Genre
- Journal Article
A (non-associative) algebra A, over a field k, is called homogeneous if its automorphism group permutes transitively the one dimensional subspaces of A. Suppose A is a nontrivial finite dimensional homogeneous algebra over an infinite field. Then we prove that x(2) = 0 for all x in A, and so xy = yx for all x; y is an element of A.
Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada. Univ Prince Edward Isl, Dept Math, Charlottetown, PE C1A 4P3, Canada.; Dokovic, DZ, Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada.
PROVIDENCE; 201 CHARLES ST, PROVIDENCE, RI 02940-2213 USA
AMER MATHEMATICAL SOC
PT: J; CR: ARTAMONOV VA, 1977, MATH USSR SB, V33, P375 BOEN J, 1962, PAC J MATH, V12, P817 DJOKOVIC DZ, 1973, P AM MATH SOC, V41, P457 GROSS F, 1971, P AM MATH SOC, V4, P10 IVANOV DN, 1982, VESTNIK MOSKOV U MAT, V37, P69 KOSTRIKIN AI, 1965, IZVESTIYA AKAD NAUK, V29, P471 MACDOUGALL JA, 1978, PAC J MATH, V74, P153 SHULT EE, 1969, ILLINOIS J MATH, V13, P654 SWEET LG, 1975, P AM MATH SOC, V48, P321 SWEET LG, 1975, PAC J MATH, V59, P585 SWEET LG, 1987, PAC J MATH, V129, P375; NR: 11; TC: 1; J9: PROC AMER MATH SOC; PG: 6; GA: 225KL
Source type: Electronic(1)
Language
- English
Subjects
- hypersurface
- non-associative algebras
- Mathematics, Applied
- Mathematics
- automorphism group