Kombian, Samuel B., et al. “17beta-Estradiol Attenuates Excitatory Neurotransmission and Enhances the Excitability of Rat Parabrachial Neurons in Vitro”. Journal of Neuroscience Research, vol. 84, no. 3, 2006, pp. 666-74, https://doi.org/10.1002/jnr.20959.

Genre

  • Journal Article
Contributors
Author: Kombian, Samuel B.
Author: Zidichouski, Jeffrey A.
Author: Fatehi, Mohammad
Author: Saleh, Tarek M.
Date Issued
2006
Abstract

The steroid hormone 17 beta-estradiol and its respective receptors have been found in several cardiovascular nuclei in the central nervous system including the parabrachial nucleus. In a previous study, we provided evidence that 17 beta-estradiol attenuated an outward potassium conductance in parabrachial neurons of male rats, using an in vitro slice preparation. In this study we sought to enhance the comprehensive information provided previously on estradiol's postsynaptic effects in the parabrachial nucleus by directly examining whether 17 beta-estradiol application will modulate excitatory synaptic neurotransmission. Using a pontine slice preparation and whole-cell patch-clamp recording, bath application of either 17 beta-estradiol (20-100 mu M) or 13SA-17 beta-estradiol (50 M) decreased the amplitude of evoked excitatory postsynaptic currents (from 30-60% of control) recorded from neurons in the parabrachial nucleus. The paired pulse ratio was not significantly affected and suggests a post-synaptic site of action. The inhibitory effect on the synaptic current was relatively long-lasting (non-reversible) and was blocked by the selective estrogen receptor antagonist, ICI 182,780. Furthermore, 17 beta-estradiol reduced the maximum current elicited by a ramp protocol, increased the input resistance measured between resting membrane potential and action potential threshold and caused an increase in the firing frequency of the cells under current-clamp. In summary, 17 beta-estradiol caused 3 effects: first, a depolarization; second, a reduction in evoked excitatory postsynaptic potentials; and third, an enhancement of action potential firing frequency in neurons of the parabrachial nucleus. These observations are consistent with our previous findings and support a role for estrogen in modulating neurotransmission in this nucleus. (c) 2006 Wiley-Liss, Inc.

Note

PT: J; UT: BIOSIS:PREV200600529569

Source type: Electronic(1)

Language

  • English
Page range
666-674
Host Title
Journal of Neuroscience Research
Host Abbreviated Title
J.Neurosci.Res.
Volume
84
Issue
3
ISSN
0360-4012 ER

Department