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Introduction

Since the early days of the theory of option pricing, pioneered by Black, Scholes

and Merton ([3] and [11]) the use of complex financial derivatives has increased

tremendously. Finding prices of financial derivatives accurately and efficiently is

an important problem for the financial industry for obvious reasons. It is also a

challenging mathematical problem as we do not have explicit expressions for option

prices in many situations, and the use of numerical methods is almost unavoidable.

In the available literature there are very general methods to price financial deriva-

tives. Deriving and solving the corresponding pricing PDE can be used in many

instances ( see [6] for instance) but the numerical methods to solve PDEs are not

efficient as the dimension of the problem increases. Monte Carlo methods are also

popular ( see [8]) and do not suffer from “curse of dimensionality” issues, but they

can still be slow, and require many simulations to get pricing results within the

desired accuracy.

Closed-form accurate approximations of option prices are preferable than other

computationally expensive numerical methods. In the case of spread options (that

depend on two assets) some initial works in this direction are [10], [4] and [5].

This honours project concerns the pricing of multivariate financial instruments.

The objective of this work is to develop a pricing methodology that is accurate,

computationally efficient, and that admits generalization to price derivatives that

depend on an arbitrary number of assets.

We use polynomial approximations to derive our prices. The use of polynomials to

obtain approximated option prices under similar models has been explored before.

In [1], Taylor polynomials are used to price spread options. In [12] approximations

based on Chebyshev polynomials are used to price basket options. Very recently,

orthogonal polynomial expansions have been used to price European options under

1
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stochastic volatility models in [2]. Our approximation is based on polynomials (in

some cases of several variables) that satisfy a least squares criteria. As far as we

know, this is the first attempt to use polynomials obtained in this way to price

multivariate financial derivatives.

Using a least squares [7] criteria to find an approximating polynomial offers some

advantages compared to other approximating procedures. For example, Taylor

polynomials can approximate functions locally very well, but they are not gen-

erally good to approximate functions on a large domain. Using least squares

to approximate functions is a well known approximating method that applies in

general inner product spaces so we can clearly use this notion to approximate

polynomials in several variables.

In Chapter 1 we introduce some basic concepts needed in this thesis. These are

brief overviews of the ideas and for detailed sources readers can refer to the books in

the bibliography section at the end of the thesis. In this chapter we first introduce

the Brownian motion in both one-dimensional and multi-dimensional cases. Then

we introduce the asset price under the Black-Scholes model for both single-variate

and multi-variate cases. In the last section we look at the option price as expected

value of payoff, as well as pricing European call and put options with the Black-

Scholes formula.

In Chapter 2 we introduce the pricing of bivariate derivatives. We first talk about

the distribution of the conditional normal random variables, and by comparing

the distribution with asset price expression we modify the Black-Scholes formula

to price bivariate options. The modified Black-Scholes formula is then approxi-

mated by a polynomial function using the least square criteria, and the price is

approximated by the expected value of the approximating function. At the end

we obtain some numerical results and the results is compared to the Monte Carlo

Methods

In Chapter 3 we introduce the pricing of trivariate derivatives. We start with the

distribution of trivairate conditional normal random vairiable, then we compare

the distribution with asset price expression to obtain a modified Black-Scholes

formula to price the trivariate option. Then we use least square approximation

method to find a approximation function for the modified Black-Scholes formula, as

well as the approximated pricing as the expected value of approximating function.
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At the end we obtain some numerical results and the results is compared to the

Monte Carlo Methods



Chapter 1

Preliminaries

This chapter contains some critical preliminaries used throughout the thesis to

make this thesis as self-contained as possible. However, these are only very brief

summaries of each topic, future references on these topics are provided in the

Appendix if one is interested in a more detailed explanation of each individual

topic. In this chapter we will introduce Brownian motions, payoff of options,

option prices as expected value of payoff, the Black-Scholes Model and Monte

Carlo method for option pricing.

1.1 Brownian Motion

A one-dimensional Brownian motion (Wiener Process) on the interval [0, T ] is a

stochastic process {W (t), 0 ≤ t ≤ T} that has the following properties:

1. W (0) = 0.

2. W (t) is a continuous function of t, with probability 1.

3. W has independent increments, W (t+ s)−W (t) is independent of W (r) for

r ≤ t.

4. W (t)−W (s) ∼ N(0, t− s) for any 0 ≤ s ≤ t ≤ T .

We can also have d-dimensional Brownian motions , let W(t) = (W1(t),W2(t), · · · ,Wd(t))
T ,

each component is itself a one-dimensional Brownian motion and properties 1 to 3

4
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above are also satisfied for the multi-dimensional Brownian motion. Property 4 for

the multi-dimensional Brownian motion changes to W(t)−W(s) ∼ N(0, (t−s)Σ)

where

Σ =



1 ρ1,2 · · · ρ1,d

ρ2,1 1 · · · ρ2,d

· · · · · ·
· · · · · ·
· · · · · ·
ρd,1 ρd,2 · · · 1


the term ρi,j is the correlation coefficient ofWi(T ) andWj(T ), and i, j = 1, 2, · · · , d.

For multivariate Brownian motion, we have W(T ) = (W1(T ),W2(T ), · · · ,Wd(T ))T

which follows the multivariate normal distribution W(T ) ∼ N(µ,Σ). Therefore

W(T ) ∼ N(0, TΣ) (1.1)

Classical references on Brownian motion are [9] and [13].

1.2 Black-Scholes Model

Under the Black-Scholes model we have an expression that describes the movement

of stock prices, and uses the Brownian motion as the uncertainty source in this

way

S(t) = S(0)e(r−δ−
1
2
σ2)t+σW (t), for t ∈ [0, T ] (1.2)

where S(0) is the spot price at the beginning of the contract, r is the risk-free

interest rate, δ is the continuous dividend yield, σ is the volatility and T is a time

horizon.

Expression (1.2) implies that

ln(S(T )) = ln(S(0)) +

(
r − δ − 1

2
σ2

)
T + σW (T ). (1.3)
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Notice that W (T ) ∼ N(0, T ), we get ln(S(T )) is also normally distributed. More-

over, the distribution of ln(S(T )) satisfies that

E(ln(S(T ))) = ln(S(0)) + (r − δ − 1

2
σ2)T, V ar(ln(S(T ))) = σ2T (1.4)

A multi-variate Black-Scholes S(t) = (S1(t), S2(t), · · · , Sd(t))T is a process such

that for all i = 1, 2, · · · , d we have

Si(t) = Si(0)e(r−δ−
1
2
σ2)t+σWi(t) (1.5)

where W(t) = (W1(t),W2(t), · · · ,Wd(t))
T is a d-dimensional Brownian motion.

1.3 Multivariate Options

The European call and put options mentioned in the previous section only depend

on a single asset. However, this thesis is focused on the pricing of multivariate

financial derivatives. In this section, we are going to introduce some examples of

options that depend on several assets

A spread option is an option that depends on two assets, the value of a spread

option is derived from the difference of the values of its assets. For example, a

spread option with strike price K and spot prices at expiration S1(T ) and S2(T )

has the following payoff,

payoff = max(0, S1(T )− S2(T )−K). (1.6)

Similarly, a three-asset spread option depends on three assets and the value is

determined by the difference of the value of three assets. In this case the payoff is

payoff = max(0, S1(T )− S2(T )− S3(T )−K).

Another example of multivariate option is the basket option. In a basket option,

the value is determined by the weighted sum or the average of its underlying assets
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payoff = max(0,
∑

αiSi(T )−K)

where αi is the weight of the asset Si.

1.4 Option Prices as Expected Value of Payoff

The price of a European options can be expressed as a function of its payoff, and

in this case it can be expressed as the expected value of its discounted payoff,

under some probability measure Q . Assuming that the risk-free interest rate r is

continuously compounded then the price of the option is,

price = e−rTEQ(payoff), (1.7)

where e−rT is the discount factor. A univariate call option has payoff max(0, S(T )−
K) and by expanding S(T ) to its expression (1.2) under the Black-Scholes model

we have

price = e−rTEQ(max(0, S(0)e(r−δ−
1
2
σ2)T+σW (T ) −K))

In the above equation we have the parameters S(0), r, δ, σ,K, and W (T ) is a

normal random variable. After taking the expected value the only undetermined

values are the parameters, which implies the European call option price can be

expressed as a function C of the parameters S(0), K, T, r, δ, σ. And we can use

the Black-Scholes formula which is a deterministic formula to calculate the price

of such options.

price = C (S(0), K, T, r, δ, σ) = S(0)e−δTN(d1)−Ke−rTN(d2). (1.8)

Where N is the cumulative distribution function for standard normal distribution

N(z) =
1√
2π

∫ z

−∞
e
−t2

2 dt
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d1, d2 are the z-values and they are determined by the following formulas

d1 =
ln(S(0)

K
) + (r − δ + σ2

2
)T

σ
√
T

, and d2 = d1 − σ
√
T .

Similarly the Black-Scholes formula for put option is defined as

P (S(0), K, T, r, δ, σ) = Ke−rTN(−d2)− S(0)e−δTN(−d1).



Chapter 2

Pricing of Bivariate Derivatives

In this Chapter we are going to introduce a new methodology for the approximated

pricing of options under a bivariate Black-Scholes model. In particular we will

apply this methodology to the pricing of spread options, for which there is no

analytic expression.

In Section 3.1 we introduce the model for the underlying assets and derive some

conditional distributions that we will use afterwards. In Section 3.2 we show that

the price of a spread option can be obtained as the expected value of a known

function g that depends on the spot price of only one of the two underlying assets.

Because the computation of this expected value cannot be done analytically, in

Section 3.3 we consider least squares polynomial approximation ĝ of g . In section

3.4 we explain how to use the derived function ĝ to obtain approximated values

of the spread option price. In addition, we also report some numerical results

under several sets of model parameters, including comparison with Monte Carlo

estimations of the price.

2.1 Distribution of Conditional Random Vari-

ables

Let us consider a bivariate Black-Scholes model S = (S1, S2)
T as defined in ex-

pression (1.5). Our objective is essentially to find the conditional distribution

of S1(T ) conditional on S2(T ). First let us find the conditional distribution

9
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of (W1(T )|W2(T )). Suppose W(T ) = (W1(T ),W2(T ))T , we know from (1.1)

W(T ) ∼ N(0, TΣ) where

TΣ =

 T ρT

ρT T

 .
Using known results (Refer to Appendix 5.4) we get

(W1(T )|W2(T )) ∼ N
(
ρW2(T ), (1− ρ2)T

)
.

In the expression (1.2) for Si(T ), all parameters are given except for the normal

random variable Wi(T ). Therefore, we can rearrange the expression such that

W2(T ) is a function of S2(T )

W2(T ) =
ln
(
S2(T )
S2(0)

)
−
(
r − 1

2
σ2
2

)
T

σ2
.

From this we want to find the distribution of
(
ln (S1(T ))

∣∣W2(T )
)
, suppose the

mean of the conditional random variable is m and the variance is v2

(
ln (S1(T ))

∣∣W2(T )
)
∼ N

(
m, v2

)
,

where the variance v2 is given by

v2 = V ar
(
ln (S1(T ))

∣∣W2(T )
)

= V ar

(
ln (S1(0)) +

(
r − 1

2
σ2
1

)
T + σ1W1

∣∣ W2(T )

)
= V ar

(
σ1W1(T )

∣∣ W2(T )
)

= σ2
1

(
1− ρ2

)
T (2.1)

and the mean m is given by
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m = E
(
ln (S1(T ))

∣∣W2

)
= E

(
ln (S1(0)) +

(
r − 1

2
σ2
1

)
T + σ1W1

∣∣ W2

)
= ln (S1(0)) +

(
r − 1

2
σ2
1

)
T + σ1E

(
W1

∣∣ W2

)
= ln (S1(0)) +

(
r − 1

2
σ2
1

)
T + σ1ρW2

= ln (S1(0)) +

(
r − 1

2
σ2
1

)
T + σ1ρ

 ln
(
S2(T )
S2(0)

)
−
(
r − 1

2
σ2
2

)
T

σ2


= ln (S1(0)) + rT − σ2

1

2
T +

σ2
1ρ

2

2
T − σ2

1ρ
2

2
T + σ1ρ

 ln
(
S2(T )
S2(0)

)
−
(
r − 1

2
σ2
2

)
T

σ2


= ln (S1(0)) + rT − σ2

1 (1− ρ2)
2

T − σ2
1ρ

2

2
T + σ1ρ

 ln
(
S2(T )
S2(0)

)
−
(
r − 1

2
σ2
2

)
T

σ2T
− σ1ρ

2

T

= ln (S1(0)) + rT − σ2
1 (1− ρ2)

2
T − σ1ρ

σ1ρ
2
−

ln
(
S2(T )
S2(0)

)
−
(
r − 1

2
σ2
2

)
T

σ2T

T

= ln (S1(0)) + rT − σ2
1 (1− ρ2)

2
T − σ1ρ

(
σ1ρ

2
− W2(T )

T

)
T

= ln (S1(0)) + rT − σ′2

2
T − δ′T (2.2)

These expressions for the mean (2.2) and variance (2.1) for the bivariate case is

essentially equivalent to the expressions in (1.4) with different parameters δ′ and

σ′ given by

σ′ = σ1
√

1− ρ2, (2.3)

δ′ = σ1ρ

(
σ1ρ

2
− W2(T )

T

)
.
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2.2 Pricing After Conditioning

Recall that the price of an option can be determined by the expected value of its

payoff (1.7), and according to the law of iterated expectation we have

price = E(e−rTpayoff)

= e−rTE((S1(T )− S2(T )−K)+)

= e−rTE(E(S1(T )− S2(T )−K)|S2(T ))

= E(e−rTE(S1(T )− (S2(T ) +K))|S2(T )) (2.4)

Let us now focus on the term e−rTE(S1(T )− (S2(T ) +K)|S2(T ))

From the above expression (2.4) we can see that after conditioning this is equivalent

to having a standard call option on the first asset, with a new strike price S2(T )+K,

so we can define a new parameter K
′

as the strike price after conditioning

K
′
= K

′
(S2(T )) = S2(T ) +K. (2.5)

From the previous section we know that the distribution of the conditional ran-

dom variable
(
ln (S1(T ))

∣∣W2(T )
)

is identical to the distribution of ln(S(T )) with

parameters δ′ and σ′, more specifically we can compare the expressions (2.2) and

(2.1) to the distribution in (1.4). Notice that δ′ can be written in terms of S2(T )

as follows

δ′ = δ′(S2(T )) = σ1ρ

σ1ρ
2
−

ln
(
S2(T )
S2(0)

)
−
(
r − 1

2
σ2
2

)
T

σ2T

 (2.6)

Now we can conclude that e−rTE(S1(T )− (S2(T ) +K)|S2(T )) is equivalent to the

price of a standard call option with strike price K ′, volatility σ′ and dividend yield

δ′. Therefore,

e−rTE((S1(T )− S2(T )−K)+) = C (S1(0), K ′(S2(T )), T, r, δ′(S2(T )), σ′)
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Omitting the other parameters, define g as follows

g(S2(T )) = C (S1(0), K ′(S2(T )), T, r, δ′(S2(T )), σ′) (2.7)

The spread option price can be now written as

price = E(g(S2(T )))

2.3 Least Square Regression Approximation

The analytical expression for the function g is known, but it is complicated to

calculate the spread option price E(g(S2(T ))). We will use a polynomial approx-

imation ĝ of g such that the expected value can be easily computed, and we can

approximate the price as follows

price = E(g(S2(T ))) ≈ E(ĝ(S2(T ))) (2.8)

We will use a least squares criteria to find the approximating polynomial ĝ of g and

to minimize the effect of numerical errors we center our polynomial around S∗ =

E(S2(T )). In other words, for a fixed m ∈ N we will use a set of predetermined

nodes x1, x2, . . . , xN (with N > m) to find coefficients β0, β1, . . . , βm such that the

mean square error

N∑
i=1

[g(xi)− (β0 + β1(xi − S∗) + β2(xi − S∗)2 + · · ·+ βm(xi − S∗)m]2

is minimized [7]. Finding the coefficients β0, β1, . . . , βm is essentially a linear re-

gression problem. We will construct the nodes x1, x2, x3, · · · , xn in a finite interval

where the values of S2(T ) will most likely be.

Our nodes are constructed as follows

xi = S2(0)e(r−δ−
1
2
σ2)T+σ

√
Tzi .
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where,

zi = N−1(pi)

pi = 0.0001 +
0.9998

n
i

Since most of the values under the standard normal distribution are clustered

around the mean, the majority of S2(T ) values should be clustered in some region.

Our goal is to make sure the approximation is accurate within the clustered region

of S2(T ).

Let us consider the following parameters, risk-free interest rate r = 0.03, an asset

S2 with volatility σ2 = 0.4, dividend yield δ2 = 0 and S2(0) = 80 that expires in a

quarter.

To verify the regions of constructed nodes, we first show a histogram of S2(T )

using randomly generated z’s and expression (1.2)

Figure 2.1: Randomly generated S2(T )

Then we construct 1000 nodes using the method above, we have
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Figure 2.2: Constructed Nodes

We can see that the nodes in figure (2.2) we have most of the nodes in the interval

[50, 125] which correspond to the interval where most S2(T ) values are in figure

(2.1).

Polynomial approximation functions can have various degrees, while low degree

could lead to under fitting the data points, a polynomial approximation with

high degree could over fit the given points and become unreliable at other points.

Another problem when computing high degree polynomial functions is that when

dealing with extremely large or small numbers it may cause numerical problems

for the computer. So we must carefully choose the correct degree.

Recall that g is a function of S2(T ) which is essentially the conditional Black-

Scholes formula (2.7), and ĝ is a polynomial approximation of g.

ĝ(x) = β0 + β1(x− S∗) + β2(x− S∗)2 + · · ·+ βm(x− S∗)m, for m ∈ N (2.9)
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The process of finding the optimal coefficients is achieved by using the “lm” func-

tion in R.

To compare the accuracy of the polynomial approximation function ĝ = pm of

different degrees, we plotted the functions in comparison with g.

In a bivariate option, for S1 we have volatility σ1 = 0.4, dividend yield δ2 = 0 and

S2(0) = 100, the option expires in a quarter. Now we can plot the graphs for the

function g and polynomial approximation functions of degree n, for n = 2, 3, 4, 5, 6.

Figure 2.3: Graph of Approximation Functions

From the graph we can tell that in the desired interval [50,125] most of the approx-

imation functions are reasonably accurate, especially in the center of the interval.

Since the possibility of S2(T ) to be outside the interval is minimal, even though

the approximation functions are less accurate as the points extends outside the

interval, the effect on the accuracy is small. Also notice that as we increase the

degree of polynomials the accuracy also increases.
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2.4 Approximated Pricing

Recall that the price is approximated by the expected value of polynomial approx-

imation functions (2.8) and the expression (2.9). To compute the price of bivariate

options, we need to find E(ĝ(S2(T )))

E(ĝ(S2(T ))) = E(β̂0 + β̂1(S2(T )− S∗) + β̂2(S2(T )− S∗)2 + · · ·+ β̂m(S2(T )− S∗)m)

= E(β̂0) + E(β̂1(S2(T )− S∗)) + E(β̂2(S2(T )− S∗)2) + · · ·

+ E(β̂m(S2(T )− S∗)m)

= β̂0 + β̂1E(S2(T )− S∗) + β̂2E((S2(T )− S∗)2) + · · ·+ β̂mE((S2(T )− S∗)m)

Therefore,

E((S2(T )− S∗)n) = E

(
n∑
i=0

(−1)i
(
n

i

)
S2(T )n−i(S∗)i

)

=
n∑
i=0

(−1)i
(
n

i

)
E(S2(T )n−i)(S∗)i

Therefore, we can express the mth degree approximated price of a bivariate option

as

price =
m∑
k=0

β̂k

(
k∑
i=0

(−1)i
(
k

i

)
E(S2(T )k−i)(S∗)i

)
(2.10)

where E(S2(T )a) and a = k − i can be expressed as

E(S2(T )a) = S2(0)aea(r−
1
2
σ)T+a2

2
σ2T . (2.11)

For a given set of parameters, to check the accuracy of the approximated prices,

we compare them to the pricing results of two Monte Carlo approaches, the basic

Monte Carlo method and the conditional Monte Carlo method.

For basic Monte Carlo method, we use the fact that
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price = e−rTE((S1(0)− S2(0)−K)+)

So we determine the pricing results as follows:

1. generate n random normally distributed vectors (z1i, z2i)
T , for i = 1, 2, · · · , n

with mean 0 and co-variance matrix

1 ρ

ρ 1

.

2. Ski(T ) = Sk(0)e(r−δ−
1
2
σ2)t+σ

√
Tzki , where k = 1, 2

3. price =
∑n

i=1 e
−rT (S1i(T )−S2i(T )−K)+

n

For the conditional Monte Carlo method, we use the fact from expression (2.4).

And the process of conditional Monte Carlo method is shown as follows:

1. randomly generate n normally distributed random numbers z2i for i =

1, 2, · · · , n

2. S2i(T ) = S2(0)e(r−δ−
1
2
σ2)t+σ

√
Tz2i

3. price =
∑n

i=0 C(S1(0),K′i,T,r,δ
′
i(S2(T )),σ′)

n
=

∑n
i=0 g(S2i(T ))

n

For a set of parameters in we calculate the expected value of the polynomial ap-

proximation functions of degree 5 and 6, we get the following results in comparison

with Monte Carlo methods results.

For the set of parameters:

ρ = 0, K = 20, t = 0.25, r = 0.03

S1(0) = 100, δ1 = 0, S2(0) = 80, δ2 = 0
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Basic M.C. Cond. M.C. 5th Degree 6th Degree

[95% C.I.] [95% C.I.] [Std. Err.] [Std. Err.]

σ1 = 0.4 10.302 10.270 10.257 10.257

σ2 = 0.4 [10.131,10.472] [10.190,10.350] [0.030] [0.008]

σ1 = 0.2 5.113 5.183 5.176 5.177

σ2 = 0.2 [5.031,5.196] [5.140,5.226] [0.019] [0.015]

σ1 = 0.2 7.548 7.653 7.567 7.568

σ2 = 0.4 [7.435,7.661] [7.567,7.739] [0.066] [0.055]

σ1 = 0.4 8.637 8.699 8.647 8.647

σ2 = 0.2 [8.597,8.677] [8.549,8.850] [0.001] [0.001]

Table 2.1: Regression nodes: 128; Monte Carlo Paths: 32768

For the set of parameters:

ρ = 0, K = 10, σ1 = 0.2, σ2 = 0.2, r = 0.03

S1(0) = 110, δ1 = 0, S2(0) = 110, δ2 = 0

Basic M.C. Cond. M.C. 5th Degree 6th Degree

[95% C.I.] [95% C.I.] [Std.Err.] [Std.Err.]

t=0.25 2.420 2.488 2.469 2.468

[2.358,2.483] [2.455,2.521] [0.090] [0.039]

t=0.5 4.657 4.706 4.714 4.713

[4.554,4.761] [4.652,4.760] [0.064] [0.010]

t=0.75 6.587 6.590 5.216 5.218

[5.162,5.246] [5.187,5.218] [0.068] [0.011]

t=1 8.292 8.135 8.136 8.134

[8.052,8.219] [8.126,8.458] [0.168] [0.040]

Table 2.2: Regression nodes: 256; Monte Carlo Paths: 32768

Notice that for different set of parameters the accuracy for polynomial approxi-

mations are different. The different values of σ1 has little impact, however the

accuracy decrease as the value of σ2 increases, due to the wider range of future

S2(T ) values caused by increasing volatility. Similarly the increasing time to expi-

ration also tends to decrease the accuracy of the approximations, since it provides
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a wider range for future S2(T ) values. Overall the results are sufficiently accurate,

especially for the options that contains less volatile assets.



Chapter 3

Pricing of Trivariate Derivatives

In this Chapter we are going to expend the methodology from the bivariate case

and apply it to the pricing of three-asset spread options which does not have an

analytic expression.

In section 4.1 we cover the model for the trivaraite spread option and included

the derivation of the conditional random variable. In section 4.2 we introduce the

payoff of three-asset spread option and its price as the expected value of payoff,

then we derived the modified parameters by comparing the distribution of the

conditional normal distribution from section 4.1. In section 4.3 we approximate the

modified Black-Scholes formula using least square regression method and compared

the approximation function to the modified Black-Scholes formula. In section 4.4

we show the derivation of the expected value of the approximating function and

compare pricing results with two Monte Carlo methods.

3.1 Distribution of Trivariate Conditional Ran-

dom Variable

Let us now consider a trivariate Black-Scholes model S = (S1, S2, S3)
T as de-

fined in expression (1.5). In the trivariate case we are looking for the conditional

distribution of S1(T ) conditional on S2(T ), S3(T ). We want to find the distribu-

tion of conditional random variable (W1(T )|W2(T ),W3(T )). Suppose W(T ) =

(W1(T ),W2(T ),W3(T ))T , from (1.1) we have W(T ) ∼ N(0, TΣ) where

21
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TΣ =


T ρ1,2T ρ1,3T

ρ1,2T T ρ2,3T

ρ1,3T ρ2,3T T


According to section 5.4 in Appendix we have that the distribution of the trivariate

conditional normal random variable is (W1(T )|W2(T ),W3(T )) ∼ N(µ̄, Σ̄).

µ̄ = 0 +
[
ρ1,2T ρ1,3T

] 1
T (1−ρ22,3)

−ρ2,3
T (1−ρ22,3)

−ρ2,3
T (1−ρ22,3)

1
T (1−ρ22,3)

[W2(T )

W3(T )

]

=
[
ρ1,2−ρ1,3ρ2,3

1−ρ22,3
ρ1,2−ρ1,3ρ2,3

1−ρ22,3

] [W2(T )

W3(T )

]

=
W2(T ) (ρ1,2 − ρ1, 3ρ2,3) +W3(T ) (ρ1,3 − ρ1, 2ρ2,3)

1− ρ22,3
(3.1)

Σ̄ = T −
[
ρ1,2−ρ1,3ρ2,3

1−ρ22,3
ρ1,3−ρ1,2ρ2,3

1−ρ22,3

] [ρ1,2T
ρ1,3T

]

= T − T
(
ρ21,2 − ρ1,2ρ1,3ρ2,3

1− ρ22,3
+
ρ21,3 − ρ1,2ρ1,3ρ2,3

1− ρ22,3

)
=

(
1−

ρ21,2 − ρ1,2ρ1,3ρ2,3 + ρ21,3 − ρ1,2ρ1,3ρ2,3
1− ρ22,3

)
T (3.2)

From this we want to find the distribution of the conditional normal random

variable (ln(S1(T )|W2(T ),W3(T )) ∼ N(m, v2).

v2 = V ar(ln(S1(T ))|W2(T ),W3(T ))

= V ar(σ1W1(T )|W2(T ),W3(T ))

= σ2
1

(
1−

ρ21,2 − ρ1,2ρ1,3ρ2,3 + ρ21,3 − ρ1,2ρ1,3ρ2,3
1− ρ22,3

)
T (3.3)
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m = E (ln(S1(T )|W2(T ),W3(T )))

= E

(
ln (S01) +

(
r − 1

2
σ2
1

)
T + σ1W1(T )

∣∣ W2(T ), W3(T )

)
= ln(S01) +

(
r − 1

2
σ2
1

)
T + σ1

A

1− ρ22,3

= ln(S01) + rT − 1

2
σ2
1

(
1− B

1− ρ22,3

)
T

σ1T

1− ρ22,3

(
σ1
2

(B)− A

T

)
(3.4)

A = ρ21,2 − ρ1,2ρ1,3ρ2,3 + ρ21,3 − ρ1,2ρ1,3ρ2,3 (3.5)

B = W2(T )(ρ1,2 − ρ1,3ρ2,3) +W3(T )(ρ1,3 − ρ1,2ρ2,3) (3.6)

These expressions for the mean and variance of the conditional random variable

ln(S1(T )|W2(T ),W3(T ) is essentially equivalent to the expressions in (1.4) where

δ and σ is replaced by the parameters δ′ and σ′ where

σ′ = σ1

√
1− A

1− ρ22,3

δ′ =
σ1

1− ρ22,3

(
σ1
2
A− B

T

)

3.2 Pricing After Conditioning

From expression (1.7), we get the price of trivariate case as the expected value of

payoff. And for a three-asset spread option we have the payoff as (S1(T )−S2(T )−
S3(T )−K)+

price = E(e−rTpayoff)

= E(e−rTE(S1(T )− S2(T )− S3(T )−K)|S2(T ), S3(T ))
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We now focus on the term e−rTE(S1(T ) − S2(T ) − S3(T ) −K)|S2(T ), S3(T ), we

get that after conditioning this is equivalent to having a standard call option on

the first asset with a new strike price S2(T ) +S3(T ) +K, denoted K ′ as the strike

price after conditioning

K ′ = K ′(S2(T ), S3(T )) = S2(T ) + S3(T ) +K (3.7)

Notice that the distribution of the conditional random variable ln(S1(T )|W2(T ),W3(T )

is identical to the distribution of ln(S(T )) with parameters δ′ and σ′, and that the

parameter δ′ can be written in terms of S2(T ), S3(T ) as follows

δ′ = δ′(S2(T ), S3(T )) =
σ1

1− ρ22,3

(
σ1
2
A− B

T

)

With A (3.5) and B (3.6). Then we can conclude that e−rTE(S1(T ) − S2(T ) −
S3(T )−K)|S2(T ), S3(T ) is equivalent to the price of a standard call option with

strike price K ′, volatility σ′ and dividend yield δ′. Therefore,

e−rTE(S1(T )− S2(T )− S3(T )−K)|S2(T ), S3(T ))

= C (S1(0), K ′(S2(T ), S3(T )), T, r, δ′(S2(T ), S3(T )), σ′)

And we can define g as follows

g(S2(T ), S3(T )) = C(S1(0), K ′(S2(T ), S3(T )), T, r, δ(S2(T ), S3(T )), σ′)

And the three-asset spread option price can be expressed as

price = E(g(S2(T ), S3(T )))
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3.3 Least Square Regression Approximation

Similarly in the trivariate case we want to find the expected value E(g(S2(T ), S3(T )))

using the approximation function ĝ of g, such that the price of trivariate option

can easily be approximated

price = E(g(S2(T ), S3(T ))) ≈ E(ĝ(S2(T ), S3(T )))

Similar to the bivariate case, we will use the least square criteria to find the

approximating bivariate polynomial function ĝ. Notice in the above graph when

the sum S2(T ) + S3(T ) remains unchanged the price of the trivariate option is

barely affected by the different values of each S2(T ) and S3(T ). So we can use the

set of predetermined nodes xi + yi combined with xi, yi (for i = 1, 2, · · · , N and

N > m) to find the coefficients β0, β1, · · · , βm such that

N∑
i=1

[g(xi, yi)− (β0p0(xi + yi) +β1p1(xi + yi) +β2p2(xi + yi) + · · ·+βmpm(xi + yi))]
2

is minimized, where pj(xi, yi) are polynomials.

Finding the approximationg function ĝ for the trivariate case is also a linear re-

gression problem that considers the nodes xi + yi, xi and yi. The nodes should be

clustered around a region of values for S2(T ) and S3(T ).

To generate the the nodes xi and yi, we first divide the interval [0.005, 0.995] in m

partitions and follow the procedure:

p2i = 0.005 +
0.995− 0.005

m
i, for i = 1, 2, · · · ,m

p3i = 0.005 +
0.995− 0.005

m
i

then compute the z-values



Pricing Multivariate Financial Derivatives Using Polynomial Approximations 26

z2i = N−1(p2i)

z3i = z2iρ2,3 +
√

1− ρ2,3N−1(p3i), ρ2,3 is the correlation coefficient

And to further squeeze the values of z2 and z3 such that the S2(T ) and S3(T )

values produced are more clustered in the region where most of their values will

be, we adjusted the values using θ = sin−1 ρ2,3
2

.

z′2i = z2i cos θ + z3i sin θ, and z′3i = z2i sin θ + z3i cos θ

Then the nodes are calculated using expression (1.2) with the adjusted z′2i and z′3i

values.

By randomly generate two sets of standard normal random variables z2 and z3,

after applying the stock price expression (1.2) we can get the plot of randomly

generated S2(T ) and S3(T ) values

Figure 3.1: Generated Nodes

Then using the above method we can generate a plot of the nodes, and compare

its region to the randomly generated S2(T ) and S3(T ) values.



Pricing Multivariate Financial Derivatives Using Polynomial Approximations 27

Figure 3.2: Calculated Nodes

Notice in graph (3.2) the nodes are concentrated in the same region as the gener-

ated pairs (S2(T ), S3(T )) in graph (3.1), more specifically for S2(T ) ∈ [40, 80] and

S3(T ) ∈ [30, 80]. Essentially, by selecting those nodes we are making sure that ĝ

and g are close in this region

Notice in the graph below when the sum S2(T ) + S3(T ) remains unchanged the

price of the trivariate option is barely affected by the different values of each S2(T )

and S3(T ). So we can use the set of predetermined nodes xi+yi combined with xi,

(for i = 1, 2, · · · , N and N > m) to find the coefficients β0, β1, · · · , βm. we have

tested with different form of the nodes and find that among the nodes and degrees

we have tested the following approximating function yields the best result.

ĝ(x, y) = β0 + β1(x+ y) + · · ·+ β5(x+ y)5 + β6x+ β7x
2 (3.8)

where x = S2(T ) and y = S3(T ).

While the graphs of the approximating function ĝ compared to the modified Black-

Scholes formula g can provide some idea on the accuracy.
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Figure 3.3: Modified Black-Scholes

Figure 3.4: Approximation Function

To better illustrate the accuracy in one graph, the plot in trivariate case isfocused

on the error g − ĝ instead of the functions.
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Figure 3.5: Error

From the graphs we can tell that the errors in the region are within the interval

[−0.35, 0], and even better at the center of the region. For the purpose of pricing

the trivariate option, the approximating function is accurate within the desired

region where most of the S2(T ) and S3(T ) values will be.

3.4 Approximated Price

Recall that the price of the option can be determined by the expected value of

the discounted payoff (??). It can be approximated by the expected value of the

approximating function E(ĝ).

E(ĝ(S2(T ), S(T )) = E(
5∑
i=0

β̂i(S2(T ) + S3(T ))i +
6∑
j=5

β̂jx
j−4)

=
5∑
i=0

β̂iE((S2(T ) + S3(T ))i) +
6∑
j=5

β̂jE(xj−4)

where x = S2(T ) and y = S3(T ), therefore
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E((S2(T ) + S3(T ))n) = E(
n∑
i=0

(
n

i

)
S2(T )kS3(T )n−i)

=
n∑
i=0

(
n

i

)
E(S2(T )kS3(T )n−i)

and the expression of E(S2(T )jS3(T )k) is given by

S2(0)jS3(0)ke
(j + k)rT − T

2

(
jσ2

2(1− j) + kσ2
3(1− k)

)
+ jkσ2σ3ρ2,3T

The pricing result of trivariate option is also compared with the result of two

Monte Carlo methods, basic Monte Carlo and conditional Monte Carlo. And we

found that most results are reasonably accurate.

The values of S2(T ) and S3(T ) in conditional Monte Carlo in the trivariate case

is generated in a similar way to the S1(T ) and S2(T ) values in the basic Monte

Carlo method of bivariate case. Then taking mean of values obtained using the

trivariate modified Black-Scholes formula to be the estimated price.

For the basic Monte Carlo, we need to first randomly choose a set of values for

z2 which following the standard normal distribution, then apply formula (??) to

generate the set of z3 values. And we can form two sets of values for W2(T ) and

W3(T ), using the conditional normal distribution of (W1(T )|W2(T ),W3(T )) we get

the mean (3.1) and variance (3.2). Then we can obtain a set of W1(T ) values which

are randomly selected. By apply the stock price formula (1.2) and the trivariate

modified Black-Scholes formula, then the mean of the set of result is the estimated

price by the conditional Monte Carlo method.

Now we compare the results from the E(ĝ) and the two Monte Carlo methods.

For the set of parameters:

K = 10, r = 0.03, ρ1,2 = 0.2, ρ1,3 = 0.2, ρ2,3 = 0.3, δ = 0

S1(0) = 100, σ1 = 0.3, S2(0) = 30, σ2 = 0.4, S3(0) = 40, σ2 = 0.4
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Basic M.C. Cond. M.C. Approx. Func.

[95% C.I.] [95% C.I.]

t=0.25 20.934 20.892 20.924

[20.892,20.976] [20.874,20.911]

t=0.5 22.510 22.495 22.552

[22.454,22.566] [22.473,22.518]

t=0.75 24.034 24.023 24.111

[23.968,24.100] [23.998,24.048]

t=1 25.430 25.452 25.550

[25.353,25.503] [25.426,25.479]

Table 3.1: Trivariate Pricing Results 1

For the set of parameters:

K = 10, r = 0.03, ρ1,2 = 0.2, ρ1,3 = 0.2, ρ2,3 = 0.3, t = 0.5, δ = 0

S1(0) = 100, σ1 = 0.3, S2(0) = 30, S3(0) = 40

Basic M.C. Cond. M.C. Approx. Func.

[95% C.I.] [95% C.I.]

σ2 = 0.1 10.697 10.706 10.704

σ3 = 0.1 [10.674,10.719] [10.697,10.715]

σ2 = 0.3 13.359 13.359 13.369

σ3 = 0.3 [13.324,13.394] [13.329,13.388]

σ2 = 0.4 13.014 12.992 13.012

σ3 = 0.2 [12.981,13.048] [12.965,13.020]

σ2 = 0.4 14.039 14.069 14.076

σ3 = 0.3 [14.002,14.077] [14.036,14.101]

σ2 = 0.4 14.039 14.069 14.076

σ3 = 0.3 [14.002,14.077] [14.036,14.101]

σ2 = 0.1 13.730 13.763 13.708

σ3 = 0.4 [13.695,13.766] [13.733,13.793]

σ2 = 0.1 12.421 12.430 12.385

σ3 = 0.3 [12.390,12.452] [12.406,12.454]

Table 3.2: Trivariate Pricing Results 2
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From the tables (3.1) and (3.2) above, one can tell that accuracy depends on the

parameters. As time to expiration increases the less accurate the pricing result

will be, and when the volatility σ3 of S3 is large and difference of σ2 and σ3 is large

the pricing result is not as accurate.



Chapter 4

Appendix

This chapter contains most of the critical preliminaries used throughout the thesis

to make this thesis as self-contained as possible. This chapter is divided into 3

sections, containing preliminaries for Statistics, Finance and Polynomial Approx-

imation.

4.1 Normal Random Variable

In this thesis, we mainly considered the random variables in normal distribution,

a distribution with bell shape and with most of the variables concentrated around

the mean.

A random variable Y is said to have a normal probability distribution if and only

if, for σ > 0 and −∞ < µ <∞, the density function of Y is:

f(y) =
1

σ
√

2π
e−(y−µ)

2/(2σ2), −∞ < y <∞.

If Y is a normally distributed random variable with parameters µ and σ, denoted

Y ∼ N(µ, σ), then

E(Y ) = µ and V (Y ) = σ2.

33
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Where E(Y ) and V (Y ) is the expected value of and variance of normal random

variable Y .

−2σ −σ µ +σ +2σ
y

f(
y
)

4.2 Log-Normal Distribution

In statistics, the log-normal distribution is a probability distribution of a ran-

dom variable which have a normally distributed natural logarithm. That is if X

follows the log-normal distribution, then the random variable ln(X) is normally

distributed. Reversely, if Y is normally distributed, then the random variable eY

follows a log-normal distribution.

For a log-normal random variable X, if ln(X) ∼ N(µ, σ2) then

E(X t) = etµ+
1
2
t2σ2

.

In the Black-Scholes model, for the price of a stock over time T we have a function

S(T ) that is log-normally distributed

S(T ) = S0e
(r − δ − 1

2
σ2)T + σW (T )

Where W (T ) ∼ N(0, T ), therefore

ln(S(T )) = ln(S0) +

(
rT − δT − 1

2
σ2T + σW (T )

)

is normally distributed.
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4.3 Multivariate Normal Distribution

X is an n-dimensional multivariate normal random variable, X can be represented

as a vector X = (X1, X2, · · ·, Xn)T , where X1, X2, · · ·, Xn are normal random

variables, the multivariate probability function is given by

p(x1, x2, · · ·, xn) = P (X1 = x1, X2 = x2, · · ·, Xn = xn).

And X follows the multivariate normal distribution, X ∼ N(µ,Σ) where

X =



X1

X2

·
·
·
Xn


µ =



µ1

µ2

·
·
·
µn


Σ =



σ2
1 ρ1,2σ1σ2 · · · ρ1,nσ1σn

ρ2,1σ2σ1 σ2
2 · · · ρ2,nσ2σn

· · · · · ·
· · · · · ·
· · · · · ·

ρn,1σnσ1 ρn,2σnσ2 · · · σ2
n



4.4 Conditional Distributions

In statistics, given two jointly distributed random variables X and Y , the condi-

tional probability distribution of X given Y , denoted P (X|Y ) is the probability

distribution of X when Y is known.

In the general case we have X1, X2, · · ·, Xn, multiple jointly distributed random

variables, the distribution of the conditional random variable (X1, · · · , Xk|Xk+1, · ·
·, Xn) ∼ N(µ̄, Σ̄) where µ̄, Σ̄ are given by X,µ,Σ

X =

[
x1

x2

]
with sizes

 k × 1

(n− k)× 1



µ =

[
µ1

µ2

]
with sizes

 k × 1

(n− k)× 1


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Σ =

[
Σ11 Σ12

Σ21 Σ22

]
with sizes

 k × 1 1× (n− k)

(n− k)× 1 (n− k)× (n− k)


Let a be the vector of values of Xk+1, · · ·, Xn, then a = (xk+1, · · ·xn)T

µ̄ = µ1 + Σ12Σ
−1
22 (a− µ2)

Σ̄ = Σ11 − Σ12Σ
−1
22 Σ21

4.5 Least Square Approximation

Let k ≥ 1 be an integer. Let the real valued functions g, f1, f2, . . . , fn defined

over some domain D ⊂ Rk, be given. Consider also a finite set of points S =

{x1, x2, . . . , xm} ⊂ D, where m > n. We would like to approximate the function

g with linear combinations of the functions f1, f2, . . . , fn.

For coefficients β = (β1, β2, . . . , βn)T ∈ Rn, consider the function gβ =
∑n

i=1 βifi,

and the square error over the points in S given by:

SE(β) =
m∑
j=1

(g(xj)− gβ(xj))
2

In this setting, the least squares approximation of the function g is gβ̂ where β̂

minimizes SE(β).

This is a particular case of well known approximation problems that have been

solved in very general settings, and can be essentially reduced to a multiple re-

gression problem.

If we define y = (g(x1), g(x2), . . . , g(xm))T and

X =


f1(x1) f2(x1) · · · fn(x1)

f1(x2) f2(x2) · · · fn(x2)
...

...
. . .

...

f1(xm) f2(xm) · · · fn(xm)


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and we assume that the matrix X has full rank, the optimal coefficients β̂ can be

obtained as

β̂ = (XTX)−1XTy

4.6 Monte Carlo Method for Option Pricing

The Monte Carlo method is a computational algorithm that uses repeated ran-

dom sampling to obtain numerical results. In the options pricing application it

simulates possible future paths for underlying assets. It is modeled to follow ge-

ometric Brownian motion with a set of constant parameters. In this thesis, it is

combined with the stock price function in the Black-Scholes model to compute the

stock price at expiration of an option to obtain a pricing result. The final result

is determined by taking the average of the collection of simulated stock prices.

The standard Monte Carlo method for option pricing can be divided into 3 steps:

• Randomly generate the future prices of the underlying assets.

• Calculate the payoff of the option for each of the generated underlying price

scenarios.

• Discount the payoffs back to today and average them to determine the ex-

pected price.
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