Shelah, S., and Maxim R. Burke. “Linear Liftings for Noncomplete Probability Spaces”. Israel Journal of Mathematics, vol. 79, no. 2-3, 1992, pp. 289-96, https://doi.org/10.1007/BF02808221.

Genre

  • Journal Article
Contributors
Author: Shelah, S.
Author: Burke, Maxim R.
Date Issued
1992
Abstract

We show that it is consistent with ZFC that L(infinity)(Y, B, upsilon) has no linear lifting for many non-complete probability spaces (Y, B, upsilon), in particular for Y = [0, 1]A, B = Borel subsets of Y, upsilon = usual Radon measure on B.

Note

HEBREW UNIV JERUSALEM,INST MATH,JERUSALEM,ISRAEL.; BURKE, MR, UNIV PRINCE EDWARD ISL,DEPT MATH & COMP SCI,CHARLOTTETOWN C1A 4P3,PEI,CANADA.

JERUSALEM; PO BOX 7695, JERUSALEM 91076, ISRAEL

MAGNES PRESS

PT: J; CR: BURKE MR, 1991, ISRAEL J MATH, V73, P33 FREMLIN DH, HDB BOOLEAN ALGEBRA, P877 JUST W, IN PRESS T AM MATH S MATHIAS ARD, 1977, ANN MATH LOGIC, V12, P59 SHELAH S, 1982, PROPER FORCING SHELAH S, 1983, ISRAEL J MATH, V45, P90 TULCEA AI, 1969, TOPICS THEORY LIFTIN; NR: 7; TC: 1; J9: ISR J MATH; PG: 8; GA: KQ705

Source type: Electronic(1)

Language

  • English

Subjects

  • Mathematics
Page range
289-296
Host Title
Israel Journal of Mathematics
Host Abbreviated Title
Isr.J.Math.
Volume
79
Issue
2-3
ISSN
0021-2172