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Bernoulli 4(2), 1998, 185-201 

Discretely observing a white noise change- 

point model in the presence of blur 

JACQUES ISTAS'* and HENRIK STRYHN2 

'I.N.R.A., Laboratoire de Biometrie, Domaine de Vilvert, F-78352 Jouy-en-Josas Cedex, France 

2Department of Mathematics and Physics, The Royal Veterinary and Agricultural University, 
Thorvaldsensvej 40, DK-1871 Copenhagen, Denmark 

In discretely observed diffusion models, inference about unknown parameters in a smooth drift 
function has attracted much interest of late. This paper deals with a diffusion-type change-point model 
where the drift has a discontinuity across the point of change, analysed in detail in continuous time by 
Ibragimov and Hasminskii. We consider discrete versions of this model with integrated or blurred 
observations at a regular lattice. Asymptotic convergence rates and limiting distributions are given for 
the maximum likelihood change-point estimator when the observation noise and the lattice spacing 
simultaneously decrease. In particular, it is shown that the continuous and discrete model convergence 
rates are generally equal only up to a constant; under specific conditions on the blurring function this 
constant equals unity, and the normalized difference between the estimators tends to zero in the limit. 

Keywords: asymptotic distribution; blur; maximum likelihood; orthogonalization 

1. Introduction 

The continuous-time, Gaussian white noise change-point model in T= [0, 1] is 

d Vt = f(t, 0) dt + ed Wt, t E T, (1) 

where (Wt) is a standard Brownian motion, the drift has the form 

f(t, 0) = fl(t)1{t < 0} + f2(t)l{t > 0}, (2) 

and fi, f2 are known functions on T, with the change-point parameter 0 c T and the true 

change-point 0* E (0, 1). The drift f(t, 0) is discontinuous at t 0*, that is, A- 
fi (0*) - f2(0*) O0. The maximum likelihood (ML) estimator of 0 has been studied by, 
among others, Ibragimov and Hasminskii (1981), Kutoyants (1984) and Korostelev (1987). 
Recently generalizations of (1) to two-dimensional time have attracted interest in the context 
of image analysis; see Hasminskii and Lebedev (1990), Rudemo and Stryhn (1994) and 

Stryhn (1994). 

*To whom correspondence should be addressed. 
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186 J Istas and H. Stryhn 

Discrete observations of (1) are taken at equidistant lattice points sE S, C T, where n 
denotes the number of observations. The value Vs at s is a weighted integral of continuous- 
time observations in a neighbourhood of s, 

VS = - p(t- s)dVt - O-(t-s)f(t, )dt + e P(t-s)dWt, (3) 
JT JT JT 

where p (Ph (h is bandwidth parameter) is a kernel function satisfying 9 p(u) du = 1. 
(Some technical details of the model are deferred to Section 3.) The particular choice 

p((u)- 
nl{u E [-1/(2n), 1/(2n)]} leads to completely integrated observations of (1), or in 

effect to increments Vk/n - V(k-1)/n of (Vt). Our motivation for the blurring function 9 
stems from applications in signal or image processing where a continuous signal or scene is 
digitized on a regular grid by some recording device. The value produced at each recording 
point can intuitively be thought of as a weighted average of the signal intensity in the vicinity 
of that point. This formalism agrees with a standard way of modelling image blur by 
convolution with a point spread function; see, for example, Rosenfeld and Kak (1982, 
Chapter 7). We take 9P to have bounded support - in view of the bounded observation 
interval T this seems most natural. 

In model (1) we study asymptotics when E -+ 0. Two variants, A fixed or A -+ 0 in the 
limit, are considered; the latter corresponds to a low signal-to-noise ratio setting and is 
termed here decreasing jump-size asymptotics. In model (3) we let simultaneously n -- 00, 
e -+ 0 and h - 0 under suitable links between the rates. The limiting distributions are 
expressed in terms of functionals of a Brownian motion with triangular drift. That is, we 
consider the process (Bu)UER given by B = -lu1/2 + Wu where (Wu) is a two-sided 
Brownian motion. The argmax of (Bu) is well defined and its distribution, denoted here by 
Ftri, has been given by, among others, Bhattacharya and Brockwell (1976). 

Denote by 0, and 0, the ML change-point estimator based on the continuous and discrete 
models (1) and (3), respectively. This paper gives limiting results of the following type: 

V (0E - 
*)--+ 

Ftri, (0E - 
*)--+ 

Ftri as E -+ 0, (4) 

for suitable convergence rates Vp. and ip. Note that the discrete model estimator and rate 

depend on n and h as well as on e, even if suppressed in the notation. Conditions under 
which the rates coincide are established, and in such cases it is furthermore shown that 

k(e" - 0E) 
- 0 as e 

- 0. (5) 

Inference about drift parameters in discretely observed diffusion models has been much 
studied of late for the case where the drift f is a smooth function (differentiable of some 
order) of t, 0 and Vt; see, for instance, Laredo (1990), Genon-Catalot and Jacod (1993), 
Bibby and Sorensen (1995), and Pedersen (1995). To our knowledge no previous studies 
have been undertaken for discontinuous drift, not even in the present simple case where f 
does not depend on Vt. For smooth f, results like (4) and (5) are shown in Laredo (1990), 
within a more general framework of asymptotic sufficiency of the discrete observation 
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Discretely observing a white noise change-point model 187 

model. In comparison, the discontinuous problem has faster convergence rate, of order e2 
instead of e, and a non-Gaussian limit Ftri. 

The model (3) differs from the usual discrete change-point models by the integral of 

f(t, 0) across the change point for observations close to 0*. For example, if f'i r-i, 
i-1, 2, integrated observations Vs are i.i.d. 

• 
(Jui, a2) and I'(,U2, a2) to the left and 

right of 0* respectively, except for the s E S, with s - 0* inside the range of cp; in this 
case the mean value is a weighted average of yll and Y2. Moreover, the noise U2 will 
usually be held constant in asymptotical analysis, but our results correspond in fact to 

increasing variance of individual observations Vs. This explains why asymptotic limits in 
terms of Ftri are feasible here not only for decreasing jump-size asymptotics (cf. Yao 1987) 
but also for fixed jump-size asymptotics, contrasting the standard i.i.d. change-point 
problem where lattice effects dominate in fixed asymptotics; see, for instance, Hinkley 
(1970). 

This paper is organized as follows. All proofs are gathered together in the concluding 
Section 5. To begin, we briefly review the continuous model and state the main local 
assumptions on fl, f2 used throughout. Section 3 presents the discrete model in full detail 
and gives the asymptotic results of the ML change-point estimator. In Section 4 we 
summarize the relation between continuous and discrete model estimators and state the 
conditions under which the ML estimators are equivalent in the sense of (5). Also, 
extension of the treatment to Bayesian estimators is briefly discussed. 

2. Continuous model 

The model (1) and the likelihood function are well defined under the weak assumption that 
fi, f2 are L2-integrable over T For the purposes of analysis we make the following further 
assumptions: 

(i) A = 
f-l(0*) 

- f2(0*) = 0. 

(ii) In a fixed neighbourhood N* of 0* the difference Af(t) - fl(t) - f2(t) satisfies, for 
fixed (F) and decreasing (D) jump-size asymptotics respectively, 

F: Af is continuous, 

D: Af is C' with A* = sup Aif(t) (< 0c). 
tE N* 

(iii) Vt TVh > 0: 
(t,t+h]n6 

A(u) du > 0. 

Note that in decreasing jump-size asymptotics not only A but the entire function Af(.) is 
subject to change in the limit. However, for simplicity we suppress the dependence on e of 

Af in our notation. 
Condition (i) is essential for the statistical problem. Intuitively, the reason for the stronger 

smoothness assumption in (ii) for decreasing jump-size asymptotics is that we need the 
error in approximating Af locally by A to be negligible relative to A; the condition is 
formulated throughout in terms of the first-order derivative A*. Finally, (iii) is an 
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188 J Istas and H. Stryhn 

identifiability condition ensuring uniqueness of the ML estimator, included here mostly for 
convenience. 

Theorem A. For model (1), define the rate of convergence 

WE = E2/2, 

and assume the above conditions (i)-(iii) as well as the following relations for fixed (F) and 
decreasing (D) jump-size asymptotics, respectively: 

F: e -+ O, A 0, and D: e -+ 0, A -+ 0, e/A - 0, E2A*/ 3 
--+ 

0. 

Then we have that 

-'(Oe 
- 
-*)- 

Ftri as e 
- 0. 

Remark. The result is well known for fixed asymptotics (cf. Ibragimov and Hasminskii 1981, 
Section VII.2; or Kutoyants 1984, Section 3.5); see also our proof section. Recall that Ftri is 
the argmax distribution of the two-sided Brownian motion with triangular drift (Bu)uE. 

3. Discrete model 

We supply some details of the discrete model (3). The observation lattice S, consists of n 

equidistant and symmetrically positioned points in T, 

Sn{=1/2 3/2 n - 1/2 
n n n 

Let 9p E L2(R) be a function (kernel) with bounded support satisfying fRp(u) du = 1, and 
introduce the bandwidth parameter h by defining ph(u) h-l p(u/h). Without loss of 

generality, we take supp (p) C [-C , ]. For s E Sn,h - {s Sn: s + h supp ((P) C T} the 
discrete model takes the form 

yVs= 
T h(t-s )dVt = h(t-s)f(t, 0)dt+ I h(t-s)dWt. (6) 

By the definition of Sn,h the intervals in (6) do not exceed T For incompletely recorded 

points in S,\Sn,h some modification of the model to be described below, is desirable. Note 
that when nh < 1 we have Sn,h = Sn; furthermore, the supports of 

ph(- 
- s) are disjoint so 

that the model (6) has in fact independent observations. We calculate for s, s' E Sn,h with 
s (k - )/n and s' -(k' - )/n, 

E V = h(t - s)f(t, ) dt (7) 

var(Vs) = (E2/h) p2(u)du - 2, (8) 
JR 
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Discretely observing a white noise change-point model 189 

cov(Vs, Vs') = (2/h) p(u)p(u + (s - s')/h)du 

=- (E2/ h)J p(u)p(u + A(k - k')) du, (9) 

with 

nh = A-' or A = (nh)-', 0 < A < 00. (10) 

These formulae show that the covariance structure of (6) is stationary on Sn,h and depends 
only on (n, h) through A. Two conclusions are drawn. 

First, we choose to keep A fixed in the asymptotic limit, thereby not altering the range of 
dependence in (Vs). This seems most natural for a study of the model, although the cases 
nh -+ 0 or nh -+ oc may also be of interest. 

Second, we are led to consider extensions of (6) to S, which maintain the stationary 
covariance. Clearly, one may simply discard the points outside Sn,h or extend the continuous 
model at both end-points by some small intervals to achieve fully recorded observations in 
S,. Note that by (10) the number of points in Sn\Sn,h is bounded in the limit. From a 
statistical point of view we find an (ad hoc) selection of data points somewhat 
unsatisfactory. We take instead the well-known solution from similar settings (for example, 
Ibragimov and Hasminskii 1981) to extend the models (1) and (6) periodically around T 
That is, we let W = 

Wt-[t], 
f(t, 0) f(t - [t], 0), and Vt - Vt-[t], for t E R, where [t] 

denotes the integer part of t, and define for s E S,, 

Vs= 
Ph(t - s)dVt Ph(t - s)f(t, 0) dt + 

eph(t 
- s) 

dWt. 
(11) 

In effect, the missing contributions to integrals over (-lh, 0) are provided by observations 
from (1) in (1 - ?h, 1), and vice versa. Equation (7) is extended in the obvious way: 

/ 
s- 

fRWPh(t - s)f(t, 8)dt. The vector (Vs)sEs, has a periodic extension to {(k - )/n; 
k E Z} with stationary covariance matrix (under the weak condition h < 1). The hereby 
introduced and somewhat counter-intuitive dependence between observations at opposite ends 
of the interval we consider to be of no practical importance from a statistical point of view, 
because the change point 0* is located in the interior of T, and, as our results will show, the 
estimator belongs with probability close to one to a decreasing interval around 0*. We shall 
exploit the periodic nature of the model to orthogonalize the covariance matrix under suitable 
conditions on ?p (see the remark to Theorem 1 below). 

For the asymptotic analysis of model (6) we make the further assumption (iv) on fl, f2 
and the assumptions in (v) on the kernel op: 

(iv) Af is continuous on T, and there exist a1 > 0 and a2 < 00 such that, for fixed (F) 
and decreasing (D) jump-size asymptotics, respectively, 

F: 0 < a I t Af(t) a2, 

D: 0 < alA < Af(t) < a2A, and moreover w(Af, r) - Ao(1) as r -+ 0, 

where w(g, .) 
is the modulus of continuity, ow(g, r) = supt,t'Gr:lt-t'l<rg(t)- g(t')]. 
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190 J Istas and H. Stryhn 

(v) p9 E L"(R) has bounded support (taken to lie in [- , ]) and f Rq(u) du - 1, and the 
Fourier transform 

^ satisfies the condition 

3ci > 0, C2 < 00: Cl 1 Z [(w 
+ 2knT/A))2 < C2. (12) 

kEZ 

In (iv) we have, without loss of generality, taken A > 0. The condition is valid locally around 
0* as a consequence of (ii), assuming in the decreasing jump-size case also A* = O(A). The 
extension to the entire interval is technically convenient for controlling the behaviour of the 
likelihood function away from 8*. 

Theorem 1. For model (6) with nh 
= 

-', for fixed 0 < A < oo, periodically extended as in 

(11) if A < 1, define the rate of convergence 

-e 
= c,, E22 

with the constant c,,A given by 

c 
-= 

J p(u)p(u + Ap) du, 

and assume conditions (i) - (v) as well as the following relations between the models for fixed 
(F) and decreasing (D) jump-size asymptotics, respectively: 

F: - 0, n - 00, A # 0, 2n --+ , 

D: e - O, n 
-- 

A0, A - O, e/A -- 0, e2 /2 +2 00 , E2A*/A3 --+ 0. 

Then we have that 

,-'(0e - 0*)"- Ftri as e 
--+ 

0. 

Remark. We indicate the main idea of the proof for dependent observations, which may be 
of independent interest. The covariance (9) of (6) is essentially given by L2-products of the 
vectors (p(. - Ak); k E Z). Conditions under which such systems can be orthogonalized are 
summarized in Lemma 1 in Section 5; for the present it suffices that under condition (12) 
there exists a sequence (ak)kEZ E f2(Z) by which we can define a kernel 0 as 

0p(u) = ak//(u - Ak), u E R, (13) 
kEZ 

and such that the system ( A(. - ak); k E Z) is an orthogonal expansion of (p(. - Ak); 
k E Z). The expansion is utilized to transform (6) into an independent model for an 

orthogonalized observation vector (Vs)sES,, 

Vs Z akV?s+k/n ph(t - s)f(t, ) dt + dl h(t 
- 

s) dW. (14) 
k EG7L•ff 
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Discretely observing a white noise change-point model 191 

Details are given in Section 5. The periodic extension of (6) is essential for the orthogonal 
expansion of the model. 

Theorem 2. Under the assumptions of Theorem 1 and whenever V), = 1, we have that 

V,-(Oe - OE) -+ 0 as e 
-- 0. 

Remark The conditions under which V), = y, are explained in detail in the next section. 

4. Discussion and conclusions 

In this section we elaborate on our conditions on the kernel p9 and summarize the main 
message of Theorems 1-2, and also make a brief remark on extension of the results from ML 
to Bayesian estimators. 

The conditions on p9 are weak and essentially needed for the orthogonalization procedure; 
in particular, in the independent case p9 E L2((R) is sufficient, and (12) cancels. The 
condition (12) on the Fourier transform of p9 expresses that ((.- - Ak); k E Z) is a Riesz 
basis for the subspace spanned by these functions. That is, for all a1,..., am E D and 
k1, ...9, km E Z, the inequality 

m 
m 

2im 

c a 

I:_ai_(u 

- 
Aki) du : 

C2 , 

i=1 i=1 i= 

holds, with the same constants cl, c2 as in (12). Since p9 is compactly supported the integral 
can be expressed in terms of the elements of the covariance matrix (9). The lower bound is 
the critical one, and it states loosely that no sequence of non-degenerate linear combinations 
of the (Vs)seS, can have a degenerate limit. 

The convergence rates V), and V), coincide if and only if c,, = 1. For A > 1 and 
generally for independent observations, we have 

A-'c,A- 
f R~p2(u)du > 1, by H61lder's 

inequality, and with equality only if pq(u) l{u E [-1, ?]}. For .A<1 and independent 
observations one may ask if c,9, = 1 is possible. The answer is affirmative; take any 
compactly supported wavelet / (Daubechies 1988) with supp (0) [-1/2, 1/2], say, 
and rescale to [-4, ] by qp(u) -" -'1(u/A). In fact, the conditions on ?p are close to 
being equivalent to (q(. - k); k E ) defining a multiresolution analysis (Meyer 1990, 
Chapter II). 

In the dependent observation case we have A-'c,A = r pR02(u) du, by the formula in 
Lemma 1 in Section 5. Let q(u) = Ap(u) as above and denote by (q(- - k); k E ) the 
orthogonalization of (q(- - k); k E Z); then p(u) - A-1q(ul/), and c,.= 1 

fq2(u) du 1. We say in this case that the function q permits an orthonormal expansion. 
In conclusion, the relation between asymptotics for the ML estimators in continuous and 

discrete models (1) and (11) respectively can be summarized as follows. 
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192 J Istas and H. Stryhn 

Corollary 1. Under the assumptions of Theorem 1, 8, and O, are asymptotically equivalent 
in the sense of Theorem 2 only in the following cases. 

disjoint supports (A > 1): integrated observations, i.e., h = 1/n and 

p(u) = 1{u E [-4, 1]}, 

non-disjoint supports (A < 1): there exists an orthonormal expansion of the system 

( (- - k); k E Z). 

Otherwise the asymptotic limits of O, and O, are similar, but the convergence rate of O8 
relative to that of Oe differs by a constant greater than one. 

For the sake of completeness we make a few remarks on Bayesian estimation. In the 
continuous-time model, for instance, the Bayesian estimator O0,p based on a positive, 
continuous prior density xJ on 0 [0, 1] and a p-power loss function t It - 0*|P is 
defined as the minimizer of t 

- f(E-2lt _- )PL(O; V):r(O)dO, where L(.; V) is the 
likelihood function. Generally, the Bayesian estimator is consistent with the same rate of 
convergence as the ML estimator under weaker conditions on the statistical problem 
(Ibragimov and Hasminskii 1981, Section 1.10), and our Theorems A, 1 and 2 should carry 
over to Bayesian estimation. The limiting distribution Ftri is accordingly replaced by the 
distribution of the minimizer of v -H 4Rlv- uIP exp {Bu} du. We refer to Ibragimov and 
Hasminskii (1981, Sections VII.2-3) for a discussion of this distribution and the fact that 
the asymptotic efficiency of 0, relative to 0,,2 is about 0.74; the exact value has recently 
been calculated by Rubin and Song (1995). 

5. Proofs 

Proof of Theorem A 

We give only a brief sketch to motivate the assumptions on fl, f2 for decreasing jump-size 
asymptotics. The main line of the proof is similar to that of Theorem 1 or the development in 
Stryhn (1994). 

The log-likelihood ratio f(0) = log L(O; V) = log (dP0/dP0*)( V) is 

/(0) = -E-2 [f(t; 0)- f(t; 0*)]2 dt + e [f(t; 0) - f(t; 0*)] 
dWt, JT JT 

which for 0 > 0* can be written 

(0)= -E-2 [fi(t) 
-- 

f2(t)]2 dt + 
e-iJ [f(t) 

- f2(t)] dWt. 

We rescale the process by letting Xu = (0) for 0 = 0*+ lPu, and calculate by use of 
condition (ii), for 0 < u < K such that 0 E N*, 
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Discretely observing a white noise change-point model 193 

EXu 
= E((0) = 

--2 f(t) - f2(t)]2 dt 

-- 

E-2J [A2 + 2AAf(Ot)(t - 0*) + A2 (Ot)(t - 0*)2] dt 

- - {A2(0 - 0*) + AA*( - 0*)2O(1) + (A*)2(0 - 0*)30(1)} 

= -u/2 + o(1) as e - 0, 

by the assumed asymptotic relations. Also, var (/(0)) = -2E/(0), and the process 
(/(0); 0 E T) has independent increments. E 

Proof of Theorem 1, independent case 

The proof proceeds in two steps. First, we define a rescaled log-likelihood ratio process (Xu) -W 
to obtain X - B with respect to weak convergence on compact sets (cf. Neuhaus 1971); 
recall that B = (Bu) is a two-sided Brownian motion with triangular drift. Second, we show 
that the normalized estimator ,<-1(8, - 0*) is bounded in probability. Combining these two 
assertions with the continuous mapping theorem applied to the argmax functional restricted to 
compact intervals, the desired result follows. We consider below only decreasing jump-size 
asymptotics; the derivation for fixed asymptotics is entirely similar. 

The discrete-time log-likelihood ratio ((0) log L(O; V) - log L(0*; V) takes the form 

(-0*)2 
-2 

(/ /s) 
h(t -s)dMt. (15) 

sESn sESn R 

The process (/(0); 0 E T) is Gaussian with 

var(f(0)) = -2 i - 0*)2 = -2E (0), (16) 
seSn 

cov ((0), (0')) = a 
-2 (/ _- )(' - 

_/). (17) 
sESn 

Define a rescaled log-likelihood ratio 
(Xu)uER by letting 0 = 0* + Vpu and 

u- 
= /'(0)-(o* + V),u). 

Take fixed K > 0, and consider 0 < u, u' < K. Using (2), we have 

s 
- 

S- o*Ph(t 
- s)[fi(t) - f2(t)]dt, s Sn,h, 

p8f - 
f•s 

[A + A*(0 - 0*)O(1)]J h(t - s)dt. 
J 

* 
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194 J Istas and H. Stryhn 

Since the sums over Sn in (16) are virtually restricted to lattice arguments s with 
0* - h/2 < s < 0 + h/2 (and similarly for (17)), the moments of X can be expanded as 

EXu = -0U-2[A + A*(6 - 0*)O(1)]2[n(O - 0*) + O(1)] 

= -u/2 + A2E-2 hO(1) + A*E2/A30(1) as E -- O, 

cov(Xu, 'Xu) = u-2[A + A*(6 - 0*)O(1)]2[n(min(0, 0') - 0*) + O(1)] 

= min(u, u')+ A2e-2ZhO(1)+ A*E23/A30(1) as e -+ 0. 

In the main, these formulae show that X converges weakly on compact sets to B. 
For the second part, we lead off by rewriting equation (15) as 

Xu = m(u) + K(u) = m(u)[1 + K(u)/m(u)], u f 0, 

where m(u) = EXu is strictly negative for u : 0, by property (i). We will show that 

limsup P(infu> K (u)/m(u) < -(1 - 6/2)) -+ 0 as K -+ oc for some fixed 6 E (0, 1). This 
is sufficient for the desired argmax boundedness of X, because the argmax cannot be taken at 

negative values of Xu. Introduce the notation Y = (Yu), with 

- s(ts - *f ) J(Ph(t 
- s) dWt 

Yu = 
-KC(u)/m(u) 

= 2E Escy? - s* )2 
Then the process Y is centred and Gaussian with var(Yu) - 4E2--1c, /[hEs(k 

O_ - )2]. 
We will first prove that lim sup,-o E supu> K Yu 1 - 6 for K large enough. Denote by 9p+ 
and p_ the integrals of the positive and negative parts of 9, and by 

lll1•9 
the Ll-norm of p; 

we have 9p + p_-= 1 and 9p - _ = 
•p11. 

Then we obtain, using condition (iv), the 

following bounds on 
•s' 

- 
s5, 

valid for 0' - 0, 

ITsu'4-/sl 
- I • llla2A, 

and furthermore, for 0 + h/2 t< s < O' - h/2, 

1o,' -o 1 >I A (s) + o(Af, h)9p_ - w(Af, h)9, > alA - WI•lw(Af, 
h). 

Now, we calculate, for u' = 
-p(0'- 

- *> -u - 1(0 - ") > K, 

E(u 

- 
Y2 

9___E4e2C•, 

- 

Ys( 
)2 

E( Yu YU )2 0* 
- Yus 0 

9 Ah (0 - 0)2( )2( 

and insert the above expressions to obtain 

E(Yu' - Yu)2 < const. E2c9 n(6' - 0) 
AhA2 n(O - O*)n(O' - 0") 

U' - u 
= const. 

U 
= const. 

E(Yu, 
- 

Yu)2 

where Yu = Wu/u for Brownian motion (We). Thus, we can apply Sudakov-Fernique's 
inequality (Adler 1990, Theorem 2.9), 
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Discretely observing a white noise change-point model 195 

lim sup E sup Yu 
const. E sup Yu 

u>K u>K 

< 1 - 6 for K large enough. 

This calculation allows us to employ Borell's inequality (Adler 1990, Theorem 2.1) to yield 

P{ inf ic(u)/m(u) < -(1 - 6/2)} {= P{sup Yu > 1 - 6/2} 
u>K u>K 

S2 exp {- (1 - 6/2 - E sup Y•)2/sup var(Yu)} 
u>K u>K 

Ah 
0*+ 

iPK-h/2 
< 2 exp 

28c9hE2 
(6/2)2 S 

(Its 

K 
I- 

02 

8c 2 0*- h /2 

= 2 exp {-62K/32 + o(1)} as E -+ 0, 

by an expansion similar to that in the first part of the proof. Thus the left-hand side 
probability tends to zero as K -+ oc as desired, in fact at an exponential rate. E[ 

Proof of Theorem 1, dependent case 

The main idea of the proof is outlined in the remark after Theorem 1. The construction is 
based on the following lemma. Introduce, for any real-valued function f and any p E N, the 
notation fp = f fP(u) du. 

Lemma 1. Let 5 E L2([() and assume that (9(-- -k); k E Z) is a Riesz basis of 
span ( (. - k); k E ), or equivalently that the Fourier transform p of 0 satisfies 

3c, 
> 0, c2 < c: c1 I (w + 2km)12 - C2. 

kEZ 

Then there exists an orthogonal expansion of (9(- - k); k E ), that is, a (real-valued) 
sequence (ak) E /2(/) such that the function ?: q -+ R defined by 

O(u) = ak (u- k), u E R, 
kEZ 

has the following properties. 

1. span ((. - k); k E Z)= span ( 
(.- 

k); k E 7); 
2. If ((u - k)5(u - k')du 0 for k Z k'. 

Furthermore, if • E L' ([) with JfR5(u) du : 0, then p E L'([R) can be chosen to satisfy the 
following properties. 

3. Jf4(u)du = 1; 
4. fp/2(U) du= ptz SI f(u)/(u -+ 

p)du/p1 
> 1. 
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196 J Istas and H. Stryhn 

Finally, if 0 has bounded support and belongs to L"(R), then 

5. Vp > 0 3Cp > 0: |I(u)l |< Cp(1 + lul)-v P 

Proof The lemma relies on standard orthonormalization techniques as in Meyer (1990, 
Chapter II). For completeness a brief sketch of proof is included here. 

Define 

()(w)) = (w) (w 2k9(o1 + 2k~x) 2 

By Fourier inversion, there exists a sequence (ak) in f2(Z) such that 

O(u)= ak (u - k). 
kcZ 

Also, EkcEz ()(w + 2kT)t2 - 1, which by the Poisson summation formula is equivalent to 

(u)5(u - k) du =60,k, 

where 6k,k' equals 1 for k = k', and 0 otherwise. Thus properties 1 and 2 have been proved, 
and in fact ((.- - k); k E Z) is an orthonormal basis. 

Next, by expanding ( in the identity E kce'"i f?(u)(u - k)du = 2 (= 1), one 
obtains the following relation, valid for all x: 

A(x)2n ( 

2 
=, 

2, 

with A(x) 
-= 

akei" and 

Q(x)- 
eik" l (u)1(u - k)du. 

kcEZ kcZ R 
(18) 

In particular, it follows by insertion for x = 0 that 0 < A(0) Z 

kczak 
= k 1/91. Thus, we 

can scale the function ( and the sequence (ak) to obtain property 3 and, accordingly, for the 
normalized function ', 

2 = (D(0)/02 

( 1/2 
-2 

I2 1(2k 
t)12) 

-- 
1 (2kxt)12/9 

2 / 1(0)12/~2 = 1. 
kcZ kcZ 

Finally, when 5 is compactly supported the function (F in (18) is C", and in particular 
A(x) is C" at 0. Therefore, for all p ~ 0, limk-,,kPak = 0 and, using also the 
boundedness of 95, we conclude that the rate of decrease of ?(u) at infinity is faster than 
every power of u. O 

We use the results of the lemma with the function P given by /(u)- Ap(Qu), and let 

3(u) A-'q(u/A). Thus we obtain an orthogonal expansion (3(. - Zk); k E 7) 
of the 

system (y( - )k); k E Z) under the condition that (y( - )k); k e Z) is a Riesz basis, 
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Discretely observing a white noise change-point model 197 

which is equivalent to (12). Clearly q5 E L'(RI) with q51 = 1. Also, (2 
- 

02/i. Boundedness 
of 0 and p? are equivalent. 

The derivation (14) is obtained as follows: for s E Sn, 

s = ak Vs+k1n= akPh(t - s - k/n) d Pt 
kcEZ R kEZ 

=- h-1 ak(p((t - s)/h) - Ak)dVt 

=f h-'((t - s)/h)dPt J= h(t - s)dVt, 

where Oh denotes the kernel obtained from 0 with bandwidth h. To calculate the covariance 
function of ('Vs) we use the formula below, valid for gl, g2 E L2([R) such that the right-hand 
side is finite: 

EJ gi(t)dfWtJg2(t)dWt 
= 

Z gl(u)g2(u + p)du. 

In a similar fashion to (9) we have, using property 2 of Lemma 1, 

cov(Vf, Vrs) = E2 h(t - s)Oh(t - s' + p)dt 

-=(e2/h) - 
J 

3(u)o(u 

+ A(k - k' + np)) du 

= (e2/h)021{3p: (k - k') + np = 0} 

(2 / h)02 for (k - k')modulo n = 0 

0 otherwise 
Since the transformation connecting (Vs) and (Vs) is linear and bijective, the corresponding 
ML estimates of 0 are identical. However, the kernel p is not necessarily compactly 
supported, and some additional arguments are necessary next to those already given for the 
independent case. 

The transformed, discrete model (14) is Gaussian with 

E Vs 0( h (t - s)f(t, 0) dt 
r-o 

var(V2) = (E2/h) 
1 

2(u) 
du = E2/h -- 2 

The log-likelihood function is 
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/(0) = log L(O; V) - log L(0*; V) 

=_--2 2 0 _ 
-0*) 

)2 +&-2 0 
-0" - s)d 

sESn sESn 

from which we obtain the formula similar to (16), 

= _1& 
-2 E 

.- 

O ; 
0* )2. Ef(0) = - var ((0)) - - 2 E/ - 
0 2 

sESn 

We proceed as in the independent case by rescaling 6 as Xu - 6(0* + pu). By similar 
reasoning, it suffices for obtaining X w. B on compact sets to show that (for 0> 0 *) 

0 
-J(2hkt 

- s) dt -s) 

0(u)du)/h n(O - 0*) 
as -+ 0. (19) 

sESn 
0 seSn (0*-s)/ h 

Determine for arbitrary 6 > 0 by property 3 in Lemma 1 a constant Ko > 0 such that 

VK> Ko: ( (u) du -1 6. (20) 

Now define Sn, = {s E Sn: (0* - s)/h < -Ko and (0 - s)/h > Ko}. The number of lattice 
points in Sn,1 is n(O - 0*) - 2nhKo + 0(1) = n(O - 0*) + 0(1), which, in combination with 
(20), yields 

%02 

( {Joh(t - s) dt 
-n(O 

- 0*) < 
6n(O 

- 0*) + O(1) as E -+ 0. 

Next, we turn to the contribution to (19) from s ? Sn,1. The number of lattice points in 
(0*, 0* + hKo) and (6 - hKo, 8) is in each case equal to nhKo + 0(1) = 0(1). The sums 
(s < 0* and s > 0) can be estimated using property 5 of Lemma 1 in the following manner, 
for p > 3/2: 

S(0--s)/h 
2 

0C 
2 

h(u) 
du < const. (1 + [ul)-P du 

s< (O*-s)/h s< (O*-s)/h 

= const. 
S 1 + h 
s<0* 

= const. {1 + Ak}-2(p-) 
= 

O(1). 
k= n(O* -s) > O 

Finally, going through the calculations for argmax boundedness, only very few 
adaptations are necessary for non-compactly supported 4h. For the (crucial) upper and 
lower bounds of /~ - /4' the global assumption (iv) on 

fl, f2 in combination with the 
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Discretely observing a white noise change-point model 199 

rapidly decreasing tails of 0p in property 5 of Lemma 1 are sufficient. The last point where 
the bounded support of <p has been utilized is for an easy lower bound on var(Yu) in 
Borell's inequality; however, calculations similar to (19) lead to a lower bound in terms of 

(80 +~ ipK), and the same argument applies. O 

Proof of Theorem 2 

Take arbitrary v > 0 and c > 0, and let I, = (0, - 
cipp, 

0, + 
cipp); 

we will show that 

lim sup 
P(,I- ), - 0,1 > c) = lim sup P(O', I,) > 1 - v. 

e-O e-O 

Consider the deviation between continuous- and discrete-time likelihoods, 

Z(O) -= (0) - /(0), 0 E T. 

The process (Z(0); 0 E T) is Gaussian with Z(O*) = 0, and, for 0 > 0*, we have 

var (Z()) = E-2 - f2)2 d& - (Ah/c',A) •(f 
- _ )2 

= 
2EZ(0), 

L (0*,0] 
sES, 

cov (Z(O), Z(O + 6) - Z(0))S= - -2 O - )(,s+6 - s 
sESn 

By the expansions of the moments of Xu and X, in the proofs of Theorems A and 1 
respectively, and the fact that here 

nAh/c,A- 
c = 1, we have, for any K>0 and 

T, = [0" - ip,K, 0* + peK], 
E Z(0), cov (Z(O), Z(O')) = o(1) as E -+ 0, uniformly for 0, 0' E T,, 

and consequently 

P(sup I(O) 
- /(O) > r) 

-+ 0 as E -- 0. (21) 
OE TE 

Since 8, and O, are both consistent with rate ip, (Theorems A and 1), we can fix K > 0 such 
that 

limsup P(, E T , and 0, E T,) > 1 - v/3. (22) 
'----•0 

Furthermore, by the convergence of the rescaled log-likelihood of the continuous-time model 
(similarly to the proof of Theorem 1) we can fix y > 0 such that 

lim sup P(/(60) - sup /(0) > 22y) > 1 - v/3. (23) 
e (O OO IE 

Finally, we may take e small enough to make the probability in (21) less than v/3. 
After these preliminaries the main argument of the proof goes as follows. From the 

definition of 0, and the set Ie, we have 

{0e le } C {sup /(0) > /(0e)}, 0? I• 
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200 J Istas and H. Stryhn 

and thus 

P(O 1,) ( T or 6E TT) + P(f(6O) - sup /(0) < 0) 
OETE\I, 

< P(O,• 
T, or 6, 

• 
T,) + P(sup |(0) - /(0)l > ) + 

P(/(0•) 
- sup /(0) < 2y), 

O TE OeTE\I, 

< v/3 + v/3 + v/3 = v, 

where for the second inequality we used the fact that "(06) - supOET,\I, E(0)<0 and 

supOETE 1|(0) 
- 

/(0)1 < r imply 
f(•,) 

- 
supoET,\I,f(0) 

< 2. ] 
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