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Bernoulli 4(2), 1998, 185-201

Discretely observing a white noise change-
point model in the presence of blur

JACQUES ISTAS'* and HENRIK STRYHN?

'I.N.R.A., Laboratoire de Biométrie, Domaine de Vilvert, F-78352 Jouy-en-Josas Cedex, France
’Department of Mathematics and Physics, The Royal Veterinary and Agricultural University,
Thorvaldsensvej 40, DK-1871 Copenhagen, Denmark

In discretely observed diffusion models, inference about unknown parameters in a smooth drift
function has attracted much interest of late. This paper deals with a diffusion-type change-point model
where the drift has a discontinuity across the point of change, analysed in detail in continuous time by
Ibragimov and Hasminskii. We consider discrete versions of this model with integrated or blurred
observations at a regular lattice. Asymptotic convergence rates and limiting distributions are given for
the maximum likelihood change-point estimator when the observation noise and the lattice spacing
simultaneously decrease. In particular, it is shown that the continuous and discrete model convergence
rates are generally equal only up to a constant; under specific conditions on the blurring function this
constant equals unity, and the normalized difference between the estimators tends to zero in the limit.

Keywords: asymptotic distribution; blur; maximum likelihood; orthogonalization

1. Introduction

The continuous-time, Gaussian white noise change-point model in 7' = [0, 1] is
dv, = f(t, 6)dt + edW,, teT, (1)
where (W,) is a standard Brownian motion, the drift has the form
[, 0) = filnl{t < 6} + fo(n1{1> 6}, @)

and fj, f> are known functions on 7, with the change-point parameter 6 € T and the true
change-point 6* € (0, 1). The drift f(¢, 6) is discontinuous at ¢= 0%, that is, A =
f1(6%) — £2(6%) # 0. The maximum likelihood (ML) estimator of 6 has been studied by,
among others, Ibragimov and Hasminskii (1981), Kutoyants (1984) and Korostelev (1987).
Recently generalizations of (1) to two-dimensional time have attracted interest in the context
of image analysis; see Hasminskii and Lebedev (1990), Rudemo and Stryhn (1994) and
Stryhn (1994).

*To whom correspondence should be addressed.

1350-7265 © 1998 Chapman & Hall
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186 J. Istas and H. Stryhn

Discrete observations of (1) are taken at equidistant lattice points s € S, C T, where n
denotes the number of observations. The value ¥V at s is a weighted integral of continuous-
time observations in a neighbourhood of s,

7, = f o(t—5)dV, = f o(t — 5)f(t, 0)dt + ef o(t — s)dW,, 3)
T T T -

where @ = ¢, (h is bandwidth parameter) is a kernel function satisfying [ ¢(u)du = 1.
(Some technical details of the model are deferred to Section 3.) The particular choice
o) = n1{u € [-1/(2n), 1/(2n)]} leads to completely integrated observations of (1), or in
effect to increments Vk/,, - V- n/n of (V). Our motivation for the blurring function ¢
stems from applications in signal or image processing where a continuous signal or scene is
digitized on a regular grid by some recording device. The value produced at each recording
point can intuitively be thought of as a weighted average of the signal intensity in the vicinity
of that point. This formalism agrees with a standard way of modelling image blur by
convolution with a point spread function; see, for example, Rosenfeld and Kak (1982,
Chapter 7). We take ¢ to have bounded support — in view of the bounded observation
interval T this seems most natural.

In model (1) we study asymptotics when ¢ — 0. Two variants, A fixed or A — 0 in the
limit, are considered; the latter corresponds to a low signal-to-noise ratio setting and is
termed here decreasing jump-size asymptotics. In model (3) we let simultaneously # — oo,
¢ — 0 and & — 0 under suitable links between the rates. The limiting distributions are
expressed in terms of functionals of a Brownian motion with triangular drift. That is, we
consider the process (B,).cr given by B, = —|u|/2 + W, where (W,) is a two-sided
Brownian motion. The argmax of (B,) is well defined and its distribution, denoted here by
Fiyi, has been given by, among others, Bhattacharya and Brockwell (1976).

Denote by 6, and 6, the ML change-point estimator based on the continuous and discrete
models (1) and (3), respectively. This paper gives limiting results of the following type:

1,7 & - 1,7 2
Y (0 — 0> Fui, 971 (0: —0") > Fi  as e — 0, )

for suitable convergence rates . and .. Note that the discrete model estimator and rate
depend on n and & as well as on ¢, even if suppressed in the notation. Conditions under
which the rates coincide are established, and in such cases it is furthermore shown that

Y0 —0) 50  ase— 0. )

Inference about drift parameters in discretely observed diffusion models has been much
studied of late for the case where the drift f is a smooth function (differentiable of some
order) of ¢, @ and V,; see, for instance, Laredo (1990), Genon-Catalot and Jacod (1993),
Bibby and Serensen (1995), and Pedersen (1995). To our knowledge no previous studies
have been undertaken for discontinuous drift, not even in the present simple case where f
does not depend on ¥;. For smooth f, results like (4) and (5) are shown in Laredo (1990),
within a more general framework of asymptotic sufficiency of the discrete observation
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Discretely observing a white noise change-point model 187

model. In comparison, the discontinuous problem has faster convergence rate, of order &2
instead of &, and a non-Gaussian limit Fi;.

The model (3) differs from the usual discrete change-point models by the integral of
f(t, 0) across the change point for observations close to 0*. For example, if f; = u;,
i=1,2, integrated observations 7, are i.i.d. ./ (u;, 0%) and .7 (4, 0?) to the left and
right of 6* respectively, except for the s € S, with s — 6™ inside the range of ¢; in this
case the mean value is a weighted average of u; and u,. Moreover, the noise o2 will
usually be held constant in asymptotical analysis, but our results correspond in fact to
increasing variance of individual observations V. This explains why asymptotic limits in
terms of Fy; are feasible here not only for decreasing jump-size asymptotics (cf. Yao 1987)
but also for fixed jump-size asymptotics, contrasting the standard i.i.d. change-point
problem where lattice effects dominate in fixed asymptotics; see, for instance, Hinkley
(1970).

This paper is organized as follows. All proofs are gathered together in the concluding
Section 5. To begin, we briefly review the continuous model and state the main local
assumptions on f}, f2 used throughout. Section 3 presents the discrete model in full detail
and gives the asymptotic results of the ML change-point estimator. In Section 4 we
summarize the relation between continuous and discrete model estimators and state the
conditions under which the ML estimators are equivalent in the sense of (5). Also,
extension of the treatment to Bayesian estimators is briefly discussed.

2. Continuous model

The model (1) and the likelihood function are well defined under the weak assumption that
f1, f> are L,-integrable over 7. For the purposes of analysis we make the following further
assumptions:

(i) A= fi1(8%) - f2(6%) # 0.
(ii) In a fixed neighbourhood N* of 8™ the difference A () = f1(t) — f2(2) satisfies, for
fixed (F) and decreasing (D) jump-size asymptotics respectively,

F: Ay is continuous,

D: Ay is C' with A* = sup |A/(1)] (< 00).
teN*
(iii) Yt € TVYh>0: J AZ(u)du>0.
(t,t+hINT 4
Note that in decreasing jump-size asymptotics not only A but the entire function A,(-) is
subject to change in the limit. However, for simplicity we suppress the dependence on & of
Ay in our notation.

Condition (i) is essential for the statistical problem. Intuitively, the reason for the stronger
smoothness assumption in (ii) for decreasing jump-size asymptotics is that we need the
error in approximating Ay locally by A to be negligible relative to A; the condition is
formulated throughout in terms of the first-order derivative A*. Finally, (iii) is an
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188 J. Istas and H. Stryhn

identifiability condition ensuring uniqueness of the ML estimator, included here mostly for
convenience.

Theorem A. For model (1), define the rate of convergence
Y =€/,
and assume the above conditions (i)—(iii) as well as the following relations for fixed (F) and
decreasing (D) jump-size asymptotics, respectively:
F: e-50,A#0,and D: ¢—0,A—0,¢e/A—0,e?A*/A> — 0.

Then we have that

P (0 — 0°) 5 Fyjas £ — 0.

Remark. The result is well known for fixed asymptotics (cf. Ibragimov and Hasminskii 1981,
Section VII.2; or Kutoyants 1984, Section 3.5); see also our proof section. Recall that Fy; is
the argmax distribution of the two-sided Brownian motion with triangular drift (B,),cR.

3. Discrete model

We supply some details of the discrete model (3). The observation lattice S, consists of n
equidistant and symmetrically positioned points in T,

S = {12_ 3/2 n-1/2 }

n — n s n >ttty n .
Let @ € L*(R) be a function (kernel) with bounded support satisfying [re(x)du = 1, and
introduce the bandwidth parameter s by defining ¢;(u) = h~'@(u/h). Without loss of

generality, we take supp(p) C[—4,1]. For s€ Sy ={s€ Sy s+ hsupp(p) C T} the
discrete model takes the form

Vo= | oute-9av, - | oute= st 01a1+¢] ouir-syam. ©)
T T T

By the definition of S, the intervals in (6) do not exceed 7. For incompletely recorded
points in S,\S,, some modification of the model to be described below, is desirable. Note
that when nh < 1 we have S, = S,; furthermore, the supports of ¢(- — s) are disjoint so
that the model (6) has in fact independent observations. We calculate for s, s’ € S, with
s=(k—1/nand s' =k —}/n,

BV, = | oute=)f(, 0)ar = 4, ™

var(7,) = (sZ/h)j oy du = o2, @®)
R
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Discretely observing a white noise change-point model 189

cov (P, ) = (eﬁh)qua(uw(u (s — s/ du

=(e?/ h)JRqJ(u)(p(u + Ak — k) du, )
with
nh=21""or A = (nh)7!, 0<A<oo0. (10)

These formulae show that the covariance structure of (6) is stationary on S, ; and depends
only on (n, h) through A. Two conclusions are drawn.

First, we choose to keep 4 fixed in the asymptotic limit, thereby not altering the range of
dependence in (V). This seems most natural for a study of the model, although the cases
nh — 0 or nh — oo may also be of interest.

Second, we are led to consider extensions of (6) to S, which maintain the stationary
covariance. Clearly, one may simply discard the points outside S, or extend the continuous
model at both end-points by some small intervals to achieve fully recorded observations in
S,. Note that by (10) the number of points in S,\S,, is bounded in the limit. From a
statistical point of view we find an (ad hoc) selection of data points somewhat
unsatisfactory. We take instead the well-known solution from similar settings (for example,
Ibragimov and Hasminskii 1981) to extend the models (1) and (6) periodically around T
That is, we let W, = W, (4, f(t, 0) = f(t —[1], 6), and V, = V, g, for t € R, where [{]
denotes the integer part of ¢, and define for s € S,

7, = J ot — 5)d¥, = J ot — $)f(t, B)dr + ej ot — $)dIv, (1)
R R R

In effect, the missing contributions to integrals over (—%h, 0) are provided by observations
from (1) in (1 —%h, 1), and vice versa. Equation (7) is extended in the obvious way:
1? = [ron(t—)f(t, 0)dr. The vector (V)ses, has a periodic extension to {(k —1)/n;
k € Z} with stationary covariance matrix (under the weak condition & < %). The hereby
introduced and somewhat counter-intuitive dependence between observations at opposite ends
of the interval we consider to be of no practical importance from a statistical point of view,
because the change point 0* is located in the interior of 7, and, as our results will show, the
estimator belongs with probability close to one to a decreasing interval around 8*. We shall
exploit the periodic nature of the model to orthogonalize the covariance matrix under suitable
conditions on ¢ (see the remark to Theorem 1 below).

For the asymptotic analysis of model (6) we make the further assumption (iv) on fi, />
and the assumptions in (v) on the kernel ¢:

(iv) Ay is continuous on 7, and there exist a; >0 and a; <oo such that, for fixed (F)
and decreasing (D) jump-size asymptotics, respectively,

F: 0<a; <Af(f) < ay,

D: 0<aiA = Ag(t) < apA, and moreover w(Ay, r) = Ao(l) as r — 0,

where w(g, -) is the modulus of continuity, w(g, r) = sup; yer:|i-r|<-|g(t) — g(t)].
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190 J. Istas and H. Stryhn

(v) @ € L*(R) has bounded support (taken to lie in [—%, %]) and [po(u)du =1, and the
Fourier transform ¢ satisfies the condition

dc; >0, cp<00: ¢ = Z |o(w + 2kn/A)|* < cs. (12)
keZ

In (iv) we have, without loss of generality, taken A > 0. The condition is valid locally around
0* as a consequence of (ii), assuming in the decreasing jump-size case also A* = O(A). The
extension to the entire interval is technically convenient for controlling the behaviour of the
likelihood function away from 6*.

Theorem 1. For model (6) with nh = 17", for fixed 0 <1 < oo, periodically extended as in
(11) if A<, define the rate of convergence

17)5 = Cpa EZ/AZ,
with the constant c,, given by
o =23 | oot + 1p)du
pel R
and assume conditions (i)—(v) as well as the following relations between the models for fixed
(F) and decreasing (D) jump-size asymptotics, respectively:
F: e—eO,n—»oo,A#-O,eznﬁoo,
D: ¢—0,n—00,A—0,e/A—0,¢e*n/A* — oo, e2A* /A* — 0.

Then we have that

171;1({_98—0*);%9Fm as ¢ — 0.

Remark. We indicate the main idea of the proof for dependent observations, which may be
of independent interest. The covariance (9) of (6) is essentially given by L2-products of the
vectors (@(- — Ak); k € Z). Conditions under which such systems can be orthogonalized are
summarized in Lemma 1 in Section 5; for the present it suffices that under condition (12)
there exists a sequence (ax)iez € #*(Z) by which we can define a kernel ¢ as

Pu) =Y arp(u—Ak), ueR, (13)
keZ
and such that the system (Q(- —Ak); k € Z) is an orthogonal expansion of (@(- —Ak);
k € Z). The expansion is utilized to transform (6) into an independent model for an
orthogonalized observation vector (Vy)ses,,

Vo2 S aagn = j Balt =)/t O)dt-+ | pult =) AT, (14)
keZ R R
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Discretely observing a white noise change-point model 191

Details are given in Section 5. The periodic extension of (6) is essential for the orthogonal
expansion of the model.

Theorem 2. Under the assumptions of Theorem 1 and whenever . = ¥, we have that
P10, -0)50  ase—0.

Remark. The conditions under which 3, = 1, are explained in detail in the next section.

4. Discussion and conclusions

In this section we elaborate on our conditions on the kernel ¢ and summarize the main
message of Theorems 1-2, and also make a brief remark on extension of the results from ML
to Bayesian estimators.

The conditions on ¢ are weak and essentially needed for the orthogonalization procedure;
in particular, in the independent case ¢ € L*(R) is sufficient, and (12) cancels. The
condition (12) on the Fourier transform of ¢ expresses that (¢(- — Ak); k € Z) is a Riesz
basis for the subspace spanned by these functions. That is, for all ai, ..., a, € R and
ki, ..., km € Z, the inequality

m m

m 2
c Z a? < JR [; a;o(u— /lki)} du<c Z af,

i=1 i=1

holds, with the same constants ¢, ¢, as in (12). Since ¢ is compactly supported the integral
can be expressed in terms of the elements of the covariance matrix (9). The lower bound is
the critical one, and it states loosely that no sequence of non-degenerate linear combinations
of the (¥;)ses, can have a degenerate limit.

The convergence rates vy, and 1, coincide if and only if c¢,; =1. For A =1 and
generally for independent observations, we have A~'c,; = [re?(u)du =1, by Hélder’s
inequality, and with equality only if ¢(u)=1{u € [, }]}. For A<1 and independent
observations one may ask if c,; =1 is possible. The answer is affirmative; take any
compactly supported wavelet ¢ (Daubechies 1988) with supp(¢) =[—1/2, /2], say,
and rescale to [—1,1] by ¢(u) = A7 '¢(u/A). In fact, the conditions on ¢ are close to
being equivalent to (¢(- — k); k € Z) defining a multiresolution analysis (Meyer 1990,
Chapter II).

In the dependent observation case we have A~'c,1 = [r@*(#)du, by the formula in
Lemma 1 in Section 5. Let ¢(u) = Ap(Au) as above and denote by (¢(- — k); k € Z) the
orthogonalization of (@(- — k); k € Z); then @(u) = A“(}&(u//l), and c,=1¢
f(pz(u) du = 1. We say in this case that the function ¢ permits an orthonormal expansion.

In conclusion, the relation between asymptotics for the ML estimators in continuous and
discrete models (1) and (11) respectively can be summarized as follows.
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Corollary 1. Under the assumptions of Theorem 1, 0, and 6, are asymptotically equivalent
in the sense of Theorem 2 only in the following cases:

disjoint supports (1 = 1): integrated observations, i.e., h = 1/n and

e(u) = Hu € [-3 51},

non-disjoint supports (A < 1): there exists an orthonormal expansion of the system

(Pp(- — k), ke Z).

Otherwise the asymptotic limits of 0. and O, are similar, but the convergence rate of 0,
relative to that of 0, differs by a constant greater than one.

For the sake of completeness we make a few remarks on Bayesian estimation. In the
continuous-time model, for instance, the Bayesian estimator [95, p based on a positive,
continuous prior density 7 on © = [0, 1] and a p-power loss function > |t — 0|7 is
defined as the minimizer of ¢+ [(¢72|t — 6|)PL(0; V)n(0)dO, where L(:; V) is the
likelihood function. Generally, the Bayesian estimator is consistent with the same rate of
convergence as the ML estimator under weaker conditions on the statistical problem
(Ibragimov and Hasminskii 1981, Section 1.10), and our Theorems A, 1 and 2 should carry
over to Bayesian estimation. The limiting distribution Fy; is accordingly replaced by the
distribution of the minimizer of v — [r|v — u|? exp {B,} du. We refer to Ibragimov and
Hasminskii (1981, Sections VIL.2-3) for a discussion of this distribution and the fact that
the asymptotic efficiency of 6, relative to 6,, is about 0.74; the exact value has recently
been calculated by Rubin and Song (1995).

5. Proofs

Proof of Theorem A

We give only a brief sketch to motivate the assumptions on f), f> for decreasing jump-size
asymptotics. The main line of the proof is similar to that of Theorem 1 or the development in
Stryhn (1994).

The log-likelihood ratio /() = log L(0; V) = log (dPg/dPy«)(V) is

/(0) = —%e—zj L/ (45 6) — £(t; 0P di + e‘lj L/(t; 6) — £(s; 6%)]dW,,
T T
which for 8 = 0* can be written
£6) = —Le 2] L) —f2<t)]2dt+e'1j LAi(0) = fo(0)] dW..
6*,6) (6*,6]

We rescale the process by letting X, = #(6) for 8 = 6* + y.u, and calculate by use of
condition (ii), for 0 < u < K such that 8 € N*,
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EX,=E/(0) = —-;»e—ZJ . hn - () de
(67,61

= _%g—zj [A? + 2AA£(0,)(1 — 6%) + A%(0,)(1 — 6%)] dt
(6*.6]

= —Le72{A%(0 - %) + AA* (6 - 6%)20(1) + (A*)2(6 — 6% O(1)}

-2
=—u/2+ o(1) as € — 0,

by the assumed asymptotic relations. Also, var(/(0)) = —2E/(6), and the process
(7(6); 0 € T) has independent increments. O

Proof of Theorem 1, independent case

The proof proceeds in two steps. First, we define a rescaled log-likelihood ratio process (X,)
to obtain X — B with respect to weak convergence on compact sets (cf. Neuhaus 1971);
recall that B = (B,) is a two-sided Brownian motion with triangular drift. Second, we show
that the normalized estimator 9;!(6, — 6™) is bounded in probability. Combining these two
assertions with the continuous mapping theorem applied to the argmax functional restricted to
compact intervals, the desired result follows. We consider below only decreasing jump-size
asymptotics; the derivation for fixed asymptotics is entirely similar.

The discrete-time log-likelihood ratio /(0) = log L(6; V) — log L(6™; V) takes the form

70)=—0"2> Wl —ul Y +e02> (uf - uf*)JRw(t —s)dW,. (15)

SES, SES,

The process (7(6); 0 € T) is Gaussian with

var(Z(8)) = 072 ) _(ul — ul ' = ~2E7(0), (16)
SES,

cov (£(0), 7(9) = 072>l — u ) — uf). (17)
SES,

Define a rescaled log-likelihood ratio (X,).cr by letting 8 = 6™ + 4,u and
X, =7(0)= 70" + y.u).
Take fixed K >0, and consider 0 < u, ' < K. Using (2), we have

0
A R VU Ry AT LT

which, by property (ii) for # € N*, can be written
6

W=l =T+ A%0 = 09001 it - s)d.

[

This content downloaded by the authorized user from 192.168.72.229 on Wed, 28 Nov 2012 13:20:22 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp
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Since the sums over S, in (16) are virtually restricted to lattice arguments s with
6" — h/2 < s <6+ h/2 (and similarly for (17)), the moments of X can be expanded as

EX, = —10 7 [A + A% (0 - 6%)O()[n(6 — 6%) + O(1)]
= —u/2+ A’e72hO(1) + A*e? /A 0(1) as e — 0,
cov(Xy, Xu) = 0 2 [A+ A% — 65)O()[n(min (6, 6") — 6%) + O(1)]

=min (u, ') + A’e2hO(1) + A*e? /A3 O(1) as e — 0.

In the main, these formulae show that X converges weakly on compact sets to B.
For the second part, we lead off by rewriting equation (15) as

Xy = m(u) + x(u) = m@)[1 + x(u)/m(u)], u#0,
where m(u) = EX, is strictly negative for u # 0, by property (i). We will show that
lim sup P(inf, > g x(u)/m(u) < —(1 — §/2)) — 0 as K — oo for some fixed J € (0, 1). This
is sufficient for the desired argmax boundedness of Xz because the argmax cannot be taken at
negative values of X,,. Introduce the notation Y = (Y,), with

ZSZSW ul )fle(Ph(t—S)th
Zs(,ue - ;us )2

Then the process ¥ is centred and Gaussian with var (Y,) = 4624~ ¢, /(A3 s(u? — u? ).
We will first prove that lim sup._oEsup,>xY, <1 —0 for K large enough. Denote by ¢
and ¢_ the integrals of the positive and negative parts of ¢, and by [¢||; the L'-norm of ¢;
we have ¢, +¢@_ =1 and ¢, — ¢_ = ||¢[|;. Then we obtain, using condition (iv), the
following bounds on ¢ — u?, valid for 6' = 6,

Y, = —x(u)/m(u) =

W = wll < llolhaza,
and furthermore, for 6 + h/2 < s < 6" — h/2,

W — 1l = Asp(s) + (A, Bo- — 0Dy, Doy = a1A —||ollio(Ay, h).
Now, we calculate, for u’' = .0’ — 6%) = u =916 - 0*) =K
_ _ 4¢? -
E(Yu' _ Yu)z — € C(P»l Zs(ﬂs lus

AR (U8 — w8 R (' — u

and insert the above expressions to obtain

2 /
v P < e°Cpp n(0" — 0)
E(Y, — Y,)* < const. ThN w(@ — 6%)n(@ — 6%

!

u' —u
= const. = const. E(Y,y — Y.

where Y, = W,/u for Brownian motion (W,). Thus, we can apply Sudakov-Fernique’s
inequality (Adler 1990, Theorem 2.9),
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Discretely observing a white noise change-point model 195

limsup E sup Y, < const.E sup Y,
u>K u>K
<1 - ¢ for K large enough.
This calculation allows us to employ Borell’s inequality (Adler 1990, Theorem 2.1) to yield

P{ infl;;c(u)/m(u) <s—-(1-6/2)}=P{sup?,=1-06/2}
u=> u>K

<2exp{—4(1—-0/2 - Esup Yu)z/sgrl)(var(f’u)}

u>K
ih 0" +p K—hj2 X
<2exp—g=—(0/2" Y @l -uly
oA 6*—h/2

=2exp {—0*K/32 + o(1)} as e — 0,

by an expansion similar to that in the first part of the proof. Thus the left-hand side
probability tends to zero as K — oo as desired, in fact at an exponential rate. O

Proof of Theorem 1, dependent case

The main idea of the proof is outlined in the remark after Theorem 1. The construction is
based on the following lemma. Introduce, for any real-valued function f and any p € N, the
notation f, = [ f7(u)du.

Lemma 1. Let ¢ € [*(R) and assume that (¢(- — k); k € Z} is a Riesz basis of
span (¢(- — k); k € Z), or equivalently that the Fourier transform ¢ of ¢ satisfies

E'C] >0,<x:ic = Z |é§(a) + 2kJT)|2 < 0.
keZ

Then there exists an orthogonal expansion of (p(- — k); k € Z), that is, a (real-valued)

sequence (ay) € /*(Z) such that the function ¢: R — R defined by
¢ =) arpu—k), ueR,
keZ
has the following properties:
1. span (¢(- — k); k € Z) = span(¢(- — k) k € Z);
2. [rp(u— k)Pp(u—k'Ydu =0 for k# k'

Furthermore, if ¢ € L'(R) with [gep(u)du # 0, then ¢ € LY(R) can be chosen to satisfy the
Sfollowing properties:

3. Jrp(u)du = I;

4. [a* () du =3 pez [ rp(W)p(u + p)du/gpt = 1.
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Finally, if ¢ has bounded support and belongs to L™(R), then
5.¥p>03C,>0: |p(u)| < Cp(1+ |u)~7.

Proof. The lemma relies on standard orthonormalization techniques as in Meyer (1990,
Chapter II). For completeness a brief sketch of proof is included here.
Define

=~ . R 12
@)@) = p() / [Z e +2kn)|2} .

kez

By Fourier inversion, there exists a sequence (a;) in #(Z) such that

) =Y arp(u — k).

keZ

Also, 3 sez|(@)(@ + 2km)]> = 1, which by the Poisson summation formula is equivalent to
[ by au = ous.

where 8 4 equals 1 for k£ = k', and 0 otherwise. Thus properties 1 and 2 have been proved,
and in fact (¢(- — k); k € Z) is an orthonormal basis.

Next, by expanding ¢ in the identity S keze® ngb(u)qb(u —k)du=¢, (=1), one
obtains the following relation, valid for all x:

|[4(x)|*®(x) = 2, with A(x) = ) ase™ and P(x) =) eib‘JR¢(u)¢(u — k) du.

keZ keZ
(18)

In particular, it follows by insertion for x = 0 that 0 <A(0) = > eczax = @1/¢1. Thus, we
can scale the function ¢ and the sequence (ay) to obtain property 3 and, accordingly, for the
normalized function ¢,

= ®(0)/¢1,

1/2 -2
by = (¢1 / [Z|¢(2kn)|2):| ) =Y " [pQkm)2 /97 = |pO)/p7 = 1.

keZ kez

Finally, when ¢ is compactly supported the function @ in (18) is C*, and in particular
A(x) is C* at 0. Therefore, for all p=0, limy_kPar=0 and, using also the
boundedness of ¢, we conclude that the rate of decrease of @(u) at infinity is faster than
every power of u. |

We use the results of the lemma with the function ¢ given by ¢(u) = A@(Au), and let
@(u) = A" 'p(u/A). Thus we obtain an orthogonal expansion (@(- —Ak); k € Z) of the
system (@(- — Ak); k € Z) under the condition that (¢(- —Ak); k € Z) is a Riesz basis,
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which is equivalent to (12). Clearly ¢ € L'(R) with ¢, = 1. Also, ¢, = ¢>/A. Boundedness
of ¢ and ¢ are equivalent.
The derivation (14) is obtained as follows: for s € S,

I./s = Zakr/s+k/n = JRZak¢h(t -85 k/n)df/t

keZ keZ

= J h! Z aro((t — s)/h) — Ak)dV,
R

keZ
=J'h*aa—sVMdﬁ:3[¢ut—ﬂdh,
R R

where ¢, denotes the kernel obtained from ¢ with bandwidth . To calculate the covariance
function of (V) we use the formula below, valid for g;, g, € L*(R) such that the right-hand
side is finite:

EJ g.(z)dW,J oty dW, = ZJ g1()ga(u + p)du.
R R peZ
In a similar fashion to (9) we have, using property 2 of Lemma 1,

cov(Vs, Vy) = €2 ZJ Qu(t — 5)Qu(t —s" + p)dt
peZ R

=(*/h) ZJ Pu)p(u + Ak — k' + np))du
peZ R

= (*/ W)@ 1{3p: (k— k') + np =0}

{ (€2/h)p, for (k — k"ymodulon = 0

0 otherwise

Since the transformation connecting (¥,) and (V) is linear and bijective, the corresponding
ML estimates of 6 are identical. However, the kernel ¢ is not necessarily compactly
supported, and some additional arguments are necessary next to those already given for the
independent case.

The transformed, discrete model (14) is Gaussian with

EK=Jm0—nﬂu®miﬂf

var (V) = (ez/h)J(,bz(u)du =2y /h = 62,

The log-likelihood function is
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Z(0) = log L(B; V) — log L(O*; V)
= o P e Y - )| - sy,
SES, SES, R
from which we obtain the formula similar to (16),
EZ(6) = —Yvar(7(0) = —36 72> (il — ¥ ).
seS,

We proceed as in the independent case by rescaling / as X, = /(0 + 9,u). By similar
reasoning, it suffices for obtaining X X B on compact sets to show that (for 6 = 0*)

s {[Loeaf -5

SESy SES,

O-5)/h 2
J Puydu ¢ ~ n(0 — 6%) ase — 0. (19)
@ —s)/h

Determine for arbitrary 6 >0 by property 3 in Lemma 1 a constant Ky >0 such that

% 2
(J_K(])(u)du) —1‘ <. (20)

Now define S,; = {s € S,: (0% —5)/h<—K, and (8 — 5)/h> Ky}. The number of lattice
points in S, is n(6 — 0™) — 2nhKy + O(1) = n(@ — 6*) + O(1), which, in combination with
(20), yields

2
> {JG*(bh(t - s)dt} —n(6 — 6%)

XES,,VI 4

VK = Ky:

< on(6 — 6%)+ 0(1) as € — 0.

Next, we turn to the contribution to (19) from s¢ S, ;. The number of lattice points in
(0%, 0" + hK,) and (8 — KKy, 0) is in each case equal to nhKy + O(1) = O(1). The sums
(s< 6™ and s> 0) can be estimated using property 5 of Lemma 1 in the following manner,
for p>3/2:

O-5)/h :
Z J @(u)du ; =< const. Z
s<g* 6*—s)/h

~ 2
J (14 u))~?du
s<o* @ —s)/h

0* — s =2(p-1)
= t. 1
cons Z { + 7 }

s<6*

=const. > {l+Ak}7277V =0().
k=n(6"—s)>0

Finally, going through the -calculations for argmax boundedness, only very few
adaptations are necessary. for non-compactly supported @,. For the (crucial) upper and
lower bounds of ¢ — 4% the global assumption (iv) on fj, f> in combination with the
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rapidly decreasing tails of @ in property 5 of Lemma 1 are sufficient. The last point where
the bounded support of ¢ has been utilized is for an easy lower bound on var(Y,) in
Borell’s inequality; however, calculations similar to (19) lead to a lower bound in terms of
(0* + 9:K), and the same argument applies. ]

Proof of Theorem 2

Take arbitrary v>0 and ¢ >0, and let I, = (ée — Y, 95 + cy); we will show that

lim sup P(y; !0, — 6| > ¢) = limsup P(B, ¢ I.) =1 —v.
e—0

e—0
Consider the deviation between continuous- and discrete-time likelihoods,
Z(0) = 7(6) — /(6), OeT.
The process (Z(); 0 € T) is Gaussian with Z(6*) = 0, and, for 8> 6*, we have

var (Z(6)) = &~ U“’* Rk [P &= Ahfeon) Y ) - ul )| = 2EZ(0),

seS,

cov(Z(0), Z(O +0) — Z(0) = 02> _(uf — u? )™ - ud).

SES,

By the expansions of the moments of X, and X, in the proofs of Theorems A and 1
respectively, and the fact that here nih/c,; = c;}l =1, we have, for any K>0 and
T, = [6% — ¢k, 6" + K],
EZ(0), cov(Z(0), Z(0")) = o(1) as ¢ — 0, uniformly for 0, 6’ € T,
and consequently
P(sup|/(6) — /(8)|>n) — 0 ase— 0. 1)
0T,

Since 6, and 95 are both consistent with rate 1, (Theorems A and 1), we can fix K >0 such
that

limsup P, € T, and 6, € T,) = 1 — v/3. (22)
e—0
Furthermore, by the convergence of the rescaled log-likelihood of the continuous-time model
(similarly to the proof of Theorem 1) we can fix # >0 such that
lim sup P(/(6;) — sup 7(6) = 257) = 1 — v/3. (23)
£—0 o¢1,
Finally, we may take &£ small enough to make the probability in (21) less than v/3.

After these preliminaries the main argument of the proof goes as follows. From the
definition of €, and the set /., we have

{98 ¢ 1.} C {Sup2(0)>2(ée)},
01,
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and thus

P@. ¢ I,) < P06 ¢ T, or 6, ¢ T.) + P(Z(6:) — sup Z(6)<0)
0T \I,

<P ¢ T. or b ¢ )+ P(supl/(6) - O] >n) + PO~ sup £(6)<2n),
IS AVA

<v/34+v/34+v/3=v,

where for the second inequality we used the fact that 2(6,) — SUPger\ 7, Z(0)<0 and
supger, |7(6) — /(0)| < n imply #(6,) — supger, 1,/ (6) <2n. 0
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