Genre
- Journal Article
The distance from an arbitrary rank-one projection to the set of nilpotent operators, in the space of k x k matrices with the usual operator norm, is shown to be sec(pi/(k+2))/2. This gives improved bounds for the distance between the set of all non-zero projections and the set of nilpotents in the space of k x k matrices. Another result of note is that the shortest distance between the set of non-zero projections and the set of nilpotents in the space of 3 x 3 matrices is root(3-root 5)/2.
MACDONALD, GW, UNIV PRINCE EDWARD ISL,DEPT MATH & COMP SCI,CHARLOTTETOWN,PE C1A 4P3,CANADA.
OTTAWA; 577 KING EDWARD RD, PO BOX 450, STATION A, OTTAWA ON K1N 6N5, CANADA
CANADIAN MATHEMATICAL SOC
PT: J; CR: HEDLUND JH, 1972, MICH MATH J, V19, P249 HERRERO D, 1975, INDIANA U MATH K, V24, P847 HERRERO D, 1982, PITMAN RES NOTES MAT, V72 HERRERO DA, 1981, INDIANA U MATH J, V30, P199 HERRERO DA, 1981, OPERATOR THEORY ADV, V2, P171 POWER S, 1980, MATH P CAMBRIDGE PHI, V88, P327 SALINAS N, 1980, J OPERAT THEOR, V3, P179; NR: 7; TC: 0; J9: CAN J MATH; PG: 11; GA: RR321
Source type: Electronic(1)
Language
- English
Subjects
- Mathematics