0.3692 0.8641 0.2712 0.7508
HF-MeNH, 0.0790 0.7543 0.3165 0.4904 0.2748
HF-MeOH 0.0147 0.3714 0.9695 0.2688 0.7501
MeNH,-MeNH, 0.0264 0.7144 0.3891 0.4779 0.3957
MeNH,-MeOH 0.0250 0.8782 0.4296 0.8611 0.4128
MeNH,-Peptide 0.0185 0.7149 0.5741 0.6585 0.5943
MeNH,-Pyridine 0.0205 0.7203 0.6288 0.5370 0.5808
MeOH-CH;Cl 0.0138 0.6300 0.0604 0.2917 0.2101
MeOH-CH3F 0.0314 1.0504 0.5027 1.3663 0.5051
MeOH-MeNH, 0.0478 0.7466 0.3270 0.4953 0.3126
MeOH-MeOH 0.0365 0.8466 0.4297 0.7972 0.4327
MeOH-Peptide 0.0384 0.8091 0.4279 0.7496 0.4213
MeOH-Pyridine 0.0439 0.7299 0.3391 0.5320 0.2347
MeOH-H,0 0.0347 0.8580 0.4411 0.8132 0.4377
Peptide-MeNHj, 0.0420 0.7394 0.3333 0.4958 0.3144
Peptide-MeOH 0.0067 0.3193 0.8802 0.2611 0.8330
Peptide-H,0 0.0208 0.8760 0.6186 0.8517 0.6165
H,O-MeNH,; 0.0442 0.7462 0.3365 0.4964 0.3249
H>0-MeOH 0.0375 0.8680 0.4276 0.8317 0.4133
H,0-H,O 0.0354 0.8768 0.4346 0.8445 0.4183
R? 0.5705 0.0002 0.0104 0.0251 0.0736

6.3.3 Subsets of Data

The results shown in Figure suggest that it might be of interest to examine
the data set based on the atom X for the oxy bond LMO and atom Y for the ny
LMOs. Considering the full data set (minus the outliers), the only atoms, X and
Y, that represent a reasonable sample size are the nitrogen and oxygen atoms. For

the bond LMOs, there are a total of 8 complexes where X=N and 13 where X=0.
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Similarly, for the lone pair in the acceptor species, there exists 9 systems where
Y=N and 15 where Y=0. Thus, the relationship between the 5 metrics for each of
these subsets to i, were determined and are summarized in Table

In this table, numbers shown in green indicate an improved relationship to Fi,,
while those in red indicate a weaker relationship. For the oxy bond LMOs, consid-
ering the subsets led to significantly stronger correlations in nearly all cases. In fact,
in many cases, especially for R?®, for the full data set, there is no relationship to
hydrogen bond strengths, but very strong correlations when considering the iden-
tity of the atom X. The one exception is dz. The correlation to Ej, for this metric is
quite strong for the full set but only decreases marginally for the subsets.

As for the ny LMOs, aside from dr no strong relationships were observed for
any metrics and any increases or decreases in the R? value are not of significance.
However, once again, R? for r decreased for Y=O. It is probable that this is caused
by the positioning of the lone pairs of oxygen. In many cases, the lone pair is
not oriented exactly at the hydrogen bond donor as it often is for Y=N, and thus,

considering a slice of E(R) could lead to deficiencies for these systems.

Table 6.5: Coefficients of determination for the relationship between each of the
metrics and Ej, for subsets of the full data set.

- O (R).) R E(R}™) (R,:)
X=All 0.8411 0.1022 0.2181 0.1633 0.3471
X=N 0.8172 0.0283

X=0 0.5835

ny

Y=All 0.5705 0.0002 0.0104 0.0251 0.0736
Y=N 0.0020

Y=0 0.3590 0.0003 0.0041 0.0130
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6.3.4 Scaling Metrics

Of the five metrics discussed herein, the one that consistently exhibited the strongest
correlation to interaction energies was . Considering this metric is the only one
that explicitly incorporates the change in the electron pair upon hydrogen bond
formation, it was decided that a similar approach would be applied to the other 4
metrics. Thus, the change in each metric was observed with the calculation of the

change determined as follows:

Ag = XY pXH or Ax = g% Y _ ¥ (6.11D)

Additionally, as a clear relationship was observed between the separation be-
tween the hydrogen bond donor/acceptor and the strength of the interaction (see
Figure [6.5]), considering the distance between the two moieties could be beneficial.
For this reason, each of the metrics was also scaled by the bond length. This can be

denoted as

Ty = dﬁo (6.12)

Combining both of these approaches would produce another scaling metric which
will be denoted by Axq,. Each of these three scaling techniques were applied to the
5 metrics previously discussed. The results are summarized in Table As before,
improvements in the relationship, as determined by the coefficient of determina-
tion, are indicated by green text whereas deterioration is indicated by red. The

standard for these comparisons are the unscaled metrics shown in Table
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Table 6.6: Coefficients of determination for the relationship between each of the
scaled metrics and Ej;.

= O (RY.) Ry E(Rp™) (R,.)
X=All --- 0.1525 0.2965
X=N --- 0.7785

X=0 --- 0.4907

L%

X=All 0.3231
X=N 0.8279 0.4512
X=0 0.8637 0.7881
A$%

X=All --- 0.1700

X=N --- 0.7584

X=0 --- 0.6606

Nearly all relationships improved upon scaling with the exception of R,.. The
reason for this is unclear and requires further investigation. Regardless, small, but
meaningful improvements were observed for many of the other metrics under these
scaling schemes. While ¢/ remained one of the strongest metrics, especially for the
full data set, strong correlations were observed for many of the scaled metrics.

The strongest correlation was observed by scaling the Jz values by the hydro-
gen bond distance, the R? value improved to 0.8954 from 0.8411 and yielded the
following relationship

Ei = —111.3(;—R —0.714 (6.13)
0

6.3.5 Bivariate Analysis

Although analysis of the lone pair of species Y did not yield substantial quantitative
information on its own, it was decided that analyzing the two localized electron

pairs simultaneously might yield some added insight. Thus, bivariate analyses were
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carried out with each of the quantitative metrics. While the regression results did
improve, the improvements were marginal in most cases and not worth the added
computational cost.

Thus, an alternative approach was explored. As discussed, a strong relationship
was observed between d; and the hydrogen bond strength for each of the systems
at equilibrium. Therefore, bivariate analyses were carried out with éz and each
of the other metrics employed in this study. While the results did not improve

dramatically, the R? values did approach, and in some cases surpass, 0.9.

6.3.6 Intracule Analysis

While the focus of this study was on the 3-D position extracule, it would not be
unexpected for the position intracule to have potential for predicting hydrogen bond
strengths. Under the resonance-covalency model®®®? that was supported by the
analysis of E£(R), one would expect that the electrons in the oxy bond LMO would
contract (i.e. v would decrease) as the electron pair migrates towards X. Similarly,
as the interaction between atoms Y and H form, the electrons in ny should separate
leading to an increase in u. This is confirmed by the results shown for the H,O
dimer shown in Figure

While all analyses carried out for £(R) were also performed for P(u), the results
for the position intracule will be briefly summarized to prevent excessive repetition.
All data pertaining to the analysis of P(u) for these hydrogen bonding complexes is

available in Appendix C.
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Figure 6.7: The deformation density of the position intracule for a) the ooy bond
and b) the no lone pair, LMOs for the water dimer.

The results of the relationship between the metrics for P(u) and Ej,; are shown
in Tables and In these cases, scaling the metrics helps in nearly all cases.
This may be due to the complete nature of P(u) compared to the slices of £'(R) that
were studied.

Much like in the case of the position intracule, the only unscaled metric that
has any reasonable relationship to interaction energies is J,. Furthermore, this
relationship is only evident for the oxy bond LMO and not the lone pair.

When considering the scaled metrics and the subsets of the full set; however, the
position intracule does appear to be useful in predicting hydrogen bond strengths.
Unlike the analyses conducted on F(R), the scaled metrics make significant im-
provements to the correlations on the full data set.

While the strongest relationships to Ej,, were observed for E(R), similar infor-
mation can be drawn from the position intracule. All of the metrics when scaled
demonstrate significant potential for predicting interaction energies, even with the
lone pair LMOs. The difficulty with lone pairs in the extracular analysis, again, lies

in the requirement to analyze slices as opposed to the full distribution.
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Table 6.7: Coefficients of determination for the relationship between each of the
scaled metrics and Ej, for oxy bond LMO.

IxH Ou (u™h) Umax (u)

X=All 0.6647 0.0940 0.0573 0.0497
X=N 0.8345 0.5161 0.4760 0.4926
X=0 0.7499 0.6177 0.6647 0.2130

X=N 0.8336

Table 6.8: Coefficients of determination for the relationship between each of the
unscaled/scaled metrics for P(u) and Ej, for ny LMO.

Ou (u™h) Umax (u)

X=All 0.2716 0.0417 0.0229 0.0358
X=N 0.2832 0.0223 0.0245 0.0521
X=0 0.2160 0.3626 0.5745 0.2159

N
=0 --- 0.2696 0.1057
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6.4 Conclusions

A novel method for the analysis of non-covalent interactions involving electron
pairs, more specifically hydrogen bonding, was explored. This localized electron
pair approach affords a quantitative analysis technique in accordance with the
resonance-covalency model as a characterization tool for hydrogen bonding and
general non-covalent interactions. A clear migration of the centre-of-mass of local-
ized electron pairs was consistently observed towards the hydrogen with respect to
the ny lone pair and away from the hydrogen in the case of the oxy bond. This,
combined with the concomitant contraction of the oy bond pair and expansion of
the ny lone pair electrons strongly support the resonance-covalency model. Strong
quadratic relationships were observed between each of the studied metrics and
interaction energies for a given hydrogen bonding complex indicating a unique pre-
dictive quality of our characterization.

When considering the entire set of molecules, a thorough study was conducted
on each of the systems at their equilibrium geometries. Of the metrics employed,
dr and §, demonstrated the strongest relationship with respect to hydrogen bond
strengths on the full set. This predictive power could be improved by studying the
entire extracule density, as opposed to the single slices in the bond plane that were
utilized here. The only issue with using dz as a predictive tool is that the extracule
for the X—H molecule in the absence of the proton acceptor, Y, is required. However,
by splitting the data set into the identity of the atoms X and Y or by scaling by bond

length, strong relationships can be obtained that could be utilized for such cases.
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Chapter 7

Conclusions & Future Work

7.1 Conclusions

The analysis of the electron pair properties of molecules has been focused on com-
plete molecular properties for far too long. Herein, we have introduced a novel
software package to study the properties of individual electron pairs. For most pur-
poses, this includes localized pairs of electrons (i.e. those described by localized
molecular orbitals and natural bond orbitals), but can be used in the study of an
electron pair in a traditional delocalized molecular orbital (i.e. canonical molecular
orbitals).

This new form of analysis affords a more detailed description of electron pair be-
haviour caused by specific chemical reactions. While earlier research in the Pearson
lab demonstrated the ability to determine bond dissociation energies and relative
acidities of benzoic acid derivatives from the position intracule, the applications of

these analyses were greatly expanded in the present work. This software package is
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capable of calculating intracules in position, momentum and combined (posmom)
space in addition to a small set of extracules including both scalar and vectorized
analogues in position space in addition to the momentum space distribution.

Much of the work presented herein focussed on the understudied 3-Dimensional
position extracule in numerous different applications. The obvious benefit of ex-
amining the extracule in place of the intracule is the more absolute information
regarding the electron pair. In position space, this provides a better idea of where
in the system the electrons reside.

From both the vectorized and scalar forms of the position extracule, relation-
ships to numerous chemical properties have been examined. We propose the use
of the position extracule density as a novel, purely theoretical way to characterize
electronegativity. In contrast to previous work using the electron density, a better,
and much simpler relationship to existing electronegativity scales was obtained.

An extensive study on the effects of hydrogen bonding was also conducted with
respect to both F(R) and P(u). While previous reports have demonstrated the
power of AIM theory in describing any type of hydrogen bonding interaction, the
data set employed in this study showed that this is not true in general. SEPDA
was used to characterize hydrogen bonds and its capabilities were compared to
those of AIM theory and it was demonstrated that the two techniques were on par.
Improvements can be made to the single electron pair analysis by considering the
atoms involved in the interactions as well as various different scaling parameters.

A number of unique bonding environments were analysed with the suite of tools

available in the SEPDA package yielding interesting insight. These include the 3
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centre-2 electron bonding environments seen in diborane amongst others as well
as strained bonding environments observed in smaller cycloalkanes. The potential
applications for SEPDA are only limited by the available chemistry. While we chose
to represent commonly seen chemical interactions as well as a few interesting cases,
this by no means represents a comprehensive study of the information that can be

obtained by this software.

7.2 Future Work

There remains much to do in the area of studying localized electron-pair behaviour.
As demonstrated throughout this thesis, SEPDA is a great tool for tackling this prob-
lem; however, the applications that have been explored thus far have only scratched
the surface. Upon the completion of this thesis, a collaboration with Deslongchamps
and Deslongchamps was being carried out to apply the SEPDA package to their re-
search interests.

Herein, we mainly presented distributions in position space as they are the eas-
iest to conceptualize; however, SEPDA is capable of much more. Future studies
should include the use of the momentum space distributions as well as the posmom
intracule for each of the applications presented here, in addition to any others that
could be fruitful.

In terms of the software development, there are some areas that could be pur-
sued. Generally, both Fortran and C perform well in programs involving a plethora
of calculations. The main calculation components involved in the SEPDA package

are currently coded in Fortran. It could be useful to recode these components in
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C to determine whether improvements in calculation time are obtained. For some
calculations, especially those on large systems or those for £(R) where multiple
dimensions must be sampled, the time require can be rather prohibitive.

Another avenue to pursue in terms of decreasing time requirements is the imple-
mentation of a new algorithm to calculate the integrals involved in these electron
pair distributions. Currently, Q-Chem®! calculates intracules faster than does the
SEPDA package which suggests that increases in speed could be obtained by us-
ing the same algorithms or by incorporating the SEPDA package into Q-Chem or a
similar software package.

A final attempt to speed up these calculations could be made by converting the
code to CUDA Fortran. CUDA is a parallel programming platform. Unpublished
results by Hennessey and Klobukowski indicated a decrease in required calculation
times by up to 18-fold on 2-electron integrals when going from Fortran code to
CUDA Fortran.

The release of this software package to the general public should allow for
SEPDA to be used in countless different applications that could not be achieved
by the Pearson group alone. While various interesting applications were presented
herein, the true value of this program will likely not be realized until its user base

grows significantly.
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Appendix A

SEPDA - User’s Manual

This version was programmed by:

Adam J. Proud University of Prince Edward Island

Contributions from:

Dalton Mackenzie University of Prince Edward Island
Zosia Zielinski University of Prince Edward Island
Brendan Sheppard University of Prince Edward Island
Dr. Jason Pearson University of Prince Edward Island
Dr. Joshua Hollett University of Winnipeg

Dr. Peter Gill Australia National University

Dr. Ajit Thakkar University of New Brunswick

Contact information:

Dr. Jason Pearson
550 University Avenue
Charlottetown, PE C1A 4P3

jpearson@upei.ca
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A.1 Introduction

This user’s manual is intended to be used as a guide for users to understand the
general use for the SEPDA software package (Single Electron Pair Distribution An-
alyzer), which was designed to allow for the analysis of electron pair behaviour
within a single molecular orbital. This guide contains information regarding each
of the parameters, both mandatory and optional, that are required for the proper
performance of the program. The program must be run in a UNIX environment and

users should have a general understanding of quantum chemical calculations.

A.1.1 Section Summaries

Section 1: Introduction to SEPDA and its capabilities
Section 2: Step by step instructions to install and run SEPDA on your local machine
Section 3: Input structure and variables

Section 4: Various examples of input files for different types of jobs

A.1.2 SEPDA Features

SEPDA 1.0 is designed to perform electron structure analyses on systems for which
calculations have already been successfully performed. It is not a stand-alone pro-
gram that can be used to perform the initial single point energy or geometry opti-
mization calculations. The program takes molecular orbital coefficients and WFN
files as input and subsequently calculates position/momentum/posmom intracules

and/or extracules for a specific molecular orbital within the system.
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The current version of SEPDA is capable of doing these calculations for localized
molecular orbitals (LMOs from a GAMESS output), natural bond orbitals (NBOs
from Weinhold’s NBO program or any software package that utilizes said program),
and canonical molecular orbitals (CMOs that can be calculated from any software

package providing the relevant information is contained within the WEN file).

A.1.3 SEPDA Literature

The developers request that if you use the current software package that you cite
the following articles. The appropriate literature will be indicated in all output files

generated by SEPDA.

SEPDA General use:

Proud, A.J.; Sheppard, B.J.H.; Pearson, J.K. J. Am. Chem. Soc. 2018, 140, 219-228.
Scalar distributions:

Hollett, J.W.; Gill, PM.W. J. Chem. Phys. 2011, 13, 2972-2978.

3-D distributions:

Thakkar, A.J. Moore, N.J. Int. J. Quantum Chem. 1981, 20, 393-400.

178



A.2 Installation and General Program Instructions

A.2.1 Installation Requirements

SEPDA is available for download at https://bitbucket.org/aproud/sepda.
gitl The package can be compiled using the install.sh script that is provided with
the rest of the code. System requirements for installation are minimal but are as

follows:
* An operating system with a UNIX-based command line
* Python version 2.x

* Fortran 90 compiler

A.2.2 Installing SEPDA

To install SEPDA, the user must simply run the install.sh script (./install.sh OR sh
install.sh). This install script will define the SEPDADIR, SEPDABIN, and SEPDABA-
SIS variables in each of the .cshrc and .bashrc files. Additionally, an alias will be
defined in each of the aforementioned files so that sepda is recognized as a valid
command. These variables will allow the user to run SEPDA from any directory.

These variables define the following:
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SEPDADIR defines the location of the SEPDA directory. This is automatically

defined as the path of the install script.

SEPDABIN defines the location of the code to calculate the desired single
electron pair density. The default is set to $SEPDA/bin and

typically should not be changed

SEPDABASIS defines the location of the basis set files. The default is set to

$SEPDA/basis and typically should not be changed.

sepda an alias to allow for the command sepda to be recognized as

$SEPDADIR/sepda.csh

Should the user move the SEPDA directory following installation, these variables
will need to be redefined in the appropriate shell profile files. To allow all users on
a computer, these definitions could be incorporated into the system wide .cshrc and

.bashrc files.
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A.2.3 Running SEPDA

Following successful installation, the user should be able to run SEPDA from any
directory using the sepda.csh script. Said script can be run in any of the following

ways:

sepda infile.inp outfile.out

sepda infile.inp

In the event that an output file is not defined, the data from the calculation will
be written to infile.dat. The structure of the infile.inp will be covered in detail in
Chapter 3. Should the output file already exist, the original file will be overwritten

with data from the new calculation.

The extensions of the infile and outfile are entirely up to the user and needn’t be

included. The following are two valid executions of the program:

sepda H20.inp H20.out

sepda water.inp

where in the first example, the input parameters should be defined in H20.inp and
the output will be directed to H20.out, while in the second example, the input

parameters are given in water.inp with the results contained within water.dat.
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A.2.4 SEPDA Compatibility

As noted in Section 1.2, the current version of SEPDA is capable of performing

calculations on 3 molecular orbital types: LMOs, CMOs, and NBOs.

A.2.5 Testing SEPDA

Within the $/SEPDADIR/examples directory, there are a variety of input files for
testing to ensure that the program is functioning properly. Said directory also in-
cludes the ./output directory which contains the expected outputs from each of the
sample inputs. These input files are those that will be included and described in
detail in Chapter 4 of this manual and serve as a great reference for constructing

your own input files.

A.3 Input File Structure and Variables

Input files for SEPDA require, at minimum, 3 input variables (WFN_FILE, BASIS,
and MO _NUM); however, it is recommended that the user also specify the type of
molecular orbital (MO _TYPE) as well as the type of pair density (PD_TYPE) to be
calculated. In the event that the WFN file does not contain the molecular orbital
coefficients, the COEF_FILE must also be specified. This would most commonly be
the case when using NBOs as the MO _TYPE as the NBO coefficients with machine

precision would be generated in the .37 file from the NBO program.
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A.3.1 Description of Input Variables

A summary of each of the variables (both mandatory and optional) in the input file

is given below along with their default value (if any).

Variable Default Description

WEN_FILE None defines the name of the .wfn file or
file that contains the .wfn file

COEF_FILE None defines the name of the file con-
taining the MO coefficients

BASIS UD states what basis set was used in
the original calculation.

MO_TYPE LMO defines the type of MO to be ana-
lyzed. Options include LMO, CMO, and
NBO

MO_NUM None defines what molecular orbital num-
ber on which to perform the desired
calculation

PD_TYPE 1 defines the type of two-electron
density to be calculated. Options
include: 1 (position intracule), 2
(momentum intracule), 3 (posmom in-
tracule), 4 (position extracule), 5
(momentum extracule), 6 (posmom ex-—
tracule), 7 (3-D position extracule)

SCALE Various defines the scale parameter ()
for the Mura-Knowles grid. Smaller
numbers lead to a more dense grid.
Defaults are dependent on PD_TYPE

NPTS Various determines the number of points,
tmax, TO be calculated for the Mura-
Knowles grid. Defaults are depen-—
dent on PD_TYPE
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Additional details are required for a few of the input variables. This information is

included in each of the subsections below.

WFN_FILE

The WEN file can be obtained from any software package capable of producing one.
Programs such as GAMESS produce the contents of the WFN file within another file
which is directed to the GAMESS scratch directory. Should the user be producing
localized molecular orbital coefficients, they will be recorded in this same file. The
user has the freedom to choose either the WEN file by itself or a file that contains

the WEN file contents as the WFN_FILE variable.

COEF_FILE

In the case of both LMOs and CMOs, the coefficients (COEF_FILE) should be in the
same file as the rest of the information to construct the wavefunction (WFN_FILE).
For each of these cases, COEF FILE needn’t be specified. In the case that it is
specified and is not the same as WEN_FILE the program will quit as it is assuming
user error. For LMOs, both the .wfn file information and the LMO coefficients should
be contained in the .dat file generated by GAMESS and redirected to the GAMESS

scratch directory.
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As for CMOs, all CMO coefficients are contained within the .wfn file, and thus,
no other file is needed. To generate machine precision NBO coefficients in the
atomic orbital basis, the user must use the following commands in either Gaussian

or the NBO program:

Snbo aonbo=w37 file=nbocoefs S$end

This will redirect the machine precision coefficients to the nbocoefs.37 file.
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BASIS

Note: The basis set in the input file must exactly match the one used for the initial calcula-

tion to obtain the molecular orbital coefficients, otherwise the calculation will fail.

The basis set must be defined in the input file. The user has the option to define their own
basis set by setting BASIS equal to UD (for user-defined). If a user-defined basis set is de-

sired, the input file must also include a basis section such as the following for a calculation

on water:
Sbasis
H 0
S 2 1.00
3.26800000 0.84570000
0.98574000 0.23485000
S 1 1.00
0.24850000 1.00000000
#H44
0 0
S 3 1.00
322.037000 0.05923940
48.4308000 0.35150000
10.4206000 0.70765800
SP 2 1.00
7.40294000 -0.4044530 0.24458600
1.57620000 1.22156000 0.85395500
SP 1 1.00
0.37368400 1.00000000 1.00000000
#H4#
Send

This is a standard basis set description used by most quantum chemical software packages.
The first line denotes the atom, and all lines after describe the orbitals pertaining to that
specific atom. One line must first designate the orbital type(s) (S, P, D, SP, or SPD), the level

of contraction for said orbital, followed by 1.00. The spacing between these entries does
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not matter as long as they are separated by at least one space. Depending on the level of
contraction (n), the next n lines must describe the contracted Gaussian primitive (i.e. if the
contraction level is 3, there must be 3 lines describing each Gaussian within that contracted
set). On each of these n lines, there must be a Gaussian exponent, followed by a contraction
coefficient. If the contraction level is just 1 (i.e. no contraction), said contraction coefficient
should typically be set to unity. To begin the description of a new atom, one must add a
break line that consists of four consecutive octothorpes (i.e. ####).

If the user wishes to use a pre-defined basis set, they should first verify that this basis set is
available through the SEPDA software package. All available basis sets are included in the
$SEPDABASIS directory as .bas files. As this code is only capable of calculating two-electron
integrals for orbitals with angular momenta less than or equal to 2 (i.e. [ < 2), any basis
sets that have orbitals of higher angular momenta for the atoms in the given system will fail
to run successfully. The user is free to add any .bas files to the $SEPDABASIS directory to

simplify future calculations. These files must simply match the structure described above.

MO _NUM

The MO _NUM should be between 1 and either the number of Gaussian primitives (for
NBOs) or the number of occupied orbitals (LMOs and CMOs). While the purpose of SEPDA
is to calculate the two-electron densities of a single electron pair, setting MO NUM equal to

0 leads to the calculation of the desired PD_TYPE for the full molecular system.

PD_TYPE

The PD_TYPE value should be between 1 and 7. The specific electron pair distribution
corresponding to each value is provided in the table above describing each of the input

variables. While PD_TYPE 7 is the 3D position extracule, only two dimensions (R, and R,
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are actually sampled. This can be modified to calculate all 3 dimensions by commenting out
line 681 and uncommenting line 682 in posvExt.f90. For both PD TYPE 4 and 7, the user
is advised to choose their coordinate system carefully. To adequately sample the Cartesian
space around the molecular orbital of interest, the user must position the origin appropri-
ately. The authors would suggest choosing an atom of interest as the origin for PD_TYPE 4,
and either an atom or a bond midpoint as the origin for PD_TYPE 7. Furthermore, should
the user wish to calculate a slice of the 3D position extracule (which is the default), it is
advised that 3 atoms important to the MO of interest are utilized to define the yz-plane

(that which is sampled by the grid).

SCALE and NPTS

Further control over calculations can be obtained by specifying the optional SCALE («) and
NPTS (imax) Variables. These options are used to define the grid values at which the value

of the pair density will be determined and are related to the x-coordinate values by:

N
r=—«aln [1—<_l )], where ¢ = 1, imax (A1)

tmax

Each PD_TYPE has its own default values for SCALE and NPTS. It should be noted that
for PD_TYPE 7 (i.e. 3-D position extracule), NPTS refers to the number of points in each
direction of each Cartesian coordinate. Thus, if NPTS is set to 100, 100 grid points will be
evaluated in the positive and negative directions of each Cartesian coordinate in addition
to the origin. Therefore, 201¢ (where d = 1 — 3, with the default being 2) grid points will

be sampled for the calculation.
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A.4 Examples of Input File Structures

exl.inp

The input file below calculates a position intracule (PD_TYPE 1) density for a system (car-
bon atom) with the 3-21G basis set. The calculation is performed for canonical molecular
orbital number 2. As neither SCALE nor NPTS are provided in the input file, the default

values are used.

Sinit
WEN_FILE c_321G.dat
BASIS 3-21G
MO_TYPE CMO
PD_TYPE 1
MO_NUM 2

Send

ex2.inp

The input file below calculates a momentum intracule (PD_TYPE 2) density for a system
(methane) with the 6-31G basis set. The calculation is performed for natural bond orbital
number 2. The default values for SCALE and NPTS are used as these variables were not
specified in the input. Note that the COEFS variable needs to be defined as NBO coefficients
are located in the .37 file. For instructions on how to generate the .37 file from a Gaussian

or NBO output, please refer to section 3.1.2.

Sinit
WEN_FILE c_631G.wfn
BASIS 6-31G
MO_TYPE NBO
COEF'S CH4_631G.37
PD_TYPE 2
MO_NUM 2

Send
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ex3.inp

The input file below calculates a posmom intracule (PD_TYPE 3) density for a system (car-
bon atom) using a user-defined (UD) basis set. Said basis set is described at the end of the
input file in the $basis section according to the guidelines provided in section 3.1.3. The
calculation is performed for canonical bond orbital number 3 using a grid with a SCALE

value of 3.0 and 150 points.

Sinit
WEN_FILE c_UD.dat
BASIS ubD
MO_TYPE CMO
PD_TYPE 3
MO_NUM 3
SCALE 3.0
NPTS 150
Send
Sbasis
C 0
S 3 1.00
172.256000 0.06176690
25.9109000 0.35879400
5.53335000 0.70071300
SP 2 1.00
3.66498000 -0.3958970 0.23646000
0.77054500 1.21584000 0.86061900
SP 1 1.00
0.19585700 1.00000000 1.00000000
HH#4
Send
2
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ex4.inp

The input file below calculates a position extracule (PD_TYPE 4) density for a system (car-
bon atom) with the 6-311G(d,p) basis set. The calculation is performed for localized molec-
ular orbital number 2. Default values for both SCALE and NPTS are used since they were

not specified.

Sinit
WEN_FILE c_6311GDP.dat
BASTS 6-311G (d, p)
MO_TYPE LMO
PD_TYPE 4
MO_NUM 3

Send

ex5.inp

The input file below calculates a momentum extracule (PD_TYPE 5) density for a system
(carbon atom) with the 3-21G basis set. The calculation is performed for canonical molec-
ular orbital number 1. Default values for SCALE and NPTS are used as the user has not

defined them in the input file.

Sinit
WEN_FILE c_321G.dat
BASIS 3-21G
MO_TYPE CMO
PD_TYPE 5
MO_NUM 1
SCALE 3.0
NPTS 350

Send
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ex6.inp

The input file below calculates a vectorized position extracule (PD_TYPE 7) density for a
system (carbon atom) with the TZV basis set. This calculation is performed for localized
molecular orbital number 3. It should be noted that NPTS 75 indicates that 75 points are
sampled in each of the Cartesian coordinates and directions (i.e. 151 total for R,, R,, and

R, directions).

Sinit
WEN_FILE c_TZV.dat
BASIS TZV
MO_TYPE LMO
PD_TYPE 7
MO_NUM 3
SCALE 2.1
NPTS 75

Send
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Appendix B

Derivation of Hollett and Gill

Recurrence Relation

Many of the calculations involved in this thesis were performed using the recurrence rela-
tion developed by Hollett and Gill in 2010 or slightly modified versions for the purposes of
extracule calculations. For this reason, a derivation of the RR will be provided here to show
how the required integrals were obtained.

d26

Boys demonstrate that Gaussian basis functions of higher angular momenta could

be determined from

(@+1)) = Dla) + 3-|(a — 1)) (B.1)
In this expression, D is the scaled differential operator which is defined as

.1 9
D= 2a 0A; (B-2)

If the angular momentum augmentation is performed on any other basis function (i.e. b, ¢,
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or d) the appropriate centres (B;, C;, or D;) and exponents (3, y, or §) would replace A;
and «, respectively.
Before we proceed any further, we should introduce some important variables, some of

which were presented in the text of this thesis but will be restated here for convenience:

V2 = W (B.3)

a+B+y+06

1
O'2 = ﬁ (B4)
a ol
4 (m + m)

9 ad By

A :a+5+5+’y (8-5)

n= s B—Bw (B.6)
arsn e

V- QQ?_BB(A _B)+ m(p _o) (B.8)
5 — exp | _OFIA= B _28lC ~ DP 59

a+f v+0

To proceed, we must first define an operator O(a) that converts an s-type Gaussian

primitive to one with an angular momentum, bsa. In other words
0(a)|0) = |a) (B.10)
This operator must also obey the Boys recurrence relation and thus
a;

O(a+1;) = DO(a) + %O(a —1;) (B.11)
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Alrichs demonstrated that any function Y that is linear in A;, has the commutation property
as follows:

a;y -

O(a;)Y = YO(a;) + 5. Olai—1) (B.12)

where y is the partial derivative of Y with respect to the centre, A;.
As the operators that will be considered (6(u — r12) and 6(v — p12)) are independent of

the Gaussian centres (A, B, C and D), any integral, [abcd] 7, can be determined as

O0(a)O(b)O(e)O(d)[0000] (B.13)

[abed)] 7

where 7 is an arbitrary index denoting whatever type of integral is being dealt with at the
time.
Assuming that we have the integral [abcd]z, by applying the Boys RR described in

equation (B.1), we obtain
[(@ 4 1;)bed]; = Dlabed); + ;—;[(a — 1;)bed) (B.14)

However, to obtain this integral, we must first apply equation (B.13). Applying this

equation to yields
[(a@ + 15)bed] 7 = O(a)O(b)O(e)O(d)D[0000] 7 + %[(a — 1;)bed); (B.15)

This discussion has thus far has been completely general. Recall from Chapter 1 that
both position and momentum intracules and extracules can be determined from the second-
order reduced Wigner distribution, W (rq,r2, p1,p2). A general expression can be written

for the determination of intracules or extracules by assuming a general two-electron phase-
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space operator, L. Then, the desired electron pair distribution can be obtained as the “ex-

pectation value" of the operator as

(L) = /W(TL o, p1,p2)L(r1, 72, p1, p2)dry dra dpy dpa (B.16)

For the purposes of this derivation, let us consider the position and momentum in-
tracules, P(u) and M (v). For these two cases, L is defined as 0(u —r12) and 0(v — p12),
respectively. Regardless, the derivation is largely the same.

The fundamental integral, [0000]yy, for these calculations is given by

27724 2172
Sabei)\ Us4p~Ve4nU-V

(a +0)72(3 + )2

[0000]y, =

/ e 2_”2”2_(2’\2U_77V)'“_i(”U+2“2V)'”ﬁ(u, v)du dv (B.17)

When differentiating this expression, four terms will result due to the dependence of S,;,
U2, V2 and U - V, on the centre A. For this reason, it is useful to define the following
function

l m
(8%3]2) (%) (8(U8-V)> SN2 42V2 UV
8(a+)7(8 + )"

Gl,m,n(U27 V27 U- V) =

/ e*)\2u27u2u27(2A2U777V)-U7i(T)U+2}L2V)-’Uﬁ(u7 v)du dov (B.18)
in addition to the triple-index integrals

0000]\™™) = S,Gl (U, V2 U - V) (B.19)
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Taking this expression and substituting it into equation (B.15]) gives

[(a + 1:)bed]iy™™ = O(a)O(b)O()O(d) D(SatGrm (UL, V2, U - V)

a; Imn
+glla— 1;)bed)\y™™ (B.20)

and applying the scaled differential operator yields

m,n A A A A B; — A, ,m,n
[(a+ 1;)bed)iy™" =0(a)O(b)O(c)O(d) (W[oooom ™
1 90U (I4+1,m,n) 1 ov? (IL,m+1,n)
50 74, 10000%y 50 54, 10000%y
1 3(U . V (]7m7n+1) ai (l,m,n)
0 04 [0000]; + %[(a — 1;)bed)yy (B.21)

To more clearly demonstrate the remainder of the derivation, the terms in this expression
have been color coded based on different values for the triple indices, (I,m,n). Each term
will be dealt with separately. Applying the commutation property from equation (B.12) to

the (I,m, n) integrals (those in blue) four times for each operator, O(x), gives:
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0(a)0(b)O(c)0(d) <W[oooo]g@mm> _
O(b)0(c)O(d) <5(a-+—ﬁA BB = A) 1 ogoytmn) g(iafﬁ[(a _ 1i)000](vzv,m,n)> _
)O(d < - 5 ) [aboo] ;) — ;;aiﬁ[(a — 1;)b00] (/™)
+ warB)[ a(b — 1;)00] l’””))
O(d) (W[abcm(v’v””’") - ;;afﬁ[(a — 1,)bco] L
* a b+ Fla(b— 1)) “’”“)
(W[abcd](vlv’m’") - 2% - f jla- 1;)bed)H™™
b gl 1ed ) @22

The observant reader may notice that no new terms were introduced after operation of O(c)
and O(d). This is caused by the fact that the original term is independent of both centres,
C and D. Thus, the derivative, y, is equal to zero and the term vanishes. If we now then

do this same procedure to the integrals highlighted in green, (I + 1, m,n), we obtain:

O(@)O(B)0(c (;a gz J+tm n>> _
O(b)0(c)O(d) %g [@000] LT 4 4‘2‘2 %QZ; (a— 1i)000}(vlv+1’m’")) _
ia ab0o] (™™ 4 422%25;[((1 1;)600] (L 1mm)
42' 5 8(19427;1;; la(b— 1i)oo}<vlv+1vmvn>> _
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A 1 aUz +1,m,mn Qg 82U2 +1,m,n
O(d) <2a 54 labeOly ™™ 4 S (a = 1i)beo]y

bi_O°U” (imm) G O°U? (+1,mom)
- 1 ' ' - 1' ’ o —
7909740 10O 4 o T ab(e — 10l )
1 8U2 I+1,m,n a; 62U2 I+1.m.n
<2a A jabed]y " 4 7= (@ — 1)bed]
bi o*U? (I+1,m,n) (& 9*U? (1+1,m,n)
b—1;)cd Y ——[ab(c — 1;)d m,
4045 aAlaBZ [a( )C }W + 4a,y aAZaCZ [a (C ) ]W
dZ 82U2 m,n
15 94,00, abe(d = 1l )> (B.23)

In this final expression, there exists multiple partial derivatives that need be evaluated.

These derivatives are equal to the following:

oU? oU; «
—oU. 2t —oyy. —— B.2

0A; Ui 0A; UZOé—i-,B ( R
H2U? 9 oU? 2 202

S = _sx o« o . (B.25)
A2 94;04; a+Ba+B  (a+p)
U 99U 28 o  2af (B.26)
6AiaBi_8B¢8AZ~_a+ﬁa+ﬂ_(a+ﬁ)2 )
92172 B £3U2 L 2v o 2ary (B.27)
0A0C; — 9C; 04; ~v+da+pB  (a+pB)(v+0) '

2772 2
92U o oU* 2« 206 (B.28)

9A,0D;  0C; 04; v +oa+ B (atB)(y+0)

Substituting these expressions into equation (B.23) gives a final expression for the (I +

1,m,n) integrals:

Ui (I+1,m,n) Q; 1. (I+1,m,n) b; 1. (I+1,m,n)
<a n ﬁ[abcd]w + 72(04 ) [(a — 1;)bcd]yy, + 72(04 ) la(b — 1;)cd]yy,
Ci (I4+1,m,n) d; (I4+1,m,n)
— b(c—1;)d — be(d — 1;
ST A 3o W = s labetd = 201

(B.29)

As both the (I, + 1,7n) and (I, m,n + 1) integrals are calculated much the same way as
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the (I,m,n + 1) integrals, the complete derivation will not be shown. The final expressions

for these integrals are

<j [ive [abed]y” " + ((3 T;P [(a = 19)bed)y™ " + (ET& la(b — Li)ed]fy™
MQ;% abe — 1)) — o fdﬁ)ﬁ(z —labe(d - 11-)}?@’"”1’”))
(B.30)
and
(e 3 labedi™ =+ 0 (@ — b+ 5 oo = 1yea
- 2((;&;;@51 5)lable— Ly)dfy™ " (adﬁ%)_w”l 5labe(d — 1) 9&7”’"*”)

(B.31)

Taking each of these final expressions and plugging them into equation (B.21) yields a
19 term expression that can be simplified to the following 18 terms by combining the term

outside the parentheses in (B.21)) with a similar term in (B.22]). The final result is
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(@4 1;)bed) ™™ = <ﬁ()[abcd](vlv’ "o Y [(a — 1;)bed]{y™"

a+f 2(a+p)
+2(abj_ﬁ)[a(b - 11-)00];@’”’%@? B[abcd](vlv“’m’”) + o (ai" Fplla— 1;)bed){ )
bi ) (I4+1,m;n) Ci 14 g U+Lmn)
to - ae 2+ B 5la(b — 1;)ed]y, ot B 1 0) [ab(c — 1,)d]y;,
d; 28V m+1,n
e T A ) labe(d — 1;)]y, iﬁ[ be d](l +1,n)
2a; 3 B (L,m~+1,n) 2b;a8 (L,m+1,n)
Flarprilem 1bedw 0 G pplalb — Liedly
_% 1. (I,m+1,n) o 2dl57 (IL,m+1,n)
(@+B)(y+9) able = Lo)dly 2(a+6)(’y+5)[ be(d = 10)lw
Q/ioz ++,8) abed)i" "+ (aafjﬁ)z [(a = 19)bed)yy™ "
bz(ﬁ - O() 1. (lmmn+1) Cz(ﬁ + 6) 1. (L,m,n+1)
+72(a T h) [a(b—1;)cd]yy; ot By 1 0) lab(c — 1;)d]}y
di — m,n
5o+ ey a7 lobetd = ) (532

In the cases where the operator L depends only on u or v, GLmn(U% V2 U - V) simpli-

fies to

Crma(UV2U -V " CRNCON 6(’16"’))” “ltUP ] (y)du  (B.33)
l,m,n( yvoL,U )_ (CY+,B+’Y+5)3/2 /e (u) u .

Grmn (U VAU - V) =

l m
w20 (502) (502) (ﬁ
/

(o + B)3/2(y + 6)3/2 ) /6_”2|”+iv2ﬁ(v)dv (B.34)
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More importantly, it can be shown that for these two special cases:

Grmn(UALVEU-V)=0  for L(u,v) = L(u) if m > 0orn >0 (B.35)

Grmn(U,V2U-V)=0  for L(u,v) = L(v)ifl >0orn >0 (B.36)

Therefore, in the case of the position intracule, P(u), where L=5§ (u—712), the 18-term

recurrence relation reduces to the following 8 terms:

o+ 10pedff) = (B labea) + 5 i(a— 1ped)
+%fi)mw—laWﬁ%dfﬁmwﬂ$”+%aﬁmﬂm—nnwﬂﬁ”
+2(a[ji)2[a(b — 1)ed)SY — T g;(v Tpjlable- 1;)d)

e s L CRR ) (B37)

where the m and n indices have been removed as they are no longer required. Similarly,

with this same operator, G, ,, , becomes

47T5/2u26_y2“2 0 ! 2772
G(U?) = U0 (202U B.38
() = s (o) v .38
where
io(z) = Sm;x (B.39)
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Similarly, for the momentum intracule, M (v), where L = d(v — p12), the recurrence

relation simplifies to

[(a+ 13)bed]y” = (M[ade](w) + m[(a — 1;)bed)}
b; ) (m) 28V; (m+1)
+2(a ey [a(b —1;)00];, + 3 labcd)yy,
2(1/1]82 (m+1) 2})[)//3 (m+1)
2¢; 86 2d; By

——————[ab(c — h)d}%{ffﬂ) -

4 .\1(m+1)
(a+ B)(y+96) [abe(d — 15)]yy, ) (B.40)

2(a+B)(v +9)

In this case, the [ and n indices are dropped as values over O cause the function to vanish.

As before, G| ,,, ,, simplifies again to

ArP2g3y2e "’ o\, 2.
GnlV) = (a+ B)3/2(y +9)3/2 <8V2> €7 do(2eVel (541
where
Jo(x) = Slzx (B.42)

Using the recurrence relations described by equations (B.37) and (B.40)) combined with
the definition of the fundamental integral in (B.19), P(u) and M (v) can be calculated
rather efficiently. Similar derivations could be performed for the position and momentum

extracules, E(R) and E(P).
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Appendix C

Supplementary Information for the
Analysis of Hydrogen Bonding

Complexes

This section consists of the tables containing all of the data for the metrics for the hydrogen
bonding analyses presented in Chapter 6. Data is presented for both F(R) and P(u) for the
oxy bond LMOs and the ny lone pairs at all distances previously discussed. Atomic units

are used throughout this chapter.
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Figure C.1: AP(u) for the oxy bond LMOs of a) H,O-H,0O, b) H,O-MeNH,, c)
H,0-MeOH, and the ny lone pairs of d) H,O-H,0, e) H,O-MeNH,, f) H,O-MeOH.

Much like Figure Figure demonstrates the effect of increasing the
separation distance, d, between the hydrogen bond donor and acceptor species.
The same decreasing effect is observed for these three species with H,O as the
donor species. Unsurprisingly, this trend is seen universally across the data set.
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