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ABSTRACT

Precision agriculture evaluates and quantifies the input needs of crops for their optimum
yield and sustainable production. Growth of potato plants is highly sensitive to drought
conditions, which drastically reduce tuber yield if precision supplemental irrigation (SI) is
not provided. The hypothesis of this study, that the rainfall in Prince Edward Island is not
enough for sustainable potato production in the island, was tested under three specific
objectives including i) to model evapotranspiration with artificial intelligence for precision
water resource management, ii) to determine the effects of different irrigation systems
(sprinkler, drip, fertigation and control; rainfed) on potato tuber yield, quality, payout
returns, and iii) to model the groundwater levels of Prince Edward Island using deep
learning methods to ensure sustainability of water balance in Prince Edward Island.

This study used deep learning, artificial neural networks (ANNSs) and the standard
hydrology models to estimate components of water cycle for their use and impact on potato
production in Prince Edward Island. Reference evapotranspiration was estimated with
recurrent neural networks (RNNs) namely long short term memory (LSTM) and
Bidirectional LSTM. Four representative meteorological sites (North Cape, Summerside,
Harrington and Saint Peters) were selected across the island. Crop specific
evapotranspiration (ETc) was calculated from reference evapotranspiration (ETo) using
Penman Monteith equation, FAO-56 method, ANNs, and RNNs, and LSTMs. Based on
subset regression analysis, the highest contributing climatic variables namely maximum air
temperature and relative humidity were selected as input variables for RNNs’ training

(2011-2015) and testing (2016-2017) runs. The results suggested that the LSTM and



Bidirectional LSTM are suitable methods to accurately (R?> 0.90) estimate ETo for all
sites except for Harrington. No major differences were observed in the accuracy of LSTM
and Bidirectional LSTM. The potential gap between ETo and rainfall were highlighted for
assessing agriculture sustainability in Prince Edward Island. Analyses of the data
highlighted that the cumulative ETo surpassed the cumulative rainfall potentially affecting
yield of major crops in the island. Therefore, agriculture sustainability requires viable
options such as Sl to replenish the crop water requirements as and when needed. Results
suggested that July, August, and September are relatively drier months of the study years
and SI may be required to meet the crop water requirements.

In order to evaluate impact of Sl, pressurized irrigation systems including sprinkler,
fertigation and drip irrigation were installed at small-scale to offset deficit in soil moisture
as compared to conventional practice of rainfed conditions, i.e., no irrigation practice
(control). Significant differences in potato yield were observed between control and
irrigation methods used in this study. A two-way ANOVA was run to examine the effect
of irrigation methods and year on potato tuber yield, water productivity, tuber quality, and
payout. In term of payout returns the sprinkler treatment performed significantly better than
control, drip, and fertigation in 2018. However, in terms of water productivity, the
fertigation treatment performed significantly better than the control and sprinkler
treatments during both growing seasons. The lower water productivity of sprinkler
irrigation was due to higher water consumption in comparison with drip and fertigation
systems.

Needs of Sl for potato production in Prince Edward Island can be met from groundwater

pumping. This necessitates the budgeting of water cycle components for efficient



management of water resources. In areas where groundwater pumping is common for Sl
or for domestic use, the inventory control of groundwater resources could become more
convenient with the use of deep learning, ANNs, and RNNs namely a multilayer perceptron
(MLP) and LSTM. The analysis of two watersheds namely Baltic and Long creep showed
that the deep learning methods used in this study are accurate to simulate groundwater
levels. Input variables for this watershed-scale modelling investigation included stream
level, streamflow, precipitation, relative humidity, mean temperature, heat degree days,
dew point temperature, and ETo. Using a hit and trial approach and various
hyperparameters, all ANNs were trained from scratch (2011-2015) and validated (2016—
2017). The stream level was the major contributor to GWL fluctuation for the Baltic River
and Long Creek watersheds (R? = 0.508 and 0.491 respectively). The MLP performed
better in validation for Baltic River and Long Creek watersheds (RMSE = 0.471 and 1.15,
respectively). The deep learning techniques introduced in this study to estimate GWL
fluctuations are convenient and accurate as compared to collection of periodic dips based

on the groundwater monitoring wells for groundwater inventory control and management.
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CHAPTER 1
INTRODUCTION

Potato industry significantly promotes the economy of Prince Edward Island as it
contributes about 10.8% to the GDP (gross domestic product) of this province with more
than one billion direct and indirect economic benefits engaging 12.1% of total work force
of the island [1]. Currently, Prince Edward Island produces approximately 20-25% of total
potatoes grown by Canada each year [2]. Potato is very sensitive crop in terms of yield and
quality under limited water conditions [3]; therefore, the soil water should not be depleted
by more than 30-50% for optimum potato yield [4-5].

Precision agriculture does not only evaluate and quantify the input needs of crops for
their optimum yield and sustainable production but also assesses risks if the crop inputs are
not scientifically managed. The findings of study by Shock et al. [6] suggested the higher
risk of reduced potato yields in case of scarce soil water. Since, the majority of potato
production in Prince Edward Island is rainfed, the irregular rainfall pattern may affect
potato yield. Furthermore, climate changes add severity to this problem as more hot days,
lesser cold days and changing precipitation patterns are predicted for next decades [7].
These challenges demand the precise quantification of plant water requirements, calculated
from reference evapotranspiration (ETo), through the use of robust and accurate artificial
intelligent techniques.

Based on the computed ETo and rainfall gaps found during preliminary modeling of
physical hydrology components of Prince Edward Island, this study compared the effects
of supplemental irrigation (SI) on potato tuber yield, quality, payout returns and water

productivity. Several irrigation methods have been tested previously to replenish the crop



water requirements on need basis; however, there are no clear guidelines for this region for
selection of appropriate irrigation method for sustainable production in the island.

Over the past few years, there has been increased demand in the agriculture sector for
SI, which poses several challenges for water and resource managers. Because of the
relatively small and non-contiguous watersheds in Prince Edward Island, pumping of
groundwater has also raised concerns for groundwater sustainability due to the island’s
uneven topography [8]. An inventory of groundwater is necessary for efficient water
resource management, especially in relation to growing groundwater demands for
agricultural use. It is neither feasible nor economical to install and manage monitoring
groundwater wells in a place like Prince Edward Island, which consists of 260 watersheds
for efficient water management. The inventory control of the groundwater resource can
ensure the sustainability of water resources in the areas where groundwater pumping is
common for supplemental irrigation or for domestic use.

The hypothesis built in this study was that the rainfall in Prince Edward Island is not
enough for sustainable potato production in the island. Several deep learning models have
been tested to highlight the gaps between rainfall and ETo. Irrigation methods namely drip,
sprinkler and fertigation were tested in consideration with potato tuber yield, quality, and
payout returns. Furthermore, to evaluate the effect of supplemental irrigation on
groundwater levels; several deep learning methods have been tested for inventory of the

water cycle components.



1.1 Study Objectives
The objectives of this study were:
1. To model evapotranspiration with artificial intelligence for precision water
resource management.
2. To determine the effects of different irrigation systems (sprinkler, drip,
fertigation, and control; rainfed) on potato tuber yield, quality, payout returns.
3. To model the groundwater levels of Prince Edward Island using deep learning

methods to ensure sustainability of water balance in Prince Edward Island.

1.2 Thesis Structure

This document follows the publication style thesis in which first chapter explains
the brief introduction of each objective. Chapters 2-4 report the results of modeling and
field work to achieve the three study objectives, respectively. Each chapter has its own
specific abstract, introduction, material and methods, results, and discussion. Chapter 5
summarizes the results presented in Chapters 2-4.

In chapter 2, several methods were tested to quantify the crop water requirements
and rainfall gaps for agricultural sustainability in Prince Edward Island. The tested
methods in this study were more accurate and required less input variables for
estimation of crop water requirements. This study is published in peer reviewed Applied
Sciences Journal, (https://www.mdpi.com/2076-3417/10/5/1621).

After identifying gaps between crop water requirements and rainfall (Chapter 3);
three different irrigation methods namely drip, sprinkler and fertigation were tested to

evaluate the potato crop suitability in context with potato tuber yield, quality and payout



returns. This study is also published in peer reviewed Sustainability Journal
(https://www.mdpi.com/2071-1050/12/6/2419).

To evaluate the irrigation impacts on groundwater levels, three deep learning
methods namely multilayer perceptron, recurrent neural networks and convolutional
neural networks were tested with varying input combinations to estimate the fluctuation
in ground water. This study is published in peer reviewed Water Journal

(https://www.mdpi.com/2073-4441/12/1/5).

1.3 Author Contributions

This is a publication-based thesis that includes the ideation, review and help of
student’s committee members in writing process of the publications made part of this
thesis. All the writing, experiments, data collection, and data analysis techniques used
in this study have been conducted by the master’s degree candidate himself. The
committee members helped the candidate in ideation of objectives and improved the
quality of these presentations for multiple times. To recognize the contributions of
committee members; all committee members were included in the authorship lists of

the peer reviewed articles based on their contributions.



CHAPTER 2
Computation of Evapotranspiration with Artificial Intelligence for

Precision Water Resource Management

Abstract

Accurate estimation of evapotranspiration provides useful information for water
resource management, irrigation planning and crop sustainability. This study estimates the
reference evapotranspiration with recurrent neural networks namely long short term
memory (LSTM) and Bidirectional LSTM. Four representative meteorological sites (North
Cape, Summerside, Harrington and Saint Peters) were selected across Prince Edward
Island (PEI), Canada to form a PEI database from mean values of the four sites’ climatic
variables to capture climatic variability from all parts of the province. The highest
contributing climatic variables namely maximum air temperature and relative humidity
were selected based on subset regression analysis as input variables for RNNs’ training
(2011-2015) and testing (2016-2017) runs. The results suggested that the LSTM and
Bidirectional LSTM are suitable methods to accurately (R2 > 0.90) estimate reference
evapotranspiration for all site except Harrington. Testing period (2016-2017) root mean
square errors were recorded in range of 0.38-0.58 mm/day for all sites. No major
differences were observed in accuracy of LSTM and Bidirectional LSTM. Another
objective of this study was to highlight the potential gap between reference
evapotranspiration and rainfall for assessing agriculture sustainability in Prince Edward
Island. Analyses of the data set 2011-2017 highlighted that the cumulative reference

evapotranspiration surpassed the cumulative rainfall potentially affecting yield of major



crops in the island. Therefore, agriculture sustainability requires viable options such as

supplemental irrigation to replenish the crop water requirements as and when needed.

2.1 Introduction

Evapotranspiration (ET) is key element in water balance as well as surface energy
equation. Accurate estimation of ET provides useful information for water resource
management, irrigation planning and crop sustainability. Lysimeters are commonly used
in estimation of ET directly; however, the use of lysimeters in ET estimation is very limited
because of high maintenance and operational costs [9]. Several mathematical models
indirectly estimate ET and are considered to be the intelligent alternative of direct methods
due to time saving and ease of application [10]. Standardized Penman-Monteith (FAO-56)
is the most acceptable mathematical model for estimation of ETo [11].

Under both humid and arid climatic conditions, FAO-56 method has been
unanimously reported to be the most efficient method for estimation of ETo by
incorporating thermodynamic as well as aerodynamic effects [12]. However, input data
needed by FAO-56 method including temperature, relative humidity, solar radiation, wind
speed and more information about the area makes its applicability challenging for several
locations across the globe. Solutions to this problem have been sought by introducing
various empirical methods through simplifying the FAO-56 method, such as, Hargreaves
equation that requires temperature data only to estimate ETo. The choice of methods solely
depends upon the accuracy of methods and availability of reliable data. An ideal method
however should be based on minimal input data variables with no compromise on

precision and accuracy [13].



Artificial neural networks (ANNSs) have drawn the attention of researchers to model
the complex non-linear hydrological relationships. Several ANNs have been successfully
used to solve hydrology related problems such as river flows extrapolation [14], rainfall
run-off modelling [15] sediment forecasting [16], and notably ETo [17]. Afterwards,
several improvements in ANN’s architecture, learning algorithms have been proposed by
different researchers. For example, Sudheer et al. [18] modelled the ETo for rice crop. They
used radial basis neural networks with varied combinations of climatic input variables.
Aytek et al. [19] proposed the explicit neural network to model the ETo by using daily
climatic variables in California, USA by comparing six different conventional methods.
Rahimikhoob [20] trained the ET models by using only air temperature of Caspian Sea in
North Iran and compared their results with FAO-56 model output. They concluded that the
air temperatures were able to explain the variability in ET without compromising the
accuracy. In recent years, several other machine learning models were tested to estimate
ETo such as extreme learning machines [10,21,22], support vector machines [18] and
Fuzzy genetic approach [23]. Several climatic variables such as temperature, relative
humidity and ET exhibit seasonality and may be treated as a time series problem. Although,
ANNs handle the non-linear behavior of time series better than regular regression;
however, most of the ANNSs do not explain seasonality and time dependence. Simple ANN
architecture such as multilayer perceptron does not contain any memory blocks to store the
previous information for better prediction. To address this issue, recurrent neural networks
(RNNs) were introduced to capture the dynamics of sequences via cycles in the network of

nodes [24].



In RNNs, the temporal relations of inputs are addressed by feedback connections for
maintaining internal memory states. Recurrent neural networks have proved to be effective
in learning time dependent signals for short term structure [25]. They are capable of storing
previous records in their memory. However, in large time series sequences the vanishing
gradient hampers the learning of these models. This problem occurs when gradient updates
become very small and add no major contribution towards model learning. Long short term
memory (LSTM) neural networks were introduced to overcome the vanishing gradient
problems of RNNs with capability of storing important information containing long
sequences [26]. To further improve the performance of RNNs, more advance LSTM were
developed by Schuster and Paliwal [27] named bidirectional LSTM. The LSTMs relate
different past records in time series problems; however, in bidirectional LSTMs the
enhanced learning mechanism enable them to relate the past as well as future records for
better estimation of a variable. The LSTMs are used in a number of applications including
speech recognition, time series predictions and grammar learning. However, the
application of LSTMs in the field of hydrology has not been widely reported in literature
but can be used in estimation of hydrologic variables since several climatic variables used
in hydrology exhibit time series behavior. Several studies have highlighted the potential of
LSTMs in rainfall runoff modelling [28-29] in which the performance of LSTMs was better
than physically based runoff models. Zhang et al. [30] used LSTMs for groundwater
estimation and reported that they performed better than multilayer perceptron model. They
used the dropout effect in hidden layers of LSTMs to increase the model learning for better
estimation of groundwater. However, based on literature review, the use of advanced RNNs

in ETo modelling is very limited and/or unpublished. Therefore, this study explores the
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performance of conventional LSTMs and bidirectional LSTMSs in modeling ETo across
Prince Edward Island, Canada with the specific objectives to i) model ETo with high
accuracy as well as with reduced number of variables and ii) identify the need of
supplemental irrigation by comparing the rainfall and estimated ETo for sustainable
production of potatoes in Prince Edward Island.

Need for this study is based on the fact that out of 57 meteorological sites installed in
Prince Edward Island, less than 10 sites provide enough data for ETo estimation using
FAO-56 method. This leaves researchers and the Government sectors responsible to
promote sustainable agriculture in the island to look for other approaches of estimating
ETo to guide farmers about making intelligent decisions about irrigating their crops. The
neural networks and analysis used in this study to estimate the ETo have not been
previously used and/or published for this region makings this study novel innovative for

scientific community and Government sectors involved in agricultural activities.

2.2 Experiments and Methods
2.2.1 Site Selection

The Atlantic Canadian province of Prince Edward Island is situated in the Gulf of Saint
Lawrence and separated from the other Atlantic provinces namely Nova Scotia and New
Brunswick at Northumberland Strait. Four meteorological sites were selected across the
island to represent climatic conditions of the whole island (Figure 2-1). For example, North
Cape (47.058056 °N 63.998611 °W) was selected to represent the west part of the island.
Summerside (46.441111 °N 63.838056 °W) and Harrington (46.343617 °N 63.169736 °W)

meteorological sites were selected to represent the central parts of the island. Saint Peter
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(46.450278 °N 62.575833 °W) meteorological station represented eastern parts of the

island.
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Figure 2-1 Locations of the four selected meteorological stations across Prince Edward Island,
Canada

2.2.2 Data Collection and Variable Selection

Daily climatic data of four selected meteorological sites for period 2011-2017 was
retrieved from Environment Canada historical database. Initially, nine different variables
namely heat degree days, hourly mean air temperature, minimum air temperature,
maximum air temperature, relative humidity, dew point temperature, wind speed,
atmospheric pressure and daily mean air temperature were selected. To capture the
variation of climatic variables from different part of the island, a new dataset (Prince

Edward Island database) was formed by averaging the variables of all four sites.
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Regression subset analysis was conducted with varied input combinations to select
the appropriate inputs for artificial intelligence models. ETo was selected as response
variable and regressed with nine selected climatic variables. Minitab (Version 18) was used
to conduct subset regression analysis. Best subset regression fits all the possible
combination based on independent variables. However, for simplicity only the best
performing variable based on highest coefficient of determination among varied input

combinations were selected (Table 2-1).

2.2.3 Penman-Monteith FAO-56 Model

Actual ETo data were not available for the selected study sites; therefore, FAO-56 method
was used to estimate the ETo for these sites. The estimated ETo from FAO-56 method was
used as targets for LSTMSs and bidirectional LSTM neural networks. The FAO-56 model
is accepted and has been widely used [11,31,32] in these situations. The Penman-Monteith

equation for ETo estimation is expressed as:

ETo (mm) _ AR, — G) + pacp (esr—aea) 2-1

A+y(1+;—:)

The Penman-Monteith equation was derived in most acceptable form by Allen et al. [11]

day

also known as FAO-56 model expressed as:

900
ETo (mm> _ O408A(Rn - G) + v (m) U(es - ea) (2 3 2)
day A+ vy(1+ 0.340)

where A is the slope of the vapor saturation pressure, Ry is the net radiation, G is the soil
heat flux, pa is the mean air density at constant air pressure, C, is the specific heat of the

air, es — ea is the vapor pressure deficit, Y is the psychrometric constant, U is wind speed
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at 2 meter (m/s), Tmean is daily mean temperature, Ys is the surface resistance, and Ya is

the aerodynamic resistance m.

2.2.4 Long Short Term Memory Neural Networks

The RNNs are sequence-based model, equipped with memory blocks to store and
relate the previous information in a sequence. However, vanishing gradient hinders the
learning in earlier layers of RNNs and this phenomenon is sometimes referred as short term
memory. Input (X¢), output (or) and forget (f;) gates were added in memory blocks of
LSTMs to address short term memory problems. The forget gate has ability to discard
irrelevant information based on relevance, i.e., the input variables after normalization
closer to 0 are forgotten and closer to 1 are kept for further use. Forget gate in LSTMs
reduces the chances of overfitting by not carrying outall information from the previous
steps. Selective information control in LSTM is the key reason to overcome the vanishing

gradient problems and making them suitable for non stationary data modelling.

Figure 2-2 The memory block of long short term memory (LSTM) neural networks.
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After passing through fi, tanh and sigmoid functions are used to scale the values for
further processing. Combine state (Ct) is computed as a result of dot product between tanh
and sigmoid outputs. The more detailed overview of LSTM information flow memory

block is described in Figure 2-2.

2.2.5 Bidirectional Long Short Term Memory Neural Networks

Bidirectional LSTMs have two way information flow in contrast with traditional
LSTM (Figure 2-3). Bidirectional LSTMs can relate information from previous as well as
future time steps making them more powerful than traditional LSTMs. The outputs from

both directions then aggregate for labels prediction.

(a) (b)

Outputs ‘[ .
Outputs
Hidden
Laver | Hidden | |
Inputs |7 Q O Inputs {O 6

Figure 2-3 The basic structure of RNN (a) LSTM, (b) Bidirectional LSTM
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2.2.6 Hyperparameter Tuning and Reproducibility

Daily meteorological variables were split in training (2011-2015) and testing (2016-2017)
sets. The test sets were used to estimate the ETo after successful (convergence) training of
the models. Extensive tests were performed to determine the hyperparameters of LSTMs.
Several hyperparameters including neurons, learning rates, optimizers, batch sizes and
dropout effects were tested for higher accuracy. The highest performing learning rates,
neuron and batch sizes were used in models training and testing. Due to large data points
used in this study, several data normalization techniques were tested to reduce the noise
effects in data. The max-min normalization performed better with our data in comparison
with other data normalization functions. After training of models, the data were back
transformed to original scale.

TensorFlow framework was selected because of its wide applications in industrial
deployment. Several libraries including Keras with TensorFlow backend, Numpy,
Matplotlib, Pandas and Scikitlearn was used with Python programming language. All
models were trained using Dell Latitude 5580 workstation, with Intel Core 17 7600U CPU,
8GB ram, Nvidia GeForce 930MX and Ubuntu 16.04 X64 operating system. Furthermore,
for reproduceable results, seeds for random number generators were preset. For examples,
Python-hash seeds were set to 0, for Numpy the random seeds were set to 111, Python
random seeds were set to 10 and TensorFlow random seeds were set to 89. All the results

displayed in this study were retrieved using above mentioned random seed configuration.
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2.2.7 Rainfall Evapotranspiration Comparison

Evapotranspiration is considered to be the prominent parameter in water balance

equation, which is expressed as:
P=Q+ET+AS (2-3)

Where P is precipitation, Q is runoff, ET is evapotranspiration and AS represented as
storage in soil. Over the longer periods, changes in water storage for particular region may
be neglected [33] and precipitation is balanced by runoff and ET only. Furthermore, in
agricultural the land runoff has minor effects on water balance equation because of higher
infiltration rates in soil. This study aims to compare the rainfall and ETo only on province
scale without considering the effect of runoff and change in storage. Planting season (June-
November) was considered only to compare with rainfall with ETo, as the agriculture is
not possible in winter season [34] in Prince Edward Island because of snow and colder

weather.

2.2.8 Model Evaluation

Loss of the model was evaluated by mean absolute error (MAE), which is the average

of all absolute errors between predictions and labels. MAE is expressed as:

N
MAE == 3" |y - i 2-4)
i=1

2=

The root means square error (RMSE) and coefficient of determination (R?) were also
used to evaluate the model effectiveness. RMSE has been used in various studies to

evaluate the neural networks predictive power. Coefficient of determination (R?) is well
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known model evaluation measure. Values of R? closer to 1 represent the models with higher

predictive power. RMSE and R? can be defined as:

Iiv=1(yi — yi)?

RMSE =
N

(2-5)

SOl = )2 2-6)

where yi is the actual value at the ith time, yi is the estimated value at the ith time, and i

RZ = j =1 0= ) ~ Tioa O = 907

ranges from 1 to N. |y; — ¥i | are the absolute error between actual and predicted values at

ith time.

2.3 Results and Discussion
2.3.1 Selection of Climatic Variables

The results of subset regression analysis suggested that the maximum air temperature
was the highest contributor among selected variables in estimation of ETo. For all sites, R?
was in the range of 70.7-74.4% between ETo and maximum air temperature. Higher R?
indicated the strong predictive of maximum air temperature in estimation of ETo. A study
by Feng et al. [35] explained the significance of temperature data in reference to ET
modelling. They used only temperature data to estimate the ETo. These results are in
agreement with the findings of Feng et al. [35] and confirmed the relevance of temperature
data for modeling ETo. Relative humidity was the second largest contributor in estimation
of ETo as it increased the R? by 0.11, 0.13, 0.14, 0.10, and 0.12 for Saint Peter, Harrington,
North Cape, Summerside and Prince Edward Island data sets, respectively (Table 2-1). By
increasing the number of variables from 2 to 5, there were minor increases of 0.22, 0.013,

0.024, 0.016, and 0.021 in R? for Saint Peter, Harrington, North Cape, Summerside, and
16



Prince Edward Island data sets, respectively. Based on subset regression analysis results,

only two variables namely maximum air temperature and relative humidity were selected

in training of recurrent neural networks.

Table 2-1 Subset Regression Analysis regressed versus FAO-56 ETo

2Hourly Min Max 5Dew ®Daily
Variable Mean Air | Air | Relative Point Mean
Site R? HDD Air Humidity Air
(Number) Temp Temp  Temp (%) Temp Temp
o (°C) (°C) (°C) o
9] )
1 71.9 X
2 83.0 X X
Saint Peters 3 83.9 X X X
4 84.6 X X X X
5 85.2 X X X X X
1 70.7 X
2 83.9 X X
Harrington 3 84.4 X X X
4 84.8 X X X X
5 85.2 X X X X X
1 72.5 X
2 87.0 X X
North Cape 3 88.0 X X X
4 88.8 X X X X
5 89.4 X X X X X
1 73.6 X
2 83.6 X X
Summerside 3 84.2 X X X
4 84.7 X X X X
5 85.2 X X X X X
1 74.4 X
Prince 2 86.2 X X
Edward 3 87.2 X X X
Island 4 87.7 X X X X
5 88.3 X X X X X

'Heat degree days; 2Hourly mean air temperature; 3Minimum air temperature; “Maximum air temperature;

>Dew point temperature; and ®Daily mean air temperature

One of the objectives of this study was to decrease the number of variables to possible

extent without compromising the overall accuracy. A study by Afzaal et al. [36] concluded

17



that there was no major improvement in deep learning models predictive accuracy by

increasing the number of variables from 2 to 4.

2.3.2 Descriptive Statistics of Selected Input Variables

Descriptive statistics of the selected variables are given in Table 2-2. The maximum
air temperature ranged between -17 and 33.5 °C for the period 2011-2017 for all sites. The
highest maximum air temperature was recorded to be 33.5 °C for Summerside. The mean
of maximum air temperature was in the range of 9.2-10.7 °C with high standard deviation,

i.e., 10.2-10.8 °C for all sites.
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Figure 2-4 Pair plots of selected variables for year 2011-2017

Where 'Max. Temp is Maximum air temperature; 3ETo is reference evapotranspiration computed from
FAO-56 method
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Because of seasonality, the maximum air temperature behaved as bimodal distribution
for all sites (Figure 2-4). Exponential relation of maximum air temperature with ETo is
evident in Figure 2-4. Relative humidity ranged from 37.6 to 100% for all sites. The
average humidity was recorded to be 77.7- 80.1% with higher standard deviation of 37.6 —
49.3 % in year 2011 to 2017 for all sites (Table 2-2). Relative humidity represented with
normal distribution and weaker inverse relation between ETo and relative humidity may be

visualized in Figure 2-4.

Table 2-2 Descriptive statistics of input and output variables for year 2011 to 2017

Variable Site Mean + SD Minimum Maximum
Harrington 10.5+10.6 -17.7 325
North Cape 9.2+10.2 -17.6 31.2
Maximum Prince Edward
+ -
Temperature (°C) Island 10-2£10.5 172 318
Saint Peters 10.5+10.4 -17.0 32.0
Summerside 10.7+10.8 -18.2 33.7
Harrington 1.9+1.5 0.1 8.2
North Cape 1.8+1.4 0.0 7.9
Reference Prince Edward
Evapotranspiration 1.9+14 0.1 7.8
Island
(mm/day) -
Saint Peters 1.9+1.5 0.1 9.3
Summerside 2.0+15 0.1 7.3
Harrington 3.1+7.0 0.0 92.9
North Cape 3.1+7.7 0.0 1475
Rainfall (mm/day) /e Edward 3.046.0 0.0 89.7
Island
Saint Peters 3.2+7.1 0.0 85.3
Summerside 2.4+6.1 0.0 103.8
Harrington 78.1+10.5 37.6 99.4
North Cape 80.7+9.6 49.3 100.0
Relative Humidity Prince Edward 78.949.5 476 98.4
(%) Island
Saint Peters 79.1+10.0 38.7 98.0
Summerside 77.7+10.2 46.7 98.3
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ETO computed from FAO-56 method ranged between 0 and 9.3 mm/day for all sites
in and duration 2011-2017. The maximum daily ETO was recorded to be 9.3 mm/day for
Saint Peter site. The mean daily ETO ranged from 1.8 to 2.0 mm/day with slightly lower
standard deviation of (i.e., 1.4 - 1.5 mm/day) for all sites. Distribution of daily ETO may
be represented with right skewed distribution because of relatively low values in winter
season (Figure 2-4).

The rainfall varying from 0 to 147.5 mm/day was recorded for all sites in the study
period. The highest rainfall of 147.5 mm was recorded for the North Cape site. The average
rainfall received by all sites was in the range of 2.4 — 3.2 mm/day with standard deviation
of 6 — 7.7. mm/day. The Summerside station received relatively less rainfall in comparison

with other sites (Table 2-2).

2.3.3 Model Training and Testing Evaluation

In training of RNNSs, several optimizers were tested including Stochastic gradient
descent, Adam, Adagrad and RMSprop. The performance of Adam remained better in
comparison with other optimizers in terms of accuracy and model convergence. The better
performance of Adam optimizer is in agreement the findings of Reddy et al. [37]. No major
effect of increasing the number of neurons on model R? and RMSE was observed in
training of RNNs used in this study. Similarly, no major effect of different learning rates
on model R? and RMSE was observed e.g. 102, 10 and 10™*. Dropout effect was also
tested by freezing the 10, 20, and 30% random neurons to reduce the overfitting effects in
training of RNNs used in this study. However, because of data normalization of the datasets

the RNINs used in study were successfully converged without over and under fitting with
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approximately equal training and testing accuracies. Similar results were found in a study
by Afzaal et al. [36] as no major effect of dropout was observed with normalized data.
Therefore, all the RNNs used in this study were trained without introducing dropout in
LSTM layers.

In training of LSTM models for Saint Peter site, training and testing losses were
recorded to be 0.042 and 0.0404, respectively. Approximately equal values of training and
testing losses depict the successful model convergence without overfitting. LSTM models
training RMSE was recorded to be 0.497 mm/day and training R? was recorded to be 0.88.
Similarly, the value of RMSE for testing LSTM model was recorded to be 0.46 mm/day
and testing R? was 0.91. No major differences were observed in training and testing set
accuracies when modelled with Bidirectional LSTM for Saint Peters site (Table 2-3). It is
evident that with both models, there were higher testing accuracies in comparison with
training accuracies maybe because in training stage usually the ANNs try to adjust their
weights. Another reason could be because of unequal data points for training and testing
phases. The higher numbers of data points in training stage (give number of data points)
might have reduced the accuracy of RNNs during training phase.

For Harrington site, slightly higher losses and lower accuracies were observed in
comparison with Saint Peters site (Table 2-3). In training of LSTM for Harrington site
training and testing losses were recorded to be 0.0523 and 0.0555, respectively. Training
and testing RMSE were 0.54 and 0.58, respectively for LSTM models. The respective
training and testing R? were 0.85 and 0.86, respectively. In training of Bidirectional LSTM
for Harrington site, higher training and testing accuracies were recorded in comparison

with LSTM. The testing accuracy of Bidirectional LSTM was 5% higher in comparison
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with LSTM for Harrington site. The advance architecture of Bidirectional LSTM might
help them to attain the higher accuracies in comparison with LSTM. Furthermore, the
dataset of Harrington sites showed slightly higher standard deviation in comparison with
other sites selected for this study. The results suggested that the Bidirectional LSTM can

achieve higher accuracy with scatter data in comparison with LSTM.
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Figure 2-5 (a) Comparison of ETo predicted with LSTM and FAO-56, (b) with Bidirectional LSTM
and FAO-56 using combined data set of Prince Edward Island for the test period 2016-2017

North Cape LSTM training and testing losses recorded to be 0.0337 and 0.0380

respectively, slightly lower than all other sites. The LSTM training and testing RMSE was
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recorded to be 0.35 and 0.39, respectively. The LSTM training and testing R? was recorded
to be 0.93 and 0.92, respectively. No major differences were observed in losses and
accuracies for North Cape site when modelled with Bidirectional LSTM. The two
directional learning may achieve the higher accuracies in time series forecasting problem.
However, this study estimates the time steps of time series by inputting climatic variables
only as there are no forecasting involved.

Summerside LSTM training and testing losses were recorded to be 0.0550 and 0.0490,
respectively. The LSTM training and testing RMSE was recorded to be 0.53 and 0.45,
respectively. The LSTM training and testing R? was recorded to be 0.87 and 0.91,
respectively. No major differences were observed in losses and accuracies for Summerside
site when modelled with Bidirectional LSTM. For both RNN, higher testing accuracies of
were observed in comparison with training accuracies for Summerside.

For Prince Edward Island sight slightly lower LSTM training and testing losses were
observed (Table 2-3). The LSTM training and testing R? were recorded to be 0.91 and 0.91
respectively. There were no major differences were observed in losses and accuracies for
Prince Edward Island site when modelled with Bidirectional LSTM.

Overall, no major effect was observed in the accuracy of LSTM and Bidirectional
LSTM for all sites. However, for Harrington and Prince Edward Island site the accuracy of
Bidirectional LSTM was slightly better. In another similar study of turbulent flow
modelling by Mohan and Gaitonde [38] who also found better performance of LSTM in
comparison with Bidirectional LSTM. However, similar performance of LSTM and

Bidirectional LSTM was observed except for two sites (Harrington and Prince Edward
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Island; combined data) in which performance of Bidirectional LSTM was better than

LSTM.

Table 2-3 Training and testing evaluation of Recurrent Neural Networks

. Training Testing Training Training Testing Testing
Site Model MAE MAE RMSE R? RMSE R?
St Peters LSTM 0.0420 0.0404 0.50 0.88 0.46 0.91
IBLSTM  0.0419 0.0405 0.49 0.88 0.46 0.91
Harrington LSTM 0.0523 0.0555 0.54 0.85 0.58 0.86
BLSTM 0.0461 0.0450 0.48 0.86 0.46 0.91
North Cape LSTM 0.0337 0.0380 0.35 0.93 0.39 0.92
BLSTM 0.0340 0.0375 0.34 0.93 0.38 0.92
Summerside LSTM 0.0550 0.0490 0.53 0.87 0.45 0.91
BLSTM 0.0563 0.0497 0.53 0.87 0.45 0.91
Prince LSTM 0.0417 0.0438 0.40 0.91 0.42 0.91
Elgrzg;d B LSTM 0.0415 0.0437 0.40 0.91 0.42 0.92

1B LSTM; Bidirectional LSTM

2.3.4 Rainfall and Reference Evapotranspiration Comparison

One of the objectives of this study was to highlight the gap between ETo and rainfall
in order to strategize the need for supplemental irrigation and sustainable agriculture. A
comparison between the cumulative values of rainfall and ETo for the period 2011-2017 is
displayed in Figure 2-6 to gauge the gap between the two variables. The results showed a
high variability of rainfall in different months (of the growing season) during all years of
the study period than variability in ETo. For the month of June, the rainfall ranged between
64.85-107.025 mm while FAO-56 ETo ranged between 83.82-112.47 mm with an average
difference of 13.52 mm. The ETo clearly surpassed the rainfall values in month of June for
periods 2011-2014 and 2016-2017. The highest gap between rainfall and ETo was observed
in the month of July for year 2012-2017. In July the recorded difference between ETo and

rainfall was computed to be 3.66, -92.2, -56.1, -85.0, -73.4, -68.5, -98.7 mm for years 2011
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through 2017, respectively. The negative values clearly show the higher ETo than the
respective rainfall. In month of August, the ETo surpassed rainfall in year 2012, 2013, 2015
2016 and 2017 by 46.1, 30.0, 4.39, 15.8, and 39.6 mm, respectively. In the month of
September, October and November, rainfall clearly surpassed the ETo. These are the
months of crop harvest when crops do not need rainfall and have no ET phenomena.
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Figure 2-6 Rainfall and FAO-56 ETo comparison for the study period 2011-2017

The result of this analysis suggested that rainfall is highly variable in same months of
different year unlike ETo, which seems to be more consistent in different years. In order to
fulfill the crop water requirements, careful monitoring is required in months of June, July
and August in Prince Edward Island for potential crop yield.

Suitability of the modelling approach adopted in this study was further evaluated by
comparing the FAO-56 cumulative ETo with the values simulated using LSTM and

Bidirectional LSTM in Figure 2-7, where cumulative rainfall has also been plotted for the
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test periods 2016 and 2017. A close agreement was found between ETo determined with

FAO-56 and the two RNNSs.
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Figure 2-7 (a) Rainfall, FAO-56 ETo, LSTM ETo, Bidirectional ETo comparison (a) 2016 (b)
2017

Despite overestimation during the period July-October, yearly cumulative values of
ETo determined with all the three methods were also in good agreement with cumulative
rainfall during 2016 (Figure 2-7a). During the year 2017, higher cumulative gaps were

observed between ETo and rainfall in comparison with 2016 (Figure 2-7b). The lower
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rainfall during the growing season (June-November) of 2017 (403.74 mm) than during
2016 (506.69 mm) were responsible for these gaps. There was no difference in the trends
of RNNs and FAO-56 ETo for the two test years. The cumulative gaps between values of
FAO-56 - ETo and the values of ETo determined with LSTM and Bidirectional LSTM
depict the predictive errors of RNNs models. The error may be further reduced by adding
more input variables in RNNs model. Furthermore, underestimations for drier months and
overestimation for colder months may be removed by adding RMSE correction factors in
order to obtain more accurate predictions. The results support the applicability of LSTM
and Bidirectional LSTM for sustainable water management with accurate estimation of
ETo. In order to replenish the crop water requirements, supplemental irrigation might be

the option for certain months of the growing season when ETo surpassed rainfall.

2.4 Conclusions

Reference ET was estimated using LSTMs and Bidirectional LSTM at four sites of
Prince Edward Island namely Saint Peters, Harrington, Summerside and North Cape for
study period 2011-2017. Meteorological data were split into two sets namely training set
(2011-2015) and testing set (2016-2017). Based on subset regression analysis using nine
different climatic variables, maximum air temperature and relative humidity were selected
as inputs for recurrent neural networks. By using tuned hyperparameters the LSTM and
Bidirectional LSTM were able to estimate ETo with considerable accuracies determined
with method of FAO-56. There were no major differences in the accuracy of LSTM and
Bidirectional LSTM. However, for Harrington site, Bidirectional LSTM performed better
in comparison with LSTM for testing set (2016-2017). The advance architecture of

Bidirectional LSTM might be help in attaining the higher accuracies in comparison with
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LSTM. Furthermore, the dataset of Harrington sites showed slightly higher standard
deviation in comparison with other sites selected for this study. The results suggested that
the Bidirectional LSTM can achieve higher accuracy with scatter data in comparison with
LSTM. Another objective of this study was to quantify the difference ETo and rainfall. The
analysis showed that in months of June, July and August the ETo surpassed rainfall. Viable
options such as supplemental irrigation may be needed to replenish the crop water

requirements in drier for agriculture sustainability.
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CHAPTER 3

Precision Irrigation Strategies for Sustainable Water Budgeting

Abstract

Climate change induced uneven patterns of rainfall emphasize the use of supplemental
irrigation (SI) in rainfed agriculture. The Penman-Monteith method was used to calculate
S| for water budgeting of potato fields in Prince Edward Island, Canada. Cumulative gaps
between rainfall and crop evapotranspiration (ETc) in August and September, due to high
crop coefficient factor justified the need for SI during 2018 and 2019. Pressurized irrigation
systems including sprinkler, fertigation and drip irrigation were installed to evaluate the
impact of scheduled Sl to offset deficit in irrigation water requirements as compared to
conventional practice of rainfed cultivation (control). A two-way ANOVA examine the
effect of irrigation methods and year on potato tuber yield, water productivity, tuber
quality, and payout. Sprinkler and fertigation systems performed better in comparison with
drip and control treatments. In term of payout returns and potato tuber quality (percentage
of marketable potatoes), sprinkler treatment performed significantly better than the other
treatments. However, in terms of water productivity, fertigation treatment performed
significantly better than control and sprinkler treatments in both years. The use of Sl is
recommended for profitable cultivation of potatoes in soil, agricultural, and environmental

conditions resembling to those of Prince Edward Island.
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3.1 Introduction

Potato (Solanum tuberosum L.) is the world forth most important food crop [39]. The
utilization of potato in human nourishment and the scratch manufacturing distinguishes it
from other vital crops on the planet [40]. Potato industry significantly promotes the
economy of PEI as it contributes about 10.8% to the GDP of this province with more than
one billion direct and indirect economic benefits engaging 12% of total work force of the
island [41]. Currently, Prince Edward Island is producing approximately 25% of total
potatoes grown by Canada each year [42].

Several sstudies have been conducted to assess the effects of Sl on potato tuber yield.
For example, Belanger et al, [43] tested the irrigation and nitrogen fertilizers effects on two
potato cultivar yield in New Brunswick Canada. Results indicated the increased potato
yield from 31.9 Mg ha to 38.4 Mg ha and marketable yield from 25.6 Mg ha to 30.7
Mg hat. Similar results were recorded for both potato cultivars. Porter et al, [44] studied
the soil management and supplemental irrigation effect on potato tuber yield and quality.
Supplemental irrigation significantly increased total yields by 10.6 Mg ha-1 to 11.6 Mg ha-
1. Similarly, potato tuber size was significantly increased from the result of supplemental
irrigation, while decreased specific gravity of potato tubers was observed. Supplement
irrigation largely depends upon the amount of rainfall and crop water requirements.

Evapotranspiration (ET) is major contributor in water balance as well as surface
energy equation. ET provides useful information regarding irrigation quantification and
efficient water resources management. Several direct and indirect methods of ET
estimation have been introduced in an attempt to increase the accuracy of estimation. The

choice of method solely depends upon the data availability and accuracy of estimation.
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Kashyap and Panda, [45] compared the 10 different climatological methods of estimating
ETo. The climatological methods were estimated using the lysimeter with electric
datalogger. The result suggested that the Penman Monteith equation was the best
estimation method in comparison with other methods.

Several irrigation methods have been tested previously to replenish the crop water
requirements on need basis. Onder et al. [46] studied the effect of surface and sub-surface
drip irrigation methods with four different water stress levels on potato yield and yield
components. The four stress levels were tested including full irrigation, 66% of full
irrigation, 33% of full irrigation and no irrigation. No significant differences of irrigation
methods were observed on yield. However, the result depicted that the drip irrigation has
several advantages over sub-surface irrigation in terms of installation and replacement
costs. Water stress significantly affected the potato yield and yield components of early
potato yield production. More than 33% deficiency of irrigation requirements of potato
crop is not suggested. Stylianou et al. [47] evaluated the effects of sprinkler and trickle
irrigation on potato yield on the basis of pan evaporation. The results suggested that the
trickle irrigation was not the suitable method for potatoes as soil cracked and exposed the
potato tubers to be attack by the moths. In another study by Unlu et al. [48] evaluated the
effects of trickle and sprinkler irrigation in the middle Anatolian, Turkey. In this study,
three irrigation methods were selected namely sprinkler, drip and fertigation. The highest
yield was measured in sprinkler irrigated plots at the 60 gm-3 nitrogen concentration levels.

Prince Edward Island is surrounded by ocean from all the sides which require efficient
and careful water resources management to avoid saltwater intrusion. Agriculture in Prince

Edward Island is rainfed mostly; however, changing rainfall patterns due to climate change,
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several high capacity wells were installed in PEI for supplemental irrigation to compensate
drought periods in drier months of years. These steps have raised concerned about
groundwater sustainability. A recent study by Afzaal et al. [36] pointed out the reduced
groundwater levels than expected in summer season due to pumping. This situation has
created the challenges for water resources manager to meet the SI demands in sustainable
ways. In this study several irrigation methods had been evaluated to assess the potato tuber
yield, quality, water productivity and payout returns. The results of this study will provide
the guidelines to water resource managers for sustainable water management. There has
been limited work in literature for Prince Edward Island region, which make this work

novel and useful for potato growers as well as policy makers.

3.2 Materials and Methods
3.2.1 Study Field, Experimental Design, and Soil Properties

The experiments reported here were conducted on a research farm at Kensington,
Prince Edward Island (46.417032 °N 63.67658 °W). The field of 1003.35 m? was divided
in four treatments namely sprinkler, drip, fertigation and control triplicated on 41.8 m? plots
(Figure 3-1). Patches of 3 m were left between treatment plots to serve as buffer zones and
walkways for data collection, agronomic operation, field management activities. The
experiments were under complete randomized design with two factorial arrangements. The
irrigation methods and the growing years were the two independent factors with continuous
response variables including potato tuber yield, tuber quality, water productivity and

payout (Figure 3-1).
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Figure 3-1 The location of experimental field and experimental layout

Two soil samples were collected from each replication and homogenized prior to their
analyses for soil macro- (nitrogen, N; phosphorous, P; and potassium, K), micro-nutrients
(boron, B; copper, Cu; zinc, Zn; magnesium, Mg; iron, Fe; calcium, Ca), organic matter,
and soil pH. Soil analyses were conducted by Prince Edward Island Analytical Laboratories
with standard methods. Soil analysis results (Table 3-1) were used to determine crop

nutrient requirement.
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Table 3-1 Descriptive statistics of soil variables

Irrigation
Variable Methods Mean+ SD Minimum Maximum

Control 2.9+0.30 2.50 3.40
Organic Matter Drip 2.8+0.18 2.50 3.10
% Fertigation 2.8+0.28 250 3.40
Sprinkler 2.8+0.23 2.50 3.00
Control 490+47.4 401 548
Phosphate Drip 456+46.9 378 513
(mg/kg) Fertigation 488+43.1 402 541
Sprinkler 459+49.0 383 519
Control 135.0+0 135 135
Phosphorous Drip 135.00 135 135
(mg/kg) Fertigation 135.040 135 135
Sprinkler 135.0+0 135 135
Control 182+19.1 151 213
Potash Drip 147+15.3 115 168
(ma/kg) Fertigation 157+12.9 142 179
Sprinkler 152+15.6 128 166
Control 0.42+0.07 0.40 0.60
Copper Drip 0.45+0.07 0.40 0.60
(ma/kg) Fertigation 0.42+0.07 0.40 0.60
Sprinkler 0.45+0.07 0.40 0.60
Control 6.60+0.05 6.50 6.70
. Drip 6.64+0.05 6.60 6.70
Soil pH Fertigation 6.59+0.06 6.50 6.70
Sprinkler 6.730.04 6.70 6.80
Control 9.37+0.51 9.00 10.0
CEC Drip 8.87+0.64 8.00 10.0
(meq/100g) Fertigation 9.50+0.53 9.00 10.0
Sprinkler 7.80+0.30 7.00 8.00

3.2.2 Crop Water Requirements

Penman-Monteith method was used to estimate the ETc, which is integral part of soil
water balance equation expressed as [49][50] may express as:

P=Q+ET. + AS (3-1)
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where P is precipitation; Q is runoff; and AS is change in soil moisture storage. ETc is
crop evapotranspiration, which is calculated with the relationship involving crop

coefficient factor (kc) and ETo [21]:

ETc = ETo * kc (3—-2)
The ETo is calculated as:

mm) _ A(Rn - G) + PaCyp (%) (3 _ 3)
- a+y(1+5)

ET (
© day

where, ETo = reference evapotranspiration; A = slope of vapor saturation pressure; R,

= net radiation; G = soil heat flux; p,= mean air density at constant air pressure; c,=

specific heat of the air; es — ea = vapor pressure deficit; y = psychrometric constant; r; =
surface resistance; r,= aerodynamic resistance

The crop factor depends on the crop growth stage and variates among different growth
stages. Potato growth stages may divide into initial (20 days after planting; DAP),
development (21-50 DAP), mid (51-110 DAP) and late stage (111-140 DAP) [51]. Ininitial
potato stage, the value of kc fluctuates between 0.4-0.5, in development stage kc varies
between 0.7-0.8, in mid stage k¢ ranges between 1.05-1.2 and in the late season K. varies
between 0.7-0.75 [51].

The water productivity (kg/m?; kg of crop yield / m® of total water available to the
crop) is a well-known parameter to assess the effectiveness of irrigation systems in
consideration with sustainable use of water and is calculated as [52]:

Ya

Water Productivity = ————
ater Productivity = 5————

B3-4)
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where, Ya = Actual yield (kg); P = Precipitation (m®); I = Applied irrigation (m®); AS
= Difference in soil water storage between planting and harvesting (m®).

Furthermore, for the whole cropping year the filed capacity depletion level was
maintained at 40%. The recommended depletion levels for potato crops are suggested to

be 30-50% of soil field capacity [53][3].

3.2.3 Irrigation Methods

Three irrigation methods namely sprinkler, drip and fertigation were used to evaluate
the effects of potato tuber yield. All three irrigation systems were installed using a series
of piping networks with variable rate pressure pumps and water tank. The designing of
pumps and tanks was based on the gaps between ETo and rainfall calculated for the period
2011-2017. Equation of continuity (Equation 5) was used to determine the pipe diameters
for the irrigation systems as:

Q=A4x*V (3-5)
where, Q is flow in m¥/sec; A is area in m?; V is velocity in m/sec.

Sprinkler irrigation system was designed for four replications, while the sprinkler guns
were connected with 38.1 mm polyvinyl chloride (PVC) pipe. Small spray heads (Rain
Bird Model 1812PRS 1800 Series) were used in conjunction with 0.3 m extension to ensure
the sprinkler height with respect to maximum height of potato plants. Rain Bird adjustable
arc spray nozzles (Model 10VAN) with range of 3 m were used with overlapping setups.
Five spray heads were used in one replication with 70% overlap of wetting pattern radius.
Pressure and flow calibrations were conducted in laboratory prior to installation of the

system in experimental plots.
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Drip irrigation system comprised 12.7 mm poly drip tubing with pressure
compensating emitters (Model IDROP-10 4 LPH) inserted in the drip tubes based on plant
to plant distances within a row. Laboratory calibrations for flow tests were conducted for
the nearest and the farthest drip emitters, from the pressure pump, in order to ensure
equitable flow and pressures in emitters and drip lines. Four lines of poly drip tubing were
installed for one replication with 45 emitters in each line. All drip lines were connected by
19.05 mm diameter PVC pipes. Different pipe sizes were used for sprinkler, drip and
fertigation system to ensure the equitable and laminar flow in pipes of different
interconnected irrigation systems. In the Fertigation system, fertigation tanks (Model
EZFLO-2005-HB 3/4 Gallon) were added for liquid fertilizer application with similar

design as in drip irrigation system.

3.2.4 Crop Nutrient Requirements and Husbandry

Pre-sowing soil analysis results (Table 3-1) were used to calculate nitrogen phosphate
and potassium (NPK) application rates for the experimental treatments by following the
nutrient recommendations from Prince Edward Island Department of Agriculture and
Fisheries [24]. Because of no substantial variations between NPK concentrations among
the experimental treatment plots during both years, almost the same application rates were
calculated and used for the respective treatments. Except in fertigation treatment plots, the
NPK were applied with broadcasting method that refers to uniform spreading of granular
fertilizer over the soil surface in contrast of localized application of fertilizer that refers to
spreading fertilizer in a band or a circle near around the seed/field furrows or plants. In the

rest of the treatments, respectively 160, 135, and 135 kg/ha of N, P, and K were applied at
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the time of sowing and on July 28, 2018 and respectively 180, 135, and 135 kg/ha of N, P,
and K were applied at the time of sowing and on July 25, 2019. In the fertigation treatment
plots, one-third of the NPK application rates were applied on three separate occasions i.e.,
on sowing, July 15 and July 31 during 2018 growing season and on sowing, July 20 and
July 29 during 2019 growing season. Seed potatoes (Russet Burbank) were sown on June
11, 2018 and on June 10, 2019 for the two respective growing seasons, at 0.3 m wide beds
with plant to plant distance of 0.4 m and bed to bed center distance of 0.3 m. The rest of
crop husbandry operations including maintenance of seed beds/furrows and weeding were

done similarly in all treatment plots.

3.2.5 Data Collection

Soil moisture levels were recorded with TDR probes (Field Scout 350) at 0, 0.15, and
0.30 m soil depths each week during both planting years. Weather data were collected from
Summerside (46.441111 °N 63.838056 °W) weather station for daily ETo calculations. Sl
was scheduled to replenish weekly transpired water from plants. Potato yield samples were
collected on October 19, 2018 and October 10, 2019) from one out of 4 randomly selected
rows and weighed using electronic balance with precision of 1.00 g for different quality
parameters such as good-sized/marketable potatoes that were used to calculate total payout
per hectare. Potatoes passing through 50-80 mm diameter holes of potato sorter were

considered to be of good sized and/or marketable.

3.2.6 Statistical Analysis

Two-way analysis of variance (ANOVA) with replication method was used to evaluate the

differences of mean in treatments. The statistical model used in this study may define as:
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Xijk = Hij + &jx = L+ o + B+ vij + &k (3-6)

where Xy is estimation of model; y;; = mean of i,j group; p=overall mean; o; = main
effects of ith row group; ;=main effects of jth column group; y;;=interaction effect of ijth
group; &;=errors

ANOVA assumptions such as independent observations, normal distribution,
homoscedasticity within groups were evaluated for each hypothesis. ANOVA only test
weather is there any significant differences in means of treatment groups or not. It does not
tell which group performed better than other. For further comparison after significance,
multiple mean comparison analysis is for further means comparisons. In this study, group

means were tested with Tukeys pairwise comparisons test which may describe as follows:

HSD:i;/I—Sj (3-7)
A
n

Where HSD = Honest significant difference; M; — M; = Difference of pairs of means;

MS,, = Mean square with group; n= Number in treatments

3.3 Results and Discussion
3.3.1 Descriptive Statistics of Potato Yield and Components

In 2018, the highest potato tuber yield was observed for sprinkler irrigation system,
i.e., 38327 kg/ha in comparison with other irrigation methods with slightly higher standard
deviation of 1096 kg/ha. In 2019, 12.1% lower yield was observed for control treatment in
comparison with year 2018. No major differences were observed for fertigation and drip
treatment yields in 2018 and 2019. In 2019, relatively less rainfall was recorded than in

year 2018, which might had caused lower yield for control treatment. The residual analysis
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of potato tuber yield data suggested the applicability of ANOVA method, e.g., normal

distribution, equal variance, and independent observation.

Table 3-2 Descriptive statistics of potato tuber yield and quality data for the four experimental

treatments
Year Response variable Irrigation Method Mean + SD Minimum  Maximum
Control 35493 + 408a 34889 35782
. Drip 35317 + 820a 34130 35943
Yield (kg/ha) L
Fertigation 36983 + 667a 36119 37645
Sprinkler 38327 + 1096a 37173 39744
2018 Control 52.8£5.40 45.3 58.2
Marketable Drip 55.5+2.60 52.9 59.0
potatoes (%) Fertigation 55.0+1.20 53.3 56.0
Sprinkler 64.3+2.00 61.3 65.8
Control 30939 + 1673b 28682 32268
] Drip 35305 + 1975a 32820 37470
Yield (kg/ha) —
Fertigation 36686 + 1272a 34989 38072
Sprinkler 34413 + 3407ab 31826 38273
2019 Control 69.1+115 52.5 77.7
Marketable Drip 80.6 +1.20 79.8 82.4
potatoes (%) Fertigation 74.4+6.70 70.0 84.3
Sprinkler 82.2+3.20 79.2 85.7

Different letters in the same columns indicates significant statistical differences (p < 0.05, Tukey’s test)

Overall, higher percentages of marketable potatoes were recorded in year 2019 in
comparison with year 2018 (Table 3-2). For example, the highest percentages of
marketable potatoes were recorded for sprinkler irrigation system for 2019 (82.2%) in
comparison with year 2018 (64.3%). The lowest percentages of marketable potatoes were
recorded for control treatment in both years indicating that the irrigation played important
role during tuber development stages. Furthermore, the residual analysis of marketable
potatoes data suggested the applicability of ANOVA method.

3.3.2 Gaps between Rainfall and Evapotranspiration
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There was substantial variability in rainfall and ETo for different months of a potato
growing season (June-October) during 2011-2017 (Figure 3-2) — a period considered i) by
Penman-Monteith method for estimation of ETo and ii) for requirement of water for
irrigation systems, pipe diameters, and the size of pump and tank used in this study. The
ETo surpassed the rainfall in the month of June for years 2011-2014 and 2016-2017, and
the highest gap between rainfall and ETo was observed in the month of July for year 2012-
2017. In July the recorded difference between ETo and rainfall were computed to be 3.655,
-92.175, -56.12, -84.96, -73.40, -68.51, -98.69 mm for years 2011 through 2017,
respectively. June and July are the months of plant growth and thus irrigation needs. Less
available rains during these month cause drought conditions for potato fields that adversely
affect tuber yield if no Sl is scheduled and applied. The negative values indicate the higher
values of ETo then rainfall. In the month of August, ETo surpassed rainfall in year 2012,
2013, 2015, 2016 and 2017 by 46.08, 29.97, 4.39, 15.83, and 39.64 mm, respectively. In
the months of September, October, and November rainfall surpassed ETo reflecting the
availability of water when the potato fields needed irrigation.
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Figure 3-2 Comparison of rainfall with reference evapotranspiration for the period 2011-2017
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The data of ETo provided useful information in water management for larger areas;
however, for irrigation scheduling of specific crop, ETc is required. The potato crop
cumulative ETc is presented in Figure 3 for whole the cropping years of 2018 and 2019.
Major differences were observed between ETo and rainfall in the months of June, July and
August (Figure 3-2); however, the differences between ET¢ and rainfall were minor (Figure
3-3a) in months of July, August and September 2018 due to low kc factor during initial
growth stages of the potato plants. Plants require less water in their initial stages followed

by increased demand of water in later stages. Due to higher kc factor (1.20) in mid potato
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stages, higher differences were recorded between ETc and rainfall in months of September
and October 2018.

In the cropping year 2019, relatively less amount of rainfall occurred during the
months of July and August as compared to 2018. During the growing season of 2019, the
gaps between rainfall and ETc were substantial in the months of August and September. In
the month of October, crop water requirements were fulfilled, and no supplemental

irrigation was required.

3.3.3 Soil Water Balance

Water budgeting for an agricultural field provides useful information for irrigation
monitoring, irrigation scheduling and water resource management. Information about
components of water budget for the experimental fields is displayed for cropping year 2018
(Figure 3-4a) and 2019 (Figure 3-4b). During 2018, no irrigation was applied till mid-July
as crop water requirements were fulfilled through rainfall. In July, one supplemental
irrigation was applied to maintain the 40% depletion of field capacity in soil.

In July, several rainfall events occurred to replenish the crop water requirements.
Three irrigation events were applied in the month of September 2018, which was relatively
a drier month as compared to other months of the study period. Frequent rainfall events
fulfilled the crop water requirements making saturation in soil close to its field capacity for
several days of October 2018 (Figure 3-4a). In 2019, frequent rainfall events in the months
of June, July, September, and October satisfied the crop water needs and required no
supplemental irrigation. In 2019, relatively less rainfall events occurred in the months of

June, July, and August. However, no irrigation was applied till mid-July 2019 because of
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relatively low water needs by potato crop in its initial stage as well as at least 40%

maintained depletion levels of soil field capacity.
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Figure 3-4 Budgeting of water for the experimental fields using water data for years (a) 2018 and

(b) 2019
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Five irrigations of the calculated depths were applied in late July and three weeks of
August to maintain the desired moisture levels in soil (Figure 3-4b). From late August to
October 2019, three heavy rainfall events occurred (> 50 mm) and helped fulfilling potato

crop’s irrigation water requirements or consumptive use.

3.3.4 Water Productivity

The Figure 3-5 represents the water productivities for different irrigation systems in
years 2018 and 2019. In 2018, the highest water productivity (e.g., 1.4174 kg/m®) was
recorded for fertigation system in comparison with other irrigation methods. The lowest
water productivity was recorded for sprinkler irrigation system as this system consumed
6.8 times more water than drip and fertigation system. The water productivity of drip
irrigation system was less than control treatment; i.e., 1.35 kg/m3. The non-uniform
germination of potato plants in drip replication plots and the resultant asymmetrical
alignment of drip emitters with potato plants in 2018 might be the cause of low water
productivity for drip irrigation system during this year.

In 2019, similar trend of previous year was observed for fertigation and sprinkler
irrigation systems; e.g., the highest (1.53 kg/m®) and the lowest (1.19 kg/m®) water
productivities for these treatments, respectively. In 2019, higher water productivity (1.47
kg/m?®) was observed for drip irrigation system in comparison with year 2018 (1.35 kg/m?®)
as the alignments of drip emitters were adjusted with growth of potato plants. This can be
recommended as one of the best management practices and/or techniques for efficient

potato cultivation under drip irrigation system.
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Figure 3-5 Water productivities for different irrigation systems in 2018 and 2019

3.3.5 Payout Returns

In 2018, the highest payouts per hectare were calculated for sprinkler irrigation system,
e.g., $6786.7 ha! (Figure 3-6). The highest percentages of marketable potatoes were the
major reason for higher financial gains for the sprinkler irrigation system. Instead of the
lowest potato tuber yield in case of drip irrigation system in 2018, the mean payout was
$211.1 hal higher than control treatment. The higher payout for drip irrigation system

indicated that the timely irrigation impacted the potato tuber development and quality.
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Figure 3-6 Payout per hectare for different irrigation systems in 2018 and 2019

Similarly, higher payout was recorded for fertigation system also in 2018; e.g.,
$5227.1 hal. In 2019, the highest financial gain was attained by the drip irrigation system,
e.g., $6503.95 CAD ha, which was $2104.55 CAD ha* higher than control treatment.
Similarly, sprinkler and fertigation treatments earned $6062.77 ha' and $6408.8 CAD ha
respectively, which were $237.77 CAD ha® and $329.9 CAD ha higher than control

treatment, respectively (Figure 3-6).

3.3.6 Effects of Irrigation Methods and Years

A two-way ANOVA was run to examine the effects of irrigation methods and year on
potato tuber yield and quality. There was a significant interaction (Irrigation method x

Year) on potato tuber yield, F (3, 23) = 4.54, p = 0.012, indicating at least one statistically
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different irrigation method x year combination. Simple main effects analysis showed that

there was a significant effect of irrigation methods and year on potato tuber yield (Table 3-

3). However, in case of significant interaction, it is advisable to consider the interactions

effect only by ignoring the main effects. Table 3-3 represents all the possible combination

of irrigation method and year combinations.

Table 3-3 Two way analysis of variance table for statistical comparison

Mean
Response Sources Degree of F-Value P-Value
Variable Freedom
Squares
Year 1 36955884 15.3 0.001
Irrigation Methods 3 20380293 8.43 0.001
Potato tuber R
yield (kg/ha) Year*Irrigation Methods 3 10966955 4.54 0.012
Error 23 2417954
Total 30
Year 1 2975.95 100 0
Good sized Irrigation Methods 3 202.35 6.80 0.002
potatoes Year*Irrigation Methods 3 28.96 0.97 0.422
%
%) Error 23 29.74
Total 30
Year 1 163220 1.66 0.211
Total payout Irrigation Methods 3 1859110.23 19.0 0
per hectare Year*Irrigation Methods 3 612896.7 6.23 0.003
(Dollars) Error 23 98435.5
Total 30
Year 1 0.004427 1.24 0.276
Water Irrigation Methods 3 0.081653 23.0 0
Productivity Year*Irrigation Methods 3 0.020386 5.73 0.004
3
(kg/m?) Error 23 0.003557
Total 30

48



Several ‘irrigation method X year’ combinations were found to be significant. There
were no significant differences observed between irrigation methods and control treatment
in 2018. However, several treatments of 2018 were significantly different with 2019
treatments. For example, potato tuber yield in 2018 for control treatment was significantly
higher than in 2019. The lower amount of rainfall in months of July and August in 2019
justifies the lower potato tuber yield for control treatment. Contrary to control treatment,
sprinkler irrigation system yield was significantly higher in 2018 than 2019. Potato tuber
yield of sprinkler-2019, fertigation-2019, drip-2019 was significantly higher than control-
2018. Similarly, potato tuber yield of Fertigation-2018, drip 2019 was significantly higher
than control-2019 (Table 3-3). The results suggested that the sprinkler irrigation system
performed better in 2018 and fertigation systems performance was better in 2019.
However, based on statistical analysis, no irrigation system performed consistently better
in the two consecutive years to give a higher potato tuber yield.

Results of the two-way ANOVA to examine the effects of irrigation methods and year
on potato tuber quality suggested a non-significant interaction (Irrigation method x year) F
(3, 23) =0.97, p = 0.422. Simple main effects analysis showed that there was a significant
effect of irrigation methods on potato quality F (3, 23) = 6.80, p = 0.002 indicating that at
least one irrigation method performed significantly different than other irrigation methods.
Further analysis suggested that the sprinkler and fertigation systems yielded higher
percentages of marketable potatoes than control treatment. However, no significant
differences were observed between drip and control treatments. Similarly, no significant
differences were observed between sprinkler and fertigation systems. Main effect analysis

also showed that there was a significant effect of year on potato quality F (3, 23) = 100, p

49



= 0.0 indicating that in one year irrigation method yielded better quality potatoes than in
the other year. Further analysis of multiple means comparison suggested that the in year
2019 the percentages of marketable potatoes was significantly higher than 2018.

A significant interaction (Irrigation method x year) on payout returns was observed, F
(3, 23) = 6.23, p = 0.003, indicating at least one statistically different ‘irrigation method x
year’ combination. In 2018, sprinkler payout returns were significantly higher than drip,
fertigation and control treatments. However, no significant differences of payout returns
were observed between control, drip and fertigation treatments in 2018. The higher payout
returns of sprinkler irrigation system were due to higher percentages of marketable potatoes
yielded from this treatment. Furthermore, all the irrigation methods had the significantly
higher payout returns than the control treatment in 2019. However, no statistical
differences of payout returns were observed between sprinkler, drip and fertigation
treatments in 2019 (Table 3-3).

A similar significant interaction (Irrigation method X year) on water productivity was
observed as for payout returns and tuber yield; e.g., F = (3, 23) =5.73, p = 0.004. The water
productivity of fertigation in 2018 was significantly higher than control and sprinkler
irrigation system. The main reason behind higher water productivity of fertigation
treatment was the lower water consumption as well as higher yield in comparison with
control and sprinkler treatments. No significant differences were observed between
sprinkler and drip treatments in 2018. Similar consistent trend was observed in 2019 for
fertigation treatment; e.g., significant higher water productivity than sprinkler and control
treatments. Due to similar trend of treatment in both years; there was non-significant effect

of year was recorded (Table 3-3).
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3. 4 Conclusions

This study evaluates the benefits of using irrigation scheduling and Sl for sustainable
irrigation water management in potato fields. The Penman-Monteith modified method was
used to test whether the rainfall is enough for sustainable potato production in Prince
Edward Island or Sl is needed in addition to rainfall. The result highlighted the cumulative
gaps between rainfall and crop evapotranspiration (ETc) in months of August and
September due to higher value (kc > 1) of crop development factor requiring higher
amounts of water in year 2018 and 2019. Pressurized irrigation systems including sprinkler,
fertigation and drip irrigation were installed to evaluate the impact of scheduled Sl to offset
deficit in irrigation as compared to conventional practice of rain-fed conditions; i.e., no
irrigation practice (control). A two-way ANOVA examined the effect of irrigation methods
and year on potato tuber yield, water productivity, payout returns and potato quality. The
samples were collected in year 2018 and 2019 potato growing seasons. A significant
interaction (irrigation methods X year) was recorded on potato tuber yield, F (3, 24) = 4.54,
p = 0.012 indicating at least one significantly different combination than other. Sprinkler
and fertigation system performed better in year 2018 and 2019, respectively in comparison
with other irrigation methods. In term of payout returns and potato tuber quality
(percentage of marketable potatoes); sprinkler irrigation treatment performed significantly
better than control, drip and fertigation treatments. However, in terms of water
productivity; fertigation system performed significantly better than control and sprinkler
treatments in both years. This study evaluated the three irrigation methods in consideration
with different aspects; e.g. raw tuber vyield, tuber quality, payout returns and water

sustainability. It is concluded that the choice of irrigation methods largely depends on the
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geographical factors influencing water availability, farm returns and applications for which

potatoes are planned to be grown; i.e., for home use or marketing.
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CHAPTER 4
Groundwater Estimation from Major Physical Hydrology Components

Using Artificial Neural Networks and Deep Learning

Abstract

Precise estimation of physical hydrology components including groundwater levels
(GWLs) is a challenging task, especially in relatively non-contiguous watersheds. This
study estimates GWLs with deep learning and artificial neural networks, namely a
multilayer perceptron, long short term memory, and a convolutional neural network with
four different input variable combinations for two watersheds (Baltic River and Long
Creek) in Prince Edward Island, Canada. Variables including stream level, stream flow,
precipitation, relative humidity, mean temperature, evapotranspiration, heat degree days,
dew point temperature, and evapotranspiration for the 2011-2017 period were used as input
variables. Using a hit and trial approach and various hyperparameters, all artificial neural
networks were trained from scratched (2011-2015) and validated (2016-2017). The stream
level was the major contributor to GWL fluctuation for the Baltic River and Long Creek
watersheds (R? = 0.51 and 0.49, respectively). The multilayer perceptron performed better
in validation for Baltic River and Long Creek watersheds (RMSE = 0.471 and 1.15,
respectively). Increased number of variables from 1 to 4 improved the RMSE for the Baltic
River watershed by 11% and for the Long Creek watershed by 1.6%. The deep learning
techniques introduced in this study to estimate GWL fluctuations are convenient and
accurate as compared to collection of periodic dips based on the groundwater monitoring

wells for groundwater inventory control and management.
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4.1 Introduction

Groundwater is the major source of industrial and potable water supplies in Prince
Edward Island, Canada [54]. Over the past few years, there has been increased demand in
the agriculture sector for supplemental irrigation, which poses several challenges for water
and resource managers. Because of the relatively small and non-contiguous watersheds in
Prince Edward Island, pumping groundwater has also raised concerns for groundwater
sustainability due to the island’s uneven topography [8]. An inventory of groundwater is
necessary for efficient water resource management, especially in relation to growing
groundwater demands for agricultural use. It is neither feasible nor economical to install
and manage monitoring groundwater wells in a place like Prince Edward Island, which
consists of 260 watersheds for efficient water management. The inventory control of the
groundwater resource can ensure the sustainability of water resources in the areas where
groundwater pumping is common for supplemental irrigation or for domestic use.

Groundwater level (GWL) modeling provides useful information to water resource
managers, engineers, and policy makers to make appropriate decisions. The modeling of
GWLs is a complicated procedure that requires thorough knowledge of physical
hydrological parameters, big data, hydrological models, model inputs, and the geometry of
watersheds [55]. Aspects of hydrogeology—i.e., geological factors affecting the
distribution and movement of groundwater underneath the soil surface—need to be
properly understood when modeling GWLs and manipulating the modeling results.
Watershed scale fluctuations in GWLs occur over a period of several decades, and the
resulting cumulative effects on streamflow depletion may not be fully realized for years

[56]. Resultantly, depending upon the distance of the pumping station from the stream and
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the geologic characteristics of the aquifer, the groundwater system may take decades to
recover from streamflow depletion caused by intermittent pumping. Components of the
surface—and the sub-surface physical hydrology of a watershed—i.e., streamflow and
groundwater flow, respectively—are interconnected, making the stream-aquifer
interaction one of the key processes governing the groundwater flow pattern in a watershed
[54]. Groundwater fluctuations affect streamflow and vice versa, as the pumping wells
capture groundwater that would otherwise discharge to connected streams, rivers, and other
surface-water bodies [56]. Francis [57] reported that, in typical watersheds of Prince
Edward Island, the base flow represents almost 80% of the streamflow in the late summer
and fall months. Stream length in these island watersheds ranges from less than 1 km to 20
km. Stream widths vary from less than 1 m at the head to 30 m at the estuary, with all the
components of soil including sand, silt, and clay, contributing to the formation of the
streambeds of the island watersheds, making them weakly permeable through reduced
hydraulic conductivity [54].

Several numerical and conceptual methods have been reported in the literature for
GWL estimation. For example, Mohammadi [58] tested artificial neural network (ANN)
models and MODFLOW to simulate the monthly GWLs of Karstic aquifers in Iran. The
results indicated that the ANN models require less input data and time to run as compared
to conventional models, such as MODFLOW. Several experiments in GWL modeling have
shown that ANNSs could be the better alternative over conceptual models [59]. Mohanty et
al. [60] found that ANNSs are better predictors of GWLs than MODFLOW for short term
predictions. Karandish and Simtinek [61] compared artificial intelligence (Al) methods

with physical modeling. Results indicated that the Al methods performed well in water-
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stressed conditions as compared to HYDRUS-2D. Therefore, Al methods provide
promising tools for GWL predictions [30]. Several Al methods have been used by many
researchers because of their simplicity and acceptable performance in different parts of the
world [59].

Deep learning has been used to solve real-world problems relating to multi-magnitude
data [62], determining the bearing capacity of concrete-steel columns [63], soil liquefaction
[64], and solving genetic algorithms [65]. Deep learning and ANNSs handle the non-linear
behavior of time series better than regular regression [59]. Several hydrological parameters
such as precipitation, streamflow, and GWLs exhibit time dependence and can be treated
as time series functions. Time series functions usually exhibit non-linear relations, which
are difficult to handle with simple static models. A multilayer perceptron (MLP), being the
simplest kind of ANN, can approximate the functions related to dynamic hydrological
problems that are difficult to model with numerical static methods. Similarly, an MLP can
also predict values from a correlated input variable, which may be mapped with an output
variable. For example, Sahoo and Jha [66] compared multiple regression and ANNs with
a Levenberg Marquardt (LM) algorithm to predict GWLs in Kochi Prefecture of Shikoku
Island, Japan. Graphical findings and analysis suggested the superiority of ANNs over
multiple regression. Kouziokas et al. [67] used an MLP neural network with four different
algorithms to forecast daily GWLs in Pennsylvania, USA. Temperature, humidity, and
precipitation were used as input variables to predict GWLs. The four algorithms used in
the study were Resilient Backpropagation (RB), LM, the Scaled Conjugate Gradient, and
the BFGS Quasi-Newton. The LM algorithm performed better than the other algorithms in

the prediction of GWLs. Juan et al. [68] developed two MLPs with an LM algorithm and
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two sets of input data, i.e., temperature—precipitation—-GWL and temperature—precipitation
in Qinghai-Tibet plateau, China. The MLP models with 3-input variables performed better
than the 2-input variables.

Because of the relatively simple structure of the MLP, it is not possible for these
models to store the previous information in the time series, unlike an RNN. An RNN
contains a memory block for storing previous steps of information in time series problems.
Coulibaly et al. [69] compared three types of ANN models using GWL, precipitation, and
temperature time series as input variables to simulate monthly GWLs in the Gondo aquifer,
Burkina Faso. The results were also compared with radial basis function networks,
generalized radial basis functions, and probabilistic neural networks. The results suggested
that the RNN is the most efficient model compared to static structure ANNSs. Furthermore,
generalized radial basis functions are poorly performing models in monthly GWL
simulations when compared to others. Miller et al. [70] compared an MLP with an RNN
and more advanced ANNSs to predict GWLs in Butte County, California, USA. They used
three different methods to optimize model hyperparameters including two surrogate model-
based algorithms and one random sampling method. They used stream flow, precipitation,
and ambient temperature as input variables and estimated the GWLs after training these
models. The results suggested that the MLP performed better than the ANNSs, including
LSTM and the convolutional neural network (CNN). Babu et al. [71] compared different
algorithms to evaluate the RNN in GWL forecasting in Karnataka, India. They compared
the LM, gradient descent with momentum, and the adaptive learning rate back propagation
algorithm in predicting GWLs with the RNN. Their results suggested that the LM

algorithm performed better with the RNN than all other algorithms in GWL modeling.
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Although RNNs are enabled to store the previous information in their memory blocks, in
large time series sequences the vanishing gradient problem hampers the learning of these
models. The vanishing gradient problem in the RNN occurs when gradient updates become
very small and add no significant difference to overall learning. To overcome the vanishing
gradient problems of RNNs, more advanced models such as LSTM were introduced, and
these are capable of storing important information with long sequences. Recently, Zhang
et al. [30] conducted a similar study in which they compared LSTM with an MLP to predict
GWLs in the Hetao irrigation district, China. Monthly water diversion, evaporation,
precipitation, temperature, and time were used as input data to predict water table depth.
Their results suggested that the LSTM model performed better than the MLP and could
contribute to a strong learning ability on time series data. However, they did not include a
detailed comparison of several input combinations for developing less data-intense models.
Similarly, the more advanced time series models such as the CNN were not included.

The CNNs are the more advanced ANNs with usually a high number of hidden layers
as compared to the RNN and the MLP. CNNs have gained popularity in terms of image
data; however, they can perform equally well on time series data if modeled accordingly.
Because of the more advanced functions of CNNs, such as convolution and max-pooling,
these models have proved to be very promising in time series prediction. However, there
is very limited literature available on GWL modeling using CNNs. Lahivaara et al. [72]
used CNNs to estimate the GWLs and groundwater storage using seismic data. They
applied the Galerkin method to model wave propagation followed by deep CNNs for
parameter estimations and found that CNNs can extract additional information from

seismic data about the aquifer.

58



The review literature suggests that the MLP and LSTM are promising methods that
have been successfully used in many time series problems related to GWL modeling. In
addition to the MLP and LSTM, the CNN, a relatively new method, was used in this study
to investigate GWL estimation in the Long Creek and Baltic River watersheds of Prince
Edward Island. The reason behind conducting this research was that it is currently not
feasible for groundwater managers to manage the large number of watersheds in Prince
Edward Island due to the small number of monitoring wells. The challenges of this study
involve the unavailability of guidelines for selecting appropriate input variables for the
optimum prediction of GWLs. Therefore, most of the input variables have been selected
based on data availability. The specific objective of this study was to select appropriate
ANNSs and the best combination of input variables for the accurate possible estimation of

GWLs.

4.2 Materials and Methods
4.2.1 Site Selection

Prince Edward Island is the smallest but most populous Atlantic Canadian province,
having a pastoral landscape consisting of several rolling hills, woods, reddish white sand
beaches, ocean coves, and red soil. With the uneven topography of Prince Edward Island,
its streams are mostly non-contagious. For this study, the Baltic River and Long Creek
watersheds situated in the center of Prince Edward Island were selected as experimental
watersheds because of the relatively large number of irrigation wells in the area that might

have contributing fluctuations in GWLs (Figure 4-1).

59



* Weather station
® Baltic
® New Dominion

Prince Edward

Island
R — T
, P e
New [ ) el R *ﬁ}d/
\ e ) N\ &\ Mot
: o el ‘
Brunswick \ u\,,:g?%% :\?::3\ Nova
& 7 ’ Scotia
N _ \ A
AR\
0 10 20 40 60 80 100 120 140 160 1% Zoﬁilnnle(ere

Figure 4-1 Locations of the experimental watersheds and the weather station in Prince Edward
Island, Canada. The area of the relatively large number of irrigation wells has been encircled

4.2.2 Data Collection

Two monitoring wells, the Baltic (46.51000° N, 63.648056° W) and New Dominion
(46.170278° N, 63.250000° W) wells, were selected for collection of actual GWL data of
the Baltic River and Long Creek watersheds, respectively. The Baltic groundwater
monitoring well was installed in the Baltic River watershed at an elevation of 25 m above
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mean sea level. The New Dominion groundwater monitoring well was installed in the Long
Creek watershed at an elevation of 19.93 m above mean sea level. Daily groundwater level
data of these two monitoring wells for a seven-year period (2011-2017) was obtained from
the Department of Communities, Land and Environment, Prince Edward Island. Weather
data for this period was collected from a local weather station in Summerside (46.3934° N,
63.7902° W). The data included mean temperature, dewpoint temperature, heat degree
days, precipitation, relative humidity, ETo, stream level, and stream flow. These data were
used as input variables for the modeling of GWLs. The ETo was calculated using the

Penman Monteith FAO-56 method.

4.2.3 Regression Subset Analysis for Input Variable Selection

Regression subset analysis was conducted to choose the appropriate variables, several
combinations of which were used to select input variables for the deep learning models.
The basic subset regression analysis was conducted in Minitab software (Version 18). Best
Subsets Regression compares the different regression models that contain subsets of the
specified predictors. The best-fitting models are suggested by Minitab containing one
predictor, two predictors, and so on. Based on the highest regression, four input variable
combinations were tested, namely 1-input variable, 2-input variable, 3-input variable, and

4-input variable combinations.

4.2.4 The Multilayer Perceptron for Groundwater Level Modeling

The multilayer perception is the simplest type of ANNSs, which are biologically
inspired computation models comprised of several layers, namely input, hidden, and output

layers. All layers are connected each other with neurons—a basic processing unit of ANNS.
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Input layers take all the input variables such as temperature, precipitation, etc. to predict
output variables such as GWLs. Hidden and output layers handle the weights and biases
from input layers through activation functions. The most common activation functions are
the rectified linear unit (relu), sigmoid, and tanh. In modeling, sigmoid activation function
is the most common function [73]. However, for this study, the rectified linear unit was
selected for its better performance than the others. Most of the reviewed papers used trial
and error methods to model the ANN layers and neurons [59]. For this study, two hidden
layers and 100 neurons performed better. The MLP requires training data to adjust weight
and bias for optimal prediction. Several learning algorithms have been used by modelers,
such as back propagation, the LM, Bayesian regularization, adaptive learning rate back
propagation, and gradient descent with momentum. Krishna et al. [74] compared several
training algorithms in the groundwater modeling of an urban coastal aquifer in Andhra
Pradesh state, India. They found that the LM algorithm was among the best learning
algorithms compared to others. It is the most common algorithm in groundwater modeling.
This algorithm works better for determining the local minima of error functions, resulting
in increased prediction accuracy. For this study, the LM algorithm was selected to
determine loss function. The MLP was used in this study for various input variable

combinations (Figure 4-2).
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Figure 4-2 The multilayer perceptron (MLP) model for various input variable combinations

4.2.5 Long Short-Term Memory Neural Networks

The LSTM neural network is a special kind of RNN, which is a sequence-based model
that can store and relate the previous information in a sequence, enabling it to predict time
series problems. However, RNNs cannot store longer sequences because of the gradient
vanishing problem in early layers. Gradient vanishing in an early layer is sometimes
referred to as short-term memory neural networks. All RNNs form a chain-like structure
as the information flows through them (Figure 4-3a). The RNNSs store information in each
stage based on time/sequence steps in the form of a hidden state, i.e., ht for each input X:.

The tanh function in the memory block of an RNN scales the input data between —1 and 1.
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Figure 4-3 The memory block of (a) recurrent neural networks (RNNs) and (b) long short term
memory (LSTM) neural networks

The LSTM addresses short-term memory problems by adding more states in the
memory blocks of the RNN. In LSTM, a forget state (f;) and a cell state (C;) are added to
retain the temporal and sequal dependence of previous blocks. The fi in LSTM has the
ability to discard or keep the information based on the sigmoid function output values. The
values closer to 1 are kept, and those closer to 0 are forgotten. After passing f;, the input
variable X; and the previous cell hidden state h; 1 are passed through the sigmoid and tanh

functions. The dot product of the tanh and sigmoid functions are then added with f; to



compute Ct. The more detailed overview of LSTM information flow memory block is

described in Figure 4-3b.

4.2 .6 Convolutional Neural Networks

CNNs are mostly used for machine vision applcations in two-dimensional (2D)
images. However, a one-dimensional (1D) CNN has several applications in time series
classification and natural language processing. Use of a 1D CNN in GWL modeling is very
limited in the literature. Convolution layers convolute the feature on 1D matrices. Because
of fewer dimensions, the convolution filters have less processing work, making them
computationally faster than 2D CNN. There has been very limited research conducted on
GWL modeling using CNNs. However, based on the hit and trial method, five layers were
used in the CNN in this study. The first layer was the convolulational layer followed by a
maxpooling layer to extract features. To connect the maxpooling layer with the fully
connected layers, a third, flatten layer was added. The last two layers were fully connected

or dense layers to obtain the output vectors (Figure 4-4).

Input —,| Convolution |—» Max Pooling

l

Output .| Fully Connected « |  Flatten

Figure 4- 4 Architecture of the 1D CNN

4.2.7 Hyperparameter Tuning of ANNs

65



The tuned parameters were selected for different ANNs based on the highest accuracy
using the hit and trial method. All ANNSs were trained from scratch using hyperparameters
including activation functions, number of neurons, number of layers, neurons,
optimization, and learning rate. For the MLP, these respective hyperparameters were Relu,
2, 100, Adam, and 1073, For LSTM and the CNN, the activation functions were Tanh and
Relu, and the neurons were 50 and 64, respectively. The CNN had 5 layers. The rest of the

hyperparameters for LSTM and the CNN were the same as those of the MLP.

4.2.8 Model Evaluation Criteria

The model performance was evaluated by loss functions. The root means square error
(RMSE) is well known model evaluation criteria used in various studies to evaluate the
model performance [75][76]. It squares the difference between predicted and actual value
and may range between 0 and1.

GWLs were plotted against actual GWLs and against a 1:1 line to evaluate the over-
or under-estimation of GWLs overlapping and its scattering/clustering. To overcome the
noisy effects of the large data points used in this study, a data normalization technique was
performed. The max-min normalization performed well with this set of data. However,

after the model training, the data were back transformed to show trends in the figures.

4.3 Results and Discussion
4.3.1 Descriptive Statistics of Input Variables
The descriptive statistics of several input variables for GWL modeling are displayed

in Table 4-1. The mean temperature ranged between —22.5 and 26.5 °C in Summerside,
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Prince Edward Island, in the 2011-2017 period. The difference between mean temperature
and median temperature is —0.291 °C, which depicts a slightly skewed distribution of mean
temperature. The dewpoint temperature ranged between —27.692 and 21.775 °C. The
dewpoint temperature distribution showed slightly more skewness than the mean
temperature. Because of seasonality, both the mean temperature and the dewpoint
temperature show a bimodal distribution. The relative humidity of selected region ranges
between 46.7 to 98.25% for year 2011-2017. Because of the high variation, the relative
humidity showed a high standard deviation for such a large dataset. The heating degree
days ranged between 0 and 40.5°C from 2011 to 2017. Because of a high frequency of 0
°C values of heat degree days in winter, the distribution has a high peak and skews towards
the right. The ETo ranges between 0.0839 and 7.2631 mm/day. Because of the high number
of cold days in Prince Edward Island, the distribution of ETo is right-skewed with a
skewness of 0.74. However, because of a lower variability in the ETo range, it has a lower
standard deviation. The island received a total precipitation of 753 to 1070.3 mm/year for
the years from 2011 to 2017. The daily precipitation received by the island is highly
variable, i.e., 0-103.8 mm/day. Because of storms and a lack of rainfall on several days of
any given year, the precipitation distribution is highly right-skewed with a skewness
coefficient of 5.72. Daily water level fluctuations in the Baltic groundwater monitoring
well located in the Baltic River watershed range between 13.1 and 18.6 m in the years
2011-2017. Because of lower fluctuations in GWLs, the standard deviation is lower, i.e.,
0.93 m. The distribution of the Baltic River GWLs showed right skewness, with a skewness
coefficient of 0.58. Daily water level fluctuations in the New Dominion groundwater

monitoring well, located in the Long Creek watershed, range between 9.16 and 18.12 m in
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the years between 2011 and 2017. Because of the high fluctuations in the Long Creek

GWLs compared with the Baltic River GWLs, the standard deviation is relatively high,

i.e., 1.58 m. The Long Creek distribution showed a right skewness, with a skewness

coefficient of 0.58. The associated stream discharge for the Long Creek and Baltic River

monitoring wells is 0.46—42.4 m®/s and 0.548-51 m®/s, respectively.

Table 4-1 Descriptive statistics of input and output variables for groundwater level modeling.

Variable Maximum  Minimum  Mean+SD  Skewness
Mean temperature (°C) 26.5 —22.5 6.41+104 —0.26
Dew point temperature (°C) 21.8 —28.0 2.66+10.2 —-0.33
Relative humidity (%) 98.3 46.7 77.7+10.2 -0.37
Heat degree days (°C) 40.5 0.00 12.0+9.90 0.40
Reference evapotranspiration (mm/day) 7.26 0.08 2.05+1.50 0.74
Precipitation (mm) 103.8 0.00 241+6.14 5.72
E/z;l:a(l::;: River watershed daily groundwater 18.6 131 14.6+ 0093 0.58
Stream flow for the Baltic River watershed (m3/s) 51.0 0.548 2.65+3.21 7.57
Stream level for the Baltic River watershed (m) 2.14 0.50 0.68 £0.15 2.99
E,Z:;czzqg) Creek watershed daily groundwater 181 9.16 128+ 158 0.06
Stream flow for the Long Creek watershed (m?%/s) 42.4 0.46 200221 7.04
Stream level for the Long Creek watershed (m) 2.84 1.06 1.25+0.17 2.51

The distribution of the stream discharge for both monitoring wells showed a right

skewness, with a skewness coefficient greater than 7. A high skewness coefficient reflects

the high occurrence of peak flow levels probably during storms. The associated stream

levels for the New Dominion and Baltic monitoring wells are 1.055-2.835 m and 0.5-2.14

m, respectively. Similar trends can be seen with the stream levels associated with both

monitoring wells, i.e., a high skewness coefficient.
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4.3.2 Regression Subset Analysis for Variable Selection

For the 1-input variable combination, stream level was found to be the highest
contributor among the eight selected different variables for the Baltic and New Dominion
monitoring wells. The correlation coefficient for the Baltic River GWLs and the associated
stream level was found to be 0.508. Similarly, the correlation coefficient between the Long
Creek GWLs and the associated stream level was found to be 0.49. For the 2-input variables
combinations, stream flow and stream levels were selected for the Baltic River watershed
with a coefficient correlation of 0.63. For the Long Creek watershed, stream level and dew
point temperature proved to be the best input variables for the 2-input variable
combinations. For the 3-input variable combinations, stream level, stream flow, and
evapotranspiration were selected for the Baltic River watershed, with a slightly high
correlation coefficient of 0.658 compared with that of the 2-input variable combinations.
Stream level mean temperature and evapotranspiration variables were selected for the Long
Creek watershed, with a low coefficient correlation of 0.572 compared with that of the
Baltic River watershed 3-input variable combinations (Table 4-2). Four-input variables did
not add much toward defining GWL variability, i.e., only 0.4 and 2.2% increases in
correlation coefficients for the Baltic River and Long Creek watersheds, respectively.
Interestingly, the precipitation variable did not contribute towards GWL fluctuations for
both watersheds. A comparative study of GWL modeling using Al methods [59] reported
that precipitation was used 48 times in GWL modeling. Statistical analysis, specifically in
regression analysis, should be conducted to select appropriate input variables for

groundwater modeling using Al methods [59]. Several studies have used past GWLs for
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time series forecasting however, in this study, prediction models were used to predict

GWLs from other input variables.

Table 4-2 Correlation analysis of input variable selection plotted/regressed versus actual GWLs.

Watershe Number of

q Variables Variables R?
1 Stream level 0.51
Stream flow 0.2.8
Stream level and stream flow 0.63
= 2 o
o Stream level and precipitation 0.51
[+ 3 Stream level, stream flow and evapotranspiration 0.66
§ Stream level, stream flow and Mean temperature 0.64
@ Stream level, stream flow, heat degree days and 0.66
4 evapotranspiration '
Stream Ievel_, st_ream flow, mean temperature and 0.66
evapotranspiration
1 Stream level 0.49
Stream flow 0.36
’ Stream level and Dew point temperature 0.55
é Stream level and dew heat degree days 0.55
'S} 3 Stream level, mean temperature and evapotranspiration 0.57
g’ Stream level, stream flow and heat degree days 0.57
- Stream level, dew point temperature, relative humidity, 0.59
4 evapotranspiration '
Stream level, relative humidity, mean temperature and 0.58

evapotranspiration

4.3.3 The 1-Input Variable Model

For the 1-input variable deep learning model, the last epoch training and validation
losses of the MLP for the Baltic River watershed were recorded to be 0.0839 and 0.0818,
respectively. A similar training loss of the MLP for the Long Creek watershed was
recorded, i.e., 0.0856. However, the validation loss of the MLP for the Long Creek
watershed was 25% higher than the Baltic River watershed (Table 4-3). The training and
validation losses in the LSTM model for the Baltic River watershed were not substantially
different from the MLP and were recorded to be, respectively, 0.0832 and 0.074. A trend

of a higher validation loss in the LSTM model, similar to that of the MLP for the Long
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Creek watershed, was observed, i.e., the validation loss was 23% higher than the training
loss.
Table 4-3 Training and validation losses, and the root mean square error (RMSE) of the artificial

neural networks (MLP, LSTM, and CNN) used in this study for the Baltic River and Long Creek
watersheds using 1-, 2-, 3-, and 4-input variables

No. of Trainin Validation Trainin Validation

Watersheds —\, iaples MO0 o ’ Loss RMSEg RMSE R
MLP 0.084 0.082 0.567 0.558 0.65
Baltic River LSTM 0.083 0.074 0.557 0.530 0.66
1 CNN 0.010 0.010 0.556 0.550 0.66
MLP 0.086 0.110 0.957 1.169 0.63
Long Creek LSTM 0.085 0.110 0.973 1.173 0.62
CNN 0.013 0.017 0.948 1.180 0.63
MLP 0.081 0.072 0.560 0.512 0.66
Baltic River LSTM 0.083 0.076 0.561 0.531 0.66
9 CNN 0.011 0.010 0.549 0.549 0.66
MLP 0.081 0.107 0.929 1.180 0.64
Long Creek LSTM 0.083 0.108 0.940 1.210 0.64
CNN 0.011 0.018 0.898 1.215 0.65
MLP 0.079 0.065 0.545 0.474 0.69
Baltic River LSTM 0.079 0.067 0.539 0.483 0.69
3 CNN 0.010 0.009 0.503 0.529 0.71
MLP 0.082 0.107 0.945 1.160 0.64
Long Creek LSTM 0.083 0.110 0.943 1.203 0.63
CNN 0.011 0.018 0.888 1.209 0.66
MLP 0.079 0.064 0.543 0.471 0.69
Baltic River LSTM 0.077 0.066 0.534 0.480 0.69
4 CNN 0.010 0.009 0.505 0.532 0.71
MLP 0.078 0.103 0.912 1.150 0.66
Long Creek LSTM 0.080 0.106 0.916 1.200 0.67
CNN 0.009 0.017 0.813 1.170 0.70

Both the MLP and LSTM models performed poorly in the validation stage for the Long
Creek watershed. However, for both watersheds, the training and validation losses of the
1D CNN were lower than those of the LSTM and MLP models. For the Baltic River
watershed, the training and validation loss of the CNN was 0.01. The training and

validation losses of the CNN for the Long Creek watershed were recorded to be 0.0125
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and 0.0174, respectively. Figure 4-5 shows the training and validation phases of the deep
learning models for the Baltic River and Long Creek watersheds. For both watersheds, the
deep learning models were unable to predict the lower peaks very well. Variation in
estimations of peaks were found to be higher in the training phase compared with that in

the validation phases of all ANNSs.
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Figure 4-5 Training and validation phase of the 1-input variable models for (a) Baltic-River
watershed and (b) Long-Creek watershed

4.3.4 The 2-Input Variable Models

The 2-input variable MLP model for the Baltic River watershed showed training and
validation losses of 0.0814 and 0.0723, respectively. These losses were slightly lower than

the losses of the 1-input variable MLP models. Similarly, the 2-input variable MLP models
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training and validation losses for the Long Creek watershed were 0.0816 and 0.1068,
respectively. The 2-input variable LSTM training losses for the Baltic River watershed
improved by 0.8%, and the validation loss decreased by 0.2% in comparison with the 1-
input variable models. In comparison with the training losses of the 1-input variable CNN,
those of the 2-input variable CNN slightly increased from 0.0100 to 0.0113 and from
0.0100 to 0.0174, with no change in validation loss, for the Baltic River watershed. For the
Long Creek watershed, the training loss was reduced from 0.0125 to 0.0112, and the
validation loss increased from 0.0174 to 0.0184, in comparison with the 1-input variable
CNN. The training and validation phases showed slight improvements in GWL estimation.
However, no major difference was observed in GWL predictions in the 1-input and 2-
inputs variable combinations, i.e., the lower peaks of the estimated GWLs did not match

the lower peaks of the actual GWLs.

4.3.5 The 3-Input Variable Models

The 3-input variable MLP model for the Baltic River watershed showed slight
improvements in training loss (0.079) and validation loss (0.0648) compared with the 2-
input variable MLP model. However, the training loss of the 3-input variable MLP for the
Long Creek watershed was lower, i.e., 0.0816, and the validation loss (0.1067) was slightly
improved, compared with the 2-input variable MLP model. The 3-input variable LSTM
model for the Baltic River watershed showed a higher validation loss (0.0673) as well as a
training loss (0.079) that was similar to that of the 3-input variable MLP model. The 3-
input variable LSTM model for the Long Creek watershed had a higher training loss

(0.0832) and a higher validation loss (0.1095) compared with the 2-input variable LSTM
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model for the same watershed. The 3-input CNN model for the Baltic River watershed
showed the lowest training loss (0.0101) and validation loss (0.0093) compared with all 3-
input variable models. Similarly, the 3-input variable CNN model for the Long Creek
watershed showed the lowest training loss (0.011) and validation loss (0.0182) compared
with all 3-input variable models. There was close agreement between the actual and
estimated GWLs for the Baltic River watershed. However, there was weak agreement

between the lower peaks of the actual and estimated GWLs of the Long Creek watershed.

4.3.6 The 4-Input Variable Models

The 4-input variable MLP model for the Baltic River watershed showed no difference
in training loss (0.079) and validation loss (0.0644) compared with the 3-input variable
MLP model. Similarly, no major difference was observed in training and validation losses
for the Long Creek watershed compared with the 4-input MLP model; they were found to
be 0.0783 and 0.1031, respectively. For the 4-input variable LSTM model, the training and
validation losses for the Baltic River watershed were recorded as 0.077 and 0.0663,
respectively. The 4-input variable LSTM model for the Long Creek watershed showed a
slight improvement in training (0.0798) and validation (0.1057) losses compared with the
other LSTM models. The 4-input variable CNN models showed the lowest training and
validation losses for both the Baltic River and Long Creek watersheds compared with all
other 4-input variable models. The addition of a fourth variable reduced the difference
between the lower peaks of the estimated and actual GWLs as observed in the case of the
1-input and 2-input combinations (Figure 4-6). A close agreement between the actual and

the estimated GWLs for the Baltic River watershed was observed, as in the output of the
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3-input variable model, and a comparatively weak agreement was observed between the

lower peaks of the actual and the estimated GWLs of the Long Creek watershed.
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Figure 4-6 Training and validation phases of the 4-input variable models for (a) Baltic-River
watershed and (b) Long-Creek watershed

4.3.7 Model Evaluation

The RMSE of the 1-input variable model for the Baltic River watershed was lower

than the Long Creek watershed for all ANN models (Table 4-3). For the 1-input variable

Baltic River watershed LSTM, the RMSE (0.53 m) was lower at the validation stage than

both the MLP and the CNN. However, in the training stage of the 1-input variable model
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for the Baltic River watershed, the CNN performed better than the other models, with an
RMSE of 0.556 m. For the 1-input variable models of the Long Creek watershed, higher
validation losses, as compared to training losses, were recorded. The 1-input variable
model of the MLP performed well in the validation stage, with a recorded RMSE of 1.169
m for the Long Creek watershed. At the training stage for the Long Creek watershed, the
1-input variable CNN performed well, with a slightly lower RMSE, i.e., 0.948 m. Similar
trends were recorded for the 2-input variable ANNSs, with a slight improvement in the
recorded RMSE for both training and validation stages. For the Baltic River watershed, the
2-input variable MLP model performed well at the validation stage, with a slightly lower
RMSE, i.e., 0.56 m. However, it was not much different than the 1-input variable model,
as the RMSE was improved only by 0.046 m. Similarly, the CNN improved the training
stage error of the 2-input variable models by 0.007 m. The slightly reduced RMSE indicates
the better performance of the 2-input variable MLP and CNN models in comparison with
the 1-input variable models for the Baltic River watershed. For the Long Creek validation
stage, the 2-input variable models performed poorly compared with the 1-input variable
models. The 2-input variable MLP performed better than the LSTM and CNN models, with
a recorded RMSE of 1.18, which was higher in comparison with the 1-input variable MLP
model. The 2-input variable CNN model performed better at the training stage for the Long
Creek watershed, with a slight improvement in RMSE (0.898) compared with the 1-input
variable CNN model. The 3-input variable MLP model for the Baltic River watershed
performed well, reducing the RMSE by 0.038 m in comparison with the 2-input variable
MLP model. The CNN performed well at the training stage for the Baltic River watershed,

with an improved RMSE of 0.066 m. For the Long Creek watershed, the 3-input variable
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MLP model performed well, with an improved RMSE of 0.02 m, as did the CNN, with an
RMSE of 0.01 m in the validation and training stages, respectively. The smaller differences
in RMSE indicate the slightly improved performance of the 3-input variable models over
the 2-input variable models for the same site. The 4-input variable MLP model for the
Baltic River watershed performed well at the validation stage, with an RMSE of 0.471,
compared with all the models used in this study. Similarly, the 4-input variable MLP model
for the Long Creek watershed achieved the lowest RMSE (1.15) in the validation stage.
The reduction of the RMSE, achieved by increasing the number of variables, suggests that
the selected variables slightly increased the performance and overall efficiency of the
ANNSs. In general, no major effect on model performance was observed by increasing the
number of variables. The major contributor in defining the GWL variation was the stream
level. The reason for this could be the inability of the remaining three variables to account
for the variability in GWLs. Evidence of this trend is presented in Table 2. The increase in
the number of variables does not show any major effects on the coefficient of
determination.

The potential reason for the low performance of ANNs on the Long Creek watershed
could be the absence of a lurking input variable, such as pumping data. There is no data
available on actual daily pumping usage by high-capacity well owners. Most of the lower
peaks were recorded mostly in the summer season for the Long Creek watershed, as
depicted in Figures 5 and 6; wells might be pumped by well owners in drought season for
supplemental irrigation to replenish crop water requirements. However, pumping problems
or lower peaks were not a major problem for the Baltic-River watershed, whereas high-

capacity wells in that area was.
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It is noticeable that the MLP, being the simplest type of ANN, performed well at the
validation stages of both watersheds compared with the more advanced ANNs, including
the LSTM and CNN models. In a similar study of GWL estimation using ANNs, Mueller
et al. [70] reported that the MLP outperformed both the LSTM and CNN models. At the
training stage, the performance of the CNN was greater than that of the other ANNSs. This
could be due to the additional parameter-learning functionalities in the CNN, such as the
convolutional and max-pooling filters, which were not the part of the MLP and LSTM
models.

Furthermore, polynomial relationships between the predicted and actual groundwater
level suggest that increasing the number of variables from 1 to 4 increased the R? from 0.62
to 0.70 for the Long Creek watershed (Figure 4-7). A similar trend was observed for the
Baltic River watershed as the R? was raised from 0.66 to 0.71 for the 1-input and 4-input
variable models, respectively (Figure 4-8). These results suggest that the stream level and
stream flow variables should be considered in defining the overall variability of GWLs.
These variables contribute to the role of stream level and stream flow in a watershed, as
reported in the literature [77]. Recent study conducted by Lee et al. [78] found the similar
relationship between GWLs and stream level. Zhang et al. [30] compared feedforward
neural networks with LSTM in GWL prediction in the Hetao irrigation district, China.
Contrary to our findings, their results suggest that the LSTM model is a better predictor of

GWL modeling than the MLP.

78



—~~
oY)

~—
AS)

207 . . -
- i/ls]}PM 7 20 s
4 /
CNN P P
18 { — —1:1Line . 7
E |——MLP-trend Ry E 18 1 -4
= - - —=LSTM - trend . = s
§16_—CNN-trend R E o eé%‘? - o8 s )
g - 5 16 o it <7
g g z 7% y A
Z E ¢ %
§147 £ - E 14 T
& 2 5
z =0.06x2- 0.9x + 15.7 by 3 .
212 y=0.06x2- 0.9x+ 15, T, ly =0.06x2 - 1.1x + 16.0
E R2=0.63 E R = 0.64
= < Y000 TS g % ¥ =0.06x2- 0.9x+ 15.6
Y /// y—006x2_0.9x+152 10 v R -0.69
v R® = 0.62 P /s y= (].(]6)(22_- 0.9x+15.8
8 r . . . : , s R*=0.64
8 10 12 14 16 18 20 j " " T T J
Actual 4 level 8 10 12 14 16 18 20
ctual groundwater level, m Actual groundwater level, m
20 ~ . 20 -
/ e
4 /
18 y 7 s
= // g 18 A /7
= LT _7 =
5 0% = Va4
£ 16 - oo o T 2B LA £ 6
o © g g0 s “@gg =) e
E S g
£ 14 > i - z
g £ 14 1
£ > i ] =
X oz #y = 0.05x2- 0.9x + 15.5 &
g 12 R? = 0.64 T ¥ =0.05x2- 0.8x + 14.3
g g R*=0.66
£ / y=0.05x2- 0.8x + 14.7 E
Z 10 - ’ R2=0.63 2 y=0.05x2- 0.7x + 14.0
= s = 10 4 s R>=0.67
y y = 0.05x2- 0.8x + 14.4 s
s R?=0.66 s/ y=0.05x2- 0.7x+13.3
8 - - - T T ] 7 R*=0.70
3 10 12 14 16 18 20 8 T T T : T ]
Actual groundwater level, m 8 10 12 14 16 18 20
Actual groundwater level, m
c
(c) (d)

Figure 4-7 The Long Creek watershed estimated groundwater levels for (a) 1-input, (b) 2-input,
(c) 3-input, and (d) 4-input variable models versus actual groundwater levels

The CNN performed better with a higher number of input variables compared with the
LSTM and MLP models. For example, for both watersheds, the MLP performed slightly
better than the CNN for the 1- and 2-input variable models. However, the accuracy of the
CNN was higher than that of the MLP in the 3-and 4-input variable models for both

watersheds (Figures 4-7 and 4-8).
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Figure 4-8 The Baltic River estimated groundwater levels for (a) 1-input, (b) 2-input, (c) 3-input,
and (d) 4-input variable models versus actual groundwater levels

The higher accuracy of the CNN with a certain number of variables may indicate the

advantage of the CNN in dealing with more complex relationships in comparison with the

MLP and LSTM models. The additional functionalities of convolutions and max pooling

helped the CNN to obtain higher accuracies with a higher number of inputs. However, the

over-estimation of GWLs can be visualized for the Long Creek watershed for

approximately below 11 m, and under-estimation can be visualized beyond the 13 m level.

For the Baltic River watershed, the over- and under-estimations were approximately below



14 and beyond 15 m, respectively. The possible reason for the poorly matching peaks of
the extreme GWLs may be due to short-time variations in the GWLs because of the
pumping during water-deficient months and the quick recharge of groundwater from the
higher level of groundwater neighboring the monitoring well. This means that there is a
need to further investigate how the extreme GWLs can be estimated, especially for the
lower peaks. Mismatch between the predicted and actual levels of groundwater could be
due to several hydrogeological reasons, including the fact that groundwater pumping can
also draw streamflow into connected aquifers, where pumping rates are relatively large or
where the locations of pumping stations are relatively close to a stream [4]. The ANN
models used in this study were unable to predict the lower groundwater peaks. This
drawback can be addressed by adding more variables, such as actual pumping withdrawal,
to develop more accurate models. In general, ANNs can predict human interventions if
modeled with proper inputs. However, in this study, the groundwater pumping data were
not available. Emphasis on the collection and storing of the pumping data is therefore
recommended so that provincial water management authorities can track this important
variable for groundwater sustainability on the island.

The application of these models can be further extended to other watersheds to
estimate GWLs, as there are more than 250 watersheds in Prince Edward Island. The
installation and maintenance of a large number of monitoring wells is neither feasible nor
economical. These modeling techniques provide economical and convenient methods of

equitable water distribution for water resource managers and policymakers in large areas.

4.4 Conclusions
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In this study, deep learning has been used to test different ANN models with several
input combinations to predict GWLSs in the Baltic River and Long Creek watersheds in
Prince Edward Island. The results suggest that ANNs can be used to predict GWLs in
Prince Edward Island. The stream level was the most highly correlated factor in defining
GWL fluctuations for both watersheds. All ANN models performed well on the Baltic
River watershed in comparison with the Long Creek watershed. The number of variables
had no major effect on the RMSE of either watershed. The results suggest that the GWLs
of the Baltic River and Long Creek watersheds can be efficiently modeled with the stream
level variable in the absence of GWL data. Similarly, for the Long Creek watershed, the
GWLs can be modeled with stream levels with a slightly high RMSE as compared to the
Baltic River watershed. The performance of the MLP at the validation stage was slightly
greater than that of the MLP and LSTM models. However, at training stages, the CNN
performed very well, with the lowest RMSE for both watersheds. The ANN models were
unable to predict the lower peaks in the summer season, specifically for the Long Creek
watershed, which could be due to lurking variables such as the pumping from high-capacity
irrigation wells. It is also notable that the increased number of variables from 1 to 4
improved the RMSE for the Baltic River watershed by 11% only and for the Long Creek
watershed by 1.6% only. It may be concluded that the GWLs in the Baltic River and Long
Creek watersheds can be modeled using stream levels with RMSEs of only 0.53 and 1.169
m, respectively. The results also suggest that the CNN performed better with a higher
number of input variables; however, the performance of the MLP was better with lower

input variable models.
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CHAPTER 5

Summary and Conclusions

With the background of variations in rainfall patters and importance of potato crop for
the economy of Atlantic Canada, the research presented in this thesis was based on the
hypothesis that the rainfall in Prince Edward Island is not enough for sustainable potato
production in the island. The specific objectives of this study were to i) model
evapotranspiration with artificial intelligence for precision water resource management, ii)
determine the effects of different irrigation systems (sprinkler, drip, fertigation and control;
rainfed) on potato tuber yield, quality, payout returns, and iii) model the groundwater levels
of Prince Edward Island using deep learning methods to ensure sustainability of water
balance in Prince Edward Island.

With the use of deep learning, ANNs and RNNs) namely MLP, and LSTMs the gaps
between rainfall and ETo and fluctuations in GWLs were modelled. Irrigation methods
namely drip, sprinkler and fertigation were tested in consideration with potato tuber yield,
quality and payout returns. Reference and crop-specific evapotranspiration were precisely
modelled for Prince Edward Island. No major differences were observed in the accuracy
of different RNNs used in study; e.g., LSTM and bidirectional LSTM. The data from 2011-
2017 showed that the months of June, July and August received lesser rainfall than ETc
and other months to replenish the crop water requirements. Due to smaller kc factor of
potato crop in earlier months, lesser amounts of irrigations may be required for replenishing

potato water requirements. However, during tuber development/bulking stage, the shortage
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of water may hinder the potential potato yield. The study results also showed the high
variability in the monthly recorded rainfall, posing several challenges to water managers
for sustainable water management. In order to maximize potato tuber yield, timely Sl in
addition to rainfall is one of the viable options.

Because of rainfed agriculture in Prince Edward Island, there are no guidelines
available for selection of an appropriate irrigation method to achieve maximum water
productivity. This study investigated several irrigation methods (sprinkler, drip, control
and fertigation) in consideration with potato tuber yield, potato tuber quality, farm payout
returns and water productivity. There were significant effects of SI methods on potato tuber
yield, quality, payout returns and water productivity. Sprinkler and fertigation system
performed comparatively better in 2018 and 2019 respectively in terms of potato tuber
yield. Sprinkler irrigation system performed significantly better than other treatments in
term of farm payout returns and potato tuber quality. However, the lowest water
productivity was observed for sprinkler irrigation system due to higher water consumption
by this method. In terms of water sustainability, fertigation was the most effective irrigation
method in comparison with control and sprinkler irrigation application methods.

Commonly, irrigation especially sourced from groundwater pumping causes several
environmental problems such as declined groundwater levels and saltwater intrusion.
Therefore, the effects of groundwater pumping on groundwater levels were assessed for
sustainable water management strategies. Since the physical measurement of groundwater
levels is challenging with respect to the maintenance of groundwater wells and the
collection of periodic dips, the techniques introduced in this study; i.e., the use of ANNs

and RNNSs, are convenient and accurate. Stream flow gauges are easier to manage than
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physical measurement of fluctuations in groundwater levels. In areas where groundwater
pumping is common for Sl or for domestic use, the inventory control of groundwater
resources could become more convenient with the technique used in this study. The
analysis of two watersheds namely Baltic and Long creep showed that the deep learning
methods used in this study were accurate to simulate fluctuations in groundwater levels.
Because of the non-availability of daily pumping data in the island, it is recommended that
provincial water resource management authorities should monitor groundwater pumping

data on a regular basis.
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