MacGillivray, G., and Shannon L. Fitzpatrick. “Non 3-Choosable Bipartite Graphs and the Fano Plane”. Ars Combinatoria, vol. 76, 2005, pp. 113-27, https://scholar2.islandarchives.ca/islandora/object/ir%3Air-batch6-1673.

Genre

  • Journal Article
Contributors
Author: MacGillivray, G.
Author: Fitzpatrick, Shannon L.
Date Issued
2005
Abstract

It is known that the smallest complete bipartite graph which is not 3-choosable has 14 vertices. We show that the extremal configuration is unique.

Note

Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada. Univ Victoria, Victoria, BC V8W 3P4, Canada.; Fitzpatrick, SL, Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada.

WINNIPEG; PO BOX 272 ST NORBERT POSTAL STATION, WINNIPEG, MB R3T 2N2, CANADA

CHARLES BABBAGE RES CTR

PT: J; CR: BROWN E, 2002, MATH MAG, V75, P83 ERDOS P, 1979, CONGRESSUS NUMERANTI, V26, P155 FITZPATRICK SL, DMS854IR U VICT DEP HAUSON D, 1996, ARS COMBINATORIA, V44, P183 VIZING VG, 1976, DISKRET ANAL, V29, P3 WOODALL DR, 2001, LONDON MATH SOC LECT, V288, P269; NR: 6; TC: 0; J9: ARS COMB; PG: 15; GA: 948CQ

Source type: Electronic(1)

Language

  • English

Subjects

  • Mathematics
Page range
113-127
Host Title
Ars Combinatoria
Host Abbreviated Title
ARS Comb.
Volume
76
ISSN
0381-7032