Genre
- Journal Article
We prove that it is relatively consistent with ZFC that in any perfect Polish space, for every nonmeager set A there exists a nowhere dense Cantor set C such that A boolean AND C is nonmeager in C. We also examine variants of this result and establish a measure theoretic analog.
Univ Prince Edward Isl, Dept Math & Stat, Charlottetown, PE C1A 4P3, Canada. Univ Wisconsin, Dept Matemat, Madison, WI 53706 USA.; Burke, MR, Univ Prince Edward Isl, Dept Math & Stat, Charlottetown, PE C1A 4P3, Canada.; burke@upei.ca miller@math.wisc.edu
OTTAWA; 577 KING EDWARD RD, PO BOX 450, STATION A, OTTAWA, ONTARIO K1N 6N5, CANADA
CANADIAN MATHEMATICAL SOC
PT: J; CR: BAUMGARTNER J, 1983, LONDON MATH SOC LECT, V87, P1 BURKE M, 1993, ISRAEL MATH C P, V6, P119 CIESIELSKI K, 2000, J APPL ANAL, V6, P159 GOLDSTERN M, 1993, ISRAEL MATH C P, V6, P305 KUNEN K, 1983, SET THEORY PAWLIKOWSKI J, 1996, SET THEORY CONT MATH, V192, P71 ROSLANOWSKI A, MEASURED CREATURES SHELAH S, 1980, J SYMBOLIC LOGIC, V45, P563 SHELAH S, 1998, PROPER IMPROPER FORC; NR: 9; TC: 1; J9: CAN J MATH; PG: 16; GA: 985PA
Source type: Electronic(1)
Language
- English
Subjects
- Mathematics
- property of Baire
- oracle forcing
- Lebesgue measure
- Cantor set