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Numerical prediction of the melting curve of n-octane
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We compute the melting curve of n-octane using Molecular Dynamics simulations with a realistic
all-atom molecular model. Thermodynamic integration methods are used to calculate the free energy
of the system in both the crystalline solid and isotropic liquid phases. The Gibbs—Duhem integration
procedure is used to calculate the melting curve, starting with an initial point obtained from the free
energy calculations. The calculations yield quantitatively accurate results: in the pressure range of
0-100 MPa, the calculated melting curve deviates by only 3 K from the experimental curve. This
deviation falls just within the range of uncertainty of the calculations. © 1999 American Institute

of Physics. [S0021-9606(99)52128-4]

I. INTRODUCTION

The calculation of solid—fluid phase coexistence via
computer simulation requires special techniques suitable
both for high densities and for crystalline solids. The stan-
dard approach relies on thermodynamic integration methods
to compute the chemical potentials of each phase separately.
If the chemical potential is known at a particular state point
in either phase, then it can be determined trivially at any
other state point using thermodynamic integration along iso-
therms or isochores, so-called ‘‘natural’’ reversible path-
ways. A convenient reference point in the fluid phase is in
the dilute limit where the system behaves as an ideal gas, and
where the free energy can be determined analytically. Alter-
natively, at sufficiently low density, an appropriate variant of
the Widom particle insertion method'? can be used to calcu-
late the chemical potential. In the solid phase, the standard
free energy calculation technique involves thermodynamic
integration along an artificial pathway, where the solid is
transformed reversibly into an Einstein crystal, in which par-
ticles are coupled harmonically to lattice sites;’ the free en-
ergy of this reference system can be calculated analytically.
This lattice-coupling method is highly versatile and can be
applied to arbitrary solids with both continuous and discon-
tinuous potentials. Variants of the method have been applied
mainly to systems composed of simple rigid particles, in-
cluding a variety of hard particle systems such as spheres,>*
ellipsoids,”® spherocylinders,”® and dimers.””!" Application
to any realistic system interacting with a continuous potential
is, in principle, straightforward, although the focus until now
has been on systems of relatively small, effectively rigid
molecules such as N,,'*"'* C0,,"* N,0,'® and H,0."”

The n-alkane series represents one of the most basic or-
ganic series. The development of simulation methods to cal-
culate accurately the equilibrium phase diagram for these
systems is of great interest. Recent efforts have focused prin-
cipally on the simulation of gas—liquid phase equilibrium
and critical behavior of alkanes'®~! via the combination®***

dCurrent address: Department of Physics, McGill University, Montreal, PQ,
H3A 2T8 Canada.

0021-9606/99/111(4)/1501/10/$15.00

1501

24-26 27-29

of the Gibbs ensemble and configurational biasing
Monte Carlo simulation techniques. Clearly, the next impor-
tant step is an accurate calculation of the solid—liquid coex-
istence employing the lattice-coupling free energy calcula-
tion technique discussed above. In an important step toward
this goal, this technique was applied to study the solid—fluid
phase equilibrium of simple systems of flexible chain mol-
ecules in two recent studies.’**! The first study employed
fully flexible chains of hard spheres,** while the second used
semi-flexible Lennard-Jones chains.’! However, the models
employed in both cases only very crudely resemble real
chain molecules such as alkanes. A recent study by Mal-
anoski and Monson®” focused on the melting behavior of a
hard-core model of n-alkanes. The simulation data for this
hard-core model reference system were subsequently used as
input for a mean-field prediction of the n-alkane phase dia-
gram. Yet, although the results of such simulations provide
insight into the effect of flexibility and steric hindrance on
the alkane phase diagram, the simulation results themselves
cannot be compared with experimental data. The aim of the
present study is to demonstrate the applicability of the
method to simulate the melting transition of an alkane sys-
tem using a realistic all-atom model which is suitable for
simulations of crystalline solids and high density liquids, and
for which we expect to obtain quantitative agreement with
experiment.

The choice of the specific alkane system we study here is
governed by two factors. First, we wish to study systems in
which a crystalline solid melts to an isotropic fluid directly
without passing through any intermediate phases. It is well
known that many alkane systems have at least one interme-
diate ‘‘rotator’’ phase, characterized by rotational disorder
about the molecular long axis and gauche defects near the
ends of the chain. Rotator phases are present in alkane sys-
tems for which the chain length # is given by n>9 for odd-n
chains and n>22 for even-n chains. Second, we note that the
determination of the phase equilibrium for a system requires
a large number of separate simulations for points along natu-
ral pathways (isotherms, isochores) and artificial pathways
required for the thermodynamic integration calculations, all
of which become computationally very expensive for realis-
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tic all-atom models. Both of these considerations require that
we study a relatively small system of short alkane molecules:
in the present study we choose n-octane.

Il. THEORY AND METHODS
A. Model

Simulation studies of alkane systems in the vapor and
liquid phases frequently employ united-atom (UA) models,
in which the interaction sites consist of composite pseudo-
atoms composed of a carbon atom plus two (methylene) or
three (methyl) hydrogen atoms. The principal advantage of
this approach over an all-atom (AA) model, in which every
atom is considered to be a separate interaction site, is a con-
siderable reduction in the time to compute the energy and
molecular forces. This calculation is the rate-determining
step in both Monte Carlo and Molecular Dynamics simula-
tions. However, it has been known for over a decade that UA
models are unsuitable for simulations of alkane crystalline
solids, where the details of the potential can have a signifi-
cant effect on the equilibrium properties of the model sys-
tem. For example, only by employing an AA potential, in
which the hydrogen atoms are explicitly represented, is there
quantitative agreement between calculated and experimen-
tally measured alkane crystal structures.>*

A simple modification of the standard UA model has
been developed by Toxvaerd.* 3 In this anisotropic united-
atom (AUA) model, the interaction sites, which are generally
placed at the site of the carbon atoms, are displaced slightly
in the direction of the hydrogen atoms in the methylene and
methyl groups. By tuning the displacement magnitudes, the
calculated equation of state for alkane fluids at high densities
and pressures, a regime in which predictions using the stan-
dard UA models fail drastically, was shown to be in perfect
agreement with experiment. Apparently, this straightforward
method of accounting for the presence of hydrogen atoms
can remove some deficiencies of the UA model. Note that
simulations using the AUA model are only marginally more
time-consuming than those using an UA model. Thus, this
model permits relatively efficient means to simulate accu-
rately a high density fluid. In light of this success, we hoped
that the AUA model could be applicable the high density
crystalline solid phase, with the same CPU time-saving ad-
vantage. Unfortunately, we find that this is not the case. We
performed a simple constant-stress simulation of solid
n-hexane employing the AUA model and observe a crystal-
line structure which deviates significantly from the experi-
mental structure. The results of the simulation are included
in Sec. III. Apparently, the simple remedy of the AUA po-
tential is not sufficient for simulations in the solid phase, and
the need to employ an AA model appears unavoidable for
solid alkane systems.

Although there are more complicated all-atom poten-
tials, we seek the simplest, empirical potentials which can be
efficiently employed in simulations of large systems consist-
ing of many alkanes. These potentials have the following
form:

U= Ubonds + Uangles + Utorsions + Unon—bonded . (1)
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Until recently, there have been two different types of models
of this class. In the ‘‘Ryckaert—McDonald—Klein—
Williams** (RMKW) model,** all internal degrees of free-
dom involving hydrogen atoms, with the exception of methyl
group rotations, are frozen. Rotations about C—C bonds are
governed by cosine power series internal torsional potentials.
Intermolecular atoms, and intramolecular atoms separated by
three or more carbon atoms interact with an exp-6 potential
due to Williams.*” This potential has been shown to yield
good agreement with experimental alkane crystal structures.
By contrast, the *‘Smith—Karplus’* (SK) model®® employs a
fully flexible representation in which the overall torsional
potential is made up of contributions from a single cosine
term for each linear set of four bonded atoms in the alkane
chain. Atom pairs interact with a Lennard-Jones potential, as
well as Coulomb interactions as a result of partial charges
placed on the carbon and hydrogen atoms. The latter model,
however, performs very poorly in condensed systems, almost
certainly a result of the fact that the parameters of this force
field were optimized using gas-phase geometries and ener-
getics of small molecules without considering intermolecular
interactions.

An alternative model, which is essentially a hybrid of the
two described above, is the so-called ‘‘Flexible Williams’’
(FW) potential introduced recently by Tobias et al.*® It em-
ploys the Williams exp-6 intermolecular potential of the first
model with the fully flexible character of the second. Thus,
the molecular geometry and nonbonded parameters are taken
from Williams’ model IV,37 and the force constants for bond
stretching and angle bending are taken from Smith and
Karplus.®® Fourier cosine series were fit to the Smith—
Karplus adiabatic potential for use in the FW model. The
advantage of this model is that it removes the cumbersome
constraints of the RMKW model, while preserving the Wil-
liams potential, which performs well in condensed phases.
The FW model been shown to reproduce various experimen-
tal data for the solid phase and the high-density liquid phase
of alkane systems.>> The principal disadvantage is that the
inclusion of the bond-stretching and angle-bending terms ne-
cessitate, in principle, the use of a smaller time-step in MD
simulations. However, this problem can be alleviated with
the use of Multiple-Time-Step (MTS) methods.**~** Wa-
tanabe and Karplus have shown that, for hydrocarbons, the
CPU time of simulations can be decreased by a factor of 3-5
if the reversible reference system propagator algorithm (r-
RESPA) MTS methods are used.** As we find that the ab-
sence of constraints in the FW model somewhat more con-
venient for performing constant-stress simulations and for
the calculation of the free energy of the crystalline solid, we
choose to employ the FW model in the present study.

A detailed description of the FW model, as well as the
values of all parameters employed (bond lengths and angles,
bond-stretching and angle-bending force constants, torsional
potential expansion coefficients) can be found in Ref. 39.

B. Free energy calculations

The alkane melting transition is strongly first-order with
a considerable degree of hysteresis in the equation of state.
Consequently, it is essential to perform free energy calcula-
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tions in order to determine the melting curve of the system.
The conditions for equilibrium coexistence are that the tem-
peratures, pressures and chemical potentials of the coexisting
phases be equal. The chemical potential is given by

_Fo)  Plo). o

N ch p

where F is the Helmoltz free energy of the system, N, is the
total number of chains and P(p) is the pressure as a function
of the density of chains p=N,/V. If the Helmoltz free en-
ergy at a density p, is known, it can be calculated at any
other density p by the following relation:

F(p) F(po) (¢ ,P(p")
No ~ Ny —I—Lodp ER (3)

Thus, in order to compute the chemical potentials, one must
first calculate the absolute Helmoltz free energy at some ref-
erence density po. The details of this calculation differ for
the solid and fluid phases.

1. Solid phase

In order to calculate the Helmoltz free energy of a crys-
talline solid phase, we employ a variant of the method de-
veloped by Frenkel and Ladd,’ which involves a thermody-
namic integration scheme to link a state of a given system
along a reversible path to that of another system for which
the partition function, and, hence, the Helmholtz free energy,
can be calculated analytically. A convenient reference sys-
tem is the Einstein crystal, where individual noninteracting
particles are coupled harmonically to their equilibrium lattice
positions

N

52 (R—RO), @)

UEin:2 2

where R ; 1s the instantaneous position of the ith particle, and
1350) is the corresponding Einstein crystal lattice position.
Further, N is the total number of atoms in the system and is
given by N=nN,, where n is the number of atoms per mol-
ecule. Finally, « is the force constant of the Einstein crystal.
This quantity is generally set to a value such that the mean-
square displacement of the particles in the true crystal and in
the reference crystal are approximately the same. This helps
to ensure that the numerical implementation of the thermo-
dynamic integration method described below is viable. Fur-
ther comments on the choice of a for this particular system
are given in Sec. III. Note that the Einstein crystal lattice is
chosen to have the same structure as that of the true system.
Further, note that a ‘“particle’’ in the context of a system of
chains refers to an individual atom on a chain. To carry out
the thermodynamic integration, we employ an effective po-
tential:

UN)=(1-NU+\Uyg,, (5)

where U is the internal potential energy, and where A is a
parameter employed such that UN=0)=U and U(A=1)
= Ug;, - The free energy difference between the original and
reference systems may be calculated by:
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where the brackets ( ... ), indicate an ensemble average cal-

culated for a particular value of \. Thus,

1
F()\=O)—F()\=1)=—J d)\(
0

1
o U )

The superscript CM signifies that the center of mass of the
crystal is held fixed, a constraint which is required for the
thermodynamic integration calculations. Without this con-
straint, each particle may drift far from its associated Ein-
stein lattice site such that the root-mean-square particle dis-
placement grows to the size of the simulation box in the limit
A—0. Consequently, the integrand in Eq. (7) becomes
sharply peaked close to A=0, and the numerical evaluation
of the integral would require many simulations at low \.
Note that bonded atoms are decoupled in the limit of A=1,
where each atom behaves as a independent harmonic oscil-
lator. To calculate the free energy of the unconstrained crys-
tal, we write

F=(F—FM)+(FM-pM+FN. (8)

The second term in Eq. (8) is calculated numerically as pre-
scribed in Eq. (7) while the first and third terms can be de-
termined analytically. The complete calculation has been
presented elsewhere.** Using this result, it can be shown that
the free energy per chain at po=~N,/V, is given by

BF(po) 3(N—1) (277)
=3ncInAc+3ngInAyg— ———1In| —
Nch ¢ ¢ " H 2NCh Ba
In(Vy/Nep) ! oM
————— | a\(Ugy,—U
N Nado Uen=UN
3 2 2
+2N ln[NchnHILLH+NchnCMC]’ (9)
ch

where 8= 1/kgT, and V= N/p, is the volume of the system,
and n¢ and ny are the number of carbon and hydrogen atoms
per molecule. Further, A;=h/\2mmkgT are the de Broglie
thermal wavelengths for each species, where m; are the
atomic masses and & is Plank’s constant, and u,=m;/Z;m;
=m;/(Ng,(ngmy+ncmc)) is the fractional mass of each
species.

The chemical potential at an arbitrary density can be
computed using Egs. (2), (3), and (9).

2. Fluid phase

The most convenient reference point to calculate the ab-
solute free energy in the fluid phase is in the limit p—0,
where the system behaves as an ideal gas of noninteracting
(though still self-interacting) chains. In this limit, the parti-
tion function for the system is given by

(Zch)NCh
Ng!

ZIG(Nch ’V9T): (10)
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where Z, is the partition function for a single chain. The
free energy of the ideal gas is given by:

BFig
Nch

= —anCh-HnNch!/NCh

In(27Ng,)

~ BF 4+ —1+
ﬁFch lnNch 1 ZNch ’

(11)
where we have employed Stirling’s formula plus the first-
order correction, which appears as the last term.

An analytical evaluation of F = —kgT InZ, for a FW
chain is a virtually impossible. Instead we divide the poten-
tial into “‘ideal’” and ‘‘excess’ components, U and USk
=yh— Uici, respectively, and proceed with the calculation
in two steps. First we find a suitable U lci whose free energy
F4=—kzTInZ can be determined from an analytical cal-
culation of the partition function, Z‘Ci, associated with the
ideal interactions. In the second step, we employ a numerical
method to determine the excess free energy, F a=Fu
—F9.

To choose a convenient form for UL , we note first that
the difficulty in the evaluation of the complete single chain
partition function arises from two sources. The first is the
intramolecular nonbonded interactions. In our recent study
on the solid—fluid phase equilibria of LJ chain molecules,’!
we chose U,y to have contributions only from the bonding
interactions (bond-stretching and angle-bending), a choice
which permits a straightforward analytical calculation of
Z‘C‘:l However, the situation becomes somewhat more com-
plicated in the present case where the presence of hydrogen
atoms leads to a branching at the carbon atoms on the chain.
The configurational partition function associated with the
bonding interactions is difficult to evaluate. Consequently,
we define a more convenient form for U lc‘i Specifically, we
seek the following properties: (1) the associated partition
function Zii]; can be calculated in a straightforward manner;
(2) specific conformations will have approximately the same
ideal energy as the nonbonded energy in the FW model; (3)
we require the ability to generate easily molecular configu-
rations from the distribution governed by U 'C‘f] This last re-
quirement is important for the evaluation of F b which we
describe below. The definition of U, and the evaluation of
Z5) are described in the Appendix. A

The excess single-chain free energy, FSS=F,— F, is
evaluated numerically by averaging the Boltzmann factor of
the excess single-chain energy over a series of conformations
sampled from a distribution determined by the ideal single-
chain energy:

BF &= —In{exp(—= BU))iq - (12)
We note that
UgﬁE Uch_ Ulcc}ll: ( Ulgl(lmded_ U:;cll1) + Uggnbonded (13)

and that the choice of U 2‘111 and the values of its parameters
have been designed to ensure that the difference U™
-U ‘i does not deviate significantly from zero for all confor-
mations generated from the distribution governed by Uici.
Further, we note that, since the generated conformations are

nonself-avoiding, the effect of U™ on the average can,
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in principle, cause problems with the statistical accuracy of
the evaluation of the average (exp(—pBUg))iq if a large
enough majority of the conformations contain at least one
overlap of interaction sites. For short chains, this results
mainly from the presence of a (¢, ¢,_) consecutive pair in
the chain, where d)ga represents a gauche torsional angle of
0°<¢, <120° or 240°<¢,, <360°. However, for the
calculation for the n-octane in the present study, we find a
minimum of one such pair in only about 30% of the gener-
ated conformations, and, therefore, this was not a problem.
In more problematic calculations of this sort, it may be nec-
essary to employ a Rosenbluth sampling scheme to improve
the statistical accuracy of the averaging.?’

The ideal gas free energy is given by

BFig In(27N )
=lnp—1+ ————+3ncInAc+3nyIn A
Na P 2N, C C H H
—InZ{;—In(87%) + BFG (14)

where Zicé"im is defined in the Appendix. Using Eq. (3), and
the fact that Pig=N_,kpT/V, it is trivial to show that

BF(p)  BFi(p) p|BP(p")=p’
Nep a Nep +fdp (p’)2

One further relation that is employed in the present study
is that for the free energy difference evaluated along an iso-
chore between systems at temperatures 7y and 7, and con-
stant density p:

(15)

0

U f M EG.T) (16)
T, T, Jun Pt
where E(p,T) is the total energy of the system.
Finally, the chemical potential for the fluid phase can be
calculated using Egs. (2), (14), (15) and (16).

C. Calculation of the phase boundaries

Using the expressions derived in the previous section, it
is possible to calculate w(P) for fixed T for each phase. The
intersection of these functions determines the location where
the conditions for thermodynamic coexistence are satisfied
and gives a single point on the melting curve. Since the free
energy calculations required to obtain this single point are
computationally very expensive, we do not repeat them in
order to obtain a full line of points. Instead, we employ the
Gibbs—Duhem integration scheme developed by Kofke® A6
to trace out the phase boundaries, without the need to com-
pute further free energies. The simplest variant of this
method involves the integration of the standard Claussius—
Clapeyron equation,

dpP Ah
R = (17)
coexist

dp - BAv’

where Av=v,—v, and Ah=h,—h, are the differences in
molar volume and enthalpy between the two phases, respec-
tively. As the Claussius—Clapeyron equation is a first-order
differential equation, it can be integrated to compute the co-
existence curve provided one point on the curve is known.
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D. Simulation details

The simulations employed systems of N =64 octane
molecules in the fluid phase, and N, =50 chains in the solid
phase. The use of a small system size is an unfortunate ne-
cessity when employing an AA alkane model for which a
large number of separate simulations must be carried out.
Clearly, there will be some finite-size effects present. How-
ever, considering the large number of degrees of freedom of
this system, the effects should be much smaller than for
those of atomic systems of the same size, and should pre-
sumably have only a slight effect of the coexistence points.
Since an explicit calculation of the finite-size scaling of the
melting curve results is prohibitively time-consuming, it is
not possible to give a quantitative estimate of the finite-size
effects.

The 64 octane molecules in the fluid phase were placed
in a cubic box. The equilibration procedure depended on the
density and temperature. Simulations were carried out on the
supercritical isotherm at 7=650 K for a wide density range.
At low densities (p<<0.40 g/cm3), the octane chains were
initially centered on points of a 4X4X4 bcc lattice in their
all-trans extended conformation. NVT simulations with
these systems were carried out for both equilibration and
production. At higher densities, a final configuration of a
lower density run was used as an initial configuration, and
the system was equilibrated by compression through an NPT
simulation to a desired density or pressure. After equilibra-
tion, an NVT production simulation was carried out. At
lower temperatures, a problem arises due to the very slow
relaxation toward conformational equilibrium when the
trans-gauche energy barrier becomes large enough compared
to kgT. To circumvent this problem, we employed a method
similar to that used by Tobias et al.* in which starting con-
figurations were obtained by isothermally compressing ran-
domly chosen vacuum chain conformers (i.e., chains in con-
formations sampled at different times in a single-chain MD
simulation) initially placed on a cubic lattice. As the confor-
mational behavior of flexible molecules is generally found to
be only marginally affected by condensation*’ this will likely
accelerate the equilibrium process. In the study by Tobias
et al* the conformers were obtained from sampling from a
one-molecule MD simulation. In the present study, we chose
instead to conduct single-chain configurational bias MC
simulations using a UA model and then to use sampled con-
figurations to initiate the MD simulations for one point on
the 7=230 K isotherm at P=50 MPa. The final configura-
tion from this simulation was used as an initial configuration
for the next higher and lower pressure, and so on, along the
isotherm. NPT simulations were conducted at state points
along the T=230 K isotherm and along the phase boundary
in the Gibbs—Duhem integration, while NVT simulations
were performed along the p=0.81 g/cm’ isochore between
T=230 and 650 K. All liquid phase simulations employed
equilibration times of at least 100 ps and production runs of
at least 50 ps.

For the solid phase, the simulation cell contained 50 oc-
tane chains arranged in two layers of 5X5 molecules.
Constant-stress NPT simulations were carried out at points
along the T=230 K isotherm and along the phase boundary
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in the Gibbs—Duhem integration. The initial configuration
for one octane crystal simulation was taken from the previ-
ously published x-ray crystal structure.*® Initially configura-
tions for other simulations obtained from the final configu-
ration of the previous simulation along the isotherm or phase
boundary. All solid phase simulations used equilibration
times of at least 25 ps, and production runs of at least 50 ps.

Because we choose a fully flexible model to describe the
alkane system, it is essential to employ a Multiple-Time-Step
(MTS) method*~* to integrate the equations of motion in
order to avoid the need to use a very small time-step. We
choose the reference force to consist of the CH and CC
bond-stretching forces, and the CCC, CCH and HCH angle-
bending forces. We employ the integrators developed by
Martyna et al 22 for all NVT, NPT and constant-stress NPT
simulations. The fictitious masses for the thermostat and ba-
rometer variables were chosen according to the prescription
by Martyna er al.** with a thermostat time scale of 0.62 ps
and a barostat time scale of 1.26 ps. A large time-step of
At=1 fs subdivided into n,=4 small time-steps of &t
=At/ny=0.25 fs was employed.

Standard periodic boundary conditions were employed.
The exp-6 long-range interactions were truncated at 10 A,
and long-range corrections were included in the calculation
of the energies and pressures to compensate for this trunca-
tion.

To calculate the free energy of the crystalline solid, we
evaluate the integral appearing in Eq. (7) using the ten-point
Gauss—Legendre quadrature method. First the average cell
shape and atom positions were calculated to provide the ref-
erence lattice used in the calculations. Then, the average en-
ergy difference (Ugj,— U )SM was evaluated at the appropri-
ate ten values of \ at constant volume. We note that when
N#0, there is an external force acting on the system due to
the coupling between the atoms and their lattice positions.
Consequently, the center of mass is not fixed. To constrain
the center of mass in these calculations we essentially em-
ploy the Shake™ and Rattle®' algorithm, which in practice,
simply amounts to subtracting the difference between the
current and initial center of mass position from all particle
positions, and the current center of mass momentum from all
particle momenta, in a single iteration at the appropriate
place in the equation of motion integration algorithm.

We perform the Gibbs—Duhem integration with respect
to B, i.e., integration of Eq. (17), using a second-order pre-
dictor corrector method, and with an integration step of d8
=0.0001 (KkB)fl, which corresponds to an increment of
approximately 5 K in the temperature range considered here.

lll. RESULTS

An important test of the suitability of a particular mo-
lecular model to calculate accurately the free energy of a
crystalline solid is that the crystal structure measured in the
simulation closely matches that measured experimentally. As
discussed in Sec. II A, standard UA models are unable to
predict correctly the measured crystal structure. Further, al-
though Toxvaerd’s AUA model improves the results for the
calculation of the equation of state for fluids at high pres-
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TABLE I. Unit cell parameters for solid n-hexane at 7= 158 K obtained by
experiment and simulation (P=0.1 MPa) with the Toxvaerd Anisotropic-
United-Atom (AUA) model.

Expt.? MD
p (g/em®) 0.888 0.891
a (A) 4.17 3.93
b (A) 47 5.56
c (A) 8.57 8.19
a (°) 96.6 74.0
B ) 872 103.0
v (©) 103.0 110.0

“Reference 55.

sures and densities, it also suffers from the same problem for
the solid. In Table I, we present the results from a constant-
stress NPT simulation for a system of solid n-hexane at P
=0.1 MPa. The deviation of the unit cell parameter values
from the corresponding experimentally measured values
clearly illustrates the unsuitability of using this model for
solid-phase simulations. By contrast, the results of another
constant-stress NPT simulation of solid n-octane using the
FW model, presented in Table II, are considerably more fa-
vorable, and demonstrate the need to employ an AA model.

Simulation snapshots of n-octane in the fluid and crys-
talline solid phases are shown in Figs. 1 and 2, respectively.

The evaluation of the free energy of the system at state
points in the liquid and solid phases requires several separate
calculations for each phase. Below, we give the results of
each separate calculation. The values of the various quanti-
ties are also listed in Table III for convenience.

Figure 3 shows the calculated points on the isotherms
used for thermodynamic integration calculations in this
study. We seek the free energy as a function of density F(p)
in the solid and fluid phases at 7, =230 K, somewhat larger
than the n-octane experimental melting temperature of 216
K. To this end, we have calculated isotherms at this tempera-
ture for both phases. The free energy of the solid is calcu-
lated at one point on the isotherm using the Einstein crystal
thermodynamic integration method described in Sec. II B 1.
The fluid phase free energy must be calculated by thermody-
namic integration along an isotherm to the dilute limit of
p—0. To avoid the problem of passing through the gas—
liquid two-phase region, we have chosen to integrate along a

TABLE II. Unit cell parameters for solid n-octane obtained by experiment
and simulation.

Expt.? MDP MD¢
T (K) 190.0 190.0 180.0
p (g/em®) 0.891 0915 0916
a (A) 422 420 423
b (A) 479 4.62 458
c (A) 11.02 11.07 11.08
a (%) 947 95.0 95.0
B () 843 84.6 84.7
v () 105.8 104.1 1042

*Reference 48.
®Present study. P=0.1 MPa.
‘Reference 39. P=0.

J. M. Polson and D. Frenkel

FIG. 1. Simulation snapshot of a system of N,= 64 n-octane chains in the
isotropic liquid phase at p=0.793 g/cm® and T=230 K.

supercritical isotherm at 7,=650 K, significantly above the
critical point temperature of 7.=568.6 K. To connect the
T,=230 K isotherm to the 7, =650 K isotherm, we measure
the energy at points along an isochore at p,=0.81 g/cm® and
employ Eq. (16) to calculate the free energy difference.

The first step is the evaluation of the single-chain excess
free energy using the method described in Sec. II B 2. We
employ a Monte Carlo procedure to generate a series of con-
figurations from a distribution corresponding to the Ui‘fl and
compute the average in Eq. (12). Using 10 blocks of 200 000
chain configurations per block, we determine that B,F¢,
=—0.688(1), listed as item (1) in Table III for the fluid,
where B,=1/kgT,.

FIG. 2. Simulation snapshot of a system of N4,=50 n-octane chains in the
crystalline solid phase at p=0.906 g/cm? and T=230 K. The chains are
arranged in two layers of 5X5 chains per layer.
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TABLE III. Calculated quantities relevant for free energy calculations. 3;
=1/(kgT;), where T; =230 K and T, =650 K. A*=h/(2mm ,kzT;)"? is the
de Broglie thermal wavelength for «=C and H at 7,=230 K and T,
=650 K. N, is the number of alkane chains in the system, and n¢ and ny
are the number of carbon atoms and hydrogen atoms, respectively, per
chain. P(p) is the pressure as a function of density of chains N, /V. Fg is
the excess single chain free energy defined in Eq. (12). Fig(p) is the ideal
gas free energy at density p and is defined in Eq. (14). (Ug,— U)™ is the
average difference between the energy of a crystal, U, and an Einstein
crystal with the same equilibrium lattice, Ug;, [see Eq. (4)], calculated using
an effective potential given by Eq. (5) for N €[0,1], and subject to the
constraint of a fixed center of mass. For the solid phase, F is the free energy
of the unconstrained crystal, F*™ is the free energy of the crystal with a
constrained center of mass, and F' g?f is the free energy of an Einstein crystal
with a constrained center of mass. Finally, p,=0.810 g/cm®, and p,
=0.904 g/em®.

Fluid
(1) BFG/Ne, —0.688(1)
(2)  BoFig(pa)/Ney—3ncIn AS—3n, In AY 75.995(1)
G Jhedp'[BP(p")—p'1(p") L1(1)
4 BoF(p)/Ngy—3ncIn AS—3nyIn Al 77.1(1)
(5 [l d(UD)E(p, T/ (Nekip) 64.97(3)
(6)  BiF(p)/Ney—3ncIn AS—3ny1In Al 142.1(1)
(1) 3ncIn(AS/AS) +3ny In(AY/ AL —40.517
(8)  BiF(p)/Negy—3ncIn AS—3nyIn AYf 101.5(1)

Solid
©) (BN JodN(Upgiy= U)M 13.1(1)

(10) (B INDL(F(py) = F™(pp)) + Fiiy]

—3ncIn AS—3nyIn A 114.957

(11)  BF(pp)/Ney—3ncIn AS—3nyIn Al 101.9(1)

Using Eq. (14), we determine the ideal gas free energy at
T,=650 K at a density of p,=0.81 g/cm®. We calculate
Z'C?Lim through a numerical calculation of the integrals in Eq.
(A8). We find that B,Fig/Ng—3ncInAS—3nyIn A}
=75.995 [item (2) in Table III], where A} is the de Broglie
thermal wavelength for a particle of type a«=C.,H at tempera-
ture T;. These kinetic terms involving the thermal wave-
lengths which arise from the integration of the momenta in
the partition function play no essential role in the free energy
calculation. However, because the calculations were carried

1000 g T T 3
g 100 3 E
L 10 & =
2 F (O Critical Point E
@ r BB T-650K (fluid) | |
& T=230K (fluid)

[4—F] T=230K (solid)

e Coexistence

00 02 04 06 08 10
Density (g/cmS)

FIG. 3. Calculated isotherm for n-octane at 7=650 K for the fluid phase,
and at 7=230 K for solid and liquid phases. The gas—liquid critical point at
T=568.4 K is also labeled, as well as the solid—liquid coexistence tie line at
P=50.82 MPa for T=230 K.
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200.0

100.0

0.0

<Au >,

-100.0

-200.0
0.

FIG. 4. Calculated (Au*),=(B/Ng){Ugin—U)M used in the ten-point
Gauss—Legendre integration of Eq. (7) at p=0.904 g/cm® and T=230 K. An
Einstein crystal force constant of a=30 000 K/A? was used.

out at two different temperatures, we include them explicitly
to avoid confusion.

To determine the free energy of the true fluid at p,
=0.81 g/cm®, we employ Eq. (15). Using a eighth-order
polynomial to fit the 7,=650 K isotherm, we find that the
integral in Eq. (15) has a value of 1.1(1) [item (3) in Table
IIT]. Consequently, the free energy of the fluid has a value of
BoF(py)/Ng,=77.1(1) [item (4) in Table III]. To connect
this pathway with the 230 K isotherm, we employ Eq. (16)
and carry out the integration along an isochore at 0.81 g/cm’.
We employ a five point Gauss—Legendre integration scheme
to evaluate the integral and find that (B,F(T,)
—B,F(T,))/N;,=649(1) at p=0.81 g/cm>. Consequently,
the free energy of the fluid less the kinetic factors in Eq. (14),
3ncIn AS+3nyIn AR has value 142.1(1) [item (6) in Table
III]. To provide a more convenient reference point to com-
pare with the solid phase, we evaluate the difference between
the free energy and the kinetic terms, where the latter are
evaluated at 7,=230 K. Consequently, we add a value of
3ncIn(AS/AS) +3ny In(AY/AYY=—40517 [item (7) in
Table IIT], and find that the free energy of the liquid at p,
=0.81 g/cm® and T7,=230 K has a value B,F(p,)/Ng,
—3ncIn AS=3nyIn A¥=101.5(1) [item (8) in Table III].

Figure 4 shows the calculated (Au*),=(B/N){(Ugin
-U )SM used in the ten-point Gauss—Legendre evaluation of
the integral in Eq. (7). We note that for the value of Einstein
crystal force constant that was used (a=30000 K/A?), the
function (Au*), has a positive peak near A=0, and a small
negative peak near A=1. This behavior was also noted in our
previous study of semi-flexible Lennard-Jones chains in the
case of stiff bonds.>' If « is small, then, in the limit where
A—1 and U=Uyg,, deviations in bond lengths and bond
angles from their equilibrium values will be significant, and
lead to a large value of U and, therefore, a possibly sharp
reduction in (Au*),. If « is too large, then, in the limit

where A—0 and U= U, the individual atoms may deviate
significantly from their equilibrium lattice positions, leading
to a large value of Up;, and, therefore, a high value of
(Au*), . These two cases lead to peaks at A=0 and 1. As in
the case of the Lennard-Jones chain system with stiff
bonds,3 ! we find that there is no intermediate value of « that
simultaneously removes both peaks and yields a smoothly
varying (Au*), over the full range of N. Nevertheless, the
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FIG. 5. Solid and fluid branches of the reduced chemical potential Su as a
function of the pressure P at 7=230 K.

value of a=30000 K/A? was found to minimize each of the
two peaks. It is possible that the presence of the peaks could
present problems for the ten-point Gauss—Legendre numeri-
cal integration. Since the calculation of the ten points in Fig.
4 was extremely time-consuming, we did not repeat the nu-
merical integration for more points, nor did we attempt to
determine a suitable transformation to a different integration
variable such that the integrand is a more smoothly varying
function. However, we note that when such approaches were
tested in our previous study®' for the stiff-bond Lennard-
Jones chain solid, for which (Au*), also displayed the same
features, the 10-point integration was found to be sufficiently
accurate.

The integral has a value of [§dN(Au*)SM=13.1(1)
[item (9) in Table III]. We subtract this from the quantity
(B1IN)[(F(py) = F™(p,))+ FE], which is defined by
Eqgs. (8) and (9), and which has a value of 114.957 [item (10)
in Table IIT]. Thus, the free energy of the crystalline solid at
p»=0.904 g/cm® and T,=230 K is given by B,F(py)/Nu,
—3ncln A,C— 3nyIn AY'=101.9(1) [item (11) in Table III].

From the calculations described above, the absolute free
energy of the n-octane system is known for one point on
each of the solid and fluid branches of the 230 K isotherm.
As we have calculated several points along the isotherm, we
can determine the chemical potential of each phase as a func-
tion of density or pressure at this temperature using Egs. (2)
and (3). Solid and liquid branches of w(P) are shown in Fig.
5. The intersection point at P=150.8 MPa gives the pressure
at coexistence between the two phases at 230 K. This corre-
sponds to densities of p;=0.790 g/cm® for the liquid phase
and p,=0.910 g/cm? for the solid phase.

With one point on the coexistence boundary, we obtain
other points along the curve via Gibbs—Duhem integration,
ie., by integrating Eq. (17). The results are tabulated in
Table IV. The melting curve in the P-T plane is shown in
Fig. 6. The curve is almost perfectly linear, which is simply
a reflection of the narrow 20 K temperature range consid-
ered. To estimate the uncertainties in the calculated melting
curve data, we note from Fig. 5 that small relative displace-
ments of the u(P) curves will shift the position of the inter-
section of the curves over a wide range in pressure. Conse-
quently, we assume that the principal source of error is the
uncertainty in the calculation of the absolute free energy at
the reference points on the liquid and solid branches of the

J. M. Polson and D. Frenkel

TABLE IV. Calculated liquid—solid coexistence points for n-octane.

T (K) P (MPa) py (glem?) p, (glem?)
219.89 24 0.775 0911
224.83 255 0.781 0.909
230.00 50.8 0.790 0.910
23541 779 0.803 0916
241.09 104.8 0.806 0919

230 K isotherm prior to thermodynamic integration along the
isotherm branches. The uncertainty of the free energy for
both the solid and liquid reference points is 6F =0.1kzT; per
chain. Applying a relative shift of the chemical potential of
26F shifts the location of the intersection of the w(P)
curves in Fig. 5 by approximately P =20 MPa. Next, we
conduct simulations for the solid and liquid phases at 50.8
MPa = 6P to measure the enthalpy and molar volume dif-
ferences between the phases and take a linear approximation
of Eq. (17) to construct shifted melting curves. The region
between the two calculated gives a reasonably accurate mea-
sure of the uncertainty of the position of the melting curve;
this region is colored gray in the figure.

Superimposed on the phase diagram are three points on
the melting curve taken from the experimental differential
thermal analysis study of n-octane of Wiirflinger.’> While the
pressure dependence of the melting temperature in that study
was measured to pressures of up to 300 MPa, Fig. 6 includes
only those data which fall within the 0—100 MPa pressure
range considered in the calculations. The experimental
“‘curve’’ is essentially parallel to the calculated curve, and
shifted to lower temperatures by approximately 3 K. Further,
we note that the experimental data points lie within the
shaded area for the temperature range considered here.

Given that the temperature scale in Fig. 6 is highly ex-
panded, the quantitative agreement between the experimental
and calculated melting curves is striking: the melting tem-
peratures have been calculated to within 2% of their true
values in the pressure range considered. As stated above, the

100.0 - [FrEjSHmEEs T &

S @ experiment 1
,t-q\ |- o
% 50.0 - -
m b 4
00 o | | y
210.0 220.0 230.0 240.0 250.0
T (K)

FIG. 6. Calculated and experimental melting curves of n-octane. The simu-
lation data were calculated by solving the Claussius—Clapeyron equation via
the Gibbs—Duhem integration procedure. The integration was initiated using
the coexistence point at 7=230 K obtained from the intersection of the
chemical potential curves shown in Fig. 5. The gray zone marks the limits of
uncertainty in the calculated melting curve. The procedure for the calcula-
tion of the uncertainty region is given in the text. The experimental data
were taken from Ref. 52. The simulation melting curve data are also listed in
Table IV.

Copyright ©2001. All Rights Reserved.



J. Chem. Phys., Vol. 111, No. 4, 22 July 1999

quantitative precision of the calculations is determined prin-
cipally by the precision with which the solid and liquid phase
free energies are calculated. However, the quantitative accu-
racy of the calculations, i.e., the degree to which the calcu-
lated and experimental data agree, is also expected to be
highly sensitive to the details of the molecular potential em-
ployed in the calculations. Although the FW model was de-
veloped and optimized to reproduce various measured data
for the solid and high-density liquid phases of alkanes, it is
not clear that it would be adequate to calculate accurately the
free energies required for the calculation of the solid—liquid
phase boundary. The positive result of this study indicates
both that a realistic all-atom model of this sort is sufficient,
and that the free energy calculations themselves can be per-
formed with sufficient precision, in order to predict accu-
rately the melting curve for a n-alkane system.

IV. CONCLUSIONS AND OUTLOOK

While the basic computational methods required to cal-
culate the free energies of solids and liquids and, therefore,
equilibrium solid—liquid phase behavior, have been available
for many years, there has been little effort made to apply
these methods to realistically modeled molecular systems.
Work in this area has until now focused on simple, and
mostly rigid, molecules. To our knowledge, the present study
is the first to apply these methods to a truly realistic model
for a system of large flexible molecules. The results look
very promising: using a relatively simple all-atom alkane
model we were able to obtain quantitatively accurate results
for the melting curve of n-octane. While this system is still
relatively simple compared to a polymer chain system, for
example, it is considerably more complex than the diatomic
or triatomic molecular systems studied to date. At present, a
major limiting factor in these calculations is the large com-
putational effort required to determine the melting curve for
a realistic model oligomeric chain molecules such as
n-octane. However, with the rapid increase in computing
power, calculations that are barely feasible now should be
standard in a few years time.
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APPENDIX: DEFINITION OF U%, AND Z§,

In this Appendix we describe in detail U lci , the “‘ideal””’
component of the single-chain potential energy discussed in
Sec. II B 2. We choose a Uiclll composed of bonded interac-
tion terms of the following types:

* A bond-stretching term:

Melting curve of n-octane 1509

kia,p
Uid,b:_2 (r—1y)*

(A1)
This is summed over n-1 CC bonds and 2n+2 CH bonds on
each molecule, and is identical to the form which appears in
the FW potential. We choose force constants and equilibrium
bond lengths, to be equal in magnitude to those used in the
FW potential: kiq,=111200.0 K/A%, [,=1.530 A for CC
bonds, and kig,=155800.0 K/A%, [,=1040A for CH
bonds.
* A CCC angle-bending term:

cce

U%?(?: % (gecc— HOCCC)2. (A2)
This term is summed over the n-1 CCC bond angles. Again,
it is again identical in form, and with the same force constant
and average CCC bond angles, as that employed in the FW
potential: k{3 =62500.0 K/rad? and 65C=112°.

* A CCH angle bending term:

CCH

UG =5 (6= o2, (A3)
This term is summed only over 2n+2 CCH bond angles;
that is, we include only one CCH bond angle per hydrogen
atom. This choice effects a more straightforward analytical
evaluation of the partition function. Further, the force con-
stant magnitude is not set equal to that in the FW potential.
To guarantee condition (2) for U% described in Sec. I B 2
we set kicdc,zlzéo 000.0 K/rad®>. However, HOCCH=110.O°, as
in the FW model.

¢ A CCH azimuthal angular term:

kig,

Uid,qs:_z (¢CCH_ ¢0CCH)2-

This term has the same constraining effect as an HCH angle
bending potential, which is not included in Uﬁl (again, to
simplify the evaluation of the partition function). ¢ is the
azimuthal angle of a CH bond relative to the carbon skeleton.
This term is summed over 2n azimuthal bond angles: 2(n
—2) methylene ¢““! angles, and four of the six azimuthal
angles associated with the terminal methyl groups. We take
kig.s=60000.0 K/rad® and ¢§“"=120°.

* A methyl torsional potential term:

(Ad)

Upit= 3 E§°"(1—cos 3 ™). (AS)
This torsional potential term is associated with the remaining
one hydrogen per methyl group not included in the summa-
tion of the terms of Eq. (A4). The form of this potential is
identical to that of the methyl rotational potential typically
employed for constrained systems. We choose Eg’eth
=1707.473 K, as in Ref. 53.

* A carbon skeleton torsional potential term:

9

CCCC_ Cccce Ccccc
idtor — 2] Cm COS(m)(gb )
m=

(A6)
This CCCC torsional potential is also chosen to be identical
to that used in UA and constrained-AA alkane model poten-
tials. The expansion coefficient values are taken from a fit to
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recent accurate spectroscopic data and ab initio calculations and are given in Ref. 54.

The partition function Zic(l; is given by

id _ 4 id
ch™ 3n 3n ch,int »
AC CAp”"™

(A7)

where A and Ay are the de Broglie thermal wavelengths of each of the n¢ carbon and ny hydrogen atoms resulting from the

id

integration of the momenta. The ‘‘internal’” contribution to the single-chain ideal energy partition function Z, ;. , in the limit

of stiff bonds, is given by

4 2 1 ! 27
Z8 =87 e\ 2| 1+ —5 B\ =
ch.,int CcC ﬁkb ,Bkbl(zjc CH Bkb

27 n—3 T

X J; d¢ exp[—ﬁu%ﬁgc [Jo d 6 sin Gexp[—,Buffgl
27 2n

X J; d ¢ expl — Buig 4]

I+ ==
Bkplcy

1 2n+2 n—2

J d 6 'sin 6 expl — Buiy
0

2

2n+2 2
{ fo d o exp[ — Bull’y

(A8)

The five integrals in the above equation are evaluated numerically.
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