Wyman, D. R., and William M. Whelan. “Dynamic Modeling of Interstitial Laser Photocoagulation: Implications for Lesion Formation in Liver in Vivo”. Lasers in Surgery and Medicine, vol. 24, no. 3, 1999, pp. 202-8, https://doi.org/10.1002/(sici)1096-9101(1999)24:33.0.co;2-8.

Genre

  • Journal Article
Contributors
Author: Wyman, D. R.
Author: Whelan, William M.
Date Issued
1999
Abstract

Background and Objective: Interstitial Laser Photocoagulation (ILP) is a minimally invasive cancer treatment technique, whereby optical energy from implanted optical fibers is used to therapeutically heat small, solid tumors. In this work, the potential of ILP without tissue charring is investigated. Study Design/Materials and Methods: Optical diffusion and bioheat transfer equations were used to develop dynamic models of interstitial laser heating in liver in vivo. Modifications in the optical properties due to tissue coagulation (T greater than or equal to 60 degrees C) were incorporated into the physical description. In addition, the effect of three different blood perfusion patterns on temperature distributions was explored. Model-predicted temperatures were used as an index for thermal damage based on an accumulated temperature injury (Arrhenius) model. Thermal. damage dimensions were determined with tissue temperatures constrained to remain below 100 degrees C, so as to minimize the potential for tissue charring and smoke production. Results: The model predicts that increases in scattering due to coagulation and choice of perfusion pattern affect substantially thermal damage dimensions. The results indicate that, for single fiber ILP at 2.55 W for 600 s, the maximum achievable thermal damage diameter in liver, without charring, is 9.6 mm. In addition, ILP performed with high-low power ramping may have an advantage over constant power treatments, in that, larger volumes of thermal damage can be realized earlier in an irradiation. Conclusions: For ILP performed with a single spherical emitting fiber, optimal irradiation parameters exist such that thermal lesions in liver up to approximately 10 mm in diameter can be induced while the maximum tissue temperature remains below 100 degrees C, avoiding tissue charring. (C) 1999 Wiley-Liss, Inc.

Note

Ryerson Polytech Univ, Dept Math Phys & Comp Sci, Toronto, ON M5B 2K3, Canada. McMaster Univ, Hamilton, ON, Canada. Hamilton Reg Canc Ctr, Hamilton, ON L8V 1C3, Canada.; Whelan, WM, Ryerson Polytech Univ, Dept Math Phys & Comp Sci, 350 Victoria St, Toronto, ON M5B 2K3, Canada.

NEW YORK; DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA

WILEY-LISS

PT: J; NR: 23; TC: 16; J9: LASER SURG MED; PG: 7; GA: 184FX

Source type: Electronic(1)

Language

  • English

Subjects

  • OPTICAL-PROPERTIES
  • Perfusion
  • NM
  • optimization
  • optothermal modeling
  • FIBER TIP
  • COAGULATION
  • ND-YAG
  • charring
  • surgery
  • DIODE-LASER
  • DEPENDENCE
  • CANCER
  • THERMOTHERAPY
  • TISSUE
Page range
202-208
Host Title
Lasers in Surgery and Medicine
Host Abbreviated Title
Lasers Surg.Med.
Volume
24
Issue
3
ISSN
0196-8092

Department