Horrocks, D. G. C. “The Numbers of Dependent K-Sets in a Graph Are Log Concave”. Journal of Combinatorial Theory Series B, vol. 84, no. 1, 2002, pp. 180-5, https://doi.org/10.1006/jctb.2001.2077.

Genre

  • Journal Article
Contributors
Author: Horrocks, D. G. C.
Date Issued
2002
Abstract

A set of vertices in a graph is said to be dependent if it is not independent. Let p(k)(G) denote the number of dependent sets of size k in the graph G. We show that, for any graph G, the sequence {p(k)(G)} is logarithmically concave. (C) 2001 Elsevier Science.

Note

Univ Prince Edward Isl, Dept Math & Comp Sci, Charlottetown, PE C1A 4P3, Canada.; Horrocks, DGC, Univ Prince Edward Isl, Dept Math & Comp Sci, Charlottetown, PE C1A 4P3, Canada.

SAN DIEGO; 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA

ACADEMIC PRESS INC ELSEVIER SCIENCE

PT: J; CR: ANDERSON I, 1987, COMBINATORICS FINITE BONDY JA, 1976, GRAPH THEORY APPL BRENTI F, 1994, CONT MATH, V178, P71 HAMIDOUNE YO, 1990, J COMB THEORY B, V50, P241 HORROCKS DGC, 1999, EUR J COMBIN, V20, P131 HORROCKS DGC, 2000, AUSTRALAS J COMBIN, V22, P105 STANLEY RP, 1989, ANN NY ACAD SCI, V576, P500 WAGNER DG, 2001, J COMB THEORY A, V94, P383 ZHA XY, 1989, EUR J COMBIN, V10, P603; NR: 9; TC: 2; J9: J COMB THEOR B; PG: 6; GA: 517RG

Source type: Electronic(1)

Language

  • English

Subjects

  • Mathematics
  • CONJECTURE
Page range
180-185
Host Title
Journal of Combinatorial Theory Series B
Host Abbreviated Title
J.Comb.Theory Ser.B
Volume
84
Issue
1
ISSN
0095-8956