Mathes, B., et al. “Operator Semigroups for Which Reducibility Implies Decomposability”. Positivity, vol. 7, no. 3, 2003, pp. 195-02, https://scholar2.islandarchives.ca/islandora/object/ir%3Air-batch6-1550.

Genre

  • Journal Article
Contributors
Author: Mathes, B.
Author: Radjavi, H.
Author: MacDonald, Gordon W.
Author: Livshits, L.
Date Issued
2003
Abstract

A description of the lattice of invariant subspaces is provided for multiplicative semigroups S of bounded operators on L-p(X, mu) which are closed under multiplication on the left or right by bounded multiplication operators. Applications are then given to semigroups of positive quasinilpotent operators.

Note

Colby Coll, Dept Math, Waterville, ME 04901 USA. Univ Prince Edward Isl, Dept Math & CS, Charlottetown, PE C1A 4P3, Canada. Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J3, Canada.; Livshits, L, Colby Coll, Dept Math, Waterville, (TRUNCATED)

DORDRECHT; VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

KLUWER ACADEMIC PUBL

PT: J; CR: ABRAMOVICH YA, 1992, MATH Z, V211, P593 ABRAMOVICH YA, 1993, J FUNCT ANAL, V115, P418 ABRAMOVICH YA, 1994, J FUNCT ANAL, V124, P95 ABRAMOVICH YA, 1994, MATH Z, V215, P167 ANDO T, 1957, J FS HOKKAIDO U 1, V13, P214 DEPAGTER B, 1986, MATH Z, V192, P149 DRNOVSEK R, IN PRESS J INTEGRAL HALMOS P, 1982, HILBERTSPACE PROBLEM KRIEGER HJ, 1969, SCHRIFTENREIHE I M A LUXEMBURG WAJ, 1971, RIESZ SPACES, V1 MACDONALD GW, 1990, J FUNCT ANAL, V91, P287 RADJAVI H, 2000, SIMULTANEOUS TRIANGU SCHAEFER H, 1974, BANACH LATTICES POSI TUROVSKII YV, 1999, J FUNCT ANAL, V162, P313 ZAANEN AC, 1983, RIESZ SPACES, V2; NR: 15; TC: 0; J9: POSITIVITY; PG: 8; GA: 734GM

Source type: Electronic(1)

Language

  • English

Subjects

  • POSITIVE OPERATORS
  • reducible
  • quasinilpotent
  • invariant subspaces
  • positive
  • Mathematics
  • semigroup
  • operator
  • decomposable
Page range
195-202
Host Title
Positivity
Host Abbreviated Title
Positivity
Volume
7
Issue
3
ISSN
1385-1292