
APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND DEEP LEARNING 

FOR SUSTAINABLE WATER MANAGEMENT IN PRINCE EDWARD ISLAND 

 

A Thesis  

Submitted to the Graduate Faculty 

in Partial Fulfilment of the Requirements  

for the Degree of Master of Science 

Sustainable Design Engineering 

 

Faculty of Sustainable Design Engineering 

University of Prince Edward Island 

 

 

Hassan Afzaal 

Charlottetown, Prince Edward Island 

March 2020 

 

 

 

 

 

© 2020. H. Afzaal 

 



 





ii 

 

ABSTRACT 

 

Precision agriculture evaluates and quantifies the input needs of crops for their optimum 

yield and sustainable production. Growth of potato plants is highly sensitive to drought 

conditions, which drastically reduce tuber yield if precision supplemental irrigation (SI) is 

not provided. The hypothesis of this study, that the rainfall in Prince Edward Island is not 

enough for sustainable potato production in the island, was tested under three specific 

objectives including i) to model evapotranspiration with artificial intelligence for precision 

water resource management, ii) to determine the effects of different irrigation systems 

(sprinkler, drip, fertigation and control; rainfed) on potato tuber yield, quality, payout 

returns, and iii) to model the groundwater levels of Prince Edward Island using deep 

learning methods to ensure sustainability of water balance in Prince Edward Island. 

This study used deep learning, artificial neural networks (ANNs) and the standard 

hydrology models to estimate components of water cycle for their use and impact on potato 

production in Prince Edward Island. Reference evapotranspiration was estimated with 

recurrent neural networks (RNNs) namely long short term memory (LSTM) and 

Bidirectional LSTM. Four representative meteorological sites (North Cape, Summerside, 

Harrington and Saint Peters) were selected across the island. Crop specific 

evapotranspiration (ETc) was calculated from reference evapotranspiration (ETO) using 

Penman Monteith equation, FAO-56 method, ANNs, and RNNs, and LSTMs. Based on 

subset regression analysis, the highest contributing climatic variables namely maximum air 

temperature and relative humidity were selected as input variables for RNNs’ training 

(2011-2015) and testing (2016-2017) runs. The results suggested that the LSTM and 
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Bidirectional LSTM are suitable methods to accurately (R2 > 0.90) estimate ETO for all 

sites except for Harrington. No major differences were observed in the accuracy of LSTM 

and Bidirectional LSTM. The potential gap between ETO and rainfall were highlighted for 

assessing agriculture sustainability in Prince Edward Island. Analyses of the data 

highlighted that the cumulative ETO surpassed the cumulative rainfall potentially affecting 

yield of major crops in the island. Therefore, agriculture sustainability requires viable 

options such as SI to replenish the crop water requirements as and when needed. Results 

suggested that July, August, and September are relatively drier months of the study years 

and SI may be required to meet the crop water requirements.  

In order to evaluate impact of SI, pressurized irrigation systems including sprinkler, 

fertigation and drip irrigation were installed at small-scale to offset deficit in soil moisture 

as compared to conventional practice of rainfed conditions, i.e., no irrigation practice 

(control). Significant differences in potato yield were observed between control and 

irrigation methods used in this study. A two-way ANOVA was run to examine the effect 

of irrigation methods and year on potato tuber yield, water productivity, tuber quality, and 

payout. In term of payout returns the sprinkler treatment performed significantly better than 

control, drip, and fertigation in 2018. However, in terms of water productivity, the 

fertigation treatment performed significantly better than the control and sprinkler 

treatments during both growing seasons. The lower water productivity of sprinkler 

irrigation was due to higher water consumption in comparison with drip and fertigation 

systems.  

Needs of SI for potato production in Prince Edward Island can be met from groundwater 

pumping. This necessitates the budgeting of water cycle components for efficient 
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management of water resources. In areas where groundwater pumping is common for SI 

or for domestic use, the inventory control of groundwater resources could become more 

convenient with the use of deep learning, ANNs, and RNNs namely a multilayer perceptron 

(MLP) and LSTM. The analysis of two watersheds namely Baltic and Long creep showed 

that the deep learning methods used in this study are accurate to simulate groundwater 

levels. Input variables for this watershed-scale modelling investigation included stream 

level, streamflow, precipitation, relative humidity, mean temperature, heat degree days, 

dew point temperature, and ETo. Using a hit and trial approach and various 

hyperparameters, all ANNs were trained from scratch (2011–2015) and validated (2016–

2017). The stream level was the major contributor to GWL fluctuation for the Baltic River 

and Long Creek watersheds (R2 = 0.508 and 0.491 respectively). The MLP performed 

better in validation for Baltic River and Long Creek watersheds (RMSE = 0.471 and 1.15, 

respectively). The deep learning techniques introduced in this study to estimate GWL 

fluctuations are convenient and accurate as compared to collection of periodic dips based 

on the groundwater monitoring wells for groundwater inventory control and management. 
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CHAPTER 1 

INTRODUCTION 

Potato industry significantly promotes the economy of Prince Edward Island as it 

contributes about 10.8% to the GDP (gross domestic product) of this province with more 

than one billion direct and indirect economic benefits engaging 12.1% of total work force 

of the island [1]. Currently, Prince Edward Island produces approximately 20-25% of total 

potatoes grown by Canada each year [2]. Potato is very sensitive crop in terms of yield and 

quality under limited water conditions [3]; therefore, the soil water should not be depleted 

by more than 30-50% for optimum potato yield [4-5].  

Precision agriculture does not only evaluate and quantify the input needs of crops for 

their optimum yield and sustainable production but also assesses risks if the crop inputs are 

not scientifically managed. The findings of study by Shock et al. [6] suggested the higher 

risk of reduced potato yields in case of scarce soil water. Since, the majority of potato 

production in Prince Edward Island is rainfed, the irregular rainfall pattern may affect 

potato yield. Furthermore, climate changes add severity to this problem as more hot days, 

lesser cold days and changing precipitation patterns are predicted for next decades [7]. 

These challenges demand the precise quantification of plant water requirements, calculated 

from reference evapotranspiration (ETo), through the use of robust and accurate artificial 

intelligent techniques.  

Based on the computed ETo and rainfall gaps found during preliminary modeling of 

physical hydrology components of Prince Edward Island, this study compared the effects 

of supplemental irrigation (SI) on potato tuber yield, quality, payout returns and water 

productivity. Several irrigation methods have been tested previously to replenish the crop 
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water requirements on need basis; however, there are no clear guidelines for this region for 

selection of appropriate irrigation method for sustainable production in the island.  

Over the past few years, there has been increased demand in the agriculture sector for 

SI, which poses several challenges for water and resource managers. Because of the 

relatively small and non-contiguous watersheds in Prince Edward Island, pumping of 

groundwater has also raised concerns for groundwater sustainability due to the island’s 

uneven topography [8]. An inventory of groundwater is necessary for efficient water 

resource management, especially in relation to growing groundwater demands for 

agricultural use. It is neither feasible nor economical to install and manage monitoring 

groundwater wells in a place like Prince Edward Island, which consists of 260 watersheds 

for efficient water management. The inventory control of the groundwater resource can 

ensure the sustainability of water resources in the areas where groundwater pumping is 

common for supplemental irrigation or for domestic use. 

 The hypothesis built in this study was that the rainfall in Prince Edward Island is not 

enough for sustainable potato production in the island. Several deep learning models have 

been tested to highlight the gaps between rainfall and ETo. Irrigation methods namely drip, 

sprinkler and fertigation were tested in consideration with potato tuber yield, quality, and 

payout returns. Furthermore, to evaluate the effect of supplemental irrigation on 

groundwater levels; several deep learning methods have been tested for inventory of the 

water cycle components.  
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1.1 Study Objectives 

The objectives of this study were: 

1. To model evapotranspiration with artificial intelligence for precision water 

resource management.  

2. To determine the effects of different irrigation systems (sprinkler, drip, 

fertigation, and control; rainfed) on potato tuber yield, quality, payout returns.  

3. To model the groundwater levels of Prince Edward Island using deep learning 

methods to ensure sustainability of water balance in Prince Edward Island. 

1.2 Thesis Structure 

This document follows the publication style thesis in which first chapter explains 

the brief introduction of each objective. Chapters 2-4 report the results of modeling and 

field work to achieve the three study objectives, respectively. Each chapter has its own 

specific abstract, introduction, material and methods, results, and discussion. Chapter 5 

summarizes the results presented in Chapters 2-4.  

In chapter 2, several methods were tested to quantify the crop water requirements 

and rainfall gaps for agricultural sustainability in Prince Edward Island. The tested 

methods in this study were more accurate and required less input variables for 

estimation of crop water requirements. This study is published in peer reviewed Applied 

Sciences Journal, (https://www.mdpi.com/2076-3417/10/5/1621).  

After identifying gaps between crop water requirements and rainfall (Chapter 3); 

three different irrigation methods namely drip, sprinkler and fertigation were tested to 

evaluate the potato crop suitability in context with potato tuber yield, quality and payout 
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returns. This study is also published in peer reviewed Sustainability Journal 

(https://www.mdpi.com/2071-1050/12/6/2419). 

To evaluate the irrigation impacts on groundwater levels, three deep learning 

methods namely multilayer perceptron, recurrent neural networks and convolutional 

neural networks were tested with varying input combinations to estimate the fluctuation 

in ground water. This study is published in peer reviewed Water Journal 

(https://www.mdpi.com/2073-4441/12/1/5).  

1.3 Author Contributions 

This is a publication-based thesis that includes the ideation, review and help of 

student’s committee members in writing process of the publications made part of this 

thesis. All the writing, experiments, data collection, and data analysis techniques used 

in this study have been conducted by the master’s degree candidate himself. The 

committee members helped the candidate in ideation of objectives and improved the 

quality of these presentations for multiple times. To recognize the contributions of 

committee members; all committee members were included in the authorship lists of 

the peer reviewed articles based on their contributions.    
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CHAPTER 2 

Computation of Evapotranspiration with Artificial Intelligence for 

Precision Water Resource Management 

Abstract  

Accurate estimation of evapotranspiration provides useful information for water 

resource management, irrigation planning and crop sustainability. This study estimates the 

reference evapotranspiration with recurrent neural networks namely long short term 

memory (LSTM) and Bidirectional LSTM. Four representative meteorological sites (North 

Cape, Summerside, Harrington and Saint Peters) were selected across Prince Edward 

Island (PEI), Canada to form a PEI database from mean values of the four sites’ climatic 

variables to capture climatic variability from all parts of the province. The highest 

contributing climatic variables namely maximum air temperature and relative humidity 

were selected based on subset regression analysis as input variables for RNNs’ training 

(2011-2015) and testing (2016-2017) runs. The results suggested that the LSTM and 

Bidirectional LSTM are suitable methods to accurately (R2 > 0.90) estimate reference 

evapotranspiration for all site except Harrington. Testing period (2016-2017) root mean 

square errors were recorded in range of 0.38-0.58 mm/day for all sites. No major 

differences were observed in accuracy of LSTM and Bidirectional LSTM. Another 

objective of this study was to highlight the potential gap between reference 

evapotranspiration and rainfall for assessing agriculture sustainability in Prince Edward 

Island. Analyses of the data set 2011-2017 highlighted that the cumulative reference 

evapotranspiration surpassed the cumulative rainfall potentially affecting yield of major 
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crops in the island. Therefore, agriculture sustainability requires viable options such as 

supplemental irrigation to replenish the crop water requirements as and when needed.  

2.1 Introduction 

Evapotranspiration (ET) is key element in water balance as well as surface energy 

equation. Accurate estimation of ET provides useful information for water resource 

management, irrigation planning and crop sustainability. Lysimeters are commonly used 

in estimation of ET directly; however, the use of lysimeters in ET estimation is very limited 

because of high maintenance and operational costs [9]. Several mathematical models 

indirectly estimate ET and are considered to be the intelligent alternative of direct methods 

due to time saving and ease of application [10]. Standardized Penman-Monteith (FAO-56) 

is the most acceptable mathematical model for estimation of ETO [11].  

Under both humid and arid climatic conditions, FAO-56 method has been 

unanimously reported to be the most efficient method for estimation of ETO by 

incorporating thermodynamic as well as aerodynamic effects [12]. However, input data 

needed by FAO-56 method including temperature, relative humidity, solar radiation, wind 

speed and more information about the area makes its applicability challenging for several 

locations across the globe. Solutions to this problem have been sought by introducing 

various empirical methods through simplifying the FAO-56 method, such as, Hargreaves 

equation that requires temperature data only to estimate ETO. The choice of methods solely 

depends upon the accuracy of methods and availability of reliable data. An ideal method 

however should be based on minimal input data variables with no compromise on  

precision and accuracy [13]. 
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Artificial neural networks (ANNs) have drawn the attention of researchers to model 

the complex non-linear hydrological relationships. Several ANNs have been successfully 

used to solve hydrology related problems such as river flows extrapolation [14], rainfall 

run-off modelling [15] sediment forecasting [16], and notably ETO [17]. Afterwards, 

several improvements in ANN’s architecture, learning algorithms have been proposed by 

different researchers. For example, Sudheer et al. [18] modelled the ETO for rice crop. They 

used radial basis neural networks with varied combinations of climatic input variables. 

Aytek et al. [19] proposed the explicit neural network to model the ETO by using daily 

climatic variables in California, USA by comparing six different conventional methods. 

Rahimikhoob [20] trained the ET models by using only air temperature of Caspian Sea in 

North Iran and compared their results with FAO-56 model output. They concluded that the 

air temperatures were able to explain the variability in ET without compromising the 

accuracy. In recent years, several other machine learning models were tested to estimate 

ETO such as extreme learning machines [10,21,22], support vector machines [18] and  

Fuzzy genetic approach [23]. Several climatic variables such as temperature, relative 

humidity and ET exhibit seasonality and may be treated as a time series problem. Although, 

ANNs handle the non-linear behavior of time series better than regular regression; 

however, most of the ANNs do not explain seasonality and time dependence. Simple ANN 

architecture such as multilayer perceptron does not contain any memory blocks to store the 

previous information for better prediction. To address this issue, recurrent neural networks 

(RNNs) were introduced to capture the dynamics of sequences via cycles in the network of 

nodes [24].  
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  In RNNs, the temporal relations of inputs are addressed by feedback connections for 

maintaining internal memory states. Recurrent neural networks have proved to be effective 

in learning time dependent signals for short term structure [25]. They are capable of storing 

previous records in their memory. However, in large time series sequences the vanishing 

gradient hampers the learning of these models. This problem occurs when gradient updates 

become very small and add no major contribution towards model learning. Long short term 

memory (LSTM) neural networks were introduced to overcome the vanishing gradient 

problems of RNNs with capability of storing important information containing long 

sequences [26]. To further improve the performance of RNNs, more advance LSTM were 

developed by Schuster and Paliwal [27] named bidirectional LSTM. The LSTMs relate 

different past records in time series problems; however, in bidirectional LSTMs the 

enhanced learning mechanism enable them to relate the past as well as future records for 

better estimation of a variable. The LSTMs are used in a number of applications including 

speech recognition, time series predictions and grammar learning. However, the 

application of LSTMs in the field of hydrology has not been widely reported in literature 

but can be used in estimation of hydrologic variables since several climatic variables used 

in hydrology exhibit time series behavior. Several studies have highlighted the potential of 

LSTMs in rainfall runoff modelling [28-29] in which the performance of LSTMs was better 

than physically based runoff models. Zhang et al. [30] used LSTMs for groundwater 

estimation and reported that they performed better than multilayer perceptron model. They 

used the dropout effect in hidden layers of LSTMs to increase the model learning for better 

estimation of groundwater. However, based on literature review, the use of advanced RNNs 

in ETO modelling is very limited and/or unpublished. Therefore, this study explores the 
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performance of conventional LSTMs and bidirectional LSTMs in modeling ETO across 

Prince Edward Island, Canada with the specific objectives to i) model ETO with high 

accuracy as well as with reduced number of variables and ii) identify the need of 

supplemental irrigation by comparing the rainfall and estimated ETO for sustainable 

production of potatoes in Prince Edward Island.  

Need for this study is based on the fact that out of 57 meteorological sites installed in 

Prince Edward Island, less than 10 sites provide enough data for ETO estimation using 

FAO-56 method. This leaves researchers and the Government sectors responsible to 

promote sustainable agriculture in the island to look for other approaches of estimating 

ETO to guide farmers about making intelligent decisions about irrigating their crops. The 

neural networks and analysis used in this study to estimate the ETO have not been 

previously used and/or published for this region makings this study novel innovative for 

scientific community and Government sectors involved in agricultural activities.   

2.2 Experiments and Methods 

2.2.1 Site Selection 

The Atlantic Canadian province of Prince Edward Island is situated in the Gulf of Saint 

Lawrence and separated from the other Atlantic provinces namely Nova Scotia and New 

Brunswick at Northumberland Strait. Four meteorological sites were selected across the 

island to represent climatic conditions of the whole island (Figure 2-1). For example, North 

Cape (47.058056 0N 63.998611 0W) was selected to represent the west part of the island. 

Summerside (46.441111 0N 63.838056 0W) and Harrington (46.343617 0N 63.169736 0W) 

meteorological sites were selected to represent the central parts of the island. Saint Peter 
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(46.450278 0N 62.575833 0W) meteorological station represented eastern parts of the 

island.  

 

Figure 2-1 Locations of the four selected meteorological stations across Prince Edward Island, 

Canada 

2.2.2 Data Collection and Variable Selection 

Daily climatic data of four selected meteorological sites for period 2011-2017 was 

retrieved from Environment Canada historical database. Initially, nine different variables 

namely heat degree days, hourly mean air temperature, minimum air temperature, 

maximum air temperature, relative humidity, dew point temperature, wind speed, 

atmospheric pressure and daily mean air temperature were selected. To capture the 

variation of climatic variables from different part of the island, a new dataset (Prince 

Edward Island database) was formed by averaging the variables of all four sites.  
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 Regression subset analysis was conducted with varied input combinations to select 

the appropriate inputs for artificial intelligence models. ETO was selected as response 

variable and regressed with nine selected climatic variables. Minitab (Version 18) was used 

to conduct subset regression analysis. Best subset regression fits all the possible 

combination based on independent variables. However, for simplicity only the best 

performing variable based on highest coefficient of determination among varied input 

combinations were selected (Table 2-1).    

2.2.3 Penman-Monteith FAO-56 Model 

Actual ETO data were not available for the selected study sites; therefore, FAO-56 method 

was used to estimate the ETO for these sites. The estimated ETo from FAO-56 method was 

used as targets for LSTMs and bidirectional LSTM neural networks. The FAO-56 model 

is accepted and has been widely used [11,31,32] in these situations. The Penman-Monteith 

equation for ETO estimation is expressed as: 

  ETo (
mm

day
) =

∆(Rn − G) +  ρacp   (
es − ea

ra )

∆ + γ (1 +
rs
ra

)
                     (2 − 1) 

 

The Penman-Monteith equation was derived in most acceptable form by Allen et al. [11] 

also known as FAO-56 model expressed as:   

              ETo (
mm

day
) =

0.408∆(Rn − G) +  γ (
900

Tmean + 271) U(es − ea)

∆ + γ(1 + 0.34U)
               (2 − 2) 

where ∆ is the slope of the vapor saturation pressure, Rn is the net radiation, G is the soil 

heat flux, ρa is the mean air density at constant air pressure, Cp is the specific heat of the 

air, es − ea is the vapor pressure deficit, Υ is the psychrometric constant, U is wind speed 
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at 2 meter (m/s), Tmean is daily mean temperature, Υs is the surface resistance, and Υa is 

the aerodynamic resistance m. 

2.2.4 Long Short Term Memory Neural Networks 

The RNNs are sequence-based model, equipped with memory blocks to store and 

relate the previous information in a sequence. However, vanishing gradient hinders the 

learning in earlier layers of RNNs and this phenomenon is sometimes referred as short term 

memory. Input (Xt), output (ot) and forget (ft) gates were added in memory blocks of 

LSTMs to address short term memory problems. The forget gate has ability to discard 

irrelevant information based on relevance, i.e., the input variables after normalization 

closer to 0 are forgotten and closer to 1 are kept for further use. Forget gate in LSTMs 

reduces the chances of overfitting by not carrying outall information from the previous 

steps. Selective information control in LSTM is the key reason to overcome the vanishing 

gradient problems and making them suitable for non stationary data modelling.  

 

Figure 2-2 The memory block of long short term memory (LSTM) neural networks. 
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After passing through ft, tanh and sigmoid functions are used to scale the values for 

further processing. Combine state (Ct) is computed as a result of dot product between tanh 

and sigmoid outputs. The more detailed overview of LSTM information flow memory 

block is described in Figure 2-2.  

2.2.5 Bidirectional Long Short Term Memory Neural Networks  

Bidirectional LSTMs have two way information flow in contrast with traditional 

LSTM (Figure 2-3). Bidirectional LSTMs can relate information from previous as well as 

future time steps making them more powerful than traditional LSTMs. The outputs from 

both directions then aggregate for labels prediction.  

(a) 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

(b) 

 

Figure 2-3 The basic structure of RNN (a) LSTM, (b) Bidirectional LSTM  
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2.2.6 Hyperparameter Tuning and Reproducibility 

Daily meteorological variables were split in training (2011-2015) and testing (2016-2017) 

sets. The test sets were used to estimate the ET0 after successful (convergence) training of 

the models. Extensive tests were performed to determine the hyperparameters of LSTMs. 

Several hyperparameters including neurons, learning rates, optimizers, batch sizes and 

dropout effects were tested for higher accuracy. The highest performing learning rates, 

neuron and batch sizes were used in models training and testing. Due to large data points 

used in this study, several data normalization techniques were tested to reduce the noise 

effects in data. The max-min normalization performed better with our data in comparison 

with other data normalization functions. After training of models, the data were back 

transformed to original scale. 

TensorFlow framework was selected because of its wide applications in industrial 

deployment. Several libraries including Keras with TensorFlow backend, Numpy, 

Matplotlib, Pandas and Scikitlearn was used with Python programming language. All 

models were trained using Dell Latitude 5580 workstation, with Intel Core I7 7600U CPU, 

8GB ram, Nvidia GeForce 930MX and Ubuntu 16.04 X64 operating system. Furthermore, 

for reproduceable results, seeds for random number generators were preset. For examples, 

Python-hash seeds were set to 0, for Numpy the random seeds were set to 111, Python 

random seeds were set to 10 and TensorFlow random seeds were set to 89. All the results 

displayed in this study were retrieved using above mentioned random seed configuration. 
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2.2.7 Rainfall Evapotranspiration Comparison   

Evapotranspiration is considered to be the prominent parameter in water balance 

equation, which is expressed as:  

                                                               P=Q+ET+ ∆S                                                   (2-3) 

Where P is precipitation, Q is runoff, ET is evapotranspiration and ∆𝑆 represented as 

storage in soil. Over the longer periods, changes in water storage for particular region may 

be neglected [33] and precipitation is balanced by runoff and ET only. Furthermore, in 

agricultural the land runoff has minor effects on water balance equation because of higher 

infiltration rates in soil. This study aims to compare the rainfall and ETO only on province 

scale without considering the effect of runoff and change in storage. Planting season (June-

November) was considered only to compare with rainfall with ETO, as the agriculture is 

not possible in winter season [34] in Prince Edward Island because of snow and colder 

weather.  

2.2.8 Model Evaluation  

Loss of the model was evaluated by mean absolute error (MAE), which is the average 

of all absolute errors between predictions and labels. MAE is expressed as: 

                                                                  MAE =
1

𝑁
 ∑ |𝑦𝑖

𝑁

𝑖=1

− 𝑦̂𝑖|                                       (2 − 4)  

The root means square error (RMSE) and coefficient of determination (R2) were also 

used to evaluate the model effectiveness. RMSE has been used in various studies to 

evaluate the neural networks predictive power. Coefficient of determination (R2) is well 
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known model evaluation measure. Values of R2 closer to 1 represent the models with higher 

predictive power. RMSE and R2 can be defined as: 

                                                       RMSE = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1

𝑁
                                        (2 − 5)     

                                   R2          = √
∑ (𝑦𝑖 − 𝑦̅)2 − ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1
𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
1=1

                     (2 − 6) 

where yi is the actual value at the ith time, ŷi is the estimated value at the ith time, and i 

ranges from 1 to N. |𝑦𝑖 − ŷ𝑖 | are the absolute error between actual and predicted values at 

ith time. 

2.3 Results and Discussion 

2.3.1 Selection of Climatic Variables 

The results of subset regression analysis suggested that the maximum air temperature 

was the highest contributor among selected variables in estimation of ETO. For all sites, R2 

was in the range of 70.7-74.4% between ETO and maximum air temperature. Higher R2 

indicated the strong predictive of maximum air temperature in estimation of ETO. A study 

by Feng et al. [35] explained the significance of temperature data in reference to ET 

modelling. They used only temperature data to estimate the ET0. These results are in 

agreement with the findings of Feng et al. [35] and confirmed the relevance of temperature 

data for modeling ETO. Relative humidity was the second largest contributor in estimation 

of ETO as it increased the R2 by 0.11, 0.13, 0.14, 0.10, and 0.12 for Saint Peter, Harrington, 

North Cape, Summerside and Prince Edward Island data sets, respectively (Table 2-1). By 

increasing the number of variables from 2 to 5, there were minor increases of 0.22, 0.013, 

0.024, 0.016, and 0.021 in R2 for Saint Peter, Harrington, North Cape, Summerside, and 
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Prince Edward Island data sets, respectively. Based on subset regression analysis results, 

only two variables namely maximum air temperature and relative humidity were selected 

in training of recurrent neural networks.  

Table 2-1 Subset Regression Analysis regressed versus FAO-56 ETo 

Site 
Variable 

(Number) 
R2 1HDD 

2Hourly 

Mean 

Air 

Temp 

(°C) 

3Min. 

Air 

Temp 

(°C) 

4Max. 

Air 

Temp 

(°C) 

Relative 

Humidity 

(%) 

5Dew 

Point 

Temp 

(°C) 

6Daily 

Mean 

Air 

Temp 

(°C) 

Saint Peters 

1 71.9          X          

2 83.0          X X       

3 83.9          X    X X 

4 84.6 X       X    X X 

5 85.2 X X    X    X X 

Harrington 

1 70.7          X          

2 83.9          X X       

3 84.4          X    X X 

4 84.8 X       X    X X 

5 85.2 X X    X    X X 

North Cape 

1 72.5          X          

2 87.0          X X       

3 88.0          X    X X 

4 88.8 X X    X X       

5 89.4 X X    X    X X 

Summerside 

1 73.6          X          

2 83.6          X X       

3 84.2          X    X X 

4 84.7 X       X    X X 

5 85.2 X    X X    X X 

Prince 

Edward 

Island 

1 74.4          X          

2 86.2          X X       

3 87.2          X    X X 

4 87.7 X       X    X X 

5 88.3 X    X X    X X 
1Heat degree days; 2Hourly mean air temperature; 3Minimum air temperature; 4Maximum air temperature; 
5Dew point temperature; and 6Daily mean air temperature 

One of the objectives of this study was to decrease the number of variables to possible 

extent without compromising the overall accuracy. A study by Afzaal et al. [36] concluded 
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that there was no major improvement in deep learning models predictive accuracy by 

increasing the number of variables from 2 to 4. 

2.3.2 Descriptive Statistics of Selected Input Variables 

Descriptive statistics of the selected variables are given in Table 2-2. The maximum 

air temperature ranged between -17 and 33.5 °C for the period 2011-2017 for all sites. The 

highest maximum air temperature was recorded to be 33.5 OC for Summerside. The mean 

of maximum air temperature was in the range of 9.2-10.7 OC with high standard deviation, 

i.e., 10.2-10.8 °C for all sites.  

 

Figure 2-4 Pair plots of selected variables for year 2011-2017  

Where 1Max. Temp is Maximum air temperature; 3ETo is reference evapotranspiration computed from 

FAO-56 method 
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Because of seasonality, the maximum air temperature behaved as bimodal distribution 

for all sites (Figure 2-4). Exponential relation of maximum air temperature with ETO is 

evident in Figure 2-4. Relative humidity ranged from 37.6 to 100% for all sites. The 

average humidity was recorded to be 77.7- 80.1% with higher standard deviation of 37.6 – 

49.3 % in year 2011 to 2017 for all sites (Table 2-2). Relative humidity represented with 

normal distribution and weaker inverse relation between ET0 and relative humidity may be 

visualized in Figure 2-4.  

Table 2-2 Descriptive statistics of input and output variables for year 2011 to 2017 

Variable Site Mean ± SD Minimum Maximum 

Maximum 

Temperature (OC) 

Harrington 10.5±10.6 -17.7 32.5 

North Cape 9.2±10.2 -17.6 31.2 

Prince Edward 

Island 
10.2±10.5 -17.2 31.8 

Saint Peters 10.5±10.4 -17.0 32.0 

Summerside 10.7±10.8 -18.2 33.7 

Reference 

Evapotranspiration 

(mm/day) 

Harrington 1.9±1.5 0.1 8.2 

North Cape 1.8±1.4 0.0 7.9 

Prince Edward 

Island 
1.9±1.4 0.1 7.8 

Saint Peters 1.9±1.5 0.1 9.3 

Summerside 2.0±1.5 0.1 7.3 

Rainfall (mm/day) 

Harrington 3.1±7.0 0.0 92.9 

North Cape 3.1±7.7 0.0 147.5 

Prince Edward 

Island 
3.0±6.0 0.0 89.7 

Saint Peters 3.2±7.1 0.0 85.3 

Summerside 2.4±6.1 0.0 103.8 

Relative Humidity 

(%) 

Harrington 78.1±10.5 37.6 99.4 

North Cape 80.7±9.6 49.3 100.0 

Prince Edward 

Island 
78.9±9.5 47.6 98.4 

Saint Peters 79.1±10.0 38.7 98.0 

Summerside 77.7±10.2 46.7 98.3 
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ET0 computed from FAO-56 method ranged between 0 and 9.3 mm/day for all sites 

in and duration 2011-2017. The maximum daily ETO was recorded to be 9.3 mm/day for 

Saint Peter site. The mean daily ET0 ranged from 1.8 to 2.0 mm/day with slightly lower 

standard deviation of (i.e., 1.4 - 1.5 mm/day) for all sites. Distribution of daily ET0 may 

be represented with right skewed distribution because of relatively low values in winter 

season (Figure 2-4). 

The rainfall varying from 0 to 147.5 mm/day was recorded for all sites in the study 

period. The highest rainfall of 147.5 mm was recorded for the North Cape site. The average 

rainfall received by all sites was in the range of 2.4 – 3.2 mm/day with standard deviation 

of 6 – 7.7. mm/day. The Summerside station received relatively less rainfall in comparison 

with other sites (Table 2-2).   

2.3.3 Model Training and Testing Evaluation 

In training of RNNs, several optimizers were tested including Stochastic gradient 

descent, Adam, Adagrad and RMSprop. The performance of Adam remained better in 

comparison with other optimizers in terms of accuracy and model convergence. The better 

performance of Adam optimizer is in agreement the findings of Reddy et al. [37]. No major 

effect of increasing the number of neurons on model R2 and RMSE was observed in 

training of RNNs used in this study. Similarly, no major effect of different learning rates 

on model R2 and RMSE was observed e.g. 10-2, 10-3 and 10-4. Dropout effect was also 

tested by freezing the 10, 20, and 30% random neurons to reduce the overfitting effects in 

training of RNNs used in this study. However, because of data normalization of the datasets 

the RNNs used in study were successfully converged without over and under fitting with 
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approximately equal training and testing accuracies. Similar results were found in a study 

by Afzaal et al. [36] as no major effect of dropout was observed with normalized data. 

Therefore, all the RNNs used in this study were trained without introducing dropout in 

LSTM layers.  

In training of LSTM models for Saint Peter site, training and testing losses were 

recorded to be 0.042 and 0.0404, respectively. Approximately equal values of training and 

testing losses depict the successful model convergence without overfitting. LSTM models 

training RMSE was recorded to be 0.497 mm/day and training R2 was recorded to be 0.88. 

Similarly, the value of RMSE for testing LSTM model was recorded to be 0.46 mm/day 

and testing R2 was 0.91. No major differences were observed in training and testing set 

accuracies when modelled with Bidirectional LSTM for Saint Peters site (Table 2-3). It is 

evident that with both models, there were higher testing accuracies in comparison with 

training accuracies maybe because in training stage usually the ANNs try to adjust their 

weights. Another reason could be because of unequal data points for training and testing 

phases. The higher numbers of data points in training stage (give number of data points) 

might have reduced the accuracy of RNNs during training phase.  

For Harrington site, slightly higher losses and lower accuracies were observed in 

comparison with Saint Peters site (Table 2-3). In training of LSTM for Harrington site 

training and testing losses were recorded to be 0.0523 and 0.0555, respectively. Training 

and testing RMSE were 0.54 and 0.58, respectively for LSTM models. The respective 

training and testing R2 were 0.85 and 0.86, respectively. In training of Bidirectional LSTM 

for Harrington site, higher training and testing accuracies were recorded in comparison 

with LSTM. The testing accuracy of Bidirectional LSTM was 5% higher in comparison 
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with LSTM for Harrington site. The advance architecture of Bidirectional LSTM might 

help them to attain the higher accuracies in comparison with LSTM. Furthermore, the 

dataset of Harrington sites showed slightly higher standard deviation in comparison with 

other sites selected for this study. The results suggested that the Bidirectional LSTM can 

achieve higher accuracy with scatter data in comparison with LSTM.   

  

(a)   

 

(b)

 
 

Figure 2-5 (a) Comparison of ETo predicted with LSTM and FAO-56, (b) with Bidirectional LSTM 

and FAO-56 using combined data set of Prince Edward Island for the test period 2016-2017 

North Cape LSTM training and testing losses recorded to be 0.0337 and 0.0380 

respectively, slightly lower than all other sites. The LSTM training and testing RMSE was 



23 

 

recorded to be 0.35 and 0.39, respectively. The LSTM training and testing R2 was recorded 

to be 0.93 and 0.92, respectively. No major differences were observed in losses and 

accuracies for North Cape site when modelled with Bidirectional LSTM. The two 

directional learning may achieve the higher accuracies in time series forecasting problem. 

However, this study estimates the time steps of time series by inputting climatic variables 

only as there are no forecasting involved.  

Summerside LSTM training and testing losses were recorded to be 0.0550 and 0.0490, 

respectively. The LSTM training and testing RMSE was recorded to be 0.53 and 0.45, 

respectively. The LSTM training and testing R2 was recorded to be 0.87 and 0.91, 

respectively. No major differences were observed in losses and accuracies for Summerside 

site when modelled with Bidirectional LSTM. For both RNN, higher testing accuracies of 

were observed in comparison with training accuracies for Summerside. 

For Prince Edward Island sight slightly lower LSTM training and testing losses were 

observed (Table 2-3). The LSTM training and testing R2 were recorded to be 0.91 and 0.91 

respectively. There were no major differences were observed in losses and accuracies for 

Prince Edward Island site when modelled with Bidirectional LSTM.  

Overall, no major effect was observed in the accuracy of LSTM and Bidirectional 

LSTM for all sites. However, for Harrington and Prince Edward Island site the accuracy of 

Bidirectional LSTM was slightly better. In another similar study of turbulent flow 

modelling by Mohan and Gaitonde [38] who also found better performance of LSTM in 

comparison with Bidirectional LSTM. However, similar performance of LSTM and 

Bidirectional LSTM was observed except for two sites (Harrington and Prince Edward 
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Island; combined data) in which performance of Bidirectional LSTM was better than 

LSTM. 

Table 2-3 Training and testing evaluation of Recurrent Neural Networks 

Site     Model 
Training 

MAE 

Testing 

MAE 

Training 

RMSE 

Training 

R2 

Testing 

RMSE 

Testing 

R2 

St Peters 
LSTM 0.0420 0.0404 0.50 0.88 0.46 0.91 

1B LSTM 0.0419 0.0405 0.49 0.88 0.46 0.91 

Harrington 
LSTM 0.0523 0.0555 0.54 0.85 0.58 0.86 

B LSTM 0.0461 0.0450 0.48 0.86 0.46 0.91 

North Cape 
LSTM 0.0337 0.0380 0.35 0.93 0.39 0.92 

B LSTM 0.0340 0.0375 0.34 0.93 0.38 0.92 

Summerside 
LSTM 0.0550 0.0490 0.53 0.87 0.45 0.91 

B LSTM 0.0563 0.0497 0.53 0.87 0.45 0.91 

Prince 

Edward 

Island 

LSTM 0.0417 0.0438 0.40 0.91 0.42 0.91 

B LSTM 0.0415 0.0437 0.40 0.91 0.42 0.92 

 1B LSTM; Bidirectional LSTM 

2.3.4 Rainfall and Reference Evapotranspiration Comparison 

One of the objectives of this study was to highlight the gap between ET0 and rainfall 

in order to strategize the need for supplemental irrigation and sustainable agriculture. A 

comparison between the cumulative values of rainfall and ETO for the period 2011-2017 is 

displayed in Figure 2-6 to gauge the gap between the two variables. The results showed a 

high variability of rainfall in different months (of the growing season) during all years of 

the study period than variability in ETO. For the month of June, the rainfall ranged between 

64.85-107.025 mm while FAO-56 ETO ranged between 83.82-112.47 mm with an average 

difference of 13.52 mm. The ET0 clearly surpassed the rainfall values in month of June for 

periods 2011-2014 and 2016-2017. The highest gap between rainfall and ET0 was observed 

in the month of July for year 2012-2017. In July the recorded difference between ET0 and 

rainfall was computed to be 3.66, -92.2, -56.1, -85.0, -73.4, -68.5, -98.7 mm for years 2011 
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through 2017, respectively. The negative values clearly show the higher ET0 than the 

respective rainfall. In month of August, the ET0 surpassed rainfall in year 2012, 2013, 2015 

2016 and 2017 by 46.1, 30.0, 4.39, 15.8, and 39.6 mm, respectively. In the month of 

September, October and November, rainfall clearly surpassed the ETO. These are the 

months of crop harvest when crops do not need rainfall and have no ET phenomena. 

 

Figure 2-6 Rainfall and FAO-56 ETo comparison for the study period 2011-2017 

The result of this analysis suggested that rainfall is highly variable in same months of 

different year unlike ETO, which seems to be more consistent in different years. In order to 

fulfill the crop water requirements, careful monitoring is required in months of June, July 

and August in Prince Edward Island for potential crop yield.  

Suitability of the modelling approach adopted in this study was further evaluated by 

comparing the FAO-56 cumulative ETO with the values simulated using LSTM and 

Bidirectional LSTM in Figure 2-7, where cumulative rainfall has also been plotted for the 
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test periods 2016 and 2017. A close agreement was found between ETO determined with 

FAO-56 and the two RNNs. 

 

 

 

Figure 2-7 (a) Rainfall, FAO-56 ETo, LSTM ETo, Bidirectional ETo comparison (a) 2016 (b) 

2017 

Despite overestimation during the period July-October, yearly cumulative values of 

ETO determined with all the three methods were also in good agreement with cumulative 

rainfall during 2016 (Figure 2-7a). During the year 2017, higher cumulative gaps were 

observed between ETO and rainfall in comparison with 2016 (Figure 2-7b). The lower 
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rainfall during the growing season (June-November) of 2017 (403.74 mm) than during 

2016 (506.69 mm) were responsible for these gaps. There was no difference in the trends 

of RNNs and FAO-56 ETO for the two test years. The cumulative gaps between values of 

FAO-56 - ETO and the values of ETO determined with LSTM and Bidirectional LSTM 

depict the predictive errors of RNNs models. The error may be further reduced by adding 

more input variables in RNNs model. Furthermore, underestimations for drier months and 

overestimation for colder months may be removed by adding RMSE correction factors in 

order to obtain more accurate predictions. The results support the applicability of LSTM 

and Bidirectional LSTM for sustainable water management with accurate estimation of 

ETO. In order to replenish the crop water requirements, supplemental irrigation might be 

the option for certain months of the growing season when ETO surpassed rainfall. 

2.4 Conclusions 

Reference ET was estimated using LSTMs and Bidirectional LSTM at four sites of 

Prince Edward Island namely Saint Peters, Harrington, Summerside and North Cape for 

study period 2011-2017. Meteorological data were split into two sets namely training set 

(2011-2015) and testing set (2016-2017). Based on subset regression analysis using nine 

different climatic variables, maximum air temperature and relative humidity were selected 

as inputs for recurrent neural networks. By using tuned hyperparameters the LSTM and 

Bidirectional LSTM were able to estimate ET0 with considerable accuracies determined 

with method of FAO-56. There were no major differences in the accuracy of LSTM and 

Bidirectional LSTM. However, for Harrington site, Bidirectional LSTM performed better 

in comparison with LSTM for testing set (2016-2017).  The advance architecture of 

Bidirectional LSTM might be help in attaining the higher accuracies in comparison with 
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LSTM. Furthermore, the dataset of Harrington sites showed slightly higher standard 

deviation in comparison with other sites selected for this study. The results suggested that 

the Bidirectional LSTM can achieve higher accuracy with scatter data in comparison with 

LSTM. Another objective of this study was to quantify the difference ETO and rainfall. The 

analysis showed that in months of June, July and August the ETO surpassed rainfall. Viable 

options such as supplemental irrigation may be needed to replenish the crop water 

requirements in drier for agriculture sustainability.  
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CHAPTER 3 

Precision Irrigation Strategies for Sustainable Water Budgeting 

Abstract  

Climate change induced uneven patterns of rainfall emphasize the use of supplemental 

irrigation (SI) in rainfed agriculture. The Penman-Monteith method was used to calculate 

SI for water budgeting of potato fields in Prince Edward Island, Canada. Cumulative gaps 

between rainfall and crop evapotranspiration (ETc) in August and September, due to high 

crop coefficient factor justified the need for SI during 2018 and 2019. Pressurized irrigation 

systems including sprinkler, fertigation and drip irrigation were installed to evaluate the 

impact of scheduled SI to offset deficit in irrigation water requirements as compared to 

conventional practice of rainfed cultivation (control). A two-way ANOVA examine the 

effect of irrigation methods and year on potato tuber yield, water productivity, tuber 

quality, and payout. Sprinkler and fertigation systems performed better in comparison with 

drip and control treatments. In term of payout returns and potato tuber quality (percentage 

of marketable potatoes), sprinkler treatment performed significantly better than the other 

treatments. However, in terms of water productivity, fertigation treatment performed 

significantly better than control and sprinkler treatments in both years. The use of SI is 

recommended for profitable cultivation of potatoes in soil, agricultural, and environmental 

conditions resembling to those of Prince Edward Island. 
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3.1 Introduction 

Potato (Solanum tuberosum L.) is the world forth most important food crop [39]. The 

utilization of potato in human nourishment and the scratch manufacturing distinguishes it 

from other vital crops on the planet [40]. Potato industry significantly promotes the 

economy of PEI as it contributes about 10.8% to the GDP of this province with more than 

one billion direct and indirect economic benefits engaging 12% of total work force of the 

island [41]. Currently, Prince Edward Island is producing approximately 25% of total 

potatoes grown by Canada each year [42].  

Several sstudies have been conducted to assess the effects of SI on potato tuber yield. 

For example, Belanger et al, [43] tested the irrigation and nitrogen fertilizers effects on two 

potato cultivar yield in New Brunswick Canada. Results indicated the increased potato 

yield from 31.9 Mg ha-1 to 38.4 Mg ha-1 and marketable yield from 25.6 Mg ha-1 to 30.7 

Mg ha-1. Similar results were recorded for both potato cultivars. Porter et al, [44] studied 

the soil management and supplemental irrigation effect on potato tuber yield and quality. 

Supplemental irrigation significantly increased total yields by 10.6 Mg ha-1 to 11.6 Mg ha-

1. Similarly, potato tuber size was significantly increased from the result of supplemental 

irrigation, while decreased specific gravity of potato tubers was observed. Supplement 

irrigation largely depends upon the amount of rainfall and crop water requirements.  

Evapotranspiration (ET) is major contributor in water balance as well as surface 

energy equation. ET provides useful information regarding irrigation quantification and 

efficient water resources management. Several direct and indirect methods of ET 

estimation have been introduced in an attempt to increase the accuracy of estimation. The 

choice of method solely depends upon the data availability and accuracy of estimation. 
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Kashyap and Panda, [45] compared the 10 different climatological methods of estimating 

ETo. The climatological methods were estimated using the lysimeter with electric 

datalogger. The result suggested that the Penman Monteith equation was the best 

estimation method in comparison with other methods.   

Several irrigation methods have been tested previously to replenish the crop water 

requirements on need basis. Onder et al. [46] studied the effect of surface and sub-surface 

drip irrigation methods with four different water stress levels on potato yield and yield 

components. The four stress levels were tested including full irrigation, 66% of full 

irrigation, 33% of full irrigation and no irrigation. No significant differences of irrigation 

methods were observed on yield. However, the result depicted that the drip irrigation has 

several advantages over sub-surface irrigation in terms of installation and replacement 

costs. Water stress significantly affected the potato yield and yield components of early 

potato yield production. More than 33% deficiency of irrigation requirements of potato 

crop is not suggested. Stylianou et al. [47] evaluated the effects of sprinkler and trickle 

irrigation on potato yield on the basis of pan evaporation. The results suggested that the 

trickle irrigation was not the suitable method for potatoes as soil cracked and exposed the 

potato tubers to be attack by the moths. In another study by Unlu et al. [48] evaluated the 

effects of trickle and sprinkler irrigation in the middle Anatolian, Turkey. In this study, 

three irrigation methods were selected namely sprinkler, drip and fertigation. The highest 

yield was measured in sprinkler irrigated plots at the 60 gm-3 nitrogen concentration levels.   

Prince Edward Island is surrounded by ocean from all the sides which require efficient 

and careful water resources management to avoid saltwater intrusion. Agriculture in Prince 

Edward Island is rainfed mostly; however, changing rainfall patterns due to climate change, 
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several high capacity wells were installed in PEI for supplemental irrigation to compensate 

drought periods in drier months of years. These steps have raised concerned about 

groundwater sustainability. A recent study by Afzaal et al. [36] pointed out the reduced 

groundwater levels than expected in summer season due to pumping. This situation has 

created the challenges for water resources manager to meet the SI demands in sustainable 

ways. In this study several irrigation methods had been evaluated to assess the potato tuber 

yield, quality, water productivity and payout returns. The results of this study will provide 

the guidelines to water resource managers for sustainable water management. There has 

been limited work in literature for Prince Edward Island region, which make this work 

novel and useful for potato growers as well as policy makers.   

3.2 Materials and Methods  

3.2.1 Study Field, Experimental Design, and Soil Properties 

The experiments reported here were conducted on a research farm at Kensington, 

Prince Edward Island (46.417032 0 N 63.67658 0 W). The field of 1003.35 m2 was divided 

in four treatments namely sprinkler, drip, fertigation and control triplicated on 41.8 m2 plots 

(Figure 3-1). Patches of 3 m were left between treatment plots to serve as buffer zones and 

walkways for data collection, agronomic operation, field management activities. The 

experiments were under complete randomized design with two factorial arrangements. The 

irrigation methods and the growing years were the two independent factors with continuous 

response variables including potato tuber yield, tuber quality, water productivity and 

payout (Figure 3-1).  
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Figure 3-1 The location of experimental field and experimental layout 

Two soil samples were collected from each replication and homogenized prior to their 

analyses for soil macro- (nitrogen, N; phosphorous, P; and potassium, K), micro-nutrients 

(boron, B; copper, Cu; zinc, Zn; magnesium, Mg; iron, Fe; calcium, Ca), organic matter, 

and soil pH. Soil analyses were conducted by Prince Edward Island Analytical Laboratories 

with standard methods. Soil analysis results (Table 3-1) were used to determine crop 

nutrient requirement. 
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Table 3-1 Descriptive statistics of soil variables 

Variable 

Irrigation 

Methods Mean± SD Minimum Maximum 

 

Organic Matter 

% 

Control 2.9±0.30 2.50 3.40 

Drip 2.8±0.18 2.50 3.10 

Fertigation 2.8±0.28 2.50 3.40 

Sprinkler 2.8±0.23 2.50 3.00 

 

Phosphate 

 (mg/kg)   

Control 490±47.4 401 548 

Drip 456±46.9 378 513 

Fertigation 488±43.1 402 541 

Sprinkler 459±49.0 383 519 

 

Phosphorous 

(mg/kg) 

Control 135.0±0 135 135 

Drip 135.0±0 135 135 

Fertigation 135.0±0 135 135 

Sprinkler 135.0±0 135 135 

 

Potash 

(mg/kg) 

Control 182±19.1 151 213 

Drip 147±15.3 115 168 

Fertigation 157±12.9 142 179 

Sprinkler 152±15.6 128 166 

 

Copper 

(mg/kg) 

Control 0.42±0.07 0.40 0.60 

Drip 0.45±0.07 0.40 0.60 

Fertigation 0.42±0.07 0.40 0.60 

Sprinkler 0.45±0.07 0.40 0.60 

 

 

Soil pH 

     

Control 6.60±0.05 6.50 6.70 

Drip 6.64±0.05 6.60 6.70 

Fertigation 6.59±0.06 6.50 6.70 

Sprinkler 6.73±0.04 6.70 6.80 

 

CEC 

(meq/100g) 

Control 9.37±0.51 9.00 10.0 

Drip 8.87±0.64 8.00 10.0 

Fertigation 9.50±0.53 9.00 10.0 

Sprinkler 7.80±0.30 7.00 8.00 

3.2.2 Crop Water Requirements 

Penman-Monteith method was used to estimate the ETC, which is integral part of soil 

water balance equation expressed as [49][50] may express as:  

                                                                     P = Q + ETc +  ∆S                                            (3 − 1)  
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where P is precipitation; Q is runoff; and ∆S is change in soil moisture storage. ETC is 

crop evapotranspiration, which is calculated with the relationship involving crop 

coefficient factor (kC) and ETO [21]: 

 

                                                                       ETc = ETo ∗   kc                                         (3 − 2) 

The ETo is calculated as:  

                                               ETo (
𝑚𝑚

𝑑𝑎𝑦
) =

∆(𝑅𝑛 − 𝐺) +  𝜌𝑎𝑐𝑝   (
𝑒𝑠 − 𝑒𝑎

𝑟𝑎 )

∆ + 𝛾 (1 +
𝑟𝑠

𝑟𝑎
)

              (3 − 3)   

where, ETo = reference evapotranspiration; ∆ = slope of vapor saturation pressure; 𝑅𝑛 

= net radiation; G = soil heat flux; 𝜌𝑎= mean air density at constant air pressure; 𝑐𝑝= 

specific heat of the air; es – ea = vapor pressure deficit; γ = psychrometric constant; 𝑟𝑠 = 

surface resistance; 𝑟𝑎= aerodynamic resistance  

The crop factor depends on the crop growth stage and variates among different growth 

stages. Potato growth stages may divide into initial (20 days after planting; DAP), 

development (21-50 DAP), mid (51-110 DAP) and late stage (111-140 DAP) [51]. In initial 

potato stage, the value of kC fluctuates between 0.4-0.5, in development stage kC varies 

between 0.7-0.8, in mid stage kc ranges between 1.05-1.2 and in the late season kc varies 

between 0.7-0.75 [51]. 

The water productivity (kg/m3; kg of crop yield / m3 of total water available to the 

crop) is a well-known parameter to assess the effectiveness of irrigation systems in 

consideration with sustainable use of water and is calculated as [52]: 

                                       Water Productivity =
Ya

P + I + ΔS
                                              (3 − 4) 
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where, Ya = Actual yield (kg); P = Precipitation (m3); I = Applied irrigation (m3); ΔS 

= Difference in soil water storage between planting and harvesting (m3).  

Furthermore, for the whole cropping year the filed capacity depletion level was 

maintained at 40%. The recommended depletion levels for potato crops are suggested to 

be 30-50% of soil field capacity [53][3]. 

3.2.3 Irrigation Methods  

Three irrigation methods namely sprinkler, drip and fertigation were used to evaluate 

the effects of potato tuber yield. All three irrigation systems were installed using a series 

of piping networks with variable rate pressure pumps and water tank. The designing of 

pumps and tanks was based on the gaps between ETo and rainfall calculated for the period 

2011-2017. Equation of continuity (Equation 5) was used to determine the pipe diameters 

for the irrigation systems as: 

                                                                          Q = 𝐴 ∗   V                                                    (3 − 5) 

where, Q is flow in m3/sec; A is area in m2; V is velocity in m/sec. 

Sprinkler irrigation system was designed for four replications, while the sprinkler guns 

were connected with 38.1 mm polyvinyl chloride (PVC) pipe. Small spray heads (Rain 

Bird Model 1812PRS 1800 Series) were used in conjunction with 0.3 m extension to ensure 

the sprinkler height with respect to maximum height of potato plants. Rain Bird adjustable 

arc spray nozzles (Model 10VAN) with range of 3 m were used with overlapping setups. 

Five spray heads were used in one replication with 70% overlap of wetting pattern radius. 

Pressure and flow calibrations were conducted in laboratory prior to installation of the 

system in experimental plots.  
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Drip irrigation system comprised 12.7 mm poly drip tubing with pressure 

compensating emitters (Model IDROP-10 4 LPH) inserted in the drip tubes based on plant 

to plant distances within a row. Laboratory calibrations for flow tests were conducted for 

the nearest and the farthest drip emitters, from the pressure pump, in order to ensure 

equitable flow and pressures in emitters and drip lines. Four lines of poly drip tubing were 

installed for one replication with 45 emitters in each line. All drip lines were connected by 

19.05 mm diameter PVC pipes. Different pipe sizes were used for sprinkler, drip and 

fertigation system to ensure the equitable and laminar flow in pipes of different 

interconnected irrigation systems. In the Fertigation system, fertigation tanks (Model 

EZFLO-2005-HB 3/4 Gallon) were added for liquid fertilizer application with similar 

design as in drip irrigation system. 

3.2.4 Crop Nutrient Requirements and Husbandry 

Pre-sowing soil analysis results (Table 3-1) were used to calculate nitrogen phosphate 

and potassium (NPK) application rates for the experimental treatments by following the 

nutrient recommendations from Prince Edward Island Department of Agriculture and 

Fisheries [24]. Because of no substantial variations between NPK concentrations among 

the experimental treatment plots during both years, almost the same application rates were 

calculated and used for the respective treatments. Except in fertigation treatment plots, the 

NPK were applied with broadcasting method that refers to uniform spreading of granular 

fertilizer over the soil surface in contrast of localized application of fertilizer that refers to 

spreading fertilizer in a band or a circle near around the seed/field furrows or plants. In the 

rest of the treatments, respectively 160, 135, and 135 kg/ha of N, P, and K were applied at 
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the time of sowing and on July 28, 2018 and respectively 180, 135, and 135 kg/ha of N, P, 

and K were applied at the time of sowing and on July 25, 2019. In the fertigation treatment 

plots, one-third of the NPK application rates were applied on three separate occasions i.e., 

on sowing, July 15 and July 31 during 2018 growing season and on sowing, July 20 and 

July 29 during 2019 growing season. Seed potatoes (Russet Burbank) were sown on June 

11, 2018 and on June 10, 2019 for the two respective growing seasons, at 0.3 m wide beds 

with plant to plant distance of 0.4 m and bed to bed center distance of 0.3 m. The rest of 

crop husbandry operations including maintenance of seed beds/furrows and weeding were 

done similarly in all treatment plots. 

3.2.5 Data Collection 

Soil moisture levels were recorded with TDR probes (Field Scout 350) at 0, 0.15, and 

0.30 m soil depths each week during both planting years. Weather data were collected from 

Summerside (46.441111 ON 63.838056 OW) weather station for daily ETo calculations. SI 

was scheduled to replenish weekly transpired water from plants. Potato yield samples were 

collected on October 19, 2018 and October 10, 2019) from one out of 4 randomly selected 

rows and weighed using electronic balance with precision of 1.00 g for different quality 

parameters such as good-sized/marketable potatoes that were used to calculate total payout 

per hectare. Potatoes passing through 50-80 mm diameter holes of potato sorter were 

considered to be of good sized and/or marketable. 

3.2.6 Statistical Analysis 

Two-way analysis of variance (ANOVA) with replication method was used to evaluate the 

differences of mean in treatments. The statistical model used in this study may define as: 
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                              Xijk =  μij + εijk =  μ +  αi + βj + γij + εijk                                    (3 − 6)  

where Xijk is estimation of model; μij = mean of i,j group;  μ=overall mean; αi = main 

effects of ith row group; βj=main effects of jth column group; γij=interaction effect of ijth 

group;   εijk=errors 

ANOVA assumptions such as independent observations, normal distribution, 

homoscedasticity within groups were evaluated for each hypothesis. ANOVA only test 

weather is there any significant differences in means of treatment groups or not. It does not 

tell which group performed better than other. For further comparison after significance, 

multiple mean comparison analysis is for further means comparisons. In this study, group 

means were tested with Tukeys pairwise comparisons test which may describe as follows:  

                                                          HSD =
M𝑖 − M𝑗    

√MSw
n

                                                   (3 − 7)      

Where HSD = Honest significant difference;  M𝑖 − M𝑗 = Difference of pairs of means; 

MSw = Mean square with group; n= Number in treatments 

3.3 Results and Discussion 

3.3.1 Descriptive Statistics of Potato Yield and Components 

In 2018, the highest potato tuber yield was observed for sprinkler irrigation system, 

i.e., 38327 kg/ha in comparison with other irrigation methods with slightly higher standard 

deviation of 1096 kg/ha. In 2019, 12.1% lower yield was observed for control treatment in 

comparison with year 2018. No major differences were observed for fertigation and drip 

treatment yields in 2018 and 2019. In 2019, relatively less rainfall was recorded than in 

year 2018, which might had caused lower yield for control treatment. The residual analysis 
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of potato tuber yield data suggested the applicability of ANOVA method, e.g., normal 

distribution, equal variance, and independent observation.  

Table 3-2 Descriptive statistics of potato tuber yield and quality data for the four experimental 

treatments 

Year Response variable Irrigation Method Mean ± SD Minimum Maximum 

2018 

Yield (kg/ha) 

Control 35493 ± 408a 34889 35782 

Drip 35317 ± 820a 34130 35943 

Fertigation 36983 ± 667a 36119 37645 

Sprinkler 38327 ± 1096a 37173 39744 

Marketable 

potatoes (%) 

Control 52.8 ± 5.40 45.3 58.2 

Drip 55.5 ± 2.60 52.9 59.0 

Fertigation 55.0 ± 1.20 53.3 56.0 

Sprinkler 64.3 ± 2.00 61.3 65.8 

2019 

Yield (kg/ha) 

Control 30939 ± 1673b 28682 32268 

Drip 35305 ± 1975a 32820 37470 

Fertigation 36686 ± 1272a 34989 38072 

Sprinkler 34413 ± 3407ab 31826 38273 

Marketable 

potatoes (%) 

Control 69.1 ± 11.5 52.5 77.7 

Drip 80.6 ± 1.20 79.8 82.4 

Fertigation 74.4 ± 6.70 70.0 84.3 

Sprinkler 82.2 ± 3.20 79.2 85.7 

Different letters in the same columns indicates significant statistical differences (p < 0.05, Tukey’s test) 

Overall, higher percentages of marketable potatoes were recorded in year 2019 in 

comparison with year 2018 (Table 3-2). For example, the highest percentages of 

marketable potatoes were recorded for sprinkler irrigation system for 2019 (82.2%) in 

comparison with year 2018 (64.3%). The lowest percentages of marketable potatoes were 

recorded for control treatment in both years indicating that the irrigation played important 

role during tuber development stages. Furthermore, the residual analysis of marketable 

potatoes data suggested the applicability of ANOVA method.    

3.3.2 Gaps between Rainfall and Evapotranspiration 
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There was substantial variability in rainfall and ETo for different months of a potato 

growing season (June-October) during 2011-2017 (Figure 3-2) – a period considered i) by 

Penman-Monteith method for estimation of ETo and ii) for requirement of water for 

irrigation systems, pipe diameters, and the size of pump and tank used in this study. The 

ETo surpassed the rainfall in the month of June for years 2011-2014 and 2016-2017, and 

the highest gap between rainfall and ETo was observed in the month of July for year 2012-

2017. In July the recorded difference between ETo and rainfall were computed to be 3.655, 

-92.175, -56.12, -84.96, -73.40, -68.51, -98.69 mm for years 2011 through 2017, 

respectively. June and July are the months of plant growth and thus irrigation needs. Less 

available rains during these month cause drought conditions for potato fields that adversely 

affect tuber yield if no SI is scheduled and applied. The negative values indicate the higher 

values of ETo then rainfall. In the month of August, ETo surpassed rainfall in year 2012, 

2013, 2015, 2016 and 2017 by 46.08, 29.97, 4.39, 15.83, and 39.64 mm, respectively. In 

the months of September, October, and November rainfall surpassed ETo reflecting the 

availability of water when the potato fields needed irrigation.  

 

Figure 3-2 Comparison of rainfall with reference evapotranspiration for the period 2011-2017 
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Figure 3-3 Comparison of rainfall with crop evapotranspiration for years (a) 2018 and (b) 2019 

The data of ETo provided useful information in water management for larger areas; 

however, for irrigation scheduling of specific crop, ETC is required. The potato crop 

cumulative ETC is presented in Figure 3 for whole the cropping years of 2018 and 2019. 

Major differences were observed between ETo and rainfall in the months of June, July and 

August (Figure 3-2); however, the differences between ETC and rainfall were minor (Figure 

3-3a) in months of July, August and September 2018 due to low kc factor during initial 

growth stages of the potato plants. Plants require less water in their initial stages followed 

by increased demand of water in later stages. Due to higher kc factor (1.20) in mid potato 
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stages, higher differences were recorded between ETC and rainfall in months of September 

and October 2018.  

In the cropping year 2019, relatively less amount of rainfall occurred during the 

months of July and August as compared to 2018. During the growing season of 2019, the 

gaps between rainfall and ETc were substantial in the months of August and September. In 

the month of October, crop water requirements were fulfilled, and no supplemental 

irrigation was required. 

3.3.3 Soil Water Balance  

Water budgeting for an agricultural field provides useful information for irrigation 

monitoring, irrigation scheduling and water resource management. Information about 

components of water budget for the experimental fields is displayed for cropping year 2018 

(Figure 3-4a) and 2019 (Figure 3-4b). During 2018, no irrigation was applied till mid-July 

as crop water requirements were fulfilled through rainfall. In July, one supplemental 

irrigation was applied to maintain the 40% depletion of field capacity in soil.  

In July, several rainfall events occurred to replenish the crop water requirements. 

Three irrigation events were applied in the month of September 2018, which was relatively 

a drier month as compared to other months of the study period. Frequent rainfall events 

fulfilled the crop water requirements making saturation in soil close to its field capacity for 

several days of October 2018 (Figure 3-4a). In 2019, frequent rainfall events in the months 

of June, July, September, and October satisfied the crop water needs and required no 

supplemental irrigation. In 2019, relatively less rainfall events occurred in the months of 

June, July, and August. However, no irrigation was applied till mid-July 2019 because of 
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relatively low water needs by potato crop in its initial stage as well as at least 40% 

maintained depletion levels of soil field capacity. 

 

 

(a) 

 
(b) 

Figure 3-4 Budgeting of water for the experimental fields using water data for years (a) 2018 and 

(b) 2019 
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Five irrigations of the calculated depths were applied in late July and three weeks of 

August to maintain the desired moisture levels in soil (Figure 3-4b). From late August to 

October 2019, three heavy rainfall events occurred (> 50 mm) and helped fulfilling potato 

crop’s irrigation water requirements or consumptive use. 

3.3.4 Water Productivity 

The Figure 3-5 represents the water productivities for different irrigation systems in 

years 2018 and 2019. In 2018, the highest water productivity (e.g., 1.4174 kg/m3) was 

recorded for fertigation system in comparison with other irrigation methods. The lowest 

water productivity was recorded for sprinkler irrigation system as this system consumed 

6.8 times more water than drip and fertigation system. The water productivity of drip 

irrigation system was less than control treatment; i.e., 1.35 kg/m3. The non-uniform 

germination of potato plants in drip replication plots and the resultant asymmetrical 

alignment of drip emitters with potato plants in 2018 might be the cause of low water 

productivity for drip irrigation system during this year.  

In 2019, similar trend of previous year was observed for fertigation and sprinkler 

irrigation systems; e.g., the highest (1.53 kg/m3) and the lowest (1.19 kg/m3) water 

productivities for these treatments, respectively. In 2019, higher water productivity (1.47 

kg/m3) was observed for drip irrigation system in comparison with year 2018 (1.35 kg/m3) 

as the alignments of drip emitters were adjusted with growth of potato plants. This can be 

recommended as one of the best management practices and/or techniques for efficient 

potato cultivation under drip irrigation system. 
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Figure 3-5 Water productivities for different irrigation systems in 2018 and 2019 

3.3.5 Payout Returns 

In 2018, the highest payouts per hectare were calculated for sprinkler irrigation system, 

e.g., $6786.7 ha-1 (Figure 3-6). The highest percentages of marketable potatoes were the 

major reason for higher financial gains for the sprinkler irrigation system. Instead of the 

lowest potato tuber yield in case of drip irrigation system in 2018, the mean payout was 

$211.1 ha-1 higher than control treatment. The higher payout for drip irrigation system 

indicated that the timely irrigation impacted the potato tuber development and quality. 



47 

 

 

Figure 3-6 Payout per hectare for different irrigation systems in 2018 and 2019 

Similarly, higher payout was recorded for fertigation system also in 2018; e.g., 

$5227.1 ha-1. In 2019, the highest financial gain was attained by the drip irrigation system, 

e.g., $6503.95 CAD ha-1, which was $2104.55 CAD ha-1 higher than control treatment. 

Similarly, sprinkler and fertigation treatments earned $6062.77 ha1 and $6408.8 CAD ha-1 

respectively, which were $237.77 CAD ha-1 and $329.9 CAD ha-1 higher than control 

treatment, respectively (Figure 3-6).  

3.3.6 Effects of Irrigation Methods and Years 

A two-way ANOVA was run to examine the effects of irrigation methods and year on 

potato tuber yield and quality. There was a significant interaction (Irrigation method x 

Year) on potato tuber yield, F (3, 23) = 4.54, p = 0.012, indicating at least one statistically 
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different irrigation method x year combination. Simple main effects analysis showed that 

there was a significant effect of irrigation methods and year on potato tuber yield (Table 3-

3). However, in case of significant interaction, it is advisable to consider the interactions 

effect only by ignoring the main effects. Table 3-3 represents all the possible combination 

of irrigation method and year combinations.  

Table 3-3 Two way analysis of variance table for statistical comparison 

Response 

Variable 
Sources 

Degree of 

Freedom 

Mean  
F-Value P-Value 

Squares 

Potato tuber 

yield (kg/ha) 

Year 1 36955884 15.3 0.001 

Irrigation Methods 3 20380293 8.43 0.001 

Year*Irrigation Methods 3 10966955 4.54 0.012 

Error 23 2417954     

Total 30       

Good sized 

potatoes 

(%) 

Year 1 2975.95 100 0 

Irrigation Methods 3 202.35 6.80 0.002 

Year*Irrigation Methods 3 28.96 0.97 0.422 

Error 23 29.74     

Total 30       

Total payout 

per hectare 

(Dollars) 

Year 1 163220 1.66 0.211 

Irrigation Methods 3 1859110.23 19.0 0 

Year*Irrigation Methods 3 612896.7 6.23 0.003 

Error 23 98435.5     

Total 30       

Water 

Productivity 

(kg/m3) 

Year 1 0.004427 1.24 0.276 

Irrigation Methods 3 0.081653 23.0 0 

Year*Irrigation Methods 3 0.020386 5.73 0.004 

Error 23 0.003557     

Total 30       
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Several ‘irrigation method x year’ combinations were found to be significant. There 

were no significant differences observed between irrigation methods and control treatment 

in 2018. However, several treatments of 2018 were significantly different with 2019 

treatments. For example, potato tuber yield in 2018 for control treatment was significantly 

higher than in 2019. The lower amount of rainfall in months of July and August in 2019 

justifies the lower potato tuber yield for control treatment. Contrary to control treatment, 

sprinkler irrigation system yield was significantly higher in 2018 than 2019. Potato tuber 

yield of sprinkler-2019, fertigation-2019, drip-2019 was significantly higher than control-

2018. Similarly, potato tuber yield of Fertigation-2018, drip 2019 was significantly higher 

than control-2019 (Table 3-3). The results suggested that the sprinkler irrigation system 

performed better in 2018 and fertigation systems performance was better in 2019. 

However, based on statistical analysis, no irrigation system performed consistently better 

in the two consecutive years to give a higher potato tuber yield.   

Results of the two-way ANOVA to examine the effects of irrigation methods and year 

on potato tuber quality suggested a non-significant interaction (Irrigation method x year) F 

(3, 23) = 0.97, p = 0.422. Simple main effects analysis showed that there was a significant 

effect of irrigation methods on potato quality F (3, 23) = 6.80, p = 0.002 indicating that at 

least one irrigation method performed significantly different than other irrigation methods. 

Further analysis suggested that the sprinkler and fertigation systems yielded higher 

percentages of marketable potatoes than control treatment. However, no significant 

differences were observed between drip and control treatments. Similarly, no significant 

differences were observed between sprinkler and fertigation systems. Main effect analysis 

also showed that there was a significant effect of year on potato quality F (3, 23) = 100, p 
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= 0.0 indicating that in one year irrigation method yielded better quality potatoes than in 

the other year. Further analysis of multiple means comparison suggested that the in year 

2019 the percentages of marketable potatoes was significantly higher than 2018. 

A significant interaction (Irrigation method x year) on payout returns was observed, F 

(3, 23) = 6.23, p = 0.003, indicating at least one statistically different ‘irrigation method x 

year’ combination. In 2018, sprinkler payout returns were significantly higher than drip, 

fertigation and control treatments. However, no significant differences of payout returns 

were observed between control, drip and fertigation treatments in 2018. The higher payout 

returns of sprinkler irrigation system were due to higher percentages of marketable potatoes 

yielded from this treatment. Furthermore, all the irrigation methods had the significantly 

higher payout returns than the control treatment in 2019. However, no statistical 

differences of payout returns were observed between sprinkler, drip and fertigation 

treatments in 2019 (Table 3-3).    

A similar significant interaction (Irrigation method x year) on water productivity was 

observed as for payout returns and tuber yield; e.g., F = (3, 23) = 5.73, p = 0.004. The water 

productivity of fertigation in 2018 was significantly higher than control and sprinkler 

irrigation system. The main reason behind higher water productivity of fertigation 

treatment was the lower water consumption as well as higher yield in comparison with 

control and sprinkler treatments. No significant differences were observed between 

sprinkler and drip treatments in 2018. Similar consistent trend was observed in 2019 for 

fertigation treatment; e.g., significant higher water productivity than sprinkler and control 

treatments. Due to similar trend of treatment in both years; there was non-significant effect 

of year was recorded (Table 3-3).   
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3.4 Conclusions 

This study evaluates the benefits of using irrigation scheduling and SI for sustainable 

irrigation water management in potato fields. The Penman-Monteith modified method was 

used to test whether the rainfall is enough for sustainable potato production in Prince 

Edward Island or SI is needed in addition to rainfall. The result highlighted the cumulative 

gaps between rainfall and crop evapotranspiration (ETc) in months of August and 

September due to higher value (kc > 1) of crop development factor requiring higher 

amounts of water in year 2018 and 2019. Pressurized irrigation systems including sprinkler, 

fertigation and drip irrigation were installed to evaluate the impact of scheduled SI to offset 

deficit in irrigation as compared to conventional practice of rain-fed conditions; i.e., no 

irrigation practice (control). A two-way ANOVA examined the effect of irrigation methods 

and year on potato tuber yield, water productivity, payout returns and potato quality. The 

samples were collected in year 2018 and 2019 potato growing seasons. A significant 

interaction (irrigation methods x year) was recorded on potato tuber yield, F (3, 24) = 4.54, 

p = 0.012 indicating at least one significantly different combination than other. Sprinkler 

and fertigation system performed better in year 2018 and 2019, respectively in comparison 

with other irrigation methods. In term of payout returns and potato tuber quality 

(percentage of marketable potatoes); sprinkler irrigation treatment performed significantly 

better than control, drip and fertigation treatments. However, in terms of water 

productivity; fertigation system performed significantly better than control and sprinkler 

treatments in both years. This study evaluated the three irrigation methods in consideration 

with different aspects; e.g. raw tuber yield, tuber quality, payout returns and water 

sustainability. It is concluded that the choice of irrigation methods largely depends on the 
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geographical factors influencing water availability, farm returns and applications for which 

potatoes are planned to be grown; i.e., for home use or marketing.  
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CHAPTER 4 

Groundwater Estimation from Major Physical Hydrology Components 

Using Artificial Neural Networks and Deep Learning 

Abstract  

Precise estimation of physical hydrology components including groundwater levels 

(GWLs) is a challenging task, especially in relatively non-contiguous watersheds. This 

study estimates GWLs with deep learning and artificial neural networks, namely a 

multilayer perceptron, long short term memory, and a convolutional neural network with 

four different input variable combinations for two watersheds (Baltic River and Long 

Creek) in Prince Edward Island, Canada. Variables including stream level, stream flow, 

precipitation, relative humidity, mean temperature, evapotranspiration, heat degree days, 

dew point temperature, and evapotranspiration for the 2011–2017 period were used as input 

variables. Using a hit and trial approach and various hyperparameters, all artificial neural 

networks were trained from scratched (2011–2015) and validated (2016–2017). The stream 

level was the major contributor to GWL fluctuation for the Baltic River and Long Creek 

watersheds (R2 = 0.51 and 0.49, respectively). The multilayer perceptron performed better 

in validation for Baltic River and Long Creek watersheds (RMSE = 0.471 and 1.15, 

respectively). Increased number of variables from 1 to 4 improved the RMSE for the Baltic 

River watershed by 11% and for the Long Creek watershed by 1.6%. The deep learning 

techniques introduced in this study to estimate GWL fluctuations are convenient and 

accurate as compared to collection of periodic dips based on the groundwater monitoring 

wells for groundwater inventory control and management. 
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4.1 Introduction 

Groundwater is the major source of industrial and potable water supplies in Prince 

Edward Island, Canada [54]. Over the past few years, there has been increased demand in 

the agriculture sector for supplemental irrigation, which poses several challenges for water 

and resource managers. Because of the relatively small and non-contiguous watersheds in 

Prince Edward Island, pumping groundwater has also raised concerns for groundwater 

sustainability due to the island’s uneven topography [8]. An inventory of groundwater is 

necessary for efficient water resource management, especially in relation to growing 

groundwater demands for agricultural use. It is neither feasible nor economical to install 

and manage monitoring groundwater wells in a place like Prince Edward Island, which 

consists of 260 watersheds for efficient water management. The inventory control of the 

groundwater resource can ensure the sustainability of water resources in the areas where 

groundwater pumping is common for supplemental irrigation or for domestic use. 

Groundwater level (GWL) modeling provides useful information to water resource 

managers, engineers, and policy makers to make appropriate decisions. The modeling of 

GWLs is a complicated procedure that requires thorough knowledge of physical 

hydrological parameters, big data, hydrological models, model inputs, and the geometry of 

watersheds [55]. Aspects of hydrogeology—i.e., geological factors affecting the 

distribution and movement of groundwater underneath the soil surface—need to be 

properly understood when modeling GWLs and manipulating the modeling results. 

Watershed scale fluctuations in GWLs occur over a period of several decades, and the 

resulting cumulative effects on streamflow depletion may not be fully realized for years 

[56]. Resultantly, depending upon the distance of the pumping station from the stream and 
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the geologic characteristics of the aquifer, the groundwater system may take decades to 

recover from streamflow depletion caused by intermittent pumping. Components of the 

surface—and the sub-surface physical hydrology of a watershed—i.e., streamflow and 

groundwater flow, respectively—are interconnected, making the stream–aquifer 

interaction one of the key processes governing the groundwater flow pattern in a watershed 

[54]. Groundwater fluctuations affect streamflow and vice versa, as the pumping wells 

capture groundwater that would otherwise discharge to connected streams, rivers, and other 

surface-water bodies [56]. Francis [57] reported that, in typical watersheds of Prince 

Edward Island, the base flow represents almost 80% of the streamflow in the late summer 

and fall months. Stream length in these island watersheds ranges from less than 1 km to 20 

km. Stream widths vary from less than 1 m at the head to 30 m at the estuary, with all the 

components of soil including sand, silt, and clay, contributing to the formation of the 

streambeds of the island watersheds, making them weakly permeable through reduced 

hydraulic conductivity [54]. 

Several numerical and conceptual methods have been reported in the literature for 

GWL estimation. For example, Mohammadi [58] tested artificial neural network (ANN) 

models and MODFLOW to simulate the monthly GWLs of Karstic aquifers in Iran. The 

results indicated that the ANN models require less input data and time to run as compared 

to conventional models, such as MODFLOW. Several experiments in GWL modeling have 

shown that ANNs could be the better alternative over conceptual models [59]. Mohanty et 

al. [60] found that ANNs are better predictors of GWLs than MODFLOW for short term 

predictions. Karandish and Šimůnek [61] compared artificial intelligence (AI) methods 

with physical modeling. Results indicated that the AI methods performed well in water-
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stressed conditions as compared to HYDRUS-2D. Therefore, AI methods provide 

promising tools for GWL predictions [30]. Several AI methods have been used by many 

researchers because of their simplicity and acceptable performance in different parts of the 

world [59]. 

Deep learning has been used to solve real-world problems relating to multi-magnitude 

data [62], determining the bearing capacity of concrete-steel columns [63], soil liquefaction 

[64], and solving genetic algorithms [65]. Deep learning and ANNs handle the non-linear 

behavior of time series better than regular regression [59]. Several hydrological parameters 

such as precipitation, streamflow, and GWLs exhibit time dependence and can be treated 

as time series functions. Time series functions usually exhibit non-linear relations, which 

are difficult to handle with simple static models. A multilayer perceptron (MLP), being the 

simplest kind of ANN, can approximate the functions related to dynamic hydrological 

problems that are difficult to model with numerical static methods. Similarly, an MLP can 

also predict values from a correlated input variable, which may be mapped with an output 

variable. For example, Sahoo and Jha [66] compared multiple regression and ANNs with 

a Levenberg Marquardt (LM) algorithm to predict GWLs in Kochi Prefecture of Shikoku 

Island, Japan. Graphical findings and analysis suggested the superiority of ANNs over 

multiple regression. Kouziokas et al. [67] used an MLP neural network with four different 

algorithms to forecast daily GWLs in Pennsylvania, USA. Temperature, humidity, and 

precipitation were used as input variables to predict GWLs. The four algorithms used in 

the study were Resilient Backpropagation (RB), LM, the Scaled Conjugate Gradient, and 

the BFGS Quasi-Newton. The LM algorithm performed better than the other algorithms in 

the prediction of GWLs. Juan et al. [68] developed two MLPs with an LM algorithm and 
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two sets of input data, i.e., temperature–precipitation–GWL and temperature–precipitation 

in Qinghai-Tibet plateau, China. The MLP models with 3-input variables performed better 

than the 2-input variables. 

Because of the relatively simple structure of the MLP, it is not possible for these 

models to store the previous information in the time series, unlike an RNN. An RNN 

contains a memory block for storing previous steps of information in time series problems. 

Coulibaly et al. [69] compared three types of ANN models using GWL, precipitation, and 

temperature time series as input variables to simulate monthly GWLs in the Gondo aquifer, 

Burkina Faso. The results were also compared with radial basis function networks, 

generalized radial basis functions, and probabilistic neural networks. The results suggested 

that the RNN is the most efficient model compared to static structure ANNs. Furthermore, 

generalized radial basis functions are poorly performing models in monthly GWL 

simulations when compared to others. Müller et al. [70] compared an MLP with an RNN 

and more advanced ANNs to predict GWLs in Butte County, California, USA. They used 

three different methods to optimize model hyperparameters including two surrogate model-

based algorithms and one random sampling method. They used stream flow, precipitation, 

and ambient temperature as input variables and estimated the GWLs after training these 

models. The results suggested that the MLP performed better than the ANNs, including 

LSTM and the convolutional neural network (CNN). Babu et al. [71] compared different 

algorithms to evaluate the RNN in GWL forecasting in Karnataka, India. They compared 

the LM, gradient descent with momentum, and the adaptive learning rate back propagation 

algorithm in predicting GWLs with the RNN. Their results suggested that the LM 

algorithm performed better with the RNN than all other algorithms in GWL modeling. 
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Although RNNs are enabled to store the previous information in their memory blocks, in 

large time series sequences the vanishing gradient problem hampers the learning of these 

models. The vanishing gradient problem in the RNN occurs when gradient updates become 

very small and add no significant difference to overall learning. To overcome the vanishing 

gradient problems of RNNs, more advanced models such as LSTM were introduced, and 

these are capable of storing important information with long sequences. Recently, Zhang 

et al. [30] conducted a similar study in which they compared LSTM with an MLP to predict 

GWLs in the Hetao irrigation district, China. Monthly water diversion, evaporation, 

precipitation, temperature, and time were used as input data to predict water table depth. 

Their results suggested that the LSTM model performed better than the MLP and could 

contribute to a strong learning ability on time series data. However, they did not include a 

detailed comparison of several input combinations for developing less data-intense models. 

Similarly, the more advanced time series models such as the CNN were not included. 

The CNNs are the more advanced ANNs with usually a high number of hidden layers 

as compared to the RNN and the MLP. CNNs have gained popularity in terms of image 

data; however, they can perform equally well on time series data if modeled accordingly. 

Because of the more advanced functions of CNNs, such as convolution and max-pooling, 

these models have proved to be very promising in time series prediction. However, there 

is very limited literature available on GWL modeling using CNNs. Lähivaara et al. [72] 

used CNNs to estimate the GWLs and groundwater storage using seismic data. They 

applied the Galerkin method to model wave propagation followed by deep CNNs for 

parameter estimations and found that CNNs can extract additional information from 

seismic data about the aquifer. 
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The review literature suggests that the MLP and LSTM are promising methods that 

have been successfully used in many time series problems related to GWL modeling. In 

addition to the MLP and LSTM, the CNN, a relatively new method, was used in this study 

to investigate GWL estimation in the Long Creek and Baltic River watersheds of Prince 

Edward Island. The reason behind conducting this research was that it is currently not 

feasible for groundwater managers to manage the large number of watersheds in Prince 

Edward Island due to the small number of monitoring wells. The challenges of this study 

involve the unavailability of guidelines for selecting appropriate input variables for the 

optimum prediction of GWLs. Therefore, most of the input variables have been selected 

based on data availability. The specific objective of this study was to select appropriate 

ANNs and the best combination of input variables for the accurate possible estimation of 

GWLs. 

4.2 Materials and Methods 

4.2.1 Site Selection 

Prince Edward Island is the smallest but most populous Atlantic Canadian province, 

having a pastoral landscape consisting of several rolling hills, woods, reddish white sand 

beaches, ocean coves, and red soil. With the uneven topography of Prince Edward Island, 

its streams are mostly non-contagious. For this study, the Baltic River and Long Creek 

watersheds situated in the center of Prince Edward Island were selected as experimental 

watersheds because of the relatively large number of irrigation wells in the area that might 

have contributing fluctuations in GWLs (Figure 4-1). 



60 

 

 

Figure 4-1 Locations of the experimental watersheds and the weather station in Prince Edward 

Island, Canada. The area of the relatively large number of irrigation wells has been encircled 

4.2.2 Data Collection 

Two monitoring wells, the Baltic (46.51000° N, 63.648056° W) and New Dominion 

(46.170278° N, 63.250000° W) wells, were selected for collection of actual GWL data of 

the Baltic River and Long Creek watersheds, respectively. The Baltic groundwater 

monitoring well was installed in the Baltic River watershed at an elevation of 25 m above 
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mean sea level. The New Dominion groundwater monitoring well was installed in the Long 

Creek watershed at an elevation of 19.93 m above mean sea level. Daily groundwater level 

data of these two monitoring wells for a seven-year period (2011–2017) was obtained from 

the Department of Communities, Land and Environment, Prince Edward Island. Weather 

data for this period was collected from a local weather station in Summerside (46.3934° N, 

63.7902° W). The data included mean temperature, dewpoint temperature, heat degree 

days, precipitation, relative humidity, ETo, stream level, and stream flow. These data were 

used as input variables for the modeling of GWLs. The ETo was calculated using the 

Penman Monteith FAO-56 method.  

4.2.3 Regression Subset Analysis for Input Variable Selection 

Regression subset analysis was conducted to choose the appropriate variables, several 

combinations of which were used to select input variables for the deep learning models. 

The basic subset regression analysis was conducted in Minitab software (Version 18). Best 

Subsets Regression compares the different regression models that contain subsets of the 

specified predictors. The best-fitting models are suggested by Minitab containing one 

predictor, two predictors, and so on. Based on the highest regression, four input variable 

combinations were tested, namely 1-input variable, 2-input variable, 3-input variable, and 

4-input variable combinations. 

4.2.4 The Multilayer Perceptron for Groundwater Level Modeling 

The multilayer perception is the simplest type of ANNs, which are biologically 

inspired computation models comprised of several layers, namely input, hidden, and output 

layers. All layers are connected each other with neurons—a basic processing unit of ANNs. 
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Input layers take all the input variables such as temperature, precipitation, etc. to predict 

output variables such as GWLs. Hidden and output layers handle the weights and biases 

from input layers through activation functions. The most common activation functions are 

the rectified linear unit (relu), sigmoid, and tanh. In modeling, sigmoid activation function 

is the most common function [73]. However, for this study, the rectified linear unit was 

selected for its better performance than the others. Most of the reviewed papers used trial 

and error methods to model the ANN layers and neurons [59]. For this study, two hidden 

layers and 100 neurons performed better. The MLP requires training data to adjust weight 

and bias for optimal prediction. Several learning algorithms have been used by modelers, 

such as back propagation, the LM, Bayesian regularization, adaptive learning rate back 

propagation, and gradient descent with momentum. Krishna et al. [74] compared several 

training algorithms in the groundwater modeling of an urban coastal aquifer in Andhra 

Pradesh state, India. They found that the LM algorithm was among the best learning 

algorithms compared to others. It is the most common algorithm in groundwater modeling. 

This algorithm works better for determining the local minima of error functions, resulting 

in increased prediction accuracy. For this study, the LM algorithm was selected to 

determine loss function. The MLP was used in this study for various input variable 

combinations (Figure 4-2). 



63 

 

  
1-variable input MLP 2-variable input MLP 
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Figure 4-2 The multilayer perceptron (MLP) model for various input variable combinations 

4.2.5 Long Short-Term Memory Neural Networks 

The LSTM neural network is a special kind of RNN, which is a sequence-based model 

that can store and relate the previous information in a sequence, enabling it to predict time 

series problems. However, RNNs cannot store longer sequences because of the gradient 

vanishing problem in early layers. Gradient vanishing in an early layer is sometimes 

referred to as short-term memory neural networks. All RNNs form a chain-like structure 

as the information flows through them (Figure 4-3a). The RNNs store information in each 

stage based on time/sequence steps in the form of a hidden state, i.e., ht for each input Xt. 

The tanh function in the memory block of an RNN scales the input data between −1 and 1. 
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(a) 

 
(b) 

Figure 4-3 The memory block of (a) recurrent neural networks (RNNs) and (b) long short term 

memory (LSTM) neural networks 

The LSTM addresses short-term memory problems by adding more states in the 

memory blocks of the RNN. In LSTM, a forget state (ft) and a cell state (Ct) are added to 

retain the temporal and sequal dependence of previous blocks. The ft in LSTM has the 

ability to discard or keep the information based on the sigmoid function output values. The 

values closer to 1 are kept, and those closer to 0 are forgotten. After passing ft, the input 

variable Xt and the previous cell hidden state ht–1 are passed through the sigmoid and tanh 

functions. The dot product of the tanh and sigmoid functions are then added with ft to 
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compute Ct. The more detailed overview of LSTM information flow memory block is 

described in Figure 4-3b. 

4.2.6 Convolutional Neural Networks 

CNNs are mostly used for machine vision applcations in two-dimensional (2D) 

images. However, a one-dimensional (1D) CNN has several applications in time series 

classification and natural language processing. Use of a 1D CNN in GWL modeling is very 

limited in the literature. Convolution layers convolute the feature on 1D matrices. Because 

of fewer dimensions, the convolution filters have less processing work, making them 

computationally faster than 2D CNN. There has been very limited research conducted on 

GWL modeling using CNNs. However, based on the hit and trial method, five layers were 

used in the CNN in this study. The first layer was the convolulational layer followed by a 

maxpooling layer to extract features. To connect the maxpooling layer with the fully 

connected layers, a third, flatten layer was added. The last two layers were fully connected 

or dense layers to obtain the output vectors (Figure 4-4). 

 

 

Figure 4- 4 Architecture of the 1D CNN 

4.2.7 Hyperparameter Tuning of ANNs 
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The tuned parameters were selected for different ANNs based on the highest accuracy 

using the hit and trial method. All ANNs were trained from scratch using hyperparameters 

including activation functions, number of neurons, number of layers, neurons, 

optimization, and learning rate. For the MLP, these respective hyperparameters were Relu, 

2, 100, Adam, and 10−3. For LSTM and the CNN, the activation functions were Tanh and 

Relu, and the neurons were 50 and 64, respectively. The CNN had 5 layers. The rest of the 

hyperparameters for LSTM and the CNN were the same as those of the MLP. 

4.2.8 Model Evaluation Criteria 

The model performance was evaluated by loss functions. The root means square error 

(RMSE) is well known model evaluation criteria used in various studies to evaluate the 

model performance [75][76]. It squares the difference between predicted and actual value 

and may range between 0 and1. 

GWLs were plotted against actual GWLs and against a 1:1 line to evaluate the over- 

or under-estimation of GWLs overlapping and its scattering/clustering. To overcome the 

noisy effects of the large data points used in this study, a data normalization technique was 

performed. The max-min normalization performed well with this set of data. However, 

after the model training, the data were back transformed to show trends in the figures. 

4.3 Results and Discussion 

4.3.1 Descriptive Statistics of Input Variables 

The descriptive statistics of several input variables for GWL modeling are displayed 

in Table 4-1. The mean temperature ranged between −22.5 and 26.5 °C in Summerside, 
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Prince Edward Island, in the 2011–2017 period. The difference between mean temperature 

and median temperature is −0.291 °C, which depicts a slightly skewed distribution of mean 

temperature. The dewpoint temperature ranged between −27.692 and 21.775 °C. The 

dewpoint temperature distribution showed slightly more skewness than the mean 

temperature. Because of seasonality, both the mean temperature and the dewpoint 

temperature show a bimodal distribution. The relative humidity of selected region ranges 

between 46.7 to 98.25% for year 2011–2017. Because of the high variation, the relative 

humidity showed a high standard deviation for such a large dataset. The heating degree 

days ranged between 0 and 40.5°C from 2011 to 2017. Because of a high frequency of 0 

°C values of heat degree days in winter, the distribution has a high peak and skews towards 

the right. The ETo ranges between 0.0839 and 7.2631 mm/day. Because of the high number 

of cold days in Prince Edward Island, the distribution of ETo is right-skewed with a 

skewness of 0.74. However, because of a lower variability in the ETo range, it has a lower 

standard deviation. The island received a total precipitation of 753 to 1070.3 mm/year for 

the years from 2011 to 2017. The daily precipitation received by the island is highly 

variable, i.e., 0–103.8 mm/day. Because of storms and a lack of rainfall on several days of 

any given year, the precipitation distribution is highly right-skewed with a skewness 

coefficient of 5.72. Daily water level fluctuations in the Baltic groundwater monitoring 

well located in the Baltic River watershed range between 13.1 and 18.6 m in the years 

2011–2017. Because of lower fluctuations in GWLs, the standard deviation is lower, i.e., 

0.93 m. The distribution of the Baltic River GWLs showed right skewness, with a skewness 

coefficient of 0.58. Daily water level fluctuations in the New Dominion groundwater 

monitoring well, located in the Long Creek watershed, range between 9.16 and 18.12 m in 



68 

 

the years between 2011 and 2017. Because of the high fluctuations in the Long Creek 

GWLs compared with the Baltic River GWLs, the standard deviation is relatively high, 

i.e., 1.58 m. The Long Creek distribution showed a right skewness, with a skewness 

coefficient of 0.58. The associated stream discharge for the Long Creek and Baltic River 

monitoring wells is 0.46–42.4 m3/s and 0.548–51 m3/s, respectively.  

Table 4-1 Descriptive statistics of input and output variables for groundwater level modeling. 

Variable Maximum Minimum Mean ± SD Skewness 

Mean temperature (°C) 26.5 −22.5 6.41 ± 10.4 −0.26 

Dew point temperature (°C) 21.8 −28.0 2.66 ± 10.2 −0.33 

Relative humidity (%) 98.3 46.7 77.7 ± 10.2 −0.37 

Heat degree days (°C) 40.5 0.00 12.0 ± 9.90 0.40 

Reference evapotranspiration (mm/day) 7.26 0.08 2.05 ± 1.50 0.74 

Precipitation (mm) 103.8 0.00 2.41 ± 6.14 5.72 

The Baltic River watershed daily groundwater 

levels (m) 
18.6 13.1 14.6 ± 0.93 0.58 

Stream flow for the Baltic River watershed (m3/s) 51.0 0.548 2.65 ± 3.21 7.57 

Stream level for the Baltic River watershed (m) 2.14 0.50 0.68 ± 0.15 2.99 

The Long Creek watershed daily groundwater 

levels (m) 
18.1 9.16 12.8 ± 1.58 0.06 

Stream flow for the Long Creek watershed (m3/s) 42.4 0.46 2.00 ± 2.21 7.04 

Stream level for the Long Creek watershed (m) 2.84 1.06 1.25 ± 0.17 2.51 

 

The distribution of the stream discharge for both monitoring wells showed a right 

skewness, with a skewness coefficient greater than 7. A high skewness coefficient reflects 

the high occurrence of peak flow levels probably during storms. The associated stream 

levels for the New Dominion and Baltic monitoring wells are 1.055–2.835 m and 0.5–2.14 

m, respectively. Similar trends can be seen with the stream levels associated with both 

monitoring wells, i.e., a high skewness coefficient. 
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4.3.2 Regression Subset Analysis for Variable Selection 

For the 1-input variable combination, stream level was found to be the highest 

contributor among the eight selected different variables for the Baltic and New Dominion 

monitoring wells. The correlation coefficient for the Baltic River GWLs and the associated 

stream level was found to be 0.508. Similarly, the correlation coefficient between the Long 

Creek GWLs and the associated stream level was found to be 0.49. For the 2-input variables 

combinations, stream flow and stream levels were selected for the Baltic River watershed 

with a coefficient correlation of 0.63. For the Long Creek watershed, stream level and dew 

point temperature proved to be the best input variables for the 2-input variable 

combinations. For the 3-input variable combinations, stream level, stream flow, and 

evapotranspiration were selected for the Baltic River watershed, with a slightly high 

correlation coefficient of 0.658 compared with that of the 2-input variable combinations. 

Stream level mean temperature and evapotranspiration variables were selected for the Long 

Creek watershed, with a low coefficient correlation of 0.572 compared with that of the 

Baltic River watershed 3-input variable combinations (Table 4-2). Four-input variables did 

not add much toward defining GWL variability, i.e., only 0.4 and 2.2% increases in 

correlation coefficients for the Baltic River and Long Creek watersheds, respectively. 

Interestingly, the precipitation variable did not contribute towards GWL fluctuations for 

both watersheds. A comparative study of GWL modeling using AI methods [59] reported 

that precipitation was used 48 times in GWL modeling. Statistical analysis, specifically in 

regression analysis, should be conducted to select appropriate input variables for 

groundwater modeling using AI methods [59]. Several studies have used past GWLs for 
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time series forecasting however, in this study, prediction models were used to predict 

GWLs from other input variables. 

Table 4-2 Correlation analysis of input variable selection plotted/regressed versus actual GWLs. 

Watershe

d 

Number of 

Variables 
Variables R2 

B
al
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c 
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1 
Stream level 0.51 

Stream flow 0.2.8 

2 
Stream level and stream flow 0.63 

Stream level and precipitation 0.51 

3 
Stream level, stream flow and evapotranspiration 0.66 

Stream level, stream flow and Mean temperature 0.64 

4 

Stream level, stream flow, heat degree days and 

evapotranspiration 
0.66 

Stream level, stream flow, mean temperature and 

evapotranspiration 
0.66 

L
o

n
g

 C
re

ek
 

1 
Stream level 0.49 

Stream flow 0.36 

2 
Stream level and Dew point temperature 0.55 

Stream level and dew heat degree days 0.55 

3 
Stream level, mean temperature and evapotranspiration 0.57 

Stream level, stream flow and heat degree days 0.57 

4 

Stream level, dew point temperature, relative humidity, 

evapotranspiration 
0.59 

Stream level, relative humidity, mean temperature and 

evapotranspiration 
0.58 

4.3.3 The 1-Input Variable Model 

For the 1-input variable deep learning model, the last epoch training and validation 

losses of the MLP for the Baltic River watershed were recorded to be 0.0839 and 0.0818, 

respectively. A similar training loss of the MLP for the Long Creek watershed was 

recorded, i.e., 0.0856. However, the validation loss of the MLP for the Long Creek 

watershed was 25% higher than the Baltic River watershed (Table 4-3). The training and 

validation losses in the LSTM model for the Baltic River watershed were not substantially 

different from the MLP and were recorded to be, respectively, 0.0832 and 0.074. A trend 

of a higher validation loss in the LSTM model, similar to that of the MLP for the Long 
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Creek watershed, was observed, i.e., the validation loss was 23% higher than the training 

loss.  

Table 4-3 Training and validation losses, and the root mean square error (RMSE) of the artificial 

neural networks (MLP, LSTM, and CNN) used in this study for the Baltic River and Long Creek 

watersheds using 1-, 2-, 3-, and 4-input variables 

Watersheds 
No. of 

Variables 
Method 

Training 

Loss 

Validation 

Loss 

Training 

RMSE 

Validation 

RMSE 
R2 

Baltic River 

1 

MLP 0.084 0.082 0.567 0.558 0.65 

LSTM 0.083 0.074 0.557 0.530 0.66 

CNN 0.010 0.010 0.556 0.550 0.66 

Long Creek 

MLP 0.086 0.110 0.957 1.169 0.63 

LSTM 0.085 0.110 0.973 1.173 0.62 

CNN 0.013 0.017 0.948 1.180 0.63 

Baltic River 

2 

MLP 0.081 0.072 0.560 0.512 0.66 

LSTM 0.083 0.076 0.561 0.531 0.66 

CNN 0.011 0.010 0.549 0.549 0.66 

Long Creek 

MLP 0.081 0.107 0.929 1.180 0.64 

LSTM 0.083 0.108 0.940 1.210 0.64 

CNN 0.011 0.018 0.898 1.215 0.65 

Baltic River 

3 

MLP 0.079 0.065 0.545 0.474 0.69 

LSTM 0.079 0.067 0.539 0.483 0.69 

CNN 0.010 0.009 0.503 0.529 0.71 

Long Creek 

MLP 0.082 0.107 0.945 1.160 0.64 

LSTM 0.083 0.110 0.943 1.203 0.63 

CNN 0.011 0.018 0.888 1.209 0.66 

Baltic River 

4 

MLP 0.079 0.064 0.543 0.471 0.69 

LSTM 0.077 0.066 0.534 0.480 0.69 

CNN 0.010 0.009 0.505 0.532 0.71 

Long Creek 

MLP 0.078 0.103 0.912 1.150 0.66 

LSTM 0.080 0.106 0.916 1.200 0.67 

CNN 0.009 0.017 0.813 1.170 0.70 

 

Both the MLP and LSTM models performed poorly in the validation stage for the Long 

Creek watershed. However, for both watersheds, the training and validation losses of the 

1D CNN were lower than those of the LSTM and MLP models. For the Baltic River 

watershed, the training and validation loss of the CNN was 0.01. The training and 

validation losses of the CNN for the Long Creek watershed were recorded to be 0.0125 
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and 0.0174, respectively. Figure 4-5 shows the training and validation phases of the deep 

learning models for the Baltic River and Long Creek watersheds. For both watersheds, the 

deep learning models were unable to predict the lower peaks very well. Variation in 

estimations of peaks were found to be higher in the training phase compared with that in 

the validation phases of all ANNs. 

(a)

 
(b)

 

Figure 4-5 Training and validation phase of the 1-input variable models for (a) Baltic-River 

watershed and (b) Long-Creek watershed 

4.3.4 The 2-Input Variable Models 

The 2-input variable MLP model for the Baltic River watershed showed training and 

validation losses of 0.0814 and 0.0723, respectively. These losses were slightly lower than 

the losses of the 1-input variable MLP models. Similarly, the 2-input variable MLP models 
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training and validation losses for the Long Creek watershed were 0.0816 and 0.1068, 

respectively. The 2-input variable LSTM training losses for the Baltic River watershed 

improved by 0.8%, and the validation loss decreased by 0.2% in comparison with the 1-

input variable models. In comparison with the training losses of the 1-input variable CNN, 

those of the 2-input variable CNN slightly increased from 0.0100 to 0.0113 and from 

0.0100 to 0.0174, with no change in validation loss, for the Baltic River watershed. For the 

Long Creek watershed, the training loss was reduced from 0.0125 to 0.0112, and the 

validation loss increased from 0.0174 to 0.0184, in comparison with the 1-input variable 

CNN. The training and validation phases showed slight improvements in GWL estimation. 

However, no major difference was observed in GWL predictions in the 1-input and 2-

inputs variable combinations, i.e., the lower peaks of the estimated GWLs did not match 

the lower peaks of the actual GWLs. 

4.3.5 The 3-Input Variable Models 

The 3-input variable MLP model for the Baltic River watershed showed slight 

improvements in training loss (0.079) and validation loss (0.0648) compared with the 2-

input variable MLP model. However, the training loss of the 3-input variable MLP for the 

Long Creek watershed was lower, i.e., 0.0816, and the validation loss (0.1067) was slightly 

improved, compared with the 2-input variable MLP model. The 3-input variable LSTM 

model for the Baltic River watershed showed a higher validation loss (0.0673) as well as a 

training loss (0.079) that was similar to that of the 3-input variable MLP model. The 3-

input variable LSTM model for the Long Creek watershed had a higher training loss 

(0.0832) and a higher validation loss (0.1095) compared with the 2-input variable LSTM 
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model for the same watershed. The 3-input CNN model for the Baltic River watershed 

showed the lowest training loss (0.0101) and validation loss (0.0093) compared with all 3-

input variable models. Similarly, the 3-input variable CNN model for the Long Creek 

watershed showed the lowest training loss (0.011) and validation loss (0.0182) compared 

with all 3-input variable models. There was close agreement between the actual and 

estimated GWLs for the Baltic River watershed. However, there was weak agreement 

between the lower peaks of the actual and estimated GWLs of the Long Creek watershed. 

4.3.6 The 4-Input Variable Models 

The 4-input variable MLP model for the Baltic River watershed showed no difference 

in training loss (0.079) and validation loss (0.0644) compared with the 3-input variable 

MLP model. Similarly, no major difference was observed in training and validation losses 

for the Long Creek watershed compared with the 4-input MLP model; they were found to 

be 0.0783 and 0.1031, respectively. For the 4-input variable LSTM model, the training and 

validation losses for the Baltic River watershed were recorded as 0.077 and 0.0663, 

respectively. The 4-input variable LSTM model for the Long Creek watershed showed a 

slight improvement in training (0.0798) and validation (0.1057) losses compared with the 

other LSTM models. The 4-input variable CNN models showed the lowest training and 

validation losses for both the Baltic River and Long Creek watersheds compared with all 

other 4-input variable models. The addition of a fourth variable reduced the difference 

between the lower peaks of the estimated and actual GWLs as observed in the case of the 

1-input and 2-input combinations (Figure 4-6). A close agreement between the actual and 

the estimated GWLs for the Baltic River watershed was observed, as in the output of the 



75 

 

3-input variable model, and a comparatively weak agreement was observed between the 

lower peaks of the actual and the estimated GWLs of the Long Creek watershed. 

 

(a) 

 
(b)

 

Figure 4-6 Training and validation phases of the 4-input variable models for (a) Baltic-River 

watershed and (b) Long-Creek watershed 

4.3.7 Model Evaluation 

The RMSE of the 1-input variable model for the Baltic River watershed was lower 

than the Long Creek watershed for all ANN models (Table 4-3). For the 1-input variable 

Baltic River watershed LSTM, the RMSE (0.53 m) was lower at the validation stage than 

both the MLP and the CNN. However, in the training stage of the 1-input variable model 
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for the Baltic River watershed, the CNN performed better than the other models, with an 

RMSE of 0.556 m. For the 1-input variable models of the Long Creek watershed, higher 

validation losses, as compared to training losses, were recorded. The 1-input variable 

model of the MLP performed well in the validation stage, with a recorded RMSE of 1.169 

m for the Long Creek watershed. At the training stage for the Long Creek watershed, the 

1-input variable CNN performed well, with a slightly lower RMSE, i.e., 0.948 m. Similar 

trends were recorded for the 2-input variable ANNs, with a slight improvement in the 

recorded RMSE for both training and validation stages. For the Baltic River watershed, the 

2-input variable MLP model performed well at the validation stage, with a slightly lower 

RMSE, i.e., 0.56 m. However, it was not much different than the 1-input variable model, 

as the RMSE was improved only by 0.046 m. Similarly, the CNN improved the training 

stage error of the 2-input variable models by 0.007 m. The slightly reduced RMSE indicates 

the better performance of the 2-input variable MLP and CNN models in comparison with 

the 1-input variable models for the Baltic River watershed. For the Long Creek validation 

stage, the 2-input variable models performed poorly compared with the 1-input variable 

models. The 2-input variable MLP performed better than the LSTM and CNN models, with 

a recorded RMSE of 1.18, which was higher in comparison with the 1-input variable MLP 

model. The 2-input variable CNN model performed better at the training stage for the Long 

Creek watershed, with a slight improvement in RMSE (0.898) compared with the 1-input 

variable CNN model. The 3-input variable MLP model for the Baltic River watershed 

performed well, reducing the RMSE by 0.038 m in comparison with the 2-input variable 

MLP model. The CNN performed well at the training stage for the Baltic River watershed, 

with an improved RMSE of 0.066 m. For the Long Creek watershed, the 3-input variable 
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MLP model performed well, with an improved RMSE of 0.02 m, as did the CNN, with an 

RMSE of 0.01 m in the validation and training stages, respectively. The smaller differences 

in RMSE indicate the slightly improved performance of the 3-input variable models over 

the 2-input variable models for the same site. The 4-input variable MLP model for the 

Baltic River watershed performed well at the validation stage, with an RMSE of 0.471, 

compared with all the models used in this study. Similarly, the 4-input variable MLP model 

for the Long Creek watershed achieved the lowest RMSE (1.15) in the validation stage. 

The reduction of the RMSE, achieved by increasing the number of variables, suggests that 

the selected variables slightly increased the performance and overall efficiency of the 

ANNs. In general, no major effect on model performance was observed by increasing the 

number of variables. The major contributor in defining the GWL variation was the stream 

level. The reason for this could be the inability of the remaining three variables to account 

for the variability in GWLs. Evidence of this trend is presented in Table 2. The increase in 

the number of variables does not show any major effects on the coefficient of 

determination. 

The potential reason for the low performance of ANNs on the Long Creek watershed 

could be the absence of a lurking input variable, such as pumping data. There is no data 

available on actual daily pumping usage by high-capacity well owners. Most of the lower 

peaks were recorded mostly in the summer season for the Long Creek watershed, as 

depicted in Figures 5 and 6; wells might be pumped by well owners in drought season for 

supplemental irrigation to replenish crop water requirements. However, pumping problems 

or lower peaks were not a major problem for the Baltic-River watershed, whereas high-

capacity wells in that area was. 
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It is noticeable that the MLP, being the simplest type of ANN, performed well at the 

validation stages of both watersheds compared with the more advanced ANNs, including 

the LSTM and CNN models. In a similar study of GWL estimation using ANNs, Mueller 

et al. [70] reported that the MLP outperformed both the LSTM and CNN models. At the 

training stage, the performance of the CNN was greater than that of the other ANNs. This 

could be due to the additional parameter-learning functionalities in the CNN, such as the 

convolutional and max-pooling filters, which were not the part of the MLP and LSTM 

models. 

Furthermore, polynomial relationships between the predicted and actual groundwater 

level suggest that increasing the number of variables from 1 to 4 increased the R2 from 0.62 

to 0.70 for the Long Creek watershed (Figure 4-7). A similar trend was observed for the 

Baltic River watershed as the R2 was raised from 0.66 to 0.71 for the 1-input and 4-input 

variable models, respectively (Figure 4-8). These results suggest that the stream level and 

stream flow variables should be considered in defining the overall variability of GWLs. 

These variables contribute to the role of stream level and stream flow in a watershed, as 

reported in the literature [77]. Recent study conducted by Lee et al. [78] found the similar 

relationship between GWLs and stream level. Zhang et al. [30] compared feedforward 

neural networks with LSTM in GWL prediction in the Hetao irrigation district, China. 

Contrary to our findings, their results suggest that the LSTM model is a better predictor of 

GWL modeling than the MLP.  
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(a)

 

(b)

 

(c)  
(d) 

Figure 4-7 The Long Creek watershed estimated groundwater levels for (a) 1-input, (b) 2-input, 

(c) 3-input, and (d) 4-input variable models versus actual groundwater levels 

The CNN performed better with a higher number of input variables compared with the 

LSTM and MLP models. For example, for both watersheds, the MLP performed slightly 

better than the CNN for the 1- and 2-input variable models. However, the accuracy of the 

CNN was higher than that of the MLP in the 3-and 4-input variable models for both 

watersheds (Figures 4-7 and 4-8).  
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(a)

 

(b)

 
(c) 

 

(d) 

Figure 4-8 The Baltic River estimated groundwater levels for (a) 1-input, (b) 2-input, (c) 3-input, 

and (d) 4-input variable models versus actual groundwater levels 

The higher accuracy of the CNN with a certain number of variables may indicate the 

advantage of the CNN in dealing with more complex relationships in comparison with the 

MLP and LSTM models. The additional functionalities of convolutions and max pooling 

helped the CNN to obtain higher accuracies with a higher number of inputs. However, the 

over-estimation of GWLs can be visualized for the Long Creek watershed for 

approximately below 11 m, and under-estimation can be visualized beyond the 13 m level. 

For the Baltic River watershed, the over- and under-estimations were approximately below 
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14 and beyond 15 m, respectively. The possible reason for the poorly matching peaks of 

the extreme GWLs may be due to short-time variations in the GWLs because of the 

pumping during water-deficient months and the quick recharge of groundwater from the 

higher level of groundwater neighboring the monitoring well. This means that there is a 

need to further investigate how the extreme GWLs can be estimated, especially for the 

lower peaks. Mismatch between the predicted and actual levels of groundwater could be 

due to several hydrogeological reasons, including the fact that groundwater pumping can 

also draw streamflow into connected aquifers, where pumping rates are relatively large or 

where the locations of pumping stations are relatively close to a stream [4]. The ANN 

models used in this study were unable to predict the lower groundwater peaks. This 

drawback can be addressed by adding more variables, such as actual pumping withdrawal, 

to develop more accurate models. In general, ANNs can predict human interventions if 

modeled with proper inputs. However, in this study, the groundwater pumping data were 

not available. Emphasis on the collection and storing of the pumping data is therefore 

recommended so that provincial water management authorities can track this important 

variable for groundwater sustainability on the island. 

The application of these models can be further extended to other watersheds to 

estimate GWLs, as there are more than 250 watersheds in Prince Edward Island. The 

installation and maintenance of a large number of monitoring wells is neither feasible nor 

economical. These modeling techniques provide economical and convenient methods of 

equitable water distribution for water resource managers and policymakers in large areas. 

4.4 Conclusions 
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In this study, deep learning has been used to test different ANN models with several 

input combinations to predict GWLs in the Baltic River and Long Creek watersheds in 

Prince Edward Island. The results suggest that ANNs can be used to predict GWLs in 

Prince Edward Island. The stream level was the most highly correlated factor in defining 

GWL fluctuations for both watersheds. All ANN models performed well on the Baltic 

River watershed in comparison with the Long Creek watershed. The number of variables 

had no major effect on the RMSE of either watershed. The results suggest that the GWLs 

of the Baltic River and Long Creek watersheds can be efficiently modeled with the stream 

level variable in the absence of GWL data. Similarly, for the Long Creek watershed, the 

GWLs can be modeled with stream levels with a slightly high RMSE as compared to the 

Baltic River watershed. The performance of the MLP at the validation stage was slightly 

greater than that of the MLP and LSTM models. However, at training stages, the CNN 

performed very well, with the lowest RMSE for both watersheds. The ANN models were 

unable to predict the lower peaks in the summer season, specifically for the Long Creek 

watershed, which could be due to lurking variables such as the pumping from high-capacity 

irrigation wells. It is also notable that the increased number of variables from 1 to 4 

improved the RMSE for the Baltic River watershed by 11% only and for the Long Creek 

watershed by 1.6% only. It may be concluded that the GWLs in the Baltic River and Long 

Creek watersheds can be modeled using stream levels with RMSEs of only 0.53 and 1.169 

m, respectively. The results also suggest that the CNN performed better with a higher 

number of input variables; however, the performance of the MLP was better with lower 

input variable models.  
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CHAPTER 5 

Summary and Conclusions 

 

With the background of variations in rainfall patters and importance of potato crop for 

the economy of Atlantic Canada, the research presented in this thesis was based on the 

hypothesis that the rainfall in Prince Edward Island is not enough for sustainable potato 

production in the island. The specific objectives of this study were to i) model 

evapotranspiration with artificial intelligence for precision water resource management, ii) 

determine the effects of different irrigation systems (sprinkler, drip, fertigation and control; 

rainfed) on potato tuber yield, quality, payout returns, and iii) model the groundwater levels 

of Prince Edward Island using deep learning methods to ensure sustainability of water 

balance in Prince Edward Island. 

With the use of deep learning, ANNs and RNNs) namely MLP, and LSTMs the gaps 

between rainfall and ETo and fluctuations in GWLs were modelled. Irrigation methods 

namely drip, sprinkler and fertigation were tested in consideration with potato tuber yield, 

quality and payout returns. Reference and crop-specific evapotranspiration were precisely 

modelled for Prince Edward Island. No major differences were observed in the accuracy 

of different RNNs used in study; e.g., LSTM and bidirectional LSTM. The data from 2011-

2017 showed that the months of June, July and August received lesser rainfall than ETc 

and other months to replenish the crop water requirements. Due to smaller kc factor of 

potato crop in earlier months, lesser amounts of irrigations may be required for replenishing 

potato water requirements. However, during tuber development/bulking stage, the shortage 
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of water may hinder the potential potato yield. The study results also showed the high 

variability in the monthly recorded rainfall, posing several challenges to water managers 

for sustainable water management. In order to maximize potato tuber yield, timely SI in 

addition to rainfall is one of the viable options.  

Because of rainfed agriculture in Prince Edward Island, there are no guidelines 

available for selection of an appropriate irrigation method to achieve maximum water 

productivity. This study investigated several irrigation methods (sprinkler, drip, control 

and fertigation) in consideration with potato tuber yield, potato tuber quality, farm payout 

returns and water productivity. There were significant effects of SI methods on potato tuber 

yield, quality, payout returns and water productivity. Sprinkler and fertigation system 

performed comparatively better in 2018 and 2019 respectively in terms of potato tuber 

yield. Sprinkler irrigation system performed significantly better than other treatments in 

term of farm payout returns and potato tuber quality. However, the lowest water 

productivity was observed for sprinkler irrigation system due to higher water consumption 

by this method. In terms of water sustainability, fertigation was the most effective irrigation 

method in comparison with control and sprinkler irrigation application methods.  

Commonly, irrigation especially sourced from groundwater pumping causes several 

environmental problems such as declined groundwater levels and saltwater intrusion. 

Therefore, the effects of groundwater pumping on groundwater levels were assessed for 

sustainable water management strategies. Since the physical measurement of groundwater 

levels is challenging with respect to the maintenance of groundwater wells and the 

collection of periodic dips, the techniques introduced in this study; i.e., the use of ANNs 

and RNNs, are convenient and accurate. Stream flow gauges are easier to manage than 
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physical measurement of fluctuations in groundwater levels. In areas where groundwater 

pumping is common for SI or for domestic use, the inventory control of groundwater 

resources could become more convenient with the technique used in this study. The 

analysis of two watersheds namely Baltic and Long creep showed that the deep learning 

methods used in this study were accurate to simulate fluctuations in groundwater levels. 

Because of the non-availability of daily pumping data in the island, it is recommended that 

provincial water resource management authorities should monitor groundwater pumping 

data on a regular basis.  
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