Genre
- Journal Article
The two-test two-population model, originally formulated by Hui and Walter, for estimation of test accuracy and prevalence estimation assumes conditionally independent tests, constant accuracy across populations and binomial sampling. The binomial assumption is incorrect if all individuals in a population e.g. child-care centre, village in Africa, or a cattle herd are sampled or if the sample size is large relative to population size. In this paper, we develop statistical methods for evaluating diagnostic test accuracy and prevalence estimation based on finite sample data in the absence of a gold standard. Moreover, two tests are often applied simultaneously for the purpose of obtaining a 'joint' testing strategy that has either higher overall sensitivity or specificity than either of the two tests considered singly. Sequential versions of such strategies are often applied in order to reduce the cost of testing. We thus discuss joint (simultaneous and sequential) testing strategies and inference for them. Using the developed methods, we analyse two real and one simulated data sets, and we compare 'hypergeometric' and 'binomial-based' inferences. Our findings indicate that the posterior standard deviations for prevalence (but not sensitivity and specificity) based on finite population sampling tend to be smaller than their counterparts for infinite population sampling. Finally, we make recommendations about how small the sample size should be relative to the population size to warrant use of the binomial model for prevalence estimation.
Su, C. L.: Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
Chichester; UK
John Wiley & Sons
ID: 6524; Accession Number: 20043118503. Publication Type: Journal Article. Language: English. Number of References: 18 ref. Subject Subsets: Public Health
Language
- English
Subjects
- Bayesian theory
- estimation
- Homo
- Hominidae
- diagnosis
- statistical methods
- Man
- animals
- eukaryotes
- Diagnosis of Human Disease (VV720) (New March 2000)
- disease prevalence
- human diseases
- accuracy
- Chordata
- Mathematics and Statistics (ZZ100)
- diagnostic techniques
- mammals
- Primates
- vertebrates
- Techniques and Methodology (ZZ900)
- Non-communicable Human Diseases and Injuries (VV600)
- statistical analysis