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ARTICLE INFO ABSTRACT

Keywords: Agricultural herbicide application efficiency can be improved using smart sprayers which provide site-specific,
Deep learning rather than broadcast, applications of agrochemicals. The YOLOv3-Tiny convolutional neural network (CNN)
YOLO was trained to detect two weeds, hair fescue and sheep sorrel, in images captured from wild blueberry fields

Machine vision
Precision agriculture
Weed detection

throughout Nova Scotia, Canada. An evaluation was performed in three commercial wild blueberry fields in
Nova Scotia to examine the effects of camera selection and target distance on detection accuracy. A Canon T6
DSLR camera, an LG G6 smartphone, and a Logitech c920 webcam were used to capture RGB images at varying
distances from target weeds. Mean F; -scores for each combination of camera and image height were analysed in
a 3 x 3 factorial arrangement for hair fescue and a 3 x 2 factorial arrangement for sheep sorrel. Images captured
from 0.98 m with the LG G6 and Canon T6 produced F,-scores of up to 0.97 for detection of at least one hair
fescue tuft. Images captured with the LG G6 and Canon T6 DSLR from 0.57 m achieved F, -scores of 0.94 and 0.93,
respectively, for detection of at least one sheep sorrel plant per image. Sheep sorrel was undetectable in images
from the Logitech c920 under 19 of 27 parameter combinations. Future work will involve using the CNN to
control herbicide applications with a real-time smart sprayer. Additionally, the CNN will be used in a web-based
application to detect target weeds and provide site-specific information to aid management decisions. Using a
CNN to detect weeds will create improvements in management techniques, resulting in cost-savings and greater
sustainability for the wild blueberry industry.

1. Introduction the mechanical harvester, resulted in the wild blueberry industry ex-
panding in Canada [2,5,6].
1.1. Wild blueberry cropping system

1.2. Weed management practices
Wild blueberries (Vaccinium angustifolium Ait.) are a perennial crop

native to northeastern North America. The plants spread through rhi- Weeds in wild blueberry production limit yield [7-9], interfere with
zomes [1] and grow to a stem height of 5 to 30 cm [2]. Commercial pro- harvesting equipment [10], and reduce berry quality [11,10]. Weeds in
duction occurs in a two-year cycle, during which the plants are pruned other cropping systems can be managed using tillage, crop rotation, and
by flail mowing or burning after the harvesting period in August and hand weeding [12]. Tillage and crop rotation are not viable for the wild
September of the second (crop) year. During the first (sprout) year after blueberry industry due to the perennial and rhizomatous nature of the
pruning, plant growth begins, and berry buds begin to regrow in August crop [1]. Hand weeding is prohibitively expensive due to labour costs
[1]. The plants lay dormant through the winter, and growth continues [13], so a uniform application of liquid herbicides is typically used to

during the crop year [1]. Harvest begins when approximately 90% of the manage weeds in wild blueberry fields [7,11]. Hair fescue (Festuca fili-
berries are ripe [2]. Wild blueberries were harvested with a hand rake formis Pourr.) is the fourth most common weed in Nova Scotia wild blue-
prior to the introduction of a viable mechanical harvester by Doug Bragg  berry fields with an adjusted frequency and occurrence uniformity of
in 1981 [3,4]. Better management practices, including development of 74.55% and 37.37% respectively [14]. Hair fescue grows in tufts and is

characterized by thin, green and tan coloured blades (Fig. 1). The occur-
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Fig. 1. Hair fescue and sheep sorrel growing in a spout-year wild blueberry field during spring 2019 in Nova Scotia. The hair fescue tuft is characterized by its thin,
green blades, while the sheep sorrel plants are characterized by their green and red narrow-shaped leaves.

rence uniformity of 37.37% indicates that hair fescue grows in patches
of wild blueberry fields, rather than uniformly throughout each field.
Hexazinone was commonly used to manage hair fescue until resistance
developed from repeated applications [7]. Hair fescue in wild blueberry
fields is currently best managed with pronamide [15], which costs more
than double the cost of hexazinone to spray on wild blueberry fields
[16]. Sheep sorrel (Rumex acetosella L.) is the most common weed in
Nova Scotia wild blueberry fields with an adjusted frequency and occur-
rence uniformity of 97.58% and 64.44%, respectively [14]. It is visually
recognizable by its small, round arrow-shaped leaves which are green or
red in colour (Fig. 1). The measured uniformity of 64.44% stipulates that
there are substantial sections of the fields which do not contain sheep
sorrel. Pollen from sheep sorrel plants may increase the likelihood of
botrytis blight (Botrytis cinerea) disease on wild blueberry leaves [17],
which can spread to the fruit buds if left unmanaged [18]. Sheep sorrel
has been managed using hexazinone [7,19] and pronamide [17] with
mixed results. Spring applications of sulfentrazone have shown a reduc-
tion in sheep sorrel seedlings, indicating that this may be an effective
future management option [20]. Due to the intermittent nature of hair
fescue and sheep sorrel in wild blueberry fields, spot application using
a smart sprayer would reduce the overall volume of herbicide needed
to manage these weeds.

Smart sprayers limit agrochemical application volume by only apply-
ing on areas of the field with weed cover [21-27]. Esau et al. [23] de-
veloped a spot targeting system based on green colour segmentation to
detect weeds in wild blueberry fields. When used on a smart sprayer with
cameras 1.2 m from the ground, the system resulted in 44.5% reduction
in agrochemical usage compared to a broadcast sprayer [21]. Further de-
velopments with this smart sprayer resulted in herbicide savings of up to
78.5% [22]. However, this system was limited by its inability to discrim-
inate between different weeds of the same colour. Commercial smart
sprayers GreenSeeker and WeedSeeker! available in other cropping sys-
tems also work based on green colour detection. Colour co-occurrence
matrices were used for real-time targeting of goldenrod (Solidago spp.) in
wild blueberry fields [25,26]. This method reduced agrochemical usage
by up to 60.58% [25] but had to be designed specifically for goldenrod
and was not easily transferable to other weeds.

! Trimble Inc., Sunnyvale, CA, USA.

1.3. Convolutional neural networks in agriculture

Convolutional neural networks (CNNs) are an advanced form of ma-
chine vision which can successfully classify images or objects within an
image [28]. They are trained using datasets with thousands of labelled
pictures of the desired target. CNNs intelligently identify visual features
and find patterns associated with the target using backpropagation of
errors [29] and iterative optimization algorithms based on gradient de-
scent [30]. Beyond dataset preparation, this training requires minimal
input from the user, making CNNs easily adaptable for new targets. Im-
ages are typically processed at resolutions from 224 x 224 [31-33] to
608 x 608 [34,35], but this can be increased to improve clarity of vi-
sual features [36,33]. CNNs have been used in agriculture for detect-
ing weeds [37-41], detecting plant diseases [42,43], monitoring plant
growth and ripeness [44,36,45], and monitoring livestock [46,47].

Hennessy et al. [37] trained six CNNs using the Darknet framework
[48] to identify hair fescue and sheep sorrel in images of wild blueberry
fields. The training image dataset was collected in April and May 2019
using eight different cameras. The study concluded that the YOLOv3-
Tiny CNN [34] was highly effective for detecting these weeds in wild
blueberry fields, and was a promising option for controlling spray ap-
plications from a smart sprayer. The processing resolution of YOLOv3-
Tiny was increased from 416 x 416 to four resolutions ranging from
864 x 480 to 1280 x 736 [37]. The accuracy of the CNN was tested
with detection thresholds of 0.15 and 0.25. F,-scores [49] for detection
of at least one weed instance per image with YOLOv3-Tiny ranged from
0.94 to 0.97 for hair fescue and 0.87 to 0.90 for sheep sorrel. A key
limitation of this study was potential bias in the training dataset. Image
collection for the training dataset lacked structured rules for sampling
locations. Personnel therefore may have been more inclined to capture
images of weeds which were more visible, omitting targets which were
more difficult to see.

1.4. Contributions of this paper

This study used YOLOv3-Tiny to detect hair fescue and sheep sorrel
in images captured at distances of 0.57 m, 0.98 m, and 1.29 m from
target weeds with three digital colour cameras in wild blueberry fields
in Nova Scotia, Canada. Images were captured in three commercial wild
blueberry fields on three dates in May 2020 during the herbicide appli-
cation timing interval. Image capture locations were selected by walk-
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Table 1

Number of target and non-target images collected for hair fescue and
sheep sorrel. The images were captured three separate times on May 6,
May 14, and May 25, 2020.

Field Target Height Total
0.57 m 0.98 m 1.29 m
Debert Hair Fescue 5 5 5 15
Not Hair Fescue 4 4 6 14
Sheep Sorrel 3 3 3 9
Not Sheep Sorrel 6 6 8 20
Folly Hair Fescue 3 5 3 11
Mountain Not Hair Fescue 5 3 4 12
Sheep Sorrel 4 4 4 12
Not Sheep Sorrel 4 4 3 11
Portapique Hair Fescue 6 4 7 17
Not Hair Fescue 6 4 4 14
Sheep Sorrel 8 4 5 17
Not Sheep Sorrel 4 4 6 14

ing an inverted “W” pattern through each field [17,14,11,50]. The F;-
scores for detection of the two weeds using combinations of camera and
capture distance were compared. The results of this study provide valu-
able information for selecting cameras and spray boom height on smart
sprayers. Using a CNN to control herbicide applications from a smart
sprayer can reduce the volume of agrochemicals needed for field man-
agement.

2. Materials and methods
2.1. Field image collection

Images were captured on May 6, May 14, and May 25, 2020, in
sprout year wild blueberry fields. The three dates were selected to cor-
respond with the range of dates wild blueberry growers typically apply
herbicides in the spring. Images were collected from three fields in De-
bert (45.4265°N, 63.4826°W), Folly Mountain (45.4829°N, 63.5755°W),
and Portapique (45.4054°N, 63.6706°W), Nova Scotia from 9:00 am to
3:00 pm each day. Test sites were selected in each field by walking an
inverted “W” pattern [17,14,11,50]. The starting point was selected by
walking 10 paces along the edge of the field, then 10 paces into the
field, perpendicular to the original direction. Test plots were marked
with flags along the “W” and randomly determined intervals of 5 to 10
paces created using Minitab 19.? Images were captured at each test plot
at one of three possible heights, 0.57 m, 0.98 m, or 1.29 m, to account
for variations in sprayer boom height. The 0.98 m and 1.29 m image
heights did not vary significantly from image capture heights used by
Hennessy et al. [37] to develop the CNN training dataset (0.99 + 0.09 m,
1.35 + 0.07 m), while the 0.57 m height was significantly different
(0.52 + 0.04 m). The selected height for each test plot was also randomly
determined with Minitab 19. This process was repeated until there were
at least three target and three non-target plots at each height in each
field for hair fescue and sheep sorrel (Table 1). A total of 83 plots were
used: 29 at the Debert field, 23 at the Folly Mountain field, and 31 at
the Portapique field.

Three cameras were used to take images at each test plot. A Logitech
€920 USB 2.0 webcam? was attached to a tripod using an extension arm
with the camera lens pointed toward the ground (Fig. 2). The camera
was connected to USB 3.1 port on an MSI Workstation laptop* through
a 2 m USB 3.0 extension cable,” and images were saved using Logitech
Capture at 1920 x 1080 resolution. All image settings in Logitech Cap-
ture except sharpness were left at their default values. Sharpness was

2 Minitab, LLC, State College, PA, USA

3 Logitech International S.A., Lausanne, Switzerland

4 WS65 9TM-1410CA, Micro-Star International Co., Ltd, New Taipei, Taiwan
5 AmazonBasics HL-007250, Amazon.com, Inc., Seattle, WA, USA
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reduced from 128 to 95 to prevent image tearing and artifacts (Fig. 3).
The c920’s autofocus sporadically changed the focus setting, so a manual
focus of infinity was used. This camera was selected for being a low-cost
consumer camera which easily interfaces with Windows® and had been
previously used in a smart sprayer [51]. Eight Logitech c920 cameras
were tested to make sure that the image glitches and sporadic autofocus
changes were not limited to a single faulty model. All eight Logitech
€920 cameras exhibited similar behaviour. A Canon T6 DSLR camera’
and an LG G6 smartphone® were used to capture images in the same
orientation with their respective lenses placed directly next to the lens
of the Logitech camera (Fig. 2). These cameras were selected for their
subjectively clearer images and greater colour depth compared to the
Logitech ¢920. The Canon T6 and LG G6 captured images at resolutions
of 5184 x 3456 and 4160 x 3120, respectively. Images were captured
with the Canon T6 and LG G6 using autofocus and without zoom. The
standard lens on the LG G6, rather than the ultrawide lens, was used to
capture images.

2.2. Target dimension measurements

A sample of hair fescue and sheep sorrel dimensions were measured
in the Debert field on May 1, 2020 at the sampling plots along the “W”
pattern. Measurements were recorded from up to three instances of each
weed at each test location, pending availability, resulting in 25 measure-
ments for hair fescue and 24 measurements for sheep sorrel. A ruler was
used to measure the length and width of each weed from a top-down per-
spective. The length was defined as the largest horizontal dimension of
the weed and the width was defined as the widest measurement perpen-
dicular to the length measurement (Fig. 4). To understand the field of
view (FOV) of the images, a measuring tape was placed on the ground
underneath the Logitech ¢920 camera to measure the physical image
size at each of the three heights. These measurements aided interpreta-
tion of the detection results from the CNN.

2.3. Image processing

The field images were organized by date, field, camera, height, and
targets on the MSI Workstation Laptop with an Intel Core i9-9980H cen-
tral processing unit (CPU)° and an Nvidia RTX Quadro 5000 graphics
processing unit (GPU)'? for analysis. The YOLOv3-Tiny CNN running on
the Darknet framework with the trained weights from Hennessy et al.
[37] was used to detect hair fescue and sheep sorrel in the field im-
ages. The images were initially run as entire batches to determine the
optimal image resolution and detection threshold for detection of the
two weeds. The internal network resolutions tested were 1280 x 736
and 864 x 480, with an initial detection threshold of 0.15. The results
of each resolution and threshold combination were evaluated on their
effectiveness of detecting at least one target weed per image using the
precision, recall, and F;-score metrics [49]. These scores are calculated
based on the number of true positive (tp), false positive (fp), and false
negative (fn) detection of targets. Precision is ratio of true positives to
all detections:

tp
Pr= M
tp+fp
Recall is the ratio of true positives to all actual targets:
tp
Re = 2
€ tp+fn @

F;-score is the harmonic mean of precision and recall:
Pr -Re

Fi =2
Pr + Re

3

6 Microsoft Corporation, Redmond, WA, USA

7 EOS Rebel T6, Canon Inc., Tokyo, Japan
8 G6-H873, LG Electronics Inc., Seoul, South Korea
9 Intel Corporation, Santa Clara, California, USA
Nvidia Corporation, Santa Clara, California, USA
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Fig. 2. Field experimental setup showing image capture in the Portapique field on May 25, 2020. A tripod with an extension arm was used to hold the Logitech
€920 camera at a position of 0.98 m between the lens and the ground while the laptop captured the image (L). The Canon T6 camera was held with the lens directly

beside the Logitech ¢920 at the same height for image capture (R).
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Fig. 3. Examples of image tearing and artifacts seen in the Logitech ¢920 images when the default sharpness setting was used.

The precision was observed to be higher than the recall in all cases at
the threshold of 0.15, so two lower detection thresholds, 0.10 and 0.05,
were also tested. Lowering the threshold increases the number of true
and false positive detections, thus lowering precision and increasing re-
call. A resolution of 1280 x 736 and threshold of 0.05 produced the
highest F;-score for both weeds and was used for the rest of the analy-
sis.

2.4. Experimental design

Field images were tested for detecting hair fescue and sheep sorrel
with the YOLOv3-Tiny CNN using the Darknet framework and trained
weights from Hennessy et al. [37]. The F;-score for detection of at least
one target weed per image was calculated for each combination of date,
field, camera, and lens height. An analysis of variance was done using
Minitab 19 to determine the significant main and interaction effects. The
main effects of camera selection, image height, and field, and the three-
way interaction between these effects were significant for hair fescue.
Further analysis for hair fescue was done in a 3 x 3 factorial arrangement
of lens height (0.57 m, 0.98 m, 1.29 m) and camera (Canon T6, LG G6,
Logitech ¢920) in a randomized complete block design for each field.

The mean F;-score for interaction effect of camera and lens height in
each field was calculated and the mean comparisons were performed
with Tukey’s pairwise method in Minitab 19. The analysis for sheep
sorrel was done in a 3 x 2 factorial arrangement with the same three
lens heights but omitted the results from the Logitech ¢920 camera due
to insufficient data from this camera.

3. Results and discussion
3.1. Optimal image resolution and detection threshold

F;-scores for detection of at least one hair fescue plant per image var-
ied between 0.80 and 0.81 when changing the detection threshold and
resolution (Table 2). The highest precision score (0.85) was produced at
1280 x 736 resolution at the threshold of 0.15, while the lowest preci-
sion score (0.78) was produced with both resolutions at the 0.05 thresh-
old. Recall peaked (0.85) at 1280 x 736 resolution and 0.05 threshold,
although it only decreased by 0.01 when the resolution was changed
to 864 x 480. The general trend for both target weeds was that de-
creasing the threshold increased the recall at the expense of precision.
The key factor for sheep sorrel detection was maximizing the resolu-
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Fig. 4. Example of the measurement method for a hair fescue tuft, with the red bounding box showing the length and width of the tuft. The base image was captured
on April 26, 2019 with the Canon T6 camera at a sprout-year field in Debert, NS (45.4381°N, 63.4534°W). The image also shows branches and leaves from wild

blueberry plants after mechanical flail mowing.

Table 2

Precision, recall, and F;-scores for detection of at least one hair fescue or sheep sorrel target
per image at varying detection threshold and resolution.

Threshold Resolution  Hair Fescue Sheep Sorrel
Precision Recall F,-Score Precision Recall F,-Score
0.05 864x480 0.78 0.84 0.81 0.72 0.57 0.63
1280x736 0.78 0.85 0.81 0.68 0.66 0.67
0.10 864x480 0.81 0.79 0.80 0.73 0.48 0.58
1280x736 0.84 0.79 0.81 0.71 0.59 0.65
0.15 864x480 0.85 0.75 0.80 0.74 0.40 0.52
1280x736 0.89 0.74 0.80 0.76 0.53 0.63
tion. The networks were trained at 1280 x 736 resolution, which may Table 3

have influenced the results. The F;-scores for sheep sorrel were higher
at 1280 x 736 than 864 x 480 by an average of 0.07, with the peak F;-
score (0.67) being produced at 0.05 detection threshold. A resolution
of 1280 x 736 and a detection threshold of 0.05 was determined to be
the optimal parameter combination for both weeds. The peak F;-scores
in this test were lower than the F;-scores produced by Hennessy et al.
[37] for hair fescue (0.97) and sheep sorrel (0.90). The effects of camera
selection are examined in this study, but another factor which influenced
results may have been the training dataset. The images were collected
by personnel walking through fields and manually scouting for target
weeds. The personnel could have been more inclined to walk towards
larger, more visible weeds when creating the training dataset. The “W”
sampling method used in this study has less bias and should produce a
better representation of the hair fescue and sheep sorrel present in wild
blueberry fields used.

3.2. Measurement of hair fescue and sheep sorrel targets

The mean length and width of hair fescue tufts at the Debert site were
54.6 + 15.9 mm and 42.6 + 13.3 mm, respectively (Table 3). The mean

Mean measurements of hair fescue and sheep sorrel
plants at the Debert Site on May 1, 2020.

Target Weed Dimension = Mean Measurement (mm)
Hair Length 54.6 +15.9

Fescue Width 42.6 +13.3

Sheep Length 11.0 +1.7

Sorrel Width 6.0 + 0.9

length and width of sheep sorrel were much smaller, at 11.0 + 1.7 mm
and 6.0 + 0.9 mm, respectively. The 95% C.I. for the hair fescue mea-
surements were much larger than for the sheep sorrel measurements,
indicating more variability in the size of hair fescue tufts. The physical
measurement represented by an individual pixel varied from 0.60 mm to
1.35 mm for 1280 x 736 images, and 0.89 mm to 2.00 mm for 864 x 480
images (Table 4). At both resolutions, the finer features of sheep sorrel
may not be clear at higher image heights. With pixel sizes of 1.35 mm
and 2.00 mm, the average width of a sheep sorrel leaf in an image was
4 and 3 pixels, respectively. Higher resolutions may be necessary for ac-
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Table 4

FOV of the Logitech c920 camera at each tested image height.
The size of the field represented by each pixel at 1280x736 and
864x480 resolution was calculated based on the FOV. .

Pixel Size, Pixel Size,
1280 x 736 864 x 480
Height (m)  FOV (m) (mm) (mm)
Length ~ Width
0.57 0.77 0.43 0.60 0.89
0.98 1.30 0.73 1.02 1.51
1.29 1.72 0.97 1.35 2.00
Table 5

Effect of lens height and camera selection on mean F;-score for detection
of hair fescue plants using the YOLOv3-Tiny weights trained by Hennessy
et al. [13]. Test images were captured in Nova Scotia on May 6, May 14,
and May 25, 2020.

Height Field

(m) Camera Debert Folly Mountain  Portapique
0.57  Canon T6 074 CD 0.70 CD 0.84  ABCD
0.57 LG G6 0.67 CD 0.72  CD 0.84  ABCD
0.57 Logitech c920 0.61 D 0.75 BCD 0.77 ABCD
0.98  Canon T6 082 ABCD 097 A 0.83  ABCD
098 LGG6 097 A 097 A 0.77  ABCD
0.98  Logitechc920 0.63 D 0.96 AB 0.78  ABCD
1.29  Canon T6 0.80 ABCD 0.72 CD 0.86  ABCD
1.29 LGG6 0.81 ABCD 079 ABCD 0.92  ABC

1.29  Logitechc920 0.82 ABCD 0.76  ABCD 0.89  ABCD

"Means followed by the same letter(s) are not significantly different based
on Tukey’s means comparison at « = 0.05.

curate detection of sheep sorrel. Additionally, dust or dirt on the camera
lens may negatively impact the results, particularly for images captured
with the LG G6 and Logitech ¢920 which have smaller lenses than the
Canon T6. Interference from dust was not noticeable in any images cap-
tured for this study but may cause limitations when this system is de-
ployed in a commercial environment.

3.3. Effects of camera selection and image height

For hair fescue detection, the main effects of camera selection, im-
age height, and field selection, the two-way interaction effect between
image height and field, and the three-way interaction effect between
camera selection, image height, and field were significant (p < 0.05).
The main effect of day, the two-way interaction effects between day
and camera, day and height, day and field, camera and height, cam-
era and field, and the three-way interaction between day, camera, and
height were not significant. Tukey’s pairwise comparison for interac-
tion between image height and camera selection showed that the best
option for the Debert field was the LG G6 at 0.98 m (F;-score = 0.97)
(Table 5). The Canon T6 at 0.98 m (F; -score = 0.82) was the second-best
option for this field but was not significantly different from any lesser
performing combinations. In the Folly Mountain field, the best detection
results came from images captured at 0.98 m with the Canon T6 and LG
G6 cameras (F;-score = 0.97). The images from the LG G6 at 1.29 m
produced the best detection in the Portapique field (F;-score = 0.92),
but they were not significantly different from detection results from all
other combinations in this field. The only scenario where camera selec-
tion produced significantly different results was in the Debert field at
a height of 0.98 m. The LG G6 performed the best (F,-score = 0.97),
followed by the Canon T6 (F;-score = 0.82), and the Logitech ¢920 (F;-
score = 0.63). The LG G6 and Logitech c920 cameras varied significantly
from each other, but not from the Canon T6. Approximately 70% of the
images in the original training dataset were captured at 0.99 + 0.09 m,
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Table 6

Sheep sorrel detection results from YOLOv3-Tiny on
images captured with the Logitech c920 camera at
three wild blueberry fields in Nova Scotia.

Date Field Height (m)  F,-Score
06- Portapique 0.57 0.22
May 1.29 0.44
14- Debert 0.57 0.29
May 1.29 0.33
Folly Mountain ~ 0.78 0.33
Portapique 0.57 0.22
1.29 0.44
25-May  Debert 0.57 0.33

Fig. 5. Sample of field images captured in the Folly Mountain field on May
6th, 2020. Pictures in the left column were captured at a height of 0.98 m and
have a hair fescue tuft in the centre of the image. Pictures in the right column
were captured at 0.57 m and have sheep sorrel leaves dispersed throughout the
images. Images in the top row were captured with the Canon T6 camera, the
middle row were captured with the LG G6 smartphone, and the bottom row
were captured with the Logitech ¢920.

which may have contributed to the high level of accuracy at the 0.98 m
height.

During calculation of F;-scores for sheep sorrel detection, 19 of 27
combinations of height, date, and field for images captured with the
Logitech ¢920 did not return a result. There were zero true positive de-
tections in these scenarios, thus creating precision and recall scores of
zero, which resulted in the F; -scores being incalculable due to a division
by zero. The maximum average F; -score from images captured with the
Logitech ¢920 camera was 0.44 (Table 6). The features in images cap-
tured with the Logitech c920 were blurrier due to the reduced sharpness,
and there was less contrast between colours (Fig. 5). Preprocessing im-
ages from the Logitech ¢920 to accentuate green hues may improve re-
sults for sheep sorrel and hair fescue detection but would likely have a
negative impact on processing speed. The Canon T6 and LG G6 cameras
were used to collect training images, while the Logitech ¢920 was not
used. This may have resulted in the CNN being more biased towards
detecting weed instances in the Canon T6 and LG G6 images.

Significant effects (p < 0.05) for sheep sorrel detection were the main
effects of image height and field, and the two-way interaction between
field and image height. The main effect of camera, the two-way inter-
action effects between day and camera, day and height, day and field,
camera and height, camera and field, and all three-way interaction ef-
fects were not significant. The best height for capturing images in the
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Table 7

Effect of lens height and camera selection on mean F, -score for de-
tection of sheep sorrel plants using the YOLOv3-Tiny weights trained
by Hennessy et al. [13]. Test images were captured in Nova Scotia
on May 6, May 14, and May 25, 2020.

Height Field

(m) Camera Debert Folly Mountain Portapique
0.57 CanonT6 0.43 BC 093 A 0.88 AB
0.57 LGG6 0.43 BC 094 A 0.83 ABC
098 CanonT6 0.83 ABC 0.83 ABC 0.76  ABC
098 LGG6 0.83 ABC 0.72 ABC 0.75  ABC
1.29 Canon T6 0.36 C 0.89 AB 0.65 ABC
1.29 LGG6 0.41 BC 0.83 ABC 0.72  ABC

"Means followed by the same letter(s) are not significantly different
based on Tukey’s means comparison at « = 0.05.

Debert field was 0.98 m, with images from both cameras producing an
F;-score of 0.83 (Table 7). The other combinations of camera and image
height did not vary significantly. In the Folly Mountain field, the best
detection results were produced with images captured at 0.57 m with
both cameras (F;-score = 0.94, 0.93), but other combinations were not
significantly different. Similar results were produced with images from
the Portapique field, with images captured at 0.57 m using both cam-
eras producing the best results (F;-score = 0.88, 83), while the results
at other heights were not significantly different. The small size of the
sheep sorrel leaves may be contributing to the reduced accuracy in im-
ages captured from higher positions.

4. Conclusions

The higher resolution, 1280 x 736, with the lowest threshold, 0.05,
produced the best results for detecting sheep sorrel with the YOLOv3-
Tiny CNN producing a peak F;-score of 0.67 across all images captured
in three fields in Nova Scotia. These parameters had little effect on the
F; -scores for hair fescue detection, which were consistently 0.80 or 0.81.
These results were lower than the validation scores produced when the
networks were trained, which may be the result of bias in the original
image dataset. The small size of sheep sorrel leaves indicates the higher
resolution may have been necessary to adequately represent their visual
features. Camera selection had minimal effect on hair fescue detection
except in the Debert field at a height of 0.98 m. The Logitech ¢920 cam-
era was not viable for sheep sorrel detection, as 19 of 27 parameter
combinations resulted in zero detections. This may have been due to
either lower quality images compared to the Canon T6 and LG G6 or
because images from the Logitech c920 were not used to train the CNN.
A lens height of 0.57 m produced the best results for sheep sorrel in two
out of three fields. Preprocessing images to accentuate the green colours
may cause the sheep sorrel to be more visible, potentially improving de-
tection results. This would add another step to image processing, poten-
tially reducing processing speed. Results from the LG G6 camera indi-
cate that the quality of smartphone pictures is adequate for identifying
hair fescue and sheep sorrel in field images. Future work should involve
selecting a high-quality camera for use on a smart sprayer and collect-
ing an unbiased image dataset for retraining the CNNs. Preprocessing
techniques should also be examined for their effect on CNN accuracy
and their impact on processing speed. Additionally, the CNNs should be
tested for use in real-time on a smartphone app or web browser, to allow
wild blueberry growers to identify hair fescue and sheep sorrel in their
fields. Considerations regarding the effect of dust and dirt accumulation
on camera lenses should be made in future studies. Using a CNN to tar-
get hair fescue, sheep sorrel, and other weeds in wild blueberry fields
on a smart sprayer can reduce herbicide use and create cost-savings for
growers.
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