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a b s t r a c t 

Agricultural herbicide application efficiency can be improved using smart sprayers which provide site-specific, 

rather than broadcast, applications of agrochemicals. The YOLOv3-Tiny convolutional neural network (CNN) 

was trained to detect two weeds, hair fescue and sheep sorrel, in images captured from wild blueberry fields 

throughout Nova Scotia, Canada. An evaluation was performed in three commercial wild blueberry fields in 

Nova Scotia to examine the effects of camera selection and target distance on detection accuracy. A Canon T6 

DSLR camera, an LG G6 smartphone, and a Logitech c920 webcam were used to capture RGB images at varying 

distances from target weeds. Mean F 1 -scores for each combination of camera and image height were analysed in 

a 3 × 3 factorial arrangement for hair fescue and a 3 × 2 factorial arrangement for sheep sorrel. Images captured 

from 0.98 m with the LG G6 and Canon T6 produced F 1 -scores of up to 0.97 for detection of at least one hair 

fescue tuft. Images captured with the LG G6 and Canon T6 DSLR from 0.57 m achieved F 1 -scores of 0.94 and 0.93, 

respectively, for detection of at least one sheep sorrel plant per image. Sheep sorrel was undetectable in images 

from the Logitech c920 under 19 of 27 parameter combinations. Future work will involve using the CNN to 

control herbicide applications with a real-time smart sprayer. Additionally, the CNN will be used in a web-based 

application to detect target weeds and provide site-specific information to aid management decisions. Using a 

CNN to detect weeds will create improvements in management techniques, resulting in cost-savings and greater 

sustainability for the wild blueberry industry. 
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. Introduction 

.1. Wild blueberry cropping system 

Wild blueberries ( Vaccinium angustifolium Ait.) are a perennial crop

ative to northeastern North America. The plants spread through rhi-

omes [1] and grow to a stem height of 5 to 30 cm [2] . Commercial pro-

uction occurs in a two-year cycle, during which the plants are pruned

y flail mowing or burning after the harvesting period in August and

eptember of the second (crop) year. During the first (sprout) year after

runing, plant growth begins, and berry buds begin to regrow in August

1] . The plants lay dormant through the winter, and growth continues

uring the crop year [1] . Harvest begins when approximately 90% of the

erries are ripe [2] . Wild blueberries were harvested with a hand rake

rior to the introduction of a viable mechanical harvester by Doug Bragg

n 1981 [ 3 , 4 ]. Better management practices, including development of
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he mechanical harvester, resulted in the wild blueberry industry ex-

anding in Canada [ 2 , 5 , 6 ]. 

.2. Weed management practices 

Weeds in wild blueberry production limit yield [7–9] , interfere with

arvesting equipment [10] , and reduce berry quality [ 11 , 10 ]. Weeds in

ther cropping systems can be managed using tillage, crop rotation, and

and weeding [12] . Tillage and crop rotation are not viable for the wild

lueberry industry due to the perennial and rhizomatous nature of the

rop [1] . Hand weeding is prohibitively expensive due to labour costs

13] , so a uniform application of liquid herbicides is typically used to

anage weeds in wild blueberry fields [ 7 , 11 ]. Hair fescue ( Festuca fili-

ormis Pourr.) is the fourth most common weed in Nova Scotia wild blue-

erry fields with an adjusted frequency and occurrence uniformity of

4.55% and 37.37% respectively [14] . Hair fescue grows in tufts and is

haracterized by thin, green and tan coloured blades ( Fig. 1 ). The occur-
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Fig. 1. Hair fescue and sheep sorrel growing in a spout-year wild blueberry field during spring 2019 in Nova Scotia. The hair fescue tuft is characterized by its thin, 

green blades, while the sheep sorrel plants are characterized by their green and red narrow-shaped leaves. 
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i  
ence uniformity of 37.37% indicates that hair fescue grows in patches

f wild blueberry fields, rather than uniformly throughout each field.

exazinone was commonly used to manage hair fescue until resistance

eveloped from repeated applications [7] . Hair fescue in wild blueberry

elds is currently best managed with pronamide [15] , which costs more

han double the cost of hexazinone to spray on wild blueberry fields

16] . Sheep sorrel ( Rumex acetosella L.) is the most common weed in

ova Scotia wild blueberry fields with an adjusted frequency and occur-

ence uniformity of 97.58% and 64.44%, respectively [14] . It is visually

ecognizable by its small, round arrow-shaped leaves which are green or

ed in colour ( Fig. 1 ). The measured uniformity of 64.44% stipulates that

here are substantial sections of the fields which do not contain sheep

orrel. Pollen from sheep sorrel plants may increase the likelihood of

otrytis blight ( Botrytis cinerea ) disease on wild blueberry leaves [17] ,

hich can spread to the fruit buds if left unmanaged [18] . Sheep sorrel

as been managed using hexazinone [ 7 , 19 ] and pronamide [17] with

ixed results. Spring applications of sulfentrazone have shown a reduc-

ion in sheep sorrel seedlings, indicating that this may be an effective

uture management option [20] . Due to the intermittent nature of hair

escue and sheep sorrel in wild blueberry fields, spot application using

 smart sprayer would reduce the overall volume of herbicide needed

o manage these weeds. 

Smart sprayers limit agrochemical application volume by only apply-

ng on areas of the field with weed cover [21–27] . Esau et al. [23] de-

eloped a spot targeting system based on green colour segmentation to

etect weeds in wild blueberry fields. When used on a smart sprayer with

ameras 1.2 m from the ground, the system resulted in 44.5% reduction

n agrochemical usage compared to a broadcast sprayer [21] . Further de-

elopments with this smart sprayer resulted in herbicide savings of up to

8.5% [22] . However, this system was limited by its inability to discrim-

nate between different weeds of the same colour. Commercial smart

prayers GreenSeeker and WeedSeeker 1 available in other cropping sys-

ems also work based on green colour detection. Colour co-occurrence

atrices were used for real-time targeting of goldenrod ( Solidago spp.) in

ild blueberry fields [ 25 , 26 ]. This method reduced agrochemical usage

y up to 60.58% [25] but had to be designed specifically for goldenrod

nd was not easily transferable to other weeds. 
1 Trimble Inc., Sunnyvale, CA, USA. 
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.3. Convolutional neural networks in agriculture 

Convolutional neural networks (CNNs) are an advanced form of ma-

hine vision which can successfully classify images or objects within an

mage [28] . They are trained using datasets with thousands of labelled

ictures of the desired target. CNNs intelligently identify visual features

nd find patterns associated with the target using backpropagation of

rrors [29] and iterative optimization algorithms based on gradient de-

cent [30] . Beyond dataset preparation, this training requires minimal

nput from the user, making CNNs easily adaptable for new targets. Im-

ges are typically processed at resolutions from 224 × 224 [31–33] to

08 × 608 [ 34 , 35 ], but this can be increased to improve clarity of vi-

ual features [ 36 , 33 ]. CNNs have been used in agriculture for detect-

ng weeds [37–41] , detecting plant diseases [ 42 , 43 ], monitoring plant

rowth and ripeness [ 44 , 36 , 45 ], and monitoring livestock [ 46 , 47 ]. 

Hennessy et al. [37] trained six CNNs using the Darknet framework

48] to identify hair fescue and sheep sorrel in images of wild blueberry

elds. The training image dataset was collected in April and May 2019

sing eight different cameras. The study concluded that the YOLOv3-

iny CNN [34] was highly effective for detecting these weeds in wild

lueberry fields, and was a promising option for controlling spray ap-

lications from a smart sprayer. The processing resolution of YOLOv3-

iny was increased from 416 × 416 to four resolutions ranging from

64 × 480 to 1280 × 736 [37] . The accuracy of the CNN was tested

ith detection thresholds of 0.15 and 0.25. F 1 -scores [49] for detection

f at least one weed instance per image with YOLOv3-Tiny ranged from

.94 to 0.97 for hair fescue and 0.87 to 0.90 for sheep sorrel. A key

imitation of this study was potential bias in the training dataset. Image

ollection for the training dataset lacked structured rules for sampling

ocations. Personnel therefore may have been more inclined to capture

mages of weeds which were more visible, omitting targets which were

ore difficult to see. 

.4. Contributions of this paper 

This study used YOLOv3-Tiny to detect hair fescue and sheep sorrel

n images captured at distances of 0.57 m, 0.98 m, and 1.29 m from

arget weeds with three digital colour cameras in wild blueberry fields

n Nova Scotia, Canada. Images were captured in three commercial wild

lueberry fields on three dates in May 2020 during the herbicide appli-

ation timing interval. Image capture locations were selected by walk-
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Table 1 

Number of target and non-target images collected for hair fescue and 

sheep sorrel. The images were captured three separate times on May 6, 

May 14, and May 25, 2020. 

Field Target Height Total 

0.57 m 0.98 m 1.29 m 

Debert Hair Fescue 5 5 5 15 

Not Hair Fescue 4 4 6 14 

Sheep Sorrel 3 3 3 9 

Not Sheep Sorrel 6 6 8 20 

Folly 

Mountain 

Hair Fescue 3 5 3 11 

Not Hair Fescue 5 3 4 12 

Sheep Sorrel 4 4 4 12 

Not Sheep Sorrel 4 4 3 11 

Portapique Hair Fescue 6 4 7 17 

Not Hair Fescue 6 4 4 14 

Sheep Sorrel 8 4 5 17 

Not Sheep Sorrel 4 4 6 14 

i  

s  

c  

a  

s  

s  

a

2

2

 

s  

r  

h  

b  

a  

3  

i  

w  

fi  

w  

p  

a  

f  

h  

H  

1  

(  

d  

a  

fi  

u  

t

 

c  

w  

w  

a  

C  

t  

r  

T  

f  

c  

p  

w  

c  

c

a  

o  

o  

s  

L  

o  

w  

s  

c

2

 

i

p  

w  

m  

u  

s  

t  

d  

v  

u  

s  

t

2

 

t  

t  

p  

t  

[  

a  

o  

t  

a  

o  

e  

p  

b  

n  

a

P

R

R

F

𝐹

ng an inverted “W ” pattern through each field [ 17 , 14 , 11 , 50 ]. The F 1 -

cores for detection of the two weeds using combinations of camera and

apture distance were compared. The results of this study provide valu-

ble information for selecting cameras and spray boom height on smart

prayers. Using a CNN to control herbicide applications from a smart

prayer can reduce the volume of agrochemicals needed for field man-

gement. 

. Materials and methods 

.1. Field image collection 

Images were captured on May 6, May 14, and May 25, 2020, in

prout year wild blueberry fields. The three dates were selected to cor-

espond with the range of dates wild blueberry growers typically apply

erbicides in the spring. Images were collected from three fields in De-

ert (45.4265°N, 63.4826°W), Folly Mountain (45.4829°N, 63.5755°W),

nd Portapique (45.4054°N, 63.6706°W), Nova Scotia from 9:00 am to

:00 pm each day. Test sites were selected in each field by walking an

nverted “W ” pattern [ 17 , 14 , 11 , 50 ]. The starting point was selected by

alking 10 paces along the edge of the field, then 10 paces into the

eld, perpendicular to the original direction. Test plots were marked

ith flags along the “W ” and randomly determined intervals of 5 to 10

aces created using Minitab 19. 2 Images were captured at each test plot

t one of three possible heights, 0.57 m, 0.98 m, or 1.29 m, to account

or variations in sprayer boom height. The 0.98 m and 1.29 m image

eights did not vary significantly from image capture heights used by

ennessy et al. [37] to develop the CNN training dataset (0.99 ± 0.09 m,

.35 ± 0.07 m), while the 0.57 m height was significantly different

0.52 ± 0.04 m). The selected height for each test plot was also randomly

etermined with Minitab 19. This process was repeated until there were

t least three target and three non-target plots at each height in each

eld for hair fescue and sheep sorrel ( Table 1 ). A total of 83 plots were

sed: 29 at the Debert field, 23 at the Folly Mountain field, and 31 at

he Portapique field. 

Three cameras were used to take images at each test plot. A Logitech

920 USB 2.0 webcam 

3 was attached to a tripod using an extension arm

ith the camera lens pointed toward the ground ( Fig. 2 ). The camera

as connected to USB 3.1 port on an MSI Workstation laptop 4 through

 2 m USB 3.0 extension cable, 5 and images were saved using Logitech

apture at 1920 × 1080 resolution. All image settings in Logitech Cap-

ure except sharpness were left at their default values. Sharpness was
2 Minitab, LLC, State College, PA, USA 

3 Logitech International S.A., Lausanne, Switzerland 
4 WS65 9TM-1410CA, Micro-Star International Co., Ltd, New Taipei, Taiwan 
5 AmazonBasics HL-007250, Amazon.com, Inc., Seattle, WA, USA 

3 
educed from 128 to 95 to prevent image tearing and artifacts ( Fig. 3 ).

he c920’s autofocus sporadically changed the focus setting, so a manual

ocus of infinity was used. This camera was selected for being a low-cost

onsumer camera which easily interfaces with Windows 6 and had been

reviously used in a smart sprayer [51] . Eight Logitech c920 cameras

ere tested to make sure that the image glitches and sporadic autofocus

hanges were not limited to a single faulty model. All eight Logitech

920 cameras exhibited similar behaviour. A Canon T6 DSLR camera 7 

nd an LG G6 smartphone 8 were used to capture images in the same

rientation with their respective lenses placed directly next to the lens

f the Logitech camera ( Fig. 2 ). These cameras were selected for their

ubjectively clearer images and greater colour depth compared to the

ogitech c920. The Canon T6 and LG G6 captured images at resolutions

f 5184 × 3456 and 4160 × 3120, respectively. Images were captured

ith the Canon T6 and LG G6 using autofocus and without zoom. The

tandard lens on the LG G6, rather than the ultrawide lens, was used to

apture images. 

.2. Target dimension measurements 

A sample of hair fescue and sheep sorrel dimensions were measured

n the Debert field on May 1, 2020 at the sampling plots along the “W ”

attern. Measurements were recorded from up to three instances of each

eed at each test location, pending availability, resulting in 25 measure-

ents for hair fescue and 24 measurements for sheep sorrel. A ruler was

sed to measure the length and width of each weed from a top-down per-

pective. The length was defined as the largest horizontal dimension of

he weed and the width was defined as the widest measurement perpen-

icular to the length measurement ( Fig. 4 ). To understand the field of

iew (FOV) of the images, a measuring tape was placed on the ground

nderneath the Logitech c920 camera to measure the physical image

ize at each of the three heights. These measurements aided interpreta-

ion of the detection results from the CNN. 

.3. Image processing 

The field images were organized by date, field, camera, height, and

argets on the MSI Workstation Laptop with an Intel Core i9–9980H cen-

ral processing unit (CPU) 9 and an Nvidia RTX Quadro 5000 graphics

rocessing unit (GPU) 10 for analysis. The YOLOv3-Tiny CNN running on

he Darknet framework with the trained weights from Hennessy et al.

37] was used to detect hair fescue and sheep sorrel in the field im-

ges. The images were initially run as entire batches to determine the

ptimal image resolution and detection threshold for detection of the

wo weeds. The internal network resolutions tested were 1280 × 736

nd 864 × 480, with an initial detection threshold of 0.15. The results

f each resolution and threshold combination were evaluated on their

ffectiveness of detecting at least one target weed per image using the

recision, recall, and F 1 -score metrics [49] . These scores are calculated

ased on the number of true positive ( tp ), false positive ( fp ), and false

egative ( fn ) detection of targets. Precision is ratio of true positives to

ll detections: 

r = 

tp 
tp + fp 

(1) 

ecall is the ratio of true positives to all actual targets: 

e = 

tp 
tp + fn 

(2) 

 1 -score is the harmonic mean of precision and recall: 

 1 = 2 ⋅ Pr ⋅ Re 
Pr + Re 

(3) 
6 Microsoft Corporation, Redmond, WA, USA 

7 EOS Rebel T6, Canon Inc., Tokyo, Japan 
8 G6-H873, LG Electronics Inc., Seoul, South Korea 
9 Intel Corporation, Santa Clara, California, USA 

10 Nvidia Corporation, Santa Clara, California, USA 
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Fig. 2. Field experimental setup showing image capture in the Portapique field on May 25, 2020. A tripod with an extension arm was used to hold the Logitech 

c920 camera at a position of 0.98 m between the lens and the ground while the laptop captured the image (L). The Canon T6 camera was held with the lens directly 

beside the Logitech c920 at the same height for image capture (R). 

Fig. 3. Examples of image tearing and artifacts seen in the Logitech c920 images when the default sharpness setting was used. 
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he precision was observed to be higher than the recall in all cases at

he threshold of 0.15, so two lower detection thresholds, 0.10 and 0.05,

ere also tested. Lowering the threshold increases the number of true

nd false positive detections, thus lowering precision and increasing re-

all. A resolution of 1280 × 736 and threshold of 0.05 produced the

ighest F 1 -score for both weeds and was used for the rest of the analy-

is. 

.4. Experimental design 

Field images were tested for detecting hair fescue and sheep sorrel

ith the YOLOv3-Tiny CNN using the Darknet framework and trained

eights from Hennessy et al. [37] . The F 1 -score for detection of at least

ne target weed per image was calculated for each combination of date,

eld, camera, and lens height. An analysis of variance was done using

initab 19 to determine the significant main and interaction effects. The

ain effects of camera selection, image height, and field, and the three-

ay interaction between these effects were significant for hair fescue.

urther analysis for hair fescue was done in a 3 × 3 factorial arrangement

f lens height (0.57 m, 0.98 m, 1.29 m) and camera (Canon T6, LG G6,

ogitech c920) in a randomized complete block design for each field.
4 
he mean F 1 -score for interaction effect of camera and lens height in

ach field was calculated and the mean comparisons were performed

ith Tukey’s pairwise method in Minitab 19. The analysis for sheep

orrel was done in a 3 × 2 factorial arrangement with the same three

ens heights but omitted the results from the Logitech c920 camera due

o insufficient data from this camera. 

. Results and discussion 

.1. Optimal image resolution and detection threshold 

F 1 -scores for detection of at least one hair fescue plant per image var-

ed between 0.80 and 0.81 when changing the detection threshold and

esolution ( Table 2 ). The highest precision score (0.85) was produced at

280 × 736 resolution at the threshold of 0.15, while the lowest preci-

ion score (0.78) was produced with both resolutions at the 0.05 thresh-

ld. Recall peaked (0.85) at 1280 × 736 resolution and 0.05 threshold,

lthough it only decreased by 0.01 when the resolution was changed

o 864 × 480. The general trend for both target weeds was that de-

reasing the threshold increased the recall at the expense of precision.

he key factor for sheep sorrel detection was maximizing the resolu-
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Fig. 4. Example of the measurement method for a hair fescue tuft, with the red bounding box showing the length and width of the tuft. The base image was captured 

on April 26, 2019 with the Canon T6 camera at a sprout-year field in Debert, NS (45.4381°N, 63.4534°W). The image also shows branches and leaves from wild 

blueberry plants after mechanical flail mowing. 

Table 2 

Precision, recall, and F 1 -scores for detection of at least one hair fescue or sheep sorrel target 

per image at varying detection threshold and resolution. 

Threshold Resolution Hair Fescue Sheep Sorrel 

Precision Recall F 1 -Score Precision Recall F 1 -Score 

0.05 864 ×480 0.78 0.84 0.81 0.72 0.57 0.63 

1280 ×736 0.78 0.85 0.81 0.68 0.66 0.67 

0.10 864 ×480 0.81 0.79 0.80 0.73 0.48 0.58 

1280 ×736 0.84 0.79 0.81 0.71 0.59 0.65 

0.15 864 ×480 0.85 0.75 0.80 0.74 0.40 0.52 

1280 ×736 0.89 0.74 0.80 0.76 0.53 0.63 
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Table 3 

Mean measurements of hair fescue and sheep sorrel 

plants at the Debert Site on May 1, 2020. 

Target Weed Dimension Mean Measurement (mm) 

Hair 

Fescue 

Length 54.6 ± 15.9 

Width 42.6 ± 13.3 

Sheep 

Sorrel 

Length 11.0 ± 1.7 

Width 6.0 ± 0.9 

l  

a  

s  

i  

m  

1  

i  

m  

a  

4  
ion. The networks were trained at 1280 × 736 resolution, which may

ave influenced the results. The F 1 -scores for sheep sorrel were higher

t 1280 × 736 than 864 × 480 by an average of 0.07, with the peak F 1 -

core (0.67) being produced at 0.05 detection threshold. A resolution

f 1280 × 736 and a detection threshold of 0.05 was determined to be

he optimal parameter combination for both weeds. The peak F 1 -scores

n this test were lower than the F 1 -scores produced by Hennessy et al.

37] for hair fescue (0.97) and sheep sorrel (0.90). The effects of camera

election are examined in this study, but another factor which influenced

esults may have been the training dataset. The images were collected

y personnel walking through fields and manually scouting for target

eeds. The personnel could have been more inclined to walk towards

arger, more visible weeds when creating the training dataset. The “W ”

ampling method used in this study has less bias and should produce a

etter representation of the hair fescue and sheep sorrel present in wild

lueberry fields used. 

.2. Measurement of hair fescue and sheep sorrel targets 

The mean length and width of hair fescue tufts at the Debert site were

4.6 ± 15.9 mm and 42.6 ± 13.3 mm, respectively ( Table 3 ). The mean
5 
ength and width of sheep sorrel were much smaller, at 11.0 ± 1.7 mm

nd 6.0 ± 0.9 mm, respectively. The 95% C.I. for the hair fescue mea-

urements were much larger than for the sheep sorrel measurements,

ndicating more variability in the size of hair fescue tufts. The physical

easurement represented by an individual pixel varied from 0.60 mm to

.35 mm for 1280 × 736 images, and 0.89 mm to 2.00 mm for 864 × 480

mages ( Table 4 ). At both resolutions, the finer features of sheep sorrel

ay not be clear at higher image heights. With pixel sizes of 1.35 mm

nd 2.00 mm, the average width of a sheep sorrel leaf in an image was

 and 3 pixels, respectively. Higher resolutions may be necessary for ac-
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Table 4 

FOV of the Logitech c920 camera at each tested image height. 

The size of the field represented by each pixel at 1280 ×736 and 

864 ×480 resolution was calculated based on the FOV. . 

Height (m) FOV (m) 

Pixel Size, 

1280 × 736 

(mm) 

Pixel Size, 

864 × 480 

(mm) 

Length Width 

0.57 0.77 0.43 0.60 0.89 

0.98 1.30 0.73 1.02 1.51 

1.29 1.72 0.97 1.35 2.00 

Table 5 

Effect of lens height and camera selection on mean F 1 -score for detection 

of hair fescue plants using the YOLOv3-Tiny weights trained by Hennessy 

et al. [13] . Test images were captured in Nova Scotia on May 6, May 14, 

and May 25, 2020. 

Height 

(m) Camera 

Field 

Debert Folly Mountain Portapique 

0.57 Canon T6 0.74 CD ˆ 0.70 CD 0.84 ABCD 

0.57 LG G6 0.67 CD 0.72 CD 0.84 ABCD 

0.57 Logitech c920 0.61 D 0.75 BCD 0.77 ABCD 

0.98 Canon T6 0.82 ABCD 0.97 A 0.83 ABCD 

0.98 LG G6 0.97 A 0.97 A 0.77 ABCD 

0.98 Logitech c920 0.63 D 0.96 AB 0.78 ABCD 

1.29 Canon T6 0.80 ABCD 0.72 CD 0.86 ABCD 

1.29 LG G6 0.81 ABCD 0.79 ABCD 0.92 ABC 

1.29 Logitech c920 0.82 ABCD 0.76 ABCD 0.89 ABCD 

ˆMeans followed by the same letter(s) are not significantly different based 

on Tukey’s means comparison at 𝛼 = 0.05. 
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Table 6 

Sheep sorrel detection results from YOLOv3-Tiny on 

images captured with the Logitech c920 camera at 

three wild blueberry fields in Nova Scotia. 

Date Field Height (m) F 1 -Score 

06- 

May 

Portapique 0.57 0.22 

1.29 0.44 

14- 

May 

Debert 0.57 0.29 

1.29 0.33 

Folly Mountain 0.78 0.33 

Portapique 0.57 0.22 

1.29 0.44 

25-May Debert 0.57 0.33 

Fig. 5. Sample of field images captured in the Folly Mountain field on May 

6th, 2020. Pictures in the left column were captured at a height of 0.98 m and 

have a hair fescue tuft in the centre of the image. Pictures in the right column 

were captured at 0.57 m and have sheep sorrel leaves dispersed throughout the 

images. Images in the top row were captured with the Canon T6 camera, the 

middle row were captured with the LG G6 smartphone, and the bottom row 

were captured with the Logitech c920. 
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f  
urate detection of sheep sorrel. Additionally, dust or dirt on the camera

ens may negatively impact the results, particularly for images captured

ith the LG G6 and Logitech c920 which have smaller lenses than the

anon T6. Interference from dust was not noticeable in any images cap-

ured for this study but may cause limitations when this system is de-

loyed in a commercial environment. 

.3. Effects of camera selection and image height 

For hair fescue detection, the main effects of camera selection, im-

ge height, and field selection, the two-way interaction effect between

mage height and field, and the three-way interaction effect between

amera selection, image height, and field were significant ( p < 0.05).

he main effect of day, the two-way interaction effects between day

nd camera, day and height, day and field, camera and height, cam-

ra and field, and the three-way interaction between day, camera, and

eight were not significant. Tukey’s pairwise comparison for interac-

ion between image height and camera selection showed that the best

ption for the Debert field was the LG G6 at 0.98 m (F 1 -score = 0.97)

 Table 5 ). The Canon T6 at 0.98 m (F 1 -score = 0.82) was the second-best

ption for this field but was not significantly different from any lesser

erforming combinations. In the Folly Mountain field, the best detection

esults came from images captured at 0.98 m with the Canon T6 and LG

6 cameras (F 1 -score = 0.97). The images from the LG G6 at 1.29 m

roduced the best detection in the Portapique field (F 1 -score = 0.92),

ut they were not significantly different from detection results from all

ther combinations in this field. The only scenario where camera selec-

ion produced significantly different results was in the Debert field at

 height of 0.98 m. The LG G6 performed the best (F 1 -score = 0.97),

ollowed by the Canon T6 (F 1 -score = 0.82), and the Logitech c920 (F 1 -

core = 0.63). The LG G6 and Logitech c920 cameras varied significantly

rom each other, but not from the Canon T6. Approximately 70% of the

mages in the original training dataset were captured at 0.99 ± 0.09 m,
6 
hich may have contributed to the high level of accuracy at the 0.98 m

eight. 

During calculation of F 1 -scores for sheep sorrel detection, 19 of 27

ombinations of height, date, and field for images captured with the

ogitech c920 did not return a result. There were zero true positive de-

ections in these scenarios, thus creating precision and recall scores of

ero, which resulted in the F 1 -scores being incalculable due to a division

y zero. The maximum average F 1 -score from images captured with the

ogitech c920 camera was 0.44 ( Table 6 ). The features in images cap-

ured with the Logitech c920 were blurrier due to the reduced sharpness,

nd there was less contrast between colours ( Fig. 5 ). Preprocessing im-

ges from the Logitech c920 to accentuate green hues may improve re-

ults for sheep sorrel and hair fescue detection but would likely have a

egative impact on processing speed. The Canon T6 and LG G6 cameras

ere used to collect training images, while the Logitech c920 was not

sed. This may have resulted in the CNN being more biased towards

etecting weed instances in the Canon T6 and LG G6 images. 

Significant effects ( p < 0.05) for sheep sorrel detection were the main

ffects of image height and field, and the two-way interaction between

eld and image height. The main effect of camera, the two-way inter-

ction effects between day and camera, day and height, day and field,

amera and height, camera and field, and all three-way interaction ef-

ects were not significant. The best height for capturing images in the
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Table 7 

Effect of lens height and camera selection on mean F 1 -score for de- 

tection of sheep sorrel plants using the YOLOv3-Tiny weights trained 

by Hennessy et al. [13] . Test images were captured in Nova Scotia 

on May 6, May 14, and May 25, 2020. 

Height 

(m) Camera 

Field 

Debert Folly Mountain Portapique 

0.57 Canon T6 0.43 BC ˆ 0.93 A 0.88 AB 

0.57 LG G6 0.43 BC 0.94 A 0.83 ABC 

0.98 Canon T6 0.83 ABC 0.83 ABC 0.76 ABC 

0.98 LG G6 0.83 ABC 0.72 ABC 0.75 ABC 

1.29 Canon T6 0.36 C 0.89 AB 0.65 ABC 

1.29 LG G6 0.41 BC 0.83 ABC 0.72 ABC 

ˆMeans followed by the same letter(s) are not significantly different 

based on Tukey’s means comparison at 𝛼 = 0.05. 

D  

F  

h  

d  

b  

s  

t  

e  

a  

s  

a

4

 

p  

T  

i  

F  

T  

n  

i  

r  

f  

e  

e  

c  

e  

b  

A  

o  

m  

t  

t  

c  

h  

s  

i  

t  

a  

t  

w  

fi  

o  

g  

o  

g

D

C

 

V  

S  

&  

M  

i  

A  

–  

s  

d  

A  

s

A

 

S  

P  

B  

l  

m  

f  

l  

a

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

ebert field was 0.98 m, with images from both cameras producing an

 1 -score of 0.83 ( Table 7 ). The other combinations of camera and image

eight did not vary significantly. In the Folly Mountain field, the best

etection results were produced with images captured at 0.57 m with

oth cameras (F 1 -score = 0.94, 0.93), but other combinations were not

ignificantly different. Similar results were produced with images from

he Portapique field, with images captured at 0.57 m using both cam-

ras producing the best results (F 1 -score = 0.88, 83), while the results

t other heights were not significantly different. The small size of the

heep sorrel leaves may be contributing to the reduced accuracy in im-

ges captured from higher positions. 

. Conclusions 

The higher resolution, 1280 × 736, with the lowest threshold, 0.05,

roduced the best results for detecting sheep sorrel with the YOLOv3-

iny CNN producing a peak F 1 -score of 0.67 across all images captured

n three fields in Nova Scotia. These parameters had little effect on the

 1 -scores for hair fescue detection, which were consistently 0.80 or 0.81.

hese results were lower than the validation scores produced when the

etworks were trained, which may be the result of bias in the original

mage dataset. The small size of sheep sorrel leaves indicates the higher

esolution may have been necessary to adequately represent their visual

eatures. Camera selection had minimal effect on hair fescue detection

xcept in the Debert field at a height of 0.98 m. The Logitech c920 cam-

ra was not viable for sheep sorrel detection, as 19 of 27 parameter

ombinations resulted in zero detections. This may have been due to

ither lower quality images compared to the Canon T6 and LG G6 or

ecause images from the Logitech c920 were not used to train the CNN.

 lens height of 0.57 m produced the best results for sheep sorrel in two

ut of three fields. Preprocessing images to accentuate the green colours

ay cause the sheep sorrel to be more visible, potentially improving de-

ection results. This would add another step to image processing, poten-

ially reducing processing speed. Results from the LG G6 camera indi-

ate that the quality of smartphone pictures is adequate for identifying

air fescue and sheep sorrel in field images. Future work should involve

electing a high-quality camera for use on a smart sprayer and collect-

ng an unbiased image dataset for retraining the CNNs. Preprocessing

echniques should also be examined for their effect on CNN accuracy

nd their impact on processing speed. Additionally, the CNNs should be

ested for use in real-time on a smartphone app or web browser, to allow

ild blueberry growers to identify hair fescue and sheep sorrel in their

elds. Considerations regarding the effect of dust and dirt accumulation

n camera lenses should be made in future studies. Using a CNN to tar-

et hair fescue, sheep sorrel, and other weeds in wild blueberry fields

n a smart sprayer can reduce herbicide use and create cost-savings for

rowers. 
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