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Abstract

The “Lewis Pair” is a ubiquitous phenomenon in chemistry and is often used as

an intuitive construct to predict and rationalize chemical structure and behaviour.

Concepts from the very general Valence Shell Electron Pair Repulsion (VSEPR)

model to the most esoteric reaction mechanism routinely rely on the notion that

electrons tend to exist in pairs and that these pairs can be thought of as being local-

ized to a particular region of space. It is this localization that allows one to intuit

how these pairs might behave, generally speaking, so that reasonable predictions

may be made regarding molecular structure, intermolecular interactions, property

trends, and reaction mechanisms, etc. Of course, it is rather unfortunate that the

Lewis model is entirely qualitative and yields no information regarding how any

specific electron pair is distributed.

Herein, we demonstrate a novel electronic structure analysis technique that pre-

dicts and analyzes precise quantitative details about the relative and absolute distri-

bution of individual electron pairs. This Single Electron Pair Distribution Analysis

(SEPDA) reveals important quantitative details about the distribution of the well-

known Lewis pairs, such as how they are distributed in space and how their relative

velocities change in various chemical contexts. We show that such an analysis may

be used to quantify and classify a wide range of interactions including chemical

bonding and non-covalent interactions. The nature of non-covalent interactions (as

well as indications of their strength) may also be gleaned from such distributions

and SEPDA can be used as an important tool to differentiate between interaction
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types. Specifically, we use the SEPDA package to analyze covalent compounds in

terms of their electron behaviour and electronegativity properties, as well as non-

covalent interactions such as hydrogen bonding.

We anticipate that SEPDA will be of broad utility in a wide variety of chemical

contexts because it affords a very detailed, visual and intuitive analysis technique

that is generally applicable. The development of a user-friendly, publicly available

software package should only further prove the wide applicability and significance

of SEPDA.

iii



Acknowledgements

It has been a long road for me at the University of Prince Edward Island having

completed an Honour’s thesis, a Master’s thesis and now a Ph.D. thesis. I definitely

could not have accomplished this without the help of countless people.

Dr. Jason Pearson has been my mentor and supervisor since for the past 8 years.

Under his tutelage, I have grown exceptionally as a researcher and I cannot thank

him enough for everything he has done for me over the course of my two graduate

degrees. For this, Jason, I sincerely thank you.

I would also like to thank my graduate supervisory committee: Dr. Barry Linklet-

ter, Dr. Sheldon Opps, and Dr. Brian Wagner. You all provided me with significant

feedback and helped guide me through my doctoral studies. I greatly appreciate all

of the help that each of you has provided me over the years.

Throughout my time in the Pearson group, many students have come and gone. I

would like to thank you all (Brendan Sheppard, Zosia Zielinski, Dalton Mackenzie,

Dylan Hennessey, Meagan Oakley, Ellen O’Connor, Simon Sirois-Lecain, Andrew

Cameron, Qammar Almas, Ben Keefe, Trevor Profitt, Mat Larade, and Trevor Profitt)

for being friends, for being supportive, and always being there if I ever needed

anything. In terms of my actual research, I would specifically like to thank Brendan,

Zosia, and Dalton for contributions to this research.

The Chemistry Department at UPEI is small, but very strong. Faculty, staff, and

students make up the best department on campus. I cannot begin to express my

thanks to everyone in this department for all that they have done for me throughout

iv



my tenure at UPEI. Specifically, I would like to thank Dr. Rabin Bissessur for being

a strong mentor to me over the years from a teacher, to a supervisor, and finally as

a strong role model and colleague.

Much of this research was made possible my existing recurrence relations devel-

oped by Dr. Ajit Thakkar and by Dr. Peter Gill and Dr. Joshua Hollett. I would like

to thank each of these scientists for insightful discussions regarding their research,

and especially, Dr. Hollett, for being a part of my thesis defence.

None of this research would have been possible without funding from UPEI,

the Natural Sciences and Engineering Research Council of Canada, and ACENet.

Further, the millions of hours of computational time required for this project were

provided by Compute Canada (specifically ACENet and WestGrid).

Finally, and possibly most importantly, I would like to thank my friends both at

UPEI and outside, my family, specifically, Ryan and Adrienne, my parents, Mike and

Anne, and my girlfriend Courtney for all of their love and support. These past 4

years have been some of the most difficult of my life. I don’t know where I would

be without you all in my life. Thank you for always being there for me, especially

when I needed you the most.

v



.

To Nana Lawlor

vi



Contents

Abstract ii

Acknowledgements iv

List of Figures xvii

List of Tables xx

List of Abbreviations and Symbols xxi

1 Introduction 1

1.1 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . 5

1.3 Solutions to the Schrödinger Equation . . . . . . . . . . . . . . . . . 8

1.4 Variational Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Hartree Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Hartree-Fock Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8 Unrestricted Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . 31

vii



1.9 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.9.1 Minimal Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9.2 Split-Valence Basis Sets . . . . . . . . . . . . . . . . . . . . . 35

1.9.3 Polarization and Diffuse Functions . . . . . . . . . . . . . . . 36

1.10 Correlated Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.10.1 Post HF Methods . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . 40

1.11 Electron Pair Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.11.1 Intracules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.11.2 Extracules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.12 Localized Molecular Orbitals . . . . . . . . . . . . . . . . . . . . . . . 65

1.13 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2 SEPDA software package 72

2.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2.1 sepda.csh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2.2 Main Fortran Programs . . . . . . . . . . . . . . . . . . . . . . 75

2.2.3 Fortran Subroutines - Recurrence Relation . . . . . . . . . . . 78

3 Revealing Electron-Electron Interactions within Lewis Pairs in Chemical

Systems 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.2 Non-Covalent Interactions . . . . . . . . . . . . . . . . . . . . 88

3.3.3 3-centre 2-electron Bonds . . . . . . . . . . . . . . . . . . . . 96

3.3.4 Interpreting Reaction Mechanisms . . . . . . . . . . . . . . . 98

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Exploring Electron Pair Behaviour in Chemical Bonds Using the Extrac-

ule Density 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.1 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.2 Bond Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.3 Non-Covalent Interactions . . . . . . . . . . . . . . . . . . . . 120

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Developing a Theoretical Model for Quantifying Electronegativity based

on the Position Extracule 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1 Extracule and Intracule Analysis . . . . . . . . . . . . . . . . 133

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1 Hartree-Fock Method . . . . . . . . . . . . . . . . . . . . . . . 135

ix



5.3.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . 143

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Using the Single Electron Pair Distribution Analyzer to Describe the Na-

ture of the Hydrogen Bond 148

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.1 Extracule densities for σXH LMOs . . . . . . . . . . . . . . . . 155

6.3.2 Extracule densities for nY LMOs . . . . . . . . . . . . . . . . . 162

6.3.3 Subsets of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3.4 Scaling Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3.5 Bivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3.6 Intracule Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Conclusions & Future Work 172

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A SEPDA - User’s Manual 176

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.1.1 Section Summaries . . . . . . . . . . . . . . . . . . . . . . . . 177

A.1.2 SEPDA Features . . . . . . . . . . . . . . . . . . . . . . . . . . 177

x



A.1.3 SEPDA Literature . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.2 Installation and General Program Instructions . . . . . . . . . . . . . 179

A.2.1 Installation Requirements . . . . . . . . . . . . . . . . . . . . 179

A.2.2 Installing SEPDA . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.2.3 Running SEPDA . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.2.4 SEPDA Compatibility . . . . . . . . . . . . . . . . . . . . . . . 182

A.2.5 Testing SEPDA . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.3 Input File Structure and Variables . . . . . . . . . . . . . . . . . . . . 182

A.3.1 Description of Input Variables . . . . . . . . . . . . . . . . . . 183

A.4 Examples of Input File Structures . . . . . . . . . . . . . . . . . . . . 189

B Derivation of Hollett and Gill Recurrence Relation 193

C Supplementary Information for the Analysis of Hydrogen Bonding Com-

plexes 204

xi



List of Figures

1.1 Depiction of each of the relevant interactions from the Hamiltonian

operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Position intracule for the ground state of a) the He atom, and b) the

methane molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.3 Momentum intracule for the ground state of a) the He atom, and b)

the methane molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.4 Posmom intracule for the ground state of the He atom in a) Cartesian

space, and b) Fourier space. . . . . . . . . . . . . . . . . . . . . . . . 60

1.5 Possible combinations of u, v, and ω and the resulting values of x = u·

v. Adapted from the original version with permission from Molecular

Physics.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.6 a) Scalar, E(R), and b) vectorized, E(R), position extracules for the

ground state of HOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.7 Momentum extracule for the ground state of a) the He atom, and b)

the methane molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



1.8 A depiction of the a) CMOs, and b) LMOs for the water molecule.

Core orbitals are omitted. . . . . . . . . . . . . . . . . . . . . . . . . 67

1.9 A depiction of the LMOs of a) H2O, and b) HOF. Core orbitals are

omitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.1 A general overview of the architecture of the SEPDA software package. 74

3.1 Depiction of calculated P (u), E(R), andM(v) for the first and second

row hydrides at the HF/6-311G(d,p) level along with the first inverse

moment, 〈x−1〉 (where x = u,R, or v) and experimental bond disso-

ciation energies (BDE)2,3. . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Depiction of a) the σO-H and nO ER LMOs of the water dimer cal-

culated at the M06-2X/6-311G(d,p) level of theory, along with the

b) ∆P (u) and c,d) ∆E(~Ryz) for each. Solid and dashed lines in

the ∆E(~Ryz) plots denote positive and negative contours, respec-

tively. Red contour lines correspond to ∆E(~Ryz) for nO and blue

contour lines correspond to ∆E(~Ryz) for σO-H. Contours are plotted

for ±n× 10−3 where n = 4, 8, 16, 32, 64. . . . . . . . . . . . . . . . . . 90

xiii



3.3 The deformation densities of the position intracules, ∆P (u), and 3-

D position extracules, ∆E(~Ryz), for the σX-H and nY LMOs in the

a) water dimer, b) water-methanol, and c) water-methylamine hy-

drogen bonding complexes. Solid and dashed lines in the ∆E(~Ryz)

plots denote positive and negative contours, respectively. Red con-

tour lines correspond to ∆E(~Ryz) for nO and blue contour lines corre-

spond to ∆E(~Ryz) for σO-H. Contours are plotted for ±n×10−3 where

n = 4, 8, 16, 32, 64. All data is calculated at the M06-2X/6-311G(d,p)

level of theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 The deformation densities of the position intracules, ∆P (u), and 3-D

position extracules, ∆E(~Ryz), for the participating LMOs in the a)

water dimer hydrogen bonding complex, b) FBr-HCN halogen bond-

ing system, and c) the ethene dimer, π-interaction system. Solid

and dashed lines in the ∆E(~Ryz) plots denote positive and nega-

tive contours, respectively. Contours are plotted for ±n×10−3 where

n = 4, 8, 16, 32, 64. Red contour lines illustrate ∆E(~Ryz) for the non-

bonding electron pair in a) and b) as well as the π bonding electrons

in c). Blue contour lines indicate the σ bonding pair of electrons in

parts a) and b). All data is calculated at the M06-2X/6-311G(d,p)

level of theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiv



3.5 Depiction of a) the σB-H-B and σB-H LMOs of diborane with the as-

sociated b) P (u) and c,d) E(~Ryz). Contours are plotted for E(~Ryz)

values of 0.01, 0.02, 0.04, 0.08, and 0.016 atomic units. All data is

calculated at the HF/6-311G(d,p) level of theory. . . . . . . . . . . . 97

3.6 P (u) and ∆E(~Ryz) for the nucleophile and leaving group LMOs of

an SN2 reaction as it progresses from reactants (A) to transition state

(D). The reaction profile depicts the four states (A-D) modeled for

P (u) along with depictions of the LMOs of the nucleophile and leav-

ing group. Structures and energies were calculated at the OLYP/6-

311G(d,p) level of theory based on the benchmark studies.4 Solid

and dashed lines in the ∆E(~Ryz) plots denote positive and negative

contours, respectively. Contours are plotted for ±n × 10−3 where

n = 2, 4, 8, 16, 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 a) Depiction of E(0, Ry, Rz) for the C-H bond in CH4 with an overlay

of the LMO for the bond and b) ∆ECH3,F(0, Ry, Rz) for the X-H bond

LMO. Contour values were chosen as m × 10−n, where m = 2, 4 and

8 and n = 3, 2, and 1 (the dashed lines signify negative contours). . . 110

4.2 Pictorial representation of CH4 to demonstrate the positions of each

atom within the molecule combined with an inset of the positions

of the maxima of E(0, Ry, Rz) for the C-H bond in methane and its

fluorinated derivatives, CHnF3−n, where n = 1 − 3 (the dashed line

signifies the bond axis). . . . . . . . . . . . . . . . . . . . . . . . . . 117

xv



4.3 Depiction of E(R) for representative C-C bonds in the cyclic systems

ranging from cyclopropane to cyclohexane. Models of the appropri-

ate molecule are inlayed in the top left hand corner of each graph

to provide the reader with insight as to the spatial orientation of

each molecule. The dashed line traces the curve of slowest descent

in E(Ry, Rz) to illustrate the deviation from the bond axis. Contour

values were chosen as 0.02× n where n = 1− 16. . . . . . . . . . . . 119

4.4 Depiction of ∆Eφ
d (R) for the σHF bond LMO in H-F (left) and the nN

lone pair LMO in MeNH2 (right) for the HF-MeNH2 hydrogen bonded

complex at various distances of separation, x×b0, between the donor

and acceptor. Contours were chosen as±0.003×1.5n where n = 1−8.

Negative contours are denoted by dashed lines. . . . . . . . . . . . . 122

5.1 Localized extracule densities for the A−H bond in saturated a) first

row hydrides, and b) second row hydrides with insets of the A−H

bond LMO of F−H and Cl−H for illustrative purposes. . . . . . . . . 135

5.2 Correlation between Pauling electronegativities and a) 〈R〉%, and b)

Rmax
% for the first and second row hydrides. . . . . . . . . . . . . . . . 139

5.3 Localized intracule densities for the A−H bond in saturated a) first

row hydrides, and b) second row hydrides. . . . . . . . . . . . . . . . 142

5.4 Localized extracule densities for the A−H bond in saturated first row

(left) and second row (right) hydrides calculating using a) BLYP, b)

B3LYP, c) B3PW91, and d) M06-2X. . . . . . . . . . . . . . . . . . . . 145

xvi



6.1 Pictorial representation of the various geometries for each of the hy-

drogen bonding complexes. . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Classification of hydrogen bonding systems based on 〈R0
yz〉 of the

σX-H LMO and hydrogen bonding strengths. . . . . . . . . . . . . . . 157

6.3 Contour plot of ∆EσN-H
1.00d0

(Ryz) and ∆EnO
1.00d0

(Ryz) in MeNH2-MeOH

depicting the change in the extracule density in the presence of the

proton acceptor, MeOH (dashed lines signify negative contours while

solid lines signify the positive contours). . . . . . . . . . . . . . . . . 158

6.4 Contour plot of ∆EσF-H
d (Ryz) and ∆EnN

d (Ryz)for the HF-MeNH2 com-

plex demonstrating the diminishing effect on ∆E(R) as the complex

separates (dashed lines signify negative contours while solid lines

signify the positive contours). . . . . . . . . . . . . . . . . . . . . . . 160

6.5 Relationship between δR, 〈R0
yz〉, Rmax

z , and 〈R′z〉 versus hydrogen

bond strength for H2O-H2O, H2O-MeNH2, and H2O-MeOH. . . . . . . 161

6.6 Relationship between hydrogen bond interaction strength, Eint ver-

sus a) δR, and b) the density at the bond critical point, ρ(rc), for all

systems at equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.7 The deformation density of the position intracule for a) the σO-H bond

and b) the nO lone pair, LMOs for the water dimer. . . . . . . . . . . 169

C.1 ∆P (u) for the σX-H bond LMOs of hydrogen bonding complexes. . . . 223

xvii



List of Tables

1.1 Definition of atomic units . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Angular momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 The scope of pair distributions available in the SEPDA software pack-

age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Moments of E(0, Ry, Rz) for the X-H bond LMO in first row hydrides. 113

4.2 Analysis of the X1-X2 and Xi-H bond LMOs in small first and second row compounds.115

4.3 Properties of E(0, Ry, Rz) for halogenated derivatives of methane. . . 118

4.4 Properties of E(0, Ry, Rz) for the C-C bonds in cycloalkanes. . . . . . 120

4.5 Properties of Eφ,HF-MeNH2

d (0, Ry, Rz) and ∆Eφ
d (0, Ry, Rz) for the HF

bond (σHF) and the MeNH2 lone pair (nN) LMOs. . . . . . . . . . . . 124

5.1 Metrics of E(R) for the A−H bond LMO in saturated hydrides. . . . . 137

5.2 Metrics of E(R) for the A−H bond LMO in truncated hydrides. . . . . 138

5.3 χLPM of the first and second row atoms . . . . . . . . . . . . . . . . . 141

5.4 R2 values for metrics of P (u) for the A−H bond LMO in saturated

hydrides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xviii



5.5 Accuracy metrics for the four DFT methods and HF. . . . . . . . . . . 144

5.6 Coefficient of determination comparison for each computational method.146

6.1 〈Ryz〉 for the σO−H in MeOH-Y complexes . . . . . . . . . . . . . . . 156

6.2 〈R0
yz〉 for the σX-H bond in a few select systems . . . . . . . . . . . . 157

6.3 δR for φ = σO-H in the H2O−Y subset of systems. . . . . . . . . . . . . 159

6.4 Summary of the various metrics for each hydrogen bonding complex

at equilibrium and the coefficient of determination for the relation-

ship to Eint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.5 Coefficients of determination for the relationship between each of

the metrics and Eint for subsets of the full data set. . . . . . . . . . . 165

6.6 Coefficients of determination for the relationship between each of

the scaled metrics and Eint. . . . . . . . . . . . . . . . . . . . . . . . 167

6.7 Coefficients of determination for the relationship between each of

the scaled metrics and Eint for σX-H bond LMO. . . . . . . . . . . . . . 170

6.8 Coefficients of determination for the relationship between each of

the unscaled/scaled metrics for P (u) and Eint for nY LMO. . . . . . . 170

C.1 δR for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

C.2 〈R0
yz〉 for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . 206

C.3 Rmax
z for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . 207

C.4 E(Rmax) for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . 208

C.5 〈Ryz〉 for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.6 δR for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xix



C.7 〈R0
yz〉 for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . 211

C.8 Rmax
z for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

C.9 E(Rmax) for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . 213

C.10 〈Ryz〉 for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.11 δu for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C.12 〈u−1〉 for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.13 umax for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . . 217

C.14 〈u〉 for the σX−H LMO . . . . . . . . . . . . . . . . . . . . . . . . . . 218

C.15 δu for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

C.16 〈u−1〉 for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

C.17 umax for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

C.18 〈u〉 for the nY LMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

xx



.

.

List of Abbreviations and Symbols

Abbreviations

AO Atomic orbital
CMO Canonical molecular orbital
DFT Density functional theory
ER Edmiston-Ruedenberg
HF Hartree-Fock
LCAO Linear combination of atomic orbitals
LMO Localized molecular orbital
MO Molecular orbital
MPPT Møller-Plesset perturbation theory
NBO Natural bond orbital
RHF Restricted Hartree-Fock
SCF Self consistent field
UHF Unrestricted Hartree-Fock

Symbols

Ψ Molecular wavefunction
ψ Spatial molecular orbital
χ Spin molecular orbital
φ Basis function/atomic orbital
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Chapter 1

Introduction

It was long assumed that Newton’s laws of motion5 governed the motion of ev-

erything. By knowing the initial position, r0, and velocity, v0, of an object along

with its mass, m, and the net force acting on it, F , one could determine the future

position, r(t) of said object at any time, t, through the equation

r(t) =
F

2m
t2 + v0t+ r0 (1.1)

This relationship is easily obtained through integration from the more common

form of Newton’s second law of motion: F = ma. Obviously not all situations are as

simple as those that are adequately described by this equation since most objects do

not have constant forces acting on them. Complicating the issue even further is the

many-body problem. Consider the problem of planetary motion. While the planets

in a given solar system typically revolve around the sun based on the gravitational

force, one also has to consider the interaction between the planets themselves. It
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is this many-body interaction that greatly complicates the situation, and it is one

that we are faced with in all chemical species with the exception of one-electron,

one-nucleus systems (e.g. the hydrogen atom).6–8

The other major issue with applying Newton’s laws of motion to chemical sys-

tems can be explained by the Heisenberg uncertainty principle.9 It states that “The

more precisely the position is determined, the less precisely the momentum is

known in this instant, and vice versa" (translation by the American Institute of

Physics). More simply, one cannot know both the momentum and position of a par-

ticle, simultaneously. There is an uncertainty principle associated with these terms.

Mathematically, Heisenberg’s uncertainty principle is given by

∆x∆p ≥ ~/2 (1.2)

where ∆x and ∆p denote the uncertainty in the position and momentum, respec-

tively. This uncertainty applies to all objects, even those that behave by the laws of

classical mechanics. However, when one considers the size of the uncertainty (on

the order of 10−35 kg ·m2 ·s−1), the uncertainty in either the position or momentum

of an object even on the nanogram scale would be negligible. When, however, we

consider the size of sub atomic particles with masses on the order of 10−31 kg, the

uncertainty in momentum is rather substantial. Instead, these microscopic systems

must be treated with quantum mechanics which is probabilistic in nature.
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1.1 Quantum Mechanics

Much like Newton’s laws of classical mechanics are instrumental in understanding

the motion of objects we see in our everyday lives, the Schrödinger equation10 is at

the heart of quantum mechanics and understanding systems at the electronic level.

The time-dependent Schrödinger equation is given by

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (1.3)

where |Ψ〉 is the molecular wavefunction and Ĥ is known as the Hamiltonian opera-

tor. The wavefunction contains all of the information needed to completely describe

a chemical system, while the Hamiltonian is the operator, which when applied to

the wavefunction, yields the total energy of the system. Fortunately, for nearly all

applications in chemistry, the time-dependent Schrödinger equation is unnecessary

and we can simplify to the time-independent form, which from this point forth, we

will simply refer to as the Schrödinger equation.6 This form is written as

Ĥ|Ψ〉 = E|Ψ〉 (1.4)

The Hamiltonian operator consists of two types of operators, those pertaining to

potential energy and those pertaining to kinetic energy. The Hamiltonian is given

by6

Ĥ ≡ − ~2

2me

N∑
i=1

∇2
i −

M∑
A=1

~2

2MA

∇2
A + V (r) (1.5)
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where the first two terms correspond to the kinetic energy of the N electrons which

have mass m and the M nuclei with mass MA, respectively. The third term is

the potential energy operator; however, before proceeding with its definition, it

is much simpler to introduce a new set of units, known as atomic units. Atomic

units are frequently used in computational chemistry to express everything from

lengths to masses and energies. By using atomic units11 one can greatly simplify

the mathematical form of the Hamiltonian operator, especially the terms pertaining

to potential energy. The list of atomic units relevant in this thesis are given below

in Table 1.1.

Using this new set of units, we can define the potential energy operator as

V (r) ≡
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

+
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.6)

with the first and third terms defining the electron-electron and nuclear-nuclear

repulsions, respectively, which are dependent on the interelectron, rij and inter-

nuclear, RAB, distances. The nuclear-nuclear repulsion is also dependent on the

nuclear charges of atoms A and B (ZA and ZB). The second term describes the

Table 1.1: Definition of atomic units

Measure Unit Value in atomic units Value in SI Units
Length a0 1 bohr 5.2918×10−11 m
Mass me 1 9.1095×10−31 kg
Charge e 1 1.6022×10−19 C
Energy E 1 hartee (Eh) 4.3498×10−18 J

E 1 hartee (Eh) 27.211 eV
E 1 hartee (Eh) 627.51 kcal mol−1

Angular momentum ~ 1 1.0546×10−34 J s
Vacuum permittivity 4πε0 1 1.113×10−10 C2 J−1 m−1
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electron-nuclear attraction which is dependent on charge of nucleus A as well as

the distance between the nucleus and electron i, riA. Combining this equation with

(1.5) yields the expression for the total Hamiltonian

Ĥ ≡ −1

2

N∑
i=1

∇2
i−

M∑
A=1

1

2MA

∇2
A +

N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

+
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.7)

Thus, in its full form, the Schrödinger equation is given by

[
−1

2

N∑
i=1

∇2
i−

M∑
A=1

1

2MA

∇2
A +

(
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

+
M∑
A=1

M∑
B>A

ZAZB
RAB

)]
Ψ(r,R) = EΨ(r,R) (1.8)

For the sake of clarity, the terms in the Hamiltonian are colour coordinated with

the visual representation of the terms in Figure 1.1. In this form, the Schrödinger

equation looks quite daunting. However, the equation can be simplified further by

invoking the Born-Oppenheimer approximation.

1.2 Born-Oppenheimer Approximation

Consider that the mass of a proton is approximately 1840 times that of an electron.

Even for this smallest of atomic systems, the electrons would be moving far faster

than the nuclei. This only amplifies as we study systems containing nuclei larger

than that of hydrogen. Thus, to a very good approximation, it can be assumed that

the electrons in a molecule move in a field of fixed nuclei. This is known as the Born-

Oppenheimer approximation.12 Physicists tend to use a slightly more complicated
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x

y

z

ri
rj

RA

RB

rjB = |rj � RB |

riA = |ri � RA|

RAB = |RA � RB |

rij = |ri � rj|

Figure 1.1: Depiction of each of the relevant interactions from the Hamiltonian
operator

interpretation, and state that the electronic and nuclear motions are separable and

thus, the wavefunction can be written as

Ψ(ri,RA) = Ψel(ri;RA)Ψnuc(RA) (1.9)

For most chemical applications, we can ignore the nuclear wavefunction, Ψnuc(RA),

and simply concern ourselves with the electronic wavefunction, Ψel(ri;RA). How-

ever, notice there is a semicolon in between the ri and the RA. This form designates

everything before the semicolon as a variable of the function, and anything after it

to be a parametric dependence. By envoking the Born-Oppenheimer approxima-
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tion, the wavefunction now only deals with the positions of the fixed nuclei, and

thus, these vectors are now parameters of the electronic wavefunction.

Returning to equation (1.8), there are simplifications that can be made. Since

the nuclei have fixed positions, their kinetic energy would be null, and thus the

second term in the Hamiltonian operator vanishes. Furthermore, the nuclear repul-

sion term (fifth and final term) is now comprised solely of constants. A constant

operator does not affect the eigenvectors of an eigenvector/eigenvalue problem.

It simply adjusts the eigenvalues by that constant, and thus, it can be dealt with

after the eigenvectors and eigenvalues are determined. By making these two ad-

justments, we can simplify the Hamiltonian operator to its electronic counterpart,

Ĥel, as

Ĥel ≡ −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

(1.10)

By solving the electronic Schrödinger equation

ĤelΨel(ri;RA) = EelΨel(ri;RA) (1.11)

the electronic wavefunction, Ψel(ri;RA) and electronic energy, Eel, are determined.

To obtain the total molecular energy, however, the nuclear repulsion energy must

be considered. Thus, following the solution to the electronic Schrödinger equation,

Eel must be combined with the nuclear repulsion component as follows:6

7



E = Eel +
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.12)

As we will only be concerned with the electronic versions of the wavefunction and

Hamiltonian operator, from this point forward we will drop the ‘el’ designation and

it can be assumed that all references to the wavefunction or Hamiltonian operator

are referring to the electronic components, unless otherwise stated.

1.3 Solutions to the Schrödinger Equation

By applying the Born-Oppenheimer approximation, the Schrödinger equation was

greatly simplified by removing the nuclear position variables. However, solving the

equation remains a daunting task, one that is unachievable in principle for nearly

all chemical systems. While the solution of the hydrogen atom has been known

for many years, its solution would still involve several pages of derivations and re-

quires a familiarity with advanced mathematical functions. Nonetheless, this is the

only true chemical system for which there is an exact, closed form solution to the

Schrödinger equation. Thus, much of the early work in computational chemistry

was focused on the development of methods for obtaining approximate solutions

to the Schrödinger equation. Even today, many theorists focus on the development

of novel theoretical models to obtain more accurate solutions to the Schrödinger

equation. The next few sections will highlight those methods that were fundamen-

tal in the development of more accurate models as well as those which are applied

in the work presented in this thesis.
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1.4 Variational Theorem

In a situation where the exact answer is unachievable, approximations must be

made. But without knowing the true answer, how can one assess the accuracy of

said approximation? For many methods in computational chemistry, the variational

theorem is the tool used for this assessment. The variational theorem states that for

any normalized approximate wavefunction, ΨG, that satisfies all boundary criteria

of the problem, the total energy of that wavefunction, EG, will always be greater

than or equal to the exact ground state energy of that system, E0.11 Mathematically,

this is written as

〈ΨG|Ĥ|ΨG〉 = EG ≥ E0 (1.13)

Thus, for any method to which the variational theorem applies, it can be certain

that out of a series of trial wavefunctions, ΨG, the one that yields the lowest energy

is that which is a better approximation to the true wavefunction. Furthermore, one

can be certain that the energy of any variational method will never be lower than

the true energy. Thus, the error in energy for a variational method will always be

positive.

1.5 Hartree Product

The Hartree self-consistent field method, or more simply, the Hartree method was

proposed by Douglas Hartree in the 1920s.13,14 While very rarely mentioned outside

of introductory theoretical chemistry courses, it is the predecessor of the far more

9



commonly utilized process, the Hartree Fock (HF) method.

The Hartree method utilizes the Hartree Product wavefunction, ΨHP. This meth-

od assumes that we can approximate the complete wavefunction as a product of

single particle functions, or orbitals. This can be expressed as

ΨHP(x1, . . . ,xN ) =
N∏
i=1

χi(xi) (1.14)

where χi denotes a spin orbital for electron i with its combined position-spin coor-

dinate vector, xi ≡ (ri, ωi) (where ωi is the spin coordinate). The sum goes over

N orbitals which is the total number of electrons in the system. One is commonly

taught that orbitals describe up to two electrons. That type of statement, however,

is referring to spatial orbitals, ψ. A spin orbital describes a single electron with ei-

ther spin up, α(ω), or spin down, β(ω). The following equations demonstrate how

the first four spin orbitals can be related to spatial orbitals. This trend continues for

all other N spin orbitals.

χ1(x) = ψ1(r)α(ω) = ψα1 (r) (1.15)

χ2(x) = ψ1(r)β(ω) = ψβ1 (r) (1.16)

χ3(x) = ψ2(r)α(ω) = ψα2 (r) (1.17)

χ4(x) = ψ2(r)β(ω) = ψβ2 (r) (1.18)

While spin functions have no mathematical form, there are a few properties that

should be identified. First and foremost, the spin functions are normalized and

10



orthogonal to each other. This is expressed mathematically as

〈α|α〉 = 〈β|β〉 = 1 Normalization (1.19)

〈α|β〉 = 〈β|α〉 = 0 Orthogonality (1.20)

As the spin components are typically integrated out for most purposes, these identi-

ties greatly simplify expressions as they will nullify many components or make the

spin components equal to unity.

There are two major problems with the Hartree method. Neither are obvious

from a classical perspective; however, in quantum mechanics, there are two impor-

tant properties that are being violated here. The first is that the wavefunction of

fermionic particles must be antisymmetric.6,8,11 More simply, if the positions of two

electrons are swapped, the resulting wavefunction must be the negative of the first.

In other words

Ψ(x2,x1, . . . ,xN ) = −Ψ(x1,x2, . . . ,xN ) (1.21)

There is nothing that guarantees that this antisymmetry principle holds true with

the Hartree-Product wavefunction. The second principle of quantum mechanics

that is being violated here is that electrons are indistinguishable. While one can

easily label and distinguish classical objects, this is simply not possible for electrons.

The Hartree-Product wavefunction specifies in which orbital each electron resides

which violates the need for indistinguishable particles.
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1.6 Hartree-Fock Theory

Following the development of the Hartree method, Fock sought to modify the met-

hod to satisfy these two quantum mechanical properties.15 His solution, while still

utilizing single-particle orbitals, was to consider every possible permutation of elec-

trons within each of those orbitals. Mathematically, the simplest way to do that

was by using a determinant. These so-called Slater determinants16,17 are used to

construct Hartree-Fock (HF) wavefunctions, ΨHF, for any N -electron system. The

following equation demonstrates the expression of an HF wavefunction for a 2-

electron system.

ΨHF(x1,x2) =
1√
N !

∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1)

χ1(x2) χ2(x2)

∣∣∣∣∣∣∣∣ =
1√
2!

∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1)

χ1(x2) χ2(x2)

∣∣∣∣∣∣∣∣ (1.22)

where the (N !)−1/2 is a normalization constant dependent on the number of elec-

trons in the system. In this determinant, each column corresponds to a specific

spin orbital while each row corresponds to a specific electron. By working out the

determinant, momentarily ignoring the normalization constant, we get

∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1)

χ1(x2) χ2(x2)

∣∣∣∣∣∣∣∣ = χ1(x1)χ2(x2)− χ2(x1)χ1(x2) (1.23)

From the right hand side of this expression, one can note that every electron is

now occupying every orbital. Thus, ΨHF satisfies the idea that electrons must be
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indistinguishable. It remains that this wavefunction must be antisymmetric. This is

confirmed as follows

χ1(x2)χ2(x1)− χ2(x2)χ1(x1) = −(χ1(x1)χ2(x2)− χ2(x1)χ1(x2)) (1.24)

and thus

ΨHF(x2,x1) = −ΨHF(x1,x2) (1.25)

Expressing the wavefunction as a Slater determinant has a number of useful

properties. First and foremost, it addresses the issues in the Hartree-Product wave-

function.13,14 However, consider a few important properties of determinants. If two

columns of a determinant are identical, the determinant is equal to zero. In this

context, two equivalent columns corresponds to two identical orbitals which vio-

lates the Pauli Exclusion principle. Secondly, by interchanging two columns in a

determinant, the resulting determinant is equivalent but multiplied by a factor of

-1. This property ensures that the wavefunction will be antisymmetric.

While these two properties were demonstrated using a wavefunction for a two

electron system, they hold true for any general system. The general N -electron

13



Hartree-Fock wavefunction is given by

ΨHF(x1,x2, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)

...
... . . . ...

χ1(xN ) χ2(xN ) · · · χN(xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.26)

While the HF method does address the two previously described issues with

the Hartree method, there remains an issue that has yet to be discussed. This

issue is known as electron correlation.6 There are two types of correlation: Fermi

correlation and Coulomb correlation. The HF method addresses the issue of Fermi

correlation which is the concept that two electrons with the same spin will never

be at the same point in space at the same time. This type of correlation is absent in

the Hartree method, but is addressed exactly in HF theory by preventing two spin

orbitals from being identical (determinant would equal zero).

However, the HF method does not account for Coulomb correlation. This form of

correlation energy is the result of electrons interacting and avoiding one another.6

Hartree-Fock theory applies a mean field approach, where each individual electron

does not see each other electron, but simply feels the mean electric field generated

by all other electrons in the system. While Coulomb correlation only accounts for

approximately 1% of total electronic energies, it is on the same order of magnitude

as many reaction energies. Thus, to study reaction energetics using Hartree-Fock

theory and expecting great results would be like buying a lottery ticket and expect-
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ing to win. It is possible; however, it is not overly probable.

The full derivation of the Hartree-Fock equations is outside of the scope of this

thesis. The interested reader is directed to the works of Szabo and Ostlund11 as

well as Levine.6 However, the basics of the method will be explained herein with

the example of a two-electron system. The equations will then be generalized to

the N -electron case.

Expectation values were briefly introduced, although not referenced by name,

in the discussion of the Variational Theorem and equation (1.13). An expectation

value or average value of an operator, Ô, is given by

〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 =

∫
Ψ∗(x)ÔΨ(x)dx∫
Ψ∗(x) Ψ(x)dx

= 〈Ô〉 (1.27)

However, in the event that the wavefunction is normalized, the denominators are

equal to unity, and the equation simplifies to

〈Ψ|Ô|Ψ〉 =

∫
Ψ∗(x)ÔΨ(x)dx = 〈Ô〉 (1.28)

In the event that the operator is the Hamiltonian, the expectation value or 〈Ĥ〉

would be equal to the ground state energy of the chemical system. Applying this

theory to the Hartree-Fock problem yields

EHF = 〈ΨHF|Ĥ|ΨHF〉 (1.29)

The problem can be simplified by separating the Hamiltonian into two separate

15



pieces. After applying the Born-Oppenheimer approximation, recall that we are left

with

Ĥ = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(1.30)

The components in green are the one-electron operators and can be labelled Ĥ1

which is defined as

Ĥ1 ≡
N∑
i=1

Ĥcore
i (1.31)

where the core Hamiltonian, Ĥcore, is given by

Ĥcore
i ≡ −1

2
∇2
i −

M∑
A=1

ZA
riA

(1.32)

The two-electron Hamiltonian, Ĥ2 is then simply

Ĥ2 ≡
N∑
i=1

N∑
j>i

1

rij
(1.33)

Using these new definitions, the Hartree Fock energy defined in equation (1.29) can

be rewritten as

EHF = 〈ΨHF|Ĥ1|ΨHF〉+ 〈ΨHF|Ĥ2|ΨHF〉 (1.34)

EHF = 〈ΨHF|
N∑
i=1

Ĥcore
i |ΨHF〉+ 〈ΨHF|Ĥ2|ΨHF〉 (1.35)

Considering that electrons are indistinguishable particles,6 the energy of a single

electron should be 1/N times of the total one-electron energy. Using this logic,

16



(1.35) is simplified to

EHF = N〈ΨHF|Ĥcore
1 |ΨHF〉+ 〈ΨHF|Ĥ2|ΨHF〉 (1.36)

To solve for the first term in this expression, we can substitute the right hand side

of equation (1.23) into (1.32) to obtain

〈ΨHF|Ĥcore
1 |ΨHF〉 =

1

N !

∫ ∫
[χ∗1(x1)χ∗2(x2)− χ∗2(x1)χ∗1(x2)]

Ĥcore
1 [χ1(x1)χ2(x2)− χ2(x1)χ1(x2)]dx1dx2 (1.37)

where we have reintroduced the normalization constant. Expanding this expression

by multiplying everything out will yield four separate integrals as follows

〈ΨHF|Ĥcore
1 |ΨHF〉 =

1

2

∫ ∫
[χ∗1(x1)χ∗2(x2)Ĥcore

1 χ1(x1)χ2(x2)]dx1dx2

− 1

2

∫ ∫
[χ∗1(x1)χ∗2(x2)Ĥcore

1 χ2(x1)χ1(x2)]dx1dx2

− 1

2

∫ ∫
[χ∗2(x1)χ∗1(x2)Ĥcore

1 χ1(x1)χ2(x2)]dx1dx2

+
1

2

∫ ∫
[χ∗2(x1)χ∗1(x2)Ĥcore

1 χ2(x1)χ1(x2)]dx1dx2 (1.38)

As Ĥcore
1 only contains terms that operate on electron one, any terms involving

x2 can be factored out and integrated separately. For the sake of simplicity, we

will now replace xi with i. This will yield the following four terms based on the
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previous expression:

1

2

∫
χ∗1(1)Ĥcore

1 χ1(1)d1
∫
χ∗2(2)χ2(2)d2 =

1

2

∫
χ∗1(1)Ĥcore

1 χ1(1)d1 (1.39)

−1

2

∫
χ∗1(1)Ĥcore

1 χ2(1)d1
∫
χ∗2(2)χ1(2)d2 = 0 (1.40)

−1

2

∫
χ∗2(1)Ĥcore

1 χ1(1)d1
∫
χ∗1(2)χ2(2)d2 = 0 (1.41)

1

2

∫
χ∗2(1)Ĥcore

1 χ2(1)d1
∫
χ∗1(2)χ1(2)d2 =

1

2

∫
χ∗2(1)Ĥcore

1 χ2(1)d1 (1.42)

The orthonormality of the spin functions,11 α(ω) and β(ω), and the spatial or-

bitals themselves were utilized to simplify these four terms. In the first and fourth

terms, the same spin function is involved in the integral over electron 2 and thus,

the integral equates to unity due to the normalization. For the second and third

terms, however, the opposite spin functions are involved in the electron 2 integral

which causes the integral the vanish and the full term to equal zero.

The terms that were not nullified through integration can be simplified further

by separating the spin orbitals, χ(x), to their spatial orbital, ψ(r), and spin function

components. By doing so, the following expressions are obtained

1

2

∫ ∫
ψ∗1(r1)α∗(ω1)Ĥ

core
1 ψ1(r1)α(ω1)dr1dω1 = (1.43)

1

2

∫
ψ∗1(r1)Ĥcore

1 ψ1(r1)dr1

∫
α∗(ω1)α(ω1)dω1 =

1

2

∫
ψ∗1(r1)Ĥcore

1 ψ1(r1)dr1 = H11

An analogous procedure can be done for term 4 which would yield another H11
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term. It should be noted that when working with spatial orbitals, said term would

be considered the H22 term; however, recall that there are two spin orbitals per

spatial orbital. Thus, We can now succinctly express the expectation value of the

one-electron Hamiltonian (i.e. the one-electron component to the energy) as

〈ΨHF|Ĥ1|ΨHF〉 =

∫
ψ∗i (r1)Ĥcore

1 ψi(r1)dr1 = 2

N/2∑
i=1

Hii (1.44)

Based on this result, the closed-shell HF energy can now be expressed as

EHF = 2

N/2∑
i=1

Hii + 〈ΨHF|Ĥ2|ΨHF〉 (1.45)

Thus, it remains to determine how to calculate the two-electron component of the

energy. As previously noted, the full derivation of the HF equation will not be

conducted here. The one-electron component was fully derived as it is quite simple;

however, only the highlights of the two electron component will be shown.

Recall that the two-electron component to the HF energy is given by

〈ΨHF|Ĥ2|ΨHF〉 = 〈ΨHF|
N∑
i=1

N∑
j>i

1

rij
|ΨHF〉 (1.46)

After substituting the full form of the HF wavefunction, and integrating out the spin

components of the spatial orbitals, only two types of integrals remain. These are

known as the Coulomb integrals, Jij, and exchange integrals Kij. The Coulomb
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integrals are given by

Jij =

∫ ∫
ψ∗i (1)ψ∗j (2)

1

r12
ψi(1)ψj(2)d1d2

Jij =

∫ ∫
|ψi(1)|2 1

r12
|ψj(2)|2d1d2 (1.47)

As |ψi|2 describes the electron density of a molecular orbital i, Jij represent

the interaction between the electron density of two separate molecular orbitals.

Thus, one can interpret the Coulomb integrals as the Coulombic repulsion between

electrons, hence the name. The other type of integral remaining are exchange

integrals, which are calculated by

Kij =

∫ ∫
ψ∗i (1)ψ∗j (2)

1

r12
ψj(1)ψi(2)d1d2 (1.48)

Comparing the terms on the left of the operator and those to the right of the op-

erator, one can notice that the only difference is that the electrons are switched or

exchanged which provides an explanation for the name. The presence of these inte-

grals is due to the antisymmetry of the wavefunction. While the Coulomb integrals

can be interpreted as the Coulombic repulsion between electrons, there is no phys-

ical interpretation for the exchange integrals.6,11 They are a quantum mechanical

effect with no classical interpretation, but are an important part of the two-electron

energy nonetheless.

Exchange is a phenomenon that only occurs between same spin electrons,6

where-as Coulombic interactions occur between every single pair of electrons. In
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terms of these two components, the two-electron energy can be described by

〈ΨHF|Ĥ2|ΨHF〉 =

N/2∑
i=1

N/2∑
j=1

2Jij −Kij (1.49)

Combining equations (1.44) and (1.49) yields the full expression for the closed-

shell Hartree-Fock energy

EHF = 2

N/2∑
i=1

Hii +

N/2∑
i=1

N/2∑
j=1

2Jij −Kij (1.50)

The only issue with this expression is that the identity of the molecular orbitals, ψ,

are unknown. Solutions to this were proposed separately by Roothaan18 and Hall.19

By approximating each molecular orbital as a linear combination of atomic orbitals

ψi(r) =
K∑
µ=1

cµ,iφµ(r) (1.51)

where cµ,i is the amount of each of the K basis functions, φµ(r), that is used to

approximate each molecular orbital, ψi(r). The functional form of these basis func-

tions will be explored in a later section. For now, we will use these functions to

rewrite the HF energy in a usable form.

Substituting (1.51) into (1.50), eventually yields the final expression for the HF

energy, EHF:

EHF =
K∑
µ=1

K∑
ν=1

PµνH
core
µν +

1

2

K∑
µ=1

K∑
ν=1

K∑
λ=1

K∑
σ=1

PµνPλσ[(µν|λσ)− 1
2
(µσ|λν)] (1.52)
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But how do we get to this final expression? Let’s first consider the 1-electron

component to the energy:

〈ΨHF|Ĥ1|ΨHF〉 = 2

N/2∑
i=1

Hii = 2

N/2∑
i=1

〈ψi|Ĥcore|ψi〉 (1.53)

Using the LCAO representation for the molecular orbitals, equation (1.51) can

be rewritten as:

2

N/2∑
i=1

〈ψi|Ĥcore|ψi〉 = 2

N/2∑
i=1

〈
K∑
µ=1

cµ,iφµ|Ĥcore|
K∑
ν=1

cν,iφν〉 (1.54)

Since the coefficients are not affected by the core Hamiltonian operator, they can

be brought outside of the inner product expression as such:

2

N/2∑
i=1

〈ψi|Ĥcore|ψi〉 = 2

N/2∑
i=1

K∑
µ=1

K∑
ν=1

c∗µ,icν,i〈φµ|Ĥcore|φν〉 (1.55)

To simply this expression further, we introduce the density matrix,11 Pµν , which

is defined as

Pµν = 2

N/2∑
i

c∗µ,icν,i (1.56)

Applying this definition of Pµν to equation (1.55) gives

2

N/2∑
i=1

〈ψi|Ĥcore|ψi〉 =
K∑
µ=1

K∑
ν=1

Pµν〈φµ|Ĥcore|φν〉 (1.57)

Now we have an expression for the 1-electron HF energy in terms of atomic orbitals,
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φµ, and their respective coefficients, cµ,i. The form of these atomic orbitals and how

these coefficients are obtained will be discussed in the coming sections. For now,

we turn our attention to the 2-electron component of the energy.

〈ΨHF|Ĥ2|ΨHF〉 =

N/2∑
i=1

N/2∑
j=1

2Jij −Kij (1.58)

Let us first consider the Coulombic portion (Jij) of the two-electron energy. By

once again applying the LCAO expansion to the Coulombic portion this time, we

obtain

N/2∑
i=1

N/2∑
j=1

2Jij =

N/2∑
i=1

N/2∑
j=1

2〈ψi(1)ψi(1)| 1

r12
|ψj(2)ψj(2)〉 (1.59)

=

N/2∑
i=1

N/2∑
j=1

2〈
K∑
µ=1

cµ,iφµ(1)
K∑
ν=1

cν,iφν(1)| 1

r12
|
K∑
λ=1

cλ,jφλ(2)
K∑
σ=1

cσ,jφσ(2)〉

(1.60)

This can be simplified, as before, by bringing the coefficients outside of the inner

product:

N/2∑
i=1

N/2∑
j=1

2Jij =

N/2∑
i=1

N/2∑
j=1

2
K∑
µ=1

K∑
ν=1

cµ,icν,i

K∑
λ=1

K∑
σ=1

cλ,jcσ,j〈φµ(1)φν(1)| 1

r12
|φλ(2)φσ(2)〉

(1.61)
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Using the definition of the density matrix given in equation (1.56), this simplifies

to

N/2∑
i=1

N/2∑
j=1

2Jij = 2
K∑
µ=1

K∑
ν=1

K∑
λ=1

K∑
σ=1

1
2
Pµν

1
2
Pλσ〈φµ(1)φν(1)| 1

r12
|φλ(2)φσ(2)〉 (1.62)

Often times, chemists will use a shorthand notation to simplify the expression for

the two integrals.11 In this shorthand, the inner product is shown as:

〈φµ(1)φν(1)| 1

r12
|φλ(2)φσ(2)〉 = (µν|λσ) (1.63)

Applying this shorthand to equation (1.62) yields a compact expression for the

Coulombic portion of the HF energy

N/2∑
i=1

N/2∑
j=1

2Jij =
1

2

K∑
µ=1

K∑
ν=1

K∑
λ=1

K∑
σ=1

PµνPλσ(µν|λσ) (1.64)

The only remaining portion of the HF energy is the exchange component (Kij).

Recall that the exchange energy is given by

−
N/2∑
i=1

N/2∑
j=1

Kij = −
N/2∑
i=1

N/2∑
j=1

〈ψi(1)ψj(2)| 1

r12
|ψj(1)ψi(2)〉 (1.65)

Replacing the molecular orbitals with the LCAO expansion one last time gives

−
N/2∑
i=1

N/2∑
j=1

Kij = −
N/2∑
i=1

N/2∑
j=1

〈
K∑
µ=1

cµ,iφµ(1)
K∑
λ=1

cλ,jφλ(2)| 1

r12
|
K∑
σ=1

cσ,jφσ(1)
K∑
ν=1

cν,iφν(2)〉

(1.66)
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By bringing all of the coefficients outside of the inner product and applying the

definition of the density matrix, we obtain

−
N/2∑
i=1

N/2∑
j=1

Kij = −
K∑
µ=1

K∑
ν=1

K∑
λ=1

K∑
σ=1

1
2
Pµν

1
2
Pλσ〈φµ(1)φλ(2)| 1

r12
|φσ(1)φν(2)〉 (1.67)

or with the shorthand notation defined in equation (1.63)

−
N/2∑
i=1

N/2∑
j=1

Kij = −1

4

K∑
µ=1

K∑
ν=1

K∑
λ=1

K∑
σ=1

PµνPλσ(µσ|λν) (1.68)

Combining all of the components of the HF energy expressed in equations (1.57),

(1.64), and (1.68) yields the final expression for the Hartree-Fock energy

EHF =
K∑
µν

Pµν〈φµ|Ĥcore|φν〉+
1

2

K∑
µνλσ

PµνPλσ[(µν|λσ)− 1
2
(µσ|λν)] (1.69)

where the summations are combined into one for the sake of simplicity. This is iden-

tical to equation (1.52) which was shown at the start of this discussion regarding

the introduction of the atomic orbital basis set.

1.7 Hartree-Fock Equations

While equation (1.69) describes how to obtain the Hartree-Fock energy, it does not

tell us how to determine the atomic orbital coefficients, cµ,i, for the LCAO expan-

sions. These are determined through the Hartree-Fock equations. The complete

derivation of the HF equations will not be included herein, but for the interested

reader, a thorough derivation is provided by Szabo and Ostlund.11
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The basis for determining the atomic orbital coefficients is taking the first deriva-

tive of the energy with respect to the coefficients, cµ,i and setting it equal to zero.

As with any function, this will determine the minimum of the function (or in some

cases the maximum). The Hartree-Fock equations are the result of performing this

operation on the energy expression while requiring that the set of orbitals remain

orthonormal, i.e. orthogonal to one another and normalized. By representing our

molecular orbitals in the HF equations using the LCAO approach, we obtain the

Roothaan-Hall equations18,19 which is commonly expressed as

FC = SCE (1.70)

where F , C, S, and E are the Fock matrix, the coefficient matrix, the overlap

matrix, and the energy matrix, respectively. The energy matrix, E, is a diagonal

matrix in which the diagonal elements correspond to the energies of the molecular

orbitals, εi. The form of each of the remaining matrices will be discussed in the

coming paragraphs.

The Fock matrix, F , is a K × K matrix comprised of elements, Fµν which are

given by

Fµν = Hcore
µν +

K∑
λ=1

K∑
σ=1

Pλσ[(µν|λσ)− 1
2
(µλ|νσ)]] (1.71)

where Hcore
µν is an element of the core Hamiltonian matrix which are calculated from

Hcore
µν =

∫
φ∗µ(r1)Ĥ

core
1 φν(r1)dr1 (1.72)
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In this equation, Ĥcore
1 is the core Hamiltonian operator that was defined in equation

(1.32).

The overlap matrix, S, is anotherK ×K matrix where the elements Sµµ (i.e. the

diagonal elements) are equal to unity. As the name suggests, it measures the level of

overlap between two basis functions. The emphasis on basis functions is important,

as were these molecular orbitals, S would be equal to the identity matrix due to

the requirement that the MOs be an orthonormal set. The elements of the overlap

matrix are determined from11

Sµν =

∫
φ∗µ(r1)φµ(r1)dr1 (1.73)

Finally, the coefficient matrix, C, details the contribution of each atomic orbital

or basis function to the molecular orbitals of the system. In this matrix, the rows

describe the basis functions, while the columns represent the molecular orbitals.

For instance, in the following matrix for a chemical system with K basis functions

C =



c1,1 c1,2 · · · c1,K

c2,1 c2,2 · · · c2,K

...
... . . . ...

cK,1 cK,2 · · · cK,K


(1.74)

c2,1 is the coefficient describing how much of basis function 2, φ2, contributes to

molecular orbital 1, ψ1, while c1,2 would describe how much of basis function 2, φ1,

contributes to molecular orbital 2, ψ2.

27



While the Roothaan-Hall equations appear to be a simple eigenvalue problem,

the Fock matrix is dependent on its own eigenfunctions, and thus, this problem

must be solved iteratively. This process is known as a self-consistent field model

as the process is continued iteratively until the the orbital energies converge, or

become self-consistent.11

In the self-consistent field method, the first step involves the transformation of

the overlap matrix, S, into the identity matrix, 1. There are a few different ways to

achieve this which are described by Szabo and Ostlund,11 but the approach that will

be covered here is that of symmetrical orthogonalization. This involves taking the

inverse square root of the overlap matrix, denoted by S−1/2, but is often represented

as X. X is defined such that

X†SX = 1 (1.75)

where X† is the conjugate transpose of X. Using this new matrix, X†, it is multi-

plied on the left of the Roothaan-hall equations to give

X†FC = X†SCE (1.76)

Taking advantage of the fact that a matrix multiplied by its inverse is equal to the

identity matrix, as summarized below,

XX−1 = 1 (1.77)

we can insert this anywhere in equation (1.76) without changing either side of the
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equation. By multiplying F and S in (1.76)on the right by XX−1 gives

[X†FX](X−1C) = X†SX(X−1C)E (1.78)

By applying the property of X described in (1.75), this can be simplified to

[X†FX](X−1C) = (X−1C)E (1.79)

Introducing two new matrices, F ′ and C′, which are defined by the terms in square

and round brackets, respectively, this equation simplifies further to

F ′C′ = C′E (1.80)

Using this new form of the Roothaan-Hall equations, the new pseudo-coefficient

matrix, C′ as well as the energy matrix, can be determined through the diagonal-

ization of F ′. C ′ and E are then the eigenvectors and eigenvalues, respectively, of

the diagonalized F ′ matrix.

As noted previously, C′, is not the true MO coefficient matrix. As C′ is deter-

mined from

C ′ = X−1C (1.81)

The new coefficient matrix, C, is then determined by multiplying this equation by

X on the left as follows:

XC′ = Cnew (1.82)

29



This new set of coefficients can then be used to calculate a new Fock matrix, F ,

which in turn is used to calculate another new set of coefficients. This process is

repeated until the new coefficients are identical to the previous set within a specified

level of convergence. Thus, in summary, the SCF method consists of the following

procedure11:

1. Choose an appropriate set of atomic orbitals

2. Calculate all required integrals for Sµν , Hcore
µν , (µν|λσ), and (µλ|σν)

3. Determine the inverse square root of the overlap matrix, X

4. Obtain a “guess" at the molecular orbital coefficients to determine C

5. Use C to calculate Pλσ using equation (1.56)

6. Obtain the Fock matrix, from equation (1.71)

7. Calculate the transformed Fock matrix, F ′, from F ′ = X†FX

8. Diagonalize F ′ to determine C ′ and E

9. Calculate the new coefficient matrix, Cnew from equation (1.82)

10. Repeat steps 5-9 until adequate convergence is achieved

The first step of this process requires the choice of an appropriate set of atomic or-

bitals. These atomic orbitals or basis functions will be discussed in a later section.

In the fourth step, a coefficient matrix must be constructed from a “guess". There

30



are a number of different ways in which to make this guess but they will not be dis-

cussed herein. Many different types of guesses are available in the various different

quantum chemical software packages.20–22

1.8 Unrestricted Hartree-Fock Theory

The discussion regarding Hartree-Fock theory thus far has focused on closed-shell

systems (i.e. systems with no unpaired electrons). This is referred to as the re-

stricted HF method (RHF). For systems with unpaired electrons, such as radicals,

transition metal complexes, or excited states, this type of analysis does not generally

apply.

Earlier in this chapter, we discussed the difference between spin, χ, and spatial,

ψ, orbitals. Spin orbitals contain a single electron while spatial orbitals contain

two-electrons with differing spin components. The unrestricted HF method (UHF)

does not restrict a pair of electrons to be contained within the same spatial orbital.

Instead, each spin orbital contains a single electron and are not restricted to be

localized in the same region of space. Consider the example of an H2 molecule.11

At small internuclear distances, the two electrons in the system are likely interact-

ing with both nuclei and form a covalent bond between the two hydrogen atoms.

For this system, the RHF model is completely accurate; however, as the distance

between the two nuclei increases, this description becomes less and less accurate,

which demonstrates the importance of the UHF model, not only for systems with

unpaired electrons, but those that would behave as such.
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The differences between the RHF and UHF methods can be explained by

χ(x) =


ψα(r)α(ω)

or

ψβ(r)β(ω)

(1.83)

In the RHF model, it is required that ψα(r) = ψβ(r); however, this restriction is not

imposed under UHF theory. This is possible by not restricting the contributions of

each basis function, φ, to be the same for the ψα and ψβ orbitals. This leads to a

new form of the Roothaan-Hall equations known as the Pople-Nesbet equations23

which are expressed as

FαCα = SαCαEα (1.84)

F βCβ = SβCβEβ (1.85)

These equation are interdependent as the α-Fock matrix, F α depends on the set of

ψβ and vice-versa. In the event of a closed-shell system at or near the equilibrium

geometry, the sets of coefficients, Cα and Cβ, would be equal and this method

would yield the same answer as the RHF method.

An alternative to the UHF method for open-shell systems is the restricted open-

shell HF (ROHF) method24 which employs doubly occupied spatial orbitals where

possible before using singly occupied spin orbitals for any unpaired electrons. This

approach is far less common than the UHF method due to its more complicated

nature and lesser accuracy.6
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1.9 Basis Sets

With the HF energy now expressed in terms of basis functions or atomic orbitals, a

brief overview of basis sets and the basis functions they contain is necessary. From

the Schrödinger equation solution for the hydrogen atom, it would appear that

Slater orbitals would be a wise choice for basis functions for any atom. A Slater

type orbital (STO)25 is defined as

φSTO(r) = (x− Ax)l(y − Ay)m(z − Az)ne−α(r−A) (1.86)

where |r − A| =
√

(x− Ax)2 + (y − Ay)2 + (z − Az)2 describes the position of an

electron with respect to the nucleus, α is the Slater exponent which controls the

breadth of its distribution, and the set of l, m, and n are the angular momenta in

the x, y, and z directions, respectively. The sum of l, m, and n are equal to the

orbital angular momentum which defines the shape of the orbital.

While Slater orbitals are very convenient to work with as results tend to con-

verge with fewer numbers of Slater orbitals, they are very difficult to integrate.11

This difficulty has led to Slater orbitals being used very rarely in computational

chemistry and has led to the use of other types of basis functions. The most com-

monly used type for chemical systems are Gaussian functions. These Gaussian type

orbitals (GTOs)26 are defined very similarly to STOs and are expressed as

φGTO(r) = (x− Ax)l(y − Ay)m(z − Az)ne−α(r−A)2 (1.87)
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The main issue with GTOs is that it takes many Gaussian functions to approximate a

single Slater function, which leads to the need to utilize far more Gaussian orbitals

to construct molecular orbitals.11 This increase in the number of atomic orbitals

leads to increases in computational time. However, the added expense of more

atomic orbitals is less than the cost of the integral calculations involving Slater

orbitals.

As l, m, and n control the angular momentum, these are specified for different

types of orbitals. For example

Table 1.2: Angular momenta

(l,m,n) Atomic Orbital Designation
(0,0,0) s
(1,0,0) px
(0,1,0) py
(0,0,1) pz
(2,0,0) dx2

Thus, the only unknown quantity in the definition of the GTOs is the α. Fortunately,

there are many basis sets in the literature that have predefined values of α for

different orbital types of various different atoms. While some basis sets are designed

for all atoms on the periodic table, others are more specific to the more commonly

used elements or for a group of atoms for which the basis set was intended.

1.9.1 Minimal Basis Sets

The smallest basis sets, which utilize a single basis function per atomic orbital in the

given atom, are known as minimal basis sets. Thus, a basis set for hydrogen and

helium would contain a single basis function to approximate the 1s orbital. Any
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element from Li to Ne would use a set of 5 basis functions, one for each of the 1s,

2s, 2px, 2py, and 2pz atomic orbitals. While these types of basis sets are quite rare,

contracted minimal basis sets are used on occasion. In a contracted minimal basis

set, a contracted set of Gaussian orbitals is used to approximate a single atomic

orbital. For the H2 molecule, we have two atomic orbitals, so a minimal basis set

would require two basis functions. This can be achieved using the STO-3G basis set

by11

φcon
1 = d1φ

GTO
1 + d2φ

GTO
2 + d3φ

GTO
3 (1.88)

where di are the contraction coefficients and are predefined. The molecular orbital

would then be given by

ψi = c1,iφ
con
1 + c2,iφ

con
2 (1.89)

Thus, while the molecular orbital technically only consists of two basis functions

with weighting coefficients requiring optimization, each basis function is comprised

of 3 Gaussian functions with predefined contraction coefficients. The STO-nG basis

sets are incorporated into most quantum chemical software packages20–22 where n

denotes the number of contracted Gaussians that are used to describe each atomic

orbital. However, due to their minimal nature, they leave significant room for im-

provement.

1.9.2 Split-Valence Basis Sets

As core orbitals are not often involved in any interesting chemistry, when computa-

tional cost is a concern it seems reasonable to want to describe valence orbitals with
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more accuracy than those in the core. This can be achieved using a split valence

basis set.11 Examples of these would be the Pople basis sets, X-YZG, or X-YZWG. X-

YZG bases are known as split-valence double-zeta basis sets and X-YZWG are known

as split valence triple-zeta basis sets, etc. To describe how these bases work, an X-

YZG basis set (e.g. 3-21G) would utilize a contracted set of X Gaussian primitives

to describe each core orbital. It would then use a contracted set of Y GTOs and a

contracted set of Z GTOs to describe each valence orbital. These Pople basis sets

are among the most commonly used basis sets in quantum chemical software pack-

ages. There are ways to improve these basis sets further through the addition of

polarization and diffuse functions that will be discussed in the next section.

In addition to the Pople basis sets, there are numerous other split valence basis

sets. These include the cc-pVXZ set developed by Dunning and coworkers,27–30 the

SVP, TZP, and QZP bases from Alrichs,31 and the pc-n sets developed by Jensen et

al.,32–36 to only name a few.

1.9.3 Polarization and Diffuse Functions

As the exact form of molecular orbitals is not known, it is common to add func-

tions of higher angular momentum to increase the flexibility of the basis set.6 For

instance, for a molecule such as methane, CH4, one could add a set of d-orbitals

to the basis set despite neither carbon nor hydrogen possessing occupied d-orbitals.

These orbitals of higher angular momentum are known as polarization functions

and are denoted in a few different ways. For polarization functions, it is common

to treat heavy and light atoms differently. Light atoms refer to those in period 1 of
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the periodic table (i.e. H and He), while heavy atoms refer to any other element

on the periodic table. We previously discussed split valence basis sets of the form

X-YZWG. One of the most common triple-zeta basis sets is the 6-311G basis. Adding

polarization functions to this basis set can be expressed in a few different forms.

Heavy Atoms Light Atoms
6-311G(d,p) 1 set of d 1 set of p
6-311G** 1 set of d 1 set of p
6-311G(d) 1 set of d None
6-311G* 1 set of d None
6-311G(3df,2pd) 3 sets of d + 1 set of f 2 sets of p and 1 set of d

While newer literature tends to favour notations using letters specifying the

types of polarization functions added, the asterisk notation may be observed in

some older literature.6 Any time that a single asterisk, or a single letter (or set of

letters) are used in this notation, this means that the specified functions are added

to heavy atoms and no additions are made to the light atoms in the system.

When adding polarization functions to a specific atom, they are always added in

sets. Thus, the addition of a set of p-orbitals requires the addition of a px, a py, and

a pz orbital. While this may not seem noteworthy as it is what one might expect,

the d-orbitals are slightly different. In chemistry undergraduate courses, students

typically deal with a set of 5 d-orbitals, (dz2, dx2−y2, dxy, dxz, and dyz); however, in

computational chemistry, we most often deal with a total of 6 d-orbitals, obtained

from every Cartesian combination (i.e. dx2, dy2, dz2, dxy, dxz, and dyz). Similarly, for

f-orbitals, theorists typically deal with all 10 Cartesian f-orbitals as opposed to the

set of 7 that are dealt with in experimental chemistry.6
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Diffuse functions are simply basis functions that have small exponents, α.37 This

small exponent causes the the distribution of the function to be very wide, or dif-

fuse. This feature makes diffuse functions useful for conjugated systems or more

importantly, anions.

The notation for diffuse functions is dealt with much in the same way as polar-

ization functions. One can add diffuse functions to both heavy and light atoms, or

just to the heavy atoms. However, there is not as much flexibility in the addition of

diffuse functions. In the case of the 6-311G basis set, one could add a set of diffuse

functions to both the heavy and light atoms to yield the 6-311++G basis or simply

to the heavy atoms in the case of the 6-311+G basis. A diffuse s-orbital and a set of

diffuse p-orbitals are added to every heavy atom in the molecule, whereas a single

diffuse s-orbital is added to each and every light atom in the system.

1.10 Correlated Methods

While the HF method typically determines absolute electronic energies to within 1%

of the exact answer, that error is typically very important when it comes to the de-

termination of any property of chemical reactions. Thus, trying to draw meaningful

results from HF calculations is naive.

The main issue with the Hartree-Fock method lies in its neglect of what is re-

ferred to as Coulombic electron correlation. In essence, the HF method treats

electron-electron interactions in an overly simplistic manner. An electron under

the HF model does not ‘see’ the other electrons in the system, but instead, an av-

erage distribution of charge from the remaining electrons in the system. Based on
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the Löwdin definition,38 this Coulombic electron correlation energy, Ecorr, or simply

electron correlation energy is defined as:

Ecorr = Eexact − EHF
CBS (1.90)

where EHF
CBS refers to the energy obtained from a HF calculation using a Complete

Basis Set (or infinite basis set) and Eexact is the exact non-relativistic energy.

A significant portion of the field of quantum chemistry is dedicated to the de-

velopment of different methods to accurately determine this correlation energy.6

Much like mathematicians strive to determine the most decimal points of π, com-

putational chemists strive for accurately determining the energy of the He atom.

There are two separate approaches to determine the correlation energy: implicit

methods and explicit methods.6 Explicit methods actually contain terms involving

the distance between an electron pair, r12, but are far less common for molecules.

Implicit models are the only ones that will be discussed herein. Within implicit

models, there are two separate approaches: Post Hartree-Fock Methods and Density

Functional Theory (DFT). DFT was the only correlated method used throughout this

thesis and will be discussed in far more detail than the Post HF methods.

1.10.1 Post HF Methods

As the name suggests, Post Hartree-Fock methods use the HF wavefunction and

add corrections to it to try and determine the correlation energy. There are numer-

ous Post HF methods, but the most commonly used are Møller-Plesset Perturbation
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Theory (MPPT),39 Configuration Interaction (CI),40 and Coupled Cluster (CC) The-

ory.41

Each of these methods add components to the HF wavefunction by considering

different configurations of electrons in the occupied and unoccupied (or virtual)

orbitals. The main difference between these methods is how these other configura-

tions are determined.

CCSD(T) which refers to Coupled Cluster Singles, Doubles, and iterative Triples,

is regarded as the gold standard in computational chemistry and is used in Chapter

4 as a reference for the exact energy. Singles, doubles, and triples simply refers to

how many electrons are excited to the virtual orbitals in each added configuration.

1.10.2 Density Functional Theory

Unlike the Post HF methods, density functional theory does not use the Hartree-

Fock wavefunction; in fact, it doesn’t use a wavefunction at all.6 DFT, instead, uses

only the electron density, ρ(r), which is a 3-variable function (r = (rx, ry, rz)) as

opposed to the 4N variables involved in the wavefunction, Ψ(x1,x2, . . . ,xN).

Hohenberg and Kohn demonstrated that the exact ground state energy of a sys-

tem, and thus, numerous other properties, can be determined from the electron

density, ρ(r).42 This raises the question of why anyone would ever deal with the far

more complicated Ψ(x1,x2, . . . ,xN) if ρ(r) can tell us the same information. The

answer lies in the fact that while Hohenberg and Kohn demonstrated that the exact

energy can be determined from ρ(r), no one has yet to determine how. For this

reason, there are numerous different DFT methods that have been developed over
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the years in an attempt to accurately describe chemical systems. This section will

describe the evolution of DFT from its Hohenberg and Kohn origins to where it is

today.

Before we get into the math of DFT, let us first consider the name. As previously

mentioned, DFT is a theory that deals with the density, ρ(r). But what is a func-

tional? Much like a function, a functional takes an input and outputs a number.

However, while functions take a variable, x, as an input (i.e. f(x)), a functional,

F [f(x)], takes a function, f(x), as an input in order to output a number. The square

brackets denote a functional relationship. In the case of DFT, the input function is

the electron density.

Much like in the case of HF theory, the DFT electronic energy (under the Born-

Oppenheimer approximation12) can be broken down into three components as

shown6

E0[ρ0] = 〈T̂ [ρ0]〉+ 〈V̂en[ρ0]〉+ 〈V̂ee[ρ0]〉 (1.91)

where 〈T̂ 〉, 〈V̂en〉, and 〈V̂ee〉 are the expectation values of the kinetic energy, electron-

nuclear attraction, and electron repulsion operators, respectively. The subscript 0,

denotes that these refer to properties of the ground state. Each of these components

of the energy, much like the total energy, are functionals of the ground state electron

density, ρ0(r).

The electron-nuclear attraction component is easily expressed in terms of the

density. This operator is often expressed in terms of the external potential, ν(ri), as
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follows6

V̂en ≡
N∑
i−1

ν(ri) (1.92)

where ν(ri) is given by

ν(ri) = −
M∑
A=1

ZA
ria

(1.93)

The electron-nuclear attraction energy is then given by

〈V̂en[ρ0]〉 = 〈Ψ0|
N∑
i=1

ν(ri)|Ψ0〉 =

∫
ρ0(r)ν(r)dr (1.94)

where the indistinguishable nature of electrons allows for the simplification of ex-

pression to the final integral form. Using this new definition, we can rewrite the

electronic DFT energy as

E0[ρ0] =

∫
ρ0(r)ν(r)dr + 〈T̂ [ρ0]〉+ 〈V̂ee[ρ0]〉 (1.95)

Here is where the problems with DFT begin. While we have a simple functional

for the electron-nuclear attraction term, there are not simple forms for the kinetic

energy and electron repulsion components. In 1965, Kohn and Sham devised a

method, now known as the Kohn-Sham (KS) method or Kohn-Sham DFT, to de-

termine the electron density, ρ0, without first having a wavefunction, and how to

determine the energy from that density.43 In theory, KS DFT is exact; however, the

unknown exchange-correlation functionals prevent this exactness.
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KS DFT is developed around a reference system of non-interacting electrons

that move throughout the external potential, νref (r).6 The external potential for

the reference system is defined such that the electron density for the reference,

ρref(r), is equal to the exact ground state density, ρ0(r). As the electrons do not

interact with one another in the reference system, the Hamiltonian is given by

Ĥref =
N∑
i=1

[
−1

2
∇2
i + νref(ri)

]
=

N∑
i=1

ĥKS
i (1.96)

where ĥKS
i represents the one-electron Kohn-Sham Hamiltonian and is given by the

terms in square brackets above. Much like the Hartree-Fock equations that were

described previously, the spatial KS orbitals, ψKS
i , are the eigenfunctions of the very

similar, Kohn-Sham equations43:

ĥKS
i ψ

KS
i = εKS

i ψ
KS
i (1.97)

In this equation, as before, εi, represents the energy of the ith molecular orbital. But

unlike HF theory, KS orbital energies do not signify the amount of energy required

to remove an electron from that orbital. These values are essentially meaningless.

The physical significance of the orbitals themselves has been debated, but there is

significant evidence demonstrating their utility, especially considering how similar

they are to those obtained from the HF method.

Based on equation (1.95), 〈T̂ [ρ0]〉 and 〈V̂ee[ρ0]〉 still need to be determined in

order to find the DFT energy. From the reference system, Kohn and Sham defined
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these values as

〈T̂ [ρ0]〉 = 〈T̂ref[ρ0]〉+ ∆〈T̂ [ρ0]〉 (1.98)

〈V̂ee[ρ0]〉 = 〈V̂ee,ref[ρ0]〉+ ∆〈V̂ee[ρ0]〉 (1.99)

This equation states that the exact energy component is that of the reference system,

〈Âref[ρ0]〉, plus some small correction for electron correlation, ∆〈Â[ρ0]〉. Substituting

these definitions into equation (1.95) gives

E0[ρ0] =

∫
ρ0(r)ν(r)dr + 〈T̂ref[ρ0]〉+ 〈V̂ee,ref[ρ0]〉+ ∆〈T̂ [ρ0]〉+ ∆〈V̂ee[ρ0]〉 (1.100)

These two corrections for electron correlation are typically combined into one term,

known as the exchange-correlation energy, Exc[ρ0]. This simplifies (1.100) to

E0[ρ0] =

∫
ρ0(r)ν(r)dr + 〈T̂ref[ρ0]〉+ 〈V̂ee,ref[ρ0]〉+ Exc[ρ0] (1.101)

As the name suggests, this term contains corrections for not only correlation, but

also exchange energy (which stems from the antisymmetric wavefunction) and any

kinetic energy not accounted for in a system of non-interacting electrons.

In equation (1.101), there remain 3 components that are unknown. To define

the first, 〈T̂ref[ρ0]〉, the kinetic energy for the reference system, we must first define

the electron density in terms of the KS orbitals, ψKS
i :

ρ0(r) = N〈Ψref|δ(r − r′)|Ψref〉 =
N∑
i=1

|ψKS
i |2 (1.102)
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where δ(x) is the Dirac delta function and Ψref, is the “wavefunction" for the refer-

ence. Wavefunction is in quotations as DFT does not deal with a wavefunction.

From this definition of the ground state electron density, the kinetic energy can

now be determined. Realizing that much like HF, the KS “wavefunction" is a single

Slater determinant, 〈T̂ref[ρ0]〉 can be described by

〈T̂ref[ρ0]〉 = −1

2
〈Ψref|

N∑
i=1

∇2
i |Ψref〉 = −1

2

N∑
i=1

〈ψKS
i (1)|∇2

1|ψKS
i (1)〉 (1.103)

The second term, 〈V̂ee,ref[ρ0]〉, can be defined with respect to the density itself

based on the classical equation for repulsion in an averaged electric field. This is

given by

〈V̂ee,ref[ρ0]〉 =
1

2

∫
ρ0(r1)ρ0(r2)

r12
dr1dr2 (1.104)

Using these new definitions for the kinetic and electron repulsion energies for

the reference system, equation (1.101) can be rewritten as

E0[ρ0] =

∫
ρ0(r)ν(r)dr − 1

2

N∑
i=1

〈ψKS
i (1)|∇2

1|ψKS
i (1)〉

+
1

2

∫
ρ0(r1)ρ0(r2)

r12
dr1dr2 + Exc[ρ0] (1.105)

or using the definition of the external potential, as

E0[ρ0] = −
M∑
A=1

ZA

∫
ρ0(r)

riA
dr − 1

2

N∑
i=1

〈ψKS
i (1)|∇2

1|ψKS
i (1)〉

+
1

2

∫
ρ0(r1)ρ0(r2)

r12
dr1dr2 + Exc[ρ0] (1.106)

45



The only remaining component to the energy is Exc[ρ0]. The exact form of

this functional is not known and this is the reason why there are countless DFT

methods that have been developed over the years. There have been numerous

approaches proposed to accurately determine Exc[ρ0], with the B3LYP functional44

being amongst the most popular. The difficulty in DFT is that there is no systematic

way to improve the accuracy as there is going from HF theory to a post-HF method.

While one functional may work very well for a certain class of compounds, it may

fail spectacularly for a different class. For this reason, DFT benchmark studies are

very common to determine the best functional for a specific class of molecules for

which accurate energies are known.6 In this way, the top performing methods can

then be applied to other molecules of that class for which energies or other prop-

erties are not known. For a good review of the existing functionals, the reader

can consult the cited reviews.45–47 The remainder of this chapter will focus on the

different types of functionals that have been developed.

One of the first models used for the exchange-correlation functional was the

Local Density Approximation (LDA) method. The LDA model is based on the theory

of the uniform electron gas in which the charge density is equivalent at all points

throughout the gas. Hohenberg and Kohn showed that for a system, such as where

the electron density changes slowly with position, that ELDA
xc [ρ0] is equal to42

ELDA
xc [ρ0] =

∫
ρ0(r)εxc[ρ0]dr (1.107)

where εxc is the exchange-correlation energy density of each electron in a uniform
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electron gas with density, ρ0. This energy is typically broken up into separate ex-

change and correlation components as such

εxc[ρ0] = εx[ρ0] + εc[ρ0] (1.108)

A very simple form exists for the exchange component and it is given by

εx[ρ0] = −3

4

(
3

π

)1/3

ρ0(r)1/3 (1.109)

For the LDA method, the correlation component is far more complicated. It was

developed by Vosko, Wilk, and Nusair, and is denoted by εVWN
c .48 Its functional

form is as follows:8

εVWN
c [ρ0] =

A

2

[
ln

(
x2

X(x)

)
+

2b

Q
tan−1

(
Q

2x+ b

)
− b x0
X(x0)

(
ln

(
(x− x0)2
X(x)

))
+

2(b+ 2x0)

Q
tan−1

(
Q

2x+ b

)]
(1.110)

which consists of the following set of definitions:

x =

(
3

4πρ0(r)

)1/6

, X(x) = x2 + bx+ c, Q = (4c− b2)1/2

A = 0.0621814, x0 = −0.409826, b = 13.0720, c = 42.7198 (1.111)

As seen here, the expression for εc is far from trivial. Both εx and εc are negative

numbers; however, εx is typically much larger than εc. This fact is exploited by the
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Xα method which omits the correlation component and scales the exchange energy

by a factor, α, to account for this omission. While the correlation component is

smaller than exchange, it is highly important as highlighted by the accuracy of the

HF method. Further, it is not easily captured by scaling the exchange component.

For this reason, the Xα method is rarely used today.

While the LDA model accurately describes metallic and carbon networks where

the electron density does not change rapidly through space, it performs quite poorly

for many other systems. Far more common are the functionals that use the gener-

alized gradient approximation in full (GGA) or in part (meta GGA, hybrid GGA,

hybrid meta GGA).

Unlike the LDA method, GGA methods are also concerned with changes in the

electron density. For this reason, they are not only functionals of the density, but

also of the gradient of the density, ∇ρ0(r). Much like there exists restricted and

unrestricted Hartree-Fock calculations, analogous treatments are available in DFT.

Many GGA functionals are expressed in terms of an unrestricted treatment and thus

involve the density for each of the α and β electrons (ρα0 (r) and ρβ0 (r)). Thus, the

general expression for the exchange-correlation energy for a GGA method is8

EGGA
xc [ρα0 ), ρβ0 ] =

∫
f [ρα0 (r), ρβ0 (r),∇ρα0 (r),∇ρβ0 (r)]dr (1.112)

where f is a functional of the listed functions. The actual functional form varies

depending on which GGA method is used. Some of the more accurate exchange

functions have been developed by Becke49,50 as well as Perdew and Wang51,52. For
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instance, the B88 (also referred to as Bx88 and simply B) exchange functional has

the form49,50

EB88
xc [ρα0 , ρ

β
0 ] = ELSDA

x − b
∑
σ=α,β

∫
(ρσ0 )4/3φ2

σ

1 + 6 b φσ ln[φσ + (φ2
σ + 1)1/2]

dr (1.113)

where b is an empirical parameter equal to 0.0042 atomic units and

φσ =
|∇ρσ0 |
(ρσ0 )4/3

(1.114)

The functional also contains the exchange energy from the LSDA method, ELSDA
x

which is the unrestricted version of the LDA method.8 The energy expression is

similar to that in (1.109). Purists tend to dislike the use of an empirical parameter

in this functional; however, most commonly used functionals currently contain a

number of empirical parameters.

As for the correlation functional, one of the most commonly used in GGA meth-

ods is the LYP functional which was developed by Lee, Yang, and Parr.53,54 Others

include the Pc8655,56 and PWc91 (more commonly denoted simply as PW91), where

P and W, once again, denote Perdew and Wang.52 In theory, one can combine any

exchange functional with any correlation functional; however, in practice there are

common combinations that are used and these are incorporated into many quantum

chemical software packages.20–22 To name a given DFT method, the name of the ex-

change functional is typically combined with that of the correlation functional. For

instance, a calculation that used the B88 or B exchange functional and the LYP ex-
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change functional would be referred to as a B88LYP or, more commonly, a BLYP

calculation.

In an attempt to improve upon GGA functionals, meta-GGA functionals were

created. In addition to the gradient of the density, these functionals incorporate the

second derivatives of ρ0 and/or something referred to as the kinetic energy density,

τσ. This property is defined as

τσ =
1

2

∑
i

|∇θKS
iσ |2, σ = α, β (1.115)

where θKS
iσ is a KS spin orbital. The kinetic energy density can be incorporated

into the exchange and/or correlation functional. A commonly utilized meta-GGA

correlation functional is Becke’s B9557 which again, contains empirical parameters.

The final common type of functionals are the hybrid functionals.6,8 There are

hybrid GGA and hybrid meta-GGA functionals. These hybrids contain components

from either hybrid GGA or meta-GGA functionals as well as from Hartree-Fock.

Specifically, the exchange energy is borrowed from Hartree-Fock. This is commonly

referred to as the exact exchange energy, EExact
x . For hybrid functionals, it is defined

in terms of the KS orbitals

EExact
x = −1

4

N∑
i=1

N∑
j=1

〈ψKS
i (1)ψKS

j (2)|r−112 |ψKS
j (1)ψKS

i (2)〉 (1.116)

B3LYP, as previously noted, is by far the most commonly used functional in

existence.44 The method has been cited in the literature over 50,000 times since its
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development in the early 1990s. The exchange correlation energy for the B3LYP

method is given by8

EB3LYP
xc = (1−a0−ax)ELSDA

x +a0E
Exact
x +axE

B88
x +(1−ac)EVWN

c +acE
LY P
c (1.117)

The 3 in B3LYP corresponds to the 3 empirical parameters included in the expres-

sion, a0 = 0.20, ax = 0.72, and ac = 0.81. The remaining components of this

equation have already been discussed earlier in this section.

As discussed, there is no functional that works better than all others. While hy-

brid methods tend to be more accurate than meta-GGA and GGA methods which

tend to be better than the LDA method, this is not universally true. Benchmark

studies for DFT are essential to determine which functional will work well on the

class of molecules of interest. Throughout this thesis, for the purposes of accu-

racy, specific functionals were chosen for different applications based on previously

conducted benchmark studies.

1.11 Electron Pair Descriptors

While Hohenberg and Kohn demonstrated that all properties could be determined

from ρ0, determining properties regarding electron pairs from a function that only

deals with a single electron is far from trivial.42
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Remember from earlier that the electron density can be obtained from the wave-

function by

ρ(r) = N

∫
|Ψ(x1,x2,x3, . . . ,xN )|2ds1dx2dx3 . . .dxN (1.118)

Why not, instead, integrate over all but two electron position vectors, r1 and r2?

This way, we obtain a function of two-electrons where extracting electron pair in-

formation is far simpler. This function, known as the pair density, ρ(r1, r2), is given

by6

ρ(r1, r2) =
N(N − 1)

2

∫
|Ψ(x1,x2,x3, . . . ,xN )|2ds1ds2dx3 . . .dxN (1.119)

where N(N − 1)/2 represents the number of pairs of electrons in the system. To

rationalize this, consider the binomial coefficient or the permutation formula:

nPk =

(
n

k

)
=

n!

(n− k)!k!
∴ NP2 =

(
N

2

)
=
N(N − 1)

2
(1.120)

Unfortunately, the pair density, while far simpler than the wavefunction, is still too

complex for visual representation. This suggests the need to simplify this function

further. Consider the important properties of electron pairs. Things that come to

mind are their separation, the position of their centre-of-mass, their relative veloci-

ties, etc. What do each of these properties have in common? They are all dependent

on single scalar quantities that encompass electron pair information.
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1.11.1 Intracules

Intracules represent a specific type of simplification of the pair density. They are

probability densities that describe relative properties of electron pairs. For the pur-

pose of this discussion, we will focus on 3 types of intracules: position, momentum,

and posmom.

Position Intracule, P (u)

Let us first consider the easiest to conceptualize, the position intracule.58 The po-

sition intracule, denoted as P (u), describes the probability that any two electrons

in a system will be separated by a distance u = |r1 − r2|. The importance is of this

function is obvious in that it describes interelectronic separations which are at the

heart of repulsion between electrons. P (u) can be obtained from the pair density as

P (u) =

∫
ρ(r1, r2)δ(u− |r1 − r2|)dr1dr2dΩu (1.121)

Herein, Ωu denotes the angular components of u and δ(x) is the 1-dimensional

Dirac delta function. This function is equal to zero everywhere except x = 0. Fur-

thermore, the following equality holds true for δ(x):

∫ ∞
−∞

δ(x)dx = 1 (1.122)

This acts to define this new variable, u, as zero everywhere except where it is equal

to separation between the two electron position vectors, r1 and r2.

53



1 2 3 4 5 6 7
u

0.1

0.2

0.3

0.4

0.5

0.6

PHuL

1 2 3 4 5 6 7
u

5

10

15

PHuLa) b)

Figure 1.2: Position intracule for the ground state of a) the He atom, and b) the
methane molecule.

Figure 1.2 depicts the position intracules for the ground states of the helium

atom (left) and the methane molecule (right), both calculated at the HF level of

theory. For helium, P (u) is a simple unimodal distribution with a maximum at

around 1.0 bohr or 0.53 Å. For a system as simple as helium with only 2 electrons,

interpretation of P (u) is rather simple as the function is describing the only electron

pair in the system.

Considering the methane example now, one can see that the distribution is more

complicated. While there is still a clear trend of an increased likelihood of electrons

being further apart until a separation of approximately 2.2 bohr (1.16 Å), after

which the probability decreases, it is a bimodal function. What leads to this much

more complicated nature? Consider how many pairs of electrons exist in methane.

As previously discussed when discussing the number of electron-electron interaction

terms, any N electron system has N(N − 1)/2 different pairs of electrons. For

methane, a 10-electron system, this equates to 45 different pairs of electrons that

are being described by P (u) which explains why the function is more complex. The
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issue with considering so many pairs of electrons is that some valuable information

can be lost in all of the data. This is one of the main focuses of the present research

and will be discussed further in the Project Goals section.

Of all probability distributions that describe electron pairs, the position intracule

is the most studied. The reason for this is its inherent association to electron repul-

sion energies. In fact, the two-electron energy for any system is exactly determined

by

Eee =

∫
1

u
P (u)du (1.123)

Gill and co-workers have used the position intracule (amongst other types of

intracules) to study the effects of electron correlation.59–64 Intracule functional the-

ory, a two-electron analogue of density functional theory, attempts to extract the

correlation energy from an intracule by applying different correlation kernels. The

effects of correlation will not be considered in great depth herein; however, previ-

ous research in the Pearson group has focussed on this.65,66

Momentum Intracule, M(v)

Thus far, the discussion in this chapter has focussed on position space. However,

one can just as easily consider momentum space. Analogous to the pair density

which describes the probability of finding electron 1 at r1 and electron 2 at r2,

the two-electron momentum density, π(p1,p2) describes the probability of finding

a pair of electrons with momenta p1 and p2, simultaneously. This is obtained from
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Figure 1.3: Momentum intracule for the ground state of a) the He atom, and b) the
methane molecule.

the momentum space wavefunction, Φ(p1,p2,p3, . . . ,pN ) as follows:

π(p1,p2) =

∫
|Φ(p1,p2,p3, . . . ,pN )|2dp3 . . .dpN (1.124)

The momentum space wavefunction, Φ, is the Fourier transform of the position

space wavefunction, Ψ. Again, as intracules deal with relative properties, we are

more interested in the scalar difference between p1 and p2 than the vectors them-

selves. The momentum intracule, M(v), then, is obtained by67

M(v) =

∫
π(p1,p2)δ(v − |p1 − p2|)dr1dr2dΩv (1.125)

As before, the ground state momentum intracule of both the helium atom and

methane are shown above (Figure 1.3). Unsurprisingly, the same type of behaviour

is seen as before where M(v) for the helium atom is a simple unimodal function

while that for methane is again, more complicated. In both cases, the probability of

the electrons having similar momenta is low as is the likelihood of v>5.
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Posmom Intracule, X(x)

In the late 1990s, Rassolov suggested the importance of both u and v for proper

understanding of electron correlation energies.68 This problem was uniquely tack-

led by Bernard and Gill in their development of both the posmom density69–71

and the posmom intracule.1 Posmom refers to the dot product of the position and

momentum vectors (for the posmom density) and their relative analogues (for the

posmom intracule). For the purposes of this discussion, we will only focus on the

intracule, X(x). The origin of the posmom intracule (and in theory, all intracules)

is the Wigner distribution.72 Violating the Heisenberg Uncertainty Principle,9 the

Wigner distribution describes the simultaneous position and momentum of all elec-

trons in the system. Although forbidden by quantum mechanics, there is nothing

preventing the construction of this function, mathematically. It is determined from

Ψ as follows:

W (r1, . . . , rN ,p1, . . . ,pN ) =

∫
Ψ∗(r1 + q1, . . . , rN + qN )

×Ψ(r1 − q1, . . . , rN − qN )e2i(p1·q1+···+pN ·qN )dq1 . . .dqN (1.126)

There are a few notes regarding the Wigner distribution that should be discussed

before proceeding further. First, it is not a true probability density as, although it

is a real function, it does contain negative regions. For this reason, it is commonly

referred to as a quasi-probability density. This does not, however, mean that it

cannot be used to generate useful functions. Simplification of the function can be
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achieved, as before, by averaging over all but a pair of electrons. This yields the

second order Wigner distribution, W (r1, r2,p1,p2), as

W (r1, r2,p1,p2) =

∫
W (r1, . . . , rN ,p1, . . . ,pN )dr3 . . .drNdp3 . . .pN (1.127)

An important property of this function to highlight is that it yields the exact pair

density and two-electron momentum density:

∫
W (r1, r2,p1,p2)dp1dp2 = ρ(r1, r2) (1.128)

∫
W (r1, r2,p1,p2)dr1dr2 = π(p1,p2) (1.129)

Hence, both P (u) and M(v) can be obtained exactly from the second order Wigner

distribution by substituting (1.128) into (1.121) and (1.129) into (1.125), respec-

tively.

This demonstrates that the second order Wigner distribution contains all of the

information that is present in both ρ(r1, r2) and π(p1,p2). Analysis of said function

should thus, contain all information required for the posmom intracule, i.e. the dot

product of u and v. To transform this function into something with direction in-

formation regarding relative positions and momenta of electrons, W (r1, r2,p1,p2)

must first be transformed into the Omega intracule, Ω(u, v, ω), as follows:

Ω(u, v, ω) =

∫
W (r1, r2,p1,p2)δ(u−r12)δ(v−p12)δ(ω−θuv)dr1dr2dp1dp2 (1.130)
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The Omega intracule is the intracule from which all other intracules (with the

exception of the posmom intracule) are derived. The dot intracule, D(x), is a first

order approximation to the posmom intracule. It is easily obtained from the Omega

intracule by

D(x) =

∫ ∞
0

∫ ∞
x

Ω(u, z/u, ω)

u z sin(ω)
dz du (1.131)

where

z = u v and x = u · v (1.132)

As for the Posmom intracule, X(x), it can be derived from the second order

density matrix, ρ2(r1, r′1, r2, r
′
2) as follows:

X(x) =
1

2π

∫
ρ2(r, r + u sinh k, r + u ek, r + u cosh k) eikxdr dudk (1.133)

However, when using the recurrence relation developed by Hollett and Gill (HG

RR)73, it has been show to be much easier to calculate the Fourier space analogue

of X(x). The Fourier space density, X̂(k), is given by

X̂(k) =

∫
ρ2(r, r + u sinh k, r + u ek, r + u cosh k)dr du (1.134)

From a quick comparison of equations (1.133) and (1.134), it can be seen that

once X̂(k) is known, performing an inverse Fourier transform will yield X(x) as

shown below:

X(x) =
1

2π

∫
X̂(k)eikxdk (1.135)
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Figure 1.4: Posmom intracule for the ground state of the He atom in a) Cartesian
space, and b) Fourier space.

In Figure 1.4, both X̂(k) and X(x) are shown. These functions require more

in-depth analysis to determine what the information is describing. Figure 1.5 be-

low shows the different combinations of magnitudes for u and v and how the angle

between them, ω, affects the resulting dot product, x. Nonetheless, the function

contains more information than either the position intracule or momentum intrac-

ule on their own, and could provide the basis for strong predictions of experimental

properties.
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Figure 1.5: Possible combinations of u, v, and ω and the resulting values of x = u ·v.
Adapted from the original version with permission from Molecular Physics.1

1.11.2 Extracules

Unlike the family of intracules, extracules contain absolute information instead of

relative information. Whereas the position intracule describes the interelectronic

separation of the electron pair, which is essential in determining electronic repul-

sions, the same cannot be said for the position extracule. It is, perhaps, for this

reason that the family of extracules are far less studied than their intracular coun-
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terparts. Nonetheless, they do contain valuable and complementary information.

Throughout this research, there were 2 main types of extracules that were studied

and that will be discussed in depth in this section: the position extracule, E(R), and

the momentum extracule E(P ).

Position Extracule, E(R)

The position extracule describes the probability that the centre-of-mass of an elec-

tron pair will be at a distance R from a predefined origin.74,75 For atomic systems,

this origin is typically defined as the nucleus, whereas for a molecular system, a

number of different points could be considered depending on why the system was

being studied. Much like P (u), E(R) can also be obtained from the pair density by

E(R) =

∫
ρ(r1, r2)δ(R− |r1+r2|

2
)dr1 dr2 dΩR (1.136)

While in the case of interelectronic separations, the angle of the vector isn’t overly

informative, this is far from true in the case of the extracular coordinate, R. Thus,

in addition to the scalar version, E(R), the vectorized or 3-D form can also yield

important information E(R) and is perhaps even more useful. The 3-D extracule is

obtained by

E(R) =

∫
ρ(r1, r2)δ(R− r1+r2

2
)dr1 dr2 (1.137)
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Figure 1.6: a) Scalar, E(R), and b) vectorized, E(R), position extracules for the
ground state of HOF.

where δ(x) is now the 3-dimensional Dirac delta function. If E(R) is known, E(R)

can be obtained through integration of the angular components of R as follows:

E(R) =

∫ 2π

0

∫ π

0

R2 sin θ E(R)dθ dφ (1.138)

To highlight the differences between E(R) and E(R), both were calculated for the

ground state of HOF and are shown in Figure 1.6. This molecule was chosen as it is

one of the simplest asymmetric molecules with more than one bond. Atomic systems

as well as those displaying high symmetry around the origin would not adequately

demonstrate the differences between the vectorized and scalar forms of the position

extracule. From E(R), it can be noted that that the most probable values of R are

1 and 2 bohr. While one could theorize which pairs of electrons would result in

these values for the electron centre-of-mass, the 3-D (or in this case, 2-D) position

extracule can shed some light on the situation. The benefit provided by E(R) only
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grows as the molecule gets larger and the number of electrons continues to increase.

Momentum Extracule, E(P )

The momentum extracule, E(P ), is a probability density describing the average

momentum, P , of an electron pair.76 It can be obtained from the two-electron mo-

mentum density, π(p1,p2), in a similar fashion to the momentum intracule. Instead,

we consider the Dirac delta function containing a descriptor for P as shown here:

E(P ) =

∫
π(p1,p2)δ(P − |p1+p2|

2
)dp1 dp2 (1.139)

An example of E(P ) is given below, again for the ground state of the helium atom

and methane. The average momenta, P , has a smaller global maximum in the case

of the larger methane molecule; however, due to the larger number of electron

pairs, the probability of higher values of P are still significant. In comparison to the

momentum extracule, the average momenta, P , displayed here are approximately

half of the value of the relative momenta, v, shown in Figure 1.7.
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Figure 1.7: Momentum extracule for the ground state of a) the He atom, and b) the
methane molecule.
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1.12 Localized Molecular Orbitals

As previously noted, for systems with many pairs of electrons, it can be difficult

to extract all relevant pieces of information from the intracule or extracule for the

full molecule. While in theory, there are N(N − 1)/2 pairs of electrons in a system,

chemists typically only care about specific pairs, namely the N/2 pairs representing

bonds, lone pairs, and to a lesser extent, core orbitals of the atoms within the

molecule.

How then can we consider these N/2 pairs instead of every possible permutation

of electrons in the system? The answer lies in the fact that the set of orbitals that

are obtained by solving the Hartree-Fock or Kohn-Sham equations are not a unique

solution. These orbitals are known as the canonical molecular orbitals, CMOs, and

are delocalized over the full system. For any single determinant method, of which

both HF and KS DFT are, a unitary transformation of the orbitals will not affect

the molecular wavefunction. Thus, there exist other representations for molecu-

lar orbitals that will not affect the properties of the molecule as a whole. As the

“wavefunctions" in these methods are based on a single determinant, let’s consider

a simple example. If, for a two electron system, the wavefunction, Ψ is given by

Ψ =

∣∣∣∣∣∣∣∣
a c

b d

∣∣∣∣∣∣∣∣ = ad− bc (1.140)
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Now, consider what happens if column 2 is added to column 1 (i.e. redefining

orbital 1 as the sum of orbitals 1 and 2):

Ψ =

∣∣∣∣∣∣∣∣
a+ c c

b+ d d

∣∣∣∣∣∣∣∣ = (a+ c)d− (b+ d)c = ad+cd− bc−cd = ad− bc (1.141)

While the molecular orbitals do change, the wavefunction remains the same. Al-

though this is an overly simplistic example that ignores corrections for normal-

ization, it does demonstrate the ability to utilize different representations for the

molecular orbitals without changing the properties of the system.

Lennard-Jones and Pople77,78 were the first to suggest a method by which a

set of localized orbitals that represent chemically intuitive orbitals (i.e. bonds and

lone pairs) could be obtained. They noted that these orbitals could be obtained by

minimizing the interorbital repulsions that are described by

4
∑
i

∑
j>i

∫
|φi(r1)|2 1

r12
|φj(r2)|2dr1 dr2 (1.142)

The 4 accounts for the four different interorbital interactions that occur between

the electrons in a pair of orbitals.

This idea was considered by Edmiston and Ruedenberg (ER)79 when they pre-

pared the first method for obtaining localized molecular orbitals (LMOs). Other

commonly used methods include that which was developed by Foster and Boys

(Boys)80 as well as the Pipek-Mezey (PM)81 method. A comparison of the CMOs

and LMOs of water is shown below in Figure 1.8.
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a)

b)

Figure 1.8: A depiction of the a) CMOs, and b) LMOs for the water molecule. Core
orbitals are omitted.

Both of these methods tend to be much faster than the time-intensive ER method.

The Boys LMOs tend to be very similar to those obtained from the ER method. The

Boys method, unlike the ER method, is designed to maximize the squares of the

distance between the centroids of charge of the occupied LMOs. The centroid of

charge is defined as the point (xc,yc,zc) where each of these coordinates is defined

as

xc = 〈ψi|x|ψi〉 yc = 〈ψi|y|ψi〉 zc = 〈ψi|z|ψi〉 (1.143)

Thus, the interpretation of the centroid of charge is the average position of each

coordinate for the electron density of that orbital. If the distance between the

centroids of charge is described by dij, the goal of the Boys localization method

is to maximize
N/2−1∑
i=1

N/2∑
j>i

dij2 (1.144)
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Figure 1.9: A depiction of the LMOs of a) H2O, and b) HOF. Core orbitals are
omitted.

Both of these methods treat double and triple bonds in a non-intuitive fashion.

Instead of being comprised of σ and π bond(s), both the Boys and ER LMOs predict

two (double bond) or three (triple bond) equivalent bonding LMOs that are equally

spaced from one another.6

For a more intuitive treatment of covalent bonds of order greater than 1, the

Pipek-Mezey method works quite well.6 In the PM method, a double bond consists

of a σ-bond LMO and a π-bond LMO. The main issue with the PM method is the

representation of lone pairs. Unlike what one would expect for a lone pair orbital,

those predicted by the PM method tend to resemble p-orbitals more than lone pairs.

One of the main benefits of LMOs is their transferability between different mole-

cules. While HOH and HOF both contain an OH bond (two in the case of water), the

set of molecular orbitals for these two molecules are significantly different. How-

ever, under the LMO representation, they are far more comparable (Figure 1.9).
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Thus, by using these LMOs in place of their delocalized counterparts, it affords the

opportunity to examine the effects on electron pair behaviour through the modifi-

cation of the surrounding chemical environment.

When Lennard-Jones and Pople first theorized the development of LMOs, they

discussed their potential to account for electron correlation. A set of LMOs should,

in theory, represent a minimum of interorbital correlation making the intraorbital

correlation the major component. LMOs are in fact utilized in a specific type of

MPPT39 calculations on larger molecules to speed up calculations.6 Instead of using

the CMOs to generate the HF reference, LMOs are used instead.

In their seminal paper on the extracule density, Thakkar and Moore75 stated:

E(R) deals with all the N(N − 1)/2 electron pairs present in a N -electron

molecule, but the chemist usually is interested only in N/2 ‘chemical pairs’.

[. . . ] For RHF wavefunctions of systems with an even number of electrons,

perhaps the ‘chemical NSGs’ can simply be taken to be det|φiαφiβ| where

the φi are localized molecular orbitals defined in one of the usual ways.

While this statement was made in the context of extracules, it applies equally to

any form of electron pair analysis. This approach of analyzing electronic structure

with respect to localized molecular orbitals was first explored in our lab using the

intracule density.82,83 and will be expanded upon greatly throughout this thesis.
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1.13 Project Goals

As previously alluded to, electron pair distributions can be rather difficult to in-

terpret for larger systems. This is caused by the vast number of electron pairs

(N(N − 1)/2) in systems even as small as methane (N = 10 → 45 pairs of elec-

trons). This leads to potentially valuable information being lost in the immense

amount of electron pair data.

Also, since chemists typically only care about bonds, and lone pairs, why con-

sider every electron in the system? Why not consider a single pair of electrons?

For instance, how does the electron pair in an OH σ-bond behave in the water

molecule? How does that compare to its behaviour in HOF, in MeOH, or in EtOH.

While this information wouldn’t be readily accessible in the full electron pair dis-

tribution as it would be lost in the sea of information, it can be easily accessed

by considering a single electron pair at a time. Due to the transferability of LMOs

between molecules, it makes for the comparison of certain types of bonds or lone

pairs between molecules trivial.

The goal of this thesis research was to provide a tool to answer these questions.

The idea was to develop a software package that was capable of calculating each

of the aforementioned electron pair distributions. This programming represents a

significant portion of the research; however, one that won’t be addressed in too

much detail in this thesis as it is not of great interest to the field. Instead, this

thesis will focus on the applications of this software package. While the potential

applications of the software will only continue to grow as future users have new,
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interesting questions that could be answered by this program, a few more general

examples of the applications will be provided throughout this thesis. Much of the

focus is on the underexplored position extracule density as previous work in the

Pearson lab has focused primarily on the position intracule.

Chapter 2 will highlight the basics of the code and how it can be used to cal-

culate these electron pair distributions (along with the User’s Manual provided in

Appendix A). Chapter 3 will present a broad overview of the potential applications

of the software package while Chapters 4-6 will highlight specific examples, some

of which were briefly addressed in Chapter 3. Finally, Chapter 7 will summarize the

work and provide a vision for the future applications of this work.
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Chapter 2

SEPDA software package

As mentioned in Section 1.12, a significant part of this research was the develop-

ment of a software package capable of calculating intracules and extracules for a

single electron pair. This software package is available at https://j_pearson@

bitbucket.org/aproud/sepda.git. The purpose of this chapter is to describe

the capabilities of the code and provide some details as to how it works. For more

details about how to use the program, the reader can consult Appendix A.

2.1 Capabilities

While the intended purpose of the SEPDA package is to calculate electron pair prop-

erties for a localized molecular orbital, there are numerous other electron pair rep-

resentations that can be considered. For instance, the natural bond orbital method

devised by Weinhold and coworkers is an alternative localization procedure devised

to provide the most accurate picture of a molecule based on the Lewis structure

model. These NBOs can be calculated using the NBO software package, or through
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the NBO add-on that is incorporated into more recent versions of the Gaussian soft-

ware package.

Similarly, while CMOs are not localized, they do represent a description for a

single electron pair. The SEPDA package is capable of dealing with all three types

of orbitals: LMOs, NBOs, and CMOs. The focus of the research presented in this

thesis, however, will be on the use of LMOs. CMOs present difficulty through their

delocalized nature while NBOs, though popular, do not always possess occupations

of 2.00 electrons.

2.2 Contents

SEPDA consists of three main components: the main code (sepda.csh), the main

fortran programs, and the fortran subroutines. Additional components include files

describing various predefined basis sets and numerous scripts in order to read in

this information. A summary of the program architecture is given in Figure 2.1.

2.2.1 sepda.csh

The main program, sepda.csh, was written in C shell. A user prepares an input

file for the program (as described in Appendix A) to tell the program what type of

calculation is requested and where the necessary information for this calculation

can be found. For instance, this input file would specify what type of orbital to

analyze (LMO, NBO, or CMO), what type of electron pair density to calculate (P (u),

M(v), X(x), E(R), E(R), or E(P )), the basis set that was used, and where to find

the MO coefficients.
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sepda.csh

basisreader.py

basisset.bas

main.f90

subroutine.f90

input.inp

output.out

info.tmp

info.wfn MOcoefs.coef+

Figure 2.1: A general overview of the architecture of the SEPDA software package.

While it is most common to use pre-defined basis sets, a user has the flexibility

to define their own basis set if desired. This program requires the specification of

the basis set to determine whether it is pre-defined or user defined (BASIS=UD).

In the case of a user-defined basis set, the program searches the input file to verify

that the user did, in fact, provide a basis set definition (formatting is described in

Appendix A). Using either the definition provided by the user or the pre-defined

basis, this program can then verify that the number of basis functions expected is

equal to the number of basis functions described by the MO coefficients. This takes

into account any contraction of the basis sets and the contraction coefficients.
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As the formatting of the MO coefficients for LMOs, NBOs, and CMOs all differ

significantly, sepda.csh deals with each case separately and calls a script to read

in the coefficients storing them in a temporary file in the appropriate format for

reading by the main fortran program. All other necessary information is also copied

to this file including any information regarding the basis functions (type, center,

and exponent) as well as the coordinates of all atoms in the system.

Once all necessary information to calculate these electron pair distributions is

known, the program reads in information regarding the calculation itself. This

includes the type of calculation ((P (u), M(v), X(x), E(R), E(R), or E(P ))), the

number of the molecular orbital of interest, and optional parameters regarding how

dense the grid is for the calculation and how far from the origin this grid should

extend.

Finally, using the information provided, sepda.csh calls the main fortran pro-

gram and provides the necessary inputs in order to do the required calculation.

2.2.2 Main Fortran Programs

The main fortran programs (posInt.f90, momInt.f90, posmomInt.f90, posExt.f90,

posvExt.f90, and momExt.f90) are based on earlier versions written by Zielinski82

and then by Mackenzie for the position intracule, P (u). For the purposes of this

discussion, this code will be referred to as main.f90.

Based on the information provided by sepda.csh, the appropriate variant of

main.f90 is called and supplied with information regarding the molecular orbitals.

This information is read into a single mega array. Earlier versions of the code uti-
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lized separate vectors/matrices for each piece of information. Comparisons were

conducted on timing for these two separate approaches, and it was determined that

small, but significant, enhancements were observed using the single mega array.

This approach was then utilized for all variants of main.f90.

After this information is collected in the mega array, the MO coefficients are nor-

malized except in the case of CMO coefficients which are output with normalization

already included.

As the recurrence relation for these electron pair distributions calculates more

than a single integral simultaneously, it is advantageous to have main.f90 break up

the required integrals into classes. For instance, there are 21 separate classes for

position space due to the 8-fold symmetry of the integrals:

[ssss] [psss] [ppss] [psps] [ppps] [pppp] [dsss]

[dpss] [dsps] [dsds] [ddss] [dpps] [dspp] [ddps]

[dpds] [ddds] [dppp] [ddpp] [dpdp] [dddp] [dddd]

In momentum space and combined posmom space, the 8-fold symmetry of posi-

tion space is reduced to 4-fold symmetry. This results in the introduction of 6 new

classes of integrals. Thus, in addition to the original 21 classes, the following 6

classes must be considered as well:

[pssp] [dssp] [dssd] [dpsp] [dpsd] [dppd]

The number of s, p, and d type orbitals are determined based on the information

provided in the .WFN file. From this, the number of different sets of p and d orbitals
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can be determined. A single set of p type orbitals contains 1 px, 1 py, and 1 pz while

a set of d type orbitals contains 1 dx2, 1 dy2, 1 dz2, 1 dxy, 1 dxz, and 1 dyz. The sets

of d orbitals include all Cartesian possibilities. Thus, the number of sets of each can

be determined as:

pSets =
pCount

3
dSets =

dCount
6

(2.1)

where pCount and dCount are the total number of p and d type orbitals, respec-

tively.

After determining the number of s type orbitals as well as pSets and dSets, it can

be determined not only how many integrals of each class need calculation, but all

combinations of basis functions that correspond to each class. With this information

in hand, the recurrence relation can be called to calculate all the required integrals.

These integrals can then be multiplied by the appropriate coefficients as follows:

∑
µνλσ

cµcνcλcσ(µν|λσ)x (2.2)

where x corresponds to the specific type of electron pair distribution that is being

calculated by main.f90. The summation goes over all integrals and this obtains a

single point on the grid over which the distribution is calculated. This is repeated for

every single point along the grid to obtain a series of points that can be interpolated

to obtain the actual electron pair distribution of interest.
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2.2.3 Fortran Subroutines - Recurrence Relation

As described in the last section, main.f90 makes calls the the appropriate subrou-

tine where the integrals are actually calculated. For all scalar distributions, these

integrals are calculated using the recurrence relation (RR) developed by Hollett

and Gill (although the RR was adapted for the extracule calculations). The code

for these calculations was also graciously provided by Hollett and Gill. As for the 3-

Dimensional position extracule, these integrals were obtained using the recurrence

relation developed by Thakkar and Moore. The code for this recurrence relation

was written in house.

As much of this code was written by other researchers, a brief summary will sim-

ply be provided here. In these recurrence relations, all other integrals are obtained

from the basic [0000] or [ssss] integral. The recurrence relation is then applied to

this integral to obtain all others in iterations. The subroutine is broken down into

each class of integral required for the specific electron pair distribution, and calcu-

lates the specific class of integrals based on the call from main.f90. For a derivation

of the Hollett and Gill recurrence relations, the reader should consult Appendix B.
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Chapter 3

Revealing Electron-Electron

Interactions within Lewis Pairs in

Chemical Systems

This chapter has been reproduced with modifications with permission from Proud,

A.J.; Sheppard, B.J.H.; Pearson, J.K. J. Am. Chem. Soc. 2018, 140, 219-228. All of

the work presented in this chapter was performed by Proud; however, some early

work on position intracules for hydrogen bonding was conducted by Sheppard.

3.1 Introduction

It has now been over 100 years since Gilbert Lewis published his famous account

of the electron pair in "The Atom and the Molecule" within this very journal.84 In

that article and a subsequent book85, he eloquently laid out the details of his gen-

eral theory of chemical bonding, from which he proposed that atoms form chemical
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bonds by sharing pairs of electrons. A century later, the so-called “Lewis pair” is

now entrenched in the lingua franca of modern chemical practice and the value of

its predictive power is perhaps matched only by its remarkable simplicity. Chemists

routinely employ Lewis’s pioneering ideas about electron pairs to interpret molecu-

lar structure86,87, intermolecular interactions,88,89 property trends, and even the in-

tricate mechanisms of chemical change.90 Given the ubiquitous nature of the “Lewis

pair” throughout chemistry, it is rather remarkable that we have not sought a defini-

tive representation of such individual Lewis pairs that rigorously adheres to the

quantum mechanical model of matter. Electron dot diagrams, as they are known,

leave much to be desired in terms of quantitative information. To gain a more ac-

curate understanding of electronic structure however, theoreticians will generally

tout one of two alternatives for the fundamental variable in interpretive computa-

tions of electronic structure. There is, of course, the many electron wave function

(Ψ), accounting for the spin and spatial variables of all electrons in the chemical

system or the comparatively simple (yet no less informative) electron density (ρ),

which usually describes the spatial one-electron probability distribution.42 Neither

Ψ nor ρ however, explicitly makes use of Lewis’s notion of a localized electron pair

in electronic structure. While the electron density does completely describe radical-

based processes, these mechanisms do not possess the same level complexity as

those involving the electron pair.

Highly intuitive questions are thus left unanswered in modern applications of

electronic structure prediction. If we are so enamoured with the notion of sev-

eral localized pairs of electrons dictating how we interpret molecular structure and
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chemical behaviour, how is a single “Lewis” electron pair distributed in space? How

fast do these electrons move relative to one another? How do such distributions

differ from one pair to the next, and how might we exploit that information to gain

insight into chemical systems, their properties, and the nature of chemical change?

These are the questions we seek to answer herein.

To do so, we present a Single Electron Pair Distribution Analysis (SEPDA) tech-

nique that is both generally applicable and richly informative. We begin by defining

a Lewis pair from a quantum mechanical perspective in terms of localized molecular

orbitals.82 Subsequently, we determine a series of interelectronic distribution func-

tions for these orbitals from first principles and apply these techniques to a wide

range of chemical contexts83,91,92 including covalent bonding, non-covalent inter-

actions, reaction coordinate diagrams, and more exotic 3-center 2-electron bonds,

some of which will be addressed in more detail later in this thesis. We show that

these distributions can yield highly useful and insightful information for interpret-

ing electronic structure and predicting experimental behaviour.

3.2 Computational Methods

The SEPDA code, along with technical documentation and test cases is available

from our code repository (j_pearson@bitbucket.org/aproud/sepda.git).

The SEPDA program is designed to calculate the distribution of single electron pairs

described by a given molecular orbital within position, momentum, or the combined

“posmom”1 space. As noted in the introduction, the starting point for an explicit

discussion of electron pairs in position space is the spin-reduced two-electron den-
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sity, ρ2(r1, r2), which is obtained from the molecular wave function by

ρ2(r1, r2) =

∫
|Ψ∗(x1,x2,x3, . . . ,xN)|2 ds1ds2dx3 . . .dxN (3.1)

To analyze electron pairs in momentum space, the spin-reduced two-electron mo-

mentum density, π2(p1,p2), can be obtained in an analogous fashion from the mo-

mentum space wave function by

π2(p1,p2) =

∫
|Φ∗(p1,p2,p3, . . . ,pN)|2 dp3 . . .dpN (3.2)

However, since we are interested in the distribution of a specific pair of electrons,

we must first determine the wave function for such a pair, which is conveniently

achieved using any one of the well-known localization algorithms.77–81,93–97 Though

one has many choices when adopting a localization scheme (LMOs, NBOs, or even

the delocalized CMOs) we have consistently employed the Edmiston-Ruedenberg

(ER) localization technique for the work in this chapter. As previously noted, these

so-called “chemically intuitive” orbitals quite naturally represent localized features

of chemical structure such as bonds and lone pairs, and rigorously adhere to the

quantum mechanical model of matter as they are obtained from a unitary transfor-

mation of the canonical molecular orbitals (CMOs). These are consequently an ideal

starting point for our analysis and constitute our definition of a quantum mechan-

ical “Lewis Pair" throughout this work. Constructing a two-electron determinant

wavefunction in both position and momentum space from a single localized molec-
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ular orbital (ψk) and substituting them in equations (3.1) and (3.2), respectively,

yield the spin-reduced two-electron density in position, ρk2(r1, r2), and momentum

space, πk2(p1,p2), specifically for an electron pair described by ψk.

From these two-electron densities, we can obtain the desired electron pair distri-

bution by applying the appropriate operator, Ô, as shown in the following equations

〈Ô〉 =

∫
ρk2(r1, r2)Ô(r1, r2)dr1dr2 (3.3)

〈Ô〉 =

∫
πk2(p1,p2)Ô(p1,p2)dp1dp2 (3.4)

The explicit dependence of these distribution functions on electron pair densi-

ties distinguishes SEPDA from other well-known localized electron density analysis

techniques such as the electron localization function (ELF)98 and the quantum the-

ory of atoms in molecules (QTAIM).99

In the case of the relative separation of an electron pair, for example, Ô =

δ(u−|~r1−~r2|) produces the position intracule density, P (u), which, again, measures

the probability of finding an electron pair separated by a scalar distance, u. The

position extracule density describes the location of the centre-of-mass of a particular

pair of electrons (R) and therefore allows us to track the motion of Lewis pairs using

Ô = δ(R− |~r1+~r2|
2

).

Conversely, as disucssed, we may also calculate these quantities in terms of mo-

mentum, where the momentum intracule would yield the probability of observing

a particular pair of electrons with a given relative momenta (v). The form of the

operator required to obtain each type of analogous electron pair distributions are
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defined below in Table 3.1. SEPDA has the ability to calculate all of these pair dis-

tributions for individual molecular orbitals: including the typical canonical molecu-

lar orbitals (CMOs), but also localized molecular orbitals (LMOs)77–81, and natural

bond orbitals (NBOs).93–97 Of course, one should expect quite different results if

using delocalized CMOs instead of chemically intuitive LMOs owing to their very

different spatial distribution. These would necessarily require a different interpre-

tation but it is of course true that the cumulative distribution of all possible electron

pairs would be identical regardless of the orbital type used to construct the full wave

function. It should be noted that the program is also capable of calculating these

electron pair densities for the full molecule/atom, but this feature was added simply

due to the simplicity of the required coding and is not novel.

In the table, the operator for the posmom intracule is denoted by *** as this

probability distribution is obtained neither from the two-electron density nor the

two-electron momentum density. Instead, it is obtained from the second order den-

sity matrix, ρ2(r1, r′1, r2, r
′
2), as described by equations (1.134)-(1.136).

SEPDA employs recurrence relations to calculate the necessary two-electron in-

tegrals of arbitrary angular momentum for each of these pair distributions. While

Table 3.1: The scope of pair distributions available in the SEPDA software package.

Pair Distribution Notation Ô References
Position intracule P (u) δ(u− |~r1 − ~r2|) [58, 59, 82, 83, 100–120]

Momentum intracule M(v) δ(v − |~p1 − ~p2|) [67, 117, 119–141]

Posmom intracule X(x) *** [1]

Position extracule E(R) δ(R− |~r1+~r2|
2

) [74, 75, 100, 117–119, 142–148]

3-D Position extracule E(~R) δ(~R− ~r1−~r2
2

) [75, 91]

Momentum extracule E(P ) δ(P − |~p1+~p2|
2

) [76, 117, 119, 131, 134, 135, 139, 140, 148]
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the scalar densities utilize the recurrence relations for intracules developed by Hol-

lett and Gill73 with modified versions developed for the extracule counterparts, the

3-D position extracule employs the relation developed by Thakkar and Moore.75

All of the optimized geometries and molecular orbitals utilized herein have been

generated with the GAMESS suite of quantum chemistry programs. The level of

theory employed in the current work to produce reliable structures and orbitals

changes according to the chemical context of the applications. For example, when

studying orbitals of isolated molecules it is perfectly reasonable to use a standard

molecular orbital approach (i.e. Hartree-Fock theory) with a moderate basis set. In

many cases however, such an approach is well known to fall outside the bounds of

acceptable levels of error due to the absence of Coulomb correlation, which hap-

pens to be a highly relevant component when predicting most chemical properties.

As such, Kohn-Sham density functional theory is arguably a more suitable start-

ing point for generating structures and localized orbitals. Kohn-Sham DFT is well

suited to this purpose as we have previously shown.66 Additionally, Stowasser and

Hoffmann have demonstrated that the Kohn-Sham orbitals can be reliably used to

rationalize chemical phenomena and seem to be the orbitals a qualitative, chemical

analysis needs.149 As such, our choice of theoretical model for generating our struc-

tures and orbitals is governed by the chemical context and any relevant benchmark

data available (vide infra).

For these calculations, the value of the desired pair distribution is determined at

specific intervals along a grid defined by Mura and Knowles150. The breadth or scale

of the grid as well as the number of grid points are user-defined with appropriate
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defaults established for each pair distribution type.

For 3-D position extracules, we have chosen specific planes within 3-D space for

simplicity of presentation and analysis. In such cases, the molecule of interest is

positioned appropriately in the yz-plane and instead of denoting this function as

E(0, Ry, Rz), we will simply use E(Ryz). Atomic units are used throughout unless

otherwise stated.

3.3 Results and Discussion

3.3.1 Covalent Bonding

We begin by considering one of the most fundamental of chemical features, the co-

valent bond. Figure 3.1 illustrates P (u), E(R), and M(v) for X-H bonds in the set

of first and second row hydrides as a simple model system to observe the effect on

Lewis pair distribution of altering the heavy atom, X, within an X-H bond. As X is

modified from the group 14 carbon to group 17 fluorine, we observe the bonding

electron pairs contracting as they are drawn more strongly towards the heavy atom

due to the associated increase in electronegativity. This same trend is seen with the

second row hydrides.82 Consequently, as these electrons are drawn closer together,

they must move faster relative to one another, as is evidenced by the concomitant

broadening of the momentum intracule, M(v). Likewise, the centre-of-mass of the

electron pair, R, migrates towards the heavy atom (which is positioned at the Carte-

sian origin), further confirming the nature of the contraction observed in P (u). The

SEPDA technique gives us both a qualitative and a quantitative picture of exactly
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 System BDE (kJ/mol)

 CH4 0.6883 0.8257 0.8256 102.7

 NH3 0.7614 0.7215 0.7213 104.0

 OH2 0.8433 0.6325 0.6321 119.2

 FH 0.9405 0.5532 0.5525 135.8

 SiH4 0.5893 1.0195 1.0193 80.0

 PH3 0.6101 0.9445 0.9442 88.5

 SH2 0.6381 0.8713 0.8709 91.0

 ClH 0.6713 0.8024 0.8017 103.2

 R2 0.9476 0.9455 0.9457 - - -
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Figure 3.1: Depiction of calculated P (u), E(R), and M(v) for the first and second
row hydrides at the HF/6-311G(d,p) level along with the first inverse moment,
〈x−1〉 (where x = u,R, or v) and experimental bond dissociation energies (BDE)2,3.

how these bonding electron pairs are distributed and affords a unique opportunity

to distinguish subtle but important chemical differences between these species.

As an interesting illustrative example, we have performed a linear least squares

regression to show the strong predictive capacity that the distribution of bonding

electron pairs have with respect to the experimentally determined strength of the

bond itself. Shown in the figure are the first inverse moments, 〈x−1〉 (where x =

u,R, or v), of each variable correlated with the experimentally measured bond

dissociation energy of the X-H bond, where 〈x−1〉 is determined by:
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〈x−1〉 =

∫ ∞
0

f(x) x−1dx (3.5)

Moments of a function are a convenient and compact metric for broadly character-

izing the distribution as a whole, and the first inverse moment is a natural choice

in our case as 〈u−1〉 corresponds exactly to the electron repulsion energy within the

given orbital. From MO theory we would expect that an increase in the electroneg-

ativity of X would cause the HOMO to both be stabilized and more localized on the

X atom. As such, one could expect to observe patterns in P (u) (and consequently

M(v) and E(R)) that correlate to experimental BDE. Coefficients of determination,

R2, of approximately 0.95 were obtained for each of the three distributions. This

indicates that by analyzing these pair densities for covalent bonds, we can gain

significant insight into the strength of these specific interactions using any of the

various tools available within the SEPDA package, and indeed this has been previ-

ously demonstrated in predicting acid dissociation constants as well.83

3.3.2 Non-Covalent Interactions

Extending our application of the technology to non-covalent interactions, we ana-

lyzed the water dimer using the breadth of tools available in the SEPDA package.

In particular, we focused on the donor σO-H bond and the acceptor nO lone pair in

the water dimer relevant for the H-bonding interaction, as shown in Figure 3.2. Un-

like the hydrides where we simply calculated the pair distribution, here it is more

instructive to present the deformation of the position intracule, ∆P (u), and the 3D
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position extracule, ∆E(~Ryz). These deformation densities are obtained as the dif-

ference between the relevant distribution for the hydrogen bonding complex and

that of the isolated hydrogen bond donor (X-H) or acceptor (Y−). The result indi-

cates how the pair distributions change due to the formation of the hydrogen bond.

In cases where the deformation densities are presented, we also indicate the total

content of the deformation density, δku,R, which is the integral of the magnitude of

∆P (u) or ∆E(~Ryz) for a particular orbital k. This is a concise, scalar representation

of the total difference between any two pair distributions.

Weinhold’s resonance-covalency model88,89 describes hydrogen bonding as res-

onance between

 

(3.6)

with the amount of the Y-H species dependent on the strength of the hydrogen bond.

Based on this model, one expects a migration of the electrons from the nO lone pair

of Y− to the hydrogen atom of X-H forming a weak ‘covalent’ bond between the

oxygen and hydrogen (H-Y species). In doing so, the electron pair in the donor σO-H

bond of X-H would migrate towards the oxygen atom within that σ-bond. These

two electron migration processes are indeed observed within ∆P (u) and ∆E(~Ryz).

First, for the electrons within the nO lone pair, we see an increase in interelectronic

separation from ∆P (u) and a shift in the electron pair centre-of-mass, ~R, towards

the hydrogen within the hydrogen bond donor species. Second, as the hydrogen

bond forms we see a contraction of the σ-bond (X-H) electron pair from ∆P (u) and
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Figure 3.2: Depiction of a) the σO-H and nO ER LMOs of the water dimer calcu-
lated at the M06-2X/6-311G(d,p) level of theory, along with the b) ∆P (u) and c,d)
∆E(~Ryz) for each. Solid and dashed lines in the ∆E(~Ryz) plots denote positive and
negative contours, respectively. Red contour lines correspond to ∆E(~Ryz) for nO

and blue contour lines correspond to ∆E(~Ryz) for σO-H. Contours are plotted for
±n× 10−3 where n = 4, 8, 16, 32, 64.

a concomitant shift in the centre-of-mass of this electron pair towards the oxygen

atom of the donor species from ∆E(~Ryz). These two changes in absolute and rel-

ative electron pair positions agree very well with the resonance-covalency model

of Weinhold and provide a far richer suite of quantitative information than a tradi-

tional Lewis interpretation.
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We would like to highlight at this point that ∆E(~Ryz) is an explicit two-electron

distribution, as it maps the change in the distribution of the centre-of-mass of a

localized electron pair. Though it resembles a traditional one-electron difference

density, they are not directly related.

To further explore the effects of hydrogen bonding, we analyzed other hydro-

gen bonded complexes from Hobza’s S66x8 data set.151 In Figure 3.3, we show

∆P (u) and ∆E(~Ryz) for the three hydrogen bonding systems: water-water, water-

methanol, and water-methylamine. In each of these systems, the hydrogen bond

donor is water, while the identity of the acceptor is systematically modified. How-

ever, when considering the three atoms directly involved in the interaction, we

have: O-H-O (water-water), O-H-O (water-MeOH), and O-H-N (water-MeNH2). In

these first two hydrogen bonded complexes, the three atoms involved in the inter-

action are identical. Upon analysis of ∆P (u) and ∆E(~Ryz) for these two systems,

it is clear that they are very similar qualitatively. The main differences are seen

in the extracule where the presence of the methyl group causes some distortions

to the centre-of-mass of the electrons of the lone pair. In comparison to the water-

methylamine system, significant differences are observed, especially in the intracule

density. While the deformation density for the lone pair is very similar, there is an

inversion of the relative heights of the maxima in the bimodal distribution at large

u. In the case of the σ-bond, the deformation densities are very similar qualitatively;

however, in the water-methylamine system, the magnitude of ∆P (u) increases by

40%. When one considers that of these three systems, water-methylamine has the

strongest interaction energy,151 this suggests the possibility of approximating inter-
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action energies based on these deformation densities. Work in this area is currently

underway in our research group on numerous hydrogen bonding systems within the

S66x8 data set and the predictive properties have shown to be on par with or bet-

ter than those obtained with bond critical points from Bader’s Atoms in Molecules

Theory.152,153

These techniques can be applied to other forms of non-covalent interactions as

well, such as π-interactions, halogen bonding, etc. Figure 3.4 depicts ∆P (u) and

∆E(~Ryz) for other types of non-covalent interactions: a) hydrogen bonding, b)

halogen bonding, and c) π-interactions. While the hydrogen-bonded and halogen-

bonded systems are very similar in nature, π-interactions are significantly different.

In π-interactions, the electrons in the two π-orbitals donate electron density towards

each other. The fundamentally different nature of this interaction is clearly visible

in Figure 3.4. Both the position intracule and extracule are markedly different than

those of the hydrogen and halogen bonding systems. They do however, exhibit

the trends we would expect. P (u) clearly shows that the relevant electron pair

is separating when the π-interaction occurs and this is accompanied by a shift in

the centre-of-mass towards the other ethene monomer within the dimeric system.

The comparison of the results for the hydrogen and halogen bonding systems is

interesting as these types of interactions are so similar. In both instances, a σ-

bond with an uneven distribution of charge can lead to an interaction with a highly

electronegative atom either inter- or intramolecularly. The key difference stems

from the identity of the atom with a partial positive charge in the first molecule. In

hydrogen bonding, this atom is hydrogen; however, in halogen bonding, the atom is
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Figure 3.3: The deformation densities of the position intracules, ∆P (u), and 3-D
position extracules, ∆E(~Ryz), for the σX-H and nY LMOs in the a) water dimer, b)
water-methanol, and c) water-methylamine hydrogen bonding complexes. Solid
and dashed lines in the ∆E(~Ryz) plots denote positive and negative contours,
respectively. Red contour lines correspond to ∆E(~Ryz) for nO and blue contour
lines correspond to ∆E(~Ryz) for σO-H. Contours are plotted for ±n × 10−3 where
n = 4, 8, 16, 32, 64. All data is calculated at the M06-2X/6-311G(d,p) level of theory.
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one which is typically associated with partial negative charges: a halogen. However,

in the presence of electronegative substituents with the halogen bond donor, the

electron withdrawing substituents can reveal an electron-deficient region on the

halogen atom known as the σ-hole.154,155 It is this highly-localized electron-deficient

spatial region which interacts with the electronegative atom of the acceptor to form

the halogen-bonded interaction. Since the halogen of the donor also has electron

rich regions, this results in differences in the intracule and extracules in comparison

to hydrogen-bonding systems.

When analyzing ∆P (u) for these two systems, the overall trends are the same:

the electrons of the σ-bonds contract while those of the lone pairs separate, again

in accord with the resonance-covalency model of intermolecular interactions. How-

ever, more fine analysis of the topology yields some differentiating features. The

deformation densities for the Y lone pairs do exhibit differences at large u though

this may simply be due to the differences between nO and nN. The differences in

∆P (u) for the σ-bonds are quite significant as the maximum value for ∆P σO-H(u)

is roughly half of that for ∆P σF-Br(u), suggesting that the differences are much less

likely due to the identities of the atoms. Furthermore, in hydrogen bonding, ∆P (u)

for the σ-bond is very simple, being unimodal both above and below the axis. In the

halogen-bonding complex, it is primarily unimodal above the axis; however, at neg-

ative values of ∆P (u), the function is bimodal. This bimodal distribution is likely

due to the more complicated nature of the atom with the partial positive charge.

While the intracules can help to distinguish between these three different types of

non-covalent interactions; only the π-interaction system demonstrates distinguish-
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able features for ∆E(~Ryz). Regardless, the wealth of tools within the SEPDA pack-

age has the ability to quantitatively and qualitatively distinguish between different

types of non-covalent interactions.

3.3.3 3-centre 2-electron Bonds

In addition to typical covalent bonds, we decided to study the distribution of Lewis

pairs in more exotic species such as the 3-centre 2-electron bonds present in the

B2H6 complex. Diborane represents a unique bonding environment, and as shown

in Figure 3.5 our results for this system are rather interesting.

Based on the chemical environment, one would expect that the behaviour of the

bridging hydrogens would be markedly different from that of the more typical ter-

minal B-H bonds. However, the P (u) for both the σB-H-B and σB-H bonds are nearly

indistinguishable (Figure 3.5). There are only minor differences at large u that are

noticeable by visual inspection. This is remarkable, considering the significant dif-

ferences observed in the covalent bond intracules (above) for bonds that would only

be considered marginally different. Because the B-H bond distance for the bridging

hydrogens is 1.321 Å, while that of the terminal B-H bond is only 1.204 Å, and

because the σB-H-B spans three centres (and 1.750 Å between the two boron atoms),

one would expect a much greater difference in the interelectronic separations of the

electron pairs within the two orbitals. The extracule density however was indeed

significantly different for the two bond types and provides evidence as to why the

intracules are so similar. Despite the qualitatively different extracules, the spatial

extent of the area covered by each is not drastically different. In other words, the
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σB-H and σB-H-B localized electron pairs are distributed throughout a spatial region

that is similar in size. This would allow for similar interelectronic separations, and

means that the σB-H-B pair is somewhat more localized to the inner bridging region

than one might initially expect. This interesting result is supported by the relative

weakness of the σB-H-B bond relative to the σB-H bond and provides evidence as to

why the intracules are so similar.
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3.3.4 Interpreting Reaction Mechanisms

Monitoring the progress of chemical reactions is often of significant interest when

modelling chemistry and Lewis diagrams are a ubiquitous tool for chemists to intuit

how reactants proceed to transition states and products via the reaction mechanism.

Again though, SEPDA is an invaluable tool to gain additional qualitative and quanti-

tative insight into how Lewis pairs migrate throughout a chemical reaction. An “ar-

row pushing” representation of a mechanism generally presumes that an electron

pair is being spread over two atoms or condensed to one as the reaction progresses

and the explicit two-electron treatment from SEPDA is a unique and intuitive tool

to employ. For example, one could easily track the migration of a centre-of-mass of

the pair with E(R) while testing to see whether the inter electronic separation is

increasing/decreasing with P (u).

Utilizing an intrinsic reaction coordinate (IRC) calculation, whereby the elec-

tronic structure of a reaction complex is determined at a series of points from re-

actants to the transition state to products, one can employ the SEPDA package to

monitor the change in the distribution of Lewis pairs throughout the course of the

reaction. To demonstrate this application, consider the theoretical SN2 reaction:

Cl− + CH3Cl→ ClCH3 + Cl−

P (u) and E(~Ryz) were calculated at various points along the reaction coordinate

between the reactant state and the transition state. Structures and energies were
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calculated at the OLYP/6-311G(d,p) level of theory based on the benchmark stud-

ies performed by Bento et al.4 Though it is certainly true that a single-determinant

Kohn-Sham DFT model for non-equilibrium structures along a reaction coordinate

will not yield the same degree of accuracy as other multi-determinantal model

chemistries designed to capture static correlation effects, DFT has been readily ap-

plied to model reaction coordinate profiles in a large number of studies. To the

extent that a single-determinant Kohn-Sham DFT approach is valid, so too will be

the SEPDA electronic structure analysis technique.

As the reactants and products are identical in this case, only one side of the

reaction coordinate was sampled. For the purposes of visual representation, we

chose to define the deformation density of E(~Ryz) as the difference between the

extracules of the transition state, D, and the reactant state, A. As the atoms within

the system are moving throughout the course of the reaction, the extracule figures

display overlaid structures of the reactant and transition states.

Our E(~Ryz) surfaces illustrate in precise detail how the centre-of-mass of the

relevant electron pairs migrate i) toward the reaction centre in the case of the nu-

cleophilic chloride lone pair (top), and ii) away from the reaction centre for the

leaving group (bottom) as the reaction progresses from reactants (A) to transition

state (D) (Figure 3.6). Additionally, the results observed from P (u) afford a quanti-

tative picture of the relative distribution of each Lewis pair. In the case of the chlo-

ride ion nucleophile, as the reaction progresses, the electrons do begin to separate

to facilitate the interaction between the nucleophile and the electrophilic carbon

centre. We can see this both in the shift of the maximum in P (u) to larger u and in
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the concomitant broadening of the overall curve. The difference between each P (u)

curve is subtle however, which indicates that the formation of the covalent bond is

more the result of the through-space migration of the localized pair of electrons, as

opposed to the “spreading out” of the electron pair to form the bond.

In the case of the leaving group, the behaviour observed in P (u) for the elec-

tron pair in the breaking bond is markedly different and not monotonic. Initially

(A→B), the interelectronic separation of the leaving group Lewis pair expands as is

evidenced by the broader P (u) distribution and the shifted maxima; subsequently

however, the maxima in P (u) recedes to smaller u despite a continually broadening

distribution overall. This very detailed picture of the evolution of a bond breaking

process is indicative of the accumulation of the electron pair at the chlorine centre

(as the maximum in P (u) recedes to smaller interelectronic separation) coinciding

with the lengthening of the breaking bond (corresponding to a broader distribution

overall).

We suspect that this very detailed, visual and intuitive analysis technique will be

of broad utility in a wide variety of chemical contexts.

3.4 Conclusion

In the current chapter, we outlined a novel technique for predicting and interpret-

ing chemical structure and behaviour by resorting to a fully quantum mechanical

depiction of the familiar Lewis electron pair. By predicting a series of interelectronic

distribution functions of individual pairs of electrons within an arbitrary chemical

system we have shown that a wide range of chemical properties and phenomena
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may be studied and interpreted using this technique. This Single Electron Pair

Distribution Analysis (SEPDA) is a novel approach to answering key quantitative

questions about the distribution of the well-known Lewis pairs, such as how they

are distributed in space and how their relative velocities change in various chemical

contexts.

We have shown that SEPDA may be used to quantify and classify myriad in-

teractions including chemical bonding and non-covalent interactions. The nature

of non-covalent interactions (as well as indications of their strength) may also be

gleaned from such distributions and SEPDA can be used as an important tool to

differentiate between interaction types.

Though we have chosen to focus our presentation on the so-called ‘intuitive’

chemical orbitals of Edmiston and Ruedenberg, it should be noted that the SEPDA

technique may be readily applied to any orbital type.

While this chapter has focused on a couple of different examples of many differ-

ent types of interactions with various electron pair densities, the remaining chapters

will discuss specific applications in detail.
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Chapter 4

Exploring Electron Pair Behaviour in

Chemical Bonds Using the Extracule

Density

This chapter has been reproduced with modifications with permission from Proud,

A.J.; Mackenzie, D.E.C.K.; Pearson, J.K. Phys. Chem. Chem. Phys. 2015, 17, 20194-

20204. The majority of the work was done by Proud; however, the early coding of

main.f90 was completed by Mackenzie.

4.1 Introduction

The molecular wavefunction contains a vast array of information; however, the

Schrödinger equation10 consists solely of one and two-electron operators. Thus,

much of the information contained in the wavefunction is superfluous. As noted

in Chapter 1, Hohenberg and Kohn42 demonstrated that the energy of a chemical
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system can be obtained, using only the electron density, ρ(r),

ρ(r) =

∫
|Ψ(r1, r2, . . . , rN)|2dr2 . . .drN (4.1)

While one may be able to determine the energy from ρ(r), extracting useful infor-

mation regarding electron-electron interactions is inherently non-intuitive.

Instead, we can focus on the numerous electron pair densities that have been

previously described. While the position intracule and intracules of a whole have

been extensively studied, this is not as true of the extracule family. The main de-

ficiency in P (u) is the absence of any absolute position information. It provides

no insight as to where in the molecular system the electrons are most likely to re-

side.65 One way we can extract such information is through the extracule density,

E(R).75,106 Recall that this density can be obtained from the pair density by:

E(R) =

∫
ρ(r1, r2)δ

(
R− r1+r2

2

)
dr1dr2 (4.2)

The extracule density was first described by Coleman in the late 1960s74; how-

ever, it wasn’t until the early 1980s when the first calculations of E(R) were car-

ried out.75 Since the seminal paper by Thakkar and Moore, studies regarding the

topology of E(R) have largely been focused on the spherically averaged extracule

density, E(R), defined as

E(R) =

∫
E(R) dΩR (4.3)

or a single dimension of E(R).100,117,118,142–148 While this scalar form may be useful
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for linear systems, the complexity of the interpretation for large systems is readily

apparent. Knowing only the distance of the centre-of-mass from a specified origin

is not generally very informative in a three-dimensional molecule. For this reason,

we have focused on the more topologically rich, E(R) for the purposes of the study

presented in this chapter.

While E(R) does offer more clarity into the distribution of the centre-of-mass,

difficulty still arises in its interpretation when one considers arbitrarily large 3D

structures. SEPDA offers the ability to analyze a single pair of electrons. We demon-

strate in this chapter the utility of this tool as we examine, in depth, the information

present in E(R).

4.2 Computational Methods

If the pair density is determined from a RHF wavefunction, equation (4.2) for a

single molecular orbital may be expressed as

E(R) =
K∑

µνλσ

cµcνcλcσ(µνλσ)E (4.4)

where ci describes the contribution of atomic orbital φµ to the molecular orbital of

interest and (µνλσ)E are the extracule integrals evaluated over the basis functions

µ, ν, λ, and σ. These integrals are described by

(µνλσ)E =

∫
φ∗µ (r)φν (r)φ∗λ (2R− r)φσ (2R− r) dr (4.5)
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Herein, φi denotes basis function i. Thakkar and Moore developed a series of formu-

lae for the determination of the extracule integrals, which are summarized below.75

These equations were utilized to calculate the necessary integrals for the evaluation

of E(R) for a specific LMO. For a basis set consisting of Gaussian-type orbitals, the

basic integral over four s-type Gaussians is given by

(ssss)E =

(
4π

ζ + η

)3/2

exp
[
−ζη(2R−P−Q)2

ζ + η

]
(4.6)

× exp
[
−αβ(A−B)2

ζ
− γδ(C−D)2

η

]

where A, B, C, and D define the centres on which the Gaussian primitives, with

exponents α, β, γ, and δ, respectively, are centred. These exponents comprise ζ =

α + β and η = γ + δ. The variables P and Q are defined as follows:

P =
αA + βB

ζ
(4.7)

Q =
γC + δD

η

For integrals containing orbitals of higher angular momenta, these new integrals

can be determined by multiplying the basic integral by the angular factors, Tx, Ty,

and Tz:

(µνλσ)E = (ssss)ETxTyTz (4.8)

To define the angular factors (we will define the variables with respect to the angu-

lar factor in the x-axis, Tx, but these can easily be adapted to determine the y and z
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directional angular factors by using the respective components for those directions),

we must first introduce the following three variables:

gk =

(
−ζ + η

4ζη

)k
× 1

k!
(4.9)

hk = (Px +Qx − 2Rx)
k × 1

k!
(4.10)

sk =
1

gk

k/2∑
j=0

gjhk−2j (4.11)

where 0 ≤ k ≤ lµ + lν + lλ + lσ in which li denotes the angular momentum of

Gaussian primitive i, in the x-axis. Using these newly defined variables, Tx can be

computed using

Tx =

lµ+lν∑
i=0

Λi(lµ, lν , Px − Ax, Px −Bx, ζ) (4.12)

×
lλ+lσ∑
j=0

si+jΛj(lλ, lσ, Qx − Cx, Qx −Dx, η)

where

Λj(l1, l2, a, b, c) =

(l1+l2−j)/2∑
k=0

f2k+j(l1, l2, a, b)
(2k + j)!

(4c)k+jk! j!
(4.13)

Herein, fj can be defined as the polynomial coefficients obtained from:

l1+l2∑
j=0

fj(l1, l2, a, b)x
j = (x+ a)l1(x+ b)l2 (4.14)
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As the three angular factors are equal to unity for a set of four s-type Gaus-

sians, equation (4.8) is a general formula that can be used in the evaluation of all

extracule integrals.

To calculate the extracule densities, a Mura-Knowles grid150 was utilized to de-

termine the value of E(Rx, Ry, Rz) at each grid point which was succeeded by in-

terpolation to yield the required functions. This grid was adapted for the inclusion

of negative values by incorporating grid points in both the positive and negative

directions to ensure that all relevant spatial regions of the chemical system were

adequately described. In order to obtain grids that were sufficiently dense to con-

verge the resulting extracules, 201 points (100 points in each of the positive and

negative directions in addition to the origin) were used in two of the three dimen-

sions. These calculations would scale as (K4)× (ndp) where d indicates the number

of dimensions sampled and np defines the number of grid points in each dimension.

As one dimension would necessarily be averaged through integration for purposes

of visual representation, the benefit of sampling all three dimensions was deemed

to be insufficient to warrant the computational cost. Thus, for the extracule den-

sity analysis of all molecular systems, the atoms important to the analysis were

positioned in the yz-plane over which the grid was constructed.

All calculations were performed at the RHF/u6-311G(d,p) level of theory where

u indicates that the basis set was completely uncontracted. HF calculations are ad-

equate for these systems as the goal is to demonstrate the utility of the extracule

density in the LPM as an interpretive tool in chemistry; however, should an alterna-

tive approach be desired, Kohn-Sham orbitals43 could be employed in an identical
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fashion. All geometry optimizations and LMO determinations were performed using

the GAMESS software package.20 Vibrational frequency analyses were conducted to

ensure that the geometry represented an energy minimum. After computing the ex-

tracule densities using the Mura-Knowles grid, the data was analyzed using the

Mathematica 8 software package.156 Atomic units are used throughout.

4.3 Results and Discussion

4.3.1 Covalent Bonding

We begin with the hydrides of first row elements, i.e. LiH to HF. Two sets of analyses

were carried out for this set. In Case 1, full geometry optimizations were performed

on the molecules and these optimized structures were used in the analysis. For

Case 2, the average bond length for the X-H (X = Li – F) bonds from Case 1 were

determined and the optimized structures were then modified to include this average

bond length solely for the bond to be analyzed. Thus, for NH3, two of the N-H

bonds would remain at the length determined through the geometry optimization,

and only the one bond that was to be analyzed was adjusted to the average X-H

bond length determined from the set of hydrides. Case 2 allows for a convenient

comparison of the bond extracule densities as the nuclei involved in the hydride-

bond LMO are at the same positions in Cartesian space.

Figure 4.1a) depicts the extracule density for the C-H bond in methane. One

might expect that the maximum in the density would occur closer to the carbon

atom considering its slightly more electronegative nature; however, one must con-
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Figure 4.1: a) Depiction of E(0, Ry, Rz) for the C-H bond in CH4 with an overlay
of the LMO for the bond and b) ∆ECH3,F(0, Ry, Rz) for the X-H bond LMO. Contour
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dashed lines signify negative contours).

sider the structure of the molecular orbital. As observed from the overlaid orbital

representation, the C-H bond LMO largely resembles depictions of sp3 orbitals com-

mon in freshman and organic chemistry textbooks.90,157 Much of the density of the

orbital extends out from the carbon atom beyond the hydrogen atom. This results

in the electrons in the orbital being shifted more towards the hydrogen atom than

one might initially expect.

What is more enlightening is observing the shift in the maximum as one changes

the heavy atom from the highly electropositive Li atom to the highly electronegative

F atom. These results are tabulated in Table 4.1. For all systems, the bond midpoint

is positioned at (0,0,0) in Cartesian space. For the purposes of this discussion,

the only coordinate listed is that which occurs along the bond axis, Rz. The Ry

coordinate was close to 0 for all cases, but the small deviations can be explained by
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the asymmetric inductive effects caused by the other atoms within the molecules.

As the heavy atom in the molecule is modified from Li to F, the maximum in the

extracule density shifts toward the heavy atom. What may be less obvious is the

extent to which the centre-of-mass is shifting. This becomes far more evident as we

examine Rmax
z for Case 2. For all molecules in Case 2, the two nuclei are positioned

at Rz = ±1.08646 with the heavy atom residing in the positive direction. For the

case of the Li atom, the maximum in E(0, Ry, Rz) occurs at Rz = −1.028, which is

very close to the hydrogen nucleus. As we change our heavy atom from N to O,

the centre-of-mass maximum shifts beyond the bond midpoint towards the heavy

atom. In the most extreme case, HF, the maximum in the extracule density is found

nearly halfway between the bond midpoint and the heavy F atom at Rz = 0.500.

These same trends of the centre-of-mass shifting towards the electronegative atom

are observed in the average Rz value, 〈Rz〉, which is given by

〈Rz〉 =
1

〈R0
yz〉

∫ ∞
−∞

∫ ∞
−∞

Rz × E(0, Ry, Rz)dRydRz (4.15)

where 〈R0
yz〉 is the zeroth moment in the bond plane (defined below in equation

4.16). As we consider only a slice of E(R), 〈Rz〉 must be scaled by this value to

obtain an accurate value for the average Rz. While the shift in the centre-of-mass

towards the heavy atom as the electronegativity of that heavy atom increases is

not surprising, it does demonstrate that the localized extracule density displays the

effects one would expect based on chemical intuition. Less obvious is the trend
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observed in 〈R0
yz〉, which is defined as

〈R0
yz〉 =

∫ ∞
−∞

∫ ∞
−∞

E(0, Ry, Rz)dRydRz (4.16)

Because slices of the extracule density were chosen as opposed to averaging over

one coordinate, the zeroth moment is not normalized to N(N−1)
2

, as it otherwise

would be. Instead, we obtain information regarding the amount of extricable den-

sity that resides within the given slice. Specifically, 〈R0
yz〉, is the value of E(Rx)

where Rx = 0 and the remaining Cartesian coordinates have been averaged through

integration. We note that 〈R0
yz〉 is not bounded by 1 (as can be confirmed in Table

4.1), as a probability normally would be because it is not evaluated over a range

in the x coordinate. One clear trend emerges as we change the identity of the

heavy atom. The introduction of the more electronegative heavy atoms causes a

contraction of the centre-of-mass to the bonding plane. While 〈R0
yz〉 = 0.512 in the

case of LiH, this value nearly doubles to 0.982 upon replacing Li with the highly

electronegative F. This observation is in strong agreement with the tendency of the

electron-electron counterbalance density158–162 for the helium isoelectronic series

(from He to Ne8+) to increase as the nuclear charge, and thus electronegativity,

is increased.160 Equivalent analyses were performed on the second row hydrides

which are not shown as all of the trends were identical to those shown here.

The major benefit offered by the equidistant bond lengths analyzed in Case 2 is

that one can accurately assess the extracule deformation density, ∆EX1,X2(0, Ry, Rz),
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Table 4.1: Moments of E(0, Ry, Rz) for the X-H bond LMO in first row hydrides.

Case 1 Case 2
System 〈R0

yz〉 〈Rz〉 Rmax
z 〈R0

yz〉 〈Rz〉 Rmax
z

LiH 0.473 -1.280 -1.453 0.512 -1.022 -1.028
BeH2 0.557 -0.848 -0.996 0.595 -0.764 -0.836
BH3 0.664 -0.579 -0.600 0.674 -0.570 -0.592
CH4 0.743 -0.353 -0.383 0.728 -0.356 -0.385
NH3 0.832 -0.181 -0.219 0.791 -0.157 -0.221
OH2 0.932 -0.046 0.055 0.872 0.024 0.294
FH 1.047 0.091 0.272 0.982 0.218 0.500

which is given by

∆EX1,X2(0, Ry, Rz) = EX1-H(0, Ry, Rz)− EX2-H(0, Ry, Rz) (4.17)

where Xi-H represents the LMO describing the hydride bond in the system of in-

terest. With the positions of the two nuclei involved in the bond LMO fixed for all

systems, all changes in ∆EX1,X2(0, Ry, Rz) can be attributed to the changing chemi-

cal environment. An example is shown in Figure 4.1(b) where X1=CH3 and X2=F.

As expected, the negative contours are present near the heavy atom indicating the

greater presence of the electron pair centre-of-mass near the heavy atom in the HF

system compared to CH4. Likewise, positive values of ∆ECH3,F(0, Ry, Rz) are present

near the hydrogen atom as the electron density and consequently the centre-of-mass

of the electron pair are drawn towards the fluorine atom in HF.

Following the analysis of the hydrides, the localized pair model was used to an-

alyze compounds consisting of the -CH3, -NH2, -OH, and -F fragments from the first

row and the -SiH3, -PH2, -SH, and -Cl fragments from the second row. Forming
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covalent compounds from any two of these moieties results in 10 compounds from

each of the first and second row and 16 compounds from the combination of build-

ing blocks from separate rows. Thus 36 compounds were constructed and analyzed

in terms of the extracule densities for the bond between the two heavy atoms as

well as the X-H bond for both heavy atoms in each fragment. As for the first and

second row hydrides, the bond midpoint is positioned at (0,0,0) in Cartesian space

with the heavy atom (or in the case of the X1-X2 bond, the X1 atom) positioned in

the positive Rz direction.

The results for these systems are listed in Table 4.2. For the LMO describing the

bond between the two heavy atoms, X1 and X2, the same trends described in the

previous section are evident for most species. We observe a substantial migration

of the centre-of-mass into the bond plane as we increase the electronegativity of

either heavy atom. Furthermore, the more obvious shifting of the centre-of-mass

towards X2 is evident as the electronegativity of X2 increases. When considering

a substitution from first row to second row heavy atoms, a significant decrease in

〈R0
yz〉 is observed universally. This is indicative of a lower likelihood of observing

R in the yz bond plane. Considering the significant size disparity between these

rows, one might expect such a trend as the electrons in second row atoms would

accommodate a larger volume outside of the selected bond plane leading to this

observed decrease in 〈R0
yz〉.

Once we shift to the Xi-H bond LMO, Xj is no longer directly part of the LMO of

interest, but is instead separated by one bond. As LMOs are, by definition, localized,

the changes in the extracule density are expected to be minimal when the two atoms

114



Table 4.2: Analysis of the X1-X2 and Xi-H bond LMOs in small first and second row compounds.

X1-X2 Bond X1-H Bond X2-H Bond
System 〈R0

yz〉 〈Rz〉 Rmax
z 〈R0

yz〉 〈Rz〉 Rmax
z 〈R0

yz〉 〈Rz〉 Rmax
z

CH3CH3 0.752 0.000 0.000 0.749 -0.362 -0.386 0.749 -0.362 -0.386
CH3NH2 0.828 -0.183 -0.111 0.750 -0.384 -0.388 0.841 -0.189 -0.220
CH3OH 0.928 -0.348 -0.493 0.759 -0.357 -0.370 0.950 -0.047 0.025
CH3F 1.037 -0.477 -0.686 0.760 -0.365 -0.365 - - - - - - - - -
CH3SiH3 0.636 0.488 0.487 0.742 -0.335 -0.382 0.609 -0.865 -0.968
CH3PH2 0.661 0.298 0.284 0.749 -0.340 -0.374 0.651 -0.672 -0.771
CH3SH 0.686 0.063 0.173 0.754 -0.331 -0.369 0.692 -0.465 -0.592
CH3Cl 0.722 -0.154 -0.036 0.761 -0.333 -0.357 - - - - - - - - -
NH2NH2 0.885 0.004 0.000 0.843 -0.199 -0.217 0.843 -0.199 -0.217
NH2OH 0.958 -0.174 -0.064 0.852 -0.190 -0.205 0.956 -0.057 0.030
NH2F 1.054 -0.358 -0.630 0.858 -0.184 -0.195 - - - - - - - - -
NH2SiH3

a 0.743 0.736 0.848 0.830 -0.209 -0.204 0.612 -0.888 -0.974
NH2PH2

a 0.750 0.532 0.655 0.834 -0.181 -0.200 0.654 -0.702 -0.778
NH2SH 0.764 0.333 0.323 0.842 -0.182 -0.199 0.695 -0.469 -0.583
NH2Cl 0.775 0.102 0.188 0.854 -0.183 -0.194 - - - - - - - - -
OHOH 1.011 0.008 0.000 0.963 -0.044 0.060 0.963 -0.044 0.060
OHF 1.093 -0.197 -0.044 0.970 -0.036 0.080 - - - - - - - - -
OHSiH3 0.872 0.791 0.893 0.939 -0.020 0.047 0.613 -0.881 -0.962
OHPH2 0.872 0.678 0.843 0.946 -0.026 0.048 0.656 -0.700 -0.771
OHSH 0.863 0.532 0.798 0.954 -0.033 0.053 0.697 -0.473 -0.582
OHCl 0.857 0.343 0.283 0.960 -0.030 0.067 - - - - - - - - -
FF 1.152 0.000 0.000 - - - - - - - - - - - - - - - - - -
FSiH3 1.008 0.857 0.953 - - - - - - - - - 0.615 -0.860 -0.940
FPH2 0.998 0.788 0.942 - - - - - - - - - 0.659 -0.678 -0.751
FSH 0.978 0.693 0.939 - - - - - - - - - 0.700 -0.458 -0.569
FCl 0.965 0.556 0.919 - - - - - - - - - - - - - - - - - -
SiH3SiH3 0.502 0.000 0.000 0.608 -0.837 -0.962 0.608 -0.837 -0.962
SiH3PH2 0.544 -0.251 -0.033 0.611 -0.838 -0.952 0.647 -0.644 -0.765
SiH3SH 0.594 -0.489 -0.458 0.613 -0.838 -0.943 0.687 -0.443 -0.589
SiH3Cl 0.652 -0.673 -0.652 0.615 -0.829 -0.930 - - - - - - - - -
PH2PH2 0.574 0.002 0.000 0.652 -0.649 -0.757 0.652 -0.649 -0.757
PH2SH 0.612 -0.274 -0.031 0.655 -0.652 -0.750 0.690 -0.447 -0.582
PH2Cl 0.662 -0.519 -0.541 0.658 -0.644 -0.739 - - - - - - - - -
SHSH 0.642 -0.011 0.000 0.694 -0.448 -0.576 0.695 -0.313 -0.576
SHCl 0.678 0.270 0.024 0.698 -0.438 -0.566 - - - - - - - - -
ClCl 0.710 0.000 0.000 - - - - - - - - - - - - - - - - - -
a The LMO for this X1-X2 bond showed significant distortion relative to the others. The maximum in
E(0, Ry, Rz) deviated from the bond axis, Rz, by > 0.050 a.u.
b white

comprising the bond LMO remain the same. In these cases, the trends appear to

vanish; however, there are a number of competing factors at play. First, we have

115



the aforementioned enhancement of the inductive effect caused by the increasing

electronegativity of X2 drawing the electron density, and thus the centre-of-mass

towards X2. Other related effects include the effect that X2 has on the shape of

the localized orbital in question as well as its effect on the bond lengths between

X1-H and X1-X2. Considering all of these factors, it is not surprising that there is

no obvious trend in 〈R1
z〉 and Rmax

z for the X-H bonds in these systems. However,

the increase in 〈R0
yz〉 is still evident as the electronegativity of the non-participating

heavy atom is increased.

To further explore the effects of electronegativity on the extracule density, we

analyzed methane with varying levels of halogenation. Both the C-X and CH bonds

of CH4−nFn and CH4−nCln (where n = 0− 4) were explored. Figure 4.2 depicts the

position of the maximum in the case of the C-H bond extracules for the CH4−nFn sys-

tems. The introduction of the fluorine atoms cause an obvious shift in Rmax within

the C-H bond plane and away from the internuclear axis. The quantitative measures

for these halogenated systems as well as those containing Cl are summarized in Ta-

ble 4.3 and indicate that the extracular LPM has the capabilities to discern small

but significant anisotropies in the topology of electron-electron interactions within

the chemical bond.

With the overlaid structures depicting the positions of halogenation in Figure

4.2, the positioning is explained based on the inductive effects of the newly in-

troduced electronegative atom. Upon the addition of the three halogens for the

analysis of the C-H bond, the maximum returns to the bond axis due to the symme-

try around the tetrahedral carbon, but it is significantly shifted towards the three
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Figure 4.2: Pictorial representation of CH4 to demonstrate the positions of each
atom within the molecule combined with an inset of the positions of the maxima of
E(0, Ry, Rz) for the C-H bond in methane and its fluorinated derivatives, CHnF3−n,
where n = 1− 3 (the dashed line signifies the bond axis).

halogen atoms. These same trends can be observed for the C-H bonds in the chlo-

rinated systems as well as the C-X bonds in both sets of halogenated molecules.

Close analysis of the positions of the maxima reveals that the chlorine atoms tend

to have a greater pull on the centre-of-mass in the C-H bonds than do the fluorine

atoms. Due to the higher electronegativity of the fluorine species, this is rather sur-

prising. The effect appears to be largest upon the introduction of the first chlorine

atom. For the C-H bond, the change in Rz for CH3F is -0.018 a.u. while the analo-

gous value for CH3Cl is -0.026 a.u. However, further halogenation does not lead to

significant differences in the shift of the maxima between the fluorinated and chlo-

rinated species. This same trend is seen for the C-X bond, but is less apparent due

to the significant difference in the original position of the maxima. In fact for CHX3

and CX4 the shift in the maxima due to the substitution of an additional halogen is

approximately three-fold greater in the case of X=F.
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Table 4.3: Properties of E(0, Ry, Rz) for halogenated derivatives of methane.

C-H Bond C-X Bond
System 〈R0

yz〉 (Ry, Rz) of Max 〈R0
yz〉 (Ry, Rz) of Max

CH4 0.745 (0.000, 0.383) - - - - - -
CH3F 0.760 (0.013, 0.365) 1.037 (0.000, 0.686)
CH2F2 0.782 (0.005, 0.346) 1.053 (0.009, 0.651)
CHF3 0.797 (0.000, 0.324) 1.065 (0.004, 0.618)
CF4 - - - - - - 1.070 (0.000, 0.589)
CH4 0.745 (0.000, 0.383) - - - - - -
CH3Cl 0.760 (0.015, 0.357) 0.722 (0.000, 0.036)
CH2Cl2 0.772 (0.007, 0.337) 0.732 (0.016, -0.116)
CHCl3 0.783 (0.000, 0.320) 0.736 (0.007, -0.127)
CCl4 - - - - - - 0.743 (0.000, -0.136)

4.3.2 Bond Strain

An ideal tetrahedral carbon has sp3 hybridization with bond angles of 109.5◦. How-

ever, for some cycloalkanes, this conformation is simply not possible. For instance,

cyclopropane, a well documented example,163–165 contains significant amounts of

strain due to its triangular conformation deviating significantly from the optimal

configuration around a tetrahedral carbon. This strain causes the formation of “bent

bonds” or “banana bonds”. This bending is clearly observed in the extracule density

of not only cyclopropane but also to some extent, in cyclobutane (Figure 4.3). The

bending in E(R) effectively vanishes in the densities calculated for cyclopentane

and cyclohexane. A quantitative analysis can be performed by determining the po-

sition of the maximum in E(R) outside of the bond axis, i.e. Ry. This measure is

tabulated in Table 4.4. The maximum for cyclopropane is observed at Rmax
y = 0.349

but migrates towards the bond axis as the ring strain decreases and essentially re-

sides in the bond axis for the “strainless" cyclohexane.
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Figure 4.3: Depiction of E(R) for representative C-C bonds in the cyclic systems
ranging from cyclopropane to cyclohexane. Models of the appropriate molecule are
inlayed in the top left hand corner of each graph to provide the reader with insight
as to the spatial orientation of each molecule. The dashed line traces the curve of
slowest descent in E(Ry, Rz) to illustrate the deviation from the bond axis. Contour
values were chosen as 0.02× n where n = 1− 16.

To accommodate the smaller angles involving the C-C bonds in the smaller cy-

cloalkanes, the orbitals take on significantly more p-character than a typical C-C

bond between tetrahedral carbons. In the case of cyclopropane, the carbon atoms

participating in the C-C bonds are considered to be sp5 hybridized with respect to
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Table 4.4: Properties of E(0, Ry, Rz) for the C-C bonds in cycloalkanes.

System 〈R0
yz〉 Rmax

y

Cyclopropane (C3H6) 0.750 0.349
Cyclobutane (C4H8) 0.751 0.099
Cyclopentane (C5H10) 0.755 0.017
Cyclohexane (C6H12) 0.757 -0.004

that orbital.163 As the size of the ring in the cycloalkane increases, the strain is re-

lieved and the amount of p-character in the bonds decrease. As p-orbitals are less

electronegative than s-orbitals, progressing from cyclopropane to cyclohexane, we

would expect the electronegativity of the carbon involved in the C-C bond to in-

crease, leading to an increase in the proportion of E(R) present in the bond plane.

This prediction is confirmed by the values of 〈R0
yz〉 provided in Table 4.4.

4.3.3 Non-Covalent Interactions

While LMOs are largely local in nature, as demonstrated above, they are influenced

in characteristic ways by their neighbouring chemical environments. This suggests

that the LPM has utility in analyzing non-covalent interactions. For example, hy-

drogen bonding may be interpreted as the interaction between an electron rich

lone pair of a donor species with an electron deficient acceptor species. The extent

and/or character of the interaction may then be probed by observing changes in the

distributions of localized electron pairs on either the donor or acceptor species (or

both). Here, we have modelled the hydrogen bonding interaction between HF and

MeNH2 through the σHF bond LMO of HF and the nN lone pair LMO on the MeNH2

nitrogen. Accurate geometries for the hydrogen bonding complex were obtained
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from the S66x8 data set.151 Extracule calculations were performed on the H-F bond

in the absence of MeNH2 (and vice versa) and with varying separations between the

HF and MeNH2 molecules. The b0 separation indicates that the distance between the

hydrogen bond donor and acceptor is that which is obtained from the geometry op-

timization carried out at the MP2/cc-pVTZ level. Systems denoted by x×b0 indicate

that the distance between the two species, d, is scaled proportionally to x. Thus,

the HF-MeOH complex where d = 2.0b0 contains an H-bond distance that is twice

the value obtained in the geometry optimization. All other geometrical parameters

remain the same. For the HF bond, the bond midpoint was positioned at the origin

in Cartesian space, while for the lone pair, the nitrogen atom in methylamine was

positioned at (0,0,0.945) while the H in hydrogen fluoride was positioned along the

Rz axis at positions relative to the separation of the two species. The positioning of

the nitrogen atom was chosen to allow for adequate sampling of E(0, Ry, Rz) using

the previously described grid points.

Our goal in analyzing the extracule density of these LMOs was to observe the

effect on the extracule density as the hydrogen bond formed and how those ef-

fects varied as the distance between the two species grew. Thus we analyzed the

extracule deformation density of orbital φ, ∆Eφ
d (R), which we define in this case as

∆Eφ
d (R) = Eφ,complex

d (R)− Eφ,molecule(R) (4.18)

which parametrically depends on d, the distance between the species in the molec-

ular complex.
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Figure 4.4: Depiction of ∆Eφ
d (R) for the σHF bond LMO in H-F (left) and the nN

lone pair LMO in MeNH2 (right) for the HF-MeNH2 hydrogen bonded complex at
various distances of separation, x × b0, between the donor and acceptor. Contours
were chosen as ±0.003 × 1.5n where n = 1 − 8. Negative contours are denoted by
dashed lines.
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These results are depicted in Figure 4.4. For the HF bond, the figure clearly

shows an increase in E(R) near the F atom as the hydrogen bond forms. This effect

diminishes significantly as the distance separating the species varies from d = 0.9b0

to d = 2.0b0 (0.9b0 not shown). This change can be concisely rationalized by the

migration of electrons during the formation of a hydrogen bond. In this case, the

H atom in H-F would interact with the electron density of the donor lone pair in

MeNH2. Interacting with the nitrogen allows the electrons within the H-F bond to

migrate towards the F atom resulting in the increase in the likelihood of the centre-

of-mass of that electron pair to be close to fluorine. Conversely, when considering

the lone pair in MeNH2, we observe a decrease in the extracule deformation den-

sity near the nitrogen atom and an increase in the internuclear region between N

and the HF molecule. Unlike the H-F bond where the hydrogen-fluorine interac-

tion was weakening, here the nitrogen-hydrogen interaction is becoming stronger.

Thus, the electrons are migrating toward the hydrogen and consequently shifting

the centre-of-mass away from the nitrogen atom resulting in the observed deple-

tions in the extracule density in this area. This observed migration of electrons

from the hydrogen to the fluorine in the H-F bond combined with the donation of

electrons from nitrogen to the electron deficient hydrogen is in excellent agreement

with the resonance-covalency88,89 interpretation of hydrogen bonding (or any non-

covalent interaction) as opposed to the more traditional dipole-dipole interaction

interpretation.

To quantify the differences between the extracule densities of σHF and nN before

and after complexation, we have employed similar measures as noted previously in-
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Table 4.5: Properties of Eφ,HF-MeNH2

d (0, Ry, Rz) and ∆Eφ
d (0, Ry, Rz) for the HF bond

(σHF) and the MeNH2 lone pair (nN) LMOs.

Eφ,HF-MeNH2

d ∆Eφ
d

Molecule, φ 〈R0
yz〉 Rmax

z δyz Rmax
z

HF (d = 0.9b0), σHF 1.074 -0.305 0.148 -0.386
HF (d = 1.0b0), σHF 1.067 -0.298 0.108 -0.384
HF (d = 1.5b0), σHF 1.051 -0.283 0.027 -0.381
HF (d = 2.0b0), σHF 1.047 -0.279 0.010 -0.381
HF (no complex), σHF 1.045 -0.277 0.000 - - -
MeNH2 (d = 0.9b0), nN 0.771 0.241 0.080 -0.439
MeNH2 (d = 1.0b0), nN 0.759 0.248 0.067 -0.566
MeNH2 (d = 1.5b0), nN 0.751 0.262 0.035 -0.837
MeNH2 (d = 2.0b0), nN 0.755 0.265 0.013 -0.756
MeNH2 (no complex), nN 0.759 0.268 0.000 - - -

cluding the zeroth moment 〈R0
yz〉 ofEσHF,HF-MeNH2

d (0, Ry, Rz) andEnN,HF-MeNH2

d (0, Ry, Rz)

as well as Rmax
z of both the extracules and the extracule deformation densities. For

∆Eφ
d (0, Ry, Rz), we also define a new measure, δyz, referring to the magnitude of

the difference between the extracules:

δyz =

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∆Eφ
d (0, Ry, Rz)

∣∣∣ dRy dRz (4.19)

These metrics are all listed in Table 4.5. As before, the introduction of an electroneg-

ative species (N in MeNH2) caused an increase in 〈R0
yz〉 for the HF bond LMO. This

effect is even present in the case where d = 2.0b0; it is small, but still significant.

However, no trend is apparent in the zeroth moment for the lone pair. When ob-

serving the position of the maxima, as noted in the discussion of Figure 4.4, the

maxima shift toward the F atom for the HF bond, while they shift away from the

nitrogen atom, towards the acceptor species (HF) in the case of the MeNH2 lone

pair.
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δyz provides us with an absolute measure of the variation in the extracule density

for each LMO as a function of the intermolecular interaction. It is relatively large

when d = 0.9b0 (δyz = 0.148 and δyz = 0.080 for σHF and nN, respectively) and

decreases as the methylamine and hydrogen fluoride are separated. At d = 2.0b0, δyz

reduces to 0.010 (σHF) and 0.013 (nN) suggesting that the strength of the hydrogen

bonding interaction is related to δyz. Observing these changes in δyz can provide

an indication of the strength of the interaction between the donor and acceptor

species, especially when weighted against the energetic cost of nuclear repulsion

with decreasing d. Further work to elucidate relationships between intermolecular

interaction energies and electron pair distributions (intracular and/or extracular)

in position and momentum spaces is ongoing in our laboratory.

4.4 Conclusions

Herein, we have introduced a novel tool for the analysis of electronic structure.

While the extracule density has been studied in the past, the breadth of systems

studied has been very limited. This could be due in part to the complexity involved

in interpreting a probability density for N(N − 1)/2 pairs of electrons. By access-

ing localized regions of chemical space through the use of ER localized molecular

orbitals, we not only simplify the interpretation of the extracule density, but also

afford a quantum mechanical interpretation of “chemically intuitive" features of

electronic structure.

While this study only involved calculations performed at the HF level of the-

ory, the general trends in chemical behaviour observed are not expected to change
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through the use of correlated models. Regardless, the localized pair model does

offer the capability to perform analyses using Kohn-Sham orbitals to account for

correlation.43 Studies are presently under way in our lab detailing the effects of

correlation within localized chemical bonds for intracule densities and could easily

be implemented for the study of extracule densities.

This study has demonstrated the types of information that can be extracted from

the localized extracule density for simple systems, but one can extend these calcu-

lations to larger systems. The main obstacle to the study of large chemical systems

is the time required for such calculations. However, through the use of LMOs, this

barrier can be partially overcome by the inclusion of only atomic orbitals in close

proximity to the molecular orbital under scrutiny. While this study was conducted

with ER LMOs, one can apply the technique in an identical fashion to other local-

ized orbitals, such as the previously mentioned NBOs, IBOs, and ALMOs, as well as

any canonical molecular orbital of interest.
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Chapter 5

Developing a Theoretical Model for

Quantifying Electronegativity based

on the Position Extracule

This chapter has been reproduced (plus significant additions) with permission from

Proud, A.J.; Pearson, J.K. Can. J. Chem. 2016, 94, 1077-1081.

5.1 Introduction

Electronegativity is a ubiquitous chemical concept that is used to explain many

periodic trends from polarity and partial charges to atomic size. Additionally, an

intuitive grasp of electronegativity is paramount for the understanding of elec-

trophilic/nucleophilic regions which help guide synthetic procedures, among many

other important applications in chemistry. Interestingly, an actual definition of elec-

tronegativity has historically been somewhat elusive and there remains an appetite
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for a simple, yet theoretically rigorous definition based on quantum mechanical

properties.166 The development of the concept of electronegativity is commonly

attributed to Pauling; however, the idea is a perennial favourite among the chemi-

cal literature and has been discussed since the late 18th century.167,168 Regardless,

Pauling was the first to quantify the property and his electronegativity scale is still in

common use today.157,169 Pauling’s definition of electronegativity, χ, was based on

differences in bond dissociation energies (Ed) of two homonuclear diatomics, A−A

and B−B, compared to that of the heteronuclear diatomic, A-B. This was expressed

mathematically as

χA − χB =
1√
eV

√
EAB
d − 1

2
[EAA

d + EBB
d ] (5.1)

where the dissociation energies are expressed in terms of electron volts (eV). Since

this initial quantification of electronegativity, there have been numerous differ-

ent scales developed in an attempt to accurately quantify this highly useful prop-

erty.170–180 These scales are based on various physical properties including bond

force constants172, effective nuclear charge/covalent radii171,175, ionization poten-

tials/electron affinities170, etc. Aside from these empirical approaches, Simons et

al. developed the first purely theoretical approach to quantifying electronegativ-

ity.181 This model was based on the positions of floating spherical Gaussian orbitals.

However, Boyd and coworkers were the first to develop a theory for quantifying

electronegativity based on the topology of the electron density, ρ(r), despite what

could be considered an intuitive relationship between the two.182,183 Their work re-
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vealed a power series relationship between the Pauling electronegativity of atom or

group A (when bonded to H, thereby forming the system A−H) and a parameter,

the electronegativity factor, FA, which they define as

FA =
rH

NAρ(rc)rAH
(5.2)

Herein, rc is the position of bond critical point of the A−H bond, rAH is the bond

length, rH is the distance between the bond critical point and the hydrogen atom,

and NA is the number of valence electrons associated with atom/group A. While

this form of analysis worked quite well for both atomic and group electronegativi-

ties, it is a somewhat convoluted relationship, especially considering the deceptive

simplicity of the electronegativity concept itself. A more simple and intuitive ap-

proach would be ideal. Boyd and others recently commented on how a topological

approach would be highly useful in the determination of various properties, one of

which, was electronegativity. Boyd specifically stated the need for a more rigorous

theoretical basis for electronegativity, noting that the most likely avenue for this

basis would be through a topological approach.166

One way to approach this is to examine the topology of localized electron pair

distributions.82,83,91 The tools available in SEPDA should represent a suitable tech-

nique for the analysis of the topology of localized electron pairs in a chemical sys-

tem from a purely theoretical standpoint. The LPM was developed specifically to

analyze electron pair behaviour within covalent bonds and lone pairs (though it is

generally applicable) and we are now beginning to demonstrate the wide range of
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applications of such a technique.

In considering a localized electron pair approach, the most obvious way to ob-

serve the migration of an electron pair as a result of electronegativity differences is

through the extracule density, E(R). This way, we can monitor the change in the

centre-of-mass of the electron pair from an arbitrarily chosen origin (in the current

work, this origin corresponds to the position of the heavy-atom nucleus of the A−H

bond). Recall that this can be obtained from the LMO of interest, ψ, by

E(R) = 〈ψ|δ(R− |r1+r2|
2

)|ψ〉 (5.3)

These localized extracules can model the change in position of the electron pair

centre-of-mass as a function of the two atoms involved in the bond, thereby pro-

viding a quantitative measure of the tendency for each atom to attract a specific

electron pair to itself.

While monitoring the absolute position of the electron pair through the position

extracule may be a more intuitive approach to modelling electronegativity, analyz-

ing the relative positions of the electron pair through the position intracule could

prove fruitful as well. Much like the extracule, the position intracule for the A−H

bond can be determined from

P (u) = 〈ψ|δ(u− |r1 − r2|)|ψ〉 (5.4)

The main focus of the study presented in this chapter is on the relationship between
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electronegativity and the extracule density; however, the intracular analysis is also

provided to demonstrate that while less intuitively related to electronegativity, it

can yield significant insight as well.

For the purposes of this study, hydrogen was bonded to the atom of interest

(as it is considered to be neither electron donating, nor electron withdrawing),

thereby forming the system A−H, and representing a unique way of quantifying

the electronegativity of atom A, based purely on topological properties of electron

pairs. The systems of interest in this study are those where X is any first or second

row atom, excluding noble gases.

While the main goal is not to exactly match existing electronegativity scales, con-

sidering that most existing scales agree well with one another, strong correlations

to existing models would provide evidence for the validity of this model. Perfect

agreement with existing models is not necessary however, as existing models do

not even perfectly agree with one another. Considering so many different models

have been developed, this points to the absence of a fundamentally strong defini-

tion of electronegativity. The model presented herein represents a very simple and

intuitive model of electronegativity as it explores the purely quantum mechanical

topology of electron pair distributions.

5.2 Computational Methods

The extracule densities for the systems involved in this study were calculated us-

ing a modified version of the recurrence relation developed by Hollett and Gill for

position intracules73. Before we can describe the recurrence relation, we must first
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introduce a few variables. The recurrence relation is developed for a set of Gaussian

functions where a Gaussian primitive, a, with exponent α, is given by

|a〉 = (x− Ax)ax(y − Ay)ay(z − Az)aze−α|r−A|
2

(5.5)

where the angular momentum of a = (ax, ay, az) and the function is centred on

A = (Ax, Ay, Az). Likewise, the Gaussian primitives, |b〉, |c〉, and |d〉 are centred at

B, C, and D with exponents β, γ, and δ, respectively. Using these Gaussian type

orbitals, we can define the following variables:

ν2 =
(α + β)(γ + δ)

α + β + γ + δ
Sab = Exp

[
−αβ|A−B|2

α + β
− γδ|C−D|2

γ + δ

]
(5.6)

UE =
αA + βB

α + β
+
γC + δD

γ + δ
UP =

αA + βB

α + β
− γC + δD

γ + δ
(5.7)

The recurrence relation for both the position extracule is given by the following

8-term recursive formula:

[(a + 1i)bcd](l) =
β(Bi − Ai)
α + β

[abcd](l) +
UE
i

α + β
[abcd](l+1)

+
ai

2(α + β)
[(a− 1i)bcd](l) +

ai
2(α + β)2

[(a− 1i)bcd](l+1)

+
bi

2(α + β)
[a(b− 1i)cd](l) +

bi
2(α + β)2

[a(b− 1i)cd](l+1)

+
ci

2(α + β)(γ + δ)
[ab(c− 1i)d](l+1)

+
di

2(α + β)(γ + δ)
[abc(d− 1i)]

(l+1) (5.8)
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while that for the position intracule is:

[(a + 1i)bcd](l) =
β(Bi − Ai)
α + β

[abcd](l) +
UP
i

α + β
[abcd](l+1)

+
ai

2(α + β)
[(a− 1i)bcd](l) +

ai
2(α + β)2

[(a− 1i)bcd](l+1)

+
bi

2(α + β)
[a(b− 1i)cd](l) +

bi
2(α + β)2

[a(b− 1i)cd](l+1)

− ci
2(α + β)(γ + δ)

[ab(c− 1i)d](l+1)

− di
2(α + β)(γ + δ)

[abc(d− 1i)]
(l+1) (5.9)

These recurrence relations describe how to obtain the integral for augmenting the

angular momentum of the ith coordinate (i = x,y, or z) by one (1i). In order to

determine the required integral [(a+1i)bcd](l), one needs the fundamental integral

[0000]l which will be outlined for each electron pair density in the next section. The

derivation of this recurrence relation is provided in detail in Appendix B.

5.2.1 Extracule and Intracule Analysis

The fundamental integral for the scalar position extracule density is given by

[0000](l) =
32π5/2R2e−4ν

2R2
Sab

(α + β + γ + δ)3/2

(
∂

∂U2

)l
[e−ν

2U2

i0(4ν
2UR)] (5.10)

Similarly, for the position intracule density, the fundamental integral is

[0000](l) =
4π5/2u2e−ν

2u2Sab
(α + β + γ + δ)3/2

(
∂

∂U2

)l
[e−ν

2U2

i0(2ν
2Uu)] (5.11)
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where i0(x) is the modified spherical Bessel function of the first kind defined as

i0(x) = sinh(x)/x.

Two quantitative metrics describing the location of the electron pair centre-of-

mass, R, were chosen for the purposes of this study. They are the position of the

maximum of the extracule density, Rmax, and the first moment, or average value of

R for a particular E(R), 〈R〉, which is defined as

〈R〉 =

∫ ∞
0

R× E(R)dR (5.12)

As defined, these metrics can be problematic as they are bond length dependent.

Thus, for comparative purposes, they were determined as a fraction of the bond

length and are denoted Rmax
% and 〈R〉%. Since both metrics are determined as a ratio

with respect to the bond length, all quantities expressed throughout are unitless.

Similarly, for P (u), three metrics were explored. The two intracular analogues

of the extracular metrics were chosen, i.e. the position of the maximum of the

intracule density, umax, and the average value of u, given by 〈u〉. The intracule also

possesses another easily obtained metric with great significance. The first inverse

moment of the intracule density is given by

〈u−1〉 =

∫ ∞
0

1

u
P (u)du (5.13)

which is equivalent to the electron repulsion energy in the system. Due to the

physical significance of the moment, it was included in the analysis as well.
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For the first part of this study, all chemical systems were optimized at the Re-

stricted open-shell Hartree-Fock level of theory (ROHF for radicals) with a u6-

311G(d,p) basis set where the u indicates that the basis set was completely un-

contracted. In the second part of the study, various density functionals are assessed

to determine whether the agreement to existing electronegativity scales improve

upon the introduction of electron correlation energy.

5.3 Results and Discussion

5.3.1 Hartree-Fock Method

Extracule densities were determined for the A−H bond in each of the saturated first

and second row hydrides. Each geometry was optimized at the same level of theory

and the extracule was determined for the bond LMO describing said bond. The

extracules for these hydrides are shown in Figures 5.1 a) and 5.1 b). As expected,

as we move across the periodic table from left to right, the electron pair centre-

of-mass migrates from the H atom (i.e. R = 100%) towards the heavy atom (i.e.

a) b)
LiH
BeH2
BH3
CH4
NH3
OH2
FH

NaH
MgH2
AlH3
SiH4
PH3
SH2
ClH

2 4 6 8 10 R

0.2

0.4
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Figure 5.1: Localized extracule densities for the A−H bond in saturated a) first row
hydrides, and b) second row hydrides with insets of the A−H bond LMO of F−H
and Cl−H for illustrative purposes.
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R = 0%) due to the increase in electronegativity. This is clearly demonstrated in the

two aforementioned metrics (Rmax
% and 〈R〉%) which are tabulated below in Table

5.1. As the heavy element changes from Li to F in the first row, the position of the

center-of-mass of the electron pair migrates substantially from the H to the heavy

atom and this is captured very clearly within E(R).

A second set of calculations were carried out on a set of truncated hydrides

(i.e. the full molecular system was A−H). The remaining valence sites were left

empty and the multiplicity was adjusted accordingly. This set of truncated hydrides

was analyzed in order to determine what effect, if any, the presence of additional

hydrogen atoms had on the extracule density of the A−H bond LMO, thereby differ-

entiating between group and atomic electronegativities where the “group" consists

solely of H substituents on the heavy atom of interest (Table 5.2).

Five separate electronegativity scales were chosen for comparison in this study.

They are the Sanderson scale (I)174, the Pauling Scale (II)169, the Allred-Rochow

scale (III)175, the Allen Scale (IV)180, and the Mulliken relation (V)170. These partic-

ular scales were chosen to cover a wide range of varying definitions for electroneg-

ativity. As previously noted, Pauling’s scale was based on the dissociation energies

of homo and heteronuclear diatomics. Alternatively, Sanderson utilized a measure

of compactness of an atom while the Allred-Rochow method related electronega-

tivity to effective nuclear charge and covalent radius. The Allen Scale is based on

configuration energies, which were defined as the average one-electron energy of

a valence-shell electron in a single atom whereas Mulliken defined it simply as the

arithmetic mean of the ionization potential and the electron affinity.
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Table 5.1: Metrics of E(R) for the A−H bond LMO in saturated hydrides.

χ of atom A
System Rmax

% 〈R〉% I II III IV V
LiH 0.977 0.978 0.886 0.980 0.970 0.912 0.970
BeH2 0.895 0.873 1.810 1.570 1.470 1.576 1.540
BH3 0.835 0.805 2.275 2.040 2.010 2.051 2.040
CH4 0.745 0.732 2.746 2.550 2.500 2.544 2.480
NH3 0.450 0.664 3.194 3.040 3.070 3.066 3.040
OH2 0.378 0.607 3.654 3.440 3.500 3.610 3.680
FH 0.322 0.537 4.000 3.980 4.100 4.193 4.300
NaH 0.984 0.968 0.835 0.930 1.010 0.869 0.910
MgH2 0.943 0.909 1.318 1.310 1.230 1.293 1.370
AlH3 0.912 0.880 1.714 1.610 1.470 1.613 1.710
SiH4 0.882 0.833 2.138 1.900 1.740 1.916 2.280
PH3 0.842 0.772 2.515 2.190 2.060 2.253 2.410
SH2 0.790 0.712 2.957 2.580 2.440 2.589 2.860
ClH 0.723 0.653 3.475 3.160 2.830 2.869 3.340
R2 : Rmax

% - - - - - - 0.775 0.853 0.914 0.888 0.810
R2 : 〈R〉% - - - - - - 0.992 0.993 0.973 0.981 0.975

As previously noted, one might expect that the centre-of-mass of the electron

pair within a bond LMO would provide an indication of electronegativity. Thus,

using the two aforementioned metrics, correlations between each of the given scales

and the two metrics were sought. The data for both the saturated and truncated

hydrides are presented in Tables 5.1 and 5.2, respectively.

For both the saturated and truncated molecular systems, Rmax
% did not exhibit

particularly compelling correlations with established electronegativity values, as is

evident based on the coefficients of determination (R2) being as low as 0.775. Vi-

sual evidence for this is provided in Figure 5.2 a) which depicts the relationship

between Pauling electronegativities, χPauling and Rmax
% . This graph clearly demon-

strates the presence of three outliers which represent the F−H, O−H, and N−H
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Table 5.2: Metrics of E(R) for the A−H bond LMO in truncated hydrides.

χ of atom A
System Rmax

% 〈R〉% I II III IV V
LiH 0.977 0.978 0.886 0.980 0.970 0.912 0.970
BeH 0.896 0.885 1.810 1.570 1.470 1.576 1.540
BH 0.826 0.795 2.275 2.040 2.010 2.051 2.040
CH 0.734 0.717 2.746 2.550 2.500 2.544 2.480
NH 0.434 0.656 3.194 3.040 3.070 3.066 3.040
OH 0.373 0.604 3.654 3.440 3.500 3.610 3.680
FH 0.336 0.552 4.000 3.980 4.100 4.193 4.300
NaH 0.984 0.968 0.835 0.930 1.010 0.869 0.910
MgH 0.935 0.898 1.318 1.310 1.230 1.293 1.370
AlH 0.924 0.890 1.714 1.610 1.470 1.613 1.710
SiH 0.878 0.828 2.138 1.900 1.740 1.916 2.280
PH 0.834 0.766 2.515 2.190 2.060 2.253 2.410
SH 0.786 0.708 2.957 2.580 2.440 2.589 2.860
ClH 0.723 0.653 3.475 3.160 2.830 2.869 3.340
R2 : Rmax

% - - - - - - 0.776 0.851 0.913 0.886 0.809
R2 : 〈R〉% - - - - - - 0.989 0.987 0.968 0.975 0.969

bonds. These outliers are present for all 5 electronegativity scales and are the ma-

jor factor for the poor relationships. Upon the removal of these outliers from the

dataset, theR2 value for the relationship with χPauling improved from 0.853 to 0.965,

along with substantial improvements in the fits for the other four scales.

As the average value of R is more indicative of the full distribution than simply

the maximum, one might expect that the relationship between this property and

electronegativities would be better. This is strongly supported by the data as when

considering 〈R〉%, the correlation between it and established electronegativity met-

rics increased significantly and the F−H, O−H, and N−H bonds were no longer

outliers. For this metric, the R2 values ranged from 0.969-0.993, with the relation-

ship for χPauling depicted in Figure 5.2 b). As evidenced by this plot, there are no
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Figure 5.2: Correlation between Pauling electronegativities and a) 〈R〉%, and b)
Rmax

% for the first and second row hydrides.

points within the dataset that deviate significantly from the linear relationship.

What is more enlightening is to look at the differences between the metrics for

the saturated and truncated hydrides. While systems with formulae A−H and A−H2

are obviously very similar between these two sets, molecules with more valence

sites begin to differ significantly in terms of our two metrics. This suggests that this

method would be highly useful for defining group electronegativities, and based on

the strong correlations with current electronegativity scales, the accuracy of such an

approach would be quite high. One might be surprised that better correlations were

obtained for the saturated molecular systems as opposed to the truncated hydrides

despite the presence of additional hydrogen atoms that could distort the extracule

density. However, as hydrogen atoms are considered as the reference for electron

donating versus electron withdrawing, they would be expected to have minimal

effects on the extracule density. They simply serve to saturate all valence sites on

the heavy atom. Furthermore, the presence of radicals and or paired electrons that

would otherwise be involved in bonding interactions is sure to introduce some error
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into the modelling of the systems. Thus, we propose that saturating all valence sites

of atom A with hydrogen atoms is a more accurate way to model the electronega-

tivity for said atom. Conversely, if one were to substitute the hydrogen substituents

with other functional groups, one could easily extend this method to determine

electronegativities for the corresponding chemical group (e.g. -CH3 vs -CH2OH or

-CH2F).

In comparison to the topological method of Boyd and Edgecombe, which had

a correlation coefficient of 0.991 (for χPauling) using the power series relationship

between χA and FA, our approach works very well (R2 = 0.993). Considering

its simplicity, as one only need consider the average distance of the electron pair

centre-of-mass from the atom of interest, this model is a simple, intuitive, and accu-

rate approach to quantifying, perhaps even defining, electronegativity from a purely

theoretical standpoint.

As the Pauling scale is so popular, many other electronegativity methods are

modified to conform to the values of this scale. This is often done by scaling the

electronegativity values of the new method to fit within the upper and lower bounds

of the Pauling method (F as the upper bound and Cs or Fr as the lower bound). Ap-

plying a similar approach here, we use the linear relationship between χPauling and

〈R〉% (as shown in Figure 5.2 b) to develop our own electronegativity scale, χLPM.

The electronegativity values obtained from this approach are compiled below in Ta-

ble 5.3. The largest deviations in the χLPM values with respect to the Pauling values

were for fluorine and sulfur at approximately 0.14 while the smallest deviation was

observed for sodium (0.001). Regardless, the mean absolute deviation for the set of
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Table 5.3: χLPM of the first and second row atoms

χLPM by group
System 1 2 13 14 15 16 17
First row 0.866 1.596 2.069 2.577 3.050 3.447 3.833
Second row 0.929 1.341 1.548 1.876 2.297 2.721 3.130

14 atoms was only 0.054. Furthermore, considering we have strong agreement be-

tween our model and the five electronegativity scales (that are significantly different

in origin) studied herein, our model demonstrates strong potential for considera-

tion as a novel, purely theoretical, method for describing electronegativity based on

a novel topology of the electron pair density of single electron pairs.

As the truncated hydrides did not correlate as well as the saturated systems,

only the saturated systems were analyzed with respect to the position intracules.

As before, all first and second row hydrides were geometry optimized at the HF/u-

6-311G(d,p) level of theory and the localized molecular orbitals were determined

using the Edmiston-Ruedenberg model. P (u) was then calculated for each of the

saturated hydrides for the A−H bond LMO. The results of these calculations are

tabulated below in Table 5.4

Table 5.4: R2 values for metrics of P (u) for the A−H bond LMO in saturated hy-
drides.

Metric I II III IV V
umax 0.949 0.960 0.965 0.972 0.931
〈u〉 0.925 0.911 0.895 0.925 0.887
〈u−1〉 0.888 0.938 0.973 0.971 0.912
umax
% 0.005 0.003 0.000 0.003 0.024
〈u〉% 0.001 0.000 0.001 0.000 0.006
〈u−1〉% 0.808 0.875 0.933 0.915 0.826
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The data demonstrates that better correlations to existing electronegativity scales

were observed for the extracule densities. As discussed, this is not overly surprising

considering that the extracule describes more absolute position information while

the intracules only contain relative position information. Nonetheless, strong cor-

relations are still observed for each of the metrics studied for the intracule density.

Unlike forE(R), the metrics for P (u) perform far better when they are not scaled

by the bond length. One possible reason for this is the relative nature of the posi-

tion information. With the extracule density, observing how far the density shifts

towards the electronegative atom will be significantly affected by the distance be-

tween the two bonded atoms; however, it should not be surprising that the relative

positions of the electrons are not affected by this bond distance. Thus, scaling these

metrics by this bond distance appears to remove any correlation between the met-

rics (especially the average and maximum positions of u) and the electronegativity

scales.
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Figure 5.3: Localized intracule densities for the A−H bond in saturated a) first row
hydrides, and b) second row hydrides.
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5.3.2 Density Functional Theory

As discussed in the introductory chapter of this thesis, density functional theory

(DFT) is a method that utilizes the one-electron density, ρ(r) as opposed to the

molecular wavefunction, Ψ(r1, . . . , rN). Theoretically, this method is exact is the

proper functional is known; however, this is clearly not the case and there have

been numerous functionals developed over the years to try and obtain better re-

sults by obtaining the exchange and correlation energies to greater accuracy. In

the remainder of this study on electronegativity, we decided to explore the effects

of using density functional theory to observe whether greater correlations to elec-

tronegativity scales were obtained by using these more accurate methods.

For the purposes of this study, four separate DFT methods were chosen: BLYP,

B3LYP, B3PW91, and M06-2X. While any of the countless DFT methods could have

been studies, these four were specifically chosen due to the availability of electronic

energies for each of the first and second row hydrides in the NIST database184 and

compatibility with the GAMESS software package which is used to calculate the

LMOs.

To assess the accuracy of each of the four DFT methods, two separate metrics

were used, both related to electronic energies. First, the mean absolute error (MAE)

of each method was determined by comparing the energy of each hydride calculated

by that method to the exact energy (defined as CCSD(T)/cc-pCVTZ). Second, as it

is important to accurately describe the entire set under investigation (in this case,

all of the first and second row hydrides), a second metric was employed that con-
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Table 5.5: Accuracy metrics for the four DFT methods and HF.

Metric HF BLYP B3LYP B3PW91 M06-2X
MAE (Eh) 0.4183 0.0717 0.0519 0.0596 0.0556
MAEmax (Eh) 1.1224 0.2117 0.1612 0.1645 0.1773
s (Eh) 0.2003 0.0587 0.0429 0.0430 0.0478
RSD 47.89% 81.81% 82.53% 72.12% 86.06%

sidered the largest absolute error encountered for each method. This metric, which

we will call MAEmax, is defined as

MAEmax = MAE + Max(|Eexact
i − EDFT

i ) (5.14)

where i is an index relating to each of the hydrides in the set.

The results of the accuracy tests on each of the DFT methods (as well as those

from the HF method) are provided in Table 5.5. Also in this table are the stan-

dard deviation, s, and the relative standard deviation, RSD, which will be discussed

later in this section. Based on both MAE and MAEmax, B3LYP is the most accurate

functional on this test set. Based on MAE, the accuracy decreases in the order

B3LYP > M06-2X > B3PW91 > BLYP > HF

This order is slightly different when considering the alternative metric, MAEmax,

where B3PW91 exhibits a lower max error resulting in a lower MAEmax. The rest of

the set remains in the original order.

The extracules for all of the saturated hydrides were then calculated and the

results are displayed in Figure 5.4. Visually, there are no noticeable differences

144



2 4 6 8 10 R

0.2

0.4

0.6

0.8
EHRL

LiH
BeH2
BH3
CH4
NH3
OH2
FH

LiH
BeH2
BH3
CH4
NH3
OH2
FH

LiH
BeH2
BH3
CH4
NH3
OH2
FH

LiH
BeH2
BH3
CH4
NH3
OH2
FH

NaH
MgH2
AlH3
SiH4
PH3
SH2
ClH

NaH
MgH2
AlH3
SiH4
PH3
SH2
ClH

NaH
MgH2
AlH3
SiH4
PH3
SH2
ClH

NaH
MgH2
AlH3
SiH4
PH3
SH2
ClH

a)

b)

c)

d)

2 4 6 8 10 R

0.1

0.2

0.3

0.4

0.5

0.6
EHRL

2 4 6 8 10 R

0.2

0.4

0.6

0.8
EHRL

2 4 6 8 10 R

0.1

0.2

0.3

0.4

0.5

0.6

EHRL

2 4 6 8 10 R

0.2

0.4

0.6

0.8
EHRL

2 4 6 8 10 R

0.1

0.2

0.3

0.4

0.5

0.6

EHRL

2 4 6 8 10 R

0.2

0.4

0.6

0.8
EHRL

2 4 6 8 10 R

0.1

0.2

0.3

0.4

0.5

0.6

EHRL

Figure 5.4: Localized extracule densities for the A−H bond in saturated first row
(left) and second row (right) hydrides calculating using a) BLYP, b) B3LYP, c)
B3PW91, and d) M06-2X.
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Table 5.6: Coefficient of determination comparison for each computational method.

Metric Scale HF BLYP B3LYP B3PW91 M06-2X

Rmax
%

I 0.775 0.785 0.785 0.756 0.788
II 0.853 0.861 0.862 0.833 0.864
III 0.914 0.920 0.922 0.902 0.924
IV 0.888 0.895 0.896 0.879 0.898
V 0.810 0.822 0.823 0.795 0.823

〈R〉%

I 0.992 0.984 0.986 0.973 0.991
II 0.993 0.983 0.987 0.975 0.988
III 0.973 0.958 0.963 0.966 0.963
IV 0.981 0.967 0.972 0.982 0.975
V 0.975 0.978 0.980 0.970 0.980

for the position extracules for each of the DFT methods. However, there are some

minor quantitative differences. As before, Rmax
% and 〈R〉% were calculated for each

of the extracules. The coefficients of determination between these metrics and the

five electronegativity scales are tabulated below in Table 5.6. In the table, the

electronegativity scale (rows) and computational method (columns) that had the

strongest overall correlation to each metric are highlighted in green.

Based on the methods that correlate best with existing electronegativity scales

(M06-2X for Rmax
% and HF for 〈R%〉), there does not appear to be a connection

between the accuracy of the model for predicting electronic energies and the rela-

tionship to electronegativity. One could point to the lower RSD for the HF method

to suggest why it performs so well, but this would be a loose connection. Further

investigation is required to determine why certain methods perform better than

others. Nonetheless, all of these relationships are based off data from existing elec-

tronegativity scales, which, based on the number of different scales in existence,

are flawed in their own right. Thus, even though these DFT methods did not agree
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with existing scales better than did the HF method, this is not to say that they do not

provide a more accurate theoretical description of the property of electronegativity.

5.4 Conclusions

We have applied a localized position intracule and extracule analysis to the set of

first and second row hydrides in an attempt to develop a relationship between the

topology of electron pair distributions and the concept of electronegativity. The

localized extracule density was an obvious choice for application to electronega-

tivities based on the absolute electronic position information contained within the

distribution. We have demonstrated excellent correlations to several pre-existing

electronegativity scales and thus, propose that the aforementioned approach could

be used as a novel method for defining electronegativity in a simple, intuitive, and

accurate way based on topological properties of the electron pair density. While the

results obtained from P (u) weren’t quite as good as those from E(R), strong cor-

relations were still obtained. Analysis with various DFT functionals did not appear

to increase the relation to existing electronegativity scales despite the increased

accuracy of the models. This specific study illustrates another useful application

of the SEPDA package in addition to those that we have highlighted in previous

reports.82,83,91
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Chapter 6

Using the Single Electron Pair

Distribution Analyzer to Describe the

Nature of the Hydrogen Bond

This chapter has been reproduced with modifications with permission from Proud,

A.J.; Sheppard, B.J.H.; Pearson, J.K. Phys. Chem. Chem. Phys. 2015, 17, 20194-

20204. All work reported in this chapter was performed by Proud; however, some

of the intracule calculations had been a repetition of work conducted by Sheppard.

It was repeated to ensure consistency between the extracule and intracule data.
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6.1 Introduction

‘. . . under certain conditions an atom of hydrogen is attracted by rather strong forces

to two atoms, instead of only one, so that it may be considered to be acting as a bond

between them. This is called the hydrogen bond.’ - Linus Pauling185

While our understanding of the hydrogen bond has improved significantly since

it was defined by Pauling, his original definition does accurately describe the unique

interaction. A hydrogen atom, while covalently bound to one electronegative atom,

may interact with a second atom within a separate molecule or a separate moiety

within the same molecule. The strength of this interaction depends on various

factors including molecular geometries and electrostatics but can vary from 0.5-45

kcal/mol.88

Hydrogen bonding is highly prevalent in nature through its extensive involve-

ment in the secondary structure of proteins, the stabilization of the double helix

structure of DNA, and in many of the remarkable properties of H2O. It was first

described in the 1920s and its definition continues to change as our understanding

of the interaction improves.89 While it was once largely considered an electrostatic

interaction, recently a resonance-covalency model has begun to emerge as a more

complete characterization.88,89

As hydrogen bonding involves the through-space interaction of a lone pair of

electrons of a heavy atom (Y) with an electron deficient neighbouring hydrogen

(H−X), observing the changes in electron positions and electron pair separations

represent intuitive ways to analyze and further characterize hydrogen bonding in-
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teractions. While the wavefunction contains all necessary information regarding

the positions of all N electrons for this purpose, dealing with such vast amounts of

information is not generally tractable. However, as noted, hydrogen bonds primar-

ily involve interactions between two localized sets of electron pairs: those involved

in the covalent X−H bond, σXH , of the hydrogen bond donor and those in the

lone pair of atom Y, nY , of the hydrogen bond acceptor. Thus, this interaction can

be simplified by analyzing individual electron pairs. To do so, we can utilize the

SEPDA package, notable the position intracule and extracule. For the purposes of

this hydrogen-bonding analysis, it would be fruitful to study the 3-D (or 2-D) po-

sition extracule as opposed to the scalar counterpart. While this does significantly

increase the computational cost of the calculations, it should afford a richer analysis

of the hydrogen bonding interaction making this added time worthwhile.

By using LMOs, we can directly analyze the electron pair behaviour in molecu-

lar systems, and specifically the hydrogen bonding interaction (i.e. the σXH and nY

orbitals) within the present work to observe how the centre-of-mass of the electrons

described by these LMOs changes as the hydrogen bonding complex forms. Subse-

quently, we may also explore how such a density differs within different hydrogen

bonding environments.

6.2 Computational Methods

Localization algorithms can be applied to any single determinant method, such

as Hartree-Fock theory, which we explored in previous work describing the use

of extracules in localized space,91 or as will be explored here, Kohn-Sham (KS)
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DFT. What remains to be seen is whether analyzing a property of electron pairs is

feasible using a technique which only considers the one-electron density, ρ(r). The

traditional electron density is defined as

ρ(r) =

∫
|Ψ(x,x2, . . . ,xN)|2dsdx2 . . .dxN (6.1)

A two-electron, single determinant wave function can be obtained from a single

localized molecular orbital, ψk. Using this definition in place of the molecular wave

function in equation (6.1), one obtains the spin-reduced two-electron density for

the pair of electrons described by that specific LMO, ρk(r1, r2). For a single localized

molecular orbital, no exchange interactions exist. In this scenario and defining the

electron density for the specific LMO, k, as was done for ρk(r1, r2), the localized

pair density is given by:

ρk(r1, r2) = ρk(r1)ρk(r2) (6.2)

In doing so, Coulombic electron correlation effects are being ignored. This omission

is implicitly accounted for to a certain extent through the correlation functional, but

it is still an approximation.

Recall that the extracule density is obtained from the pair density by the follow-

ing relationship:

E(R) =

∫
ρ(r1, r2)δ(R− |r1+r2|

2
)dr1 dr2 (6.3)
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Substituting equation (6.2) into (6.3) yields

E(R) =

∫
ρk(r)ρk(2R− r)dr (6.4)

If we define the molecular orbitals as a linear combination of Gaussian primitives,

we obtain:

E(R) =
K∑

µνλσ

cµ,kcν,kcλ,kcσ,k(µνλσ)E (6.5)

where cµ,k is the atomic orbital coefficient describing how the contribution of basis

function φµ to the LMO of interest, ψk. These integrals can be determined from

the recurrence relation developed by Thakkar and Moore75 and the fundamental

integral which was previously defined as

(µνλσ)E =

(
4π

ζ + η

)3/2

exp
[
−ζη(2R−P−Q)2

ζ + η

]
(6.6)

× exp
[
−αβ(A−B)2

ζ
− γδ(C−D)2

η

]
TxTyTz

The value of the extracule density was calculated at various points defined by

the Mura-Knowles grid that was adapted to extend in the negative directions of the

Cartesian coordinates. The grid was overlaid on the yz-plane and consisted of 151

points (75 in each direction as well as the origin). For the purposes of this study,

the two atoms involved in the bond (X-H) containing the hydrogen atom as well

as the atom containing the lone pair (Y) that will participate in hydrogen bonding

are all positioned in the yz-plane to ensure adequate sampling of the environments

around these atoms.
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To quantify the extracules, there were a number of metrics employed. Since

slices were chosen as opposed to all of 3-D space, the extracule did not integrate to

unity (i.e. number of electron pairs; a necessary condition for single orbitals), and

instead is equal to the value of E(Ryz) integrated over the full slice. We define this

metric as the zeroth moment, 〈R0
yz〉, which is defined as

〈R0
yz〉 =

∫ ∞
−∞

∫ ∞
−∞

E(Ryz)dRydRz (6.7)

Similarly, as was done previously, we can look at the first moment of Rz to deter-

mine the average value in the bond axis direction (z-axis). This is evaluated as

〈Rz〉 =
1

〈R0
yz〉

∫ ∞
−∞

∫ ∞
−∞

Rz × E(Ryz)dRydRz (6.8)

The final quantifiable properties of interest in this study are the position of the

extracule density maximum in the bond axis, Rmax
z , and the value of the function at

this maximum, E(Rmax
yz ).

Each of these properties can be calculated for a hydrogen bonding complex with-

out needing the extracule density for either the X−H or Y molecule by itself. How-

ever, one can imagine that comparing these complexes to the molecules in the ab-

sence of the hydrogen bonding interaction would be rather insightful. To do this, we

explore the extracule deformation density, ∆Eφ
d (R), for orbital φ which is defined

as

∆Eφ
d (R) = Eφ,complex

d (R)− Eφ,molecule(R) (6.9)
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The deformation density is useful in demonstrating the effect on the extracule den-

sity as the hydrogen bonding interaction forms and how it changes as the distance

between the two molecules increases. The main property of interest involving the

deformation density is δR which is the magnitude of the difference between the

complex and single molecule. This is defined as

δR =

∫ ∞
−∞

∫ ∞
−∞
|∆φ

dE(Ryz)|dRydRz (6.10)

All geometries for the hydrogen bonding complexes were obtained from Hobza’s

X40x10 and S66x8 data sets.151,186 Single-point energy and orbital localization cal-

culations were performed on each of these geometries at the M06-2X/u6-311G(d,p)

level of theory (u indicates that the basis set was completely uncontracted) using

the GAMESS software package.20 The Mathematica 8 software package was utilized

to interpolate the data obtained from grid-point evaluation for visual representation

and further analysis.156 Atomic units are used throughout this chapter unless oth-

erwise stated.

Additional calculations utilizing the "Atoms in Molecules" (AIM) technique were

carried out on these systems to compare the capabilities of extracules in the lo-

calized pair model to AIM theory with regards to interpreting hydrogen bonding

interactions. Past research152,153,187–190 has shown the utility of AIM theory in the

study of hydrogen bonding interactions and thus, it should represent a good case

for comparing the results of our novel approach.
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6.3 Results and Discussion

For the purpose of this study, 28 hydrogen bonding complexes were chosen from the

X40x10 and S66x8 data sets.151,186 For each of the systems the extracule, E(Ryz),

density was calculated for the σXH LMO of the proton donor individually and in the

X−H...Y hydrogen bonding complex at H...Y separations of 0.90d0, 0.95d0, 1.00d0,

1.05d0, 1.10d0, 1.25d0, 1.50d0, and 2.00d0, where d0 is the geometry optimized dis-

tance between the two atoms (see Figure 6.1). Likewise, for nY, E(Ryz) was calcu-

lated for the complex at each of the separations listed above, as well as that for the

isolated proton acceptor, Y.

Figure 6.1: Pictorial representation of the various geometries for each of the hydro-
gen bonding complexes.

6.3.1 Extracule densities for σXH LMOs

When a hydrogen bond forms, the nY LMO interacts with the electron deficient H

atom in the X−H molecule. In doing so, one expects that the electron pair, and thus

the centre-of-mass, within the X−H bond would migrate towards the X atom due

to the donation of election density from the lone pair to the hydrogen. This effect

can be observed through both 〈Rz〉 and Rmax
z . In the present molecules, the X−H

bond midpoint is placed at the origin, with X in the negative z-direction and the

hydrogen in the positive direction. The data presented in Table 6.1 clearly show

that as Y approaches the X−H molecule, the average value of Rz shifts towards the
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Table 6.1: 〈Ryz〉 for the σO−H in MeOH-Y complexes

System 0.90d0 0.95d0 1.00d0 1.05d0 1.10d0 1.25d0 1.50d0 2.00d0 ∞
MeOH-CH3Cl 0.0184 0.0223 0.0253 0.0275 0.0291 0.0319 0.0345 0.0359 0.0365
MeOH-CH3F 0.0102 0.0151 0.0190 0.0220 0.0244 0.0287 0.0324 0.0349 0.0365
MeOH-MeNH2 -0.0278 -0.0194 -0.0123 -0.0063 -0.0012 0.0098 0.0195 0.0274 0.0323
MeOH-MeOH 0.0043 0.0117 0.0178 0.0229 0.0271 0.0355 0.0424 0.0478 0.0511
MeOH-Peptide -0.0091 -0.0008 0.0061 0.0120 0.0170 0.0275 0.0375 0.0461 0.0495
MeOH-Pyridine -0.0273 -0.0184 -0.0109 -0.0027 0.0019 0.0121 0.0216 0.0283 0.0329
MeOH-H2O 0.0044 0.0111 0.0166 0.0211 0.0247 0.0321 0.0384 0.0435 0.0469

X atom, as predicted. This effect is seen universally across the data set as shown in

the table and in the Electronic Supplementary Information (ESI). The presence of

the Y lone pair causes a small but significant migration of the centre-of-mass in the

σX-H bond towards the X atom. This effect is also observed in Rmax
z which is included

in the ESI.

In our previous work introducing the localized extracule, we noted a few trends

in 〈R0
yz〉.91 First, the primary effect was that by introducing electronegative species

to the neighbouring chemical environment, increases in 〈R0
yz〉 were observed in

nearly all cases. This signifies that the value of the extracule density, E(R), in

the plane of the hydrogen bond increases as the electronegativity of neighbouring

substituents increases indicating a migration of the centre-of-mass density towards

the bonding region. The only exceptions were observed in systems where a second

row element was bonded to a first row element. A similar trend is observed for these

hydrogen bonding systems (Table 6.2). All systems exhibit an increase in 〈R0
yz〉 as

the proton acceptor Y is drawn closer to the donor species, with the exception of

systems where the donor contains an X−H bond with X=Cl,Br.

Within the context of AIM theory, an electron density analysis technique, values

of the electron density at bond critical points (ρ(rc)) have yielded direct relation-
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Table 6.2: 〈R0
yz〉 for the σX-H bond in a few select systems

System 0.90d0 0.95d0 1.00d0 1.05d0 1.10d0 1.25d0 1.50d0 2.00d0 ∞
HBr-MeOH 0.6620 0.6632 0.6640 0.6646 0.6651 0.6663 0.6674 0.6679 0.6682
HCl-MeNH2 0.7176 0.7191 0.7205 0.7217 0.7227 0.7247 0.7262 0.7272 0.7271
HCl-MeOH 0.7340 0.7347 0.7351 0.7353 0.7356 0.7368 0.7368 0.7368 0.7368
HF-MeNH2 1.0749 1.0712 1.0681 1.0655 1.0631 1.0576 1.0526 1.0498 1.0480
HF-MeOH 1.0724 1.0697 1.0673 1.0652 1.0634 1.0597 1.0572 1.0553 1.0541
MeNH2-MeNH2 0.8417 0.8408 0.8401 0.8395 0.8391 0.8385 0.8380 0.8374 0.8371
MeNH2-MeOH 0.8413 0.8406 0.8401 0.8397 0.8394 0.8389 0.8384 0.8378 0.8375

ships to hydrogen bond strengths. This led us to explore whether any of the metrics

employed herein would show similar predictive capacity. Figure 6.2 depicts the

relationship between hydrogen bond strengths to 〈R0
yz〉 for each of the systems at

equilibrium (i.e. d = 1.00d0). While there does not appear to be any mathematical

relationship, the graph clearly classifies the systems into 5 separate classes where

the interaction energy may vary, but the zeroth moment is effectively unchanged.
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Figure 6.2: Classification of hydrogen bonding systems based on 〈R0
yz〉 of the σX-H

LMO and hydrogen bonding strengths.
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Each class corresponds to a particular X atom in the X−H bond. In increasing order

of 〈R0
yz〉, these classes represent Br−H, Cl−H, N−H, O−H and F−H bonds. This

ordering agrees with the previously noted relationship between 〈R0
yz〉 and elec-

tronegativity. The lone system containing Br (the lowest electronegativity) falls at

the lower end of 〈R0
yz〉 values, while increases in electronegativity lead to an in-

crease in the value of the metric.

The extracule deformation density is a useful visual tool as it highlights all of

the trends that have been discussed thus far. Figure 6.3 illustrates ∆Eφ
1.00d0

(Ryz)

for the σN-H bond and nY LMOs in the MeNH2-MeOH hydrogen bonding complex at

its equilibrium geometry. This figure clearly demonstrates that the centre-of-mass

in the σN-H bond migrates away from the hydrogen atom towards the X atom. This

migration is caused by the shift in the centre-of-mass from the lone pair, nO towards
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Figure 6.3: Contour plot of ∆EσN-H
1.00d0

(Ryz) and ∆EnO
1.00d0

(Ryz) in MeNH2-MeOH de-
picting the change in the extracule density in the presence of the proton acceptor,
MeOH (dashed lines signify negative contours while solid lines signify the positive
contours).
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the hydrogen in X-H during the formation of the hydrogen bond. This agrees with

the previous observation that both 〈Rz〉 andRmax
z shift towards X when the hydrogen

bond forms and as the hydrogen bonding distance decreases.

In comparing Figures 6.4(a) and (b), it is noted that as the two molecules in-

volved in the hydrogen bonding interaction separate, the extracule of the complex

begins to resemble that of the single molecule in the absence of hydrogen bonding.

The degree to which the extracules differ can be measured using δR. This property

is tabulated in Table 6.3 for the complexes where water is the donor species (data

for all systems can be found in the ESI). These data clearly show that a greater

difference in the extracule density is observed when the two species are in close

proximity. This difference tails off significantly as the systems reach a separation

of 2.00d0. This again suggests a propensity for the localized extracule to offer, at

minimum, qualitative insight into the strengths of the non-covalent interactions.

For a given complex, analysis of each quantitative metric described in the com-

putational section demonstrates a strong quadratic relationship with respect to in-

teraction energy (Figure 6.5). While it is expected that this relationship would not

hold for larger separations, encountering such interactions in real chemical sys-

tems would be rare. Over the 28 systems analyzed, coefficients of determination

Table 6.3: δR for φ = σO-H in the H2O−Y subset of systems.

System 0.90d0 0.95d0 1.00d0 1.05d0 1.10d0 1.25d0 1.50d0 2.00d0
H2O-MeNH2 0.0866 0.0735 0.0626 0.0535 0.0459 0.0298 0.0162 0.0060
H2O-MeOH 0.0677 0.0564 0.0472 0.0397 0.0336 0.0213 0.0114 0.0043
H2O-Peptide 0.1205 0.1109 0.1036 0.0981 0.0938 0.0860 0.0811 0.0795
H2O-Pyridine 0.1156 0.1057 0.0983 0.0927 0.0885 0.0812 0.0772 0.0762
H2O-H2O 0.0149 0.0137 0.0108 0.0093 0.0081 0.0055 0.0031 0.0011
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(R2) values ranged from 0.9113-0.9999. However, with the exceptions of H2O-

Pyridine (R2=0.9113), H2O-Peptide (R2=0.9257), and Peptide-H2O (R2=0.9717)

complexes, all other systems had R2 values greater than or equal to 0.9941. In the

case of the first two complexes, there may be some other form of interaction that

is occurring in these systems that is causing these deviations from the quadratic

relationship while the fit of the third appears to be distorted by a single data point.
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Figure 6.5: Relationship between δR, 〈R0
yz〉, Rmax

z , and 〈R′z〉 versus hydrogen bond
strength for H2O-H2O, H2O-MeNH2, and H2O-MeOH.

As in the case of 〈R0
yz〉, we also explored the possibility of a relationship existing

between δR for each of the systems when d = 1.00d0. This relationship is depicted

in Figure 6.6. The two points in red represent the H2O-Pyridine and H2O-Peptide

complexes. When these two points are removed, the coefficient of determination
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Figure 6.6: Relationship between hydrogen bond interaction strength, Eint versus a)
δR, and b) the density at the bond critical point, ρ(rc), for all systems at equilibrium.

improved from 0.7137 to 0.8411. While this may not appear to have much pre-

dictive power, it is on par with bond-critical-point (BCP) density analysis of AIM

theory (R2=0.8282). Figure 6.6 b) demonstrates this analysis. Unlike the case of

the extracules, there are no distinct outliers in this analysis that could lead to an

improvement in the R2 value. Past studies have shown that BCP densities are strong

predictors for hydrogen bonding152,153,187–190 suggesting that the variability in this

data set makes predictions rather difficult. The fact that our technique performs as

well as it does for this data set is a strong indicator of its potential in the analysis of

hydrogen bonded complexes and non-covalent interactions in general.

6.3.2 Extracule densities for nY LMOs

As previously noted, there are two pairs of electrons involved in the hydrogen bond-

ing interaction: the σX-H bonding pair and the nY lone pair. The same analyses that

were carried out in the previous section were also performed on the lone pair LMOs.
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While analyses were carried out for both the geometry optimized structures and

the varying separation distances between the hydrogen bond donor and acceptor,

only the former will be discussed here as nothing of significance was obtained from

the latter that hasn’t been previously discussed.

The results of this analysis are tabulated below in Table 6.4. As before, the

two outliers, H2O-Peptide and H2O-Pyridine were omitted from the analysis. Much

like for the σX-H bond LMO, the only metric that had any reasonable correlation to

hydrogen bond interaction strengths, Eint, was δR. For the lone pairs, the coefficient

of determination decreased to 0.5705 down from 0.8411 from the X-H bond LMOs,

representing a significant decrease in predictive potential.

Unfortunately, these localized lone pairs proved to be far less predictive and thus

we conclude that it is the σX-H bond that is most important when characterizing

the hydrogen bonding interactions. All other data, including those for the various

separation distances, are tabulated in Appendix C with other relevant information

from this chapter.
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Table 6.4: Summary of the various metrics for each hydrogen bonding complex at
equilibrium and the coefficient of determination for the relationship to Eint.

System δR 〈R0
yz〉 Rmax

z E(Rmax
yz ) 〈Ryz〉

AcNH2-AcNH2 0.0534 0.8742 0.4259 0.8134 0.4152
AcOH-AcOH 0.0806 0.8803 0.4263 0.8056 0.3958
CCl3OH-H2O 0.0700 0.8775 0.4255 0.8204 0.3814
CF3OH-H2O 0.0577 0.8783 0.4484 0.8288 0.4158
HBr-MeOH 0.0116 0.3683 0.8641 0.2706 0.7525
HCl-MeNH2 0.1073 0.7585 0.3142 0.4800 0.2210
HCl-MeOH 0.0122 0.3692 0.8641 0.2712 0.7508
HF-MeNH2 0.0790 0.7543 0.3165 0.4904 0.2748
HF-MeOH 0.0147 0.3714 0.9695 0.2688 0.7501
MeNH2-MeNH2 0.0264 0.7144 0.3891 0.4779 0.3957
MeNH2-MeOH 0.0250 0.8782 0.4296 0.8611 0.4128
MeNH2-Peptide 0.0185 0.7149 0.5741 0.6585 0.5943
MeNH2-Pyridine 0.0205 0.7203 0.6288 0.5370 0.5808
MeOH-CH3Cl 0.0138 0.6300 0.0604 0.2917 0.2101
MeOH-CH3F 0.0314 1.0504 0.5027 1.3663 0.5051
MeOH-MeNH2 0.0478 0.7466 0.3270 0.4953 0.3126
MeOH-MeOH 0.0365 0.8466 0.4297 0.7972 0.4327
MeOH-Peptide 0.0384 0.8091 0.4279 0.7496 0.4213
MeOH-Pyridine 0.0439 0.7299 0.3391 0.5320 0.2347
MeOH-H2O 0.0347 0.8580 0.4411 0.8132 0.4377
Peptide-MeNH2 0.0420 0.7394 0.3333 0.4958 0.3144
Peptide-MeOH 0.0067 0.3193 0.8802 0.2611 0.8330
Peptide-H2O 0.0208 0.8760 0.6186 0.8517 0.6165
H2O-MeNH2 0.0442 0.7462 0.3365 0.4964 0.3249
H2O-MeOH 0.0375 0.8680 0.4276 0.8317 0.4133
H2O-H2O 0.0354 0.8768 0.4346 0.8445 0.4183
R2 0.5705 0.0002 0.0104 0.0251 0.0736

6.3.3 Subsets of Data

The results shown in Figure 6.2 suggest that it might be of interest to examine

the data set based on the atom X for the σX-H bond LMO and atom Y for the nY

LMOs. Considering the full data set (minus the outliers), the only atoms, X and

Y, that represent a reasonable sample size are the nitrogen and oxygen atoms. For

the bond LMOs, there are a total of 8 complexes where X=N and 13 where X=O.
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Similarly, for the lone pair in the acceptor species, there exists 9 systems where

Y=N and 15 where Y=O. Thus, the relationship between the 5 metrics for each of

these subsets to Eint were determined and are summarized in Table 6.5.

In this table, numbers shown in green indicate an improved relationship to Eint

while those in red indicate a weaker relationship. For the σX-H bond LMOs, consid-

ering the subsets led to significantly stronger correlations in nearly all cases. In fact,

in many cases, especially for Rmax
z , for the full data set, there is no relationship to

hydrogen bond strengths, but very strong correlations when considering the iden-

tity of the atom X. The one exception is δR. The correlation to Eint for this metric is

quite strong for the full set but only decreases marginally for the subsets.

As for the nY LMOs, aside from δR no strong relationships were observed for

any metrics and any increases or decreases in the R2 value are not of significance.

However, once again, R2 for δR decreased for Y=O. It is probable that this is caused

by the positioning of the lone pairs of oxygen. In many cases, the lone pair is

not oriented exactly at the hydrogen bond donor as it often is for Y=N, and thus,

considering a slice of E(R) could lead to deficiencies for these systems.

Table 6.5: Coefficients of determination for the relationship between each of the
metrics and Eint for subsets of the full data set.

δR 〈R0
yz〉 Rmax

z E(Rmax
yz ) 〈Ryz〉σX-H

X=All 0.8411 0.1022 0.2181 0.1633 0.3471
X=N 0.8172 0.0283 0.8416 0.4280 0.6263
X=O 0.5835 0.4495 0.8427 0.6499 0.7970
nY

Y=All 0.5705 0.0002 0.0104 0.0251 0.0736
Y=N 0.7631 0.0853 0.3477 0.0020 0.4330
Y=O 0.3590 0.0003 0.0003 0.0041 0.0130
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6.3.4 Scaling Metrics

Of the five metrics discussed herein, the one that consistently exhibited the strongest

correlation to interaction energies was δR. Considering this metric is the only one

that explicitly incorporates the change in the electron pair upon hydrogen bond

formation, it was decided that a similar approach would be applied to the other 4

metrics. Thus, the change in each metric was observed with the calculation of the

change determined as follows:

∆x = xX-H· · · Y − xX-H or ∆x = xX-H· · · Y − xY (6.11)

Additionally, as a clear relationship was observed between the separation be-

tween the hydrogen bond donor/acceptor and the strength of the interaction (see

Figure 6.5), considering the distance between the two moieties could be beneficial.

For this reason, each of the metrics was also scaled by the bond length. This can be

denoted as

x% =
x

d0
(6.12)

Combining both of these approaches would produce another scaling metric which

will be denoted by ∆x%. Each of these three scaling techniques were applied to the

5 metrics previously discussed. The results are summarized in Table 6.6. As before,

improvements in the relationship, as determined by the coefficient of determina-

tion, are indicated by green text whereas deterioration is indicated by red. The

standard for these comparisons are the unscaled metrics shown in Table 6.5.
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Table 6.6: Coefficients of determination for the relationship between each of the
scaled metrics and Eint.

δR 〈R0
yz〉 Rmax

z E(Rmax
yz ) 〈Ryz〉∆x

X=All - - - 0.2625 0.1525 0.5173 0.2965
X=N - - - 0.3909 0.7785 0.7284 0.7758
X=O - - - 0.7157 0.4907 0.8169 0.8492
x%
X=All 0.8954 0.5495 0.2262 0.3651 0.3231
X=N 0.8233 0.7384 0.8279 0.7400 0.4512
X=O 0.8782 0.7438 0.8637 0.7660 0.7881
∆x%
X=All - - - 0.3045 0.1700 0.5580 0.3501
X=N - - - 0.4214 0.7584 0.7333 0.7869
X=O - - - 0.7875 0.6606 0.8438 0.8901

Nearly all relationships improved upon scaling with the exception of Ryz. The

reason for this is unclear and requires further investigation. Regardless, small, but

meaningful improvements were observed for many of the other metrics under these

scaling schemes. While δR remained one of the strongest metrics, especially for the

full data set, strong correlations were observed for many of the scaled metrics.

The strongest correlation was observed by scaling the δR values by the hydro-

gen bond distance, the R2 value improved to 0.8954 from 0.8411 and yielded the

following relationship

Eint = −111.3
δR
d0
− 0.714 (6.13)

6.3.5 Bivariate Analysis

Although analysis of the lone pair of species Y did not yield substantial quantitative

information on its own, it was decided that analyzing the two localized electron

pairs simultaneously might yield some added insight. Thus, bivariate analyses were
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carried out with each of the quantitative metrics. While the regression results did

improve, the improvements were marginal in most cases and not worth the added

computational cost.

Thus, an alternative approach was explored. As discussed, a strong relationship

was observed between δR and the hydrogen bond strength for each of the systems

at equilibrium. Therefore, bivariate analyses were carried out with δR and each

of the other metrics employed in this study. While the results did not improve

dramatically, the R2 values did approach, and in some cases surpass, 0.9.

6.3.6 Intracule Analysis

While the focus of this study was on the 3-D position extracule, it would not be

unexpected for the position intracule to have potential for predicting hydrogen bond

strengths. Under the resonance-covalency model88,89 that was supported by the

analysis of E(R), one would expect that the electrons in the σX-H bond LMO would

contract (i.e. u would decrease) as the electron pair migrates towards X. Similarly,

as the interaction between atoms Y and H form, the electrons in nY should separate

leading to an increase in u. This is confirmed by the results shown for the H2O

dimer shown in Figure 6.7.

While all analyses carried out for E(R) were also performed for P (u), the results

for the position intracule will be briefly summarized to prevent excessive repetition.

All data pertaining to the analysis of P (u) for these hydrogen bonding complexes is

available in Appendix C.
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Figure 6.7: The deformation density of the position intracule for a) the σO-H bond
and b) the nO lone pair, LMOs for the water dimer.

The results of the relationship between the metrics for P (u) and Eint are shown

in Tables 6.7 and 6.8. In these cases, scaling the metrics helps in nearly all cases.

This may be due to the complete nature of P (u) compared to the slices of E(R) that

were studied.

Much like in the case of the position intracule, the only unscaled metric that

has any reasonable relationship to interaction energies is δu. Furthermore, this

relationship is only evident for the σX-H bond LMO and not the lone pair.

When considering the scaled metrics and the subsets of the full set; however, the

position intracule does appear to be useful in predicting hydrogen bond strengths.

Unlike the analyses conducted on E(R), the scaled metrics make significant im-

provements to the correlations on the full data set.

While the strongest relationships to Eint were observed for E(R), similar infor-

mation can be drawn from the position intracule. All of the metrics when scaled

demonstrate significant potential for predicting interaction energies, even with the

lone pair LMOs. The difficulty with lone pairs in the extracular analysis, again, lies

in the requirement to analyze slices as opposed to the full distribution.
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Table 6.7: Coefficients of determination for the relationship between each of the
scaled metrics and Eint for σX-H bond LMO.

σX-H δu 〈u−1〉 umax 〈u〉
x
X=All 0.6647 0.0940 0.0573 0.0497
X=N 0.8345 0.5161 0.4760 0.4926
X=O 0.7499 0.6177 0.6647 0.2130
∆x
X=All - - - 0.5520 0.7580 0.4185
X=N - - - 0.7931 0.7655 0.6740
X=O - - - 0.7487 0.8180 0.6060
x%
X=All 0.7399 0.5749 0.1720 0.1829
X=N 0.8336 0.7536 0.7494 0.7378
X=O 0.8152 0.7342 0.7098 0.7271
∆x%
X=All - - - 0.6186 0.8028 0.5092
X=N - - - 0.8021 0.7786 0.7167
X=O - - - 0.8031 0.8343 0.6871

Table 6.8: Coefficients of determination for the relationship between each of the
unscaled/scaled metrics for P (u) and Eint for nY LMO.

nY δu 〈u−1〉 umax 〈u〉
x
X=All 0.2716 0.0417 0.0229 0.0358
X=N 0.2832 0.0223 0.0245 0.0521
X=O 0.2160 0.3626 0.5745 0.2159
∆x
X=All - - - 0.2948 0.7446 0.2201
X=N - - - 0.4049 0.8645 0.1923
X=O - - - 0.2696 0.6283 0.1057
x%
X=All 0.3891 0.1738 0.6878 0.7476
X=N 0.4177 0.5800 0.8167 0.8177
X=O 0.3403 0.7306 0.7960 0.8084
∆x%
X=All - - - 0.4007 0.7838 0.3084
X=N - - - 0.5107 0.8663 0.2700
X=O - - - 0.3883 0.6811 0.2117
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6.4 Conclusions

A novel method for the analysis of non-covalent interactions involving electron

pairs, more specifically hydrogen bonding, was explored. This localized electron

pair approach affords a quantitative analysis technique in accordance with the

resonance-covalency model as a characterization tool for hydrogen bonding and

general non-covalent interactions. A clear migration of the centre-of-mass of local-

ized electron pairs was consistently observed towards the hydrogen with respect to

the nY lone pair and away from the hydrogen in the case of the σX-H bond. This,

combined with the concomitant contraction of the σX-H bond pair and expansion of

the nY lone pair electrons strongly support the resonance-covalency model. Strong

quadratic relationships were observed between each of the studied metrics and

interaction energies for a given hydrogen bonding complex indicating a unique pre-

dictive quality of our characterization.

When considering the entire set of molecules, a thorough study was conducted

on each of the systems at their equilibrium geometries. Of the metrics employed,

δR and δu demonstrated the strongest relationship with respect to hydrogen bond

strengths on the full set. This predictive power could be improved by studying the

entire extracule density, as opposed to the single slices in the bond plane that were

utilized here. The only issue with using δR as a predictive tool is that the extracule

for the X−H molecule in the absence of the proton acceptor, Y, is required. However,

by splitting the data set into the identity of the atoms X and Y or by scaling by bond

length, strong relationships can be obtained that could be utilized for such cases.
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Chapter 7

Conclusions & Future Work

7.1 Conclusions

The analysis of the electron pair properties of molecules has been focused on com-

plete molecular properties for far too long. Herein, we have introduced a novel

software package to study the properties of individual electron pairs. For most pur-

poses, this includes localized pairs of electrons (i.e. those described by localized

molecular orbitals and natural bond orbitals), but can be used in the study of an

electron pair in a traditional delocalized molecular orbital (i.e. canonical molecular

orbitals).

This new form of analysis affords a more detailed description of electron pair be-

haviour caused by specific chemical reactions. While earlier research in the Pearson

lab demonstrated the ability to determine bond dissociation energies and relative

acidities of benzoic acid derivatives from the position intracule, the applications of

these analyses were greatly expanded in the present work. This software package is
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capable of calculating intracules in position, momentum and combined (posmom)

space in addition to a small set of extracules including both scalar and vectorized

analogues in position space in addition to the momentum space distribution.

Much of the work presented herein focussed on the understudied 3-Dimensional

position extracule in numerous different applications. The obvious benefit of ex-

amining the extracule in place of the intracule is the more absolute information

regarding the electron pair. In position space, this provides a better idea of where

in the system the electrons reside.

From both the vectorized and scalar forms of the position extracule, relation-

ships to numerous chemical properties have been examined. We propose the use

of the position extracule density as a novel, purely theoretical way to characterize

electronegativity. In contrast to previous work using the electron density, a better,

and much simpler relationship to existing electronegativity scales was obtained.

An extensive study on the effects of hydrogen bonding was also conducted with

respect to both E(R) and P (u). While previous reports have demonstrated the

power of AIM theory in describing any type of hydrogen bonding interaction, the

data set employed in this study showed that this is not true in general. SEPDA

was used to characterize hydrogen bonds and its capabilities were compared to

those of AIM theory and it was demonstrated that the two techniques were on par.

Improvements can be made to the single electron pair analysis by considering the

atoms involved in the interactions as well as various different scaling parameters.

A number of unique bonding environments were analysed with the suite of tools

available in the SEPDA package yielding interesting insight. These include the 3
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centre-2 electron bonding environments seen in diborane amongst others as well

as strained bonding environments observed in smaller cycloalkanes. The potential

applications for SEPDA are only limited by the available chemistry. While we chose

to represent commonly seen chemical interactions as well as a few interesting cases,

this by no means represents a comprehensive study of the information that can be

obtained by this software.

7.2 Future Work

There remains much to do in the area of studying localized electron-pair behaviour.

As demonstrated throughout this thesis, SEPDA is a great tool for tackling this prob-

lem; however, the applications that have been explored thus far have only scratched

the surface. Upon the completion of this thesis, a collaboration with Deslongchamps

and Deslongchamps was being carried out to apply the SEPDA package to their re-

search interests.

Herein, we mainly presented distributions in position space as they are the eas-

iest to conceptualize; however, SEPDA is capable of much more. Future studies

should include the use of the momentum space distributions as well as the posmom

intracule for each of the applications presented here, in addition to any others that

could be fruitful.

In terms of the software development, there are some areas that could be pur-

sued. Generally, both Fortran and C perform well in programs involving a plethora

of calculations. The main calculation components involved in the SEPDA package

are currently coded in Fortran. It could be useful to recode these components in
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C to determine whether improvements in calculation time are obtained. For some

calculations, especially those on large systems or those for E(R) where multiple

dimensions must be sampled, the time require can be rather prohibitive.

Another avenue to pursue in terms of decreasing time requirements is the imple-

mentation of a new algorithm to calculate the integrals involved in these electron

pair distributions. Currently, Q-Chem21 calculates intracules faster than does the

SEPDA package which suggests that increases in speed could be obtained by us-

ing the same algorithms or by incorporating the SEPDA package into Q-Chem or a

similar software package.

A final attempt to speed up these calculations could be made by converting the

code to CUDA Fortran. CUDA is a parallel programming platform. Unpublished

results by Hennessey and Klobukowski indicated a decrease in required calculation

times by up to 18-fold on 2-electron integrals when going from Fortran code to

CUDA Fortran.

The release of this software package to the general public should allow for

SEPDA to be used in countless different applications that could not be achieved

by the Pearson group alone. While various interesting applications were presented

herein, the true value of this program will likely not be realized until its user base

grows significantly.
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Appendix A

SEPDA - User’s Manual

This version was programmed by:

Adam J. Proud University of Prince Edward Island

Contributions from:

Dalton Mackenzie University of Prince Edward Island

Zosia Zielinski University of Prince Edward Island

Brendan Sheppard University of Prince Edward Island

Dr. Jason Pearson University of Prince Edward Island

Dr. Joshua Hollett University of Winnipeg

Dr. Peter Gill Australia National University

Dr. Ajit Thakkar University of New Brunswick

Contact information:

Dr. Jason Pearson

550 University Avenue

Charlottetown, PE C1A 4P3

jpearson@upei.ca
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A.1 Introduction

This user’s manual is intended to be used as a guide for users to understand the

general use for the SEPDA software package (Single Electron Pair Distribution An-

alyzer), which was designed to allow for the analysis of electron pair behaviour

within a single molecular orbital. This guide contains information regarding each

of the parameters, both mandatory and optional, that are required for the proper

performance of the program. The program must be run in a UNIX environment and

users should have a general understanding of quantum chemical calculations.

A.1.1 Section Summaries

Section 1: Introduction to SEPDA and its capabilities

Section 2: Step by step instructions to install and run SEPDA on your local machine

Section 3: Input structure and variables

Section 4: Various examples of input files for different types of jobs

A.1.2 SEPDA Features

SEPDA 1.0 is designed to perform electron structure analyses on systems for which

calculations have already been successfully performed. It is not a stand-alone pro-

gram that can be used to perform the initial single point energy or geometry opti-

mization calculations. The program takes molecular orbital coefficients and WFN

files as input and subsequently calculates position/momentum/posmom intracules

and/or extracules for a specific molecular orbital within the system.
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The current version of SEPDA is capable of doing these calculations for localized

molecular orbitals (LMOs from a GAMESS output), natural bond orbitals (NBOs

from Weinhold’s NBO program or any software package that utilizes said program),

and canonical molecular orbitals (CMOs that can be calculated from any software

package providing the relevant information is contained within the WFN file).

A.1.3 SEPDA Literature

The developers request that if you use the current software package that you cite

the following articles. The appropriate literature will be indicated in all output files

generated by SEPDA.

SEPDA General use:

Proud, A.J.; Sheppard, B.J.H.; Pearson, J.K. J. Am. Chem. Soc. 2018, 140, 219-228.

Scalar distributions:

Hollett, J.W.; Gill, P.M.W. J. Chem. Phys. 2011, 13, 2972-2978.

3-D distributions:

Thakkar, A.J. Moore, N.J. Int. J. Quantum Chem. 1981, 20, 393-400.
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A.2 Installation and General Program Instructions

A.2.1 Installation Requirements

SEPDA is available for download at https://bitbucket.org/aproud/sepda.

git. The package can be compiled using the install.sh script that is provided with

the rest of the code. System requirements for installation are minimal but are as

follows:

• An operating system with a UNIX-based command line

• Python version 2.x

• Fortran 90 compiler

A.2.2 Installing SEPDA

To install SEPDA, the user must simply run the install.sh script (./install.sh OR sh

install.sh). This install script will define the SEPDADIR, SEPDABIN, and SEPDABA-

SIS variables in each of the .cshrc and .bashrc files. Additionally, an alias will be

defined in each of the aforementioned files so that sepda is recognized as a valid

command. These variables will allow the user to run SEPDA from any directory.

These variables define the following:
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SEPDADIR defines the location of the SEPDA directory. This is automatically

defined as the path of the install script.

SEPDABIN defines the location of the code to calculate the desired single

electron pair density. The default is set to $SEPDA/bin and

typically should not be changed

SEPDABASIS defines the location of the basis set files. The default is set to

$SEPDA/basis and typically should not be changed.

sepda an alias to allow for the command sepda to be recognized as

$SEPDADIR/sepda.csh

Should the user move the SEPDA directory following installation, these variables

will need to be redefined in the appropriate shell profile files. To allow all users on

a computer, these definitions could be incorporated into the system wide .cshrc and

.bashrc files.
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A.2.3 Running SEPDA

Following successful installation, the user should be able to run SEPDA from any

directory using the sepda.csh script. Said script can be run in any of the following

ways:

sepda infile.inp outfile.out

sepda infile.inp

In the event that an output file is not defined, the data from the calculation will

be written to infile.dat. The structure of the infile.inp will be covered in detail in

Chapter 3. Should the output file already exist, the original file will be overwritten

with data from the new calculation.

The extensions of the infile and outfile are entirely up to the user and needn’t be

included. The following are two valid executions of the program:

sepda H2O.inp H2O.out

sepda water.inp

where in the first example, the input parameters should be defined in H2O.inp and

the output will be directed to H2O.out, while in the second example, the input

parameters are given in water.inp with the results contained within water.dat.
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A.2.4 SEPDA Compatibility

As noted in Section 1.2, the current version of SEPDA is capable of performing

calculations on 3 molecular orbital types: LMOs, CMOs, and NBOs.

A.2.5 Testing SEPDA

Within the $/SEPDADIR/examples directory, there are a variety of input files for

testing to ensure that the program is functioning properly. Said directory also in-

cludes the ./output directory which contains the expected outputs from each of the

sample inputs. These input files are those that will be included and described in

detail in Chapter 4 of this manual and serve as a great reference for constructing

your own input files.

A.3 Input File Structure and Variables

Input files for SEPDA require, at minimum, 3 input variables (WFN_FILE, BASIS,

and MO_NUM); however, it is recommended that the user also specify the type of

molecular orbital (MO_TYPE) as well as the type of pair density (PD_TYPE) to be

calculated. In the event that the WFN file does not contain the molecular orbital

coefficients, the COEF_FILE must also be specified. This would most commonly be

the case when using NBOs as the MO_TYPE as the NBO coefficients with machine

precision would be generated in the .37 file from the NBO program.
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A.3.1 Description of Input Variables

A summary of each of the variables (both mandatory and optional) in the input file

is given below along with their default value (if any).

Variable Default Description

WFN_FILE None defines the name of the .wfn file or
file that contains the .wfn file

COEF_FILE None defines the name of the file con-
taining the MO coefficients

BASIS UD states what basis set was used in
the original calculation.

MO_TYPE LMO defines the type of MO to be ana-
lyzed. Options include LMO, CMO, and
NBO

MO_NUM None defines what molecular orbital num-
ber on which to perform the desired
calculation

PD_TYPE 1 defines the type of two-electron
density to be calculated. Options
include: 1 (position intracule), 2
(momentum intracule), 3 (posmom in-
tracule), 4 (position extracule), 5
(momentum extracule), 6 (posmom ex-
tracule), 7 (3-D position extracule)

SCALE Various defines the scale parameter (α)
for the Mura-Knowles grid. Smaller
numbers lead to a more dense grid.
Defaults are dependent on PD_TYPE

NPTS Various determines the number of points,
imax, to be calculated for the Mura-
Knowles grid. Defaults are depen-
dent on PD_TYPE
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Additional details are required for a few of the input variables. This information is

included in each of the subsections below.

WFN_FILE

The WFN file can be obtained from any software package capable of producing one.

Programs such as GAMESS produce the contents of the WFN file within another file

which is directed to the GAMESS scratch directory. Should the user be producing

localized molecular orbital coefficients, they will be recorded in this same file. The

user has the freedom to choose either the WFN file by itself or a file that contains

the WFN file contents as the WFN_FILE variable.

COEF_FILE

In the case of both LMOs and CMOs, the coefficients (COEF_FILE) should be in the

same file as the rest of the information to construct the wavefunction (WFN_FILE).

For each of these cases, COEF_FILE needn’t be specified. In the case that it is

specified and is not the same as WFN_FILE the program will quit as it is assuming

user error. For LMOs, both the .wfn file information and the LMO coefficients should

be contained in the .dat file generated by GAMESS and redirected to the GAMESS

scratch directory.
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As for CMOs, all CMO coefficients are contained within the .wfn file, and thus,

no other file is needed. To generate machine precision NBO coefficients in the

atomic orbital basis, the user must use the following commands in either Gaussian

or the NBO program:

$nbo aonbo=w37 file=nbocoefs $end

This will redirect the machine precision coefficients to the nbocoefs.37 file.
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BASIS

Note: The basis set in the input file must exactly match the one used for the initial calcula-

tion to obtain the molecular orbital coefficients, otherwise the calculation will fail.

The basis set must be defined in the input file. The user has the option to define their own

basis set by setting BASIS equal to UD (for user-defined). If a user-defined basis set is de-

sired, the input file must also include a basis section such as the following for a calculation

on water:

$basis
H 0
S 2 1.00

3.26800000 0.84570000
0.98574000 0.23485000

S 1 1.00
0.24850000 1.00000000

####
O 0
S 3 1.00

322.037000 0.05923940
48.4308000 0.35150000
10.4206000 0.70765800

SP 2 1.00
7.40294000 -0.4044530 0.24458600
1.57620000 1.22156000 0.85395500

SP 1 1.00
0.37368400 1.00000000 1.00000000

####
$end

This is a standard basis set description used by most quantum chemical software packages.

The first line denotes the atom, and all lines after describe the orbitals pertaining to that

specific atom. One line must first designate the orbital type(s) (S, P, D, SP, or SPD), the level

of contraction for said orbital, followed by 1.00. The spacing between these entries does
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not matter as long as they are separated by at least one space. Depending on the level of

contraction (n), the next n lines must describe the contracted Gaussian primitive (i.e. if the

contraction level is 3, there must be 3 lines describing each Gaussian within that contracted

set). On each of these n lines, there must be a Gaussian exponent, followed by a contraction

coefficient. If the contraction level is just 1 (i.e. no contraction), said contraction coefficient

should typically be set to unity. To begin the description of a new atom, one must add a

break line that consists of four consecutive octothorpes (i.e. ####).

If the user wishes to use a pre-defined basis set, they should first verify that this basis set is

available through the SEPDA software package. All available basis sets are included in the

$SEPDABASIS directory as .bas files. As this code is only capable of calculating two-electron

integrals for orbitals with angular momenta less than or equal to 2 (i.e. l ≤ 2), any basis

sets that have orbitals of higher angular momenta for the atoms in the given system will fail

to run successfully. The user is free to add any .bas files to the $SEPDABASIS directory to

simplify future calculations. These files must simply match the structure described above.

MO_NUM

The MO_NUM should be between 1 and either the number of Gaussian primitives (for

NBOs) or the number of occupied orbitals (LMOs and CMOs). While the purpose of SEPDA

is to calculate the two-electron densities of a single electron pair, setting MO_NUM equal to

0 leads to the calculation of the desired PD_TYPE for the full molecular system.

PD_TYPE

The PD_TYPE value should be between 1 and 7. The specific electron pair distribution

corresponding to each value is provided in the table above describing each of the input

variables. While PD_TYPE 7 is the 3D position extracule, only two dimensions (Ry and Rz
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are actually sampled. This can be modified to calculate all 3 dimensions by commenting out

line 681 and uncommenting line 682 in posvExt.f90. For both PD_TYPE 4 and 7, the user

is advised to choose their coordinate system carefully. To adequately sample the Cartesian

space around the molecular orbital of interest, the user must position the origin appropri-

ately. The authors would suggest choosing an atom of interest as the origin for PD_TYPE 4,

and either an atom or a bond midpoint as the origin for PD_TYPE 7. Furthermore, should

the user wish to calculate a slice of the 3D position extracule (which is the default), it is

advised that 3 atoms important to the MO of interest are utilized to define the yz-plane

(that which is sampled by the grid).

SCALE and NPTS

Further control over calculations can be obtained by specifying the optional SCALE (α) and

NPTS (imax) variables. These options are used to define the grid values at which the value

of the pair density will be determined and are related to the x-coordinate values by:

x = −α ln
[
1−

(
i

imax

)3
]
, where i = 1, imax (A.1)

Each PD_TYPE has its own default values for SCALE and NPTS. It should be noted that

for PD_TYPE 7 (i.e. 3-D position extracule), NPTS refers to the number of points in each

direction of each Cartesian coordinate. Thus, if NPTS is set to 100, 100 grid points will be

evaluated in the positive and negative directions of each Cartesian coordinate in addition

to the origin. Therefore, 201d (where d = 1 − 3, with the default being 2) grid points will

be sampled for the calculation.
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A.4 Examples of Input File Structures

ex1.inp

The input file below calculates a position intracule (PD_TYPE 1) density for a system (car-

bon atom) with the 3-21G basis set. The calculation is performed for canonical molecular

orbital number 2. As neither SCALE nor NPTS are provided in the input file, the default

values are used.

$init
WFN_FILE c_321G.dat
BASIS 3-21G
MO_TYPE CMO
PD_TYPE 1
MO_NUM 2

$end

ex2.inp

The input file below calculates a momentum intracule (PD_TYPE 2) density for a system

(methane) with the 6-31G basis set. The calculation is performed for natural bond orbital

number 2. The default values for SCALE and NPTS are used as these variables were not

specified in the input. Note that the COEFS variable needs to be defined as NBO coefficients

are located in the .37 file. For instructions on how to generate the .37 file from a Gaussian

or NBO output, please refer to section 3.1.2.

$init
WFN_FILE c_631G.wfn
BASIS 6-31G
MO_TYPE NBO
COEFS CH4_631G.37
PD_TYPE 2
MO_NUM 2

$end
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ex3.inp

The input file below calculates a posmom intracule (PD_TYPE 3) density for a system (car-

bon atom) using a user-defined (UD) basis set. Said basis set is described at the end of the

input file in the $basis section according to the guidelines provided in section 3.1.3. The

calculation is performed for canonical bond orbital number 3 using a grid with a SCALE

value of 3.0 and 150 points.

$init
WFN_FILE c_UD.dat
BASIS UD
MO_TYPE CMO
PD_TYPE 3
MO_NUM 3
SCALE 3.0
NPTS 150

$end

$basis

C 0

S 3 1.00

172.256000 0.06176690

25.9109000 0.35879400

5.53335000 0.70071300

SP 2 1.00

3.66498000 -0.3958970 0.23646000

0.77054500 1.21584000 0.86061900

SP 1 1.00

0.19585700 1.00000000 1.00000000

####

$end

2
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ex4.inp

The input file below calculates a position extracule (PD_TYPE 4) density for a system (car-

bon atom) with the 6-311G(d,p) basis set. The calculation is performed for localized molec-

ular orbital number 2. Default values for both SCALE and NPTS are used since they were

not specified.

$init
WFN_FILE c_6311GDP.dat
BASIS 6-311G(d,p)
MO_TYPE LMO
PD_TYPE 4
MO_NUM 3

$end

ex5.inp

The input file below calculates a momentum extracule (PD_TYPE 5) density for a system

(carbon atom) with the 3-21G basis set. The calculation is performed for canonical molec-

ular orbital number 1. Default values for SCALE and NPTS are used as the user has not

defined them in the input file.

$init
WFN_FILE c_321G.dat
BASIS 3-21G
MO_TYPE CMO
PD_TYPE 5
MO_NUM 1
SCALE 3.0
NPTS 350

$end
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ex6.inp

The input file below calculates a vectorized position extracule (PD_TYPE 7) density for a

system (carbon atom) with the TZV basis set. This calculation is performed for localized

molecular orbital number 3. It should be noted that NPTS 75 indicates that 75 points are

sampled in each of the Cartesian coordinates and directions (i.e. 151 total for Rx, Ry, and

Rz directions).

$init
WFN_FILE c_TZV.dat
BASIS TZV
MO_TYPE LMO
PD_TYPE 7
MO_NUM 3
SCALE 2.1
NPTS 75

$end
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Appendix B

Derivation of Hollett and Gill

Recurrence Relation

Many of the calculations involved in this thesis were performed using the recurrence rela-

tion developed by Hollett and Gill in 2010 or slightly modified versions for the purposes of

extracule calculations. For this reason, a derivation of the RR will be provided here to show

how the required integrals were obtained.

Boys demonstrated26 that Gaussian basis functions of higher angular momenta could

be determined from

|(a+ 1i)〉 = D̂|a〉+ ai
2α
|(a− 1i)〉 (B.1)

In this expression, D̂ is the scaled differential operator which is defined as

D̂ =
1

2α

∂

∂Ai
(B.2)

If the angular momentum augmentation is performed on any other basis function (i.e. b, c,
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or d) the appropriate centres (Bi, Ci, or Di) and exponents (β, γ, or δ) would replace Ai

and α, respectively.

Before we proceed any further, we should introduce some important variables, some of

which were presented in the text of this thesis but will be restated here for convenience:

ν2 =
(α+ β)(γ + δ)

α+ β + γ + δ
(B.3)

σ2 =
1

4
(
αβ
α+β + γδ

γ+δ

) (B.4)

λ2 =
αδ

α+ δ
+

βγ

β + γ
(B.5)

η =
α

α+ δ
− β

β + γ
(B.6)

U =
αA+ δB

α+ β
− γC + δC

γ + δ
(B.7)

V =
2αβ

α+ β
(A−B) +

2γδ

γ + δ
(D −C) (B.8)

Sab = exp
[
−αβ|A−B|2

α+ β
− γδ|C −D|2

γ + δ

]
(B.9)

To proceed, we must first define an operator Ô(a) that converts an s-type Gaussian

primitive to one with an angular momentum, bsa. In other words

Ô(a)|0〉 = |a〉 (B.10)

This operator must also obey the Boys recurrence relation and thus

Ô(a+ 1i) = D̂Ô(a) +
ai
2α
Ô(a− 1i) (B.11)
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Alrichs demonstrated that any function Y that is linear in Ai, has the commutation property

as follows:

Ô(ai)Y = Y Ô(ai) +
aiy

2α
Ô(ai − 1) (B.12)

where y is the partial derivative of Y with respect to the centre, Ai.

As the operators that will be considered (δ(u− r12) and δ(v − p12)) are independent of

the Gaussian centres (A,B,C and D), any integral, [abcd]Z , can be determined as

[abcd]Z = Ô(a)Ô(b)Ô(c)Ô(d)[0000]Z (B.13)

where Z is an arbitrary index denoting whatever type of integral is being dealt with at the

time.

Assuming that we have the integral [abcd]Z , by applying the Boys RR described in

equation (B.1), we obtain

[(a+ 1i)bcd]Z = D̂[abcd]Z +
ai
2α

[(a− 1i)bcd]Z (B.14)

However, to obtain this integral, we must first apply equation (B.13). Applying this

equation to (B.14) yields

[(a+ 1i)bcd]Z = Ô(a)Ô(b)Ô(c)Ô(d)D̂[0000]Z +
ai
2α

[(a− 1i)bcd]Z (B.15)

This discussion has thus far has been completely general. Recall from Chapter 1 that

both position and momentum intracules and extracules can be determined from the second-

order reduced Wigner distribution, W (r1, r2,p1,p2). A general expression can be written

for the determination of intracules or extracules by assuming a general two-electron phase-
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space operator, L̂. Then, the desired electron pair distribution can be obtained as the “ex-

pectation value" of the operator as

〈L̂〉 =
∫
W (r1, r2,p1,p2)L̂(r1, r2,p1,p2)dr1 dr2 dp1 dp2 (B.16)

For the purposes of this derivation, let us consider the position and momentum in-

tracules, P (u) and M(v). For these two cases, L̂ is defined as δ(u − r12) and δ(v − p12),

respectively. Regardless, the derivation is largely the same.

The fundamental integral, [0000]W , for these calculations is given by

[0000]W =
Sabe

−λ2U2+µ2V 2+ηU ·V

8(α+ δ)3/2(β + γ)3/2∫
e−λ

2u2−µ2ν2−(2λ2U−ηV )·u−i(ηU+2µ2V )·vL̂(u, v)dudv (B.17)

When differentiating this expression, four terms will result due to the dependence of Sab,

U2, V 2, and U · V , on the centre A. For this reason, it is useful to define the following

function

Gl,m,n(U
2, V 2,U · V ) =

(
∂
∂U2

)l ( ∂
∂V 2

)m ( ∂
∂(U ·V )

)n
8(α+ δ)3/2(β + γ)3/2

e−λ
2U2+µ2V 2+ηU ·V

∫
e−λ

2u2−µ2ν2−(2λ2U−ηV )·u−i(ηU+2µ2V )·vL̂(u, v)dudv (B.18)

in addition to the triple-index integrals

[0000]
(l,m,n)
W = SabGl,m,n(U

2, V 2,U · V ) (B.19)
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Taking this expression and substituting it into equation (B.15) gives

[(a+ 1i)bcd]
(l,m,n)
W = Ô(a)Ô(b)Ô(c)Ô(d)D̂(SabGl,m,n(U

2, V 2,U · V ))

+
ai
2α

[(a− 1i)bcd]
(l,m,n)
W (B.20)

and applying the scaled differential operator yields

[(a+ 1i)bcd]
(l,m,n)
W =Ô(a)Ô(b)Ô(c)Ô(d)

(
β(Bi −Ai)
α+ β

[0000]
(l,m,n)
W

+
1

2α

∂U2

∂Ai
[0000]

(l+1,m,n)
W +

1

2α

∂V 2

∂Ai
[0000]

(l,m+1,n)
W

+
1

2α

∂(U · V
∂Ai

[0000]
(l,m,n+1)
W

)
+
ai
2α

[(a− 1i)bcd]
(l,m,n)
W (B.21)

To more clearly demonstrate the remainder of the derivation, the terms in this expression

have been color coded based on different values for the triple indices, (l,m, n). Each term

will be dealt with separately. Applying the commutation property from equation (B.12) to

the (l,m, n) integrals (those in blue) four times for each operator, Ô(x), gives:
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Ô(a)Ô(b)Ô(c)Ô(d)

(
β(Bi −Ai)
α+ β

[0000]
(l,m,n)
W

)
=

Ô(b)Ô(c)Ô(d)

(
β(Bi −Ai)
α+ β

[a000]
(l,m,n)
W − ai

2α

β

α+ β
[(a− 1i)000]

(l,m,n)
W

)
=

Ô(c)Ô(d)

(
β(Bi −Ai)
α+ β

[ab00]
(l,m,n)
W − ai

2α

β

α+ β
[(a− 1i)b00]

(l,m,n)
W

+
bi

2(α+ β)
[a(b− 1i)00]

(l,m,n)
W

)
=

Ô(d)

(
β(Bi −Ai)
α+ β

[abc0]
(l,m,n)
W − ai

2α

β

α+ β
[(a− 1i)bc0]

(l,m,n)
W

+
bi

2(α+ β)
[a(b− 1i)c0]

(l,m,n)
W

)
=(

β(Bi −Ai)
α+ β

[abcd]
(l,m,n)
W − ai

2α

β

α+ β
[(a− 1i)bcd]

(l,m,n)
W

+
bi

2(α+ β)
[a(b− 1i)cd]

(l,m,n)
W

)
(B.22)

The observant reader may notice that no new terms were introduced after operation of Ô(c)

and Ô(d). This is caused by the fact that the original term is independent of both centres,

C and D. Thus, the derivative, y, is equal to zero and the term vanishes. If we now then

do this same procedure to the integrals highlighted in green , (l + 1,m, n), we obtain:

Ô(a)Ô(b)Ô(c)Ô(d)

(
1

2α

∂U2

∂Ai
[0000]

(l+1,m,n)
W

)
=

Ô(b)Ô(c)Ô(d)

(
1

2α

∂U2

∂Ai
[a000]

(l+1,m,n)
W +

ai
4α2

∂2U2

∂A2
i

[(a− 1i)000]
(l+1,m,n)
W

)
=

Ô(c)Ô(d)

(
1

2α

∂U2

∂Ai
[ab00]

(l+1,m,n)
W +

ai
4α2

∂2U2

∂A2
i

[(a− 1i)b00]
(l+1,m,n)
W

+
bi

4αβ

∂2U2

∂Ai∂Bi
[a(b− 1i)00]

(l+1,m,n)
W

)
=
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Ô(d)

(
1

2α

∂U2

∂Ai
[abc0]

(l+1,m,n)
W +

ai
4α2

∂2U2

∂A2
i

[(a− 1i)bc0]
(l+1,m,n)
W

+
bi

4αβ

∂2U2

∂Ai∂Bi
[a(b− 1i)c0]

(l+1,m,n)
W +

ci
4αγ

∂2U2

∂Ai∂Ci
[ab(c− 1i)0]

(l+1,m,n)
W

)
=(

1

2α

∂U2

∂Ai
[abcd]

(l+1,m,n)
W +

ai
4α2

∂2U2

∂A2
i

[(a− 1i)bcd]
(l+1,m,n)
W

+
bi

4αβ

∂2U2

∂Ai∂Bi
[a(b− 1i)cd]

(l+1,m,n)
W +

ci
4αγ

∂2U2

∂Ai∂Ci
[ab(c− 1i)d]

(l+1,m,n)
W

+
di
4αδ

∂2U2

∂Ai∂Di
[abc(d− 1i)]

(l+1,m,n)
W

)
(B.23)

In this final expression, there exists multiple partial derivatives that need be evaluated.

These derivatives are equal to the following:

∂U2

∂Ai
= 2Ui

∂Ui
∂Ai

= 2Ui
α

α+ β
(B.24)

∂2U2

∂A2
i

=
∂

∂Ai

∂U2

∂Ai
=

2α

α+ β

α

α+ β
=

2α2

(α+ β)2
(B.25)

∂2U2

∂Ai∂Bi
=

∂

∂Bi

∂U2

∂Ai
=

2β

α+ β

α

α+ β
=

2αβ

(α+ β)2
(B.26)

∂2U2

∂Ai∂Ci
=

∂

∂Ci

∂U2

∂Ai
= − 2γ

γ + δ

α

α+ β
= − 2αγ

(α+ β)(γ + δ)
(B.27)

∂2U2

∂Ai∂Di
=

∂

∂Ci

∂U2

∂Ai
= − 2δ

γ + δ

α

α+ β
= − 2αδ

(α+ β)(γ + δ)
(B.28)

Substituting these expressions into equation (B.23) gives a final expression for the (l +

1,m, n) integrals:

(
Ui

α+ β
[abcd]

(l+1,m,n)
W +

ai
2(α+ β)2

[(a− 1i)bcd]
(l+1,m,n)
W +

bi
2(α+ β)2

[a(b− 1i)cd]
(l+1,m,n)
W

− ci
2(α+ β)(γ + δ)

[ab(c− 1i)d]
(l+1,m,n)
W − di

2(α+ β)(γ + δ)
[abc(d− 1i)]

(l+1,m,n)
W

)
(B.29)

As both the (l,m+1, n) and (l,m, n+1) integrals are calculated much the same way as
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the (l,m, n+ 1) integrals, the complete derivation will not be shown. The final expressions

for these integrals are

(
2βVi
α+ β

[abcd]
(l,m+1,n)
W +

2aiβ
2

(α+ β)2
[(a− 1i)bcd]

(l,m+1,n)
W +

2biαβ

(α+ β)2
[a(b− 1i)cd]

(l,m+1,n)
W

− 2ciβδ

(α+ β)(γ + δ)
[ab(c− 1i)d]

(l,m+1,n)
W − 2diβγ

2(α+ β)(γ + δ)
[abc(d− 1i)]

(l,m+1,n)
W

)
(B.30)

and

(
2βUi + Vi
2(α+ β)

[abcd]
(l,m,n+1)
W +

aiβ

(α+ β)2
[(a− 1i)bcd]

(l,m,n+1)
W +

bi(β − α)
2(α+ β)2

[a(b− 1i)cd]
(l,m,n+1)
W

− ci(β + δ)

2(α+ β)(γ + δ)
[ab(c− 1i)d]

(l,m,n+1)
W − di(β − γ)

2(α+ β)(γ + δ)
[abc(d− 1i)]

(l,m,n+1)
W

)
(B.31)

Taking each of these final expressions and plugging them into equation (B.21) yields a

19 term expression that can be simplified to the following 18 terms by combining the term

outside the parentheses in (B.21) with a similar term in (B.22). The final result is
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[(a+ 1i)bcd]
(l,m,n)
W =

(
β(Bi −Ai)
α+ β

[abcd]
(l,m,n)
W +

ai
2(α+ β)

[(a− 1i)bcd]
(l,m,n)
W

+
bi

2(α+ β)
[a(b− 1i)00]

(l,m,n)
W +

Ui
α+ β

[abcd]
(l+1,m,n)
W +

ai
2(α+ β)2

[(a− 1i)bcd]
(l+1,m,n)
W

+
bi

2(α+ β)2
[a(b− 1i)cd]

(l+1,m,n)
W − ci

2(α+ β)(γ + δ)
[ab(c− 1i)d]

(l+1,m,n)
W

− di
2(α+ β)(γ + δ)

[abc(d− 1i)]
(l+1,m,n)
W +

2βVi
α+ β

[abcd]
(l,m+1,n)
W

+
2aiβ

2

(α+ β)2
[(a− 1i)bcd]

(l,m+1,n)
W +

2biαβ

(α+ β)2
[a(b− 1i)cd]

(l,m+1,n)
W

− 2ciβδ

(α+ β)(γ + δ)
[ab(c− 1i)d]

(l,m+1,n)
W − 2diβγ

2(α+ β)(γ + δ)
[abc(d− 1i)]

(l,m+1,n)
W

+
2βUi + Vi
2(α+ β)

[abcd]
(l,m,n+1)
W +

aiβ

(α+ β)2
[(a− 1i)bcd]

(l,m,n+1)
W

+
bi(β − α)
2(α+ β)2

[a(b− 1i)cd]
(l,m,n+1)
W − ci(β + δ)

2(α+ β)(γ + δ)
[ab(c− 1i)d]

(l,m,n+1)
W

− di(β − γ)
2(α+ β)(γ + δ)

[abc(d− 1i)]
(l,m,n+1)
W

)
(B.32)

In the cases where the operator L̂ depends only on u or v, Gl,m,n(U2, V 2,U ·V ) simpli-

fies to

Gl,m,n(U
2, V 2,U · V ) =

π3/2
(

∂
∂U2

)l ( ∂
∂V 2

)m ( ∂
∂(U ·V )

)n
(α+ β + γ + δ)3/2

∫
e−ν

2|u+U |2L̂(u)du (B.33)

Gl,m,n(U
2, V 2,U · V ) =

π3/2σ3
(

∂
∂U2

)l ( ∂
∂V 2

)m ( ∂
∂(U ·V )

)n
(α+ β)3/2(γ + δ)3/2

∫
e−σ

2|v+iV |2L̂(v)dv (B.34)
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More importantly, it can be shown that for these two special cases:

Gl,m,n(U
2, V 2,U · V ) = 0 for L̂(u,v) = L̂(u) if m > 0 or n > 0 (B.35)

Gl,m,n(U
2, V 2,U · V ) = 0 for L̂(u,v) = L̂(v) if l > 0 or n > 0 (B.36)

Therefore, in the case of the position intracule, P (u), where L̂ = δ(u− r12), the 18-term

recurrence relation reduces to the following 8 terms:

[(a+ 1i)bcd]
(l)
W =

(
β(Bi −Ai)
α+ β

[abcd]
(l)
W +

ai
2(α+ β)

[(a− 1i)bcd]
(l)
W

+
bi

2(α+ β)
[a(b− 1i)00]

(l)
W+

Ui
α+ β

[abcd]
(l+1)
W +

ai
2(α+ β)2

[(a− 1i)bcd]
(l+1)
W

+
bi

2(α+ β)2
[a(b− 1i)cd]

(l+1)
W − ci

2(α+ β)(γ + δ)
[ab(c− 1i)d]

(l+1)
W

− di
2(α+ β)(γ + δ)

[abc(d− 1i)]
(l+1)
W

)
(B.37)

where the m and n indices have been removed as they are no longer required. Similarly,

with this same operator, Gl,m,n becomes

Gl(U
2) =

4π5/2u2e−ν
2u2

(α+ β + γ + δ)3/2

(
∂

∂U2

)l
[e−ν

2U2
i0(2ν

2)Uu] (B.38)

where

i0(x) =
sinhx

x
(B.39)
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Similarly, for the momentum intracule, M(v), where L̂ = δ(v − p12), the recurrence

relation simplifies to

[(a+ 1i)bcd]
(m)
W =

(
β(Bi −Ai)
α+ β

[abcd]
(m)
W +

ai
2(α+ β)

[(a− 1i)bcd]
(m)
W

+
bi

2(α+ β)
[a(b− 1i)00]

(m)
W +

2βVi
α+ β

[abcd]
(m+1)
W

+
2aiβ

2

(α+ β)2
[(a− 1i)bcd]

(m+1)
W +

2biαβ

(α+ β)2
[a(b− 1i)cd]

(m+1)
W

− 2ciβδ

(α+ β)(γ + δ)
[ab(c− 1i)d]

(m+1)
W − 2diβγ

2(α+ β)(γ + δ)
[abc(d− 1i)]

(m+1)
W

)
(B.40)

In this case, the l and n indices are dropped as values over 0 cause the function to vanish.

As before, Gl,m,n, simplifies again to

Gm(V
2) =

4π5/2σ3v2e−σ
2u2

(α+ β)3/2(γ + δ)3/2

(
∂

∂V 2

)m
[eσ

2V 2
j0(2σ

2)V v] (B.41)

where

j0(x) =
sinx

x
(B.42)

Using the recurrence relations described by equations (B.37) and (B.40) combined with

the definition of the fundamental integral in (B.19), P (u) and M(v) can be calculated

rather efficiently. Similar derivations could be performed for the position and momentum

extracules, E(R) and E(P ).
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Appendix C

Supplementary Information for the

Analysis of Hydrogen Bonding

Complexes

This section consists of the tables containing all of the data for the metrics for the hydrogen

bonding analyses presented in Chapter 6. Data is presented for both E(R) and P (u) for the

σX-H bond LMOs and the nY lone pairs at all distances previously discussed. Atomic units

are used throughout this chapter.
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Figure C.1: ∆P (u) for the σX-H bond LMOs of a) H2O-H2O, b) H2O-MeNH2, c)
H2O-MeOH, and the nY lone pairs of d) H2O-H2O, e) H2O-MeNH2, f) H2O-MeOH.

Much like Figure 6.4, Figure C.1 demonstrates the effect of increasing the
separation distance, d, between the hydrogen bond donor and acceptor species.
The same decreasing effect is observed for these three species with H2O as the
donor species. Unsurprisingly, this trend is seen universally across the data set.
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