Horrocks, D. G. C. “Nested Chain Partitions of Hamiltonian Filters”. Journal of Combinatorial Theory Series A, vol. 81, no. 2, 1998, pp. 176-89, https://doi.org/10.1006/jcta.1997.2824.

Genre

  • Journal Article
Contributors
Author: Horrocks, D. G. C.
Date Issued
1998
Abstract

Let P be a poset, consisting of all sets X subset of or equal to [n] = {1, 2, ..., n} which contain at least one of a given collection F of 2-subsets of [n], ordered by inclusion. By modifying a construction of Greene and Kleitman, we show that if F is hamiltonian, that is, contains {1, 2}, {2, 3}, ..., (n - 1, n) and {1, n}, then P is a nested chain order. We examine the Sperner-type properties of such posers and provide further support for a conjecture of Lih. (C) 1998 Academic Press, Inc.

Note

Univ Prince Edward Isl, Dept Math & Comp Sci, Charlottetown, PE C1A 4P3, Canada.; Horrocks, DGC, Univ Prince Edward Isl, Dept Math & Comp Sci, Charlottetown, PE C1A 4P3, Canada.

SAN DIEGO; 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA

ACADEMIC PRESS INC

PT: J; CR: BONDY JA, 1976, GRAPH THEORY APPL DEBRUIJN NG, 1951, NIEUW ARCH WISK, V23, P191 GREENE C, 1976, J COMB THEORY A, V20, P80 GRIGGS JR, 1980, J COMB THEORY A, V28, P156 GRIGGS JR, 1982, T AM MATH SOC, V269, P575 LIH KW, 1980, J COMB THEORY A, V29, P182 PROCTOR RA, 1980, DISCRETE MATH, V30, P173 ZHA XY, 1989, EUR J COMBIN, V10, P603 ZHU YX, 1984, J MATH RES EXPO, V4, P148; NR: 9; TC: 1; J9: J COMB THEOR A; PG: 14; GA: YW754

Source type: Electronic(1)

Language

  • English

Subjects

  • SPERNER PROPERTY
  • Mathematics
Page range
176-189
Host Title
Journal of Combinatorial Theory Series A
Host Abbreviated Title
J.Comb.Theory Ser.A
Volume
81
Issue
2
ISSN
0097-3165