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Abstract

Syndromic surveillance is a tool for continuous, automated extraction of surveillance information
from health data sources. The research documented in this dissertation aimed at exploring infor-
matics and data mining tools in order to develop and implement techniques to harvest additional
surveillance information from existing diagnostic laboratory data. Data concerning laboratory test
requests for diagnosis in cattle were provided by the Animal Health Laboratory (AHL), at the Uni-
versity of Guelph, Ontario. A thorough review of the initiatives of syndromic surveillance in animal
health was conducted. Documented difficulties regarding the acquisition of clinical data, and espe-
cially sustainability of systems based on voluntary participation of veterinarians or data providers
in scattered locations, resulted in the choice of using laboratory data in this research. Automated
methods to classify laboratory submission data into clinical syndromes were investigated. One of
the challenges of working with laboratory data was determining how to transform diagnostic data
into epidemiological information. The most time-consuming step of classification was the creation
of a dictionary of keywords relevant to each classification task, and the definition of the relationship
between these words, their co-occurrences and the target syndromic group. Once defined, however,
these relationships were easily translated into a set of rules that achieved high classification perfor-
mance. After classification was performed, the data were reduced to multiple time-series registering
daily (or weekly) submissions to the different syndromes monitored. Retrospective evaluation of
the time-series representing daily counts for each syndromic group were carried out in order to
identify temporal effects present, and define methods to model or remove them on-line. A method
is presented for automated removal of excessive noise and historical outbreaks in historical data,
in order to construct baselines of normal behaviour. These baselines could be used as training
data for the algorithms implemented in the next stages. Lastly, the prospective phases of system
development were carried out, that is, the analyses which scan the time series in an on-line process,

one day at a time, in order to detect temporal aberrations in comparison to a baseline of historical

vi



data. Several aberration detection algorithms were evaluated. Upon the conclusion that no single
algorithm was superior in all outbreak scenarios, a scoring system to combine algorithms was de-
veloped. All steps were set up using open source software, and delivered to the data provider as
a simple desktop application scheduled to run daily in an automated manner. Fast development
and simple maintenance is expected to lead to incorporation of this system into the routine of
the data, becoming an indispensable tool for diagnosticians and epidemiologists, and encouraging

further technical development.
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Chapter 1

Introduction and objectives



1.1 Introduction

At the turn of the millennium Doherr and Audige (2001) [I] pointed out the changing
demands in animal health surveillance, as disease control and eradication around the
globe have increased the necessity to deal with rare events and provide evidence of
disease freedom. The authors highlighted the role of early detection of emerging (or
re-emerging) diseases, calling attention to the need of developing and implementing
“scientifically based approaches that use the resources (and data) available.” Over the
intervening decade technological infrastructures and the health data available within
them have developed rapidly, disease prevalence has reduced for some diseases in
many areas, and general awareness of the need for early disease detection has grown
as a result of publicity around major disease outbreaks such as pandemic influenza

as well as the concern regarding bioterrorism events.

These significant changes have caused surveillance to shift, in the last decade in
particular, towards systems capable of early detection of disease [2]. Modern bio-
surveillance systems are designed to take advantage of data assumed to contain sig-
natures of healthcare-seeking behaviours, which are not as specific as diagnosis, but
allow for more rapid detection, and can be aggregated into syndromes. Surveillance
based on these types of data is therefore referred to as syndromic surveillance |3].
Other definitions of syndromic surveillance exist, all of which emphasize the use of

prediagnostic data [4].

Syndromic surveillance has been used not only for early detection of diseases, but
also for real-time monitoring of outbreaks (situational awareness [5]), monitoring of
disease trends, and to provide reassurance of disease freedom [6l [7]. These goals can

be summarized as continuous analysis of health data to provide immediate feedback

[6].

Syndromic surveillance is therefore a tool for continuous, automated extraction of



surveillance information from health data sources, as timely as the rate of gathering
data in electronic format. The data source scanned should in turn be acquired
continuously, in an automated routine, and be stored electronically. In order to
improve the time to output in comparison to traditional surveillance, two directions
are possible [§]: improve the collection of traditional health data, or look for data
sources that are already collected frequently and electronically, but have not been
traditionally used for disease surveillance. The role of laboratory data as a source for
syndromic surveillance development has been recognized in public health due to its
high population coverage [9], and electronic recording [I0]. The scarcity of centralized
electronic collections of clinical data in veterinary medicine further strengthens the

motivation for the use of laboratory data in animal health surveillance.

While laboratory results are only available late in the disease continuum, labora-
tory test requests are a type of syndromic data. They are timelier than test results,
and can be grouped into syndromes according to the nature of the disease and/or
symptoms observed by the veterinarian [I1, [12] [10]. Stone (2007)[I3] investigated
the potential of using laboratory test requests for syndromic surveillance in veteri-
nary medicine and reviewed the potential biases associated with these type of data.
The author also pointed out the variability in the submission rates year to year, and
misclassification bias (veterinarian not submitting the right sample or requesting the
correct test), but concluded that the data are suitable for syndromic surveillance.
Similarly, Shaffer (2007) [14] assessed the potential of microbiology test submissions
for syndromic surveillance in companion animals assuming that the consistency of
test orders over time allows for the use of these data in prospective monitoring, and
that increases in the number of test orders can be used as indicators of an increase
in disease burden. The availability of historic data is another advantage of labo-
ratory data in veterinary medicine over other types of data, since some estimation
of a baseline of disease burden is needed in syndromic surveillance to compensate

for the lack of denominator data. Lastly, laboratory test requests screen a larger



proportion of the animal population than sick animals, as animals can be tested
for different purposes. Zhang et al. (2005) [I5] reported that four different purposes
were recorded as reasons for test requests in their laboratory data: diagnostic, export

testing, government monitoring, and industry monitoring.

1.2 Objectives

The research documented in this dissertation aimed to explore informatics and data
mining techniques, in order to develop and implement techniques to harvest addi-
tional surveillance information from existing diagnostic laboratory data. Data were
provided by the Animal Health Laboratory (AHL), at the University of Guelph.
The AHL is the primary laboratory of choice for veterinary practitioners submitting
samples for diagnosis in food animals in the province of Ontario, Canada. The AHL
has a laboratory information management system (LIMS) that is primarily used for
reporting the results of diagnostic tests. However, it can also be utilized as a data
retrieval tool for surveillance purposes. Surveillance information harvested should be
delivered to the Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA)

in order to support disease surveillance programs.

A thorough literature review of syndromic surveillance initiatives in veterinary
medicine was performed and is documented in Chapter 2 of this dissertation. It
provides important background for this work and sets the research in the context
of related research activities. Based on this review the steps necessary to set up
a syndromic surveillance system based on the data available were determined. An
inventory of the methods to be explored was elaborated. Subsequently, the research
necessary to adapt these methods to the specific characteristics of animal health data

— the data at hand in particular — was outlined and carried out.

The substantive research objectives of the thesis, which are documented in the



following chapters of this dissertation, were:

1. Conduct exploratory analyses of machine learning and rule-based methods capa-
ble of recognizing medically relevant information from laboratory submissions,

and classify them into syndromic groups (Chapter 3).

2. Evaluate, retrospectively, three years of historical data available at AHL, in
order to assess the potential of those data for development of a syndromic

surveillance system (Chapter 4). In particular, this assessment should:

e determine the temporal effects present in the data, which could affect the
performance of algorithms capable of detecting temporal aberrations (sig-
nals that must be investigated as they can indicate the presence of a disease

outbreak);
e evaluate statistical approaches to remove these temporal effects;

e clean historical data from any outbreak signatures and excessive noise in
order to establish the baseline behaviour of the data for aberration detection

in real time.

3. Evaluate the performance of different algorithms capable of monitoring the data
prospectively in near-real time (i.e. on a daily and weekly basis) in order to

detect aberrations (Chapter 5). Specifically:

e identify pre-processing methods that are effective in removing or dealing

with temporal effects in the data;

e explore methods that combine these pre-processing steps with detection al-
gorithms, in light of the data available while keeping in mind the importance

of having a detection process interpretable by the analysts;

e identify the temporal aberration detection algorithms that can provide high

sensitivity and specificity for this specific monitoring system.



4. Implement real-time monitoring using the algorithm(s) that showed best per-

formance in the previous step (Chapter 6).

These objectives represent the natural steps necessary in order to construct a
syndromic surveillance system from a new data source. Figure represents these

steps schematically.
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Chapter 2

Veterinary syndromic surveillance:
current initiatives and potential for

development

OFernanda C. Dérea, Javier Sanchez and Crawford W. Revie. Preventive Veterinary Medicine 2011, 101: 1-17
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2.1 Abstract

This paper reviews recent progress in the development of syndromic surveillance
systems for veterinary medicine. Peer-reviewed and grey literature were searched
in order to identify surveillance systems that explicitly address outbreak detection
based on systematic monitoring of animal population data, in any phase of imple-
mentation. The review found that developments in veterinary syndromic surveillance
are focused not only on animal health, but also on the use of animals as sentinels for
public health, representing a further step towards One Medicine. The main sources
of information are clinical data from practitioners and laboratory data, but a num-
ber of other sources are being explored. Due to limitations inherent in the way data
on animal health is collected, the development of veterinary syndromic surveillance
initially focused on animal health data collection strategies, analyzing historical data
for their potential to support systematic monitoring, or solving problems of data clas-
sification and integration. Systems based on passive notification or data transfers
are now dealing with sustainability issues. Given the ongoing barriers in availability
of data, diagnostic laboratories appear to provide the most readily available data
sources for syndromic surveillance in animal health. As the bottlenecks around data
source availability are overcome, the next challenge is consolidating data standards
for data classification, promoting the integration of different animal health surveil-
lance systems, and also the integration to public health surveillance. Moreover, the
outputs of systems for systematic monitoring of animal health data must be directly
connected to real-time decision support systems which are increasingly being used

for disease management and control.

Keywords Syndromic surveillance; veterinary surveillance; animal health surveil-

lance; emerging diseases; aberration detection; prospective monitoring.



2.2 Introduction

The evolution of disease control methods in veterinary medicine from campaigns and
mass action to a new phase of surveillance and selective action was defined by Dr.
Calvin Schwabe (1982) [16] as an epidemiological revolution, marked by the use of
epidemiological intelligence and analysis key tools for diagnosis and decision making.
The last decade has witnessed a further step in this revolution, with "epidemiological
intelligence" being progressively improved through novel informatics and data mining
techniques; these allow analysis to be carried out on an unprecedented quantity of

data to identify novel and useful patterns in an automated manner [17].

In this new context, providing effective and comprehensive approaches for sys-
tematic information management and analysis plays a central role in achieving the
goals of disease surveillance [I8]. While the concepts behind integrating informa-
tion from multiple sources are not novel [19)], the past decade has seen an increase
in research that is focused on developing, “the science and technologies needed for
collecting, sharing, reporting, analyzing, and visualizing infectious disease data and
for providing data and decision-making support for infectious disease” which Zeng et
al. (2005) [18] defined as infectious disease informatics. This is an interdisciplinary
field, taking advantage of a range of information technologies such as data sharing
and security, geographic information systems (GIS), data mining and visualization,

knowledge management, biostatistics and bioinformatics |17, [18§].

The uptake of these approaches gained momentum when bioterrorist events, such
as the anthrax attacks of 2001, and outbreaks of emerging infectious diseases, such
as SARS [20] underlined the necessity to recognize patterns indicative of a possible
introduction of human pathogens, natural or not, as early as possible. Using the
tools provided by infectious disease informatics, real time surveillance systems were

developed to make use of pre-diagnostic data already available and automatically

10



collected [21], such as sales of over-the-counter medicine, absences from work or
school, patient’s chief complaint upon emergency visit, or laboratory test orders [22]

23].

Due to the lack of specificity associated with pre-diagnostic data, this new type of
surveillance targets general groups of diseases, or syndromes, and is therefore often
referred to as “syndromic surveillance”. The Centers for Disease Control (CDC, USA)
has defined as syndromic surveillance those approaches which make use of “health-
related data that precede diagnosis and signal with sufficient probability of a case or
an outbreak to warrant further public health response” [3]. While less specific than
confirmatory diagnosis, data used for syndromic surveillance are more timely [2],
allowing for real-time or near-real-time analysis and interpretation of data [24]. The
assumption is not that the data are representative of the disease burden in the
population (and usually no attempt is made to estimate such parameters, as various
biases are recognized to exist), but that they are sensitive to changes to the level of
disease in the population, containing an early, though weak, signature of a disease
outbreak [25]. While syndromic surveillance definitions focus on early detection
of disease, Henning (2004) highlights the fact that with the continuous use of such
systems longitudinal data are being accumulated, allowing for a broader achievement;
“the use of existing health data in real time to provide immediate analysis and

feedback to those charged with investigation and follow-up of potential outbreaks”.

In veterinary medicine the development of systems for early detection of diseases
followed a similar path to that taken in public health. Recent focus on the “One
Medicine” concept has resulted in an increased awareness that the early detection
of outbreaks in animal populations, whether zoonotic or not, can be of great public

health importance.

While the past decade has seen a growth in the literature dealing with novel

surveillance approaches, including a great increase in the use of cluster detection
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techniques applied retrospectively to data, to the authors’ knowledge there exists
no systematic overview of the application of syndromic surveillance to veterinary
medicine. This paper reviews the current progress towards developing syndromic
surveillance in veterinary medicine, defining as such all those systems that explic-
itly address outbreak detection based on systematic monitoring of population data.
While this review focuses on syndromic surveillance systems that are already opera-
tional or are in their implementation phase, we also review studies investigating the
potential for early detection of disease using alternative types of data available in

animal health, to help the reader gain a sense of potential future developments.

2.3 Population coverage and timeliness in syndromic surveil-

lance

A primary assumption of any syndromic surveillance system is that the behavior
of the population changes when their health is affected, and that clusters (in space
and /or time) of these behavioral changes can be detected if the population is contin-
uously monitored [2I]. Therefore, syndromic surveillance systems can be designed to
minimize the main limitations of passive surveillance methods based on laboratory
confirmation and disease reports by clinicians [20], namely: chronic under-reporting;
a long time lag between outbreak onset and diagnosis; and a low sensitivity as a
result of the high specificity of these methods. The low sensitivity of traditional
surveillance relates to the focus on one disease or a list of reportable diseases, and
the dependence on the ability of the clinician to recognize the clinical signs of specific

diseases, a special limitation in cases of rare or emerging diseases [26], 27, [14].

In Figure[2.1]the timeline and population coverage associated with different surveil-
lance strategies is schematically presented for three different target populations: hu-

mans, livestock and companion animals. Syndromic surveillance aims at reducing
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the time lag associated with passive surveillance by monitoring populations before
laboratory confirmation. Under-reporting is also minimized by the systematic, con-
tinuous screening of information at earlier stages in the disease process. As illustrated
in Figure population coverage is reduced as the timeline of the disease process
continues from the general population to laboratory confirmation of diseases. Doherr
and Audige (2001) [I] have noted that in this “pyramid of scrutiny” the animal own-
ers and the veterinary practitioners act as a serial testing scheme, and the volume of
laboratory submission reflects their judgement on the cost-benefit ratio associated

with the laboratory tests.
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Figure 2.1: Schematic representation of the disease continuum in a population, and the surveillance
opportunities according to population targeted, and type of data used. The scheme illustrates the
proportions of subjects in each step of the disease process, for each of the three populations, in
comparison to their initial population. The absolute number of livestock, companion animals and
humans exposed to any given disease is not likely to be equal, and the top bars should be interpreted
as the scaled total population. Proportions are illustrative only. Similarly, icons are not intended
to represent a true count, but to illustrate comparative abundance.
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The scheme in Figure also indicates the loss in timeliness as surveillance is
applied further along in the disease process. Timeliness refers to “the difference
between the onset of an outbreak and the discovery of the outbreak” [22]. Buckeridge
(2007) 28] reviewed the determinants of detection in automated surveillance systems
in public health, pointing out characteristics of the system and of the outbreak that
affect detection. The exact characteristics of the outbreak are unpredictable, but
systems should be designed based on the expected characteristics of the disease(s)
that it aims to detect [2I]. The characteristics of the system listed by Buckeridge [28]
were the choice of data source, the sampling strategy of the system, and the detection

algorithm choice and settings.

The gain in timeliness as surveillance is applied closer to the top of the scheme
shown in Figure in comparison to the reporting of laboratory results, is usually
based on the assumption that outbreak discovery closely follows the identification of
positive cases [I4]. In reality, this will only be true for the introduction of diseases in
previously free zones/countries (any positive case is considered an alarm), and in this
special case laboratory confirmation depends on the veterinarian having suspected
the disease despite its absence in the region, and the laboratory having the specific
test for it. Where the correct tests are not ordered /performed, or the outbreak event
represents a sudden increase in the incidence of an endemic disease, its detection
would likely occur much later in the disease process, if at all, in a situation where

continuous statistical monitoring is not in place.

2.4 Syndromic surveillance initiatives in veterinary medicine

Scientific literature was reviewed using the following Medical Subject Head-ings
(MeSH): cluster analysis, disease outbreak/veterinary, biosurveillance, medical in-

formatics applications, and public health informatics. Keyword searches were pri-
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marily applied on PubMed and CAB Abstracts. The search was last updated in
January 2011. Electronic grey literature was searched using these terms and also
“syndromic surveillance” and “early disease warning”. Proceedings of the annual con-
ferences of the International Society for Disease Surveillance (ISDS), symposiums of
the International Society for Veterinary Epidemiology and Economics (ISVEE) and
Conference of Research Workers in Animal Diseases (CRWAD) dated back to 2000

were screened individually. References within the papers found were also scrutinized.

A cursory look at syndromic surveillance initiatives in veterinary medicine reveals
that this is an incipient field, and that a clear definition as to which systems should
be classified as “syndromic” is hard to achieve. We focused our review on any surveil-
lance systems based on the systematic monitoring of animal populations, using data
sources that are timelier than traditional passive surveillance (as indicated in the
left-most brackets of Figure . For the sake of structuring this review, systems
that focus primarily on detection of emerging diseases, registering only atypical cases,
are listed separately from systems that target animal health surveillance as a whole.
The latter are based on monitoring all clinical cases, aiming at detecting not only
disease introduction, but also changes in trends of endemic disease. Systems that
monitor animal health with the primary purpose of detecting zoonotic threats for
public health protection are also grouped separately. For reference, all the systems
are listed in Table 2.Iin chronological order by publication date). Peer reviewed
papers evaluating the potential of specific datasets for syndromic surveillance, but

not reporting the implementation of any system, are listed in Table 2.2
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Table 2.1: Published initiatives in veterinary syndromic surveillance

System/Ref Location Data Focus Animal Syndromes Additional Notes
type
VetPAD [29] New Clinical data from Surveillance of Livestock Not aggregated (all clinical Use of hand-held computers. Engages
Zealand practitioners animal diseases cases) participation by providing software that
contributes to practice management.

Emergences [30] France Clinical data from Early detection Any species, any country, any disease Access through website, information

practitioners of emerging includes follow-ups.
diseases

Rapid Syndrome United Clinical data from Early detection Livestock Focus on 6 groups of Various options for electronic transfer of

Validation Project for States practitioners of emerging non-routine clinical syndromes data.

Animals [31] diseases

National cattle health The Unsolved cases by Early detection Cattle Focus on individual diseases Data compilation and analyses is done

surveillance system [32] Netherlands  farmers or of emerging weekly by a surveillance team, not
veterinarians diseases automated.

BOSS [33] Australia Observations from Surveillance of Livestock Software (BOVID) receives Takes advantage of audience in daily
producers and stock animal diseases input concerning disease signs, contact with animals; Software to help
workers and groups episodes into organ producer with diagnosing the problem

systems engages participation.

Purdue United Clinical and Sentinels for Companion Retrospective pilot: tick and Makes use of already computerized and

University-Banfield States laboratory data, zoonotic Animals flea vector activity; leptospitosis centralized database, allowing for daily

National Companion direct transfer diseases; portal and ILI. Plan to focus on other automated analysis and great

Animal Surveillance [34] for syndromes geographical coverage.

evidence-based
medicine

Using pre-dx data from United Laboratory Sentinels for Companion Direct map of test orders into Makes use of already computerized

vet. lab. to detect States microbiology tests zoonotic Animals 11 syndromic groups database, allowing for daily automated

disease outbreaks in submissions diseases analysis. Use of test orders is timelier

companion animals [35] than results.

LAHVA: Linked United Clinical data from Sentinels for Companion Pilot: seasonal flu and Links in one tool the surveillance in

Animal-Human Health States human and pet zoonotic animals wastewater contamination public and animal health

Visual Analytics [36] hospitals diseases

FarmFile [37] United Laboratory results Surveillance of Livestock Focus on "Diagnostic Not Not real-time, post-result based, but the

Kingdom animal diseases Reached" events to assess the focus on non-diagnosed is innovative and
risk of new diseases emergence adds values to the current surveillance.

SAVSNET |[38] United 2 steps: 1) Surveillance of Companion Piloted using gastro-intestinal Focus on information sharing to benefit

Kingdom laboratory results; animal diseases animals syndrome not only population medicine, but also
2) real-time individual, evidence-based medicine.
practice-based

Syndromic surveillance United Animal observations  Surveillance of Livestock Syndromic groups Conceptually, can be implemented in

among livestock States by veterinarian animal diseases handheld computers and give immediate

entering an auction during auction feedback.

market [39] market days

Alberta Veterinary Canada Disease and Surveillance of Livestock Syndromic groups Part of a network supported also by

Surveillance non-disease events animal diseases pathologists and an investigation

Network [40] from practitioners network.

Ontario Swine Canada Clinical data from Surveillance of Livestock Summarized by body system Formally evaluated to assess compliance,

Veterinary-based
Surveillance System
(OSVS) [41]

practitioners

animal diseases

and production effects

completeness, coverage and timeliness.
Results show good acceptance.
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Table 2.2: Peer reviewed publications investigating the potential of different datasets in implementing veterinary syndromic surveillance systems.

Study Location Type of data Goal Animal type Syndromes Evaluation

Salmonella outbreaks United Kingdom  Laboratory Public and animal Livestock Salmonella Assess the improvements needed in the

detection [42] results health surveillance Typhimurium cases data collection process to allow for the
implementation of early detection
systems.

Laboratory data use for New Zealand Laboratory Animal disease Livestock Test orders directly Discusses the potential of the data for

syndromic submissions surveillance mapped into syndromic use in syndromic surveillance, and the

surveillance [13] groups inherent biases.

West Nile virus France Clinical data Sentinels for Horses Neurological clinical Retrospective analysis of an outbreak:

outbreak detection [43] from humans cases alarm could have been 4 weeks earlier.

practitioners

Early-warning system to Denmark Clinical data Animal disease Livestock Abortion Evaluation of the system included costs

reduce abortions in from surveillance of false alarms versus the cost of

dairy cattle [44] practitioners operating the system.

Detection of abortion in United States Laboratory Animal disease Horses Abortion Retrospective analysis of an outbreak:

mares [45] submission surveillance ‘Would have detected 1 week earlier.




2.4.1 Syndromic surveillance based on notification of atypical cases

Vourc’h et al. (2006) [46] presented a list of 14 emergence events associated with
animal disease, and claimed that in most of these the key to detection was the obser-
vation of unusual signs or an unusual combination of signs. The same authors argued
that focusing on solely reporting atypical cases (as opposed to monitoring trends for
several unspecific clinical signs) can reduce the reporting load and requirement for

disciplined coverage associated with the general syndromic surveillance approach.

The Emergence system [30] was developed in France based on two components: a
farmer component via routine surveys on farms, and a veterinarian component [30].
The veterinarian participation is based on atypical clinical case notification on a web-
site (INRA — National Institute for Agricultural Research), and follow-ups. Monthly
confirmation of vigilance is requested from veterinarians not reporting any atypical
cases. The system also tracks diseases with emergence potential and /or known pub-
lic health importance. The system currently focuses on bovines but it is built to be

generic allowing its application to “any species, any country, any disease”.

Passive reporting of atypical cases is one of the components of the National Cattle
Health Surveillance System implemented in The Netherlands in 2003 [32]. Farmers
or veterinarians report incidents not fully understood, motivated by the availability
of specialists who visit the farm free of charge, in order to collect detailed informa-
tion and investigate the problem. The system is complemented by the continuous
collection of census data, pathological diagnosis of carcasses, toxicology tests, and
periodical prevalence studies. While this represents an innovative system for early
disease detection and information collection, the data compilation and analysis is
performed by a surveillance team meeting weekly, rather than automated. The team
looks for signs of introduction of specific emerging diseases, or analyzed trends of

particular diseases, rather than grouping information into syndromes. Quarterly
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reports are made available to the public.

The Rapid Syndrome Validation Project (RSVP) was first developed for public
health, and later applied to cattle populations (RSVP-A) [31]. Clinical presenta-
tions are grouped into six syndromic groups that purposely focus on less common
endemic disease presentations, and exclude the most common diseases and produc-
tion problems. Several forms of data capture are available for veterinarians to report
observed cases, including hand-held computers, cell phone, phone and fax lines, and

the Internet.

2.4.2 Syndromic surveillance based on analysis of all clinical cases

Because the clinical signs of diseases observed in animals can vary depending on a
great number of factors [47], disease introduction events may initially present as a
collection of unspecific signs. Practitioners may therefore fail to diagnose diseases
outside their sphere of experience. Alternatively the signs may not be specific enough
to allow recognition that a new disease has been introduced [48]. Recognizing this,
more surveillance systems are designed to monitor general signs, rather than specific

diseases or only atypical cases.

In 2003 Mclntyre et al. [29] reported on VetPAD, an initiative in New Zealand
which aims to take advantage of veterinary practitioner data to improve disease
surveillance capability. Understanding that for the system to be sustainable and
keep veterinarians engaged it needed to be simple, and offer some advantages for
participation, the initiative was based on providing software that would help the
practitioner manage her/his practice using a handheld computer, which would elec-
tronically transfer data to the surveillance program. The data recorded includes all
clinical cases attended by the veterinarian, and goes beyond diagnosis, recording also

procedures, treatment, laboratory samples, medications, etc.
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Initiatives to collect practitioner data are also being developed in Canada, through
the Alberta Veterinary Surveillance Network [49, 50 [40] and the Ontario Swine
Veterinary-based Surveillance System (OSVS) [41]. In the former veterinarians are
encouraged to report all their daily animal health consultations. The veterinary
surveillance system is also supported by pathologists and an investigation network,
through which producers and other people in contact with livestock can report atyp-
ical observations. The OSVS is focused on swine veterinarians, using a variety of
recording systems including paper forms and handheld computers, adapted to each

clinic’s management.

In Australia a system for electronic capture of syndrome data from livestock has
been piloted [33] 27, 6I]. The Bovine Syndromic Surveillance System (BOSS), a
voluntary, producer-driven surveillance system, extends the target audience beyond
the veterinarians, including lay observers who are in daily contact with cattle, such
as stock inspectors, farmers and stock workers. The method used to engage par-
ticipation is to provide a generic cattle disease diagnostic program — based on the
BOVID system [62] — through which the producers can get a ranked list of dif-
ferential diagnoses based on the signs observed in their cattle, and be advised of
the precautions to take. The information that the producer feeds to the software
for decision are exactly those that the surveillance program can take advantage of:
animal characteristics, numbers affected, time and place of occurrence, duration of

the disease event, and management information regarding the herd.

Recognizing that new or emerging diseases can go undiagnosed due to the lack of
specific tests, in Great Britain a system of syndromic surveillance has been developed
based on laboratory submissions for which a diagnosis was not reached. Building
on the Veterinary Investigation Diagnosis Analysis (VIDA) system, the FarmFile
system [37] among other improvements, included statistical monitoring of the ratio

of “Diagnosis Not-Reached” (DNR) samples to the total samples processed. Even
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though this system is not designed to operate in real-time and uses information from
the test results phase, a number of syndromic surveillance techniques are adopted
by FarmFile, including grouping test requests (including DNR) according to the
body system affected, and an on-going monitoring of trends. Moreover, the focus on
DNR samples represents an innovative initiative, potentially increasing the ability of
the current surveillance to account for emerging diseases based largely on what was

previously discarded data.

All the systems previously mentioned are focused on livestock. Syndromic surveil-
lance systems targeting companion animals are usually designed with focus on public
health, as discussed in the following topic. An exception is Small Animal Veterinary
Surveillance Network (SAVSNET) [38], in development at the University of Liver-
pool. Besides monitoring disease trends, the project also aims at making the collected

information via reports on a website.

Also in the United Kingdom, the National Animal Disease Information Service
(NADIS) [53] deserves attention for its support to animal disease monitoring and
evidence-based medicine. Even though the system is not syndromic or prospective,
it does include a unique network of 60 veterinary practices and 6 veterinary colleges,
monitoring diseases in cattle, sheep and pigs, and publishes publicly available reports

of disease trends and parasite forecasts.

2.4.3 Syndromic surveillance focusing on public health (animals as sen-

tinels for human diseases)

Ashford et al. (2000) [54] and Davis (2004) [55] reviewed the role of veterinarians in
the preparedness against bioterrorism, based on the fact that almost all the biological
bioterrorism agents listed by a group of experts gathered by the CDC in the United

States in 1999 are zoonotic. Rabinowitz (2006) [56] reviewed several diseases with
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bioterrorism potential and the role of animal populations in their detection. This
is based on the assumption of one or more of the following factors being true: the
‘sentinels’ have increased susceptibility, would present with a shorter incubation
period, are likely to be exposed sooner or more intensively and continuously through
the environment; or simply because the concomitant observation in humans and
animals would add confidence to the detection of a natural or introduced disease
threat. As Figure [2.1] illustrates, depending on the disease, the number of sick
animals can indeed exceed the number of sick humans. Moreover, domestic animal

populations may be easier to observe or test.

Syndromic surveillance systems collecting animal health data for public health
surveillance focus mainly on zoonotic diseases. These systems have thus far been
largely based on companion animals, due to their proximity to humans, but their
choice of targeted animals can also be based on the susceptibility of the different
species, and their potential to signal disease before humans. Examples of the latter
are the systems based on the higher susceptibility of crows and horses to West Nile
virus [57, 47, 58, 59, 43]. One unique initiative highlighted the potential of zoo

animals as sentinels, focusing also on West Nile virus detection [60].

Animal data have been incorporated into a few implemented syndromic surveil-
lance systems for human populations. Those reported in the literature include: the
Electronic Surveillance System for the Early Notification of Community-based Epi-
demics (ESSENCE) [61], the North Dakota Electronic Animal Health Surveillance
System [62] and the Multi-Hazard Threat Database (MHTD), a disaster prepared-
ness project of the North Carolina Department of Agriculture and Consumer Services
(2007) [63]. Brianti et al. (2007) [64] investigated the potential for improving public
health surveillance of leishmaniosis by a retrospective survey which included data

from veterinary practitioners and from hospitals.

Glickman et al. (2006) [34] highlighted the gap in our understanding of the dynam-
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ics and disease burden in companion animals even though they are in daily contact
with humans. The authors were responsible for implementing a National Compan-
ion Animal Surveillance Program (NCASP) in the United States in 2004 which took
advantage of large amounts of computerized data from a major chain of pet hospi-
tals in that country (450 hospitals), complemented by access to the computerized
database from a network of diagnostic laboratories serving 18,000 pet hospitals. The
system allows daily data analysis of all clinical visits to the hospital network. Re-
sults based on monitoring tick infestation, leptospirosis in dogs and the occurrence
of influenza-like illness (ILI) in cats, have demonstrated the feasibility of conducting

parallel syndromic surveillance in animals and humans.

Shaffer et al. (2007) |[14] evaluated the use of companion animals as sentinels
of infectious diseases in humans by the implementation of syndromic detection of
diseases using laboratory submission requests, also taking advantage of the already
available, electronic database of a laboratory network. Microbiology test orders were
transferred daily, and directly mapped into 11 syndromic groups monitored indepen-
dently. The authors report the positive results in using the system for population
surveillance in a timely manner, and highlight the wide geographic coverage given

by one single source of data.

Maciejewski et al. (2007) [36] reported the construction of a framework for joint
analysis of human emergency room data and veterinary hospital data (mostly pets),
called Linked Animal-Human Health Visual Analytics (LAHVA). Human data are
processed daily, while animal data are received in batches every 13 weeks. The inclu-
sion of animal data is considered to add sensitivity and specificity to the surveillance
program, and takes advantage of the lower privacy concerns regarding animal data.
Besides temporal analyses, the system’s advantages include the integration of dif-
ferent data sources, and the visual analytic tools that integrate human and animal

data. Testing of the system was performed by retrospective analysis using seasonal

23



influenza and wastewater contamination events.

2.5 Data sources for syndromic surveillance in veterinary medicine

In public health it has been noted that the ultimate choice of target for syndromic
surveillance (according to the scheme in Figure depends on the balance between
quality and timeliness, and the weight of the costs of false alarms and missed alarms.
In animal health the decision is further complicated by the scarce availability of
suitable data |51l 65], which for the purposes of syndromic surveillance should be
acquired continuously, in an automated routine, be electronically stored and timely
available [21]. Moreover, animal data are subject to more non-disease variation than
human disease data [42]. The rate of seeking care is not only related to the awareness
and severity of diseases, as in humans, but also, especially in livestock, by cost. In
turn, the rate of laboratory test submission is not only a result of diagnostic concerns;
specimen collection can also take place for a variety of other reasons such as trade

certification, food safety monitoring, etc.

Shephard (2006) [51] listed barriers to the development of syndromic surveillance
systems in animal health as including the great diversity in species, production and
purpose, and the hierarchical structure of animal populations (in food production).
Additional barriers relate to the poor availability of data sources in comparison to
human medicine, due to less frequent capture, often in a non-computerized format,
as well as less well developed data standards. This section will review how some of
the initiatives listed in the previous section have dealt with the problem of finding
adequate datasets, and their strategies to increase population coverage compared to

voluntary notification of confirmed cases.
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2.5.1 Voluntary notification

Coverage of systems based on passive notification can be increased by understand-
ing the behaviour of the reporting entities - veterinarians, animal owners, etc - and
designing ways to positively influence them. The challenge is to find a strategy that
is not only successful, but also sustainable [66]. As early as 1998 Gobar et al. [67]
reported a program for surveillance of causes of death in dogs, using the Internet to
survey small animal veterinarians. The novelty resulted in 25 veterinarians actively
submitting case materials and promoting discussion, but no report of the sustainabil-
ity of the system and rate of participation over time was found. Shephard (2006) [51]
reported a study to investigate the sustainability of implementing a system based on
veterinary voluntary reporting of clinical livestock cases. The results indicated that
the system would likely not be sustainable, especially due to veterinarians’ percep-
tions of limited personal value associated with participation, and a view of increased

risk of penalty in case of reporting.

Systems that focus only on the reporting of atypical cases, such as RSVP-A [31],
the national cattle surveillance system in The Netherlands [32], and Emergences [30],
aim at keeping veterinarians involved by reducing the time demanded of them - the
systems provide easy and quick reporting, through handheld computers or websites.
The RSVP-A and the national cattle surveillance system in The Netherlands also
promote participation by giving information feedback to the public (in the form
of publicly available quarterly reports on the latter, but restricted to participating
veterinarians in the RSVP-A). However, maintaining compliance over time remains
a great challenge [21]. Reports on evaluations of the sustainability of these systems

could not be found in the literature.
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2.5.2 Clinical data

In contrast to human medicine, in veterinary clinics the payment is due, in most
cases, at the time of service, with no requirement to transfer data to third-party
payers, such as insurance companies. This has caused veterinary clinic data recording
to be primarily focused on client and invoice management, and there has been little

incentive to develop and implement standards for disease coding [65].

Despite these bottlenecks, the use of computerized records is becoming standard
practice in companion animal medicine, offering opportunities for the collection of
syndromic data. The SAVSNET for instance [38], which plans to use practice-based,
real-time collected data in its next implementation step, will take advantage of the
fact that around 20% of pet clinics in the UK use the same software for practice
management. The lack of data standards in veterinary medicine, however, means

that data integration among clinics using different software remains problematic.

The opportunities for data integration increase with the growth of corporate vet-
erinary practices [68]). The Purdue University-Banfield National Companion Animal
Surveillance [34] reported a coverage of 2% of the total pet dog and cat population
in the United States, by using the centralized database of Banfield, a pet hospital
chain widely spread across the country [36], and whose demographic and medical
information is completely computerized. Data from the same hospital network are

also used by the LAHVA initiative [36].

Automated collection of clinical data is harder for systems targeting livestock due
to the lower level of computerization in large animal practices, compared to compan-
ion animal practices. These systems depend on the willingness of the veterinarian to
comply and take the extra effort of submitting their routine data to a surveillance
system. Engagement is sought by adapting the recording system to the routine

recording process of the practice or by offering feedback to the veterinarians and

26



farmers by means of a complete investigation network, as in the Alberta Veterinary
Surveillance Network [49] 50, 40]. Assessments of system sustainability have not

been reported.

Robotham and Green (2004) [69] stated that systems that depend uniquely on
voluntary transference of routine clinical data by veterinarians are not sustainable
without any return to the veterinarian. Proposed methods to increase veterinarian
engagement include continuous training, return of the information collected with

added value to the practitioners [70, [71], and financial incentives to reporting [40].

2.5.3 Herd management data

Automated monitoring of herd management data and indicators of production qual-
ity have been reported and reviewed [71, [72]. However no reports on implementa-
tions of syndromic surveillance systems based on these data were found. Mork et al.
(2009) [73] compared data kept on farmers’ records to the data reported by veteri-
narians to a dairy industry cattle database in Sweden, and showed that only 54%
of the disease events registered by farmers were treated by a veterinarian. Even for
those events that were reported by both groups, the farmers kept information that

was more detailed and specific than that reported by the veterinarians.

The BOSS system [27], even though based on disease events, can be considered
a system based on direct herd information, as it represents an effort to involve
farmers directly. Rate of underreporting should theoretically be low, as it targets
the population of animals becoming sick, not the population of animals for which
veterinary care was sought. However, population coverage will be limited by access
to (and willingness to use) a computer. This is becoming less and less of a problem,
as an increasing number of herds are already managed with the help of computerized

systems.

27



The increase in the use of computerized herd management tools could offer another
opportunity for surveillance. The lack of uniform standards among systems may
however complicate integration, and it would suffer from the same problems discussed

for capture of computerized clinical data.

2.5.4 Laboratory data

Laboratory test requests are a type of syndromic data. They are timelier than results,
and can be grouped in syndromes according to the nature of the disease and/or
symptoms observed by the veterinarian [I1], 74, [10]. Stone (2007) [I3] investigated
the potential of using laboratory test requests for syndromic surveillance in veterinary
medicine and reviewed the potential biases associated with this type of data. The
author also pointed out the variability in the submission rates year to year, and
misclassification biases (veterinarian not submitting the right sample or requesting

the correct test), but concluded that the data are suitable for syndromic surveillance.

Laboratory test requests are more often automated and electronically recorded
than clinical data [75] and therefore these data allow for the construction of a sus-
tainable surveillance system. Laboratories also represent a more centralized source of
data, especially in livestock medicine. However, their use depends on the willingness

of data owners to share these data [34].

It has been reported that laboratory test orders suffer from the low submission
of specimens as part of the diagnostic process in veterinary medicine [76]. How-
ever, Shaffer (2007) [14] assessed the potential of microbiology test submissions for
syndromic surveillance in companion animals assuming that the consistency of test
orders over time allows for the use of these data in prospective monitoring, and that
increases in the number of test orders can be used as indicators of an increase in

disease burden. The availability of historic data is another advantage of laboratory
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data in veterinary medicine over other types of data, since some estimation of a
baseline of disease burden is needed in syndromic surveillance to compensate for the

lack of denominator data.

Laboratory test requests screen a larger proportion of the animal population than
sick animals, as animals can be tested for different purposes. Zhang et al. (2005) [15]
reported that four different purposes were recorded as reason for test requests in their
laboratory data: diagnostic, export testing, government monitoring, and industry

monitoring.

The use of laboratory data in veterinary syndrome surveillance appears to be a
growing field. The Canadian Animal Health Surveillance Network (CAHSN), part of
the Canadian Food Inspection Agency, is establishing a network of federal, provincial
and university animal health diagnostic laboratories to implement an early warn-
ing system for animal diseases in real-time, especially diseases with zoonotic poten-
tial [77]. The website of the Gluck Equine Research Center [78] reported that the
Veterinary Diagnostic Laboratory in the United Kingdom is developing a syndromic
surveillance system in near real-time, also based on monitoring sample submissions.
Table [2.2] provides additional examples of investigations of the potential of laboratory

data on early disease detection [42, [45].

2.5.5 Others

The limited number of implemented syndromic surveillance systems in veterinary
medicine use the sources of data noted above. However, a variety of alternate data

sources are being explored for their syndromic surveillance potential.

Egenvall et al. (1998) [79] and Penell et al. (2007) [80] have assessed the quality
and completeness of computerized insurance data from dogs and cats, and horses

respectively. If the use of health insurance grows in veterinary medicine, these data
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may provide a source of centralized information, and the use of coding standards

may become more widespread.

The work of Van Metre et al. (2009) [39] investigated the use of direct observation
in auction markets. The advantage of this method is associated with the opportunity
to screen a large number of animals at once, and especially of reaching smaller
operations which may be systematically excluded of other surveillance methods due
to a lower frequency of veterinary care [39]. Even for the population under veterinary
care, observations in auction markets may be timelier than the observation of clinical

cases.

Abattoirs represent a unique source of data for veterinary surveillance, compared
to public health. Engle (2006) [8I] used the condemnation data available through
the electronic Animal Disposition Reporting System (eADRS) from the Food Safety
and Inspection Services (FSIS) in the USA, and concluded that a swine erysipelas
outbreak in Towa and Minnesota during July 2001 could have been identified up to 10
months earlier if automated analysis of the data had been in place. Weber (2009) [82]
also evaluated the potential for using condemnation data to set up an animal health
monitoring system. Benschop et al. (2008) [83] provided a thorough temporal and
spatial analysis of abattoir data collected by the Danish Swine Salmonellosis Control
Programme, and its potential for temporal monitoring and to improve surveillance

design.

McNamara (2007) [60] drew attention to the fact that zoos are an often overlooked
source of surveillance data. The author highlighted their role as epidemiological
monitoring stations, as they “contain a population of known individuals at a point-
source location that are followed over time”. Zoos have historical data on animal
tests that are performed as animals are received and regularly throughout their life.
The author reported the success of a “Surveillance for West Nile Virus in Zoological

Institutions” that ran successfully for 4 years, and is now being used as a model for
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expanding H5N1 surveillance in the United States.

Smith et al. (2006) [84] presented even more innovative ideas to collect livestock
health information that goes beyond clinical, sporadic information. The authors
are developing a telemonitoring system that continuously transfers animal health
data from devices permanently worn by the animals. Data would be collected and
monitored continuously through devices placed in points of animal agglomeration
within the farm. Evaluations of the system, especially of its cost-effectiveness, are

not yet available.

2.6 Implementation of disease aberration detection from an-

imal health data

Figure summarizes the process of using animal health data sources to moni-
tor disease trends and detect temporal or spatial aberrations in the number of cases.
Comprehensive reviews of each of the components of a syndromic surveillance system
are available elsewhere [85] 21, 51, B5]. The focus of this review is on the particu-
lar characteristics of veterinary syndromic surveillance, in livestock and companion

animals.

2.6.1 Definition of events and syndromes

Automated disease monitoring systems must make a clear definition of what consti-
tutes one event in the data available, as the statistical analyses are typically based
on observed counts. For companion animals each patient entry is usually considered
to represent an event, as long as there is no evidence that repeated encounters are
associated with the same health event. In the case of livestock, health events are

usually enumerated at the herd level.
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Figure 2.2: Process of monitoring disease trends and detecting clusters using animal health data
sources. Synd = Syndrome.
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Once the events have been identified, identifying the criteria to be used to group
these into specific syndrome(s) and devising reliable/automated data classification
protocols are essential components of an early epidemic detection system [86, 21].
The classification protocol must be based on the system’s goals, but must also relate
to the specific data in hand, as the data grouping will likely influence the performance

of the alert detection algorithm [14].

In public health, clinical data are usually coded for billing purposes using standard
nomenclatures, and coding standards for laboratory data are also available, allowing
for the integration of multiple sources of data. When clinical or laboratory data
are coded, classification can often be performed by directly mapping codes into
syndromes. When data are not coded, automated classification algorithms must be
trained to recognize relevant medical information in the data, and determine the
syndrome associated with each event/unit. A common example is the use of text
mining algorithms to extract information from text entered by nurses during triage

in emergency rooms (chief complaint data) [86].

Vocabularies and standards for data classification are not as uniform in animal
health [65] as is the case for human health. Wurtz and Popovich (2002) [87] reported
on the range of codes that do exist, but noted that these are not widely used in
clinics. Numerical codes are available through the Standardized Nomenclature for
Veterinary Diseases and Operations (SNVDO), and the National Animal Health
Reporting System (NAHRS). In addition veterinary input has been incorporated
into more general health ontologies such as HL7, LOINC, and SNOMED (which has
been renamed the “Systematized Nomenclature of Human and Veterinary Medicine”).
Bartlett et al. (2010) |71 reported that the Veterinary Medical Data Base (VMDB),
created in 1964 to store all clinical cases seen in veterinary teaching hospitals across
North America, is not up to date because several schools are behind in coding their

cases for upload to the database; a problem that would not exist if hospitals already
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coded their cases routinely under a standard system. None of the surveillance systems

presented in this paper reported using a standard classification system.

In the absence of standard nomenclature, a key element in the implementation
of any syndromic surveillance system is the definition of syndrome groups and the
rules to assign events membership. Shaffer (2007) [I4] reported a consultation with
a group of seven veterinarians, together with staff from the diagnostic laboratory
who handle data regularly, to determine which laboratory test orders should be
mapped into which syndromes. The final syndromic groups identified during this
consultation were: respiratory, GIT, neurologic, dermal, reproductive, endocrine,
hepatic, infectious, febrile, renal, and non-specific. Stone (2007) [I3] also mapped
laboratory data into groups based mainly on organ systems. After some standard-
ization of the data these records were grouped into the following categories: re-
productive system, abortion, alimentary system/oral, anorexia/depression/malaise,
circulatory/oedema/anaemia; diarrhoea/dysentery, lymphoreticular, mastitis, mus-
culoeskeletal, nervous system, perinatal losses, respiratory system, skin/photosen-
sitivity, sudden death, and urinary/renal. Samples for which a diagnosis was not
reached in the FarmFile system [37] were mapped into syndromes based on body
system together with the information given by the veterinarian at submission con-
cerning observed clinical signs. The final syndromic groups in that system were:
systemic, digestive, respiratory, urinary, musculoskeletal, nervous, skin, circulatory,
reproductive, other, disease type unknown, mastitis and fetopathy. The implementa-
tion of this syndrome mapping within FarmFile generated feedback which improved
the data collection forms. The list of clinical signs to be used by veterinarians when
submitting samples was revised, in order to improve syndromic classification of the

data.

For most of the systems based on clinical data listed in this review the protocol for

classifying data into syndromic groups could not be found in the literature, or none
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had yet been implemented. A number of the systems are still being piloted using one
or a few specific syndromes, and these have so far been identified retrospectively. The
RSVP-A system uses six syndromic groups, but classification is decided and entered
by the veterinarian reporting the atypical cases observed; this is also the case of
the Alberta Veterinary Surveillance Network. In the BOSS system [51] the BOVID
software, a rule-based diagnostic program designed to identify the most probable
diagnosis based on clinical signs reported, classifies the reported cases into syndromic
groups (based on organ system) to deliver counts by syndrome. The syndrome groups
used within BOSS/BOVID are: body; ears/eyes; airways; GIT; genital and urinary
system; nervous; skin; cardio-vascular; death or reduced production; and muscle,

bone or gait abnormal.

2.6.2 Aberration detection algorithms

Monitoring of time series data in surveillance can be retrospective or prospective.
Retrospective surveillance is used to explain temporal and spatio-temporal patterns
in data, and is therefore used in the generation of hypotheses. In syndromic surveil-
lance, where the focus is outbreak detection, statistical analysis is prospective, aim-
ing at detecting meaningful changes from the expected range of data values, which
are referred to as “aberrations” |88, [89]. Mandl et al. (2004) [21] summarized the
methodological stages to process data for outbreak detection, once events have been
classified into syndromic groups, as: evaluation of historical data to establish a
baseline model for the expected number of cases; comparison of observed values to
baselines, to detect abnormal activities if occurring; culminating in an evaluation
of the alert and a decision as to whether notification and investigation should take

place.

The choice of algorithm to detect abnormal activities is based on the type of data

(number of time series to monitor, whether rates or counts are monitored, rare versus
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frequent counts, temporal or spatio-temporal data); the availability of historical
data to construct baselines; the nature of the disease being monitored (whether
outbreaks are expected to occur as ’spikes’, a sudden or slow increase); and an
assessment of the desired balance between sensitivity (ability to detect true alarms)
and specificity (ability to avoid false alarms). Algorithms for outbreak detection have
been thoroughly reviewed elsewhere [90] (91, 92], [88] 24], (511, [68]. The goal here is to list
the methods that have been cited in the veterinary syndromic surveillance systems
covered in this review. However, as many of the systems are still in their initial
implementation phase, the types of algorithms being used were often not identified;

and a column detailing this information could not added in Table [2.1]

For temporal analysis, control charts (such as cumulative sums and exponentially
weighted moving averages) are the most commonly employed algorithms [5], 62,
14] [0, [82]. This is not surprising, as for most of the data sources used there is
limited availability of historical data. Control charts require limited baseline data,
using a small number of previous observations to establish thresholds of expected
values, based on the assumption that those observations came from a pre-specified
parametric distribution. New observations are compared to the thresholds, and
the system is determined to be “out-of-control” if the observations fall beyond the
calculated expected limits [93]. Performance is not optimal, since these methods
do not exploit the full information content of the data, and because health data
often violates the basic assumptions of control charts - that events are independent,
stationary and normally distributed [94]. However, the popularity of these methods
in public and animal health surveillance attest for their usefulness, especially when

historical data are limited.

When historical information is available regression methods can be used. Pub-
lished work on regression methods applied to veterinary data have thus far focused

on retrospective analyses, as a means of assessing their potential for prospective mod-
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eling. For instance the work of the Purdue University-Banfield National Companion
Animal Surveillance [34] with clinical data, the analysis of the Danish Salmonella
Control Programme data [95]), and the work of Kosmider et al.(2006) [42] based on
laboratory detection of Salmonella in British livestock, are all examples which adopt

this approach.

Geographical information is often used to aggregate data into demographic ar-
eas, after which temporal analysis is applied to these areas independently (Shaffer,
2007) [14]. Public health systems are usually restricted by privacy concerns regarding
address information from patients [36], while in animal health systems the problem
is the lack of geo-location data relating to health events. Often the only geographical
information in the system refers to the practitioner location or postal code [14]. This
represents a challenge for use in spatial analysis of animal surveillance, since the ge-
ographical radius of clients attended by each practitioner is not usually determined

and may vary greatly, particularly in regions of low farm and/or practitioner density.

Where spatial cluster analyses were performed in the systems reviewed here, the
most commonly reported method was the scan-statistic [45, 96], which can be per-
formed with the freely-available software SaTScan [97, 08]. Spatial cluster detection
using algorithms available within the R statistical package was reported in the case

of the Alberta Veterinary Surveillance Network [40].

2.6.3 Evaluation

The “framework for evaluating public health surveillance systems for early detection
of outbreaks” was reviewed in 2004 by a working group promoted by the CDC [74].
The document contains an operations checklist to review system-wide issues, data
sources, data processing, statistical analysis, and epidemiological analysis, interpre-

tation and investigation. It sets out a framework for description and evaluation of any
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system as a whole, including: usefulness, flexibility, acceptability, portability, stabil-
ity and costs. In a similar way, Stone (2007) [I3] stated that a veterinary syndromic
surveillance system should be evaluated for: population coverage, automation of data
capture and transfer, value to users, detection efficiency of programmed algorithms,

and contribution to claims of disease freedom.

More quantitative evaluation methods have been proposed to specifically evaluate
the performance of various detection algorithms, using real or simulated data; and
thus to evaluate the system’s performance at the population level in the similar way
to which test diagnostic performance is evaluated for individual testing. This includes
the measurement of sensitivity, and specificity [99]. Kleinman and Abrams propose
methodologies which also include an evaluation of the timeliness of a system [100)]
and the number of lives saved [I01], based on the traditional Receiver Operating

Characteristic (ROC) curves used for diagnostic tests evaluation.

Ultimately, the factors that affect the ability of any system to detect outbreaks
also depend on the nature of the outbreak [28]. Evaluation of outbreak detection
algorithms based on simulated data has been suggested in the literature. These eval-
uations may use wholly simulated data sets or may superimpose various patterns of
simulated outbreaks onto authentic data. An overview of these approaches can be
found in Buckeridge et al. 2005 [88]. A holistic evaluation of how all system compo-
nents operate in real time is only possible once the system has been implemented.
None of the systems listed in this review have been formally evaluated using the met-
rics described above; this is not surprising as most of them are still in development
and few are fully operational. However, various authors have attempted to assess

the quality of different system components. In those cases where any, even limited,

evaluation was reported, notes have been added to Table 2.1 and Table [2.2]

The Ontario Swine Veterinary-based Surveillance System (OSVS) [41] was the

only system for which an evaluation of the characteristics of data acquired through
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practitioners’ reports was performed. The authors estimated the level of compliance
by comparing the data provided by practitioners against the submissions made by the
same veterinarians to Ontario’s Animal Health Laboratory. Completeness of data
(measured in terms of the completion of each form field), coverage of the program,
and timeliness for reporting were evaluated. Completeness actually increased from

the first to the second year of the study, as well as coverage of farms in the province.

The Emergences system was not formally evaluated, but in 2003 Vourc’h and
Barnouin [30] reported that over a period of six months the system received 33
notifications, two of which were considered atypical. Shaffer (2007) [14] reported
that during the pilot study of the described syndromic surveillance system based on
microbiological test requests nine clusters were detected. Follow-up investigations
were able to link two of these to a true increase in the incidence of disease. Assessing
sensitivity and specificity was not considered viable due to the lack of a gold standard
for determining when outbreaks were really happening. The BOSS system was also
not evaluated due to the lack of a standard against which the completeness of the
data received from producers could be assessed [51]. Retrospective analysis of the
data on LAHVA indicated that respiratory symptoms in dogs occur approximately
10 days earlier than is the case for humans, and that detection of eye-inflammation
in dogs would also have served as a sentinel for humans in a case of wastewater
contamination [36] Also retrospectively, Odoi (2009) [45] showed that an outbreak

of abortion in mares could have been detected 6 days earlier.

2.7 Discussion

A pre-conference workshop at the ISVEE meeting in 2009 discussed the development
and application of methods for effective surveillance in livestock populations [66].

Syndromic surveillance systems can meet several of the surveillance goals proposed
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during that meeting, including: comprehensive coverage of many diseases within a
single monitoring system, detection of emerging diseases, maximizing the value of
existing data sources, integration of public health with veterinary data, development
of new analytical methods, technological innovation, flexibility in the type of data
available and desired system outcome, encouraging stakeholder participation, and an
increase in negative reporting. This paper has discussed how syndromic surveillance

in animal populations can help meet many of these goals.

Only systems that explicitly address outbreak detection based on systematic mon-
itoring of animal population data have been included in this review. However,
there is little doubt that disease control capabilities have also been enhanced by
systems for disease monitoring which adopt novel approaches to data sharing, in-
tegration and visualization. The authors recommend the following examples to
those readers interested in exploring the broader application of information sys-
tems to veterinary surveillance: the Michigan equine monitoring system [102]; the
Pathman project [103]; the Rapid Analysis & Detection of Animal-related Risks
(RADAR) [104, 105]; the FMD BioPortal System [96]; geographical information sys-
tems for the surveillance of bluetongue in Australia [I06] and Italy [107]; the swine
industry initiative for disease data sharing in Minnesota [108]; GLiPHA [109]; and
the papers of Egbert (2004) |110] and Durr & Estland (2004) [103].

The initiatives reviewed have made use of several sources of clinical and diagnostic

data in order to implement syndromic surveillance system in veterinary medicine.

Due to the lack of commonly adopted data standards, each syndromic surveillance
system implemented in veterinary medicine to date has tended to develop and vali-
date their own classification system. As long as common standards are not adopted,
new systems will have limited capability to take advantage of the progress made
by existing systems. While each method may be valid within its own architecture,

the use of standards would enable data integration across heterogeneous datasets,
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and allow comparisons among geographical locations and veterinary practices over

time [29]).

As a result of the current limitations, most efforts to date have been directed to-
wards developing animal health data collection strategies, analyzing historical data
already available for their potential to support syndromic surveillance, or solving
problems of data classification and integration; rather than focusing on the develop-
ment, of automated syndromic analysis. The concentration of effort on these early
stages of development is evident when one considers the relatively plentiful supply
of papers dealing with potential data sources, in contrast to those reporting the use
of various aberration detection algorithms, illustrating systems outputs or evaluat-
ing operational syndromic surveillance systems. In fact, none of the listed initiatives
contain all the components which characterize the more mature systems for early dis-
ease detection in public health. In consequence, the term “syndromic surveillance”
has been applied throughout this review in a rather loose manner, since the term has
been coined in reference to early disease detection systems based on the systematic
monitoring or large amount of pre-diagnosis data. Not all of the systems reviewed

here are strictly based on the classification of data into syndromes.

Despite differences in structure, all of the initiatives reviewed are making efforts to
improve the quantity, quality and speed of information extraction from animal health
data, and the lessons learned will support further advances in the development of

the field of syndromic animal surveillance.

Many of the systems developed in veterinary medicine have attempted to solve
data limitations by encouraging passive notification of cases or transfer of clinical
data, directly from farmers, or by enrolling private veterinarians in the system. All
these systems are dealing with sustainability issues. Information feedback or finan-
cial incentives to participating veterinarians have been used as strategies to sustain

participation, but in general the lesson learned is that if data transfer demands extra
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effort from participants, long term sustainability may not be possible.

Given the current barriers, diagnostic laboratories appear to provide a readily
available source of data for syndromic surveillance in animal health. The less timely
nature of laboratory data is compensated, in veterinary medicine, by its greater
specificity when compared to clinical data. In addition there is reasonable availability
of current and historical laboratory data in digital format, both for companion and
livestock animals. In companion animal medicine, where computerization of records
is already common, investments in the use of data standards will increase the value of
clinical data for syndromic surveillance use. In livestock health, however, the use of
laboratory data remains the most readily available and reliable source of electronic,
continuously recorded data. Laboratories are typically centralized and can cover
large geographical areas. However, it is also important that investment be made in
data standardization within the livestock laboratory sector as this would allow for

the integration of databases across broader geographical areas.

The expansion of syndromic surveillance in public health has fomented great im-
provements in the development and adaptation of aberration detection algorithms
for use in health data, as demonstrated for instance by the work of several teams
within the BioALIRT project, which has been sponsoring research on improving
the timeliness of outbreak detection since 2001 [I11]. Implementation of syndromic
surveillance in public health has also resulted in the expansion of the field of in-
fectious disease informatics. Several teams have documented their experiences in
creating information systems and provided guidelines on the architecture necessary
to conduct prospective, real-time surveillance [112] [113| [114]. Therefore, as quality
animal health data become more readily available, the development of veterinary
syndromic surveillance will be able to take advantage of the statistical and compu-

tational advances made in the public health field.

In all syndromic surveillance systems the primary output is some form of alarm
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in the event of aberration detection. However, syndromic surveillance is not a re-
placement for traditional surveillance |[11], and therefore once an alarm is triggered
by the detection algorithm it must be reviewed by epidemiologists [74]. The design
of the system should take into account the information that will be needed when
making subsequent decisions and the outputs of the system, in case of any alarm,
should contain all the information available from the syndromic dataset that may
be of value [I15]. The investment in syndromic surveillance may be wasted if, once
a decision is made, the epidemiologist cannot count on an investigation team ready
to respond to an alarm; the process for aberration follow-up should therefore be

described as part of the syndromic surveillance system design [13].

Syndromic surveillance systems can confer benefits which go beyond the detection
of true alarms [91]. They can support additional goals associated with animal health
surveillance, such as: monitoring disease trends; facilitating the control of disease
or infection; supporting claims for freedom from disease or infection; providing data
for use in risk analysis, for animal and/or public health purposes; and substantiat-
ing the rationale for sanitary measures [116]. In practice most systems designed for
early detection of disease, due to the longitudinal nature of their data collection,
will also contribute to situational awareness, building a foundation for epidemiolog-
ical research and hypotheses generation and testing, and thus provide support for
evidence-based medicine. A number of the systems reviewed here intend to deliver
the information extracted from the syndromic surveillance process to the public [38]

or to participating veterinarians [29] 3], 34].

The development of the field of syndromic animal surveillance progressively en-
hances the animal health community’s ability to detect and to respond to outbreaks.
The automated and continuous collection of animal health data also facilitates the
integration with public health systems, and represents a further step towards One

Medicine. A recent review [I17] noted that there have been on-going efforts to in-
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tegrate human and animal data in surveillance initiatives since 2000. However, as
pointed out in that review, none of the integrated systems have yet been evaluated
and there are several barriers to data sharing between the two domains. Ethical
and privacy concerns are not as restrictive in animal health data, as they can be in
public health. Nevertheless, barriers to data sharing, mainly related to data owner-
ship and proprietary information, and barriers to data integration due to the lack
of commonly adopted standards continue to impair the communication within and

between animal and public health data sources.

The longer experience of public health systems with syndromic surveillance has
indicated that the cost of system maintenance and response to false alarms can only
be justified by the system’s contribution to more than event detection [118]. In
veterinary medicine, the progress in the development of early warning systems has
stimulated the review, improvement and expansion of data collection methods in
animal health, though sustainability issues are now evident for systems based on

voluntary notification or passive data transfer from veterinarians.

While in public health, syndromic surveillance can be based on sales of over-the-
counter medicine, or emergency visits, in animal health the earliest type of syndromic
data available is clinical. Several initiatives have shown that there is potential for
clinical data to be used in the continuous monitoring of animal populations, but
implementations in real-time still depends primarily on finding sustainable ways to
collect and process clinical data from practitioners. To achieve this, investment
is needed in systems which enable information flow from livestock practitioners to
surveillance teams, and financial incentives are often necessary to guarantee prac-
titioner engagement. Clinical data from companion animal medicine is more often
computerized, and offers greater potential, but authors have indicated problems con-
cerning data sharing, and unreliable flow of data from providers to the surveillance

teams.
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Until investments have been made to solve these issues, laboratory data continues
to offer the greatest potential for syndromic surveillance in veterinary medicine.
Similar problems to those associated with clinical computerized data such as the
need for data sharing agreements and investments in data classification to allow
integrations across different plataforms, apply to laboratory data. However, until
data integration problems are solved, monitoring each single source of laboratory
data may still offer geographical coverage greater than any single source of clinical
data. Systems implemented directly with the data provider will minimize data flow

issues.

This review has illustrated that the field of syndromic surveillance in veterinary
medicine is incipient, but fast growing. As syndromic animal surveillance systems
have developed over the past decade, limitations in the data available on animal
health have become apparent. The lack of automated data collection limited oppor-
tunities for implementation of systematic monitoring systems; lack of computerized
records limited automated analysis; and the lack of standards limited the integration
across multiple databases. The costs of overcoming these barriers and implementing
real-time monitoring systems are justified by their utility. Syndromic surveillance
systems offer opportunities that go beyond early detection of diseases, providing

information to aid planning and policy development.
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Chapter 3

Exploratory analysis of methods for
automated classification of
laboratory test orders into syndromic

groups in veterinary medicine
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3.1 Abstract

Background: Recent focus on earlier detection of pathogen introduction in human
and animal populations has led to the development of surveillance systems based
on automated monitoring of health data. Real- or near real-time monitoring of
pre-diagnostic data requires automated classification of records into syndromes —
syndromic surveillance — using algorithms that incorporate medical knowledge in a

reliable and efficient way, while remaining comprehensible to end users.

Methods: This paper describes the application of two machine learning (Naive
Bayes and Decision Trees) and rule-based methods to extract syndromic information

from laboratory test requests submitted to a veterinary diagnostic laboratory.

Results: High performance (F1-macro = 0.9995) was achieved through the use of
a rule-based syndrome classifier, based on rule induction followed by manual modifi-
cation during the construction phase, which also resulted in clear interpretability of
the resulting classification process. An unmodified rule induction algorithm achieved
an Fl-micro score of 0.979 though this fell to 0.677 when performance for individual
classes was averaged in an unweighted manner (Fl-macro), due to the fact that the
algorithm failed to learn 3 of the 16 classes from the training set. Decision Trees
showed equal interpretability to the rule-based approaches, but achieved an F1-micro
score of 0.923 (falling to 0.311 when classes are given equal weight). A Naive Bayes
classifier learned all classes and achieved high performance (F1-micro = 0.994 and
Fl-macro = 0.955), however the classification process was not transparent to the

domain experts.

Conclusion: The use of a manually customised rule set allowed for the develop-
ment of a system for classification of laboratory tests into syndromic groups with
very high performance, and high interpretability by the domain experts. Further re-

search is required to develop internal validation rules in order to establish automated
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methods to update model rules without user input.

Keywords laboratory order data, laboratory records system, classification, medical

records, veterinary, animal.

3.2 Background

Disease emergence and bioterrorism events, especially since 2001, have highlighted
some of the short-comings of traditional surveillance, generally based on labora-
tory test results and direct reporting [20]. Focus has shifted to earlier detection of
pathogen introduction in human or animal populations, leading to the implemen-
tation of new techniques using data sources upstream to those typically used in
traditional surveillance [I1T4]; especially pre-diagnosis data that are already avail-
able and automatically collected [I19], such as sales of over-the-counter medicine,
absences from work or school, and patients’ chief complaint upon visits to an emer-

gency center [22].

Due to the lack of sensitivity of pre-diagnostic data, surveillance systems using
this information target general groups of diseases, or syndromes, and are therefore
often referred to as “syndromic surveillance” [3]. Grouping pre-diagnostic data into
syndromes is the first step of implementing a syndromic surveillance system [119].
Valid, reliable, and automatic classification of syndromes was an essential component
of early computerized epidemic detection systems [86]. When data are structured
using standardised codes, such as the Logical Observation Identifiers Names and
Codes (LOINC®) used in laboratories, the International Classification of Diseases
(now on its 10th revision, ICD-10), or the Systematized Nomenclature of Medicine
(SNOMED®) [85], syndrome classification can be performed by mapping those

codes into syndromes. However, text mining or other machine learning tools can
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be invaluable when free-text or semi-structured data are being used [86]. Naive
Bayes classifiers have frequently been used in syndromic surveillance when the in-
put data are chief complaints (free-text typed in by nurses) at emergency facilities

86, 120, 121], 122, [123].

Rule-based methods were widely used before the computational capacity of com-
mon computers made it possible for machine learning methods to be widely adopted [123].
Nevertheless, they have remained a popular choice in the health field due to their
transparency and interpretability. In the 2008 challenge organized by i2b2 (Informat-
ics for Integrating Biology to the Bedside), which consisted of automatic classification
of obesity and comorbidities from discharge summaries [124], the top ten solutions

were dominated by rule-based approaches, demonstrating their efficacy.

Decision trees are a third type of classification algorithm recommended when re-
sults must be delivered to a broader audience, such as health workers, as it is also
a relatively simple method to interpret [I125]. Other machine learning algorithms
used in the medical field include: Artificial Neural Networks (ANN) [126]; and Sup-
port Vector Machines (SVM) [127]. These methods are powerful, but both adopt a
“black-box” approach; so that the way in which decisions are made by the classifier
is not transparent. They have been used in more complex medical tasks, such as
the interpretation of radiographs and studies of drug performance [128 129, [130].
However, to the authors’ knowledge, the use of these algorithms to classify health
data for the purposes of syndromic surveillance has not been documented in the

peer-reviewed literature.

In contrast to laboratory test results, on which traditional surveillance is based,
laboratory test orders can be a valuable data source for syndromic surveillance, since
they are collected and stored electronically in an automated manner, but are more
timely for surveillance purposes than laboratory test results. Laboratory submis-

sion data have, for example, been incorporated into CDC’s BioSense Early Event
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Detection and Situation Awareness System [I0]. Moreover, because there are fewer
laboratories than sites of clinical care, the use of laboratory databases can provide
more complete records and cover larger areas [I14]. Besides changing focus to early
diagnosis, modern surveillance systems are evolving to complete biosurveillance sys-
tems. This term is intended to imply a broadening focus, addressing not only human
health but all conditions that may threaten public health, such as a disruption in
the food supply, or large social and economic disruptions resulting from outbreaks
of diseases in animals [114] 131]. Besides their role in the food supply and agricul-
tural economy, animals could serve as sentinels for the detection of certain zoonotic

diseases that may be recognized earlier in animals than in humans [55].

Animal data have been incorporated into a few surveillance systems for human
populations, including: the Electronic Surveillance System for the Early Notifica-
tion of Community-based Epidemics (ESSENCE) [132], the North Dakota Electronic
Animal health Surveillance System [62] and the Multi-Hazard Threat Database
(MHTD) [63]. Glickman et al (2006) [34] and Shaffer et al (2008) [I33] have in-
vestigated the value of animal health data as sentinels for public health. Despite
the less frequent requests for laboratory analyses made by veterinarians compared
to human clinicians, the authors hypothesized that, “the consistency of test orders
over time is such that increases in cases of disease will result in detectable increases
in the number of test orders submitted by veterinarians that can be identified using

prospective analysis” (Shaffer, 2008 [133], page2).

An overview of the development of syndromic surveillance systems in the veteri-
nary context has been provided in a recent review of the literature [134]. This review
indicated that initiatives using laboratory data had been based on establishing di-
rect relationships between test codes and syndromic groups. The use of clinical data
has typically relied on syndrome definition being provided by the veterinarian. Ma-

chine learning or rule-based methods applied to the identification of syndromes in
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animal health data had not been documented. This paper describes the exploratory
analysis of such methods to extract syndromic information from laboratory test re-
quests submitted to a veterinary diagnostic laboratory. These steps are part of the
development of a syndromic surveillance system taking advantage of the centralized,
computerized, and routinely updated sources of data provided by the Animal Health
Laboratory in the province of Ontario, Canada. The initial phase of implementation,

described here, focused on cattle sample submissions.

3.3 Methods

3.3.1 Data source

The Animal Health Laboratory (AHL) at the University of Guelph is the primary
laboratory of choice for veterinary practitioners submitting samples for diagnosis in
food animals in the province of Ontario, Canada. The number of unique veterinary
clients currently in the laboratory’s database (2008 to 2012) is 326. The AHL has
a laboratory information management system (LIMS) that is primarily used for

reporting the results of diagnostic tests.

Three years of historical data from the AHL were available, from January 2008
to December 2010. Cattle were chosen as the pilot species due to high volume
of submissions from dairy and beef herds in Ontario. All laboratory test orders for
diagnoses in cattle were extracted from the database; all farm identification elements

had been removed from these data.

3.3.2 Data structure

Test requests are entered into the AHL database on a daily basis. Individual test

requests are recorded as unique data entries. A common case code (submission
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number) is given to all samples from the same herd on any given day, allowing
identification of samples related to the same health event. In human health, a case
usually refers to one person at a time. Such that two people, with the same medical
complaint, living in the same household, submitting samples on the same day would
be counted as two cases. In veterinary medicine which often works in herds or flocks,
samples submitted from one, two or more animals, of the same type, from the same
herd (“household”) with the same medical complaint on the same day, would be

counted as one case.

The nature of the diagnostic sample is identified in the database by two fields:
the sample type field, in which the laboratory staff chose from a pre-set list (blood,
feces, brain tissue, etc); and the client sample ID, a free-text field used to enter the
source animal identifier given by the client. The diagnostic tests are identified by

codes pre-set in the system. All codes are textual.

Table shows a sample of the data. Only the fields relevant for medical infor-
mation extraction are shown. Submission numbers have been removed, but samples
from the same submission are represented in the table with consecutive rows in the

same shading.

3.3.3 Syndrome definition

All of the historical data available were reviewed manually to identify the potential for
syndromic classification at the time of sample submission. Veterinarians do not often
provide detailed case history information. Therefore the identification of syndromes
was based only on the type of diagnostic test requested, and the type of sample

submitted, which allowed identification of the organ system targeted for diagnosis.

A syndromic group was defined as a group of test requests that: (i) are related to

diseases from the same organ system; (ii) are all diagnostic tests for the same spe-
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Table 3.1: Sample of the data available, restricted to the fields relevant for syndrome classification.
Keywords and test names relevant for classification are shown in bold.

Date Sample ID* Client Sample ID Sample Typle Diagnostic test code Diagnostic test de-
scription
2010-01-04 10-AAAA-0001 Tulip Milk Beta-Lactamase Test Beta-lactamase test
2010-01-04 10-AAAA-0002 Plum Milk Culture Bact Bacterial culture
2010-01-04 10-BBBB-0005 A517 SMALL Intestine  Culture Bact Bacterial culture
2010-01-04 10-BBBB-0009 B516 Tissue Pooled RLA Rotavirus A - latex
agglutination
2010-01-04 10-BBBB-0010 517, 516 Tissue - Fixed Histopathology Histopathology
2010-01-07  10-CCCC-0002 139 W-H-1 - Pericar-  Fluid Culture Bact Bacterial culture
dial
2010-01-07  10-CCCC-0004 139 W-H-1 - Heart Tissue Culture Bact Bacterial culture
2010-01-05  10-DDDD-0001  Webb/None Given Tissue - Fixed IHC - Bov Corona IHC - Bovine coron-
avirus
2010-01-05  10-DDDD-0002  Webb/None Given Ear - Notch BVDV Antigen ELISA  Bovine viral diar-
rhea virus - antigen
ELISA
2010-01-05 10-DDDD-0001 11675 BOOSTER  Semen Culture Bact Bacterial culture
110004
2010-01-27 10-DDDD-0031 Black face w white Blood - Serum N. caninum ELISA Neospora caninum -
spot ELISA
2010-01-27 10-EEEE-0002 Lung Tissue Culture Bact Bacterial culture
2010-01-27 10-EEEE-0003 LuLiKiSpThTy Tissue Pooled Cell Cult Isolation Virus isolation in
cell culture
2010-01-27  10-EEEE-0005 Stom. content Tissue Culture Bact Bacterial culture
2010-01-27  10-EEEE-0006 liv/spl/kid Tissue Culture Bact Bacterial culture

¥ The field containing Submission ID was removed to ensure confidentiality, and omitted in the
Sample ID shown.

cific disease, in cases of tests requested so frequently that their inclusion in another
group would result in their being, alone, responsible for the majority of submis-
sions; or (iii) tests that have little clinical relevance and should be filtered out (e.g.,
tests in environmental samples, general haematology profiles, as well as a range of
“non-specific” submissions). Despite the absence of clinical information, the sample
description allows identification of abortion cases through keywords such as “pla-
centa” or “fetus”. “Abortion” is therefore the only syndromic group defined based
on a clinical syndrome, rather than using the three criteria listed above. Based on
those criteria, an initial list of syndromic groups was compiled and then reviewed by
a pathologist (BJM), a bacteriologist (CAM) and a clinician (DK). Following this
review, all historical data were manually classified into syndromic groups to serve
as training examples for the machine learning algorithms. Syndromic definition and

manual classification were discussed until consensus was achieved among all experts.

Each submitted case (one or more test requests from a herd on a given day) could

have multiple types of samples and /or multiple diagnostic tests requested. Syndromic
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classification was performed for each individual database entry (test request), and
later collapsed by case submission numbers, eliminating repeated syndromes within
the same case. As a result, a given case could be associated with multiple syndromes

by virtue of clues relating to multiple organ systems found in the same submission.

3.3.4 Mapping of test codes

Based on the aforementioned list of syndromic groups, a list of all diagnostic test
codes that could be mapped into a syndromic group was established. Mapping is
used here to describe the direct relationship: “if test requested is X, then syndromic
group is Y”, and mapping rules of this type were established for all test request
codes that could be classified into only one syndromic group with certainty. This is
typically the case for serological tests, where the veterinarian specifies the pathogen
or disease to be confirmed, and the sample type is not informative of the organ

system affected, as it is “serum” or “blood”.

This mapping was built as a model in RapidMiner 5.0 (Copyright 2001-2010 by
Rapid-T and contributors), an open source data mining package, which provides
tools for data integration, analytical ETL (extract, transform, load), data analysis
and reporting. RapidMiner includes an option to code any learned model in XML

format, which can subsequently be directly manipulated.

Observations where test code was not associated with any mapping rule were
assigned “Unknown” as the syndromic group at this stage in the processing. These
were test requests such as “bacterial culture”, which are not informative of the disease
suspicion or organ system targeted by the veterinarian. These observations formed

an unmapped subset of the data.
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3.3.5 Algorithms for automated syndrome classification

For the unmapped subset, text mining was used to separate all words found in the
fields describing the sample type (client sample ID and sample type, Tabl in
the three years of available data. A tokenization process was applied using any non-
letter character as a break point to separate words. The list of all mined words
in the historical data was manually reviewed to construct a dictionary of medically
relevant terms, as well as acronyms frequently used, and common misspellings. This

is similar to the process described in [135] and [136].

Once the dictionary was built, all data tokenization was performed searching only
for those specific tokens. For each observation being evaluated, the fields sample
type and client sample ID were tokenized, and a vector was created to designate the
binary occurrence of each word in the dictionary. These vectors were then used by

the classifier algorithms to learn from the training dataset and to classify test data.

The rule induction algorithm in RapidMiner [Repeated Incremental Pruning to
Produce Error Reduction (RIPPER)| was used. Information gain was used as the
criterion used for selecting attributes and numerical splits. The sample ratio and
pureness were set at 0.9 and the minimal prune benefit 0.25. Using the XML model
of rules induced by the RIPPER algorithm as a template, a manually modified set

of rules was also explored.

The Naive Bayes learner available in RapidMiner was used to develop and apply
a Naive Bayes classifier. The learner requires no parameters settings other than an
indication of whether a Laplace correction should be used to prevent high influence of
zero probabilities. Laplace correction was not used. Decisions trees were constructed
using gain ratio as the criterion for selecting attributes and numerical splits. The
minimal size for split was set at 4, minimal leaf size 2, minimal gain 0.1, maximal

depth 20, confidence 0.25, and up to 3 pre-pruning alternatives.
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The XML code of the models used, as well as the set of customised rules for

classification, are available upon request from the first author.

3.3.6 Assessing algorithms performance

Due to the large variability in the free-text entered by veterinarians to describe the
samples submitted, it was deemed important to have a large test set, in order to
assure that classification would be satisfactory once applied to new data. Manu-
ally classified historical data were split in half. After sorting sample submissions
according to date and submission number, observations were alternately assigned to
two different sets. Each classification algorithm was trained using one of the two
sets, and then used to classify the alternative set. The process was then repeated

switching training and test subsets.

Based on a comparison to the manual classification which had been carried out
with the help of experts, the following performance measures were assessed for each
classifier (using overall results from both test datasets): recall (the fraction of rel-
evant instances correctly identified by the algorithm); precision (the fraction of the
identified instances that were correct), and Fl-score, the harmonic mean of recall
and precision; i.e.(2 * precision x recall) x (precision + recall) — 1 . After computing
recall, precision and F1l-score for each of the classes, these measures were averaged
over all classes to give macro-averaged scores. An average weighted according to
the number of records in each of the classes was also calculated; often referred to as

micro-averaged scoring.

Stability was investigated by producing slightly different training subsets (for in-
stance removing small random samples from the training set, or eliminating indi-
vidual syndromic groups at a time), and assessing the resulting difference in the

performance of the classifier.
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3.4 Results

The three years of historical data contained 23,221 cases (samples from the same
herd on a given day), consisting of a total of 218,795 individual test requests from

cattle (i.e. bovine, dairy or beef animals of any age).

Based on an evaluation of these three years of historical data, and input from
experts, the syndromic groups listed in Table were defined. The table also lists
the criteria for syndromic group creation and the number of test requests and cases

assigned to each syndromic group following manual classification.

After classifying all sample submissions, and eliminating repeated syndromic in-
stances within the same case, the final number of “syndromic cases” in the historical
dataset was 30,760. Given that there were 23,221 initial herd investigations, this im-
plies an average of 1.32 recorded syndromes per case. The distribution of syndromes

per case is shown in Figure [3.1]

Of all the samples submitted, 75.7% (165,649) could be directly mapped into

syndromic groups based on the test request information alone.

For the syndromic groups created based on clinical signs, non-specific signs or
specific organ systems (see Table , Figure illustrates the percentage of test
requests which could be allocated to a syndromic group via direct mapping versus
those that fell into the unmapped subset. Around 25% (53,146) of all instances
in the database could not be directly mapped into a syndromic group and these
provided the material for which automated classification was explored. Although
these unmapped instances contain 16 of the original 22 defined syndromic groups,
the syndromic group “Mastitis” alone is responsible for over 70% of these instances,
and three groups (“Mastitis”, “Nonspecific” and “GIT”) account for over 90% of the
data, as shown in Table [3.3] For the groups Mastitis and GIT, 94% and 77% of the
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Table 3.2: Syndromic groups, defined based on an evaluation of three years of diagnostic test
requests.

Syndromic group Criteria for syndromic Number of test requests Number of cases
group creation
Abortion Clinical sign 559 225
Circulatory 57 50
Eyes and ears 37 20
GIT 8,733 2,564
Haematopoietic 231 199
Hepatic 135 119
Mastitis Organ 49,246 6,766
Musculoskeletal Systems 233 149
Nervous 150 129
Reproductive 857 192
Respiratory 8,501 1,452
Skin and Tegument 14 7
Systemic 3,328 700
Urinary 501 146
BSE* 5,306 158
BLV Individual diseases 34,468 3,321
BVD with high number of 12,689 2,354
Johnes disease test requests 11,123 2,040
Neosporosis 6,198 1,467
Clinical Pathology (hema- 61,059 4,282
tology /biochemistry)
Environmental samples Other types 655 58
Antimicrobial susceptibil- of tests 140 33
ity
Toxicology 6,866 955
Nonspecific samples Samples whose syn- 7,708 3,374

dromic group could
not be determined

Total 218,795 30,760**

GIT = Gastro-intestinal tract; BSE = Bovine Spongiform Encephalopathy; BLV = Bovine Leukemia Virus;
BVD = Bovine Viral Diarrhea
* BSE test requests are large compared to counts of other test submissions that can be classified as “Nervous”.

** The number of cases after classification is higher than the initial number of cases because multiple
syndromes can be identified within a single submission.
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Figure 3.1: Number of syndromes identified in each case using information from individual test
requests.
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unmapped observations, respectively, refer to the test “Bacteria culture”. Unmapped
observations which are ultimately classified as “Nonspecific” contain a greater variety
of test names, including the following which occur frequently: “Bacterial culture”

(18%), “Histology” (27%) and “Necropsy” (18%).
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Figure 3.2: Percentage of test requests classified by direct mapping and automated classification.

The results of automated classification using different algorithms are shown in

Table 3.4] and described in detail below.

The use of rule induction (RIPPER) achieved only moderate performance overall.
Three groups with low frequency of test requests — “Environmental samples”, “Skin”,
and “Eyes and Ears” — were not included in the rules, but as shown in Table [3.3|these
groups represent only 0.3% of all instances subjected to automated classification.
The Fl-macro average was 0.677, but because the unlearned groups account for such
a small proportion of the submissions, when the classes’ performance is averaged

accounting for the weight of each class, the Fl-micro is 0.979 (Table . Upon
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Table 3.3: Instances and syndromic groups in the ‘unmapped’ subset of the data

Syndromic group Instances Percentage of total Cumulative percentage
Mastitis 38,934 73.26% 73.26%
Nonspecific 7,667 14.43% 87.68%
GIT 2,857 5.38% 93.06%
Respiratory 1,309 2.46% 95.52%
Reproductive 732 1.38% 96.90%
Abortion 553 1.04% 97.94%
Musculoskeletal 232 0.44% 98.38%
Haematopoietic 231 0.43% 98.81%
Hepatic 129 0.24% 99.06%
Urinary 125 0.24% 99.29%
Envir. samples 109 0.21% 99.50%
Systemic 98 0.18% 99.68%
Nervous 67 0.13% 99.81%
Circulatory 57 0.11% 99.91%
Eyes and ears 38 0.07% 99.98%
Skin and Tegument 8 0.02% 100.00%
Total 53,146

Table 3.4: Performance measures for the algorithms implemented.

Class average (Macro)* Weighted average (Micro)

Algorithm recall precision F-score recall precision F-score
Manually modified rules  .994 1.000 997 1.000 1.000 1.000
Rule Induction** .626 .793 677 991 981 979
Naive Bayes .983 .939 .955 .994 .996 .994
Decision Trees** .290 416 311 .936 .937 923

* The total number of groups in the training data was 16, and the
total number of instances 53,146.

** The Rule Induction algorithms failed to learn 3 classes, and
the Decision Tree 11 classes.
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manual review of the rules created by the algorithm, it was found that the main
source of error was failure of the algorithm to establish good decision rules when
multiple medically relevant words were found in the same test request. This method

was easy to implement and the rules generated are transparent and easily interpreted.

The rules produced by the RIPPER algorithm were manually modified to account
for some of the relationships missed, producing a set of custom rules. Running the
custom rule set against the entire unmapped subset resulted in an Fl-macro score
of 0.997, and Fl-micro score of 0.9995 (Table [3.4). The remaining errors tended to
be due to use of abbreviations not common enough to have been incorporated in
the rules, misspellings or the absence of a space between two words, resulting in the

tokenization process failing to identify these words.

The performance of the Naive Bayes algorithm was high (F1-macro of 0.955 and
F1-micro 0.994), as shown in Table[3.4 The main performance issue associated with
this algorithm was its instability. Slightly different datasets resulted in very different
performances (results not shown). With unbalanced training and test datasets, for
instance, rather than assigning the label “Nonspecific” to samples that could not be
classified, the Naive Bayes algorithm would assign these samples, as well as mis-
classified samples from other groups, into one of the groups with a small number of

submissions.

The classifier based on Decision Trees performed reasonably well in the micro
score (F1-micro score of 0.923). However the classifier failed to learn 9 classes, which
are biologically relevant, despite accounting for only 2% of the unmapped instances
(which explains the high micro average). Moreover, the models appeared to be
unstable: slight changes in the training data could result in a completely different
‘shape’ of decision tree, and a similar phenomenon was observed when the initial

parameters for minimal gain and confidence where varied.
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3.5 Discussion

This study evaluated the classification of structured data from animal laboratory test
requests into syndromic groups for surveillance. This type of data lacks specificity
not only because it precedes diagnostic results, but also due to the limited amount
of clinical information provided by veterinarians. Previous work has focused on the
direct mapping of specific test requests to syndromic groups [34, 133]. Here the use of
text-mining was explored to extract information from fields containing a description
of the sample collected by the veterinarian, in order to identify the organ system(s)

affected in the clinical case being investigated.

Due to the structured format of the data, the text-mining task did not need to
account for sentence semantics or other contextual information. Statistical meth-
ods were sufficient to capture the majority of medically relevant information from
the fields mined. The binary occurrence of words from a manually constructed dic-
tionary served as input to the classifier. The algorithms needed therefore to learn

the relationship between these words, their co-occurrences and the target syndromic

group.

Rule induction is suitable for uncovering these types of regular relations [135],
and is recommended in cases when improvements in accuracy can be achieved by
incorporating relationships among attributes [I37]. However, upon manual review of
the rules created by the algorithm, it was found that performance could be improved
by including specific relationships in cases of multiple word occurrences. It was noted

that the main relationships that the rule induction had failed to capture involved:

e (i) Sampling of multiple organs. For instance heart was associated with the
“Circulatory” syndrome, and liver with “Gastro-intestinal”, but the observation
of samples from both organs in the same test request should be classified as

“Systemic”.
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e (ii) Precedence being given to some words. “Abortion” is an actual clinical
syndrome, in contrast to all other groups based on organ systems. Therefore
the observation of any words related to abortion (fetus, placenta, aborted, etc)
should result in classification of “Abortion”, regardless of what fetal organ(s)

was(were) collected.

e (iii) The co-occurrence of words which have a different meaning than when they
occur on their own. For instance ear is a word included in the dictionary of
relevant terms and would typically be associated with the “Eyes and ears” syn-
drome; however, this word should be ignored when it appears in the expression

ear tag, which refers only to animal identification within a herd.

These relationships are still simpler than typical contextual challenges associated
with full textual analysis, and the set of manually modified rules exhibited high per-
formance. The remaining issues that prevented correct classification, such as mis-
spellings and inconsistent abbreviations relate to the quality of the data, something

which often complicates the interpretation of syndromic information [2].

The rule-based algorithm using manually modified rules was considered the most
suitable algorithm for the classification of the animal laboratory dataset at hand,
due to its high accuracy, ease of implementation, and high interpretability /trans-
parency. Although simple, this rule-based solution is in line with research reporting
from the i2b2 Obesity Challenge. Among the top 10 performing systems, rule-based
approaches were the most successful in the textual task, which required classification

based on documented information [124].

Rules also have the advantage that they are transparent and can typically be easily
interpreted by the collaborating health experts [I35]. Their main disadvantage is
the knowledge acquisition bottleneck, in the case where rules are manually created,

limiting portability and flexibility [135, [138]. Updates in the future to accommodate
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changes in the language may have to be implemented manually, rather than in an

automated manner.

The Naive Bayes classifier demonstrated high performance. The main limitation
observed with the use of this algorithm was its instability when groups with low
frequency were included in the dataset. This behavior has been documented else-
where [136]. The algorithm assumes that parameters are independent [I38]. In this
context the parameters were the binary occurrences, within each record, of the key-
words from the dictionary built. Instability was however not observed to be due to
occurrence of multiple keywords; rather it was associated with groups having small
numbers of training examples. Due to the fact that the Naive Bayes approach ex-
hibits low transparency, it was not possible to track the specific mechanisms causing
the problems observed in these low frequency categories, or to instigate measures
to improve the way the algorithm was recording and using relationships between

samples and the classification groups.

If transparency is not a limiting issue, that is, if domain knowledge experts are not
required to understand and review the way by which the classifier is making deci-
sions and classifying each instance, the Naive Bayes algorithm can be an alternative
to manually modified rules. Besides the high performance — though not as high
as the custom set of rules — its implementation was the easiest of all algorithms
evaluated, and automated updates can be planned by retraining the algorithm at

regular intervals.

Nonmetric methods, such as Decision Trees, provide a “natural way to incorporate
prior knowledge from human experts” [I37|. However, this algorithm performed
very poorly when small frequency groups were present; completely missing up to
nine syndromic groups. Decision Trees were also very unstable to small changes on
the data. This type of behaviour, in terms of training set sensitivity, has been well

documented for Decision Trees [137].
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The high performance reported in this study for the rule-based classifier refers to
the algorithm’s ability to reproduce the manual classification of records provided by
a human expert. This classification, however, is based on an active review of test
orders and diagnostic specimens submitted. Clinical descriptions are not normally
submitted by veterinarians, and were not available for use in the classification of
records, which constitutes a limitation to the classification process. While the lack
of clinical information is expected to reduce the precision and recall of the system in
comparison to the actual syndromes observed by the veterinarians, the consistency of
the classifier and its high accuracy in utilising the information that is available should
allow the system to capture increases in the number of submissions across different
syndromic groups. Figure illustrates the time series of daily counts, constructed
after data had been classified using the rule-based algorithm, for two syndromic
groups with expected seasonal behaviour: Bovine Viral Diarrhea and Mastitis. The
series reflect the expected seasonal patterns, which supports the conjecture that
classified records successfully reflect real trends in the number of submissions for

various syndromes.

The development of this system has been conducted at the request of the data
providers and the Ontario Ministry of Agriculture Food and Rural Affairs, which
is responsible for the animal surveillance activities in the province of Ontario. The
system has benefited greatly from the automated extraction of surveillance informa-
tion from this animal health database. As the information extraction was based on
data already regularly submitted to the AHL without any requirement for passive
or active collection of additional data, sustainability of the system is not expected

to be an issue.
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Figure 3.3: Daily counts of cases allocated to Bovine Viral Diarrhea (top) and Mastitis (bottom)
syndromes.
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3.6 Conclusion

Real-time monitoring of animal health data depends on establishing reliable models
that reflect medical knowledge and that can be applied in an automated manner.

Such models should be efficient, but also comprehensible to end users.

In this study the structured format of laboratory data, and the use of standard
test codes, allowed for classification of approximately 75% of test requests into syn-
dromic groups using direct mapping. For the remainder of the data, high accuracy
(F1-macro = 0.997) was achieved through the use of a rule-based syndrome classifier.
Induced rules were manually modified during the construction phase, but resulted in
clear interpretability of decisions and resulting classification. While the use of rules
was easy to implement and interpret, the construction of a dictionary of medically
relevant terms and the manipulation of rules were time-consuming steps. Imple-
mentation of similar systems making use of other sources of laboratory data should
be easier facilitated as standardized languages are more widely adopted in animal

health laboratories, avoiding the repetition of this process for every new database.

The use of a custom rule set limits the potential for automatic revision of the
classification model. Further research is required to establish internal validation
rules, possibly based on the results available from historical data, in order to define

automated ways to carry out model updates in the future.
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Chapter 4

Retrospective time series analysis of
veterinary laboratory data: preparing
a historical baseline for cluster

detection in syndromic surveillance

OFernanda C. Dérea, Crawford W. Revie, Beverly J. McEwen, W. Bruce McNab, David Kelton and Javier
Sanchez. Preventive Veterinary Medicine 2012, http://dx.doi.org/10.1016/j.prevetmed.2012.10.010
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4.1 Abstract

The practice of disease surveillance has shifted in the last two decades towards the
introduction of systems capable of early detection of disease. Modern biosurveil-
lance systems explore different sources of pre-diagnostic data, such as patient’s chief
complaint upon emergency visit or laboratory test orders. These sources of data
can provide more rapid detection than traditional surveillance based on case con-
firmation, but are less specific, and therefore their use poses challenges related to
the presence of background noise and unlabeled temporal aberrations in historical
data. The overall goal of this study was to carry out retrospective analysis us-
ing three years of laboratory test submissions to the Animal Health Laboratory in
the province of Ontario, Canada, in order to prepare the data for use in syndromic
surveillance. Daily cases were grouped into syndromes and counts for each syndrome
were monitored on a daily basis when medians were higher than one case per day,
and weekly otherwise. Poisson regression accounting for day-of-week and month was
able to capture the day-of-week effect with minimal influence from temporal aberra-
tions. Applying Poisson regression in an iterative manner, that removed data points
above the predicted 95" percentile of daily counts, allowed for the removal of these
aberrations in the absence of labeled outbreaks, while maintaining the day-of-week
effect that was present in the original data. This resulted in the construction of time
series that represent the baseline patterns over the past three years, free of temporal
aberrations. The final method was thus able to remove temporal aberrations while
keeping the original explainable effects in the data, did not need a training period
free of aberrations, had minimal adjustment to the aberrations present in the raw
data, and did not require labeled outbreaks. Moreover, it was readily applicable to

the weekly data by substituting Poisson regression with moving 95" percentiles.
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4.2 Introduction

Surveillance has shifted in the last two decades towards systems capable of early de-
tection of disease [2]. Modern biosurveillance systems are designed to take advantage
of data assumed to contain signatures of healthcare-seeking behaviors, which are not
as specific as diagnosis, but allow for more rapid detection, and can be aggregated
as syndromes. Surveillance based on these types of data is therefore referred to
as syndromic surveillance [3]. A recent review of syndromic surveillance initiatives
in veterinary medicine [I34] indicated that opportunistic data sources are difficult
to find in animal surveillance due to the scarcity of computerized, automatically

collected data.

The secondary use of clinical animal data, whether computerized or not, also
relies on the voluntary participation of veterinarians and/or producers. One al-
ternative to relying on data shared voluntarily is the exploitation of automatically
collected laboratory submission data [13]. Laboratory test results have been anal-
ysed retrospectively to detect temporal clustering of bacterial pathogens in public
health [139, 140} O] and veterinary medicine [T41], 15]. The use of submission data,
however, more properly fits the purposes of syndromic surveillance, as test requests
are available earlier, though provide less specificity, than test results. Despite having
lower population coverage than clinical data, laboratory data are generally stored
in computerized systems, and have been available over relatively lengthy periods of

time, meaning that historical analyses are usually possible.

When historical computerized data are available, a key challenge involves the con-

struction of outbreak-free baselines, as any outbreaks will typically not be labeled,
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nor will their shape and magnitude be known [2]. Detection of abnormal behavior in
prospective analysis is based on either modeling and removing expected background
(model-driven methods) or comparing profiles to similar data from unaffected pop-
ulations (data-driven methods) [25, 2]. In both cases, a baseline free of outbreaks is
necessary: in the former case to create models of expected behavior, and in the lat-
ter to serve as a comparison to the data being tested. Historical data can provide a
baseline for temporal aberration detection algorithms, but data quality and influence
of past outbreaks are challenges to overcome when determining ‘typical’ background

behavior against which the presence of abnormalities can be investigated [2].

The overall goal of this study was to carry out retrospective analysis using three
years of laboratory test submissions, related to health events in cattle, made to the
Animal Health Laboratory in the province of Ontario, Canada. These historical data
were analyzed for their potential use in syndromic surveillance. The retrospective
analysis had two specific objectives. The first was to conduct time series analysis in
order to discover explainable patterns in the data, such as day-of-week or seasonal
effects as well as global trends. The second objective was to identify a procedure that
could adequately describe the “normal behavior” for each syndrome, separating the
background behaviour from temporal aberrations present in the historical laboratory

test request data.

4.3 Methods

4.3.1 Data source

The Animal Health Laboratory (AHL) is a full-service veterinary diagnostic lab-
oratory that serves livestock, poultry and companion animal veterinarians in the

province of Ontario, Canada. The AHL is part of the University of Guelph and is
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an integral part of the Ontario Animal Health Surveillance Network (OAHSN).

The AHL has a Laboratory Information Management System (LIMS) that is pri-
marily used for reporting the results of diagnostic tests and for administrative pur-
poses, but can also be used as a data retrieval platform for surveillance. Test requests
are entered into the AHL database daily (only in exceptional circumstances are tests
not entered in the computerized system on the same day that they are received).
Individual tests are recorded as unique data entries. A common case code (submis-
sion number) is given to all samples from the same herd submitted on the same day.
Retrospective analysis was performed on a dataset created by extracting three years

(2008 to 2010) of data from all cattle sample submissions.

4.3.2 Case definition and syndromic groups

Individual health events were defined as one syndrome occurrence per herd. Indi-
vidual herds can be identified in the database by the case code (a unique submission
number), however it is not possible to consistently identify repeating submissions
from the same herd if received on different days, and so recurring instances related

to the same health event are recognized as multiple events.

Syndrome classification was performed based on the type of sample submitted
and the diagnostic test requested by the veterinarian, which are the only pieces of
information available at the time of submission. The full list of syndromes defined

by the diagnosticians involved in this work is shown in Table [4.1]

Classification is first performed for each requested test. For pathogen specific
tests, a direct correspondence was established between tests and syndromes. For
instance: rabies tests are mapped to the nervous syndrome; brucellosis tests are
mapped to the reproductive syndrome; etc. For non-specific tests, such as “bacteri-

ological investigation”, or “histology”, text mining methods were used to search the

73



Table 4.1: Syndromic groups identified after analysis of three years (2008-2010) of diagnostic test
requests to the Animal Health Laboratory, at the University of Guelph, Ontario, Canada.

DAILY monitoring Days with 0 counts Percentiles
25%  50% 75% 100%
Bovine Leukaemia Virus (BLV) tests 10.1% 2 4 7 33
Bovine Viral Diarrhoea tests 13.5% 1 3 4 11
Biochemical profile 12.4% 1 2 4 10
Clinical pathology tests (others) 12.8% 1 2 4 17
Gastro-intestinal 10.0% 2 3 5 12
Johnes disease tests 16.4% 1 2 4 12
Neospora caninum tests 25% 0.75 2 3 11
Mastitis 3.6% 5 9 12 29
Respiratory 20.9% 1 2 3 9
Nonspecific test requests® 6.2% 2 4 5 14
WEEKLY monitoring Weeks with 0 counts Percentiles
25% 50% 75% 100%

Circulatory, hepatic and hematopoietic! 39.2% 0 1 2 6
Nervous 37.8% 0 1 2 5
Reproductive and Abortion? 32.5% 0 1 2 8
Systemic 26.3% 0 2 4 10
Toxicology tests 29.2% 0 2 5 30
Urinary 70.0% 0 0 1 4
Others? 64.1% 0 0 1 5

IThis group merges syndromic groups which initially contained very small numbers of
submissions: “circulatory”, “hepatic” and “hematopoietic”;

2 merges “reproductive” and “abortion”;

3 merges “skin”, “eyes” and “ears”.

*Test requests that could not be classified into any of the other groups.
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text entered freely by veterinarians describing the sample submitted, as well as the
information from the field “sample type” used by laboratory staff. A dictionary of
medically relevant words was constructed, and their relationship to different organ
systems was established. For instance samples in which the word “lungs” is found
are classified as respiratory syndrome, but if multiple organs from different systems
are found, the syndrome type is “systemic”. Abortion keywords have precedence, so
that for instance “fetus lungs” are classified as the abortion syndrome, rather than
respiratory. These correspondences compose a set of classification rules. The process
was automated using rule-based classification algorithms, and is described in detail

in [142].

Once each test request is classified into a syndrome, the data are collapsed by
syndrome and case code for each day. This assures that multiple tests referring to
the same syndromic type are not counted multiple times when related to the same
case. However if clues to more than one syndrome are found within the same case

all possible syndromes are counted.

4.3.3 Data characterization

All statistical analyses were performed in the R environment [143]. Complete data
series, with counts for every calendar day from January 1%* 2008 to December 31%
2010, were generated for each syndromic group by inserting missing days and as-
signing to them a count of zero (R packages {timeDate} [144] and {chron} [145]).
When median daily counts for a given syndromic group were equal to or less than one
count per day, the merging of two or more groups was considered, based on clinical
similarities according to the opinion of the experts involved in syndrome definition.
For instance abortion cases are classified into an individual category, which may be
merged with other reproductive cases if their median count is not higher than one

per day.
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All syndromic series were further aggregated into weekly counts. Both daily series
and weekly series were evaluated when medians were greater than one case per day,
and only weekly aggregated data were evaluated otherwise. Further aggregation (for
instance into monthly counts) was not considered as a key goal of the system being

developed was early detection.

Initial characterization of the individual time series were performed using summary
statistics by day-of-week, month and year, time plots, moving average and moving

standard deviation charts [94].

Regression models were used to model any temporal effects observed in the data
upon analysis of summary statistics, such as day-of-week, seasonal effects and global
linear trends. Regression models appropriate for count data, such as Poisson regres-
sion [146], negative binomial regression, and zero-inflated versions of these methods
(R package pscl [147]) were explored. Fit was assessed individually for each model
(analysis of residuals and goodness-of-fit), and compared among models using the

Akaike Information Criterion (AIC).

4.3.4 Aberration removal

To address the second objective, which was to define an outbreak-free historical
baseline for each syndrome by separating the background behavior from temporal

aberrations present in the historical data, two methods were investigated.

Smoothing was attempted using Holt-Winters exponential smoothing [148], [149],
a method chosen due to its ability to model the temporal effects present in the data.
Initializing smoothing coefficients (alpha for level, beta for trend and gamma for sea-
sonality) can be provided when implementing this method. Lotze et al. (2008) [94]
suggest using a = 04, § = 0 and v = 0.15 for surveillance data with seasonal

components, and o = 0.1 when there is no season component. The seasonal compo-
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nent can be modeled as additive to the baseline (for each season effects of different
magnitudes are added to the time series); or multiplicative (effects are modeled as
a ratio from the baseline time series). The latter is not appropriate when there are
zero-count days in the time series, as was the case in most of the syndrome time

series evaluated here [148)].

The second method was based on the procedure used by Tsui et al. (2001) [150].
The procedure is based on the assumption that after fitting the entire data to a
regression model, data points above the 95% confidence interval of model predictions
represent data occurring within epidemic time points. Data points above a one-sided
95% confidence interval are removed. The regression model used by the authors was
the Serfling method [I51], [150], a linear regression model based on weekly counts that
introduces sine and cosine terms in order to account for seasonal waves. To explore
the method for the data available in this study, the substitution of the Serfling
method with the Poisson regression used during data characterization was tested.
Replacement of detected outliers was evaluated using the limit of the confidence
interval, and alternatively by the expected value for that time point, based on model
predictions. To identify outliers in a Poisson model, the 95" percentile of the Poisson
distribution with mean equal to the estimated value for each time point was used
as the threshold limit of that point. That is, for each estimated value \;, the upper
limit is the smallest integer x such that P(\; < ) > 0.95. Lastly, an assessment was
carried out as to whether repetition of the steps of model-fitting and outlier removal,

in an iterative process, would improve anomaly elimination.
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4.4 Results

4.4.1 Case definition and syndromic groups

The complete list of syndromic groups is shown in Table 4.1, A choice to monitor
daily only those syndromes with median counts greater than one submission per day
was made; the remaining syndromes were grouped into weekly counts. Syndromic
groups merged into larger groups are also shown in the table, with details provided
in the numbered footnotes. The AHL primarily operates on weekdays, with selected
emergency testing available outside of usual business hours. Test requests are en-
tered in the database daily and the date registered is that on which the sample was
received. Sample submissions assigned to Saturdays and Sundays in the database
were allocated to the following Monday. Daily medians in Table therefore refer
to the weekday median. All the time series described are based on 5-day weeks, and

260-day years.

4.4.2 Data characterization

Time series for six of the syndromic groups listed in Table [4.T]are shown in Figure[4.T],
three daily series — requests for serological tests of Bovine Leukemia Virus (BLV),
counts of tests related to mastitis diagnostics, and counts of tests for respiratory
diseases; and three series chosen to be monitored weekly — test requests related
to systemic diseases, reproductive diseases, and toxicology tests. Mastitis is the
group with the highest daily average, the BLV series was chosen due to the evident
presence of temporal aberrations in the historical baseline, while Respiratory was
selected based on the assumption that it was more likely to exhibit seasonal variation.
The weekly series were chosen to illustrate different weekly averages and presence of

aberrations.
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Figure 4.1: Examples of time series of daily (left) and weekly (right) counts of requests for tests
associated with various syndromic groups

4.4.2.1 Time series for syndromes monitored daily

All daily series showed strong DOW effects. A zoomed view of 7 weeks at the begin-
ning of 2010 for the Mastitis series is shown in Figure [4.2}A. Mondays are labeled in
the graph. Box-plots of the quartiles of daily counts for the whole Mastitis series, per
day-of-week, are shown in Figure [£.2}B. The peak of diagnostic sample submissions
on Tuesdays is a result of the large number of sample submission through courier
— because this laboratory serves the entire province of Ontario, many samples are
mailed to the laboratory. Samples collected at the beginning of a week are therefore

often received on Tuesday.

Month was, for most syndromic time series, a significant predictor in the Poisson
regression model (at the 5% significance level). Monthly box-plots are shown for the
Mastitis series in Figure [£.2}C. Year was not a significant predictor in the Poisson
model for any syndromic series but BLV submissions. In that case, however, the
effect was due to a high number of submissions in 2008 compared to 2009 and 2010,
while the number of submissions in the latter two years was not significantly different

from each other. No global linear trend was detected in any of the time series studied.
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Figure 4.2: Day-of-week and month effects exemplified using the mastitis series. A- 7 week zoomed
view of the series. Mondays are labeled with “M”. B- Box-plots of all counts in each day of the week
for the entire series (2008 through 2010). C- Box-plots of all counts in each month for the entire
series (2008 through 2010).

Moving averages and standard deviation charts using several window sizes indi-
cated that all series evaluated were non-stationary. The predicted values from the
Poisson model are shown in Figure for the BLV series, focusing on the year 2010
for visualization purposes (model fitting also included 2008 and 2009). No improve-
ment (based on the reduction in the AIC) was obtained when using negative binomial
or zero-inflated models to account for the substantial numbers of zero counts in the
data. Analysis of residuals, deviance and goodness of fit (based on Pearson residuals)
did not give reason to suspect of lack of fit to the Poisson regression model in any
of the daily series evaluated. This result is restricted to the series chosen for daily

monitoring, that is, those with a daily median greater than one submission per day.

4.4.2.2 Time series for syndromes monitored weekly

When counts are aggregated by week, the syndromic time series are reduced to 157
observations, rather than the 782 weekdays of the original daily data. Exploratory

analysis using Poisson regression and the Serfling method [I51], 150] indicated that
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Figure 4.3: Poisson model predictions (grey) and the original BLV time series used to fit the model
(black). Model variables were day-of-the-week and month.

the use of non-parametric methods, such as moving percentiles, were best suited to

characterize these series.

4.4.3 Aberration removal

4.4.3.1 Time series monitored daily

The seasonal component of the Holt-Winters exponential smoothing reflected mainly
the weekly effects, and no global trend was detected. It was therefore hypothesized
that recognition of years was not relevant, and that modeling performance could be
improved if the period was set to represent each week, rather than each year. A
time series was created in which the cycles were set to 5 days, and the Holt-Winters
smoothing was reapplied. Using shorter cycles allowed refitting of the parameters
much more frequently (a great number of 5-days cycles within each year of data),
resulting in the same final empirically calculated smoothing coefficients regardless of

the choice of initializing coefficients.

The Holt-Winters exponential smoothing was able to reproduce closely the tempo-
ral effects and the random behavior of the data, but aberrations present in the raw
data were incorporated in the model predictions. This is in contrast to the Poisson

regression applied to all data (global model). Because day-of-week and month were
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the only predictors incorporated, the Poisson model provided estimates that will be
identical for each day of the week and month in different years, but are closer to

what is expected in terms of baseline data.

Considering these results, Poisson regression was considered an appropriate method
for modeling global behavior, when the main goal is to capture baseline activity with
minimal influence of temporal aberrations present in the data, especially when these
aberrations (potential outbreaks) have not been identified. The disadvantage of los-
ing some of the original variation in the data through the application of a global
model was addressed by applying a procedure similar to that suggested by Tsui et
al. (2001) [150], in which most of the original data are kept, and a fitted model is

used only to detect and replace outliers.

Applying the method of outlier removal as an iterative process confirmed that the
subsequent steps of model fitting provided further aberration removal. Setting the
process to repeat iterations for as long as outliers were detected typically required
3-4 iterations of model fitting and outlier removal for each syndromic time series,
after which all observations fell within the 95" percentile interval of the Poisson

estimates.

When outliers detected using the percentile limit were substituted by the model
prediction for that data point, rather than the limit of detection itself, an additional
1-2 iterations were necessary until no outliers were detected. The resulting time
series after applying the iterative process of outlier removal based on Poisson re-
gression, for the BLV series, are shown in Figure [£.4] Outlier substitution using the
upper limit of the confidence interval (Figure [£.4B) represented a better balance
between removing temporal aberrations and keeping the original variation of the

original data, without over-smoothing.
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Figure 4.4: Raw data of daily counts for the BLV series (grey), superimposed by a baseline con-
structed after removal of temporal aberrations (black) using an iterative process based on Poisson
regression. In the top graph, data points greater than the 95th percentile interval for the Poisson
estimates were substituted by the model predicted value in each iteration. In the bottom graph the
outliers were substituted by the upper limit of the 95th percentile interval in each iteration.

4.4.3.2 Time series monitored weekly

As the results of the exploratory analyses indicated that non-parametric methods
were suitable for handling weekly data, the use of moving percentiles was investigated
to remove temporal aberrations. In a manner similar to moving averages, a number
of observations to the left and to the right of each value in a vector are used to
calculate the statistic — in this case a percentile. Following the process previously
used for daily data, the 95 percentile was used to construct an upper limit for each
value, and moving windows of 10 to 52 weeks were evaluated. These upper limits
were used in the same iterative process described for daily data, to remove temporal

aberrations.

This process applied to weekly series demonstrated better results using the 26
week window. Using shorter windows tended to result in inconsistent results, failing

to eliminate temporal aberrations in some series or some specific periods within a
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series, and over-smoothing others. Larger windows tended to over-smooth the series,
eliminating most of the random variation. The result of the process based on 26
weeks moving windows is shown in Figure [4.5] for the time series of counts of test

requests for systemic diseases.

The iterative procedure was performed consistently for all time series in Table
with results similar to those shown in Figures [4.4] and [4.5]

Outlier removal using a 95% percentile
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Figure 4.5: Raw data of weekly counts for the systemic syndrome series (grey) superimposed by a
baseline constructed after removal of temporal aberrations (black) using an iterative process based
on moving 95" percentiles, in windows of 26 weeks.

4.5 Discussion

Syndromic surveillance operates under the assumption that anomalies indicative of
disease outbreaks can be detected when information is monitored continuously [2].
Signatures of outbreaks can be obscured in the data by explainable factors, such as

day of the week or seasonal effects, autocorrelation and global trends [94].

In this work three years of laboratory test requests from the Animal Health Labo-
ratory at the University of Guelph, Ontario, were evaluated. The aim was to evaluate
statistical approaches that would account for temporal effects in order to establish
the baseline behaviour of the data for aberration detection in real time. Cases were
counted daily, and repeating health events from the same herd were not discarded.

This was considered to affect the specificity of the system, rather than sensitivity.
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Once data were separated into syndromic groups, all time series of daily counts
showed strong day-of-week effects. Even though the effect is not always consistent
it was successfully reproduced by a Poisson regression, in which month was also
a significant predictor. No global linear trends were found. In the series of counts
aggregated weekly non-parametric methods such as moving percentiles were sufficient
to model the data. Very low counts (medians are shown in Table and weak
effect of month explain why modeling and/or removing temporal effects was not
an important condition in the weekly aggregated time series, and non-parametric

methods could be used.

The Holt-Winters exponential smoothing was not able to separate the temporal
aberrations from normal, background behavior. The attempt to change the settings
of the Holt-Winters smoothing to recognize week as the data period, rather than
year, proved to be valid in simulating the day-of-week effect. However, since local
regression methods such as this adapt closely to the background variation in the
data, the method will only be useful in modeling the data once an outbreak-free

baseline is available.

On the other hand, the Poisson regression model fit to the whole data allowed all
days of normal behavior in the data to contribute to the estimates, and therefore
the resulting estimates were closer to the expected baseline of normal behavior.
Regression has been used in several implemented biosurveillance systems, and it is
a natural choice when this amount of historical data are available [I52, 2]. The
Poisson regression, specifically, can be more robust than other linear models since it
does not require constant variance [88]. The Poisson regression, however, assumes
variance equal to the mean of the distribution of observed counts. This proved to
be a reasonable assumption for the syndromic time series evaluated in this work,
since neither a negative binomial nor zero-inflated models indicated a better fit for

the daily counts. If this assumption is not met, models which can account for zero-
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inflated distributions and/or overdispersion should be explored [153].

By reducing the model variables to key explainable factors, such as day-of-week
and month, it was possible to model the baseline behavior, while preventing adap-
tion to temporal aberrations. Removing such aberrations from training data has
been noted as a key challenge of implementing any system for early detection of out-
breaks [2]. There are statistical methods to identify whether outbreaks are present
or not [154], and the use of diagnostic information to label outbreaks has also been
suggested [86]. However, even if outbreaks can be identified, the problem of how to
remove the outbreak signature from the background data of normal behavior remains.
The challenge addressed in this work was that of identifying an algorithm that could
be used despite the absence of clean training data and the lack of knowledge about

the shape and duration of any outbreaks.

When removing aberrations it is desirable to keep as much of the original data as
possible, using model predictions only to replace days in which temporal aberrations
are present. To achieve this, the method proposed by Tsui et al. (2001) [150] was
adapted by substitution of the Serfling algorithm, more appropriate for time series
with strong seasonal effects, with a Poisson regression and application of the steps
iteratively. Fitting a global model such as Poisson regression assumed that the
covariates chosen were sufficient to capture the systematic behavior of the data, and

that their relationship to the counts is homogeneous across the entire period [148].

The substitution of outliers by modeled values resulted in over-smoothing of the
data. If adopted, this would generate a baseline which would likely lead to the
detection of excessive number of false alarms when used to train aberration detection
algorithms. When our adjusted method substituted outliers with the upper limit of
the 95" percentile it proved to be efficient in removing temporal aberrations, while

keeping most of the original data, and maintaining the day-of-week effect.
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The BLV series was used to illustrate the method, since it had the most noticeable
set of temporal aberrations in historical data, but the method also performed well
when applied to the other daily time series. It is therefore an efficient procedure for
the automated cleaning of historical data, producing baselines that can be used in

prospective analysis.

This iterative smoothing method also proved useful for removing aberrations from
syndromic data that was aggregated at a weekly level, when substituting the Pois-
son regression with moving percentiles. One setting (using a 26 week window and
the 95 percentile) worked well for all data series, again allowing for automated
implementation. This assumes that no predictable effects, such as seasonal patterns,
are present in the data. This assumption was met for the time series evaluated due
to the decision to aggregate sparsely occurring syndromes into weekly counts, thus

removing any day-of-week effect.

It was not the intention of this work to investigate the reasons for the aberrations
documented in the historical data available. Some of these aberrations could consti-
tute random variation in the data, rather than true alarming health events, in which
case removal of all aberrations could cause over-smoothing of the data, reducing the
specificity of a system based on these developed baselines (“over-sensitive” detection
alarms). This was however chosen over the risk of developing a system with low
sensitivity, due to noisy baseline data. Once a baseline is available, system imple-
mentation can be simulated retrospectively, that is, the system can be set to run
daily in data starting 6 months to a year before the actual date of implementation,
so that a buffer, or “purging” time is used to let the system re-adjust to real data,
and in case of excessive false-alarms adjustments to system settings can be made to

maximize sensitivity without decreasing the specificity of the system.

This work assumed that prospective monitoring in real-time, the next stage of a

syndromic system development, will be based on monitoring count events, as opposed
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to monitoring the time between occurrences, which are better suited for monitoring
rare events. A decision was therefore made to monitor daily counts for only those
syndromes with a median value greater than one, and to group the remaining time
series into weekly counts. Further grouping into monthly counts was not considered
appropriate for the early-detection warnings to be captured by this system. Without
such further grouping, however, some series may be better monitored with methods
specifically developed for the monitoring of rare events. Such methods are beyond
the scope of this work, as most of the series with low counts were a result of an
attempt to classify all laboratory tests into a syndromic group, rather than a true

interest in rare events in these data.

4.6 Conclusion

Successful identification of outbreak signatures in population data, the primary goal
of syndromic surveillance, depends on identifying and removing explainable varia-
tion from the noisy background of normal behavior. Three years of laboratory test
request data from the Animal Health Laboratory in Ontario were analyzed retrospec-
tively in order to identify such explainable factors. Day-of-week and month effects
were found to be the only relevant effects that required removal. Poisson regression
accounting for day-of-week and month was able to capture these effects with minimal

contamination by temporal aberrations.

The results of the exploratory analyses were used to identify temporal aberrations
in the historical data. By applying Poisson regression in an iterative manner, that
removed data points above the 95" percentile, it was possible to remove these aber-
rations in the absence of labeled outbreaks, while keeping the temporal effects from
the original data. This resulted in the construction of time series that represent the

baseline pattern over a three year period, free of temporal aberrations. The final
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method proposed did not require a training period free of aberrations, had minimal
adjustment to these aberrations present in the raw data, and did not require labeled
outbreaks. Moreover, it could be readily adapted for weekly data by substituting

Poisson regression with moving 95" percentiles.
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Chapter 5

Syndromic surveillance using
veterinary laboratory data: data
pre-processing and algorithm

performance evaluation

OFernanda C. Dérea, Beverly J. McEwen, W. Bruce McNab, Crawford W. Revie and Javier Sanchez. Submitted
for peer-review. Journal of the Royal Society Interface.

90



5.1 Abstract

Diagnostic test orders to an animal laboratory were explored as a data source for
monitoring trends in the incidence of clinical syndromes in cattle. Four years of real
data and over 200 simulated outbreak signals were used to compare pre-processing
methods that could effectively remove temporal effects in the data, as well as tem-
poral aberration detection algorithms that provided high sensitivity and specificity
in such monitoring systems. Weekly differencing demonstrated solid performance in
removing day-of-week effects, even in series with low daily counts. For aberration
detection, the results indicated that no single algorithm consistently performed bet-
ter than all others across the range of outbreak scenarios simulated. Exponentially
Weighted Moving Average charts and Holt-Winters exponential smoothing demon-
strated complementary performance, with the latter offering an automated method
to adjust to changes in the time series that will likely occur in the future. Shewhart
charts provided lower sensitivity but earlier detection in some scenarios. Cumula-
tive Sum charts did not appear to add value to the system. These findings indicate
that automated monitoring, aimed at early detection of temporal aberrations in syn-
dromic data sets of this type, will likely be most effective when a number of different

algorithms are implemented in parallel.

Keywords: laboratory, syndromic surveillance, temporal aberration detection, out-

break detection, control charts.

5.2 Introduction

During the last decade, increased awareness of the need to recognize the introduc-
tion of pathogens in a monitored population as early as possible has caused a shift

in disease surveillance towards systems that can provide timely detection |20 2].
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Some monitoring has shifted to pre-diagnostic data, which are available early, but
lack specificity for detection of particular diseases. These data can, however, be ag-
gregated into syndromes, a practice which has led to an increase in the use of the

terms “syndromic data”, and “syndromic surveillance” [3, 2].

Disease outbreak detection is a process similar to that of statistical quality control
used in manufacturing, where one or more streams of data are inspected prospectively
for abnormalities [2]. For this reason, the use of classical quality control methods has
been used extensively in public health monitoring [93] [155]. However, these types
of control charts are based on the assumption that observations are independently
drawn from pre-specified parametric distributions, and therefore their performance is
not optimal when applied to raw, unprocessed health data [94], which are typically
subjected to the effect of factors other than disease burden. Some of these factors are
predictable, such as day-of-week effects, seasonal patterns or global trends in the data
[2]. These predictable effects can be modelled and their influence removed from the
data [146], 94, 25]. An alternative is to make use of data-driven statistical methods,
such as the Holt-Winters exponential smoothing, which can efficiently account for

temporal effects [149].

The use of real data is an essential step in the selection of algorithms and detec-
tion parameters because the characteristics of the baseline (such as temporal effects
and noise) are likely to have a significant impact on the performance of the algo-
rithms [99]. However, the limited amount of real data and lack of certainty concerning
the consistent labelling of outbreaks in the data prevent a quantitative assessment of
algorithm performance using standard measures such as sensitivity and specificity.
These issues can be partially overcome through the use of simulated data which can
include the controlled injection of outbreak signals. Furthermore this approach has
the advantage of allowing for the evaluation of algorithm performance over a wide

range of outbreak scenarios [156].
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A recent review [134] indicated that few systems have been developed for real- or
near-real time monitoring of animal health data. Previous work by the authors [157]
has addressed the possibility of using laboratory test requests as a data source for
syndromic surveillance in aiming to monitor patterns of disease occurrence in cattle.
In this paper these same data streams are evaluated with the aim of constructing
a monitoring system that can operate in near-real time (i.e. on a daily and weekly

basis).
The points outlined above were addressed in an exploratory analysis designed to:
e (i) identify pre-processing methods that are effective in removing or dealing
with temporal effects in the data;

e (ii) explore methods that combine these pre-processing steps with detection
algorithms, with the data streams available and being aware of the importance

of having a detection process interpretable by the analysts;

e (iii) identify the temporal aberration detection algorithms that can provide high

sensitivity and specificity for this specific monitoring system.

A variety of algorithms and pre-processing methods were combined and their per-
formance for near-real time outbreak detection assessed. Real data were used to
select algorithms, while sensitivity and specificity were calculated based on simu-

lated data which included the controlled injection of outbreaks.

5.3 Methods

All methods were implemented using the R environment [143)].
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5.3.1 Data source

Four years of historical data from the Animal Health Laboratory (AHL) at the Uni-
versity of Guelph in the province of Ontario, Canada, were available — from January
2008 to December 2011. The AHL is the primary laboratory of choice for veterinary
practitioners submitting samples for diagnosis in food animals in the province of
Ontario, Canada. The number of unique veterinary clients currently in the labora-
tory’s database (2008 to 2012) is 326. The laboratory receives approximately 65,000
case submissions per year, summing to over 800,000 individual laboratory tests per-
formed, of which 10% refer to cattle submissions, the species chosen as the target

for syndromic surveillance implementation.

A common standard for the classification of syndromes has not been developed in
veterinary medicine. Classification was therefore based on manual review of three
years of available data, and then creating rules of classification reviewed by a group of
experts (a pathologist, a microbiologist and two clinical veterinarians) until consensus
was reached by the group. These rules were implemented in an automated system

classification as documented in Dorea et al. (2013) [142].

An effort was made to classify every laboratory submission record into at least one
syndromic group. Therefore, the final syndromic classification was not only based
on a direct relation to clinical syndromes. A “syndromic group” was defined in this
system as laboratory submissions: (i) related to diseases from the same organ system;
(ii) comprising diagnostic tests for the same specific disease, in cases of tests requested
so frequently that their inclusion in another group would result in their being, alone,
responsible for the majority of submissions; or (iii) that have little clinical relevance
and should be filtered out. Seventeen syndromic groups were created. Nine groups
referred to clinical syndromes: gastro-intestinal; mastitis; respiratory; circulatory,

hepatic and haematopoietic; nervous; reproductive and abortion; systemic; urinary;
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and “other”. Diagnostics for specific diseases assigned to one of four groups based
on a higher volume of submissions (ii above) were: bovine leukosis; bovine viral
diarrhoea; Johnes disease and Neospora caninum. Lastly, the four groups created
to classify general tests were: biochemical profile; other clinical pathology tests;
toxicology tests; and nonspecific tests (those which could not be classified into any

previous group).

Individual health events were defined as one syndromic occurrence per herd. Clas-
sification is first performed for each requested test. Once each test request is classi-
fied into a syndromic group, the data are collapsed by the unique herd identifier for
each day. Due to a very low number of submissions on weekends, any cases in the
database assigned to weekends were summed to the following Monday, and weekends
were removed from the data. Only syndromic groups with a median greater than
one case per day were monitored daily [I57]. It was proposed that the remaining
syndromes (7 of 17 in total) would be monitored on a weekly basis; these series are
not discussed further in this paper. All the methods described in this paper were
carried out for all the syndromic groups monitored daily. As documented in [157],
the time series of daily cases for each of these groups showed very similar statistical
properties: daily medians between 2 and 4, except for tests for diagnosis of masti-
tis and respiratory syndromes, for which daily medians were 9 and 1, respectively;
strong day of week effect; no global monotonic trends; and weak seasonal effects,

especially for the syndromes with lower daily medians.

Methods and results are illustrated using the daily counts of laboratory test re-
qu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>