Genre
- Journal Article
Let P be a poset, consisting of all sets X subset of or equal to [n] = {1, 2, ..., n} which contain at least one of a given collection F of 2-subsets of [n], ordered by inclusion. By modifying a construction of Greene and Kleitman, we show that if F is hamiltonian, that is, contains {1, 2}, {2, 3}, ..., (n - 1, n) and {1, n}, then P is a nested chain order. We examine the Sperner-type properties of such posers and provide further support for a conjecture of Lih. (C) 1998 Academic Press, Inc.
Univ Prince Edward Isl, Dept Math & Comp Sci, Charlottetown, PE C1A 4P3, Canada.; Horrocks, DGC, Univ Prince Edward Isl, Dept Math & Comp Sci, Charlottetown, PE C1A 4P3, Canada.
SAN DIEGO; 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
ACADEMIC PRESS INC
PT: J; CR: BONDY JA, 1976, GRAPH THEORY APPL DEBRUIJN NG, 1951, NIEUW ARCH WISK, V23, P191 GREENE C, 1976, J COMB THEORY A, V20, P80 GRIGGS JR, 1980, J COMB THEORY A, V28, P156 GRIGGS JR, 1982, T AM MATH SOC, V269, P575 LIH KW, 1980, J COMB THEORY A, V29, P182 PROCTOR RA, 1980, DISCRETE MATH, V30, P173 ZHA XY, 1989, EUR J COMBIN, V10, P603 ZHU YX, 1984, J MATH RES EXPO, V4, P148; NR: 9; TC: 1; J9: J COMB THEOR A; PG: 14; GA: YW754
Source type: Electronic(1)
Language
- English
Subjects
- SPERNER PROPERTY
- Mathematics