Stuart, C., et al. “Deuterium NMR and X-Ray Crystallographic Studies of Guest and Host Motions in the Thiourea 1, 4-Di-Tert-Butylbenzene Inclusion Compound”. Journal of Physical Chemistry, vol. 96, no. 12, 1992, pp. 5121-9, https://doi.org/10.1021/j100191a068.

Genre

  • Journal Article
Contributors
Author: Stuart, C.
Author: Penner, G. H.
Author: Polson, James M.
Author: Ferguson, G.
Author: Kaitner, B.
Date Issued
1992
Abstract

Deuterium nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times are used to investigate the guest and host molecular dynamics of solid 1,4-di-tert-butylbenzene-d4 (DTBB-d4), 1,4-di-tert-butylbenzene-d18 (DTBB-d18), the thiourea/ 1,4-di-tert-butylbenzene-d4 inclusion compound (TU/DTBB-d4), the thiourea/ 1,4-di-tert-butylbenzene-d22 inclusion compound (TU/DTBB-d22), the thiourea-d4/1,4-di-tert-butylbenzene inclusion compound (TU-d4/DTBB), and thiourea-d4 (TU-d4). X-ray crystallographic studies of TU/DTBB-d4 have been carried out at 291 K. In solid DTBB the phenyl ring is essentially static whereas the tert-butyl groups are undergoing rapid reorientation of both methyl and tert-butyl groups. Attempts to analyze the H-2 spectra and T1 data for DTBB-d18 suggest that the dynamics of the methyl and tert-butyl groups are nearly equivalent, and as a result, a satisfactory analysis, yielding methyl and tert-butyl rotational activation energies, was not possible. X-ray diffraction results for TU/DTBB-d4 suggest that, at 291 K, the phenyl ring is occupying three nearly equivalent sites. The H-2 NMR line shapes between 186 and 392 K were interpreted using a model in which the phenyl ring is rapidly flipping between three positions, with one position less favored, At 296 and 186 K the populations are 0.81:1.00:1.00 and 0.20:1.00.1.00, respectively. Relaxation times obtained between 111 and 322 K show no minimum, supporting the assumption of very rapid phenyl ring reorientation. For TU/DTBB-d22 a high-temperature T1 minimum is well-defined, and a second minimum, corresponding to tert-butyl group rotation, is reached at the lowest attainable temperatures. Line-shape simulations of the spectrum at 77 K yield methyl and tert-butyl group rotational rates of 1.0 x 10(3) and 2.0 x 10(6) s-1, respectively. Analysis of the higher temperature spectra (109-172 K) and T1 data (167-300 K) yield methyl rotation activation energies of 12.7 and 12.3 kJ/mol, respectively. Deuterium line-shape studies of the thiourea dynamics in TU-d4 and TU-d4/DTBB yield activation energies for 180-degrees flips about the C=S bond of 47 and 46 kJ/mol, respectively.

Note

UNIV ZAGREB,FAC SCI,GEN & INORGAN CHEM LAB,YU-41001 ZAGREB,YUGOSLAVIA.; PENNER, GH, UNIV GUELPH,GUELPH WATERLOO CTR GRAD WORK CHEM,DEPT CHEM & BIOCHEM,GUELPH N1G 2W1,ONTARIO,CANADA.

WASHINGTON; 1155 16TH ST, NW, WASHINGTON, DC 20036

AMER CHEMICAL SOC

PT: J; CR: 1974, INT TABLES XRAY CRYS, V4 ARONSON M, 1981, CHEM PHYS, V63, P349 ATWOOD JL, 1984, INCLUSION COMPOUNDS, V1 BECKMANN P, 1979, J MAGN RESON, V36, P199 BECKMANN P, 1981, CHEM PHYS, V63, P359 BECKMANN PA, 1984, J MAGN RESON, V59, P63 BLOEMBERGEN N, 1948, PHYS REV, V73, P679 CANNAROZZI GM, 1991, J PHYS CHEM-US, V95, P1525 CLEMENT R, 1974, J CHEM SOC CHEM COMM, P654 CLEMENT R, 1977, J CHEM PHYS, V67, P5381 COLLINS MJ, 1989, J PHYS CHEM-US, V93, P7495 DAVIS JH, 1976, CHEM PHYS LETT, V42, P390 DAVIS JH, 1991, ISOTOPES PHYSICAL BI, V2, CH2 DRAVERS MA, 1980, CRYST STRUCT COMMUN, V9, P951 ELCOMBE MM, 1968, ACTA CRYSTALLOGR A, V24, P410 FLOVENICIO F, 1976, ACTA CRYSTALLOGR B, V32, P2480 GABE EJ, 1981, ACTA CRYSTALLOGR B, V37, P197 GABE EJ, 1989, J APPL CRYSTALLOGR, V22, P384 GELERINTER E, 1990, J PHYS CHEM-US, V94, P5391 GELERINTER E, 1990, J PHYS CHEM-US, V94, P8845 GOPAL R, 1989, ACTA CRYSTALLOGR C, V45, P257 GREENFIELD MS, 1987, J MAGN RESON, V72, P89 GRIFFIN RG, 1981, METHOD ENZYMOL, V72, P108 GRIFFITH EAH, 1972, CAN J CHEM, V50, P2972 GRUWEL MLH, 1990, Z NATURFORSCH A, V45, P55 HEATON NJ, 1989, J AM CHEM SOC, V111, P3211 HEYES SJ, 1990, MAGN RESON CHEM S, V37 HEYES SJ, 1991, J PHYS CHEM-US, V95, P1547 HOUGH E, 1978, J CHEM SOC DA, P15 HUFFMAN JC, 1990, INORG CHEM, V19, P2749 IKEDA R, 1989, J PHYS CHEM-US, V93, P7315 IWASAKI F, 1979, ACTA CRYSTALLOGR B, V35, P2099 IWASAKI F, 1980, ACTA CRYSTALLOGR B, V36, P1700 JUNGK AE, 1971, CHEM BER, V104, P3289 KENNEDY MA, 1991, J MAGN RESON, V91, P301 KOERFER M, 1989, Z NATURFORSCH A, V44, P1177 KRAVERS MA, 1979, CRYST STRUCT COMMUN, V8, P427 KRAVERS MA, 1980, CRYST STRUCT COMMUN, V9, P955 LIFSHITZ E, 1986, J PHYS CHEM SOLIDS, V47, P1045 LOWERY MD, 1990, J AM CHEM SOC, V112, P4212 MACK JW, 1991, J PHYS CHEM-US, V95, P4207 MAGDOFF BS, 1951, ACTA CRYSTALLOGR, V4, P176 MCDANIEL PL, 1988, J PHYS CHEM-US, V92, P626 MEIROVITCH E, 1987, J PHYS CHEM-US, V91, P5014 NISHIKIORI S, 1990, J PHYS CHEM-US, V94, P8098 OK JH, 1989, J PHYS CHEM-US, V93, P7618 OREILLY DE, 1971, J CHEM PHYS, V54, P1304 POLSON JM, 1991, J CHEM PHYS, V94, P3381 POUPKO R, 1989, J AM CHEM SOC, V111, P6094 POUPKO R, 1991, J PHYS CHEM-US, V95, P407 RATCLIFFE CI, 1990, J PHYS CHEM-US, V94, P152 ROESSLER G, 1989, BER BUNSEN GEN PHYS, V93, P1241 ROY AK, 1990, PROGR NMR SPECTROSCO, V22 SPIESS HW, 1980, J CHEM PHYS, V72, P6755 SPIESS HW, 1985, ADV POLYM SCI, V66, P23 TAKEMOTO K, 1984, INCLUSION COMPOUNDS, V2, CH2 TORCHIA DA, 1981, J MAGN RESON, V42, P381 WASYLISHEN RE, COMMUNICATION WENDOLOSKI JJ, 1990, SCIENCE, V247, P431 WITTEBORT RJ, 1987, J CHEM PHYS, V86, P5411 ZAMIR S, 1991, J CHEM PHYS, V94, P5939; NR: 61; TC: 14; J9: J PHYS CHEM; PG: 9; GA: HY322

Source type: Electronic(1)

Language

  • English

Subjects

  • LIQUID
  • LINE-SHAPE
  • DYNAMICS
  • Chemistry, Physical
  • REORIENTATION
  • SPECTROSCOPY
  • SOLID-STATE
  • MOLECULAR-SOLIDS
  • RELAXATION
  • QUADRUPOLE-ECHO
  • Polymers
Page range
5121-5129
Host Title
Journal of Physical Chemistry
Host Abbreviated Title
J.Phys.Chem.
Volume
96
Issue
12
ISSN
0022-3654

Department