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In this paper various extensions of the parallel-tempering algorithm are developed and their properties are
analyzed. The algorithms are designed to alleviate quasiergodic sampling in systems which have rough energy
landscapes by coupling individual Monte Carlo chains to form a composite chain. As with parallel tempering,
the procedures are based upon extending the state space to include parameters to encourage sampling mobility.
One of the drawbacks of the parallel-tempering method is the stochastic nature of the Monte Carlo dynamics
in the auxiliary variables which extend the state space. In this work, the possibility of improving the sampling
rate by designing deterministic methods of moving through the parameter space is investigated. The methods
developed in this article, which are based upon a statistical quenching and heating procedure similar in spirit
to simulated annealing, are tested on a simple two-dimensional spin systemdde) and on a modein
vacuopolypeptide system. In the coupled Monte Carlo chain algorithms, we find that the net mobility of the
composite chain is determined by the competition between the characteristic time of coupling between adjacent
chains and the degree of overlap of their distributions. Extensive studies of all methods are carried out to obtain
optimal sampling conditions. In particular, the most efficient parallel-tempering procedure is to attempt to swap
configurations after very few Monte Carlo updates of the composite chains. Furthermore, it is demonstrated
that, contrary to expectations, the deterministic procedure doesnprove the sampling rate over that of
parallel tempering.
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[. INTRODUCTION techniqueg 7] or other generalized ensemble methods, such
as multicanonical method8]. Recently, a sampling scheme
Over the years, Markov chain Monte CafMC) methods known as parallel temperin@] has been proposed which is
[1] have evolved into an important and commonly used tooldesigned to increase the mobility of the Markov chain by
for evaluating expectations of observables with respect t@ampling on an extended state space. These algorithms have
some distribution. In particular, MC methods have been freone major drawback in common: The exploration of auxil-
guently utilized in the field of statistical physics to evaluateiary parameter space can be mapped onto a stochastic pro-
equilibrium and nonequilibrium ensemble averages in syseess, resulting in a nondeterministic Monte Carlo dynamics
tems where other methods, such as molecular dynamiceyer the width of the generalized distribution. For systems
yield relatively poor estimatg®]. MC methods are based on with very rough energy landscapes and deep metastable
the construction of a Markov chain of configurations of theminima, the sampling distributions must have sufficient
system, in which the probability of each configuration in thewidth to allow for migration out of these minima. Since the
chain is determined by a targeted distribution. If all points inexploration is stochastic in nature, the migration from one
the state space are accessible in the Markov chain, then atail region of the distribution to another tail region can take a
erages over the chain sequence converge to expectations wjthohibitively long time.
respect to the target distribution as the length of the Markov In this article, we examine the feasability of improving
chain goes to infinity. However, there is no guarantee thathe sampling rate of parallel tempering Monte Carlo simula-
the estimates of the expectations converge quickly and onions by incorporating a method of guiding the extended sys-
sometimes is faced with physical systems in which accuratéem through the auxiliary parameter space in a deterministic
estimates require Monte Carlo chains of intractable lengthfashion to promote the swapping of configurations and
Such a situation typically occurs when movement of thethereby the exploration of configurational space. The
Markov chain through state space is inhibited by regions ofnethod, termed “annealed swapping,” is based upon the
low probability, leading to configurational trapping in iso- combination of annealed-importance samplig] and mul-
lated modes of the systef3]. Such “quasiergodic” sam- tiple Markov chain method$11]. The annealed-swapping
pling is often observed in simulation studies of systems disalgorithm is tested on two model systems which are charac-
playing first-order phase transitiong4] or in systems terized by rough energy landscapes. It is shown that the
exhibiting frustration and rough energy landscagepin  method does not lead to greater sampling mobility than that
glassed5], conformational studies of biological molecules exhibited by the simple parallel-tempering algorithm in spite
[6]). of the increased directionality of the dynamics in the ex-
Over the last few years a number of importance samplingended state-space. In the following section, various ex-
techniques have been developed to improve the rate of cotended state space Monte Carlo algorithms are presented and
vergence of Monte Carlo calculations for systems exhibitingdiscussed in detail. In Sec. lll, the methods are tested and
guasiergodic behavior. Most approaches have been based compared on a simple two-dimensional spin systeqy (
widening the sampling distribution using umbrella-samplingmode) and a model system composed of a single, ten-
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residue polyglycine chaiim vacua The results of the nu- wherew) =P (x)/P4(x') is the statistical weight of sample

merical study of the algorithms are summarized in Sec. IV.point x'. Quenched importance sampling uses a Markov
chain of configurationgpath generated along a quenching
schedule to produce the independent sampling paintsth

Il. ALGORITHMS weights which depend on the path. The quenching compo-

nent of the sampling procedure consists of the use of a series

) ) ) of intermediate distribution®; with j=1,...n to construct

The simulated quenching procedit®] is generally used the sampling point. The Markov chain transitions for each

to investigate structure on glassy energy hypersurfaces wWhiclystribution are represented by functiohigx;—x,) giving

are characterized by many deep metastable attractive basigge probability(density of moving to statex, from the state

In biological structure applications, the algorithm allows oney We will assume that th& Markov transition probabili-

to identify important low-energy structures and is sometimegjes opey a detailed-balance condition and have a corre-

capable of finding the minimum-energy structure. However,spondmg limiting distributiorP; so that eactT; generates a

one of the drawbacks of the simulated quenching procedurgsquence of states according to this distribution. The

[10] is that statistical information about the relative statisticalquenched importance sampling is carried out as follows.

importance of each structure is not accessible. A Monte' () Generate a state poirt, according to the distribution
Carlo calculation, on the other hand, provides a form of im-p

. o n-
portance sampling which, in principle, enables ensemble av- (i) Carry out a Markov chain Monte Carlo simulation

erages to be calculated. However, typical reahza_tlons Ogccording fo the distributioR,_, starting fromx, and end-
simple Monte Carlo schemes,_ such as the Metr(_)pohs M_ontﬁqg in statex, , utilizing some updating schem@uch as
Carlo scheme, spend long periods of time sampling relat'velwletropolis)

small regions of configuration space and only rarely move to
other regions. Because of the poor mobility of Markov
chains, the calculations converge very slowly to the correct
ensemble averages.

Recently, a Monte Carlo algorithril2] incorporating

A. Quenched importance sampling

(iii) Repeat the previous step for all intermediate distribu-
ionsj=n—2,...,1. A

(iv) Set the initial sampling point'=x; and calculate the
weight factor for this point, given by

Markov chain transitions has been developed which uses a p X)) P X P. (%) Pn(X
procedure similar to simulated quenching. Unlike the origi- w) = n-10%) Po-2(n-2) - Pa(X) Pol l). 3)
nal implementation of simulated quenching, the “quenched Pa(Xn) Pn-1(Xn-1)  Pa(Xp) P1(X1)

importance-sampling” algorithm calculates statistical

weights for the quenching process which permits an impor-
tance sampler to be defined. The algorithm therefore offer
an approach which retains the benefits of a quenching pr =0- (2).

cess while permitting thermodynamic functions and statisti-A 'I_'rhe VS{'C!'tyt?ft:h's mﬁthos IS fder?r?nstrsted Inbf\ppiﬂdlx
cal averages to be calculated. . To obtain better estimates for the observables, lthe

The basic principles of the quenched importance-sampled pointx' can also be used as initial states for a

sampling algorithm are a combination of previous methodsMarkov chain Monte Carlo simulation which has the target

namely, a quenching schedule in which one moves from &miting distribution P,. The expectation valua can be cal-
tractable distributiorsuch as a high-temperature Boltzmannculated as weighted averages, using Wi#, of the simple
distribution to a target distribution via a sequence of inter- average ofa(x) along the Markov chains which start from
mediate distributions and the use of an extended state spaiége sampled initial points.

[9,11]. Consider the expectation of an observad{&) with

respect to a distributioy(x): B. Parallel tempering

(v) Repeat stepsi)—(iv) N times to generate the set of
dependent sampling points used to calculate the average in

_ Another method for increasing the rate of exploration of
a= J dxa(x)Pg(x), (1) configuration space is based on sampling along a set of Mar-
kov chains run in parallel. This approach, and minor vari-
ants, has been called “multiple Markov chain§13,14] or
wherex is a possibly multidimensional point in state space."parallel tempering”[15,16 in the literature. The basic idea
Expectations such as Ed1) are often evaluated using of the parallel-tempering algorithm is that the mobility of
importance-sampling methods in which one samples a finitésolated Markov chains with different limit distributions can
numberN of points X' from some distributionP and ap- be enhanced by coupling them together to form a composite
proximates the expectation as Markov chain whose limit distribution is the product distri-
bution of the separate chains. The method works particularly

N well for chains in which the convergence is slow, since the

S wia(x) other chains in the composite chain which have greater mo-
_ &= bility act as a randomizing heat bath which destroys correla-
a~ —xg——, (2)  tion.
E w This algorithm, which we shall refer to as “simple swap-

i=1 ping,” is implemented as followsN chains, with limit dis-
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tributions P4, ... ,Py spanning a range of parametéssich P, X9 X9 P
as temperatupe are evolved using a standard Monte Carlo A :
updating scheme simultaneously and independently for some ' :
number of updatell,,. The number of updates can be fixed ' .
or chosen from a distribution. After the,, updates, two of b % . ' : § %1 B
the chainsi andj with corresponding Iir‘?ﬂt distributiorP; Fi ‘1—1}'( ;L;l P
and P; are selected at random and one tests to see if the : 2 2 ;
current configurations on the chains can be swapped. Sup- ! i
pose that when the swap is attempted the states oittthe : :
andjth chain arex; andx;, respectively. If one accepts the 151 i ! 15
attempted swaps with probabilily,sk(i—q) given by X1 X1
o _ PL(X))P;(X,) FIG. 1. A schematic of the annealing patky ,X,,X,,X;}. The
PR(i—j)=min 1WP(X)> (4)  solid lines indicate Monte Carlo updates according t@and T; .
| | ] ]

the composite Markov chain for the entire process has thgls temperatures. The updating scheme consists of quenching

limit distribution P,- - - Py and each of the elementary or (cooling down from the configuratiorf(n:xN along all the
principal chainsi has limit distributionP;, as if it were intermediate distributions with a standard updating scheme
1

entirely isolated. However, the swapping induces couplind®" & spgcified number of steps, end.ing wAith.distributR)p
between these principal chains and they are not indeperr [1o. Simultaneously, the configuratiog=Xx, is heatedip
dently Markov. In practice, it is often best to select only along the set of intermediate distributions, ending with dis-
adjacent chainsandi = 1 to test for swapping, as the prob- tribution P,=IIy. These procedures generate a set of inter-
ability of acceptance vanishes as the overlap of the limitingnediate configurations. For example, the quenching process
of the chaind andj decreases. may generate the sefx,,X,_1,...X;} with statistical
One might think that a large number of principal chains is\yeightw, wherew is defined as in Eq3),
optimal because the swap acceptance ratios will be large.

This, however, is not necessarily true since in the limit of an P._1(X,) P1(Xq)
L L . ~ iy Fn-1Xn 1{Xg
infinite number of principal chains, where the swap accep- wt = - . ()
tance ratios are essentially 1, a given configuration evolves Pn(Xn) Pa(x1)
in parameter space in a random walk. For systems such as . o ~
protein-folding studies or the study of collapse transitions inThe heating procedure may generate the{®efx,, . .. X,}
polymer models, which require a large range of temperaturewith statistical weightv defined analogously:
due to the depth of the attractive basins in the potential en-
ergy surface, the diffusive nature of the algorithm may lead P.(X P (X
. . . ~ (i) Z(Xl) n(xn)
to slow exploration of the entire parameter space. It is there- = —. (6)
fore worthwhile to consider variants of the simple-swapping P1(x1) Ph-1(Xn)
algorithm in which the exploration of the parameter space is R
not diffusive. In the heating procedure, the stateis generated by carrying
out a specified number of simple MC updates, starting from
C. Annealed swapping the stateA(l, according to the limiting distributio®,. At the

One means of circumventing diffusive exploration is to end of these processes, one accepts the trial sfass the

develop a Monte Carlo updating scheme in the generalizefieW state for chain 1 and the statg as the new state for
state spacéstate space plus the parameter spadsich en- ~ chainN with probability

ables configurations on adjacent chains to be swapped with o

non-negligible probability. This may be achieved by con- Pﬁzmin(l,wxw). @)
structing an updating scheme utilizing an annealing schedule

which includes both a quenching procedure, such as the orEhe annealed-swapping method is schematically depicted in
described in Sec. Il A, and an analogous heating method=ig. 1 for two principal chains. It is demonstrated in Appen-
Such an annealing process, which we shall refer to as “andix B that this updating scheme obeys detailed balance for
nealed swapping,” can be incorporated into an updatinghe composite Markov process and that each principal chain
scheme as follows: Suppose at a given iteration in the Marhas the correct limiting distribution. Note that for the special
kov chains the state of the system on chain 1 with limitingcase of no intermediate distributions<%2), the procedure
distributionII is Xo and the state of the system on ch&in  described above is precisely the simple-swapping algorithm.
with limiting distributionIIy is xy . First one decides upon a It is also interesting to note that the process described above
set of n intermediate distribution®, ... ,P,, wherenis  may be modified slightly if one is interested in only one
some positive integer greater than or equal to 2, which intertarget distribution. In this case, the algorithm describes an
polate betweerdl, and Ily, with P;=II, and P,=IIy. MC updating scheme for the target chain constructed by
These distributions scan a range of the parameter space, suatiking heating and quenching process@®nnecting the
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states?z with )“(2 in Fig. 1) into a continuousnnealing cycle in serial mode on alpha wqustatiqns. For more complex sys-
known as tempered transitiofis7]. tems, such as for the peptide chains discussed below, there is

The annealed-swapping process over intermediate distreignificant gain in utilizing the parallel design. The total
butions is incorporated to ensure tH%Q(i,j)>P§(i,j) for ~ humber of SWeeps was_set t®<1_06’ Where each Sweep
adjacent principal chainsandj. The increased mobility in roughly consists of updating the orientations of the 100 spins

parameter space comes with a computational cost due to tHg the system {1x 10° updates in total It is convenient to
intermediate updating steps along the heating and quenchir{gexpress the total number of updates for the S|ml_JIat|on n
paths. Increasing the number of intermediate distributions t rms of .the ““”.‘ber C.)f steps per swap a“e”!pt whlchnfor
intermediate updating stepi the annealed-swapping algo- intermediate chains witm updates along a chain, consists of
rithm typically increases the parameter space mobility while?™N Steps. _ o

increasing the computational time per updating step. These |° détermine the optimal combination of the above pa-
factors must be balanced against one another on a case-U imeters and as a means of monitoring the efficiency of the

case basis in order to optimize the performance of the alg _Igor]itr}lrn, the “trgject?ry”fof a Icompositeh_Mharkov chain
rithm. It is important to recognize that there is a qualitativeV@S followed as it cycled from lowest to highest tempera-

difference between the annealed-swapping algorithm and tHires- A single cycle was measured as the completed path,
simple-swapping procedure. The incorporation of heatin eginning at thellowest temperature, traversing to the high-
and quenching processes into the updating scheme provid perature chain, and .f|naIIy returning to the lowest tem-

adirectedway of increasing the rate of parameter spéoe perature. It was determined that the number of pycles per
thereby configurational spaceexploration, unlike the CPU second, from here on referred to as the “mixing rate,

simple-swapping scheme in which the exploration of paramWas optimized for a system &f=3 principal chaingcorre-
eter space is a random-walk process at best. s_pondm_g toT=200, 500, and 800 K n=80 intermediate
There are a number of adjustable parameters which magiStributions (threads, and m=400 updating steps along
effect the efficiency of the algorithm on a particular model.€ach thread. For >1108 total updates, this corresponds to
One may vary the number of principal chains comprising the™ 781 total swaps with 128 000 updates per swap. Note that
composite system as well as how the chains are distributed flthough increasing the number of intermediate threads im-
parameter space. It is also possible to vary the form of th®roves the overlap between adjacent principal chains, one
distributions used for each principal Markov chain to incor-Must balance this improvement against the increased cost in
porate umbrella-samplinfi7] distributions in the annealed- CPU time. _ _
swapping algorithm. In addition, the number of intermediate !N order to compare with the annealed-swapping tech-
heating and quenching chains, the number of equilibratiofidue, simulations were also executed for the simple-swap
steps at each intermediate distribution, and the selection pré?€thod with the total number of updates held constant. For
cess for choosing the pair of initial principal chains to heatSiMPIe swapping, the number of principal chaiNsand the
and quench may be optimized for each model. In the nexfumber of updatesn’, along a chain were also adjustable
section, we investigate these issues on both a simple tw@arameters. It was observed that the greatest mixing rates

dimensional spin system and a ten-residineyacuopoly- ~ Were obtained by performing many swap attempts with short
glycine molecule. updating(along a particular chajnWe anticipate that this is

a general characteristic of the method and is not system de-
pendent. The number of cycles per second was optimized for
IIl. RESULTS 6 chains(corresponding ta =200, 280, 390, 500, 630, and
A. xy model 800 K) with m’=20 updates per swap along a principal
i ) chain, giving a total of 833 333 swaps with 120 total steps

In thexy model, spingor planar magnejof magnitudeS e swap. Although the swap acceptance ratios were quite
are fixed in thexy pIane_ with orientations specn‘led by an gmall (~8%), thecomposite chain thoroughly explored the
angle; (0= d¢;<2m) with respect to thecaxis. The Spins || temperature range and only occasionally became trapped
|ntgract via a coupling constadtaccording to the Hamil-  \yithin a given temperature interval.
tonian, There are a number of observables that can be used to

compare the efficiency of the different simulation methods.
H= —JSZE cos ¢i— @), (8) We have chosen to monitor the potential eneltyheat ca-
(i) pacity C,, and the orientational order parametgy,, de-
fined as
which is invariant to global rotations. For the present re-
search, the system consistedMyf= 100 spins arranged on a AT
square lattice. Each spin was allowed to interact with its four Sy=(S+S)™ ©)
nearest neighbors.

Simulations were performed utilizing the annealed-where
swapping algorithm on a set of chains spanning a tempera-
ture range of 200—800 K. Although the annealed-swapping
method is designed to be implemented in parallel on a cluster
of computer nodes, they model was sufficiently fast to run

Z
»

1
N_ ) Sxi ) (10)

(%)
Il
[us
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0 10 20 Time (s) 30 40 50 FIG. 3. The history(first 50 se¢ of the potential energy for a

single composite chain with the annealed-sampling algorithm using
FIG. 2. The time-series evolutioffirst 50 seg of the order  thexy model.

parameterS,, for a single composite chain using the annealed-

sampling algorithm with thety model. Thus, although the annealed-swapping algorithm affords

. , , ) . . greater overlap between neighboring chains, the simple-
with § representing the orientation of a given spinthexy  gywapping method results in a faster mixing of the chains,

%m% gﬁ’éﬁetga;;?gsthfhgrg%?g nftﬁ;% ggggﬁgggg'?gt;gol#;?espite smaller acceptance probabilities. A possible explana-
" This ordér arameter has the propertv that it i ion fo_r these dls_crepanues is that, although t_he annea_led
isryorlgmeergijyen-[ of the dirgction of ali nmentpang is%’@(l) %wappmg results in greater overlap between chains, there is a
For Ft)he disordered stat&,, is (’)(19/]\/N—) In Fig. 2 W'e greater CPQ cost for swap attempts. For annealed_swapping,
display the time-series evglutio(rﬁirst 5055e¢ of th.e (;rder _much tlme IS exp_ended performlrjg s'gandard updating on the
Py Jntermediate chains. If the move is rejected, then much work

parameter for a given composite chain using the anneale . . . X
swapping algorithm. The actual pathway of the chain's wasted since the weights generated on the intermediate

through the different temperature indicé@=low tempera- threads_ are not utilized. Thus, in this_ scheme, fail_ed attempts
ture, 2=high temperatureis also included for reference. Itis &€ quite costly. In contrast, for simple swapping, failed
clear that the order parameter “follows” this pathway: as theSWap attempts are computationally cheaper than accepted at-
chain reaches high temperature, the spins become disordert&inPts(which require a shuffling of temperatures and chain
and at low temperature the system is ordered. The corrdabels, since no updating is required. One can take advan-
sponding history of the potential energy can be seen in Figiage of this mismatch by attempting more frequent swap
3.

By tracking the states associated with a given temperature 93 ' ' ' '
index, one can also monitor the potential energy for an indi- —— Annealed Swapping
vidual chain. Additionally, the probabilities or weights for —— - Simple Swapping
swapping between two adjacent chains may be recorded. li
Fig. 4, the histograms of such weights are presented for bott
simple and annealed-swapping routines. Note that for an- 02 | ]
nealed swapping there is an appreciable fraction of the dis._,
tribution which is greater than zero, indicating significant £ ~—
overlap between the chains and higher swap acceptance rg- / \
tios. In contrast, the simple-swap distribution is predomi- / \
nantly below zero and results in very small acceptance prob- 0.1 / \ 1
abilities. The improved overlap between chains for the / \
annealed-swapping method allows for greater mobility of the / b
composite chain and is one of the attractive features of this / \
method. However, it has been determined that there is only ¢ e AN
marginal difference between the mixing rates for the two 9100 = _;5 : -éo' : v o 25
algorithms. This is demonstrated through the autocorrelatior In(W)
function for Sy, which is plotted in Fig. 5 for both algo-
rithms. Observe that the correlations decay more rapidly for FIG. 4. The distributions of the logarithm of the weights ob-
the simple-swapping method compared to the annealethined from simulations of thety model for both annealed and
swapping. simple swapping.
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FIG. 5. The spin-spin autocorrelation function calculated from _FIG- 6. A scatter plot of weights vs energy for a simulation
simulations of thexy model for both annealed- and simple- Utilizing quenched importance sampling with thg model.
swapping algorithms.

able dispersion in the energies for fixed weight, which im-

moves, which, although resulting in lower acceptance ratiosplies significant memory effects and would lead to large vari-
allows for greater mixing of the chains per CPU second. ances and poor estimates of the average.

To reduce the number of failed swap attempts and im-
prove the acceptance probabilities for annealed swapping,
one can increase the numbewf intermediate threads and
adjust the numbem of updates. However, this also comes at The xy model is a useful diagnostic for comparing the
a cost due to the increased time for regular Metropolis upvarious algorithms, since it is relatively fast and exhibits
dating. As mentioned above, we have performed detaileghany of the features of interest. However, it is useful to
analysis and ascertained that there is an optimal number @bnsider more complex models in order to gauge the effec-
intermediate chains, beyond which one finds diminishing retiveness of these methods.
turns. Note that these findings are not altered by modifica- We have performed simulations on gly10, a peptide com-
tions of the standard updating scheme along an individugbosed of ten glycine residues, in which the Cidethylene
chain. For instance, we have incorporated hybrid MC updatgroups were treated as single monomer units under the
ing as a means of improving the mobility along an individual united atom scheme. The potential energy function employed
chain, but this did not lead to an improvement in the cyclesconsists of both nonbonded,, and bonded/, interactions
per second, since the time required for updating along thevhich are based on the classical “Charmm” potent{dl8].
intermediate chains remained roughly the same as for starFhe nonbonded potentials include van der Waals and elec-
dard Metropolis MC updates. Variants of the annealedtrostatic interactions,
swapping method have also been tested. A method which

B. Peptide model

involves a hybrid mix of both simple and annealed swapping [ A B Kgaiqg;

led to an increase in the number of cycles per second, but did Vip= .2 2 r_6+ e (13)
not surpass the mixing rates for the simple-swapping method ! ij ij .

alone.

If one is solely interested in a single target distributyn ~ Where the prime indicates a reduced sum over all pairs of
which has a number of isolated modes, then the quenchingtoms spaced by at least four bonds #dandB;; are the
method outlined in Sec. Il A is a perfectly valid procedure. Lennard-Jones parameters. Note that the hydrogen-bond in-
Recall that this method allows one to generate a sequence tsfractions are incorporated into the electrostatic interactions
statesx?, ... x" distributed according t®, with associated ~Wwith dielectric constanKy=332.0638 (K, A)/mol. The
weightsw?, ... wN. In order to accurately calculate aver- bonded potentials include bond lengtbl), bond angle
ages, as given in E@2), it is required that the state space be (ba), proper dihedral fd), and improper dihedralid) in-
well sampled, implying a fairly uniform distribution of teractions,
weights. For comparative purposes, the procedure was tested
by quenching from the high-temperature to the low- N-1 Npa
temperature chain. One of the key findings was that only a  v,= > KP!(b;—b?)2+ >, KP3(g,— 6°)2
small fraction of the weights gave an appreciable contribu- i=1 i

tion to the average in EJ2). A scatter plot of the weights Nig Nog 3
versus the final energies, as seen in Fig. 6, illustrates another +> Kl (y,— )2+ KPdcogne:), (12)
shortcoming of the method. Observe that there is consider- EI RO EI ngo nCOSN
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where the maximum values for the various force constants 100 . .
are given ask® =640 K. /(molA?), KI9 =147 K/
mol, KP2 =123.5 K /mol, andKPd =6 K.y/mol.

Based upon the relative strengths of the bonded terms ir
Eqg. (11), the magnitudes of the various types of trial moves
in a simulation can be ordered according to the following
scaling:

Ab Acog 0 Aw A A T
max s max) - max _ 7max< (bmax, (13) [ae]
b T 2 2 2

where Abpay, ACOSOmay: A®Wmaxs A¥maxs and A dmax
correspond to the maximum displacements for the bond
length, cosine of the bond angle, peptide-bond dihedral, im-
proper dihedral, and “soft” backbone dihedral degrees of
freedom, respectively. For the present study, the bond %0 105 10°°
lengths were constrained to their ground-state values and th Time (s)
peptide-bond dihedrals were setio

Simulations were performed with the annealed-swapping FIG. 7. The time evolution of the radius of gyratidR, , for a
method and, for comparison, the simple-swapping algorithn$ingle composite chain for a simulation of glyl0 employing the
over a temperature range of 400—1000 K. The total numbeinnealed-sampling method.
of MC steps for the simulations was<sL0’ with a burn-in

length of ~1x 10° steps. For the annealed-swapping simu-T€an of the simple-swap distribution is located well below
lations,N=3 principal cﬁains(with T=400. 600. and 1000 Z€ro. the distribution is skewed and has a relatively long tail

K) were used wit=80 intermediate threads ami=156 extending greater than zero. This long tail results in some-
updating steps along each thread, corresponding to 10d6hat larger acceptance ratios than those obtained ixyhe
swaps with 510" total updates p’er swap. The simple- model, as noted above. Despite better overlap between adja-
swapping runs utlized 6 principal chains(with cent chains for the annealed-swapping procedure, the mixing
T=400,470,550,650,800,1000) Kvith 50 updates per swap rates are an order of magnitude smaller than for the simple-
along a,l ch:elin ,givir;g 166 666 swaps with 300 steps peFwapping algorithm, in sharp contrast to themodel. These
swap Althougﬁ the temperature range for these studies w ifferences can be seen through the autocorrelation function
comparable to those for they model, the swap acceptance tgr Ry, prelsz'anted n '.:'g' 9. ':lhOtZ t_hat .the_fporrillatmn t|tme t];?r
ratios were considerabliigher despite the relatively short thet ?nntehae _-svvlappmg metho |sd3|gn| Icantly greater than
updating. These issues will be elaborated upon below. at for ne simple-swapping procedure. . .

Of the various thermodynamic quantities which were cal- Hence, desp|t§- better o.verlap.between adjacent chains, the
culated during the simulations, we focus on the potentiaP"n€aled-swapping technique did not perform as well as the

: : - simple-swapping algorithm and the discrepancy between the
energyU and the radius of gyratioRy, defined as two methods was much greater for the peptide model com-

2__ 1 & . T T T T T
Rg—m@l Mi<Ri—Rc.m>2>, (14) 02

— — - Simple swapping
. . . —— Annealed swapping
where M; is the mass of atom, M;=2;M;, R, is the

center of mass of the system, and the summation is over al 0.15 |-
the N atoms in the peptide. This order parameter gives a
measure of the “size” of the peptide, which for a random
coil scales as-\/N. In Fig. 7, data are presented fey for a g
particular composite chain utilizing the annealed-swappingE
procedure. Observe that at low temperatures the peptidnn'
adopts a compact structure and at higher temperatures th
chain becomes more extended. Although the radius of gyra 445

0.1

tion is insensitive to changes in confirmations at low tem- J
peratures, it is evident that the composite chain samples th /
full temperature range and becomes thoroughly mixed. e
To compare the annealed and simple-swapping methods 0 T ! -
we consider the weights associated with swapping betweel -40 -30 -20 Ir:(1VS) 0 10 20

two adjacent chains. The histograms of these weights are
plotted in Fig. 8. There is a significant proportion of the FIG. 8. Histograms of the logarithm of weights obtained from
annealed-swapping distribution which lies greater than zerasimulations of gly10 for both the simple- and annealed-swapping
resulting in good overlap between the chains. Although themethods.
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1

. . technique with a significant decrease in the mixing rate.
—— - Simple swapping These results indicate that differences in the mixing rates
— Annealed swapping | between the models are most likely due to details of the

sampling procedure. By adjusting the peptide simulation to

incorporate different updating schemes for each temperature,
it is anticipated that the ratios of mixing rates will be similar
for the two models. However, it is also possible that funda-
mental differences in the models govern the behavior of the
swapping and lead to deviations in the mixing rates. It is
conceivable that the energy landscape for the peptide model
is much “rougher” than thecy model and there is a greater
propensity to become trapped in metastable states. Unfortu-
nately, without more knowledge about the details of the en-
ergy landscapes, it is difficult to test this hypothesis.

0.8

0.6

04

02

R,” Autocorrelation

L 1
“250 450 950

. IV. CONCLUSIONS
Time (s)

FIG. 9. The autocorrelation for the radius of gyration calculated In this ar_tlcle, a nl_meer of e)_(tended state-space qute

for simulations of gly10 for both annealed- and simple-swappin Carlo algorithms which generallze the parallel-tempering
aly p pping
algorithms. r’r_1ethod haye been examined. T_hgsg methods have been de-
signed to incorporate a deterministic procedure to sample
over the auxiliary parameter space in order to test whether

pared to thexy model. It was anticipated that the increaseddirected motion can improve the sampling rate over that ob-
complexity of the peptide model would result in a decreaseserved in parallel temperinghere called simple swappihg
in the mixing rates for both sampling methods, but that then the present study, the deterministic procedure was based
ratio of these rates would remain constant. To test this hyen heating and quenching procedures, which resemble the
pothesis, additional simulations were executed withxlge  simulated annealing method. However, unlike the simulated-
model where a larger neighbor list was employed18  annealing algorithm, the directed heating and quenching pro-
neighbors per spin The increased computational effort re- cedures allow statistical information to be recovered and
sulted in a decrease in the number of cycles per second fahereby permit an importance sampler to be formulated. It
both sampling methods, but the ratio of the mixing ratesshould be mentioned that canonical jump walki(@JW)
remained approximately the same. [19] is another sampling method which shares the determin-

The lack of such scaling invariance between the modelsstic character of the annealed swapping algorithm. However,
might be explained by differences in the sampling methodit can be rigorously shown that CJW does not satisfy detailed
ology. In the simulation of thexcy model the procedure for balance and is only approximately correct in the asymptotic
updating in the system was adjusted to ensure acceptantimit of a very long auxiliary chain. As such, there is no
ratios of roughly 30%, which should yield optimal mobility guarantee that, for finite-length simulations, one has obtained
(for single-variable updatg¢sat each of these temperatures. the correct limiting distribution. In contrast, as demonstrated
Such tuning is difficult to implement in the simulations of in Appendix B, the annealed-sampling method does satisfy
the peptide system since differetypesof updates are ex- detailed balance.
tremely important at different temperatures to obtain optimal Although the annealed-swapping procedure increases the
mobility. The lack of adjustment of updating schemes in theswap probability by effectively improving the overlap of the
peptide simulation leads to significantly different acceptancenergy distributions of adjacent chains, it was shown that for
ratios for each principal chain, resulting in a mismatch in theboth thexy and peptide models the mixing rates were greater
swapping acceptance ratios and poorer overall mobility ofor simple-swapping. We interpret this remarkable result as a
the composite Markov chain. For the annealed-swappingeflection of the robustness of the simple-swapping method.
routine, decreased exploration along a given chain tends tdhe deviations in the rates also increased for the peptide
exacerbate hysteresis effects with the composite chain berodel, where the annealed swapping had significantly
coming trapped within a certain temperature interval. It isslower mixing, but such discrepancies may be attributed to
believed that such bottlenecking contributes to the dramatidifferences in the sampling methodology. Modifications of
cally slower mixing rates and is responsible for the majorthe peptide code, although not trivial, should allow for ratios
change in the ratio of mixing rates between the two modelsof mixing rates which are comparable to those obtained for

To support or refute these ideas, additional simulationghe xy model. Nonetheless, even for tkg model, the lack
were run with thexy model, where the maximal displace- of any order-of-magnitude improvement in the performance
ment in the anglep was reduced in magnitude and set to theof annealed-swapping compared to simple swapping must be
same value for all temperatures. It was observed that thexplained. With annealed swapping, a large percentage of
ratio of mixing rates became comparable to that for the pepthe CPU time is dedicated to performing simple Metropolis
tide model where, again, the swapping mismatch had apdates on the intermediate threads. Hence, although the
greater effect on the performance of the annealed-swappingumber of failed swap attempts is reduced by the improved
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overlap between adjacent chains, much time is consumed average over a probabilityf in an extended space

average to obtain an accepted swap. Furthermore, as tlig,, ... Xx,),
swap acceptance ratio increases, there is a tendency for the
composite Markov chain to cycle locally between two adja- il J'
. - a= | dx;---dx,a(xy)f(xq, Xn) s Al
cent chains and become trapped. The overall efficiency of the ! na(x) (g n) (AD)

annealed-swapping method is determined by the interplay ) -

between the increased computational cost of performing th@here we define the probability of the extended state-space

heating and cooling processes and the improved net overldfPiNt (X1, - - . Xn) to be the joint probability

of the distribution of proposed configurations. For the sys- _

tems studied in this work, these factors approximately bal- FO, - Xa) =Pox) TaXa=Xp) -+ Too1(Xn—17Xn).

ance one another and little differences in efficiency can be (A2)

observed between the annealed-swapping and simpleince theT; are valid transition probabilities, the marginal

swapping procedures. distribution off is P, so that Eq.(A1) holds. Since the de-
In order to provide a fair comparison of all methods, ex-tajled balance condition

tensive optimization studies were carried out. An interesting

result of these investigations was that swap attempts should Pj(Xy)

be execute_d extremely frequently in th.e s.imple—swapping ap- P;(X2)

proach. This result seems surprising in light of the fact that

rapid swaps require short intervals of local Metropolis up-is assumed to hold for th§;, Eq.(A2) can be expressed as

dates which induces strong correlations in the swap dynam-

ics of the chains. It appears that, although increasing the f(x X,)= Po(X1)T (Xp—sXp)- - Pn2(Xn-1)

length of the local updates tends to destroy correlations, the Lo 0P (xg) B2 P (X )

rate at which correlations are lost is not sufficient to com-

pensate for the reduced swap time. The optimal procedure of XTh-1(Xn—=Xn-1)Pn-1(Xn). (A4)

frequent swap attempts was observed in all systems studi

and appears to be fairly general. This result is encouraging

it suggests that little optimization of the parallel tempering

algorithm is required for each new system. 9(Xg, - oo X)) =Pr(X) Tne1(Xn—Xn_1) - - T1(Xo—Xy),
In the present study, the auxiliary parameter space was (A5)

taken to be the inverse temperature. In this context, the de- .

terministic procedure used to promote the coupling betweemwhich implies that the correct statistical weight” for the

adjacent chains corresponds to heating and quenching prpoint x;=Xx; is

cesses. Although this implementation of the directed proce-

dure was not successful in improving the rate of exploration wi) = f(Xg, ... Xn)

of configurational space over the sampling rate of parallel g(Xq, ... Xp)

tempering, it is possible that a more judicious choice of con-

trol parameter would help equilibrate the system along pathwhich yields the weight factor in Ed3).

linking high-energy to low-energy states, leading to greater

mobility of composite chain. Further work along these lines APPENDIX B

is under way. In addition, the use of Markov chain transition ) .

matrices operating on an extended state space provides a!l this appendix, we demonstrate that the annealed-

useful tool in the construction of sampling approaches angdaPpPing algorithm outlined in Sec. Il C obeys detailed bal-

has been exploited to improve the efficiency aif initio- ~ 2NC€ fo_r a composite Markqv chain consisting o_f two princi-

based Monte Carlo simulatiofig0]. pal chains, chain 1 ?nd chf;un 2. Suppose the principal chains

are initially in states; andx,, respectivelysee Fig. 1. The
composite chain is defined to be a Markovian sequence of

ACKNOWLEDGMENTS extended phase points = (X;,X,) in which the extended
The authors would like to thank Timothy Guimond for phase points are distributed in the chain according to the

assistance in coding the algorithms. This work was supportelﬂm't'ng distribution P(xy) =P1(x1)P2(x;). The anDeaIed-
by a grant from the Natural Sciences and Engineering Reswapping method consists of taking the extended stasad
search Council of Canada. generating a new trial state,=(x;,X,) by a heating and
quenching process. The trial state is then accepted or rejected
according to a Metropolis-Hastings procedure. Without loss
APPENDIX A of generality, we will assume that there is only one interme-

In this appendix, we demonstrate that the quenched im(_jlate distributionP; in the heating process and one interme-

portance sampling algorithm outlined in Sec. Il A obeys de-diate distributionP; for the quenching process. We assume
tailed balancg12]. The validity of the algorithm can be es- that transition probabilities;(x;—X,) andT;(x;— X,) obey
tablished by viewing the expectation @fx) in Eg.(1) asan  microscopic reversibilityor detailed balange

Ti(Xo—=X) =Tj(X1—X5) (A3)

eﬂqe guenching procedure generates the extended state point

1, - - - Xp) With probability

: (AB)
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. R Pi(x1) X P(X1) Py(X1, %), (B6)
Tie—x) =Ti(xa—x)z—, (B1) ? o
i(X2) the acceptance matrix can be written A6, ,x;) =wXw,
where T;(x,—X,) is the probability of moving to state, where the weightsr andw are the statistical weights for the
from statex, in the intermediate-heating Markov chain. ~ N€ating and cooling processes, respectively, and are given by

We must show that the following detailed-balance condi-

tion is satisfied: Pi(X1) Pa(X2)

P1(X1) Pi(Xp)

=3

, (B7)
P(X1,X2) = P(X2,X1), (B2 . .

Pi(x2) P1(x1)
Pa(Xo) Pi(X)

where P(X;,X,) = P(X,) T(X;—X,) is the probability of ob- w= (B8)

serving the sequenc{;(l ,7(2} in the composite chain, and
T(x;—X,) is the transition probability of moving from state Note that all distributions iPA(X,,x;) appear as ratios, so
X, to statex,. The transition probability can be expressed asthat no normalization factors need to be calculated.
The arguments above establish that the limiting distribu-
T&lﬂiz):Pg(il X) Pa(Xa|X1), (B3)  tion of the composite Markov chain iB=P;P,. This, in
turn, implies that the states composing principal chpin
wherePy(X;,X,) = Pg(X1,X2) Py(X2,X,) is the joint probabil- ~ formed by taking thgth component of the extended phase
ity of generatingx, from X, by the annealing procedure and Pints in the composite chain are distributed according;to

~ 2 . . for long chains.
Pa(Xalxy) is the path-dependent probability of accepting the ™ o\ /o i adding another Monte Carlo update accord-

proposed _state X;.  One  can  define l,:)a(X2|_X1) ing to T, in the annealing procedure so that the path connect-
=min[1,A(X5,X;) ], where the acceptance matfxs defined . = ~ v o v v .
to be ing X, to Xy is now{x,,X;,X{}. Since
~ = Ti(%—x) T (X —X
- P(XZ)Pg(XZle) I( 2 1) I( 1 1)

A%y X)) =—— (B4) o
2171 P(Xl) Pg(Xl,Xz) _ Pi(xl) Pi(xl)"i'.()‘zl )\2,)_],_ ()2, )\22)
i, - - V, i Ed 1 | l—)
and it then follows that Pi(x2) Pi(xy)
Py Xo) =minlP()Py(s o) P o) Py 50 - ST R @9
(X
=P(Xz.X1), (B5) 2

it is straightforward to show that any number of Monte Carlo
showing that detailed balance is satisfied for the composite@pdates may be done at each step in the annealing process

Markov chain. without modifying the acceptance probability matAx
Noting that the conditional probabiliti (x,) P4(X,,X;) of The derivation outlined here is easily generalized to show
generating the stab"él by the annealing procedure is tpat thg proper acceptance matéxfor arbitrary numbers
N o L o N—2, N—2 of intermediate heating and quenching distribu-
P(X2) Pg(X2,X1) = P1(Xq) Ti(X1—X2) Po(X2) T (X —X1) tions between initial and final distributiorf3; and P; is A
.. =wXxw, where
- Pilxe o o .
:Pl(xl)TTi(XZ_’Xl) 1B (%)
o w=[] L5, (B10)
- =1 Pi(x;)
~ PilX)s o~ s B
X Pa(X2)=—=—Ti(X1—X2) N1 = v
i(X2) . P;(x;)
PR A A a w=1] ~——~., (B11)
_ Pi(x1) Pi(X2) Pa(xz) Pi(xy) =1 Pjia(x))
P1(X1) Pi(Xq) Pa(Xp) Pi(X) with Py=P;=Py andP,=P,=P,.
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