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Introduction

Since the early days of the theory of option pricing, pioneered by Black, Scholes
and Merton ([3] and [11]) the use of complex financial derivatives has increased
tremendously. Finding prices of financial derivatives accurately and efficiently is
an important problem for the financial industry for obvious reasons. It is also a
challenging mathematical problem as we do not have explicit expressions for option

prices in many situations, and the use of numerical methods is almost unavoidable.

In the available literature there are very general methods to price financial deriva-
tives. Deriving and solving the corresponding pricing PDE can be used in many
instances ( see [6] for instance) but the numerical methods to solve PDEs are not
efficient as the dimension of the problem increases. Monte Carlo methods are also
popular ( see [8]) and do not suffer from “curse of dimensionality” issues, but they
can still be slow, and require many simulations to get pricing results within the

desired accuracy.

Closed-form accurate approximations of option prices are preferable than other
computationally expensive numerical methods. In the case of spread options (that

depend on two assets) some initial works in this direction are [10], [4] and [5].

This honours project concerns the pricing of multivariate financial instruments.
The objective of this work is to develop a pricing methodology that is accurate,
computationally efficient, and that admits generalization to price derivatives that

depend on an arbitrary number of assets.

We use polynomial approximations to derive our prices. The use of polynomials to
obtain approximated option prices under similar models has been explored before.
In [1], Taylor polynomials are used to price spread options. In [12] approximations
based on Chebyshev polynomials are used to price basket options. Very recently,

orthogonal polynomial expansions have been used to price European options under
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stochastic volatility models in [2]. Our approximation is based on polynomials (in
some cases of several variables) that satisfy a least squares criteria. As far as we
know, this is the first attempt to use polynomials obtained in this way to price

multivariate financial derivatives.

Using a least squares [7] criteria to find an approximating polynomial offers some
advantages compared to other approximating procedures. For example, Taylor
polynomials can approximate functions locally very well, but they are not gen-
erally good to approximate functions on a large domain. Using least squares
to approximate functions is a well known approximating method that applies in
general inner product spaces so we can clearly use this notion to approximate

polynomials in several variables.

In Chapter 1 we introduce some basic concepts needed in this thesis. These are
brief overviews of the ideas and for detailed sources readers can refer to the books in
the bibliography section at the end of the thesis. In this chapter we first introduce
the Brownian motion in both one-dimensional and multi-dimensional cases. Then
we introduce the asset price under the Black-Scholes model for both single-variate
and multi-variate cases. In the last section we look at the option price as expected
value of payoff, as well as pricing European call and put options with the Black-

Scholes formula.

In Chapter 2 we introduce the pricing of bivariate derivatives. We first talk about
the distribution of the conditional normal random variables, and by comparing
the distribution with asset price expression we modify the Black-Scholes formula
to price bivariate options. The modified Black-Scholes formula is then approxi-
mated by a polynomial function using the least square criteria, and the price is
approximated by the expected value of the approximating function. At the end
we obtain some numerical results and the results is compared to the Monte Carlo
Methods

In Chapter 3 we introduce the pricing of trivariate derivatives. We start with the
distribution of trivairate conditional normal random vairiable, then we compare
the distribution with asset price expression to obtain a modified Black-Scholes
formula to price the trivariate option. Then we use least square approximation
method to find a approximation function for the modified Black-Scholes formula, as

well as the approximated pricing as the expected value of approximating function.
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At the end we obtain some numerical results and the results is compared to the
Monte Carlo Methods



Chapter 1

Preliminaries

This chapter contains some critical preliminaries used throughout the thesis to
make this thesis as self-contained as possible. However, these are only very brief
summaries of each topic, future references on these topics are provided in the
Appendix if one is interested in a more detailed explanation of each individual
topic. In this chapter we will introduce Brownian motions, payoff of options,
option prices as expected value of payoff, the Black-Scholes Model and Monte

Carlo method for option pricing.

1.1 Brownian Motion

A one-dimensional Brownian motion (Wiener Process) on the interval [0, 7] is a

stochastic process {W (t),0 <t < T} that has the following properties:
1. W(0) = 0.

2. W(t) is a continuous function of ¢, with probability 1.

3. W has independent increments, W (t +s) — W (t) is independent of W (r) for
r <t.

4. W(t) —W(s) ~ N(0,t —s) forany 0 < s <t <T.

We can also have d-dimensional Brownian motions , let W () = (W, (t), Wa(t), - -, Wa(t))7,

each component is itself a one-dimensional Brownian motion and properties 1 to 3

4
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above are also satisfied for the multi-dimensional Brownian motion. Property 4 for
the multi-dimensional Brownian motion changes to W (t) — W (s) ~ N(0, (t—s)X)

where

1 pi2 - pia
P21 L o pog

Y
|Pd1 Pd2 e 1 |

the term p; ; is the correlation coefficient of W;(T') and W;(T'), and i, j = 1,2,--- ,d.

For multivariate Brownian motion, we have W (T') = (W (T'), Wo(T), - - , Wy(T))T
which follows the multivariate normal distribution W(T") ~ N(u, ). Therefore

W(T) ~ N(0,T%) (1.1)

Classical references on Brownian motion are [9] and [13].

1.2 Black-Scholes Model

Under the Black-Scholes model we have an expression that describes the movement
of stock prices, and uses the Brownian motion as the uncertainty source in this
way

S(t) = S(O)e(r_‘s_%"Q)H"W(t), for t € [0, 7 (1.2)

where S(0) is the spot price at the beginning of the contract, r is the risk-free
interest rate, ¢ is the continuous dividend yield, o is the volatility and 7T is a time

horizon.

Expression (1.2) implies that

In(S(7T)) = In(S(0)) + (r —6— %UQ) T+ oW(T). (1.3)
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Notice that W(T') ~ N(0,T"), we get In(S(7")) is also normally distributed. More-
over, the distribution of In(S(T")) satisfies that

E(ln(S(T)))zln(S(O))+(r—6—%a2)T, Var(n(S(T))) = 0T (1.4)

A multi-variate Black-Scholes S(t) = (Si(t), So(t), -, Sa(t))” is a process such
that for all = 1,2,--- ,d we have

Si(t) = S;(0)el =33 t+a Wit (1.5)

where W (t) = (Wi (t), Wa(t), -+, Wy(t))T is a d-dimensional Brownian motion.

1.3 Multivariate Options

The European call and put options mentioned in the previous section only depend
on a single asset. However, this thesis is focused on the pricing of multivariate
financial derivatives. In this section, we are going to introduce some examples of

options that depend on several assets

A spread option is an option that depends on two assets, the value of a spread
option is derived from the difference of the values of its assets. For example, a
spread option with strike price K and spot prices at expiration S;(7) and Sy(T")
has the following payoff,

payoff = max(0, S1(T) — So(T) — K). (1.6)

Similarly, a three-asset spread option depends on three assets and the value is

determined by the difference of the value of three assets. In this case the payoff is

payoff = max(0, S1(T) — So(T) — S3(T) — K).

Another example of multivariate option is the basket option. In a basket option,

the value is determined by the weighted sum or the average of its underlying assets
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payoff = max(0, Z a;5;(T) — K)

where «; is the weight of the asset S;.

1.4 Option Prices as Expected Value of Payoff

The price of a European options can be expressed as a function of its payoff, and
in this case it can be expressed as the expected value of its discounted payoff,
under some probability measure ) . Assuming that the risk-free interest rate r is

continuously compounded then the price of the option is,

price = e~ "' Eg(payoff), (1.7)

where e™"

T'is the discount factor. A univariate call option has payoff max(0, S(T)—
K) and by expanding S(T') to its expression (1.2) under the Black-Scholes model

we have

price — G_TTEQ(mCLI(O, S(O)e(r—(s—%O'Q)T-‘FUW(T) _ K))

In the above equation we have the parameters S(0),r, 6,0, K, and W(T) is a
normal random variable. After taking the expected value the only undetermined
values are the parameters, which implies the European call option price can be
expressed as a function C' of the parameters S(0), K,T,r,d,0. And we can use
the Black-Scholes formula which is a deterministic formula to calculate the price

of such options.

price = C' (S(0), K, T, r,8,0) = S(0)e "N (dy) — Ke ™" N(dy). (1.8)
Where N is the cumulative distribution function for standard normal distribution

-2

N(z):\/%/_;e 2t
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dy, dy are the z-values and they are determined by the following formulas

(39 4 (r — 6+ )T
dy = —K 2" anddy=dy — oVT.
1 0\/T 2 1

Similarly the Black-Scholes formula for put option is defined as

P(S(0),K,T,r,d,0) = Ke"TN(—=dy) — S(0)e TN (—dy).



Chapter 2

Pricing of Bivariate Derivatives

In this Chapter we are going to introduce a new methodology for the approximated
pricing of options under a bivariate Black-Scholes model. In particular we will
apply this methodology to the pricing of spread options, for which there is no

analytic expression.

In Section 3.1 we introduce the model for the underlying assets and derive some
conditional distributions that we will use afterwards. In Section 3.2 we show that
the price of a spread option can be obtained as the expected value of a known
function ¢ that depends on the spot price of only one of the two underlying assets.
Because the computation of this expected value cannot be done analytically, in
Section 3.3 we consider least squares polynomial approximation g of g . In section
3.4 we explain how to use the derived function g to obtain approximated values
of the spread option price. In addition, we also report some numerical results
under several sets of model parameters, including comparison with Monte Carlo

estimations of the price.

2.1 Distribution of Conditional Random Vari-

ables

Let us consider a bivariate Black-Scholes model S = (S;,S5)T as defined in ex-
pression (1.5). Our objective is essentially to find the conditional distribution
of S1(T') conditional on Sy(7T"). First let us find the conditional distribution
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of (Wi (T)|Wo(T)). Suppose W(T) = (Wy(T),Wo(T))T, we know from (1.1)
W(T') ~ N(0,T%) where

T pT
TY =
pr T

Using known results (Refer to Appendix 5.4) we get

(Wi(T)[Wo(T)) ~ N (PW2(T)a (1- pQ)T) :

In the expression (1.2) for S;(T), all parameters are given except for the normal
random variable W;(T). Therefore, we can rearrange the expression such that
Wy(T') is a function of Sy(7T)

n (25) = (r—to3) T
2(0) 292
WH(T) = )
02
From this we want to find the distribution of (ln (S(T |W2 ), suppose the

mean of the conditional random variable is m and the variance is v?

(In (Sy(T)) [Wa(T)) ~ N (m,v%),

where the variance v? is given by

v2 =Var (ln (S1(T)) ‘WQ(T))

= Var (m (S1(0)) + (7’ - %af) T+ W; | Wz(T))
= Var (o:Wi(T) | Wa(T))

=oi(1-p)T (2.1)

and the mean m is given by
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1
—F <ln (51(0)) + (7“ — 50%) T+ oW, ‘ W2>
1
= In (51(0)) + (7’ — 50%) T+ o0 E (W | W)
1
=In (51(0)) + (7’ - 50%) T + o1 pW,
o (S2(T)) _ (r _ 102) T
1 2
= In (51(0)) + (r — _U§> T +oyp 52(0) 2
2 o
2 2R o2 n (28) — (- Lo3) T
—In (S (0) +rT - D+ I P 5 5.0 305
2 2 2 s
Sa(T) L o
O'2<].—p2) 0'2p2 111(52(0)) —(T_§O-2)T o1
n(51(0)) +r 5 ) + o — 2
2 2 In S (1)) _ (T‘ _ 10.2) T
= o= a1p <32(0> 202
=1In(5:(0)) +rT 5 T —oip ! — -
21 _ 2
i ($1(0) + 7= g (gﬂ ) W2<T>> .
_ o' ,
=1 (8:(0)) ++7 — T —0'T (2.2)

These expressions for the mean (2.2) and variance (2.1) for the bivariate case is
essentially equivalent to the expressions in (1.4) with different parameters ¢’ and

o’ given by

o = o1\/1—p? (2.3)
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2.2 Pricing After Conditioning

Recall that the price of an option can be determined by the expected value of its

payoff (1.7), and according to the law of iterated expectation we have

price = E(e " payoff)

= e T B((S\(T) - Sy(T) - K)*)
= ¢ T B(E(S1(T) — S(T) — K)|S:(T))
= E(e7" E(S1(T) — (S2(T) + K))|S:(T)) (2.4)

Let us now focus on the term e " E(Sy(T) — (So(T) + K)|S2(T))

From the above expression (2.4) we can see that after conditioning this is equivalent
to having a standard call option on the first asset, with a new strike price So(7)+ K,

/ . . o . .
so we can define a new parameter K as the strike price after conditioning

/

K = K'(5(T)) = Sy(T) + K. (2.5)

From the previous section we know that the distribution of the conditional ran-
dom variable (In (S1(T")) |[W2(T)) is identical to the distribution of In(S(7")) with
parameters ¢ and o', more spemﬁcally we can compare the expressions (2.2) and
(2.1) to the distribution in (1.4). Notice that ¢’ can be written in terms of Sy(7")

as follows

Now we can conclude that e ™ E(S(T) — (So(T) + K)|So(T)) is equivalent to the
price of a standard call option with strike price K’, volatility ¢’ and dividend yield
0’. Therefore,

e E((S1(T) — So(T) — K)*) = C (81(0), K'(S5(T), T, 7,'(S(T)), o)
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Omitting the other parameters, define g as follows

9(S2(T)) = C (51(0), K'(S2(T)), T, r,0'(52(T)), o) (2.7)

The spread option price can be now written as

price = E(g(5:(T)))

2.3 Least Square Regression Approximation

The analytical expression for the function ¢ is known, but it is complicated to
calculate the spread option price E(g(52(7"))). We will use a polynomial approx-
imation ¢ of g such that the expected value can be easily computed, and we can

approximate the price as follows

price = E(g(52(T))) ~ E(9(52(T))) (2.8)

We will use a least squares criteria to find the approximating polynomial g of g and
to minimize the effect of numerical errors we center our polynomial around S* =
E(S5(T)). In other words, for a fixed m € N we will use a set of predetermined
nodes x1,xa,...,xx (with N > m) to find coefficients Sy, 51, . . ., fm such that the

mean square error

N

Z[g(%) — (Bo+ Br(xi = S) + Palws — S*) + -+ + B — S)™]?

i=1

is minimized [7]. Finding the coefficients fy, f1,. .., B is essentially a linear re-
gression problem. We will construct the nodes x1, x5, x3, - - , z, in a finite interval

where the values of Sy(7") will most likely be.

Our nodes are constructed as follows

2; = Sy(0)er 030 T+oVT =
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where,

Z; = Nﬁl(pi)
0.9998
p; = 0.0001 + 7
n

Since most of the values under the standard normal distribution are clustered
around the mean, the majority of Sy(7") values should be clustered in some region.

Our goal is to make sure the approximation is accurate within the clustered region
of SQ (T) .

Let us consider the following parameters, risk-free interest rate » = 0.03, an asset
Sy with volatility oo = 0.4, dividend yield d; = 0 and S5(0) = 80 that expires in a

quarter.

To verify the regions of constructed nodes, we first show a histogram of Sy(7T)

using randomly generated z’s and expression (1.2)

1000 1500 2000 2500
| |

500
|

33 42 50 58 66 74 82 90 98 107 117 127 137 147 157 169
S2T

FIGURE 2.1: Randomly generated S2(7T)

Then we construct 1000 nodes using the method above, we have
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[e] O

T T T
50 100 150

S2T

FIGURE 2.2: Constructed Nodes

We can see that the nodes in figure (2.2) we have most of the nodes in the interval
[50,125] which correspond to the interval where most Sa(7) values are in figure
(2.1).

Polynomial approximation functions can have various degrees, while low degree
could lead to under fitting the data points, a polynomial approximation with
high degree could over fit the given points and become unreliable at other points.
Another problem when computing high degree polynomial functions is that when
dealing with extremely large or small numbers it may cause numerical problems

for the computer. So we must carefully choose the correct degree.

Recall that ¢ is a function of S3(7") which is essentially the conditional Black-

Scholes formula (2.7), and § is a polynomial approximation of g.

g(x) = Bo+ Pi(w = §7) + Ba(x = S7)* + -+ Bu(z — )", form €N (2.9)
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The process of finding the optimal coefficients is achieved by using the “lm” func-

tion in R.

To compare the accuracy of the polynomial approximation function ¢ = p,, of

different degrees, we plotted the functions in comparison with g.

In a bivariate option, for S; we have volatility o; = 0.4, dividend yield 5 = 0 and
S2(0) = 100, the option expires in a quarter. Now we can plot the graphs for the

function g and polynomial approximation functions of degree n, for n = 2, 3,4, 5, 6.

3 -
[l degree 2
[E degree 3
9 B degree 4
O degree 5
Bl degree 6
(=
N
()] v _|
o
Lo p—
o —
|
50 60 70 80 90 100 110 120 130
S2(T)

FIGURE 2.3: Graph of Approximation Functions

From the graph we can tell that in the desired interval [50,125] most of the approx-
imation functions are reasonably accurate, especially in the center of the interval.
Since the possibility of S3(7T") to be outside the interval is minimal, even though
the approximation functions are less accurate as the points extends outside the
interval, the effect on the accuracy is small. Also notice that as we increase the

degree of polynomials the accuracy also increases.
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2.4 Approximated Pricing

Recall that the price is approximated by the expected value of polynomial approx-
imation functions (2.8) and the expression (2.9). To compute the price of bivariate
options, we need to find E(g(S2(T)))

E(3(S2(T))) = E(Bo + Bi(S2(T) = %) + Bo(Sa(T) = 8*)* + -+ + B (Sa(T) — S*)™)
= E(Bo) + E(B1(S2(T) = 5%)) + E(Ba(Sa(T) — S)) + -+
+ E(Bn(S2(T) — 5°)™)
= Bo + BrE(S2(T) = S*) + BoE((S2(T) = S)%) + -+ + Bu E((S5(T) = S*)™)

Therefore,

B(S,(T) — $)") = B ( -(7) 52<T>”-i<s*>i>

> 1 () Esatrryisy

]

Therefore, we can express the mth degree approximated price of a bivariate option

price = 3 B (Z(—l)" (k) E<52<T>k-i><s*>i> (2.10)

where E(S3(T)*) and a = k — i can be expressed as

E(So(T)") = S5(0)0eor—3T+50°T (2.11)

For a given set of parameters, to check the accuracy of the approximated prices,
we compare them to the pricing results of two Monte Carlo approaches, the basic

Monte Carlo method and the conditional Monte Carlo method.

For basic Monte Carlo method, we use the fact that
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price = e T E((S1(0) — S5(0) — K)T)

So we determine the pricing results as follows:

1. generate n random normally distributed vectors (zy;, 29;)7, fori = 1,2,--+ ,n

L p
with mean 0 and co-variance matrix

p 1
2. Sii(T) = Sk(O)e(r"S*%”Q)”"ﬁzki, where k =1, 2

i e (S (T) =82 (T)—K) T

3. price =

For the conditional Monte Carlo method, we use the fact from expression (2.4).

And the process of conditional Monte Carlo method is shown as follows:

1. randomly generate n normally distributed random numbers zy; for i =
17 27 N 1]
2. Sy(T) = Sa(0)er—0-30 oV Te

1o O(SHOKLTrS(SH(TN) _ 50 o(Sai(T)

3. price =

For a set of parameters in we calculate the expected value of the polynomial ap-
proximation functions of degree 5 and 6, we get the following results in comparison

with Monte Carlo methods results.

For the set of parameters:
p=0, K=20,t=0.25 r=0.03

$1(0) = 100, d; = 0, S5(0) =80, & =0
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Basic M.C. | Cond. M.C. | 5th Degree | 6th Degree
[95% C.I.] [95% C.I1.] [Std. Err.] [Std. Err.]

o1 =04 10.302 10.270 10.257 10.257

o9 =04 [10.131,10.472] | [10.190,10.350] [0.030] [0.008]

o1 =02 5.113 5.183 5.176 5.177

o9 =0.2 [5.031,5.196] [5.140,5.226] [0.019] [0.015]

o =02 7.548 7.653 7.567 7.568

o9 =04 [7.435,7.661] [7.567,7.739] [0.066] [0.055]

o1 =04 8.637 8.699 8.647 8.647

o9 =0.2 [8.597,8.677] [8.549,8.850] [0.001] [0.001]

TABLE 2.1: Regression nodes: 128; Monte Carlo Paths: 32768

For the set of parameters:

p=0, K=10, 00 =0.2, 05 =02, r=0.03

$1(0) =110, & = 0, S5(0) = 110, 6, =0

Basic M.C. | Cond. M.C. | 5th Degree | 6th Degree
[95% C.I1.] [95% C.1.] [Std.Err.] [Std.Err.]
t=0.25 2.420 2.488 2.469 2.468
[2.358,2.483] [2.455,2.521] [0.090] [0.039]
t=0.5 4.657 4.706 4.714 4.713
[4.554,4.761] [4.652,4.760] [0.064] [0.010]
t=0.75 6.587 6.590 5.216 5.218
[5.162,5.246] [5.187,5.218] [0.068] [0.011]
t=1 8.292 8.135 8.136 8.134
[8.052,8.219] [8.126,8.458] [0.168] [0.040]

TABLE 2.2: Regression nodes: 256; Monte Carlo Paths: 32768

Notice that for different set of parameters the accuracy for polynomial approxi-

mations are different. The different values of o; has little impact, however the

accuracy decrease as the value of o9 increases, due to the wider range of future

So(T) values caused by increasing volatility. Similarly the increasing time to expi-

ration also tends to decrease the accuracy of the approximations, since it provides
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a wider range for future Sy(7") values. Overall the results are sufficiently accurate,

especially for the options that contains less volatile assets.



Chapter 3

Pricing of Trivariate Derivatives

In this Chapter we are going to expend the methodology from the bivariate case
and apply it to the pricing of three-asset spread options which does not have an

analytic expression.

In section 4.1 we cover the model for the trivaraite spread option and included
the derivation of the conditional random variable. In section 4.2 we introduce the
payoff of three-asset spread option and its price as the expected value of payoff,
then we derived the modified parameters by comparing the distribution of the
conditional normal distribution from section 4.1. In section 4.3 we approximate the
modified Black-Scholes formula using least square regression method and compared
the approximation function to the modified Black-Scholes formula. In section 4.4
we show the derivation of the expected value of the approximating function and

compare pricing results with two Monte Carlo methods.

3.1 Distribution of Trivariate Conditional Ran-

dom Variable

Let us now consider a trivariate Black-Scholes model S = (5}, 5,,53)7 as de-
fined in expression (1.5). In the trivariate case we are looking for the conditional
distribution of S;(T") conditional on Sy(7"), S3(T"). We want to find the distribu-
tion of conditional random variable (Wy(T)|W2(T), W5(T')). Suppose W(T) =
(W(T), Wo(T), W3(T))™, from (1.1) we have W(T') ~ N(0,T3) where

21
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T P1,2T ,01,3T
TY = |p2T T posT

p131 po3T T

According to section 5.4 in Appendix we have that the distribution of the trivariate

conditional normal random variable is (W1 (T")|Wo(T'), W5(T)) ~ N(f1, X).

1 —pP2,3
_ T(1—p2 T(—p2 WQ(T)
=0+ [pl,zT P1,3T} (—p:i,j) ( 1p2*3) -
T(1-p53) T(1=p33) 3( )
_ [Pl,z*ﬂl,spz,s 91,2*P1,3P2,3i| WQ(T)
1-p3 5 1-p3 5 Wg(T)
_ Wo(T) (p12 — pl,3p23) + Wi(T') (p13 — pl,2p23) (3.1)
I 03,3
i _7T_ |:p1,2—p1,3p2,3 p1,3—p1,2p2,3] pLZT
GE CE p13T
2 2 _
77 (01,2 01,251,302,3 N P13 01,251,302,3)
1- P23 - P23
2 2
— + i
_ (1 _ Pi2 T P12P13023 51,3 P1,201,3,02,3) T (3.2)
- P23

From this we want to find the distribution of the conditional normal random
variable (In(S1(T)|Wa(T), W3(T)) ~ N(m,v?).

v? = Var(In(S,(T))|Wy(T), Ws(T))
= VCLT’(O'lwl (T)|W2(T), Wg(T))

—s2(1 pi? — P12P13023 t P%,:a — P1,2P1,302,3 T
= 0] — 5
- P23

(3.3)
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m = E (In(S1(T)|Wa(T), Ws(T)))

=F (m (So1) + (r - %ﬁ) T+ oWi(T) | Wa(T), Wg(T))

1
= In(Se) + (r — 50%) T+ o0y

= In(So1) + 7T — %af (1 __B - S T TT (ﬂ (B) — é) (3.4)

A=pt,— prapiapes + Pis — PL2p13p23 (3.5)

B =Ws(T)(p12 — p1,3p23) + Ws(T)(p13 — p1,202.3) (3.6)

These expressions for the mean and variance of the conditional random variable
In(S1(T)|Wo(T'), W5(T) is essentially equivalent to the expressions in (1.4) where

0 and o is replaced by the parameters ¢’ and ¢’ where

01 g1 B
=0 (54 7)
P23

3.2 Pricing After Conditioning

From expression (1.7), we get the price of trivariate case as the expected value of
payoff. And for a three-asset spread option we have the payoff as (S;(7") — So(T') —
93(T) — K)*

price = E(e " payoff)
— B(eTE(Si(T) — Su(T) — $y(T) — K)|S3(T), S5(T))
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We now focus on the term e ™ E(S(T) — So(T) — S3(T) — K)|So(T), S5(T), we
get that after conditioning this is equivalent to having a standard call option on
the first asset with a new strike price Sa(7) 4+ S5(7") + K, denoted K’ as the strike

price after conditioning

K'= K'(S5(T), 85(T") = S2(T) + S3(T) + K (3.7)

Notice that the distribution of the conditional random variable In(S;(T")|Wo(T'), W3(T)
is identical to the distribution of In(S(7")) with parameters ¢’ and o', and that the

parameter ¢’ can be written in terms of Sa(7'), S3(T") as follows

/ ! B
§ = 5(SH(T), 8(T)) = 1= 1 (%A— T)
2,3

With A (3.5) and B (3.6). Then we can conclude that e E(Sy(T) — Sa(T) —
S3(T) — K)|S2(T), S3(T) is equivalent to the price of a standard call option with
strike price K’ volatility ¢’ and dividend yield ¢’. Therefore,

e "TE(S1(T) = S2(T) = S3(T) — K)[S:(T), S5(T))
=C (Sl (0)7 K/(SQ(T)v S3<T))7 T7 Ty 5/(52(T)’ S3(T>)7 0/)

And we can define ¢ as follows

9(52(T), 83(T)) = C(51(0), K'(S2(T), S5(T)), T, 7, 6(52(T), S5(T)), ')

And the three-asset spread option price can be expressed as

price = E(g(S2(T'), S3(T")))
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3.3 Least Square Regression Approximation

Similarly in the trivariate case we want to find the expected value E(g(S(T'), S5(T")))
using the approximation function ¢ of g, such that the price of trivariate option

can easily be approximated

price = E(g(52(T), S5(T))) = E(9(52(T), S5(T)))

Similar to the bivariate case, we will use the least square criteria to find the
approximating bivariate polynomial function g. Notice in the above graph when
the sum Sy(7") + S3(7T") remains unchanged the price of the trivariate option is
barely affected by the different values of each So(7T") and S3(T"). So we can use the
set of predetermined nodes z; + y; combined with z;, y; (for ¢ = 1,2,--- | N and
N > m) to find the coefficients By, 51, - , By such that

N

Z[g(ﬂ% yi) = (Bopo (i + i) + Brpr (i + yi) + Bapa (@i + yi) + - - - + B (s + 1))
i=1

is minimized, where p;(z;,y;) are polynomials.

Finding the approximationg function g for the trivariate case is also a linear re-
gression problem that considers the nodes x; + y;, x; and ;. The nodes should be

clustered around a region of values for So(7") and S3(7T).

To generate the the nodes z; and y;, we first divide the interval [0.005,0.995] in m

partitions and follow the procedure:

P2i=0.005+wi, fori=1,2,---.,m
m

0.995 — 0.005
psi = 0.005 + — %

then compute the z-values
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Z9i = N7 (poy)

23i = 29ip23 + /1 — p23N "' (p3i), pas is the correlation coefficient

And to further squeeze the values of 2, and z3 such that the Sy(7") and S5(7T")

values produced are more clustered in the region where most of their values will

o1
be, we adjusted the values using § = >,

2h. = 29; 080 + z3;8in 6, and z5;, = 29;8in 6 + z3; cos §

Then the nodes are calculated using expression (1.2) with the adjusted z), and zj;

values.

By randomly generate two sets of standard normal random variables z, and 23,
after applying the stock price expression (1.2) we can get the plot of randomly
generated S3(7T") and S;3(7T") values

36
|

S3T

e}

50 55 60 65 70

S2T

FIGURE 3.1: Generated Nodes

Then using the above method we can generate a plot of the nodes, and compare

its region to the randomly generated S»(T") and S3(7") values.
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FIGURE 3.2: Calculated Nodes

Notice in graph (3.2) the nodes are concentrated in the same region as the gener-
ated pairs (S9(7"), S3(7)) in graph (3.1), more specifically for Sy(7) € [40,80] and
S3(T) € [30,80]. Essentially, by selecting those nodes we are making sure that ¢

and g are close in this region

Notice in the graph below when the sum Sy(7") + S3(7") remains unchanged the
price of the trivariate option is barely affected by the different values of each Sy (7")
and S3(T"). So we can use the set of predetermined nodes x; +y; combined with x;,
(for i =1,2,--- N and N > m) to find the coefficients 5y, 51, - , Bm- we have
tested with different form of the nodes and find that among the nodes and degrees

we have tested the following approximating function yields the best result.

9(x,y) =Bo+ Bi(z +y) + -+ Bs(x +y)° + Bex + PBra® (3.8)

where x = So(T) and y = S3(7T).

While the graphs of the approximating function § compared to the modified Black-

Scholes formula g can provide some idea on the accuracy.
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FIGURE 3.3: Modified Black-Scholes

FIGURE 3.4: Approximation Function

To better illustrate the accuracy in one graph, the plot in trivariate case isfocused

on the error g — g instead of the functions.
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R

FI1GURE 3.5: Error

From the graphs we can tell that the errors in the region are within the interval
[—0.35,0], and even better at the center of the region. For the purpose of pricing
the trivariate option, the approximating function is accurate within the desired

region where most of the S3(7T") and S3(7") values will be.

3.4 Approximated Price

Recall that the price of the option can be determined by the expected value of
the discounted payoff (?77?). It can be approximated by the expected value of the

approximating function F(g).

where x = So(T) and y = S3(7T'), therefore
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and the expression of E(Sy(T)?S3(T)*) is given by

: T, . : :
(j+k)rT — 3 (jos(1—j) + ko3(1 — k) + jkoaospasT

SQ(O)j53(O)k€
The pricing result of trivariate option is also compared with the result of two
Monte Carlo methods, basic Monte Carlo and conditional Monte Carlo. And we

found that most results are reasonably accurate.

The values of S5(7T") and S3(7) in conditional Monte Carlo in the trivariate case
is generated in a similar way to the S;(7) and S3(T") values in the basic Monte
Carlo method of bivariate case. Then taking mean of values obtained using the

trivariate modified Black-Scholes formula to be the estimated price.

For the basic Monte Carlo, we need to first randomly choose a set of values for
2o which following the standard normal distribution, then apply formula (?7) to
generate the set of z3 values. And we can form two sets of values for W5(7") and
W3(T), using the conditional normal distribution of (Wy(T)|Ws(T), W5(T')) we get
the mean (3.1) and variance (3.2). Then we can obtain a set of W;(7T) values which
are randomly selected. By apply the stock price formula (1.2) and the trivariate
modified Black-Scholes formula, then the mean of the set of result is the estimated

price by the conditional Monte Carlo method.
Now we compare the results from the F(g) and the two Monte Carlo methods.

For the set of parameters:
K= 10, T = 003, P12 = 02, P1,3 = 02, P23 = 03, 0=0

$1(0) = 100, o1 = 0.3, S5(0) = 30, 05 = 0.4, S5(0) = 40, 05 = 0.4
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Basic M.C. Cond. M.C. Approx. Func.
[95% C.1.] [95% C.I.]
t=0.25 20.934 20.892 20.924
[20.892,20.976] [20.874,20.911]
t=0.5 22.510 22.495 22.552
[22.454,22.566] [22.473,22.518]
t=0.75 24.034 24.023 24.111
[23.968,24.100] 23.998,24.048]
t=1 25.430 25.452 25.550
[25.353,25.503] [25.426,25.479]

TABLE 3.1: Trivariate Pricing Results 1

For the set of parameters:

K= ]_0, r= 003, P12 = 02, P13 = 02, P23 = 03, t = 05, 0=0

$1(0) = 100, oy = 0.3, S5(0) = 30, S3(0) = 40

Basic M.C. Cond. M.C. Approx. Func.
[95% C.I1.] [95% C.I.]
o9 =0.1 10.697 10.706 10.704
o3 =0.1 [10.674,10.719] [10.697,10.715]
o9 = 0.3 13.359 13.359 13.369
o3 =0.3 [13.324,13.394] [13.329,13.388]
o9 =0.4 13.014 12.992 13.012
o3 =0.2 [12.981,13.048] [12.965,13.020]
o9 =0.4 14.039 14.069 14.076
o3 =0.3 [14.002,14.077] [14.036,14.101]
o9 = 0.4 14.039 14.069 14.076
o3 =0.3 [14.002,14.077] [14.036,14.101]
o9 =0.1 13.730 13.763 13.708
o3 =04 [13.695,13.766] [13.733,13.793]
oo =0.1 12.421 12.430 12.385
o3 = 0.3 [12.390,12.452] [12.406,12.454]

TABLE 3.2: Trivariate Pricing Results 2
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From the tables (3.1) and (3.2) above, one can tell that accuracy depends on the
parameters. As time to expiration increases the less accurate the pricing result
will be, and when the volatility o3 of S5 is large and difference of o5 and o3 is large

the pricing result is not as accurate.



Chapter 4

Appendix

This chapter contains most of the critical preliminaries used throughout the thesis
to make this thesis as self-contained as possible. This chapter is divided into 3
sections, containing preliminaries for Statistics, Finance and Polynomial Approx-

imation.

4.1 Normal Random Variable

In this thesis, we mainly considered the random variables in normal distribution,
a distribution with bell shape and with most of the variables concentrated around

the mean.

A random variable Y is said to have a normal probability distribution if and only

if, for 0 > 0 and —o0 < p < o0, the density function of Y is:

fly) = 12 e R o <y < 0.
g T

If Y is a normally distributed random variable with parameters pu and o, denoted
Y ~ N(p, o), then

EY)=p and V(Y)=o%

33
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Where E(Y) and V(YY) is the expected value of and variance of normal random

variable Y.

4.2 Log-Normal Distribution

In statistics, the log-normal distribution is a probability distribution of a ran-
dom variable which have a normally distributed natural logarithm. That is if X
follows the log-normal distribution, then the random variable In(X) is normally
distributed. Reversely, if Y is normally distributed, then the random variable e¥’

follows a log-normal distribution.

For a log-normal random variable X, if in(X) ~ N(u,0?) then

B(X') = 37

In the Black-Scholes model, for the price of a stock over time 7" we have a function

S(T) that is log-normally distributed

1 2
S(T) = Soe " 0 27 MWD

Where W(T') ~ N(0,T), therefore

In(S(T)) = In(So) + (rT — 6T — %UZT - oW(T))

is normally distributed.
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4.3 Multivariate Normal Distribution

X is an n-dimensional multivariate normal random variable, X can be represented
as a vector X = (X1, Xo, -, X,,)T, where X1, Xy, -, X,, are normal random

variables, the multivariate probability function is given by

p($1,$27 t '7xn) - P<X1 = .’13'1,X2 = T2, '7Xn = xn)

And X follows the multivariate normal distribution, X ~ N(u, ¥) where

m T ] 2
X, I o7 P1,20102 P1,n010n
X 2

2 H2 P2,102071 o3 Ce PopOa0y,
X, 2
|57 _Mn_ Pn10n01 Pn20n02 - - o,

4.4 Conditional Distributions

In statistics, given two jointly distributed random variables X and Y, the condi-
tional probability distribution of X given Y, denoted P(X|Y') is the probability

distribution of X when Y is known.

In the general case we have X, Xs, - - -, X,,, multiple jointly distributed random
variables, the distribution of the conditional random variable (X1, -, Xg| Xgi1, -
X)) ~ N(i, ¥) where fi, ¥ are given by X, j1, 2

1 kx1
X = with sizes
L2 (n—Fk)x1
kx1

0= = with sizes
2

(n—Fk)x1
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SRS kx1 1x(n—k)
¥ = [ 1 12] with sizes
o1 o (n—k)x1 (n—k)x(n—Ek)

Let a be the vector of values of X 1, -, X, then a = (2341, - -x,)7

= g+ S1255 (@ — pa)

Y= Y- D195 S

4.5 Least Square Approximation

Let k£ > 1 be an integer. Let the real valued functions g, f1, f2,..., f. defined
over some domain D C R* be given. Consider also a finite set of points S =
{x1,29,..., 2} C D, where m > n. We would like to approximate the function

g with linear combinations of the functions fi, fo, ..., fa.

For coefficients 8 = (51, Ba, . .., Bn)" € R", consider the function gz = >, B fi,

and the square error over the points in S given by:

(9(z;) — 95(%‘))2

M

SE(p) =

1

J

In this setting, the least squares approximation of the function g is gz where B
minimizes SE(f).

This is a particular case of well known approximation problems that have been
solved in very general settings, and can be essentially reduced to a multiple re-

gression problem.

If we define y = (g(z1), g(x2), ... 79(33m))T and

filz)  folwe) - fula)
fi(ze)  falxa) -+ fulze)
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and we assume that the matrix X has full rank, the optimal coefficients B can be

obtained as

6= (X"X)"'X"y

4.6 Monte Carlo Method for Option Pricing

The Monte Carlo method is a computational algorithm that uses repeated ran-
dom sampling to obtain numerical results. In the options pricing application it
simulates possible future paths for underlying assets. It is modeled to follow ge-
ometric Brownian motion with a set of constant parameters. In this thesis, it is
combined with the stock price function in the Black-Scholes model to compute the
stock price at expiration of an option to obtain a pricing result. The final result

is determined by taking the average of the collection of simulated stock prices.

The standard Monte Carlo method for option pricing can be divided into 3 steps:

e Randomly generate the future prices of the underlying assets.

e Calculate the payoff of the option for each of the generated underlying price

scenarios.

e Discount the payoffs back to today and average them to determine the ex-

pected price.
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