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1. Introduction

The problem of finding polynomial solutions to differential equations of Sturm-Liouville
type goes back to the 19th century. Routh [23] essentially solved the problem of finding
orthogonal polynomial solutions to differential equations of the form

F0yY (%) + g(x)Y (%) + h(x)y(x) = Apy(x) (1)

where f, g and h are polynomials and X, is the spectral parameter. He demanded that the (1)
has polynomial solutions of degree n for n = 0,1, ..., N, where N is a fixed number > 1,
or is +o00. Earlier Heine [25, Section 6.8] considered polynomial solutions to a differential
equation of the form

f0y" (%) + g0y (x) + h(x)y(x) = 0. )

where f, and g are given polynomials of degrees at most p+ 1 and p, respectively, while
h is a polynomial of degree p—1, to be determined in order for Equation (2) to have a
polynomial solution of a prescribed degree n. Stieltjes, motivated by an electrostatic equi-
librium problem [12, Chapter 3], also studied this problem. The polynomials 4 in (2) are
called Van Vleck polynomials and the polynomial solution to (2) is called a Stieltjes poly-
nomials. This theory is well-explained in Section 9 of Marden’s excellent monograph [21].
When f has real and simple zeros which interlace with the zeros of g the theory further
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simplifies, see § 6.8 in [25]. In Bochner [3] characterized all polynomial solutions (not
necessarily orthogonal) to (1) with N = co. Routh’s theorem was extended to the differ-
ence, or g-difference operators, see the survey article [1]. A more general treatment is in
Chapter 20 of [12], where the corresponding problem for the Askey-Wilson operator is
also mentioned. A recent variation on the Routh (or Bochner) problem was introduced in
the works [8-10] by D. Gémez-Ullate, N. Kamran, R. Milson. They looked for equations of
the type (1) but they demanded them to have orthogonal polynomials solutions of degree
n, for all n > m for some m. This investigation generated what is now called exceptional
orthogonal polynomials.

The Asymptotic Iteration Method (AIM) was introduced in 2003 in [5,24], see also [4],
as a tool to find closed form solution to a fairly large class of second-order differential
equations. The method has been applied to a variety of problems and seems to provide
new insight into an old problem [27].

We felt that working out a discrete and a g-analogue of AIM is a worthwhile endeav-
our and this paper indeed provides a discrete and a g- analogue of AIM, which we refer
to as DAIM and g-AIM. The techniques used in both cases are almost parallel, so we
included a detailed treatment of DAIM but only sketched the outline of g-AIM. We give
some examples to illustrate the power of this approach.

Section 2 contains a brief list of definitions and the notations used in this work. In
Section 3 we introduce the discrete version of AIM, called DAIM. In it, we show how
to construct two linearly independent solutions of a general linear second order differ-
ence equation with variable coefficients under the assumption (27), which we shall call
a terminating condition. In Section 4 we prove that the general linear second order dif-
ference equation has a polynomial solution if and only if the terminating condition (27)
holds for some n. In Section 5 we give several examples including Euler-type equations
and the discrete version of the hypergeometric equation. Section 6 treats the linear second-
order g-difference equations where we derive the theory gAIM in parallel with the DAIM
technique. We also characterize g-difference equations which have a polynomial solu-
tion regarding a terminating condition. Section 7 we implement the g-AIM technique to
explore several examples including the g-Laguerre difference equation, Al-Salam-Carlitz
g-difference equation, and the Stieltjes-Wigert g-difference equation. Section 8 discusses
the limitations of the AIM, DAIM, and g-AIM method.

It is worth mentioning that the Heine and Stieltjes theories for differential equations with
polynomial solutions have not been extended to the difference or g-difference equations.
It will be interesting to develop such a theory.

Remark 1.1: The difference or g-difference equations we consider have parameters. One
important point is that it may be easy to find necessary conditions on the parameters in
order for the equation to have a polynomial solution. Our approach gives necessary and
sufficient conditions for a polynomial solution to exist.

2. Preliminaries for difference and g-difference equations

It easy to see that the problem

y(n+1) = A(m)y(n) +g(n), y(ng) =yo, n=>ny=>0. (3)
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when A(n) # 0 for all n, has the solution

n—1 n—1 n—1
y(n) = (H x(i)) o+ [( I1 w)) g(i)} : (4)
i=ng i=ng {=i+1

We shall use the standard notation for the finite difference operators E, A, V as in [16,22].
In general, forn = 1,2, ..., we have

A"f(x) = (E—D"f)(x) = §<—1>k(2)f<x+ n— k), (5)
V() = (I~ 7)) (x) = D—Dk(Z)ﬂx —~ k). (6)
k=0

Some of the formulas used in the sequel are:
V(x4 k) = A (x), AFf(x—k) = Vi), k=1,2,..., (7)
AVf(x) = VAf(x) =f(x+ 1) = 2f(0) + f(x = 1) = (A = V)f(x). (8)
The product rule is
Alf()g)] = g Af (x) + f(x + 1) Ag(x) )
=f()Ag(x) + g Af (x) + Af (x) Ag(x). (10)

The quotient rule is

A (g(x)) _ f(x)Ag(x) — g(x) Af (x) (11)
f(x) ff(x+1) '
The symmetric Leibniz rule for finite difference operators is [22]
M oy (A ) (AR ()
@R =n )7 TR T (12)
k>0, j+k<n
The notation for g-shifted factorials is [2,7]
n—1
@go:=1, (@qn= l_[(l - aqi), n=12,..., oroo. (13)

j=0

Here we always assume that 0 < g < 1. The g-analogue of the binomial coefficient is

n (g5 Pn
= 14
[kL (@ Dk(F Pk (1)

We also have

(1-@""DH@ =D [Z] (~1/"q@ (g ). (15)
k=0

q
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The product and quotient rules are

Dy[f (x)g(x)] = g(x)Dyf (x) + f(gx)Dgg (x), (16)
D, (f (x)> _ §(xX)Dyf (x) — f (x)Dqg(x)' (17)
g 8(qx)g(x)
Let a(x) be continuous at x = 0. Then the solution to
(Dgy) (x) = a(x)y(x), (18)
which is continuous at x = 0 is
y(0)

y(x) = (19)

[TeZo[1 — (1 — @)x gFer(xq")]
This follows trivially. Moreover if o (x) and B (x) are continuous at x = 0 then the solution
to

(Dgy)(x) = a(x)y(x) + B(x), (20)

which is continuous at x = 0, is given by

(0) N i xq" (1 — @) B (xq")
[Tl = (1 = xgha(xg] = TTEoM1 — (1 — gxgia(xg)]

If y(x) satisfies a linear homogeneous difference equation then f(x)y(x) will satisfy the
same equation if f is unit periodic, that is f(x + 1) = f(x). Thus unit periodic functions
play the role played by constants in the theory of differential equations. Similarly functions
satisfying f(gx) = f(x) play the role of constants in the theory of g-difference equations.

(21)

y(x) =

3. Discrete asymptotic iteration method (DAIM)

The second-order difference equation may take one of the following forms

A%y(x) = Ao (%) Ay(x) + s0(x)y(x), (22)
AVy(x) = ap(x) Ay(x) + Bo(x)y(x), (23)
VAy(x) = a1 () Vy(x) + B1(x)y(x), (24)

These forms are equivalent and we shall focus our attention on the first form (22).

Unlike the original form of AIM where the boundary conditions contributed in set-
ting up the asymptotic solution, in the discrete version the initial conditions must be
incorporated within the development of the analytic solution at later stage.

Theorem 3.1: If y(x) satisfies (22), then

A" 2y(x) = dn (%) Ay(x) + 54 () y(x), (25)

where
An(X) = Ahpy—1(x) + A1 (x + DAo(x) +s4—1(x+1), n>0,

(26)
sp(x) = Asp—1(x) + Ay—1(x + Dso(x), n> 0.
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Proof: The proof is by induction on #. |

We note that the above mentioned construction is reminiscent of the construction of
the Lommel polynomials from the three-term recurrence relation of the Bessel functions
given in Watson [26] and is reproduced in [12]. The g-Lommel polynomials associated
with ]52) was given in [11] while the construction associated with ],(,3) was given in [18].

Theorem 3.2: Let A, and s, be as in (26), and set 8,,(x) = dy(%)sn—1(x) — Ay_1(%) s,(x).
If §,(x) = 0, then §,,(x) = 0 for allm > n.

Proof: 1t suffices to show that if §,,(x) = 0, then §,,4; (x) = 0. Using the definition (26), we
find that
Ont1(%) = Apg1 (%) (%) — Ay (X)Sp41(x)
= 5p(X) Adp(X) — Ap(x) Asp(x) + An(x + 1)sp(x)Ao(X) + 55 (x + 1)sy(x)
— An(X) Ay (x 4+ 1)sp(x)

_ Sp(X) Adp(x) — Ap(x) Asy(x)
- ( Spn(X)su(x+ 1)

— Ao (0)s0(x)) 4 sp(x + D)3 (x)

) sn(X)sp(x + 1) + An(x + D (sn(x)Ao(x)

_A (An(x)> sn(0)5n(x + 1) 4 An(x + D5 ()0 (x) + 5p(x + 15 (%)

su(x)
— A () Ay (x + 1)so(x)
_ An(x) An(x+1) _ An(X)Ap(x+1)
= (Gt D <A< n(x)> e Y T L @aer D S°(x))
_s,,(x)sn(x—l—l)( < n- 1(x)>
Sp—1(x)
An— 1(X+1) An—1(x)
Sn 1(x+1) <)L0( )~ Sn—1(x) O(x))>
Sn—1(0) Ady_1(x) — Ap—1(x)Asp_1(x)

_S"(")S”("“)( s+ D) 1

An 1x+1) An—1(x)

5n S (x+ 1) < 000 = Sn—1(x )SO(x)>>

= sp(®)sp(x + 1) (Ak”_l(") + )\n—;(xl%(—xl—)i_)\(l))(x) + sp—1(x + 1)

A1 () (Asy—1 (%) + A1 (x + 1)So(x))>
Sp—1(X)sp—1(x + 1)

=sn(x)sn(x+1)( () A s®) )

sp—1(x+ 1) sp_1()sp—1(x+ 1)
Sn—1(X)An(x) — )“n—l(x)sn(x)> —0
Sn—1(x)sp—1(x + 1) e

= sp(X)sp(x + 1) <
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This completes the proof. u

At this stage we make the assumption that

sn(x) _ Sn-l €9)
An(x) )“nfl(x),

holds for some 7, hence for all the subsequent #’s.

(27)

Theorem 3.3: A solution of the difference equation

A%y(x) = Xo(X) Ay(x) + so(x)y(x),

x—1 .
y(x) = (]_[ [1 - ;’:1__11((?)]) , x=0,1,2,..., (28)

1=X0

is given by

provided that
sn() _ sn-1(x0)
An(x) )\n—l(x)’
where L, (x) and s,(x) are given by (26).

Proof: Assume that y is defined by (28). Then
Ay(x)  sp—1(%)

=— . (29)
(%) An—1(x)
Applying A to (29) and use the quotient rule (17) we conclude that
Ay <Ay(x) )2 YO A s (A1 ()
y(x+1) y(x) ) yx+1) A1 +1) A1 (hp1(x+ 1)
which is equivalent to
10\ 511 () Adn 1 (%) = A1 (1) Asp1 (%)
Azx—<sl > x=< )x—l—l.
YO w7 For 1 (k1 (x + 1) ek
(30)
Using the recursive DAIM sequences (26) we find that
Sn—1(X)AXy—1(xX) — Ap—1(x)Asy_1(x)
= —$p—1(X)Ap—1(x + DAo(x) — sp—1(X)sp—1(x + 1)
+ An—1()Ap—1(x + 1Dso (), (31)

Now Equation (30) becomes

sn—1(X)Ao(x)  sp_1(0)sp—1(x + 1) ) A
- (x)
An—1(x) An—1(X)Ap—1(x+ 1)

sn—1(0A0(X)  Spe1(X)sp—1(x + 1) sn1(%) \
i (S"(x) T ® A @ha G D) (An_l(x)> )y r

Ay(x) = (So(x) -
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which can be written as

A%y(x) = Ao(X) Ay(x) + s0(x)y(x)

sn—1(X)Ao(x)  sp—1(0)sp—1(x + 1) ) A
— (x)
An—1(x) An—1(X)Ap—1(x+ 1)

N (_sn1(x))»o(X) _ s1()sp(x+ 1) + (S"I(x) )2) y(x),

+ (So(x) — Ao(x) —

An—1(x) An—1(X)Ap—1(x+ 1) An—1(x)
Thus, to show that Azy(x) — Ao () Ay(x) — so(x)y(x) = 0, we need to show that

sp—1(@Ao(x)  sp—1(X)sp—1(x + 1)
- Ay(x)
Ap—1(x) An—1()Ap—1(x+ 1)

- (_snl(x))»o(x) s ®sim1(x 4+ D) n (sn1(x) )2) P(x).

<So(x) — Ao(x) —

An—1(x) An—1(0)Ap—1(x + 1) An—1(x)

Using (30) we see that we need to show that

Sn—l(x))LO (%) Sn—1(x)sp—1(x + 1)
(‘M’C) T T ® i@k D) +S°(x)> A7)
Sn—1(x + 1) Sn—l(x) N
+ <)»o(x) ytit (x)> Ay(x) =0,

which is equivalent to showing that

Sn—1(D)Ao(x)  Sp1()sp1(x+ 1D s+ D s (x) 0

so(x) —

A1(®) A @r 1) A1) Ap(x)

Multiply the above equality by A,—1(x)A,—1(x + 1) and apply (31) to reduce the problem

to

Sp—1(0) Ahp_1(%) — Ap—1(X)Asy_1(x) +sp—1(x + DAp_1(x) — sp—1(0)A—1(x +1) =0,

which is obviously true.

We now assume that there is an 7 such that (27) holds. In this case

A" 2y(x) @AY sy ()

AMly(x) T A1 () AY(X) + 51 (0)Y(X) T Ap—1(x)
This implies
x—1 A (k)
An—l—l — An-i—l 0 |:1+ n i|
y(x) (0) L[O T

This is the exact analogue of Equation (2.10) in [5]. Note that (33) implies

m—1
An+1y(x+m) — A”+1y(x) 1_[ |:1 + )\n(x+k) ]
k=0

An—1(x + k)

(32)

(33)

(34)
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Using Theorem 3.1 we find that the solution to the difference equation

A%y(x) = Ao(x) Ay(x) + s0(x)y(x),

solves the first-order inhomogeneous difference equation

m—1
A”+1y(x) l_[ [1 + M} = Ap—1(x + m)Ay(x +m) + sy,—1(x + m)y(x + m),

k=0 An—1(x + k)
(35)
namely, form =0,1,2,...,
Sn1(x + m) Ay T Don(x + k)
A = - 77 e T | (36
Yt e my T x%mmwogg pory M

Comparing this with (3) and (4) and replacing A"*!y(x) by its value from (33) we see that
the general solution, using y(x) = y(x — m + m) is given by

x—1

y(x) = C, ]_[ (1 - i’;:i?))
e i=m— )
+C i ]_[1 (1 - S"—l(z)> <nf="o 1(” xHo)))
£ ; An—1(£) A1)
i=nyg \{=i+1
" di—m4 k)
e nin) ) &)

Theorem 3.4: The general solution to (22) is given by (37), where Cy and C, are unit periodic
functions provided that (27) is satisfied.

Proof: The analysis before this theorem shows that (37) gives a solution of (22). So, we only
need to show that the coefficients of C; and C,, say y; (x) and y(x) are linear independent.
This holds if and only if the Casorati determinant

) ykx+1

$E e+ | (38)

does not vanish, which is an easy exercise. [ |

4. A criterion for polynomial solutions

The main results of this section are Theorems 4.1-4.2 which, respectively, give necessary,
and sufficient conditions for a second order linear difference equation to have a polynomial
solution.
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Theorem 4.1: If the second-order difference equation Azy(x) = Ao(x) Ay(x) + so(x)y(x)
has a polynomial solution of degree n, then
$n(X)An-1(x) — sn—1(X)An(x) = 0,
where
An(%) = Adp_1(x) + An—1(x + DAo(x) + sp—1(x + 1),
$u(x) = Asy_1(x) + Ap—1(x + Dso(x).
Proof: We apply (25) and the recursions in (26) to find that
sn () A" Y(x) = 52 () An-1(X) AY(X) + 5(x) 50— 1(X)y (),
$u-1 (0 A2y () = 551 () hn () Ay () + 5521 ()50 (1) (), (39)
which then yields
sn (DA™ y(x) — 551 () Ay () = (50 () An—1 () = 521D An(x) Ay(x),  (40)

If y(x) is a polynomial of degree n then A"*ly(x) = A" 2y(x) =0 and the theorem
follows. u

The next theorem provides a converse to Theorem 4.1.

Theorem 4.2: If s,(x)An—1(x) 7 0 and hy—1(%)$,(X) — Ap(x)sp—1(x) = 0, then the differ-
ence equation Azy(x) = Lo(x) Ay(x) + so(x)y(x) has a polynomial solution whose degree is
at most n.

Proof: When s, (x)1,—1(x) — sy—1(x)An(x) = 0, Equation (40) reduces to

sn() A y(x) — sp_1 () A" y(x) = 0 (41)
which yields
5n () A" y(x) = 55210 (An(0) Ay(x) + s (0)y(x))
= sp—1(x)y(x) </\n(x) Ay}(}g) + sn (X)) . (42)

Let y(x) be the solution given by (28) then apply (29) to establish

sn (A () = 5,_1 (D)) (—kn(x) ;‘_ll((’;)) + sn<x>)
= I Gt (9509 — A (D) snt ()
)\n—l(x)
Therefore
Ay = — 1D G 9509 = An(@)sn1 (1)) = 0.

S (%) An—1(x)

This shows that y(x) is a polynomial of degree at most . |
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5. Examples
5.1. Anequation of Euler type
Consider the equation

2(a—1) a(l —a)

A
T x y(x)+x(1+x)y

Ay(x) = (). (43)
Before applying DAIM to (100) we explain the relevance of Remark 1.1. If y = x" +
lowerorderterms, then x2A%y — n(n — 1)x" and xAy — nx" are polynomials of degree at
most n—1. Substituting y = x” 4 lowerorderterms in (100) and equating coefficients of x”
establishes the condition n(n — 1) = 2n(a — 1) 4+ a(1 — a), which implies a = n, n+ 1.
These are necessary conditions.

We now apply DAIM with
2(a—1) —a?
A = , = 44
0(x) [ x 0(x) 1+ (44)
From the DAIM sequences (26), we note that
3(a—2)(a—1) 2(a—2)(a— 1)a
A1(x) s1(x) = (45)

T 0r02+x T X1+ 02+

and after computing the first few A,’s and s,,’s we use induction to show that for arbitrary
n, we have

_ (n+2) [Tico(a—k—1)

(n+Dallj_gla—k—1)
A (%) = - .
) Mo+ k+1)

o+ k)

> S?l (x) = (46)

We then conclude that

_ _ _ _a(l —a)y(1 —a)nt1
8 (x) = Ap(X)sp—1(%) — Ap—1(X)sp(x) = Onp1 (4 Dnes . (47)

Thus 8,(x) =0 if a =n+1. To construct the exact solution where a = n+1, we
apply (28) and find that

x—1
n (X)n
(x) = [1+—,] =" h=0,1,2,.... (48)
n il—_x[ 1 (x0)n
=X0
To find a second independent solution, we shall use two different approaches, first using the
second independent solution as given by Equation (37) witha =n+1,m=n=12,..,,

y2(x) = xi ﬁ (1 _ sn—l(z)) ( i (1 + Aﬁj%)))

i \ 2t An—1(£) An_1(i)

i i — m + k)
H [1 * Ap—1(i — m+k)]

k=0
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(=DM + 1) (4 Dy
n(n+ DT @)1 — n)y_1(n + 1);

200+ D1 — myy (FE2) = (n+2)(1— m), (5552) "
X i—n+3
(n+ D)(1 —n)u (5552,

_ (x=mng)I'(x +n)
B I'(x)

= Wnt1 + (1= 10) ().
A second approach to find the other independent solution follows using the next lemma.

Lemma 5.1 ([20, Lemma 2, p. 3221]): Let f and g be two linearly independent solutions of
equation

A"W(x) + a1 () A" I w(x) + - - 4 a1 (x) Aw(x) 4 ag(x)w(x) = 0 (49)
Setu = A(f/g). Then w = u(x) satisfies
A" w(x) 4 by (DA TP W(x) + -+ b () Aw(x) + bo(x)w(x) =0 (50)

where

Ak=—1 i+ 1
bi(x) = Z(I )ak(x) g(i(i:)ﬁ ) o2, .,n—2  (51)
k=j+1

Here we have, by convention, a,(x) = 1.
For n = 2, the difference equation (49) reads
Azw(x) + a1 (x) Aw(x) + ag(x)w(x) =0 (52)

with f(x) and g(x) be two linearly independent solutions. Then w = u(x) = A(f/g)
satisfies the first-order difference equation

Aw(x) + bo(x)w(x) =0 (53)

where

glx+1) 2Ag(x—|— 1) — 2 (@) — 2) glx+ 1)’
glx+2) glx+2) glx+2)

for, by convention, a;(x) = 1. The solution of the first order difference equation (53) is
given by

bo(x) = a1 (x) (54)

gi+1)
w(x) = cqu)(l—boo>)—cqu)< 1— (@) —2) (]H)) (55)

and the second independent solution f(x) follows by solving the first-order inhomoge-
neous difference equation

g(+)

fa+1) - f()—clg<x+1>]‘[<z— ar () 4D 1) (56)

J=no (]+2)
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The solution of the equation is easily found to be

x—1 . 1
=G Hg(l+ )

i=ng g(l)

| (1 s¢+D = g+ 1)
C j + 1 2 — j —1 57
ra & (1 2452 s T (-am 53 -1) |

which resemble the general solution as given by (37). Thus, a;(x) = —2n/(1 4+ x) and
g(x) = (x)y, it follow that

x—1

i+
fo=c|[]=
1=ng
x—1 x—1 i—1 X
L+n\ . 2n j+1 )
+C i+1 24— | ————1 58
IZ (U ¢ )( )".1__[« 1+j>j+1+n (58)
i=np l=i+1 j=no
Straightforward computation shows that
@) = C)n + B(X)n+1, (59)

where C and B are unit periodic functions as expected and easily confirmed by direct
substitution.

5.2. Difference equation for dual polynomials

Let {Q,(x)} be a sequence of discrete orthogonal polynomials and let

> Q) Qu ()W) = Smn/tn. (60)

j=0

Thus the rows of the matrix whose (i,) element is {Q;(xj) /uiwj}, i,j=0,1,... are
orthonormal vectors. The associativity of matrix multiplication then implies that this
matrix is an orthogonal matrix. This forces the columns to be orthonormal vectors, that is

D Qux) Qulx)un = 8i5/wj. (61)

n=0

A birth and death process [17] with birth rates {8(n)} and death rates {d(n)} generates
a sequence of orthogonal polynomials {Q,(x)}. The initial values are Qp(x) = 1, Q;(x) =
(b(0) 4+ d(0) — x)/b(0) and the recurrence relation

= xQu(x) = b(M)Qui1(x) + d(M)Qu—1(x) — [b(n) +d(M)]Qu(x), n>0.  (62)

If {Qn(x)} is orthogonal with respect to a discrete measure then the dual polynomials
{Qu(xj) : j=0,1,...}, where now the variable is n and the degree is j is called the poly-
nomial dual to {Qy(x)}. There are many instances of this in the Askey scheme [18]. The
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bispectral problem of Duistermaat and Griinbaum [6] is also related to this phenomenon.
In such cases the dual polynomials will satisfy the difference equation

Ey(x) = b(x)y(x + 1) +d(x)y(x — 1) — [b(x) + d()]y(x). (63)

In other words
b(x + DA%y(x) + [b(x + 1) —d(x + 1) — E]Ay(x) — Ey(x) = 0. (64)

The case of birth and death process polynomials when b(x) and d(x) are polynomials of
degree at most 2 and b(x) — d(x) is of degree at most 1 was studied in [14], where their
orthogonality measure was also constructed. Their dual polynomials will then satisfy the
hypergeometric difference equation

(a2x” + a1x + ao) A’y (x) + (brx + bo) Ay(x) — ky(x) =0, (65)

This equation may also be considered as a difference analogue of the hypergeometric
difference equation.

bix + by k

MX)=——————"—, so(x) =
0(%) ox? + aix & 0(%)

_ 66
ayx? + a1x + ag (66)

it follow, by the recursive evaluation of the DAIM sequence, that the termination condition
Bn(x) = Ap(X)sp—1(x) — Ap—1(x)sp(x),n = 1,2,...yields

by —k
81(x) = )
= n@ + a0 ™
2a; +2by — k
8y(x) = )
2(%) ap + (2 +x)(a1 + ax(2 + x)) 1)
6ay +3b) — k
83(x) = )
3(%) ap + 3+ x)(a1 + ax(3 + x)) 209
12 4b; — k
54(x) = a2 4 53().

ap + (4 +x)(a1 + ax(4 + x))

For arbitrary n, it is not difficult to show that, forn = 1,2, ..,

5, (x) = n(n — Day +nby — k 5,1 00)
ao + (n+ x)(a1 + a2(n + x))
j=0i(i — Daz +jb1 — k
= 1) 67
]_[fzoaoJr(jer)(m +ax(j+ x)) o) (7

where 8¢(x) = sp(x) given A_;(x) = —1,5_;(x) = 0. Clearly, for §,—1(x) # 0, 8,(x) =0
only if

k=nn—1a+nb;, n=12,.... (68)
In this case, the polynomial solutions of the difference equation
b b -1 b
Ay =~ N py MU DB AR ()

ayx? + a1x + agp ayx?® + a1x + ag

are given as



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS . 501

Forn =0, yo(x) = 1.
Forn =1,

x—1

_ IICON )
)“”_TIP M@J_x+h'

i=Xg

e Forn=2,

x—1
_ _si® ] 5 @ar42by+by)
”@‘IIP mw}_x+ Qa+b)

i=x0
(ao(2az + b1) + bo(ar + az + by + b1))
((az + b1)(2az + by))

e Forn =3,
3(2ay 4 2a; + by + bl)xz
(4a; + by)

(6a} + 12azbg + 3b3 + 5a2b1 + 6boby + 2b7 + 3ag(4az + by)
N +9a1(2a; + bo + b1))
X
(3az + by1)(4a + by)
+ (a0(36a3 + 10a2bg + 24az by + 3boby + 4b% + 4a;(3as + by))
+ bo(2a; + 10a3 + 7azbo + by + 9azby + 3boby + 2b7

+ a1(12a; + 3bo + 5b1))/((2az + b1)(3az + by) (4az + by)).

y3(x) = x° +

and so on for higher order.

As special cases of the hypergeometric difference equation (65) are the Meixner differ-
ence equation

Ky =m0, (00)
and the Hermite difference equation
A%y(x) = (ax+ b)Ay(x) + y y(x). (71)
6. g-Asymptotic iteration method (gAIM)
We consider the linear second-order g-difference equation
D2y(x) = ho(x)Dgy(x) + s0(x)y(x). (72)
In general, we have
D" 2y(x) = An(x)Dgy(x) + sn(x)y(x), (73)

where the functions A, (x) and s, (x) are generated by

An(x) = Dq)hn—l (%) + An—1 (qx))»o(x) + Sn—l(qx)a sn(x) = Dqsn—l(x) + )\n—l(qx)so(x)-
(74)
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If the termination condition
sn(x)  Sp—1(X)

= . (75)
An(x) An—1(x)
holds for some n then
DI+ 2y(x) _ M0Dgy(0) + sy (0y(x0)  An(x) (76)
Ditly(x)  An1(0)Dgy(x) + $1-1(0y(x)  Au1(x)’
Equation (76) can be written as
n An(X)
Dy (D)) = s Dy (77)

This is a first-order g-difference equation in DZJFly(x) and according to (18)-(19) its
solution is

-1
n n - )”Vl(qu)
D y(x) = D y(0) E) [1 —-(1- q)qum} . (78)

The infinite product will converge if the ratio A,(x)/A,—1(x) is bounded in a neighbour-
hood of x = 0 in the complex plane. On the other hand (73) implies

Dy y(0)

00 _ N k An(qu)
nk:O [1 (1 Q)q x)»n—l(qu)]

(79)

An—1(x)Dgy(x) + sp—1(x)y(x) =

or equivalently

s Do) = e @ |
P = S e L T s | o

In view of (20)-(21) the solution of the original second-order g-difference equation (72) is
given by

y() (1)
_ y(0)
- o0 knn Sn— (q X)
[Mi=o [1 + 0 =g ll(qu)]
(lfq)qk"x
Di’l+1y(0) Z ‘)"n—l(q x)
ke Pn(@ o) i Sn-1(@/%)
0 1120 [1 = 0 = g2 | T [1 - 0 - a5 ]
(81)
It is known that y; and y; are linearly independent if and only if the determinant
y1(x)  Dgy1(x)
0, 82
‘ y2(x)  Dgy2(x) 7 (82)

for all x in the domain of definition. It is easy to see that this is case with the two solutions
given above.
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7. Implementation and examples

Our first example is the g-Laguerre polynomials, [18, p. 109]. They satisfy the g-Difference
equation:

(144" +q""x) y(x) = q"(1 + 0)y(qx) + y(q '), (83)

It is easy to write this equation in the form

q‘l"’—l—(1+q—q”)x> ( q" =1
D,
(q— Dx(1 +q%) PO G D+ gm0

Dly(x) = ( )y(x), (84)

with

g7 —1—(1+9—q" q"—1

Ao (x) = i -
o (q — Dx(14qx) 0 (@ — D?x(1 +qx) (5
Using (77) and the definition
In (%) = A (X)sm—1(X) — Am—1(0)sm(x), m=12,... (86)
it follow that
5 = (@—-q94¢" -1
' R+ D(@x+ (g - DY
5 — @-9"@ —q")q" - D
27 ¥gx+ D(gx+ D(@x+ (g — DS
B q—9) -4 —qd)@q" = 1)
0= 2 3 4 8’
x(gx + D(g*x + D(g°x + D(g*x + (g — 1)
50 — @@—q"@* — 4@ — 94" — 4" (" — 1)
fT B (gx+ D(@x + D(@x + D(ghx+ D(@x + (g — DIV
5 — @—9)@ — 4@ —q)q" — )@ —q) (" — 1)
5= 56 2 3 4 5 6 _iz-
x°(gx + D(g*x + D(g°x + D(g*x + D(gx + D(g°x + 1)(g — 1)
In general we observe the pattern
m+1 _ n
St = —1 1 m=0,1,2,... (87)

Sm»
(q_l)zx(1+qm+2) m

which has been tested up to m = 15. Based on this we conclude that §,, = 0 if and only if
m = n. For an exact solution, we use the following expression:

yn(0)
00 _ ko snm1(gf0) ]
M=o [1 +d-aq x/\n—1(qu)]

yn(x) = (88)
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For example, the polynomial solution of degree 5 is

2

00 k -1
— <(0 14 (1 — gygixtd)
y5(x) = ys( )g[ + 1 —-9)q xM(qu)
_ ¢ (1) g1+ )1 — %)
—y5(0)<1 Ta—a@ -0 T @@ - D@ -1
¢ (1+4) (1-q) :

(1- q) (q1+n _ 1) (q2+7] _ 1) (q3+n _ l)x
. g1 (1 - ) )
(1—gq) (ql—i-n _ 1) (q2+n _ 1) (q3+n _ 1) (q4+n _ 1)
q5(5+n)

4

+ (an — 1) (q2+n _ 1) (q3+n — 1) (q4+'7 — 1) (q5+n — 1) xs)‘

More importantly we can also write down a second solution to the g-difference
It is know that the second solution is related to the function of the second
[12,13].

X

(89)

equation.
kind, see

Our second example is the Al-Salam-Carlitz polynomials {U,(x)}, [12,18]. Their

g-Difference equation is

aqn—ly(qzx) — (aq—l-‘rn +aqn _ (1 +a)q1+nx+q2x2)y(qx)

—q"'(1 — qx)(a — gy (x). (90)
Thus
2 _ (1taa—a " (144"
qu(x) a ( a—aq ) Day() a(—=1+ gq)? ) oD
The termination condition 8, (x) = A, (x)sy—1(x) — s, (X)Apy—1(x) =0, n = 1,2... where
{An(x)} and {s,} satisfy, see (74),
2Q2—n) ( n n 2—n n
_q q"-D@q—q9") g7 "(q—q")
§1(x) = 2 =1t = Taq-1p 8o (%),
B q3(27n)(qn _ 1)(q _ qn)(qZ _ qn) _ q27n(q2 _ qn)
52(x) = P10 = -1 81(x),
4Q2—n)n _ _.n 2 .n 3 n 2—n¢,3 o n
_q q"—-D@q—q9)q —q9)9q —q") q7"(q —q")
83(x) = A1) = -1 82(x),
B q5(27n)(qn _ 1)(q _ qn)(qZ _ qn)(q3 _ qn)(q4 _ qn) B qun(qél _ qn)
e = a>(g— 0 = Tago 2@
5 (x) B q6(2—n)(qn _ 1)(q _ qn)(qZ _ qn)(q3 _ qn)(q4 _ qn)(qS _ qn)
5 - a6(q _ 1)12
2—n¢,5 _ n
_ M&;(x).

a(qg — 1)?
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We may then observe the pattern

qz—n(qm-i-l _ qn)
a(g —1)?

Smy1(x) = Sy m=1,2,.... (92)

We verified this pattern up to m = 15. Thus the smallest m which makes 8,,(x) = 0 is
m = n. The polynomials solution is then given by (88). For example the polynomial of
order five is given by

y5(x)/y5(0)

1+q9+@+q +gH(A+ahq* +aqgl + (1 + ¢ + a?)
. +a(1+ )1 +4q+4%) .
(14 a)g*(q® + a*q® + ag*(1 + 9 (1 + g%
+@P 1+ A +g) +a*A+4H1+q+4qY)
l+gH@+ag+A+aHPHA+q+ P+ +4q 2
PP +a*q® +a?(Q + U+ ¢») + 2P0+ (1 + g7
+a*(1+ ) (1 +q+4gY)
L@+ (+a+a)U+PH0+q+ +4 + q4)x3
(14 a)g*(q® + a*q® + ag*(1 + (1 + g%
+3P 1+ A+ +a*A+gH1 +q+qY)
N 1+q+q*+q +q* @
7' (q® + a*'q® + ag* (1 + (1 + ¢») + a*g*(1 + 9 (1 + ¢%)
+a*(1+ ) (1 +q+4gY)
5

X

0+ adt @+ a + a1+ U+ @) + PPEA+ A+ @)
+a?(1+¢H (1 +q+4qh

Our third example is the Stieltjes-Wigert g-difference equation, [19, p. 116]. The
g-Difference equation satisfied by the Stieltjes—Wigert polynomials is

—x(1 — g"y(x) = xp(gx) — (1 + x)y(x) + y(q " 'x), (93)

which has the equivalent form

l1-g(1+g9—49")x "—1
Diy(x) = ( ((161(— l)zzxzq ) ) Dgy(x) + (qq_lw)’(x)- (94)

Using the recursion (74) with

(1—=q(1+q—q")x g -1
)»o(x)—< TR ) 0 = (95)
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we find that

@' -D@" -9 _ 9" —9
g*x*(g — D* g*x* (g —1)

@ -DQq"-@q" -4 9" —q

d(x) =

580(x),

8 - — 8 >
2(%) Fox5(q — 1) 1) 1(x)
@"-D@" - 9@" - d)H{q" - ) Q" —q
6 = = 8 5
3(%) 7'9x8(q — 1) 7*x2(q — 1) 2(%)
s~ V@ 9@ -G - =) 4" —q
qlsxlo(q _ 1)10 q5x2(q _ 1)2 >
PPROIC b VIC e [C i DG - —qq" —9) _ q"—q 0
5WX) = 21,120, _ 1)12 — 6,2 _124x.
g x*(q—1) q°x*(q — 1)
This suggests the pattern
qn _ qm—H
dmt1 = Sm(x), m=0,1,2,.... (96)

qm+2x2(q _ 1)2

Again, we verified this up to m = 15. Thus the smallest m for which 8,,(x) = 0is m = n.
The polynomial solutions are then given by (88). The fifth-order polynomial solution is
given by

y5(x) = ys()A— (1+q+q" +¢° +4*) (g0
+(1+¢) (1 +q+7 +9 +4q°) (@0*
~(1+4)(1+q+4+9 +4q") (@0’
+(1+q+4 +4 +4") (0" - @x°.

This can written in the form

y5(x) 1-4% 1-¢)0-¢qY 4
R A e T T
A-)1—¢Y 5, (=9 4 4, 25 5
A EAR T A —x)°. (97
(l_q)(l_qz)q(x)+(1_q)q (=%)" + 47 (=) (97)
From this pattern the following pattern is clear
Yn(x) N Z (@ Dn (—l)quzxk, (98)

7n(0) (@ DG Dk
which can then be proved rigorously.

Remark 7.1: It is important to note that it is not surprising that ,,(x) for the g-Laguerre

{Lff') (x; q)} and the Stieltjes—Wigert polynomials {S, (x; )} are almost identical. The reason
is that the part of 6,(x) for the g-Laguerre polynomials which vanishes does not depend

on 7, and S,(x; q) and L,(qﬂ) (% 9)

Sa(sq) = lim L (xq" ) (99)
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8. Limitations of DAIM and g-AIM

In this section we show the limitations of the both DAIM and g-AIM by applying it to
the case of linear second-order difference equation with constant coefficients. The case of
linear second-order differential equation with constant coeflicients is similar. Consider the
difference equation

A%y(x) = a Ay(x) + by(x) (100)

where Ag(x) =a and so(x) = b are polynomials in a and b. Therefore, the DAIM
sequences (26) yields

M) =at4+ b, s(x) =ab, Ay(x) =a(a®+2b), sy(x) = b(a®+b).
In the present case the recurrence relations (26) become
An = An—1A0 +Su—1,  Sn = Ap—150- (101)

it follows that A, and s,, are polynomials in a and b of total degree n + 1. The termination
condition
sn(x)  sp—1(%) An—150 Sn—1

= implies = ,
An(x) An—1(x) An—1ho + Sp—1 An—1

which leads to the quadratic equation

si—1(0) ) sn—1(%) B
(An_l(x)> Tl (An_l(x)) — 00 =0

with solutions

si1(x)  —at a4 4b

A1 (x) 2 (102)

It is now clear that there is no n for which (102) holds because its left-hand side is a rational
function in a and b but its right-hand side is an algebraic non-rational function. What is
surprising is that the method nevertheless gives the correct answer. Indeed this gives the
solutions

x—1 . B I*
B se1() ] a—~a2+4b
o= [ 2] - =]
1 Z x (103)
X— - / 2
rw=Tl[- G e et
i=ng x—1 L J

Surprisingly, this is the correct answer, [16,22].
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One is tempted to use (101) to get

which when iterated leads to the continued fraction [15]

Sn b b

A atat

Here again we face issues of rigour because the above continued fraction is a periodic con-
tinued fraction and will converge to a unique value involving the minimal solution, via
Pincherle’s theorem [15]. So even formally we get only one solution.

There is also inherent inconsistency in applying AIM, DAIM, or g-AIM to equations
with constant coeflicients. In all cases it has been been proved that the terminating con-
dition holds if and only if the equation in question has a polynomial solution. This
automatically excludes all equations with constant coeflicients, except trivial ones like
Yy =0,A%y(x) =0, Déy(x) = 0. This also invalidates the application of AIM to general
Euler equations of the type

Y (x) + axy (x) + by(x) =0,

What is a surprise is that this invalid applications of the AIM, DAIM, or g-AIM technique
give the correct answers.
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