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Period-Doubling Instability and Memory in Cardiac Tissue
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Theoretical studies have indicated that alternans (period-doubling instability) of action potential
duration is associated with a restitution relation with a slope = 1. However, recent experimental
findings suggest that the slope of the restitution relation is not necessarily predictive of alternans. Here,
we compared a return map memory model to action potential data from an ionic model and found that
the memory model reproduced dynamics that could not be explained by a unidimensional restitution
relation. Using linear stability analysis, we determined the onset of the alternans in the memory model
and confirmed that the slope of the restitution curve was not predictive.
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Several lines of evidence suggest that alternans, a beat-
to-beat long-short alternation in the duration of the car-
diac action potential, may play an important role in lethal
heart rhythm disorders such as ventricular fibrillation [1-
4]. Previous researchers have hypothesized that alternans
can be accounted for by a simple unidimensional return
map called the action potential duration restitution func-
tion [5—8]. This hypothesis assumes the duration D of an
action potential depends only on its preceding rest inter-
val I through some function f(7) that is measured experi-
mentally. All other degrees of freedom are presumed to be
highly dissipative and are therefore ignored. If the resti-
tution function has a slope = 1, then a period-doubling
bifurcation occurs for some value of the stimulus period.

According to this hypothesis, the slope of the steady-
state restitution function should be predictive of alter-
nans. However, recent experiments by Hall et al [9]
and Gray and Banville [10] show that the slope of
the steady-state restitution function is not predictive in
some cases. Hall ef al. found that frog cardiac tissue can
have restitution slopes of larger than 1 without alternans.
Gray and Banville found similar behavior in pig heart
tissue. These findings suggest that more degrees of free-
dom are necessary to accurately describe alternans be-
havior of cardiac tissue. In this regard, Hall ef al have
suggested that D depends not only on / but also on a
quantity called memory [9]. Memory has been invoked in
several previous studies to explain more complex cardiac
dynamics [11-15].

In this Letter, we used linear stability analysis to show
why in excitable systems, such as heart tissue, the steady-
state restitution function is not predictive of the dynam-
ics. We used a return map memory model to demonstrate
that period 1 behavior can occur even with a steep resti-
tution function, provided that one of the eigenvalues falls
below the stability boundary. We then compared the dy-
namics of the return map memory model to that of an
ionic model that produces a more detailed representation
of cardiac action potentials [16]. The dynamics produced
by both models were similar. These results have impor-
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tant implications for understanding rhythm disorders
such as ventricular fibrillation and for developing control
algorithms to eliminate these arrhythmias.

In return map memory models, the memory variable M
is assumed to accumulate during the duration D of the
action potential and dissipate during the rest interval /
(Fig. 1). Thus, M, is a function of the previous M, and
the intervening D, and I,. D,; is now a function of
M, ., as well as I,. As memory accumulates, D becomes
shorter.

The form of the memory model equations that we
studied is similar to those found in [9]. The model was
given by

Mn+1 = g(Mnr Iny Dn) = e_l”/T[l + (Mn — l)e_Dn/T]
B
DVH—I zf(MrH—lrIn) = (1 - aMn+1) A+ m
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FIG. 1. Memory accumulation and dissipation. In the return

map memory model, the memory variable M accumulates
during the duration D of the action potential and dissipates
during the rest interval I. M, therefore depends on M,, I,
and D,,. D, depends on M,,; and I,,. T is the stimulus period.
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T was the stimulus period and 7 was the time constant of
accumulation and dissipation of memory (both constants
were chosen to be the same). A = 88 msec, B = 122 msec,
C =40 msec, and D = 28 msec, as well as 7 = 180 msec,
were chosen to produce good qualitative agreement with
data generated by an ionic model simulation [16]. «
determined the influence of memory on D and varied
from O (no memory) to 1.

Figure 2 shows that the return map memory model with
a = 0.2 agreed well with the ionic model data generated
under control conditions; it produced alternans of the
same magnitude and over the same range of stimulus
period [Fig. 2(a)], and the steady-state restitution curves
were also similar [Fig. 2(b)].

The ionic model allowed us to study the effect of
changing ionic current conductances on alternans in a
systematic and precise way. For example, increasing the
conductance of Iy, Ig,, or Ig,, or decreasing the con-
ductance of I, eliminated alternans [16]. For some val-
ues of these conductances, no alternans occurred despite
a restitution slope = 1. We therefore attempted to fit the
memory model to an ionic simulation that had a steady-
state slope = 1 but did not exhibit alternans. To do this,
we increased the maximum conductance of /g, one of the
plateau currents in the canine ionic model, by a factor of
2. This eliminated alternans while maintaining a slope =
1 (Fig. 3), suggesting that /¢, may play a role in the ionic
basis for memory. Increasing « to 0.58 in the return map
model produced good agreement with the ionic model
data; alternans was eliminated, while the restitution slope
remained = 1.

After verifying agreement between the return map and
ionic models, we used linear stability analysis to find the
instability to alternans analytically in the return map
model. We linearized about the period 1 solution, (M*, I*).

Mn+1 = g(Mnr Ins Dn) =M+ 8Mn+1’
Ly =T— f(Mn+1’In) =1I"+ 08I,

and found the eigenvalues A of the resulting matrix equa-
tion. Because perturbations grow as &, = §yA", the
period 1 fixed point goes unstable when |A| = 1. In par-
ticular, a period-doubling (or flip) bifurcation occurs
when one of the eigenvalues falls below —1. We also
calculated the steady-state restitution slope. It can be
shown that the steady-state slope is not related to the
eigenvalues in any simple way.

To check the linear stability calculation, we plotted the
eigenvalue as a function of stimulus period 7', as well as
the instability boundary —1 for @ = 0.2. Figure 4 illus-
trates that the eigenvalue was indeed predictive of the
dynamics: alternans occurred when A = —1. Finally, we
plotted the eigenvalue as a function of 7 for a = 0.58
(Fig. 5). As expected, the eigenvalue never fell below —1,
so no alternans occurred. We note that the slope of the
steady-state restitution curve was not predictive. In Fig. 5,
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FIG. 2. Steady-state dynamics in the wild-type ionic (filled
circle) and return map (unfilled circle) models. & = 0.2 in the
return map model. (a) Steady-state duration plotted versus
stimulus period. Alternans of similar magnitude appeared in
both models over similar ranges of stimulus period. (b) Steady-
state restitution. As expected, both models had regions where
the restitution slope was = 1. (Solid line is a reference of
slope 1.)

we plotted the negative of the slope (so that it fell on the
same side of zero as the other quantities). Even though
there was a region of 7" over which the slope is = 1, no
alternans occurred.

The results of this study illustrate that the dynamics of
cardiac tissue may not be described by a simple unidi-
mensional mapping. This idea is neither new [8,9,12] nor
surprising, given that the dynamics of a heart cell is
determined by the interaction of many degrees of free-
dom. For example, the ionic model studied here, which
already ignores several degrees of freedom, consists of
13 coupled differential equations describing the interac-
tion of membrane voltage and 13 ionic currents [16]. Still,
simplified descriptions of heart dynamics seem possible,
in that the results generated by the return map memory
model agree well with those obtained from the ionic
model. Further, the stability analysis in this Letter pro-
vides a simple explanation for the ionic model results and
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FIG. 3. Steady-state dynamics in the ionic (filled circle) and
return map (unfilled circle) models. /g, was doubled in the
ionic model. @ = (.58 in the return map model. (a) Steady-state
duration plotted versus stimulus period. In both the ionic model
and return map model, no alternans occurred. (b) Steady-state
restitution. Both models had regions of the restitution relation-
ship with slope larger than 1. (Solid line is a reference of
slope 1.)

the experimental findings by Hall ef al: in systems with
memory, the restitution function is not predictive of dy-
namical instabilities such as alternans. Instead, the ei-
genvalues of the system must be calculated to find the
bifurcations.

This result may have important implications for iden-
tifying the mechanisms for lethal heart rhythm disorders.
The restitution hypothesis argues that arrhythmias such
as ventricular fibrillation are caused by dynamical spatial
heterogeneity in association with alternans and a restitu-
tion slope = 1 [1-4]. The present study analytically iden-
tifies the role that memory plays in determining
alternans, thereby illustrating that analyses of restitution
alone may not be adequate for accurately predicting heart
disorders.

Because of the association between arrhythmias such
as ventricular fibrillation and alternans, several groups
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FIG. 4. Period-doubling bifurcation in the return map mem-
ory model. @ = 0.2 to reproduce the dynamics of the wild-type
ionic model. (a) Linear stability in the return map model. The
solid line is the eigenvalue calculated from linear stability
analysis plotted as a function of the stimulus period 7. The
dashed line is the stability boundary. If the eigenvalue fell
below —1 a period-doubling bifurcation was predicted to occur.
(b) Numerical iteration of the return map memory model. The
duration D is plotted versus 7. The return map generated
alternans over the same range of T as predicted by the linear
stability analysis.

have attempted to develop algorithms to control the alter-
nans instability, as well as other more complex dynamical
instabilities [17—20]. The fact that the restitution function
is in some cases not predictive of alternans may impact
on these attempts to control instabilities. For example, it
may be necessary to incorporate memory into algorithms
such as the one used in [19] if they are to be effective
in vivo.

Control of alternans also might be achieved pharma-
cologically, provided the ionic basis for memory is
known. At present, however, the ionic mechanism for
memory remains to be determined. Hund and Rudy found
that memory in an ionic model was related to slow
changes in intercellular ion concentrations [21] over a
time scale of minutes. On an even shorter time scale, it
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FIG. 5. Linear stability in the return map model with a =

0.58 to reproduce the dynamics of the ionic model with I,
increased by a factor of 2. (a) The solid line is the eigenvalue
calculated from linear stability analysis plotted as a function of
the stimulus period 7. The dashed line is the stability boundary.
The dotted line is the negative of the steady-state restitution
slope (so that it is on the same side of zero as the other
quantities). Since the eigenvalue never fell below —1, no
period-doubling bifurcation was predicted. (b) Numerical it-
eration of the return map memory model. The duration D is
plotted versus 7. The return map did not produce alternans
even though the slope of the steady-state restitution function
was larger than 1 over a wide range of 7.

seems likely that the dynamics of ion channels them-
selves may contribute to memory. In the ionic model we
studied, Ik, appeared to play a role in memory, based on
the fact that doubling the conductance of Ik, eliminated
alternans while maintaining a restitution slope = 1.
Further studies are needed to identify other time depend-
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ent currents and processes, such as release of calcium
from intracellular stores, that may contribute to memory.
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