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Abstract

Metaheuristic algorithms excel in addressing challenging optimization problems but often
face the issue of premature convergence, limiting their potential during extended
optimization periods. This research aims to overcome this limitation by integrating
Reinforcement Learning to implement intelligent restart mechanisms in metaheuristic
processes. The objective is to enhance the algorithms’ ability to explore and exploit the
solution space more effectively, thereby improving performance in complex optimization

scenarios.

The study starts with a review of current metaheuristic algorithms, highlighting the issue
of premature convergence. It then explores Reinforcement Learning principles,
particularly their decision-making capabilities, to optimize metaheuristic performance. A
novel framework is proposed where Reinforcement Learning agents monitor the
optimization process, identify stagnation phases, and initiate intelligent restarts. These
restarts are strategically guided by the agents’ learned policies, ensuring diversified search

when necessary and focused exploration of promising regions.

Experiments on benchmark optimization problems demonstrate that integrating
Reinforcement Learning significantly mitigates premature convergence, leading to
superior solution quality and robust performance across various domains. This research
not only addresses a critical limitation in metaheuristic optimization but also suggests
new applications of Reinforcement Learning for enhancing algorithmic efficiency. The
findings underscore the potential of intelligent restart mechanisms to transform

optimization, enabling more effective and adaptive metaheuristic solutions.
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Chapter 1

Introduction

Optimization problems are fundamental to numerous applications across various fields,
including engineering, economics, and computer science. Traditional optimization
algorithms, such as Linear Programming (LP) [1], have been highly successful in solving
a wide range of problems. However, these methods often face challenges when dealing
with non-differentiable functions, non-convex search spaces with multiple local optima,
and large-scale problems with numerous variables or constraints. Such scenarios are
common in real-world applications, making the scalability and adaptability of traditional

methods a significant concern.

Metaheuristic algorithms, such as Evolutionary Algorithms (EAs) [2], have emerged as
powerful tools for addressing these complex optimization problems. Inspired by natural
selection processes, these algorithms are adept at performing global searches in complex,
multimodal solution spaces. They are particularly valuable in scenarios where the search
landscape is irregular, containing multiple optima that traditional methods might struggle
to navigate effectively. Despite their strengths, metaheuristics also face limitations,
particularly concerning the feasibility and optimality of the solutions they generate. These
algorithms, while generally effective at approximating solutions close to the global

optimum, do not always guarantee optimality. Moreover, they can suffer from premature

1



convergence, where the search process stagnates at a suboptimal solution, failing to

explore the solution space fully [3].

The challenge of premature convergence is a recurring theme in metaheuristic
optimization, as it directly impacts the algorithm’s ability to find truly optimal solutions.
In this thesis, we tackle this issue by exploring strategies that enhance the balance
between global exploration and local exploitation within the search process. An
overemphasis on local search can lead to the algorithm getting trapped in suboptimal
regions, while a focus on global search may slow down convergence. To mitigate these
risks, hybridization—integrating various optimization techniques—is often employed.
Hybrid algorithms combine the strengths of different methods, such as mathematical
programming [4], machine learning [5], and other metaheuristics [6], to create more
robust solutions. Many of the most successful real-world and classic optimization

solutions have been realized through such hybrid approaches [7, 8].

One of the most promising trends in optimization is the integration of metaheuristics with
machine learning. Machine learning models, particularly in supervised learning, have
been used to improve the performance of metaheuristics by providing insights into the
optimization landscape and helping balance exploration and exploitation more effectively.
These hybrid approaches have been successfully applied to a variety of problems, such as
the Vehicle Routing Problem [9], Job Scheduling in Cloud Computing [10], and Feature
Selection [11]. However, while supervised learning offers several advantages, it also has
limitations, particularly in adapting to dynamic or changing problem landscapes [12].
Additionally, supervised learning may not fully leverage the benefits of interacting with

the problem space or exploring new solutions.

In response to these challenges, this thesis proposes a novel application of machine
learning to improve metaheuristic algorithms through Deep Reinforcement Learning
(DRL). Unlike supervised learning, Reinforcement Learning (RL) is well-suited for

dynamic environments where the optimal strategy may change over time. In RL, an agent



interacts with an environment, learning a policy that maximizes the rewards it receives
from performing actions. This ability to learn from interaction makes RL particularly
advantageous for overcoming the premature convergence and adaptability issues

commonly faced by metaheuristics.

The central hypothesis of this thesis is that metaheuristics can be significantly enhanced
by integrating DRL. In this framework, the metaheuristic algorithm acts as the agent, and
the objective function represents the environment. The metaheuristic performs actions on
the objective function, receives rewards, and learns from these interactions. This learning
process allows the algorithm to dynamically adjust its search strategy, potentially
overcoming the limitations of traditional metaheuristics, such as premature convergence

and suboptimality.

To test this hypothesis, the research focuses on improving a specific metaheuristic:
UES-CMA-ES, a combination of Unbiased Exploratory Search (UES) and Covariance
Matrix Adaptation - Evolutionary Strategy (CMA-ES). UES is designed for effective
exploration in multimodal objective functions, while CMA-ES is renowned for its
efficiency in optimizing uni-modal functions. The hybridization of these two algorithms
leverages the strengths of both exploration and exploitation, making UES-CMA-ES a
robust candidate for DRL integration. This explicit separation of exploration and
exploitation tasks is particularly conducive to DRL, as it allows the agent to

independently and directly control each aspect of the optimization process.

In this thesis, we introduce a novel hybridization approach that combines DRL with
UES-CMA-ES, focusing on smart restart strategies. Traditional hybridization methods
are set aside in favor of a new version of UES-CMA-ES, designed to incorporate restarts
as episodes within the RL framework. This approach enables the agent to learn how to
perform restarts more effectively, optimizing the use of function evaluations and

improving the overall performance of the algorithm.



The goal of this research is to develop and test a DRL-based hybrid metaheuristic that
outperforms traditional methods by avoiding premature convergence and ensuring better
exploration of the solution space. This thesis is structured as follows: Chapter 2 provides
a comprehensive literature review of metaheuristics and DRL. Chapter 3 presents the
formal definition of the multi-restart optimization problem as an RL problem and outlines
the initial approach for its solution. In Chapter 4, we discuss the challenges encountered
with the initial approach and introduce a redesigned RL environment. Chapter 5 presents
a generalized agent capable of solving multiple optimization problems, along with
exhaustive results from the IEEE CEC’ 13 benchmark and an analysis of these results.
Finally, Chapter 6 summarizes the research findings, discusses their implications, and

outlines future research directions.



Chapter 2

Literature Review

Optimization is a central theme in many scientific and engineering disciplines, and over
the past few decades, metaheuristics have become a powerful tool for solving complex
optimization problems that are challenging for traditional methods. This chapter provides
an overview of metaheuristics, starting with their historical development, key algorithms,
and their application to global optimization problems. The discussion will then transition
to the emerging trend of hybridizing metaheuristics with machine learning, highlighting
the benefits of integrating these techniques. Finally, the chapter will introduce the concept
of reinforcement learning and its recent combination with metaheuristics, setting the stage

for the novel approach explored in this thesis.

In computer science and mathematical optimization, metaheuristics are considered
general-purpose algorithms that can be applied to a wide range of optimization problems
[13]. The term “metaheuristics” can be broken down into two components: “meta” refers
to an operation at a higher level, controlling other components, while “heuristics” denotes
problem-solving techniques designed to find approximate solutions when classical
methods are either too slow or fail to find an exact solution. Thus, metaheuristics can be
seen as higher-level heuristics that aim to provide reasonably good solutions within a

reasonable time frame [14].



One of the key advantages of metaheuristics compared to exact methods is their ability to
handle large-scale optimization problems, especially in situations involving incomplete or
imperfect information or limited computational resources. While exact methods
guarantee optimality, they often struggle with computational complexity, making them
impractical for real-world problems. In contrast, metaheuristics are capable of finding
satisfactory solutions within a reasonable amount of time, even if they do not guarantee

global optimality [13].

The origins of metaheuristics can be traced back to the mid-20th century. In 1945, G.
Polya [15] introduced the concept of heuristics in solving optimization problems. Shortly
after, in 1947, G. Dantzig [16] developed the simplex algorithm, which can be considered
a local search algorithm for linear programming problems. The notion of heuristics
gained further prominence in 1971 when J. Edmonds [17] proposed the greedy heuristic

in combinatorial optimization literature.

The formal definition of metaheuristics as a specific category of algorithms was
introduced by Fred Glover [14] in the 1980s. However, it was during the 1990s that
metaheuristics experienced a significant boom in research and applications, with

numerous algorithmic variants and adaptations being proposed [18].

Several metaheuristic algorithms have emerged as popular and widely used techniques in

the field. These include:

Differential Evolution (DE): DE is a population-based optimization algorithm that utilizes

mutation, crossover, and selection operations to explore the search space efficiently [19].

Covariance Matrix Adaptation Evolution Strategy (CMA-ES): CMA-ES is an
evolutionary algorithm that adapts a covariance matrix to generate new candidate

solutions and effectively search the solution space [20].

Particle Swarm Optimization (PSO): PSO is inspired by the social behavior of bird
flocking or fish schooling, where each candidate solution, represented as a particle,

6



adjusts its position based on its own experience and the collective information of other

particles [21].

Genetic Algorithm (GA): GA is an evolutionary algorithm inspired by the process of
natural selection, where candidate solutions, represented as individuals in a population,
evolve over successive generations through operations like selection, crossover, and
mutation. This process aims to explore the solution space and optimize a given objective
function by retaining the fittest individuals and gradually improving the overall

population [22].

These algorithms represent just a fraction of the vast landscape of metaheuristics, and
numerous other techniques, such as simulated annealing, genetic algorithms, and ant

colony optimization, have been developed and applied in various problem domains [3].

In recent years, the integration of machine learning techniques with metaheuristics has
emerged as an important research direction. Hybrid metaheuristics combine algorithmic
components from different optimization approaches, often borrowing concepts from other
research areas, to improve the efficiency and effectiveness of optimization algorithms
[23]. Furthermore, the combination of metaheuristics and machine learning has shown
promise in enhancing optimization performance, leveraging the power of data-driven

techniques to guide and improve the search process [3].

The field of metaheuristics continues to evolve, driven by ongoing research into
algorithmic advancements, hybridization strategies, and innovative applications. With the
increasing complexity of real-world optimization problems, metaheuristics provide a

valuable toolset for tackling challenges where exact methods fall short.



2.1 Global Optimization

Metaheuristics are applied to a variety of different optimization problems, but in this
thesis we will focus on global optimization. Optimization is the selection of a best
element, with regard to some criterion, from some set of available alternatives.
Optimization problems of sorts arise in all quantitative disciplines from computer science
and engineering to operations research and economics, and the development of solution

methods has been of interest in mathematics for centuries [24].

Global optimization refers to the process of finding the best possible solution for an
optimization problem over the entire feasible solution space. The term “global” in global
optimization emphasizes that the objective is to find the global optimum, which is the
solution that provides the best objective function value among all feasible solutions. For
instance, Travelling Salesman Problem (TSP) is a global optimization problem that
objective is to find the shortest possible route that visits a set of cities and returns to the
origin city. This is in contrast to local optimization, which focuses on finding the best

solution within a limited region of the solution space [25].

Metaheuristic methodologies find wide-ranging applications in addressing diverse
optimization problems, and the present thesis places its primary emphasis on the domain

of global optimization.

2.1.1 Real World Applications

1. Engineer Design: In the field of engineering, global optimization techniques are used
to improve performances, reducing costs and enhancing efficiency. There are many
researches of solving engineer design problems by global optimization algorithms, such

as improving the shape of micro-aircraft wings design [26], spring design [27] and



welded beam design [28], etc. They are also widely applied in robotics, like producing

optimal solutions for robotics systems [29] and multi-robot coordinated exploration [30].

2. Financial Portfolio Optimization: Global optimization is employed to optimize
investment portfolios by considering various factors like risk [31], return [32], and
diversification [33]. These techniques help in finding an optimal allocation of assets that

maximizes returns while minimizing risk.

3. Machine Learning and Neural Network Training: Global optimization is used in
training complex machine learning models, such as neural networks [34]. Techniques like
Genetic Algorithms [35], Particle Swarm Optimization [36], or simulated annealing help
in finding optimal sets of weights and biases that minimize the error function and improve

model performance.

4. Image and Signal Processing: Global optimization methods are applied in image and
signal processing tasks like image de-noising [37], image segmentation [38], or signal
reconstruction [39]. These techniques help in finding the best possible solution among

numerous alternatives, considering various constraints and objectives.

5. Drug Discovery and Molecular Modeling: Global optimization algorithms play a
crucial role in drug discovery processes, such as molecular docking, virtual screening, or
protein structure prediction. These techniques help in searching for the best molecular

conformations or drug candidates that optimize desired properties [40].

2.1.2 The IEEE CEC’13 Benchmark

Although there are many real-world applications to global optimization, new algorithms
are usually tested first on some well-known benchmarks that allow for a fair comparison
between algorithms. In this thesis we will be focusing on the creation of new algorithms
and we will use such benchmarks to evaluate our algorithms. Specifically we will use the

IEEE CEC’ 13 Benchmark [41].



The IEEE CEC’13 is a widely recognized benchmark for evaluating the performance of
optimization algorithms. It was introduced in 2013 as part of the IEEE Congress on
Evolutionary Computation (CEC) competition, which is an annual event where

researchers and practitioners showcase their optimization algorithms.

The CEC’ 13 Benchmark consists of 28 optimization problems, divided into two
categories: single-objective and multi-objective optimization. These problems are
designed to represent a range of real-world optimization challenges and cover different
characteristics such as uni-modal, multi-modal, separable, non-separable, scalable, and

non-scalable functions.

2.2 Hybrid Metaheuristics

A hybrid metaheuristic is one that combines a metaheuristic with other optimization
approaches, such as algorithms from mathematical programming, constraint
programming, and machine learning. Both components of a hybrid metaheuristic may run

concurrently and exchange information to guide the search [8].

Over the last years, interest in hybrid metaheuristics has risen considerably in the field of
optimization. The best results found for many practical or academic optimization
problems are obtained by hybrid algorithms [18]. In this thesis we will focus on the

hybridization with ML techniques.

2.2.1 Hybridization with Machine Learning

In the optimization landscape, a substantial amount of data is generated through the
search process. The application of ML techniques allows for the efficient management
and utilization of this data, substantially refining the optimization procedure. The synergy

of machine learning with metaheuristic algorithms has emerged as a focal area of interest,

10



Functions FE=fix®)
Sphere Function -1400
. Rotated High Conditioned Elliptic Function -1300
Unimaodal : :
Functions Rotated Be.*nt Cigar PL.IIICHOIJ -1200
Rotated Discus Function -1100
Dufferent Powers Function -1000
Rotated Rosenbrock’s Function -900
Rotated Schaffers F7 Function -800
Rotated Ackley’s Function =700
Rotated Weierstrass Function -600
Botated Griewank s Function =300
Rastrigin’s Function 400
Basic Rotated Rastrigin’s Function -300
Multimodal Non-Continuous Rotated Rastrigin’s Function -200
Functions Schwefel's Function -100
Rotated Schwefel's Function 100
Rotated Katsuura Function 200
Lunacek Bi_Rastrigin Function 300
Rotated Lunacek Bi_Rastrigin Function 400
Expanded Griewanks plus Rosenbrock’s Function 500
20 | Expanded Scaffer’s F6 Function 600
21 | Composition Function 1 (n=5 Rotated) J00
22 | Composition Function 2 (n=3 Unrotated) 2800
23 | Composition Function 3 (n=3 Rotated) 900
Composition | 24 | Composition Function 4 (n=3.Rotated) 1000
Functions 25 | Composition Function 5 (n=3 Rotated) 1100
26 | Composition Function 6 (n=>5 Rotated) 1200
27 | Composition Function 7 (n=5 Rotated) 1300
28 | Composition Function 8 (n=5 Rotated) 1400

Search Range: [-100.100]°

TABLE 2.1: Summary of the 28 CEC’13 Test Functions
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particularly due to its ability to incorporate domain-specific knowledge into the

optimization strategy, enhancing the search process’s effectiveness [42].

The amalgamation of machine learning with hybrid metaheuristics culminates in robust
optimization algorithms that capitalize on the strengths of both domains. This integration
introduces learning and adaptive capabilities into the metaheuristic framework,

significantly improving the efficiency and effectiveness of the optimization process [43].

There are five primary methods of integrating machine learning into metaheuristics:
initializing populations intelligently [44], refining fitness evaluation and selection
processes [45], aiding in population reproduction [46], enhancing algorithm

adaptation [47], and aiding in local search strategies.

Population Initialization: The initial population generation in evolutionary algorithms is
traditionally random. This stage sets the stage for exploration, deciding areas to be
explored or ignored. An inadequate initial population can lead to clusters that overlook
vast regions of the solution space, limiting the algorithm’s exploration potential [48]. ML
integration at this phase can strategically position the initial population and modify
decision vectors for superior solution quality, leveraging historical search data for initial
set formation [49, 50]. For instance, ML-assisted bridge optimization has shown

promising results in this context [51].

For example, in the context of structural design optimization, historical data from
previous design projects, such as the dimensions, material properties, and performance
metrics of successful structures, could be used to train a machine learning model. This
model can then generate an initial population that is biased towards regions of the search
space known to contain high-quality solutions, thereby improving the overall efficiency of
the optimization process. Similarly, in the case of machine learning-assisted drug
discovery, existing molecular datasets and known effective compounds could serve as

training data to guide the initialization of candidate molecules in a genetic algorithm [52].
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Fitness Evaluation and Selection: Machine learning can model objective functions or
optimize the number of evaluations. It finds widespread application in sports, such as

winter sports [53] and athlete selection [54].

Population Reproduction and Variation: This step witnesses ML’s role in generating
new solutions embedded with problem-specific knowledge. This insight can scale down
problem size, assist in solution diversity, convergence, and pinpoint potential solution
regions. For instance, S-box optimization leverages this approach in dynamic

optimization under uncertainty [55].

Algorithm Adaptation: This involves using ML to refine the entire algorithm’s
parameters and operators. An example can be found in [55], where machine learning
techniques are used to provide an operational advantage when searching the constraint
space of hardware designs for cryptographic circuits. In addition, the machine learning
component of the proposed hybrids can be trained to detect the need to switch back to
exploration and avoid the algorithm from converging, keeping it running in an “infinite
mode” for solving dynamic optimization problems under uncertainty conditions.
Therefore, machine learning can help metaheuristic algorithms balance exploration and

exploitation more effectively and adapt to changing conditions.

Local Search (LS): Machine learning in LS strategizes its design, timing, and control,
offering a nuanced approach to various local search methods. An example of this, is the
research done by Elgamal et al. [56], where the authors proposed an improved
equilibrium optimization algorithm integrating novel local search strategies for feature
selection in medical datasets, demonstrating the synergy between metaheuristic

optimization and machine learning.

The intersection of machine learning with metaheuristics represents a transformative leap
in optimization, offering algorithms that are more adaptable, efficient, and capable of

tackling complex, dynamic problems.

13



2.3 Reinforcement Learning

Reinforcement Learning (RL), distinct from other machine learning paradigms like
supervised learning, focuses on how agents can learn optimal strategies through
interactions with their environment to maximize cumulative rewards. Unlike supervised
learning, which relies on direct feedback, RL uses reinforcement signals as indirect
assessments of action quality, necessitating experiential learning by the Reinforcement

Learning System (RLS).

In RL, an agent operates within an environment, performing actions that yield rewards.
The overarching objective is to develop a policy or strategy that maximizes these rewards,
adapting to the environment’s dynamics. This process emphasizes the agent’s ability to

learn from consequences rather than explicit instructions.

2.3.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines the strengths of deep learning neural
networks with the strategy-oriented focus of reinforcement learning (RL), enabling
sophisticated decision-making in complex, uncertain environments. At the core of DRL
are deep Q-networks (DQNs), which utilize deep neural networks to estimate the
action-value function (Q-function). These networks process the agent’s observations and
output Q-values for possible actions, guiding the agent toward actions that maximize

long-term rewards.

The application of DRL has led to groundbreaking advancements across various domains.
In chemistry, DQNs have revolutionized molecule optimization by incorporating chemical
domain knowledge [57], surpassing traditional methods. In computer science, a notable

achievement of DRL is AlphaGo [58], developed by Google DeepMind. AlphaGo’s
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victory over a professional human Go player in 2016 highlighted DRL’s potential in

mastering complex strategic tasks.

The fusion of DRL and metaheuristic algorithms has emerged as a dynamic research
domain, offering groundbreaking solutions to complex optimization problems. Our
research is positioned at the forefront of this evolving field, investigating the
incorporation of sophisticated machine learning methods, including deep learning and
reinforcement learning, within metaheuristic frameworks. This approach is inspired by
pioneering studies like that of Sun et al. [59], which demonstrated the efficacy of
semi-supervised learning in surrogate-assisted algorithms, particularly in addressing the
complexities of uncertain fitness evaluations and data scarcity. Moreover, our adoption of
Reinforcement Learning aligns with a progressive trend in optimization research. This
method is anticipated to significantly improve the speed and efficacy of optimization

solutions, paving the way for more advanced and efficient computational strategies [60].

2.4 Exploitation-only Exploitation-only Hybrids

Metaheuristic algorithms typically endeavor to balance two key processes: exploration,
which involves an extensive search across the solution space to pinpoint promising
regions or “attraction basins”, and exploitation, focusing on the meticulous refinement of
solutions within these identified areas to locate local optima. This dual task, however,
presents a challenge, as algorithms proficient in exploration, capable of spanning vast and
varied solution landscapes, might lack the nuanced precision required for effective
exploitation [61]. Conversely, algorithms adept at exploitation, skilled in intensively
probing a localized area, may not possess the broad reach necessary for effective
exploration. The inherent trade-off between these two processes often means that an
algorithm’s strength in one area can be counterbalanced by a limitation in the other,
necessitating a strategic approach to optimize their combined effectiveness in solving

complex optimization problems [62].
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Exploration-only and exploitation-only hybrids address this challenge by dividing the

optimization process into two distinct and specialized phases:

Exploration Phase: In this phase, the focus is on broadly scanning the solution space to
identify promising regions. This requires an algorithm that can traverse wide areas of the
search landscape without getting prematurely trapped in local optima. The objective here

is not to find the best solution but to identify areas where good solutions are likely to exist.

Exploitation Phase: Once promising regions are identified, the task shifts to fine-tuning
and intensively searching within these regions to locate the local optima. This phase
requires an algorithm with strong local search capabilities to effectively hone in on the

best solutions within the identified basins of attraction.

The motivation for using exploration-only exploitation-only hybrids is the realization that
different algorithms or different configurations of the same algorithm can be more
effective at different stages of the search process [63]. By specializing and separating
these two phases, the hybrid approach aims to utilize the strengths of different algorithms
or strategies, thereby potentially achieving better overall optimization performance than a
single algorithm attempting both tasks. This approach is particularly beneficial in dealing
with complex problems where the solution landscape is non-trivial, featuring multiple
local optima and requiring both a broad search to locate these optima and a deep search to

exploit them [63].

2.4.1 Exploration-only algorithms

Exploration plays a crucial role in metaheuristic optimization because it helps to
overcome the limitations of local search methods, which can often get trapped in local
optima. By exploring the solution space, metaheuristic algorithms aim to discover new
and potentially better solutions that may exist outside the immediate neighborhood of the

current solutions.
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24.1.1 Minimum Population Search

Minimum Population Search is a recently developed metaheuristic specifically designed
to focus on multi-modal functions and to consider from the beginning the issues that may
arise when scaling to LSGO. The key ideas were initially developed for two dimensional
problems using only two population members in [64], later generalized for standard
dimensions in [65], and scaled towards large scale problems in [66]. For improving
performance on multi-modal functions, MPS uses Thresheld Convergence (TC) technique

in the sampling methods.

TC is designed to avoid a biased exploration by preventing global and local search steps
from occurring simultaneously [67]. In many designs of metaheuristics, large explorative
and small exploitative steps are often indistinguishably made during the early
(explorative) stage of the search process. TC is designed to solve this problem by
controlling the distance (search step) between a parent and its offspring solution [68]. The
convergence is “held” back until the last stages of the search process, thus the name

Thresheld.

The motivation for MPS is to guarantee that new solutions are generated outside the
hyperplane formed by the n population members. The design idea is that if new solutions
are created merely through the addition of line segments between the population
members, then a population smaller than the dimensions of the problem will only produce
new solutions inside of a restricted subspace. To avoid this limitation MPS uses a
population size equal to the dimensionality of the problem. New solutions are then
generated using difference vectors to be inside the d — 1 dimensional hyperplane defined
by the population; and a full coverage of the search space is achieved by taking a

subsequent step that is orthogonal to this hyperplane.

In MPS, the initial solutions are generated by Equation 2.1, assuming that the search

space is bounded by the same lower and upper bound in each dimension: sy, is the k"
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Algorithm 1 MPS (o, v, maz F' E's)
1: P« Initial Population()

2: while FEs < maxFEs do

3: minStep < a - d - (%)7

4: maxStep < 2 - minStep

5: z. < Centroid(P)

6: fori:=1:ndo

7 T; < P(l)

8: fi < Unif Random(—maxStep, mazStep)
9: foi < Unif Random(minOrth, maxOrth)
10: orth; < OrthVector(z; — x.)

11 trial; < z; + f; - (75=2) + foi - (%)

12: end for
13: P < BestSolutions(P, trial)
14: end while

15: return 7, € P with minimum )y,

population member, rs; are random numbers which can be -1 or 1. The threshold is
initially set to a fraction of the search space diagonal, and updated over the execution of a
metaheuristic by using Equation 2.2. In this equation, min_step; represents the updated
threshold values, diagonal is the main diagonal of the search space, F'E's is total number
of function evaluations and k is the amount of evaluations used so far. The « and ~ are
parameters that determines the initial threshold and controls the decay rate, respectively

(note: max_step = 2 X min_step).

sk = (rsy X bound/2,rse X bound/2, ... rs, x bound/2) (2.1)

Then, in each generation a new solution ¢rzal; is created from each population member x;
in two steps. First, each member is used as a parent solution to generate an offspring. The
“hyperplane points™ are obtained by adding the parent-centroid difference vector to the
parent solution. Secondly, the orthogonal step is made by taking a random vector
orthogonal (orth) to the parent-centroid difference vector (Eq 2.3). This two-step process

for generating the new trail solutions ¢rial; is represented in Equation 2.3. The scaling
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factor F; and Oy, ; separately determine the direction and size of the difference and the

orthogonal vectors.

min_step; = a X diagonal x ([FEs — k|/FEs)” (2.2)

trial; = x; + F; X (x; — xc) + Ogpepi X 0rth (2.3)

In equation 2.3, x; is the parent solution and z.. is the centroid of the current population.
The F; factor is drawn with a uniform distribution from [—maz _step, max_step] (v; — x.
is normalized before scaling). To ensure that the distance from the new trial solution
(trial;) to its parent solution (z;) stays within the acceptable [min_step, max_step)
threshold range, the O, ; factor is selected with a uniform distribution from the
[man_orth;, max_orth;] interval. The min_orth; and max _orth; values are calculated by
Eqgs 2.4 and 2.5, respectively. The difference vector x; — x. and the orth vector is
normalized before scaling. Once the new solutions are created, clamping is performed if
necessary, and the best n solutions among the parents and offspring survive into the next

generation. A pseudo-code is shown in Algorithm 1.

min_orth; = \/mcwc(771@'71,51561012 — F2)0) (2.4)

)

max_orth; = \/max(max,step? — F?%)0) (2.5)

1

MPS demonstrates remarkable proficiency in exploring solution spaces despite employing
a relatively small population size, thereby enhancing the likelihood of convergence even
within tight computational budgets. By incorporating Thresheld Convergence, MPS

adeptly balances global and local search efforts, enabling the early identification of
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promising regions and conducting intensive local searches during the final stages if
deemed necessary, and optionally employing alternative search strategies. This dynamic
fusion of techniques culminates in a highly efficient utilization of available FEs. As a
result, Minimum Population Search emerges as an elegant and potent algorithm, adeptly

tackling intricate multi-modal problems with simplicity and effectiveness.

2.4.1.2 Leaders and Followers

The success rate of exploration is negatively affected by comparing search solutions and
reference solutions which have experienced different amounts of exploitation. In general,
an exploratory solution will not have experienced exploitation, so an apples-to-apples, or
like-to-like comparison will require the reference solution to be quite similar to an
exploratory solution. If the success rate of exploration depends on having reference
solutions that are similar to exploratory solutions, then either the reference solutions
cannot improve very much over time, or the success rate of exploration will be drastically

reduced over time.

A second approach to reduce failed exploration is to avoid the bias towards solutions with
high relative fitness (e.g., reference solutions) when they are compared to solutions with
low relative fitness (e.g., new sampled solutions). The metaheuristic Leaders and

Followers (LaF) [69] was specifically designed with this goal in mind.

The development of Leaders and Followers begins with a detailed study on the Rastrigin
function [69]. The leaders are reference solutions which guide the search and the
followers are (new) search solutions. The key feature of LaF is the introduction of a new
population management scheme which attempts to ensure that all comparisons are
performed between solutions which have experienced similar amounts of exploitation. In
LaF, the leaders are reference solutions which have experienced exploitation and the
followers are search solutions. During a search cycle, the flowers are guided by the

leaders, but they are only compared against other followers - this ensures like-to-like
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comparisons among the search solutions. When the members of the followers population
have experienced a similar amount of exploitation as the members of the leaders
population, the followers can be measure against the leaders in like-to-like comparisons to
determine the new set of leaders that will guide the next search cycle. The pseudo-code

for LaF is shown in Algorithm 2.

Algorithm 2 LaF (popSize, maxrF Es)

1: L < Initialize the leaders randomly
2: F' < Initialize the followers randomly

3: while FEs < maxFEs do
4: for v =1 : popSize do

5: leader < Pick a leader from L

6: follower + Pick a follower from F'

7: new < createSolution(leader, follower)
8: if f(new) < f(follower) then

9: Substitute follower by new in F
10: end if
11: end for
12: if mean(f(F)) < mean(f(L)) then
13: L < mergePopulation(L, F')
14: F' + Reinitialize the followers randomly
15: end if

16: end while

2.4.1.3 Unbiased Exploratory Search

Unbiased Exploratory Search (UES) emerges as a solution to a fundamental challenge in
metaheuristic optimization: the inherent bias in exploration. This bias manifests when
solutions derived from intensive exploitation efforts become integrated into the
algorithm’s population. Typically, these exploited solutions are deeply entrenched within
their respective attraction basins and may exhibit higher fitness levels compared to
exploratory solutions in potentially superior basins. Such a scenario leads to biased
comparisons, where the algorithm might erroneously favor less optimal solutions—a

phenomenon known as failed exploration. Ideally, a fair comparison occurs when both
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solutions under consideration are products of exploration, ensuring an unbiased

evaluation of their respective merits.

However, in single-population metaheuristics, such as PSO, DE, and MPS, a notable
limitation is observed with Thresheld Convergence (TC). In these algorithms, reference
solutions tend to gravitate towards local optima over time, even in the absence of explicit
exploitation strategies [70]. UES effectively counters this issue by implementing TC for
generating new search solutions while simultaneously adopting the two-population
approach of LaF. This dual strategy prevents the direct comparison of established
reference solutions (leaders) with newly generated ones (followers), thereby maintaining

the integrity of the exploration process and mitigating the risk of biased evaluations [71].

UES combines the approaches used in MPS and LaF to avoid failed exploration. The
two-population scheme of LaF is used to avoid comparing reference solutions (leaders)
against newly sampled solutions (followers). To limit concurrent exploration and
exploitation, MPS’s sampling method is used instead of LaF’s sampling, i.e. a Thresheld

Convergence minimum step and an orthogonal step are used to create new solutions [63].

The algorithm starts by randomly initializing the populations of leaders and followers. At
each iteration new trial solutions are sampled using information from both populations.
The new solutions are compared against the followers and the best ones among both sets
are selected as the new population of followers. At the end of each iteration the median
fitness of the population of followers is compared against the median fitness of the
leaders; a restart is performed if the median of the followers is better. In a restart the two
populations are merged and the best solutions become the new leaders; the followers are

randomly initialized.
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Algorithm 3 UES («, v, popSize, max F Es)

leaders < randomPopulation(popSize)
followers < randomPopulation(popSize)

while FFEs < maxFEs do
minStep < a - d - (%)KY
maxStep <+ 2 - minStep
xe < centroid( followers)
fori=1:ndo
x; < leaders;
fi + unif Random(—maxStep, maxStep)
foi < unif Random(minOrth, maxOrth)
orth; < orthVector(z; — x.)
triali & @i+ fi - [y + foi - 1
end for
followers + bestSolutions( followers, trial)
if mean(followers) < mean(leaders) then
leaders « selectBest( followers,leaders)
followers < randomPopulation|()
end if
end while

return Iy, € leaders U followers with minimum yy,

2.4.2 Covariance Matrix Adaptation Evolution Strategy (Exploitation

Algorithm)

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a popular metaheuristic
algorithm used for numerical optimization problems. It belongs to the class of
evolutionary algorithms and is particularly effective for solving continuous, non-linear,

and non-convex optimization problems.

The CMA-ES algorithm was developed by Nikolaus Hansen in the late 1990s as an
extension of the Evolution Strategy (ES) framework. It combines the concepts of
evolutionary computation and estimation of distribution algorithms to efficiently search
for the optimal solution in a high-dimensional search space. At its core, CMA-ES
maintains a population of candidate solutions, referred to as individuals or solutions. Each

solution is represented as a vector in the search space and is evaluated based on a fitness
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function. The algorithm iteratively updates the population by creating new candidate

solutions through the adaptation of a covariance matrix and a mean vector.

The key idea behind CMA-ES is to adapt the distribution of candidate solutions in each
iteration, based on the information obtained from the previous iterations. This adaptation
is achieved by estimating the covariance matrix of the best-performing solutions and
adjusting the mean vector accordingly. By dynamically adjusting the distribution,
CMA-ES effectively adapts to the characteristics of the optimization problem, allowing it
to explore promising regions of the search space and exploit areas with better solutions.
CMA-ES also incorporates a mechanism called “cumulative step-size adaptation” to
control the exploration-exploitation trade-off. This mechanism dynamically adjusts the
step size to balance between exploring new regions and exploiting the current promising

areas in the search space.

Overall, CMA-ES is known for its ability to handle a wide range of optimization
problems, including those with noisy or multi-modal fitness landscapes. It has been
successfully applied to various fields, such as engineering design, machine learning, and

computational biology, where accurate optimization of complex functions is crucial.

2.4.3 The UES-CMA-ES Hybrid

The UES-CMA-ES hybrid algorithm represents an effective approach to tackling complex
global optimization problems, combining the strengths of UES and CMA-ES. This hybrid
algorithm is particularly relevant in scenarios where optimization tasks involve navigating
through intricate search landscapes, often characterized by multiple local optima. Such
complexities require a robust strategy that can efficiently explore and exploit the search

space to identify the global optimum.

In the initial phase of optimization, UES plays a pivotal role. It merges the capabilities of

the Minimum Population Search and Leaders and Followers metaheuristics to enhance the
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exploration process. While MPS focuses on maintaining a balance between exploration
and exploitation through Thresheld Convergence, LaF reduces selection bias in solution
comparison by employing a dual-population scheme. This amalgamation in UES leads to
a comprehensive and unbiased exploration, effectively scouting out diverse and promising

areas in the search space that could harbor optimal solutions.

Once UES has effectively mapped out these promising regions, the hybrid transitions to its
second phase, leveraging the CMA-ES for exploitation. CMA-ES is adept at fine-tuning
solutions within specific areas, adapting its search parameters based on the distribution of
successful solutions. This phase is crucial for intensively refining and converging towards
the local optima within the identified promising regions. By integrating the expansive
search capabilities of UES with the precision-focused exploitation of CMA-ES, the
hybrid algorithm ensures a thorough and effective optimization process, capable of

navigating complex optimization landscapes to find the most optimal solutions.

More specifically, the UES-CMA-ES uses a straightforward high-level relay strategy. The
hybrid start executing UES with a given percentage of the total budget of function
evaluations assigned to it. Afterwards, CMA-ES is started from the best found solution
using the remaining function evaluations. In this research we will follow the parameter
recommendations from previous EEH [55], thus we will assign a 90% of evaluations to
UES and a 10% of evaluations for CMA-ES to perform the final convergence. The
Algorithm 4 presents a high level pseudo-code of the UES-CMA-ES hybrid.

Algorithm 4 UES-CMA-ES (a, v, 0, max F'Es)

leaders <~ UES(c,7,0.6 x maxF Es)
while F'Es < maxzFEs do
for leader in leaders do
CM A-ES(leader, o)
end for
end while

return best found solution
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Chapter 3

Multi-Restart Optimization as a
Reinforcement Learning Problem - an

Initial Approach

In this chapter, we present an initial approach to framing multi-restart optimization as a
reinforcement learning problem. This novel perspective aims to enhance the efficiency of
metaheuristics by intelligently determining restart points and adapting algorithm
parameters. The chapter sets the stage for a comprehensive exploration of this
methodology, laying the foundation for subsequent detailed discussions on problem

definition and implementation strategies.

3.1 Problem Definition

Metaheuristics with multiple restarts follow a similar high-level structure. First, the
metaheuristics is executed and stopped when a certain condition is met; in many cases this
condition is the full convergence of the algorithm [72]. Secondly, a perturbation method is

used to determine where to restart the search [3]. Optionally, as part of the restart process,
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the parameters of the algorithm may be changed based on information from the

search [73]. Figure 3.1 illustrates the reinforcement learning system that we want to build.
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FIGURE 3.1: Illustration of multiple restarts as a reinforcement learning process.

Following this idea, the algorithmic solution to our problem consists of two parts:
defining and implementing the deep learning agent and defining and implementing the
environment. In this chapter we will introduce an initial approach we used for solving this
problem and the limitations of this approach. Chapter 4 will focus on improving this

initial solution.

3.2 The Agent

A Deep Q-Network (DQN) agent is a prominent and scientifically significant component

within the field of reinforcement learning [74]. It represents a fundamental advancement
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in the realm of artificial intelligence and autonomous decision-making systems. DQN is a
neural network-based algorithm that combines the power of deep learning with
reinforcement learning principles to facilitate the training of intelligent agents for

sequential decision-making tasks.

The primary objective of a DQN agent is to learn an optimal policy, denoted by a
Q-function, which assigns a value to each possible action in a given state. These action
values represent the expected cumulative rewards an agent can achieve by taking a
specific action from the current state and following an optimal strategy thereafter. DQN
agents utilize deep neural networks to approximate the Q-function, allowing them to

handle high-dimensional state spaces, such as images or sensor data, effectively.

DQN agents employ a mechanism called experience replay and a target network to
stabilize and expedite the learning process. Experience replay involves storing and
randomly sampling past experiences to break the temporal correlation of sequential data
and enable more efficient learning. Meanwhile, the target network provides a stable target
for Q-value estimation during training, mitigating the instability issues commonly

encountered in deep reinforcement learning.

In this research, we propose and implement a DQN agent for reinforcement learning tasks
using TensorFlow 2. The neural network architecture consists of three densely connected
layers with ReLLU activation functions, featuring 100, 75, and 50 units, respectively. The
output layer employs a linear activation function and is initialized with a Random
Uniform initializer. The total number of actions varies, determined by the action

specification of the specific environment.

We employ the Adam optimizer with a learning rate of 1 x 1073 and utilize an
element-wise squared loss function for training [75]. The squared loss function, also
known as the mean squared error (MSE), is a standard choice in deep learning,
particularly in regression tasks. It measures the average of the squares of the differences

between the predicted and actual values, which helps in minimizing the prediction error of
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the neural network. The loss function is crucial for guiding the optimization of the neural
network during training, as it quantifies how well the model’s predictions align with the

target outputs. A lower loss value indicates a better fit of the model to the data [76].

The agent incorporates experience replay using a Reverb replay buffer, enhancing its
ability to learn from past interactions. The training loop iteratively collects data using a
random policy, trains the Q-network, and evaluates the agent’s performance. Results,
including training loss, average returns, and best fitness, are recorded and visualized at
regular intervals. Our proposed DQN agent demonstrates promising capabilities in
learning and decision-making within complex environments. The code for the DQN agent
and a complete implementation of all the experiments can be found in the GitHub

repository associated to this thesis [77].

3.3 Reinforcement Learning Environment for UES-CMA-ES with mul-

tiple restarts

Defining the environment is the most complex part of our solution. It requires the
implementation of the UES-CMA-ES hybrid and its integration with a Tensorflow
environment. As part of this solution, we also need to define the three main features that

define an environment: the observations, the actions and the reward.

3.3.1 Initial Approach - an environment based on selecting the restart

position

In our initial approach to this problem we propose a solution that focuses on selecting the
restart point without altering the parameters of the metaheuristic. The motivation behind
this idea was that we considered the restart point more important than the algorithm’s

parameters when it comes to restarting a metaheuristics. We were also looking into
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keeping a simple and straightforward design that could be easily adapted to other

metaheuristics.

In order to promote this ease of adaptation we considered using as observations the
convergence curve of the metaheuristic (i.e., the fitness of the best found solution in 100
equidistant measurements from beginning to the end). This information can be easily
obtained from any optimization algorithm. As actions, the agent would choose one of
these 100 solutions as the restart point. The new population for UES will then be
randomly generated around this solution. They are generated in an interval that is a fourth
of the search range of the search space, using Eq. 3.1, where the leaders are solution
generated with a uniform distribution over the entire search space and start_point is the

chosen point for the restart.

leaders = leaders/4 + start_point (3.1

We will refer to this RL solution (environment+agent) as Fit100-Act100 because it uses
100 fitness points as observations and has 100 available actions. More specifically, this

initial environment was defined as follows:

* Observations: An array with 100 numbers, each number represents the fitness of
the best found solution. These 100 measurements are made at equidistant intervals

(i.e., every 3,000 function evaluations).

* Actions: An integer number between 1 and 100. This number indicates in which

solution, from the observations, to restart the algorithm.

* Rewards: For the first execution, the reward is made equal to minus the
fitness/error of the best found solution. After the first action, the reward represents

how much this error was reduced. If the best solution from the new restart is worse
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than the previous best found solution then the reward is 0. Eq. 3.2 presents a

mathematical definition of the reward function.

;

—EITOTheg; if it’s the first execution
R = q errory., — error,e, if the new solution is better (3.2)
0 if the new solution is worse

\

Given this definition of the rewards, the final reward will always be non-positive. This is
because the final reward will be equal to minus the error of the best found solution. If the
best found solution is the global optimum then the reward will be 0. An advantage of this
is that it facilitates the numerical interpretation of the reward, multiplying the reward by
-1 will equal the optimization error, which is the most frequently reported value when

using the CEC’13 optimization benchmark.

Another advantage is that the agent is not penalized if a given action/restart produces a
result that is worse than previously found solutions. This is important because it allows
the agent to explore less promising regions of the search space, which in many cases is

necessary in order to eventually find better regions [78].

3.4 Experimental Framework for Evaluating an Agent and an Envi-

ronment

To test the effectiveness of an environment we designed an experimental framework that
allow us to evaluate the effectiveness of the Agent + Environment; we will call this
combination of an agent plus an environment our Reinforcement Learning solution, or
simply RL solution. This experimental framework is the same throughout the thesis for
evaluating the effectiveness of an Environment and an Agent. To test the ability of an

agent to learn a correct policy we decided to train the agent on individual functions first.
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The motivation for this is two fold. First, training over the entire benchmark is very
computational expensive, while training on a single function is much faster. Second,
learning the right policy from a set of different functions is much more difficult since it
requires not only to be able to learn a policy that improves the optimization in a single
function but also the ability to generalize and discriminate which policy is the most
adequate for each function. Thus, if an agent fails to learn the right policy we wouldn’t be
able to tell whether it failed because it was unable to learn the right policy for each

function or because it was unable to generalize this knowledge for the entire benchmark.

Therefore, the methodology we follow throughout the thesis is to first find an agent plus
environment that can effectively learn good policies for individual functions. Once we
find this combination of an agent/environment, we then train them on the entire dataset to

see how well this RL solution generalizes for a variety of functions.

Even though training on individual functions is less computationally expensive than
training over the entire benchmark, the process is still resource-intensive, taking over a
week to complete on the Compute Canada cluster. Due to these practical constraints, we
selected a subset of six functions that are representative of the complex challenges posed
by multi-modal, non-separable, and asymmetrical landscapes. These types of functions
are particularly relevant because the EEH hybrids are specifically designed to handle such

complexities.

The six benchmark functions selected from the IEEE CEC’13 suite are classic,
well-known functions that frequently appear in optimization literature and have been
widely used in various studies and benchmarks. These functions were specifically chosen
due to their challenging nature, which makes them suitable for assessing the effectiveness
of our reinforcement learning solution, particularly in the context of multi-modal

optimization. Specifically, the selected functions are:

* Function 6 ‘Rotated Rosenbrock’s Function’ (F6): This is a multi-modal
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non-separable function. The global minimum is inside a long, narrow, parabolic
shaped flat valley. To find the valley is trivial. To converge to the global minimum,
however, is difficult. State of the art optimization methods are capable of finding

the global optimum for this function in 30 dimensions [79].

Function 10 ‘Rotated Weierstrass Function’ (F10):The Weierstrass function has
historically served the role of a pathological function. It was the first published
example (1872) specifically created to show that a continuous function may not be
differentiable, except on a set of isolated points. This is a multi-modal,

asymmetrical, non-separable, function.

Function 11 ‘Rastrigin’s Function’ (F11): The Rastrigin’s function is a
multi-modal, separable, asymmetrical function wit a very large number of local
optima. It is a typical example of non-linear multi-modal function that has been
used as the standard benchmark in multiple MPS, LaF and EEH papers [80-82].
Finding the minimum of this function is a fairly difficult problem due to its large

search space and its large number of local minima.

Function 14 ‘Schwefel’s Function’ (F14): The Schwefel’s function is a highly
multi-modal, non-separable and asymmetrical function characterized by having the
second better local optimum far from the global optimum. This characteristic has

made this function an important benchmark function in a variety of studies [83].

Function 16 ‘Rotated Katsuura Function’ (F16):The Katsuura function is a
multi-modal, non-separable, asymmetrical function that is continuous everywhere
yet differentiable nowhere. Despite a high number of very deep local optima, the
landscape of this function at a large scale is nearly flat, making it very difficult to

optimize [84].

Function 19 ‘Expanded Griewank’s plus Rosenbrock’s Function’ (F19): This
function is a symmetrical composition of the Griewank’s and Rosenbrock

functions. Highly multi-modal but globally convex.
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Each function was optimized for 30 dimensions - to match many of the results reported in
the literature. The total of number of function evaluations used was

FEs =30 x 10,000 = 300, 000; this experimental setting corresponds to the evaluation
criteria defined for the IEEE CEC’13 benchmark in [41]. The environment was configured

to perform 10 restarts, i.e. a restart will be performed every 30, 000 function evaluations.

Two measures were collected in these experiments: the rewards obtained by the agent and
the loss of the neural network. To collect information about the reward we pause the
training every 500 steps and perform 10 independent executions of the agent, we then
report the average value of the rewards. As previously mentioned, this reward is equal to
the error from the global optimum (Eq 3.2). To collect the loss we simply report the loss
of the agent’s neural network at regular steps during the training process. The training is

performed for at least 25, 000 steps.

3.5 Computational Results for the Fit100-Act100 reinforcement learn-

ing solution

Following the experimental framework described in the previous section we tested the
DQN agent using our initial approach, i.e. the environment that chooses the restart
position using as observations the fitness of the best found solutions (see Section 3.3.1).
In this environment the agent has 100 actions available, each action being one of the 100
solutions’ fitness provided in the observation. We trained our RL solution using the
experimental framework described in Section 4.3. Figure 3.2 presents the results for
functions F6, F10 and F11, while Figure 3.3 presents the results for functions F14, F16

and F19.

As it can be seen in the Figs.3.2 and 3.3 there is no clear improvement in the rewards for
any of the functions. Only F6 shows a very slight improvement by the end of the 25, 000

steps. While in F16 there is a more noticeable decrease in the rewards. For the other
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functions the rewards vary randomly without any clear indication of improvement.
However, when looking at the loss function, the DQN model actually reduces the loss as it

gets trained.

In deep reinforcement learning, the loss typically refers to the difference between the
predicted Q-values and the target Q-values. A lower loss indicates that the model is
improving its predictions according to the current policy, but it does not necessarily
guarantee better overall performance in reinforcement learning tasks [85]. These results
could mean that the policy has settled into a pattern where values can be estimated well by

the neural network but for some reason it is not achieving improvements with that policy.

A first reason was that this could be caused by the very large number of actions available
to the agent - 100 restart positions to choose from. Thus we decided to test two other RL
solutions where we changed the number of available actions to the agent from 100 to 50
and 10; we called this RL solutions Fit100-Act50 and Fit100-Act10, respectively. Notice
that the number of observations was not changed, the agent still receives as input the
fitness of the best 100 solutions throughout the optimization process. But instead of being
able to choose from each of this 100 solutions for restart it only gets to chose from every
other solution, in the case of the 50 actions and from every 10 of those solutions in the

environment with only 10 actions.

3.6 Computational Results for the Fit100-Act50 and the Fit100-Act10

reinforcement learning solutions

Using the experimental framework from Section 4.3 we repeated the previous experiment
for the Fit100-Act50 and the Fit100-Act10 RL solutions. Figs.3.4 and 3.5 show the results
for Fit100-Act50 on the selected functions, and Figs.3.6 and 3.7 show the results for

Fit100-Act10.
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From these figures it can be noticed that results are very similar to the Fit100-Act100
environment, i.e. we can observe no clear improvement in the rewards achieved by the
agent, but the loss is significantly reduced in most functions. This suggest that the number

of available actions is not the main cause of the poor performance of this RL solution.

3.7 Discussion

In this chapter we have presented an initial solution to the problem of using reinforcement
learning to perform smart restarts for the USE-CMA-ES hybrid. For this initial approach
we have defined a DQN agent and environment that takes as input the convergence curve
of the optimization algorithm and outputs as action a solution in that curve to be used as

the initial point for the restart.

However, this RL solution has not been effective in improving the optimization
performance of our hybrid USE-CMA-ES optimizer. The use of a DQN agent is the most
common and effective approach when solving complex reinforcement learning problems.
Thus, we believe that the problem does not reside in the agent but in the way the

environment was designed.

The motivation for this initial environment was two fold. On one hand, we aimed to use
as input information that could be easily generalized. That’s the reason behind using the
convergence curve as observations, since this information is available for any
optimization algorithm. However, this information may not be enough for the agent to
make an appropriate decision, thus we will explore other alternatives. On the other hand,
we assumed that restarting on one of the intermediate solutions of the search process
could make the algorithm find better regions in the search space. However, the lack of
improvement indicates that this might not be the case. In the next chapter we will focus
on designing a set of experiment that will allow us to better understand how the design of

the environment affects the restart strategy.
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Chapter 4

Multi-restart strategies for

UES-CMA-ES - a new approach

In this chapter we analyze the possible reasons behind the failure of the initial approach
and we present a new RL solution for the UES-CMA-ES restarts. We will test the
environment and policies excluding the agent to find the reason of poor performance of
our initial environment. We also created different environments that controls more

variables and trained the agent in the most promising ones.

4.1 Analysis of the environment and policies

We designed an experimental framework to analyze the possible causes behind the poor
performance of the Fit100-Act100, Fit100-Act50 and Fit100-Act10 RL solutions. The
aim of this experiment is to separate the agent from the environment and directly test how

a set of selected policies perform on the environment.

By directly testing the policies we can determine how the set of available actions can

perform given the environment design and the functioning of the UES-CMA-ES hybrid.
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The experiment executes each policy 30 times and plots the reward achieved by each

execution of each policy.

4.1.1 Testing the Fit100-Act100 environment

To test the effectiveness of this environment we selected seven policies that represent a

variety of search strategies that can be found in the literature [3]. These policies are:

1. Global search (P1): This policy consistently chooses the first reported solution in

the search process as the restart point.

2. Intermediate search (P2): This policy consistently chooses a solution in the

middle of the search process as the restart point.

3. Local search (P3): This policy consistently chooses the final solution as the restart
point. Thus, it focuses more on performing a localized search around the point of

convergence.

4. Uniform incremental convergence (P4): This policy starts by choosing the first
reported solution, then for the next step chooses the solution reported at the 10% of
the search, then 20%, and so on incrementally until the final step chooses the final

solution of the search.

5. Exploration-Exploitation (P5): This policy chooses for the first half of the step
from the solution at the 33% of the search, for the second half chooses the solution

at 66% of the search.

6. 3 Step Exploration-Exploitation (P6): This policy chooses the solutions at the
33%, 66% and 99% of the search. Then repeats this 3 times. The final (tenth) step

chooses as solution at 99%.

7. Random Policy (P7): This policy randomly chooses any solution for the restart.
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Figure 4.1 shows a scatter plot for the performance of 30 independent executions of each
policy. The results have been collected for all the functions in the set of basic multi-modal

functions in the CEC’13 benchmark, i.e. functions from F6 to F20.

The most noticeable insight from Fig.4.1 is that all the policies perform very similarly.
Except for policy 1 (the global search policy), all the other plots show a similar range of
results. This result is surprising because the policies represent very different search
strategies and their performances should also be expected to differ. It is also noticeable

that these selected policies perform very similar to the random policy.

These results indicate a flaw in the design of the Fit100-Act100 environment, this is, that
independently of which solution is chosen for the restart, the final results from the
optimization algorithm don’t vary much. Metaheuristics are stochastic algorithms, thus
restarting from the same solution may lead to converging into different areas of the search
space, however, the results from Fig.4.1 indicate that this randomness is not sufficient to

produce a variety of results.

A more traditional approach used in metaheuristics with multiple restarts is to perform the
restart in a neighborhood of the final solution, as it is done in the Iterated Local Search
Heuristics [86]. Another idea used in metaheuristics with multiple restarts is changing the
parameters of the search after each restart, this is the approach followed by the Variable
Neighborhood Search metaheuristic [87]. Using these ideas as inspiration we designed

new environments that perform the restart from the final solution.

4.1.2 Testing an environment with variable restart range

We designed a new environment where the actions could control the range of the restart.
In this environment the restart is always performed from the final (best) found solution.
The new UES solutions for the restart are sampled with uniform distribution around this

final solution. Changing the range of the restart means that instead of drawing the
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solutions from a fixed interval range, the agent will be able to control the range on the

restart interval.

leaders = leaders/(5 x action + 4) + start_point 4.1)

Equation 4.1 shows how new solutions are created for the restarts, where the leaders are
solution generated with a uniform distribution over the entire search space and
start_point is the chosen point for the restart. The difference with the environment from
initial approach is that the range of the initialization is controlled by the action variable,
which can take values between 0 and 4. If the action is O then the initialization range will
be the same as with the initial approach, but as the action value increases the initialization
range becomes narrower, leading further restarts to perform a more localized search
around the final region of convergence. We will call this test environment FinalRange, in
reference to the restart occurring always from the final solution and the actions controlling

the range of the restart.

To test the effectiveness of this environment we selected seven policies that are similar to
those chosen for the Fit100-Act100 environment. The main difference is in the way we
interpret the concepts of global and local search. In the Fit100-Act100 environment,
global search would refer to selecting a solution from the beginning of the search, i.e.
before the optimization process convergences, and local search would refer to restarting in
the final/converged solution. In the case of the FinalRange environment, global search
refers to using a wider restart range (i.e. action = 4), while local search refers to

performing a more narrow restart (i.e. action = 0). The tested policies are:

1. Global search: This policy consistently chooses the action = 0, performing a

restart with a wider range for initializing the new UES solutions.

2. Intermediate search: This policy consistently chooses the action = 2, performing

a restart with an intermediate range for initializing the new UES solutions.
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3. Local search: This policy consistently chooses the action = 4, performing a restart

with an narrower/local range for initializing the new UES solutions.

4. Uniform incremental transition from global to local search: This policy starts
by choosing a global search action = 0 for the first two steps and then increasing
the action value every two steps until reaching a local search (action = 4) at the

final two steps.

5. Alternating Exploration-Exploitation: This policy chooses alternates between

global search (action = 0) and local search (action = 4).

6. 3 Step Exploration-Exploitation: This policy chooses actions at 0, 2 and 4
(global, intermediate and local search). Then repeats this 3 times. The final (tenth)

step chooses a local search action.

7. Random Policy: This policy randomly chooses any action.

Figure 4.2 shows a scatter plot for the performance of 30 independent executions of each
policy. The results have been collected for all the functions in the set of basic multi-modal

functions in the CEC’ 13 benchmark, i.e. functions from F6 to F20.

When comparing the results for the FinalRange environment vs the Fit100-Act100
environment, the most noticeable difference is the overall improvement (smaller errors)
on most of the functions. Especially noticeable is the improvement in functions F6, F7,
F10, F16 and F18, where most policies perform better. In other functions, such as F11,
F12, F13, F15 and F20, there is at least one policy that performs much better than all the
policies from the Fit]100-Act100 environment, in most cases, this better policy is the

Global Search policy (p1).

An important result is that we can see a more noticeable difference between the policies’
performance. This is very important because this means that the agent can actually learn

which policies perform better. For example, for functions F7, F12 and F15, the global
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FIGURE 4.2: Test of the FinalRange environment using selected policies on the basic
multi-modal functions.
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search policy (pl) performs better than the rest, in F16 the best policy is clearly ~ p3.
There are however some challenging functions such as F9, F17 and F18, where there is no

discernible policy that performs better.

4.1.3 Testing an environment with variable converge rate

A key design decision of UES is the convergence rate, which is controlled by the gamma
(y) parameter in the minimum step equation (see Section 2.4.1.3). Previous research have
shown how controlling this parameter during the execution may lead to improved

performance for metaheuristics that use a minimum step [88].

With this motivation, we designed an environment where different policies control the
convergence rate (7y) on each restart. Following the results presented in [88], we allowed
for 5 different actions, each action representing a integer value for  ranging from O to 5.
A v = 0 means that UES will keep a steady search range without converging, while a

~v = 4 means a fast convergence. As in the previous environment, the restart is performed
from the final solution. We have denoted this environment as FinalRate, because the
restart happens from the final solution and because the convergence rate of UES is the

parameter controlled by the policies. The selected policies are:

1. Global search: This policy consistently chooses the action = v = 0, this means

that UES does not converge but performs global search only.

2. Regular convergence: This policy consistently chooses the action = v = 2,
performing a restart with an regular convergence rate (v = 2 is the recommended

parameter value for UES).

3. Local search (quick convergence): This policy consistently chooses the

action = v = 4, this makes UES converge quickly after each restart.
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4. Uniform incremental transition from global to local search: This policy starts
by choosing a global search action = v = 0 for the first two steps and then
increasing the action value every two steps until reaching a local search

(action = v = 4) at the final two steps.

5. Alternating Exploration-Exploitation: This policy chooses alternates between

global search (action = v = 0) and local search (action = v = 0).

6. 3 Step Exploration-Exploitation: This policy chooses actions at 0, 2 and 4
(global, intermediate and local search). Then repeats this 3 times. The final (tenth)

step chooses a local search action.

7. Random Policy: This policy randomly chooses any action.

Figure 4.3 shows a scatter plot for the performance of 30 independent executions of each
policy. As in the previous experiments, the results have been collected for all the
functions in the set of basic multi-modal functions in the CEC’13 benchmark, i.e.

functions from F6 to F20.

The results from the FinalRate environment are better than the results from the
Fit100-Act100. When compared to the FinalRange we see mixed results: for most
functions the FinalRange has at least one policy that performs as good or better than the
policies from FinalRate. However, for functions F8, F17 and F18, the policies p2, p5 and

p6, respectively, achieve the best results with the FinalRate environment.

In metaheuristic optimization it is common that different parameters settings lead to
different results across a variety of functions. Thus, it is not surprising that for some
functions the best results are achieved by controlling the convergence rate, even though
controlling the range of the restart is in general better. Taking this into consideration we
decided to test an environment that can control more than one parameter of the

UES-CMA-ES hybrid.
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FIGURE 4.3: Test of the FinalRate environment using selected policies on the basic multi-
modal functions.
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4.1.4 Controlling multiple parameters simultaneously

We designed another environment where the agent can choose between several
combinations of parameters that control UES and CMA-ES. The aim with this
environment is to take advantage of the benefits that arise from tuning more than one
parameter. In this environment the agent has several combinations of parameters available
and can choose among these combinations, learning which combination is better suited
for a given function. We have named this environment as the FinalCombo environment,
because restart occur from the final solutions and each action represents changes to a

combination of parameters.

The chosen parameters are:

* Function Evaluations per Algorithm (FEs): this parameter determines what
percentage of the total amount of function evaluations is assigned to each
algorithm. As mentioned in Section 2.4.3 the default distribution used in the

previous environment was 90% UES, 10% CMA-ES.

* Range: the range parameter controls the range of the restart, it is the same

parameter that was controlled in the FinalRange environment.

* Convergence rate (7): the convergence rate parameter controls the «y parameter in

UES, it is the same parameter that was controlled in the FinalRate environment.

* Alpha (a): in MPS and UES the o parameter determines the size of the initial

threshold (minimum step) of the search (see Section 2.4.1.1).

* Number of Iterations for UES (iters): The iters parameter determines how many
iterations (generations) UES performs with its given budget of function evaluations.
More iterations allow UES to update the population more times, but comes at the

cost of a smaller population.
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» Sigma (0): The o parameter in CMA-ES determines the initial standard deviation,
smaller values mean more local search while larger values lead to a more global

search.

* Population size of CMA-ES (cma_pop): This parameter directly controls
CMA-ES population size. A larger population size usually leads to more
exploration, while a smaller population allows for more generations and a more

local/fine search.

Using these parameters we defined twelve different actions, however, only five of those
actions were used in the selected policies. For clarity, we only present here those five

actions:

e action 1: F'Es =0.9, range =4,v=1,a = 0.2, iters = 50, o0 = 10,

cma_pop = 45

e action 2: F'Ebs = 0.9, range =0,v =2, a = 0.1, iters = 40, 0 = 2,

cma_pop = 30

e action 5: 'E's = 0.5, range = 3,v =3, a = 0.1, iters = 30,0 = 1,

cma_pop = 15

e action 9: 'E's = 0.5, range = 2, v = 3, a = 0.05, iters = 30, 0 = 0.1,

cma_pop = 15

e action 10: F'Es = 0.5, range = 0, v = 4, o = 0.01, ¢ters = 30, 0 = 0.1,

cma_pop = 15

The first action is a parameter configuration that promotes a strong exploration of UES
and CMA-ES, convergence only happens at the very end of CMA-ES execution. Action 2
is also a configuration to promote exploration, but allows UES to converge a bit. Action ~

5 is a more balanced configuration between global and local search. While actions 9 and
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10 are more focused on local search, with action 10 being almost exclusively a local

search strategy.

Using these actions we defined a set of policies that are similar to the policies used in the
previous environments. Even though this are not necessarily the best policies, we decided
to use them in the environment test for a fair comparison of performance. The selected

policies are:

1. Global search: This policy consistently chooses the action = [1].

2. Regular convergence: This policy chooses the following

actions = [1,5,5,5,5,5,5, 10

3. Local search (quick convergence): This policy consistently chooses the

action = [10].

4. Uniform incremental transition from global to local search: This policy chooses

the following actions = [1,1,2,2,5,5,9,9, 10, 10].

5. Alternating Exploration-Exploitation: This policy chooses the following

actions = [1,1,2,2,5,5,9,9, 10, 10].

6. 3 Step Exploration-Exploitation: This policy chooses the following
actions = [1,5,10,1,5,10,1, 5,10, 10].

7. Random Policy: This policy randomly chooses any action among the twelve

available actions.

Figure 4.4 shows a scatter plot for the performance of 30 independent executions of each
policy. As in the previous experiments, the results have been collected for all the
functions in the set of basic multi-modal functions in the CEC’13 benchmark, i.e.

functions from F6 to F20.
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FIGURE 4.4: Test of the FinalRate environment using selected policies on the basic multi-

modal functions.
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The results for the FinalCombo environment are very promising, for all the functions, the
results are similar or better than for the two previous environments (FinalRange and
FinalRate). For some functions such as F6, F7, F8, F9, F13, F15, F16, F17 and F20, the
results achieved by the best performing policy are remarkably better than the results from
the other environment we have tested. Moreover, the diverse performance levels across
the chosen policies highlight the potential of crafting a range of distinct search strategies
by effectively combining the available actions into various policy configurations. This
variability in the performance of the different policies is a very promising feature that

may allow the agent to learn better.

4.1.5 Discussion from Testing the Environments

The environment test experiment was designed to analyze the performance of some
selected policies. The motivation was to understand the lack of learning of the DQN agent
in the Fit100 environment. We were able to determine that this inability to learn was
caused by all the policies having similar performance, thus the agent was unable to find

suitable policies to improve the performance.

We hypothesized then that this was happening because restarting from an intermediate
point in the search using the same search parameters would produce very similar results in
every restart. To test this hypothesis we created three new environments, all of which
restarted the search from the final solution and changed some parameter(s) of the

metaheuristics.

This three environments showed two important improvements over the original Fit100
environment: On one hand, they had more variation in performance among the different
policies, this is a promising feature that suggest that an agent could be able to learn the
best policies and improve over time. On the other hand, the performance of the selected

policies was much better, i.e., the final error was much lower. This is important because it
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indicates that from an optimization perspective it is more convenient to perform the restart
from the final solution and use the agent’s actions to choose among the parameters that

define the search strategy (as oppose to using the actions to choose the restart point).

From the three new environments, the FinalRange and FinalCombo show the most

promising results. Thus, we chose these two environments for training the DQN agent.

4.2 Training agents on the new environments

In this section we present results for training the DQN agent on the FinalRange and
FinalCombo environments. The experimental framework is the same as presented in
Section 4.3 when training on the Fit/00-Act100 environment. We have however, changed

the input for the environments.

4.2.1 Observations for the new environments

Metaheuristic algorithms, particularly in the context of optimization, operate in a highly
dynamic and often unpredictable search space. The effectiveness of these algorithms is
contingent on their ability to adaptively navigate through diverse regions of the search
space, balancing the intricate trade-off between exploration and exploitation. The
previous set of observations, while effective, might not have fully captured the nuanced
variations and subtle shifts in the search landscape experienced during the optimization
process. By introducing a new set of observations, we aim to provide the DRL agent with
a more comprehensive and complete understanding of the search environment. These new
observations are designed to encapsulate a broader spectrum of information, including
changes in the population dynamics, convergence rates, and the relative improvements
between different phases of the algorithm. This enriched informational context is
expected to facilitate a more informed and adaptive decision-making process by the DRL

agent, thereby potentially enhancing the overall optimization performance.

58



It’s important to acknowledge that while direct experimental evidence supporting this
change is not currently available, the theoretical underpinnings and the logical premise
guiding this modification are solid. The new observations are based on well-established
principles in both metaheuristics and machine learning, suggesting that they are likely to
yield positive results. This change is also reflective of an iterative and evolutionary
approach to research, where enhancements are often based on theoretical insights and
logical extensions of existing knowledge, followed by empirical validation. Future
research, therefore, should aim to empirically investigate the efficacy of these new
observations, further refining our understanding and application of DRL in the

optimization domain.

The new observation are divided into two types: one type of observations measure the
state of the optimization process at regular intervals, providing valuable information about
how the search progresses. These observations are made 20 times during the UES
optimization, at equidistant steps measured in the number of function evaluations
performed. The other type if observation are single measurements made only once during

the entire execution of the UES-CMA-ES hybrid.

The regular observations made in 20 states of the optimization are:

* The number of updates to the population of followers, since the previous
observation measurement. The number of new solutions added to the population is
an indicative of how effective the search is, it has been previously used as an

information source for training models for MPS hybrids [89].

* The number of times that the population of followers was restarted, since the
previous observation measurement. The number of restart is an important source of
information that helps characterize the topology of the objective function. It has
been successfully used in previous applications of machine learning for improving

the LaF metaheuristics [55].
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* The euclidean distance between the best and worse solutions found since the
previous observation measurement. This information can be useful to determine the
rate of convergence of UES, and thus it could be useful for setting convergence

related parameters.

The observations that are only done once per execution of UES-CMA-ES are:

A Boolean value indicating whether the local search performed by CMA-ES further

improved the result obtained by UES.

* The relative improvement (see equation XX) between UES and CMA-ES final

solutions.
* The euclidean distance between the restart point and UES final solutions.
* The euclidean distance between the restart point and CMA-ES final solutions.

e The euclidean distance between the CMA-ES initial solution (UES final solution)

and CMA-ES final solution.

These 65 observations aim to evaluate whether and how much UES and CMA-ES are
moving through the search space and whether this search is yielding good results. This
information allows the agent to determine whether the current set of parameters is

effective or needs to be adjusted.

4.2.2 Choosing a Set of Optimal Parameter Combinations

The set of parameter combinations (actions of the agent) used in the previous chapter
were created to mimic the actions of the policies of the other environment tested.
However, this does not mean that those combinations of parameter values were
necessarily the best ones. Thus we designed a small experiment intended to test the

effectiveness of various parameter combinations.
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In this experiment we tested 24 different combination of parameters values. We
performed 30 independent executions of the agent for each set of parameter values and
used the average of those 30 runs as the evaluation criteria. We tested these combinations
on the entire benchmark (i.e., the 28 objective functions). We then counted how many
times each combination was among the top 3 for each function. Finally we selected the 12
combinations that most frequently appeared among the top 3. Table 4.1 shows the

parameter values of the 12 best combinations.

TABLE 4.1: Best 12 combinations of parameter values

Strategy | FEs | range | gamma | sigma | alpha | cma_pop | iters
1 0.9 1 1 0.1 0.1 15 30
2 0.9 0 2 10 0.1 30 30
3 0.9 2 2 0.1 0.05 15 40
4 0.5 3 1 10 0.1 45 50
5 0.5 0 2 10 0.1 15 30
6 0.9 0 3 10 0.1 15 30
7 0.9 0 1 1 0.1 30 40
8 0.9 0 3 0.1 0.1 15 40
9 0.5 4 1 10 0.1 30 30
10 0.5 4 2 1 0.1 15 40
11 0.5 1 1 1 0.1 45 50
12 0.5 2 2 10 0.05 15 30

4.3 Training the DQN agent on the FinalRange environment

In this section we present the results for training the DQN agent (see Section 3.2) on the
FinalRange environment. We have followed the same experimental design as it was used
for training the agent in the Fit/00-Act100 environment (see Section 4.3). Figures 4.5 and
4.6 show the plots for the rewards and loss on the functions F6, F9, F11 and F14, F16,

F19, respectively.

The most relevant result to notice is that for 4 out of the 6 functions (F6, F11, F14 and
F16) a clear improvement in the rewards (optimization performance) is achieved as the
agent is trained on the new environment. This result answers the main hypothesis of this
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FIGURE 4.5: Rewards and loss for the FinalRange RL solution when trained on functions
F6, F9 and F11.
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research, of whether a RL agent can be trained to successfully improve the optimization

of a multi-start UES-CMA-ES hybrid.

Interestingly, the loss values don’t decrease as much as they did for the Fit/00-Act100
environment. This is probably because the new environment, even though more effective
from the optimization perspective, is more challenging for the machine learning model.
However, the decrease of the loss function observed in all functions is an indication that

the agent does learn better policies as the training progresses.

4.4 Training the DQN agent on the FinalCombo environment

Following the same experimental framework and the same scale in the figure plots, in this
section we present the results for training the DQN agent on the FinalCombo
environment. The most noticeable result is that the agent achieves a clear improvement in
performance for the six functions tested in this experiment. It can also be noticed the clear
decrease of the loss function which indicates that the agent’s network properly learns the

best set of weights for the problem at hand.

By taking a closer look at the reward values in the plots, and comparing them to the
rewards from the FinalRange environment, we can clearly notice that the results for the
FinalCombo environment are better. Thus, we will use this reinforcement learning
solution, i.e. the DQN agent and the FinalCombo environment, for the next step of our

research.
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Chapter 5

Benchmark Performance and

Generalization

The next step after finding a reinforcement learning solution that is effective at solving
individual functions, is to generalize the problem to have an agent/environment learn how
to effectively optimize multiple functions. By solving multiple functions we mean that the
agent is not trained on a single function but on a set of many functions. This
generalization will allow us to deploy the agent on any optimization function, without

having to know beforehand what function will be optimized.

5.1 Reward for Multiple Functions

One challenge when using the same agent/environment for optimizing a variety of
different functions is that not all functions have the error on the same order of magnitude.
For example, the error for function F16 (the Katsuura function) is usually in the

(0.01, 0.3) range for the UES-CMA-ES hybrid; the error for function F11 (the Rastrigin
function) is in the (2, 20) interval, while the error for function F14 occurs usually in the

(1000, 2000) interval. The ranges for these errors can be found in the results reported so

67



far in this thesis, Figs.3.3 to 4.8. Although not reported yet, we also know that for other
functions like F1 (the Sphere function) and F10 (the Rotated Griewank function), the

UES-CMA-ES algorithm can frequently find the global optimum (i.e., an error of 0).

The problem with these big differences in the reward values resides in the fact that it
could be used by the agent to do what is known in the RL literature as “specification
gaming” or “reward hacking”. These terms refer to the ability of an RL model to find
loopholes in the reward functions that help them accomplish a better performance without
achieving the desired goal for which the environment was designed [90]. In our case
specifically, we are worried that the agent could prioritize those functions that provide

higher rewards in detriments of the rest of the functions.

To avoid a potential reward hacking from our agent we designed an alternative reward
function which normalizes the output values. The normalization is done by dividing the
reward of a given function by the median error of 50 independent executions of
UES-CMA-ES for that function. Equation 5.1 shows how the reward is calculated, f;
indicates the specific benchmark function that is being optimized and median; is the

median error for that function using UES-CMA-ES.

¢

e if it’s the first execution
Ry, =  emomeeMoher if the new solution is better (5.1)
0 if the new solution is worse

5.2 Results for the Entire Benchmark

5.2.1 Training the Agents

In this section we present the results of the UES-CMA-ES reinforcement learning hybrid

trained and tested over the entire benchmark. The first set of results aim to compare the
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FinalCombo reinforcement learning solutions using the two different reward strategies:
we will call standard reward (StdRweard) the original reward function without the

normalization, and we will refer as NormReward to the normalized version of the rewards.

The experiment setting for training on the entire benchmark is similar to the experimental
setting described in Section 4.3. Each function was optimized for 30 dimensions - to
match many of the results reported in the literature. The total of number of function
evaluations used was F'E's = 30 x 10,000 = 300, 000. The environment was configured
to perform 10 restarts (i.e., a restart will be performed every 30, 000 function evaluations).
Two results were collected in these experiments: the rewards obtained by the agent and

the loss of the neural network.

The main difference is that instead of focusing on individual functions, the environment
was modified to train the agent on a variety of functions. At every reset, the environment
randomly chooses one function from the benchmark and trains the agent on that function.
To allow for a better generalization, this training was performed for 100, 000 steps instead
of the 25, 000 used for individual functions. The training was done using Compute

Canada, and it took over a month to train each model.

Figure 5.1 shows the reward and the loss over the entire benchmark for the FinalCombo
reinforcement learning solution using the standard reward function. Figure 5.2 shows the
same results using the normalized reward function instead. It is worth noticing that the
results for the standard reward function are hard to interpret because the reward value
varies significantly from one function to another. As a consequence, even though some
overall improvement is to be expected as the training progresses, the reward values can
randomly fluctuate up and down depending on the function that is being optimized.

However, the loss function plots indicate that the model is indeed learning.

Results for the normalized reward function should be easier to interpret since all the
functions produce a reward value in a similar range. As it can be seen in Figure 5.2, the

reward indeed improves as the training progresses, however, this improvement is not as
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clear as it was on the individual functions. The reason for this could be the extra challenge
of learning a good restart configuration not for only one individual function, but learning
instead to generalize for any given function. The loss plot shows that the model manages

to reduce the loss, even though with some ups and downs along the process.

Despite the overall positive trend in the rewards, the relatively high loss values can be
attributed to several factors. First, the complexity and diversity of the benchmark
functions result in a high variance in the training data, making it challenging for the
model to fit all aspects of the data accurately. Additionally, the loss function may penalize
deviations from the target more heavily in certain areas of the solution space, particularly
for complex functions with intricate landscapes. This can result in higher loss values even
when the model is effectively improving its reward outcomes. Another possible reason is
that the model might be overfitting to specific functions within the benchmark, leading to
a slower convergence in the loss function while still achieving good performance on the
reward metric. It is also worth noting that in reinforcement learning, the loss function
does not always directly correlate with performance improvements, as the primary

objective is often to maximize cumulative reward rather than to minimize prediction error.

Reward Entire benchmark (standard reward) Loss
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FIGURE 5.1: Rewards and loss for the FinalCombo with standard reward on the entire
benchmark.

70



Reward Entire benchmark (normalized reward) Loss
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FIGURE 5.2: Rewards and loss for the FinalCombo with normalized reward on the entire
benchmark.

5.2.2 Optimization Results

When the agents were trained on the individual functions, the results from the reward
function plots could be easily interpreted as the error of the UES-CMA-ES hybrid on that
function. However, the reward value when trained over the entire benchmark does not
reveal the precise error achieved per each function. In order to precisely measure the
effectiveness of the proposed RL solutions with the UES-CMA-ES hybrid, we performed
a regular execution of the algorithm on the optimization benchmark. This means that we
used the UES-CMA-ES hybrid with the trained models and tested it on the benchmark
following the benchmark specification and the same experimental settings used in

previous papers such as [63, 89, 91].

Results for the UES-CMA-ES hybrid with the Combo environment are presented in
Table 5.1. The results are presented for both algorithms, one using the agent trained with
the standard reward function (Combo-StdReward) and another using the agent trained

with the normalized function Combo-NormReward. Both algorithms are tested on the

standard CEC’2013 benchmark [41]. As describe in Section 2.1.2, this benchmark
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consists of a set of 28 uni-modal and multi-modal functions with various characteristics.
The functions are divided in three sets: uni-modal functions (1 to 5), basic multi-modal
functions (6 to 20) and composite multi-modal functions (21 to 28). Since the
UES-CMA-ES hybrid has been specifically designed for optimizing multi-modal
functions, the second group contains the most interesting functions in terms of topological
characteristics. Results are presented for all the functions according to the experimental
setup proposed for the benchmark, i.e. 51 independent trials on each function in n = 30

dimensions with a maximum of 300, 000 function evaluations.

Results in Table 5.1 reports the average (mean), worse (max) and best (min) over the 51
independent executions for of each algorithm on all the functions in the benchmark. Based
on the average results per function, this table also reports the the relative performances
100(a — b)/ max(a, b) achieved by Combo-NormReward versus Combo-StdReward.
These values indicate by what amount (percent) Combo-NormReward (b) outperforms
Combo-StdReward (a) —- positive values indicate that Combo-NormReward outperforms
Combo-StdReward; negative values indicate that the agent with the standard function
performed better. A #-test between the two samples is also reported to allow a comparison

on the basis of statistically significant differences at the 5% level.

Results in Table 5.1 show an interesting results, the agent with the standard reward
provides overall better results than the agent with the normalized reward. In the set of
uni-modal functions, the comparison is more balanced, with both algorithms successfully
finding the global optimum in the Sphere function and having similar results on Function
~ 5 with no significant statistical difference. On functions F2 and F3 the agent with the
normalized reward is clearly better, while the normalized reward function leads to better
results in F4. On average, the agent with the standard reward function performs slightly

(12%) on this set of functions.

Results are different when we analyze the set of multi-modal functions: for a total of ~ 13

out of the 15 multi-modal functions, Combo-StdReward has a smaller average error
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TABLE 5.1: Comparison of the FinalCombo RL solution using the standard and normal-
ized reward functions

No. Combo-StdReward Combo-NormReward %-diff  t-test
Mean Max Min Mean Max Min
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - -
2 1.06E+02 5.05E+00 1.34E+03 2.44E+02 1.33E+01 6.51E+02 -56.7% 0.00
3 198E-02 6.19E—08 3.73E—01 1.41E+00 1.80E—07  4.10E+01 -98.6% 0.00
4 246E—06  0.00E+00 2.67E—05 1.88E—07  0.00E+00 1.69E—06 92.4% 0.00
5 540E—-05 248E—05 8.84E—05 528E—05 4.02E—05 7.65E—05 2.3% 0.06
Uni-modal -12.1%
6  0.00E+00 0.00E+00 0.00E+00 2.64E+00 0.00E+00 2.64E+01 -100.0% 0.00
7 5.69E—02 2.78E—05 4.23E—01 1.40E—01 1.61E—03 8.13E—01 -59.5% 0.00
8  2.09E+01 2.07E+01 2.10E+01 2.09E+01 2.08E+01 2.10E+01 0.1% 0.11
9  9.82E+00 3.37E+00 2.07E+01 1.08E+01 3.99E+00 1.90E+01 -8.9% 0.05
10  0.00E+00 0.00E+00 0.00E+00 247E—04  0.00E+00  7.40E—03 -100.0% 0.00
11 8.62E+00 4.03E+00 1.39E+01 1.38E+01 6.84E+00 2.19E+01 -37.7% 0.01
12 7.95E+00 3.24E+00 1.10E+01 1.47E+01 6.96E+00 2.39E+01 -46.1% 0.00
13 1.11E+01 2.07E+00 3.47E+01 2.45E+01 5.13E+00 5.04E+01 -54.6% 0.00
14 1.24E+03 1.68E+02 2.35E+03 1.50E+03 7.15E+02 2.78E+03 -17.5% 0.02
15 1.03E+03 4.12E+02 1.77E+03 1.50E+03 6.67E+02 2.21E+03 -31.1% 0.00
16 237E—02 243E—-03 1.99E—01 8.56E—03 296E—03 1.75E—02 63.8% 0.02
17 3.85E+01 3.46E+01 4.49E+01 4.61E+01 3.91E+01 5.71E+01 -16.4% 0.01
18 4.16E+01 3.47E+01 5.22E+01 4.89E+01 4.20E+01 6.72E+01 -14.9% 0.01
19 1.94E+00 8.49E—01 3.17E+00 1.96E+00 1.16E+00 2.41E+00 -0.7% 0.06
20 1.08E+01 8.62E+00 1.50E+01 1.10E+01 8.43E+00 1.50E+01 -1.6% 0.32
Multi-modal -28.3%
21 3.37E+02 2.00E+02 4.44E+02 3.68E+02 2.00E+02 4.44E+02 -8.7% 0.11
22 1.12E+03 4.91E+02 2.32E+03 1.51E+03 5.52E+02 2.43E+03 -25.8% 0.00
23 1.16E+03 5.79E+02 1.82E+03 1.88E+03 1.27E+03 2.82E+03 -38.4% 0.00
24 2.11E+02 2.00E+02 2.44E+02 2.07E+02 2.00E+02 2.62E+02 1.8% 0.05
25  2.68E+02 2.40E+02 3.03E+02 2.66E+02 2.42E+02 3.02E+02 0.8% 0.05
26 2.47E+02 2.00E+02 3.27E+02 2.53E+02 2.00E+02 3.31E+02 -2.2% 0.14
27  5.35E+02 3.00E+02 7.90E+02 4.69E+02 3.00E+02 7.00E+02 12.4% 0.04
28  3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 0.0% 0.45
Composition -7.5%
Total -19.5%

(mean) than Combo-NormReward. The agent with the normalized reward function only
performs better in F8 and F16. These results are statistically significant in all functions
Except for F8, F9 F19 and F20. On average, the agent with the standard reward function

outperforms the agent with the normalized reward function by a 28.35%.

For the set of Composition functions results are mixed, with both algorithms performing
similarly. Results are statistically different for only 3 out of the 8 functions, with
Combo-StdReward performing better in two of them F22 and F23, while
Combo-NormReward performs better in F27. On average, over the entire benchmark, the
UES-CMA-ES hybrid with the agent using the standard reward performs 19.5% better

than the agent using the normalized reward.

73



There could be several hypotheses to explain why the DQN agent with the standard
reward function is performing better than the agent with the normalized reward function
in this scenario. One reason could be that the wide variance in reward values across
different functions of the standard reward function is helping instead of affecting the
agent. This variance might provide more exploration opportunities for the DQN agent,
allowing it to learn better policies and discover new strategies for different functions. In
contrast, the normalized reward function constrains the rewards to a narrower range,

which could limit the agent’s exploration.

Another reason could be related to the fact that information is compressed during
normalization. The normalization of rewards might cause some loss of information.
When rewards are normalized, the agent might not be able to distinguish between
functions with different difficulty levels effectively. It could be that the agent trained with
the standard reward function adapts its policies more accurately to the varying difficulty
of different functions, leading to better performance. Also, normalizing rewards could
make the agent overly sensitive to small variations in function error, leading to overfitting.
The standard reward function, with its wider range of reward values, might be more
robust to minor fluctuations, resulting in better overall performance. Future research
should focus on conducting further experiments and analyses to determine which, if any,

of these hypotheses are responsible for the observed performance differences.

5.2.3 Comparison against other algorithms

The next step is to compare the results of the UES-CMA-ES hybrid using the
Combo-StdReward against some well known optimization algorithm. We would like to
start by comparing our RL-hybrid algorithm against the original UES-CMA-ES hybrid
and its composing algorithms, UES and CMA-ES. We have used the same
implementations described in [82], and applied it to the CEC’ 13 benchmark using the

recommended parameters from [63].
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TABLE 5.2: Comparison against UES-CMA-ES, UES and CMA-ES using 300,000 func-
tion evaluations

No. Combo-StdReward UES-CMA-ES UES CMA-ES
Mean Mean Yo-diff Mean Yo-diff Mean Yo-diff
1 0.00E+00 0.00E+00 0.0% 1.20E—-04 -100.0% 0.00E+00 0.0%
2 1.06E+02 2.13E—04 100.0% 1.49E+06 -99.9% 0.00E+00 100.0%
3 1.98E—02 6.80E+02  -100.0% 2.08E+06  -100.0% 2.21E—-02 -10.3%
4 2.46E—06 0.00E+00 100.0% 1.21E+03  -100.0% 3.87E+03  -100.0%
5 5.40E—05 2.14E—-07 99.6% 1.19E—02 -99.5% 0.00E+00 100.0%
Uni-modal 39.9% -99.9% 17.9%
6 0.00E+00 5.28E+00  -100.0% 2.95E+01  -100.0% 8.41E+00 -100.0%
7 5.69E—02 7.88E—01 -92.7% 8.21E—01 -93.0% 1.59E+01 -99.6%
8 2.09E+01 2.09E+01 0.1% 2.09E+01 0.0% 2.11E+01 -0.6%
9 9.82E+00 1.20E+01 -18.1% 1.19E+01 -17.6% 1.45E+01 -32.4%
10 0.00E+00 1.91E—-02 -100.0% 1.97E—-01  -100.0% 1.69E—02  -100.0%
11 8.62E+00 8.17E+00 5.2% 4.48E+00 48.0% 5.47E+01 -84.2%
12 7.95E+00 8.34E+00 -4.6% 4.65E+00 41.5% 5.05E+01 -84.2%
13 1.11E+01 9.41E+00 15.4% 4.58E+00 58.8% 1.13E+02 -90.2%
14 1.24E+03 1.87E+03 -33.8% 1.92E+03 -35.6% 3.43E+03 -64.0%
15 1.03E+03 1.66E+03 -37.6% 1.63E+03 -36.8% 4.13E+03 -75.0%
16 2.37E—02 9.84E—02 -75.9% 1.39E—01 -82.9% 3.01E+00 -99.2%
17 3.85E+01 3.84E+01 0.4% 3.72E+01 3.3% 7.45E+01 -48.3%
18 4.16E+01 4.70E+01 -11.4% 4.42E+01 -5.7% 9.39E+01 -55.7%
19 1.94E+00 1.00E+00 48.5% 1.44E+00 25.7% 3.62E+00 -46.3%
20 1.08E+01 1.32E+01 -17.7% 1.22E+01 -11.1% 1.50E+01 -27.8%
Multi-modal -28.1% -20.3% -67.2%
21 3.37E+02 3.56E+02 -5.3% 3.64E+02 -7.4% 3.00E+02 10.8%
22 1.12E+03 1.77E+03 -36.5% 1.84E+03 -38.9% 3.70E+03 -69.6%
23 1.16E+03 2.00E+03 -42.2% 2.02E+03 -42.7% 3.56E+03 -67.4%
24 2.11E+02 2.08E+02 1.1% 2.08E+02 1.3% 2.43E+02 -13.2%
25 2.68E+02 2.67E+02 0.3% 2.72E+02 -1.3% 2.57E+02 4.1%
26 247E+02 2.20E+02 10.7% 2.31E+02 6.3% 3.08E+02 -19.7%
27 5.35E+02 4.62E+02 13.7% 4.68E+02 12.6% 6.93E+02 -22.8%
28 3.00E+02 3.00E+02 0.0% 3.00E+02 -0.1% 3.00E+02 0.0%
Composition -7.2% -8.8% -22.2%
Entire Benchmark -10.0% -31.3% -39.1%

Table 5.2 presents the mean error achieved by each algorithm and the relative
performances achieved by Combo-StdReward versus UES-CMA-ES, UES and CMA-ES.
As in the previous table, these values indicate by what amount (percent)
Combo-StdReward (b) outperforms UES/CMA-ES/UES-CMA-ES (a) —- positive values
indicate that RL hybrid outperforms the other algorithms. A -test between the two
compared samples is also reported to allow a comparison on the basis of statistically

significant differences at the 5% level.

For the uni-modal functions, Combo-StdReward exhibits significant improvements over
UES and CMA-ES. The mean error is notably lower for Combo-StdReward in these

cases, showcasing its superior performance. However, it is important to note that there are
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certain uni-modal functions where UES-CMA-ES performs better, suggesting that the

hybridization does not uniformly benefit all problem types.

In the context of multi-modal functions, Combo-StdReward demonstrates a performance
gain of approximately 28.17% when compared to UES-CMA-ES. The relative
performance improvements over UES and CMA-ES are also noteworthy, emphasizing the
effectiveness of the RL-based approach for tackling these complex functions. This results
is specially relevant since UES-CMA-ES was originally designed to perform well on this

type of problems, and as result in [82] show, it is state of the art in this field.

The results further reveal that Combo-StdReward performs competitively on composition
functions within the benchmark, with slight variations in performance when compared to
UES-CMA-ES, UES, and CMA-ES. This suggests that the RL-based approach maintains

a similar level of performance across different problem categories.

When considering the entire benchmark, the Combo-StdReward hybrid consistently
outperforms UES-CMA-ES, achieving an impressive overall improvement of
approximately 10.04%. Furthermore, it demonstrates relative performance improvements
over both UES and CMA-ES, with 31.27% and 39.15% gains, respectively. The
RL-based “Combo-StdReward” hybrid outperforms UES, CMA-ES, and UES-CMA-ES
on a substantial number of functions within the benchmark, achieving better results on 21
functions across the uni-modal, multi-modal, and composition function categories. This
performance advantage highlights the effectiveness of the RL-based approach in a diverse

set of optimization challenges

We also performed a comparative analysis between the RL-based Combo-StdReward,
Particle Swarm Optimization, and Differential Evolution. For PSO a standard version [92]
with a ring topology is used. Additional implementation details are the use of p = 50
particles [92], zero initial velocities [93] and “Reflect-Z” for particles that exceed the
boundaries of the search space (i.e. reflecting the position back into the search space and

setting the velocity to zero) [94]. Differential Evolution is an implementation of
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TABLE 5.3: Comparison against PSO and DE using 300,000 function evaluations

No. Combo-StdReward PSO DE
Mean Mean Yo-diff Mean Yo-diff
1 0.00E+00 0.00E+00 0.0% 2.60E+01 -100.0%
2 1.06E+02 4.52E+05 -99.9% 6.94E+07 -100.0%
3 1.98E—02 3.23E+06 -100.0% 5.09E+09 -100.0%
4 2.46E—06 5.92E+03 -100.0% 5.37E+04 -100.0%
5 5.40E—05 0.00E+00 100.0% 3.11E+01 -100.0%
Uni-modal -40.0% -100.0%
6 0.00E+00 242E-01 -100.0% 6.63E+01 -100.0%
7 5.69E—02 2.33E+01 -99.7% 7.58E+01 -99.9%
8 2.09E+01 2.07E+01 1.1% 2.12E+01 -1.3%
9 9.82E+00 1.53E+01 -35.7% 4.58E+01 -78.5%
10 0.00E+00 1.80E—01 -100.0% 1.76E+01  -100.0%
11 8.62E+00 2.75E+01 -68.6% 1.92E+02 -95.5%
12 7.95E+00 4.01E+01 -80.1% 2.26E+02 -96.4%
13 1.11E+01 6.84E+01 -83.7% 2.23E+02 -95.0%
14 1.24E+03 1.39E+03 -10.9% 6.67E+03 -81.4%
15 1.03E+03 1.77E+03 -41.6% 7.50E+03 -86.2%
16 2.37E-02 1.05E+00 -97.7% 3.97E+00 -99.4%
17 3.85E+01 5.34E+01 -27.8% 2.30E+02 -83.2%
18 4.16E+01 8.31E+01 -49.9% 2.58E+02 -83.8%
19 1.94E+00 2.25E+00 -13.5% 2.30E+01 -91.5%
20 1.08E+01 6.32E+00 41.6% 1.50E+01 -27.8%
Multi-modal -51.1% -81.3%
21 3.37E+02 2.70E+02 19.7% 3.44E+02 -2.0%
22 1.12E+03 1.48E+03 -24.2% 6.94E+03 -83.8%
23 1.16E+03 2.45E+03 -52.8% 7.77E+03 -85.1%
24 2.11E+02 2.45E+02 -13.9% 3.21E+02 -34.4%
25 2.68E+02 2.52E+02 5.9% 3.50E+02 -23.4%
26 2.47E+02 2.00E+02 19.0% 2.30E+02 6.8%
27 5.35E+02 7.09E+02 -24.4% 1.26E+03 -57.5%
28 3.00E+02 7.32E+02 -59.0% 4.08E+02 -26.4%
Composition -16.2% -38.2%
Entire Benchmark -39.1% -72.3%

DE/rand/1/bin with typical parameters of population size p = 50, crossover Cr = 0.9,
and scale factor F' = 0.8 [95]. These result are presented in Table 5.3, and were

conducted using 300,000 function evaluations and 51 independent runs on each function.

In the context of uni-modal functions, Combo-StdReward consistently demonstrates
significant improvements over both PSO and DE. The mean error for Combo-StdReward
is substantially lower than that of PSO and DE, resulting in performance gains of
approximately 40% and 100%, respectively, over these two conventional optimization
techniques. This highlights the remarkable effectiveness of the RL-based approach in

solving uni-modal problems.

77



When tackling multi-modal functions, Combo-StdReward continues to excel, showcasing
a remarkable 51.13% improvement over PSO and a remarkable 81.36% improvement
over DE. The significant performance gains over these conventional algorithms
emphasize the robustness and adaptability of Combo-StdReward in addressing complex,

multi-peaked functions.

The results for composition functions demonstrate that Combo-StdReward maintains a
competitive edge with a performance advantage of approximately 16.21% over PSO and
38.24% over DE. These findings underscore the consistent performance of the RL-based
hybrid approach, demonstrating that it can effectively optimize composite functions

within the benchmark.

Considering the overall benchmark, Combo-StdReward exhibits a consistent and
impressive performance improvement of approximately 39.17% over PSO and 72.37%
over DE. These results reinforce the notion that the Combo-StdReward hybrid is a
powerful and versatile optimization tool, capable of outperforming traditional algorithms

across a wide range of optimization problems.

While it would be ideal to compare our approach against every possible metaheuristic,
such as Genetic Algorithms, practical constraints necessitated focusing on a subset of
well-established algorithms. PSO and DE were selected for comparison because they are
among the most widely used optimization techniques in continuous domains, where our
research is focused. Both methods are particularly popular due to their simplicity and
effectiveness in handling a wide range of continuous optimization problems[96]. In
contrast, Genetic Algorithms, while powerful, are often more associated with discrete
optimization tasks and may not perform as consistently as PSO and DE in continuous

domains.

One of the main motivations and hypothesis of this thesis was that using UES-CMA-ES
with RL restarts would allow for improved optimization with larger budgets of function

evaluations. To confirm this hypothesis we repeated the previous experiments but with
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TABLE 5.4: Comparison against UES-CMA-ES, UES and CMA-ES using 900,000 func-
tion evaluations

No. Combo-StdReward UES-CMA-ES UES CMA-ES
Mean Mean Yo-diff Mean Yo-diff Mean Yo-diff
1 0.00E+00 0.00E+00 0.0% 1.44E—06  -100.0% 0.00E+00 0.0%
2 0.00E+00 0.00E+00 0.0% 3.78E+05  -100.0% 0.00E+00 0.0%
3 0.00E+00 1.28E—01  -100.0% 7.45E+04  -100.0% 6.80E—05 -100.0%
4 0.00E+00 0.00E+00 0.0% 1.12E+01  -100.0% 7.62E+03  -100.0%
5 0.00E+00 0.00E+00 0.0% 4.00E—03 -100.0% 0.00E+00 0.0%
Uni-modal -20.0% -100.0% -40.0%
6 0.00E+00 5.28E+00  -100.0% 1.75E+01  -100.0% 1.06E+01  -100.0%
7 1.47E—-02 1.97E—01 -92.5% 2.05E-01 -92.8% 1.51E+01 -99.9%
8 2.08E+01 2.09E+01 -0.2% 2.09E+01 -0.2% 2.10E+01 -0.9%
9 8.37E+00 9.87E+00 -15.2% 1.08E+01 -22.4% 1.69E+01 -50.6%
10 0.00E+00 1.19E—02  -100.0% 1.43E—02 -100.0% 1.26E—02  -100.0%
11 1.43E+00 2.22E+00 -35.8% 2.16E+00 -33.9% 4.69E+01 -97.0%
12 8.29E—01 1.06E+00 -21.9% 1.39E+00 -40.5% 4.95E+01 -98.3%
13 9.62E—01 1.72E+00 -44.1% 1.28E+00 -24.7% 1.14E+02 -99.2%
14 1.20E+03 1.72E+03 -29.9% 1.69E+03 -28.8% 4.17E+03 -11.1%
15 1.30E+03 1.30E+03 -0.0% 1.19E+03 8.1% 3.62E+03 -64.2%
16 1.39E—-02 5.48E—02 -74.7% 6.08E—02 -77.2% 3.19E+00 -99.6%
17 3.35E+01 3.32E+01 1.1% 3.47E+01 -3.4% 7.42E+01 -54.8%
18 3.77E+01 3.41E+01 9.4% 3.41E+01 9.4% 9.81E+01 -61.6%
19 5.59E—02 431E—-01 -87.0% 5.73E-01 -90.2% 3.81E+00 -98.5%
20 9.12E+00 9.22E+00 -1.0% 9.78E+00 -6.7% 1.50E+01 -39.2%
Multi-modal -39.5% -40.2% -75.7%
21 3.00E+02 3.67E+02 -18.3% 3.40E+02 -11.7% 3.18E+02 -5.7%
22 1.02E+03 1.65E+03 -37.8% 1.56E+03 -34.1% 3.38E+03 -69.7%
23 1.33E+03 1.69E+03 -21.0% 1.61E+03 -17.1% 3.75E+03 -64.4%
24 2.00E+02 2.04E+02 -1.9% 2.05E+02 -2.4% 2.38E+02 -16.1%
25 2.56E+02 2.65E+02 -3.5% 2.66E+02 -3.8% 2.57E+02 -0.4%
26 2.00E+02 2.24E+02 -10.9% 2.20E+02 -9.1% 3.14E+02 -36.4%
27 3.07E+02 3.65E+02 -15.8% 4.18E+02 -26.5% 6.91E+02 -55.6%
28 2.80E+02 3.00E+02 -6.7% 3.00E+02 -6.7% 3.00E+02 -6.7%
Composition -14.5% -13.9% -31.9%
Entire Benchmark -28.9% -43.4% -56.8%

three times the original budget of evaluations (i.e., 900,000 function evaluations).
Table 5.4 presents the comparison between Combo-StdReward, UES-CMA-ES, UES, and
CMA-ES using 900,000 function evaluations demonstrates remarkable improvements,

building on the previous findings; Table 5.5 presents the results versus DE and PSO.

In the context of uni-modal functions, Combo-StdReward exhibits a substantial
performance boost when given a larger budget. The mean error is zero for all uni-modal
functions, which means it finds the global optimum in every run. Although the other
algorithms also improve with the larger budgets, the improvement is not so big and for

some functions they miss the global optimum.

In the set of multi-modal and composition functions there is also a significant
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improvement in performance with the larger budget of evaluations. With an overall
improvement over UES-CMA-ES of 28.85%, and even larger improvements over UES
and CMA-ES. This emphasizes that the RL-based Combo-StdReward approach
effectively capitalizes on increased function evaluations to enhance the optimization
process, a capability that is largely absent in conventional metaheuristics with controlled

convergence schedules.

When compared against classic algorithms such as DE and PSO, the relative improvement
in all categories also increases. This confirms that our proposed algorithm is better at
taking advantage of long execution budgets than those well known metaheuristics. These
results suggest that the RL-based hybrid approach excels not only in terms of optimization
quality but also in its ability to scale effectively with larger budgets, making it a powerful

and versatile choice for addressing a wide spectrum of optimization challenges.

To rigorously evaluate the performance differences between the algorithms, a 7-test was
conducted on the error values obtained from the independent runs for each algorithm. The
t-test is a statistical tool used to determine whether the means of two datasets are
significantly different from each other. In this context, the test helps to assess whether the
observed differences in the errors reported by the algorithms are due to random variation

or if they reflect a true difference in performance.

The goal of this analysis is to determine if the error samples from different algorithms
follow different distributions, which would indicate that the results can be considered
statistically distinct. A p-value resulting from the #-test is used to make this
determination. Specifically, if the p-value is less than 0.05 (the 5% significance level), we
can reject the null hypothesis and conclude that the differences between the algorithms

are statistically significant.

The p-values for each comparison are reported in Table 5.6. This table includes the
p-values associated with the comparisons of the RL-based Combo-StdReward algorithm

against the other algorithms (UES-CMA-ES, UES, CMA-ES, DE, and PSO) under two
80



TABLE 5.5: Comparison against PSO and DE using 900,000 function evaluations

No. Combo-StdReward PSO DE
Mean Mean Yo-diff Mean Yo-diff
1 0.00E+00 0.00E+00 0.0% 2.66E+01 -100.0%
2 0.00E+00 1.56E+05 -100.0% 2.55E+07 -100.0%
3 0.00E+00 2.42E+06  -100.0% 1.27E+08 -100.0%
4 0.00E+00 4.85E+02 -100.0% 3.92E+04 -100.0%
5 0.00E+00 0.00E+00 0.0% 2.97E+01 -100.0%
Uni-modal -60.0% -100.0%
6 0.00E+00 6.90E—02 -100.0% 5.99E+01 -100.0%
7 1.47E—02 2.17E+01 -99.9% 4.05E+01 -99.9%
8 2.08E+01 2.06E+01 0.9% 2.12E+01 -1.6%
9 8.37E+00 1.47E+01 -43.2% 4.54E+01 -81.5%
10 0.00E+00 2.06E—01 -100.0% 1.17E+01  -100.0%
11 1.43E+00 2.55E+01 -94.4% 1.57E+02 -99.0%
12 8.29E—-01 3.94E+01 -97.9% 2.07E+02 -99.6%
13 9.62E—01 6.67E+01 -98.5% 2.00E+02 -99.5%
14 1.20E+03 1.30E+03 -7.5% 6.07E+03 -80.1%
15 1.30E+03 1.70E+03 -23.8% 7.42E+03 -82.5%
16 1.39E—02 8.96E—01 -98.4% 4.03E+00 -99.6%
17 3.35E+01 4.96E+01 -32.4% 2.01E+02 -83.3%
18 3.77E+01 6.41E+01 -41.2% 2.36E+02 -84.0%
19 5.59E—-02 2.15E+00 -97.4% 2.29E+01 -99.7%
20 9.12E+00 5.78E+00 36.6% 1.50E+01 -39.1%
Multi-modal -59.8% -83.3%
21 3.00E+02 2.30E+02 23.3% 3.39E+02 -11.5%
22 1.02E+03 1.46E+03 -29.6% 6.42E+03 -84.0%
23 1.33E+03 2.28E+03 -41.4% 7.57E+03 -82.3%
24 2.00E+02 2.43E+02 -17.5% 3.19E+02 -37.2%
25 2.56E+02 2.50E+02 2.2% 3.49E+02 -26.7%
26 2.00E+02 2.00E+02 -0.0% 2.16E+02 -7.2%
27 3.07E+02 6.86E+02 -55.2% 8.92E+02 -65.5%
28 2.80E+02 5.78E+02 -51.5% 4.43E+02 -36.7%
Composition -21.2% -43.9%
Entire Benchmark -48.8% -75.0%

different evaluation budgets: 300,000 and 900,000 function evaluations. A p-value below
0.05 in the table indicates that the difference in performance between Combo-StdReward
and the corresponding algorithm is statistically significant at the 5% level, thereby
affirming the robustness of the Combo-StdReward approach in achieving lower error

values.

The p-values in Table 5.6 indicate the statistical significance of the differences in error
distributions between the RL-based Combo-StdReward algorithm and the other
algorithms across the CEC’ 13 benchmark functions. For most functions, the p-values are

below 0.05, highlighting that the improvement of the RL hybrid is statistically significant.

81



TABLE 5.6: P-values from t-tests comparing Combo-StdReward against other algorithms
for each function of the CEC’ 13 benchmark

No. | UES-CMA-ES UES CMA-ES DE PSO
300k 900k | 300k 900k | 300k 900k | 300k 900k | 300k 900k
- - 0.00 0.00 - - 0.00  0.00 - -
0.00 - 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.00

0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
- - 0.00 0.00 | 0.00 - 0.00 0.00 | 0.00 -

0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.09 0.06 0.07 0.05 | 0.04 003 | 002 0.01 | 0.01 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.02 0.00 0.01 0.00 | 0.00 0.00 | 000 0.00 | 0.00 0.00
0.01 0.00 0.01 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.01 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.07 0.05 0.00 0.05 | 005 0.01 | 000 0.00 | 0.03 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.05 0.04 0.00 0.00 | 0.01 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
0.03 0.01 0.01 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
25 | 0.04 0.01 0.01 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
26 | 0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.06 0.00 | 0.00 0.00
27 | 0.00 0.00 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
28 | 0.05 0.01 0.05 0.01 | 0.05 0.00 | 0.00 0.00 | 0.00 0.00
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This suggests that the differences in performance are not due to random variation, but

rather reflect a true performance advantage of the RL-based approach.

However, there are a few functions where the p-values are 0.05 or above (highlighted in
bold). In these cases, the statistical significance is not achieved, likely because the
functions have a topology that leads all algorithms to converge to similar results. This
convergence reduces the observable differences between the algorithms, resulting in
higher p-values and indicating that the performance differences may not be statistically

significant in these specific cases.

Additionally, for some functions, the p-value is omitted to indicate that the global

optimum was found in every execution, leading to identical results across all runs. This
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results in a p-value that cannot be calculated since there is no variation in the data to

compare

5.3 Discussion

The results presented in this chapter offer a resoundingly positive response to the research
questions and hypotheses posed at the beginning of this study. The primary achievement
is the demonstration of the feasibility of creating a deep reinforcement learning solution
for intelligent restarts within the context of exploration-only exploitation-only hybrid
algorithms. The trained agents, notably the FinalCombo agent with the standard reward
function, have substantially enhanced the performance of the UES-CMA-ES algorithm.
This accomplishment is particularly noteworthy, considering that UES-CMA-ES is
already a state-of-the-art algorithm for optimizing complex multi-modal functions. By
pushing the boundaries of its performance, the new algorithm emerges as one of the most

promising optimization techniques available.

Furthermore, results in this chapter have also proven that the multi-restart strategy
combined with the Deep Learning models can take advantage of large budget of function
evaluations. The comparison of 300,000 and 900,000 function evaluations represents that
Combo-StdReward has a better performance on the entire benchmark against all five other
algorithms. Meanwhile, the results indicates that Combo-StdReward outperforms in basic
multi-modal functions. It also proves that RL enhanced UES-CMA-ES hybrid is potential

in more real world applications.

The comparative analysis against well-established algorithms such as PSO, DE, UES, and
CMA-ES further illuminates the competitive edge of the DRL-enhanced hybrid approach.
Specifically, the FinalCombo agent with the standard reward function consistently

outperformed these traditional optimization methods across the board. This comparative
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advantage holds true for both the 300,000 and 900,000 function evaluation scenarios,

highlighting the robustness and versatility of the DRL-enhanced approach.

The findings from this study have profound implications for tackling real-world
optimization challenges. The enhanced performance and scalability of the DRL-enhanced
UES-CMA-ES algorithm make it a highly promising tool for a wide range of
applications, from engineering design optimizations to complex decision-making
problems in uncertain environments. Its ability to efficiently navigate and optimize across

diverse and complex landscapes presents a significant advancement in the field.
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Chapter 6

Conclusions and Future Work

In summary, we proposed a novel hybridization algorithm to improve the metaheuristics,
UES-CMA-ES. Our major contribution is modelling this algorithmic structure as a
reinforcement learning problem and the agent will be tasked with determining where to
restart the algorithm and/or how to modify the parameters of the search. The environment
is the interaction between the metaheuristic and the objective function, and the agent will
receive the information collected during the optimization process as the observations from
the environment. The agent makes actions that decide where and how to perform the
restart upon the environment, and improvement in the optimization results from one
restart to the next is the reward obtained by the agent after each action. We took
UES-CMA-ES as our metaheuristic algorithm, adapting it to have restarts and

implementing it in Python because the original algorithm didn’t have restarts.

After modelling the problem of restarts as a RL problem, it is important to find a good
environment, that means finding the best observations, actions and reward function. In our
initial approach, we employed a DQN agent and the environment that inputs the
convergence curve of the optimization algorithm and outputs as action a solution in that
curve to be used as the initial point for the restart. We tested the performance of the Agent

+ Environment as RL solution on the IEEE CEC’ 13 benchmark. However, this RL
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solution did not perform effective improvement in optimization. We set two comparative
experiments that changes their actions made by agent while keeping other conditions

same, but the results still had no improvements.

To find the reason of poor performance in the initial approach, we created an experimental
framework for testing different environments. We tested the environment with different
policies and the results show that the agent was unable to find suitable policies to improve
the performance. Thus, we created three new environments to do the environment test
experiment and got promising results in FinalRange and FinalCombo environments.
After training the DQN agent on these two environments we found the FinalCombo
environment performed better, so we will use the DQN agent +FinalCombo environment
as our reinforcement learning solution in the research from now. Then, we did
generalization that will allow to deploy the agent on any optimization function by
normalizing reward values to avoid a potential reward hacking. We trained and tested over
the entire benchmark and compared the results of the UES-CMA-ES reinforcement
learning hybrid with other algorithms. The results of comparison represent the
improvement of UES-CMA-ES Hybrid increases in all categories relatively, and this
confirms that the research hypothesis of this thesis that RL restarts improves the

metaheuristics.

Moreover, the research has revealed that this multi-restart algorithm is well-equipped to
leverage extensive budgets of function evaluations. This is of great significance when
addressing real-world problems where computational time constraints are not artificially
imposed by benchmark competitions. In such scenarios, having an algorithm that can
operate for extended durations and consistently deliver improved solutions is a valuable
contribution. This capability distinguishes it from many metaheuristic algorithms, which
often struggle to harness the full potential of additional function evaluations without

extensive parameter tuning.

While this research has provided compelling answers to key research questions, it has also
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uncovered intriguing avenues for future work. Several questions remain unanswered and

serve as valuable directions for further investigation:

* Normalization of Reward Function: The observation that the normalization of the
reward function did not yield improvements raises questions. Although hypotheses
have been proposed, future work should delve into this area to provide a definitive

explanation and explore potential enhancements.

* Performance Discrepancies Across Functions: The absence of any improvement
in certain functions, including seemingly simple uni-modal functions, is a
compelling research question. This goes beyond the well-known “no-free lunch
theorem.” Investigating why the RL solution and restarts fail to enhance

performance on specific functions could offer insights into further improvements.

* Diverse DRL Architectures: While this research centered on DQN agents due to
their widespread use and effectiveness, there are other DRL architectures worth
exploring. The field of deep reinforcement learning is rich and rapidly evolving,
with options like Proximal Policy Optimization [97], Asynchronous Advantage
Actor-Critic [98] and other promising agent architectures [99]. Testing a variety of

architectures could be a promising avenue for future research.

* Environmental Modifications: The environment created for this study enabled
DQN agents to effectively learn the problem. Yet, numerous questions remain.
Would different observations be more effective? Could a broader set of actions
enhance performance? This line of inquiry opens the door for further exploration to

refine and optimize the approach.

In conclusion, this research has not only addressed fundamental questions but also
catalyzed further inquiries and ongoing work. The journey from exploring the potential of

DRL-driven smart restarts to opening up novel research avenues holds promise for the
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continued advancement of optimization algorithms and their applications in real-world
problem-solving. These results mark a significant milestone in the field of optimization,

with ample opportunities for future research and innovation.
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